
Numerical Modelling of Optical Micro- 

cavity Ring Resonators for WDM 

Networks 

 

Nabeil Abduljallil Abubaker Abujnah 

 

A submission presented in partial fulfilment of the requirements 

of the University of Glamorgan/Prifysgol Morgannwg 

for the degree of Doctor of Philosophy 

 

This research programme was carried out in collaboration 

with the University of Sebha, Libya 

 

July 2011 



Certificate of Research  
 

This is to certify that, except where specific reference is made, the work presented 

in this thesis is the result of the investigation undertaken by the candidate. 

 

Signed: ……………………….…….......... (Candidate) 

Signed: ……………………....................... (Director of Studies) 

Date: …………………………….………..                            

 

 

 

 

 

 

 

 

 

 

 

 



Declaration  
 

This is to certify that neither this thesis nor any part of it has been presented or is 

being currently submitted in candidature for any other degree other than the 

degree of Doctor of Philosophy of the University of Glamorgan. 

Signed: …………………….…………… (Candidate) 

Date: …………………………………… 

 

I hereby give consent for my thesis, to be available for photocopying and for inter-

library loan, and for the title and summary to be made available to outside 

organizations.   

Signed: …………………….…………… (Candidate) 

Date: …………………………………… 

 

 

 

 

 

 



i 

Acknowledgements 

 

In the name of ALLAH, the most Beneficent, the most Merciful, the most Compassionate. 

This thesis is dedicated to the soul of my father, may Allah forgive him and grant him his 

highest paradise (Ameen). 

 

I am forever indebted to the greatest women in my life, my beloved mother, whose 

unconditional love and support at each time of my life made me that man that I am today. Her 

deep faith, her prayers, and supreme trust are always the most efficient motivation to 

accomplish my ultimate goal. No word can describe what you have done for me. Thank you 

for your selfless and endless love. 

 

Warm thanks goes to my dearest brother, Mr. Essa and his lovely family; I will never be able 

to repay him for his absolute backing and support to me, meeting my needs before I knew I 

needed them. He has a special place in my heart. 

 

My beloved, my wife, Reema, her prayers, patience, hard work, energy, dedication, 

enthusiasm, passion, support, and, most of all, her love; to these I owe where I stand today. 

 

To the two lovely roses, my daughters Fatima and Lamar, whom have decorated my life and 

made it full of happiness and joy.  

 



ii 

I wish to mention all  my other brothers and sisters, who have all had a great influence in 

keeping me motivated throughout this PhD journey, when things made no sense, they made 

the PhD life look all the brighter and gave me the extra push when I needed one. 

 

The author would also like to extend his sincere thanks to Libyan high Education ministry for 

their financial support.  

 

I would like to express my gratitude to my thesis supervisor Prof. S. S. A. Obayya, whose 

mentorship and support made my graduate career a truly remarkable experience. Despite his 

busy schedule, he has always made time for discussion. In addition to the scientific side, he 

has also provided me with invaluable help in carefully planning and managing the different 

steps of my research. I have truly learned a lot during my PhD. 

 

I would like to express my warm thanks to Dr. Rosa Letizia for her continuous and invaluable 

guidance. I shall always remember her for her kindness and all the support that she has given 

me through my study.  

 

I would also like to thank Dr. Ramsy Selim, Dr. Domenico Pinto, and Eng. Ahmed Heikal for 

their valuable input academically and non-academically. They have had a positive lasting 

impact on me. 

 

Lastly, I would like to offer my regards and blessing to all of those who supported me in any 

respect during the completion of this work as well as expressing my apologies that I could not 

mention them personally one by one.   

 



iii 

 

 

 

 

 

 

To my lovely home country LIBYA 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract 
 

Augmenting the level of integration for a lower cost and enhancing the performance of the 

optical devices have turned out to be the focus of many research studies in the last few 

decades. Many distinct approaches have been proposed in a significant number of researches 

in order to meet these demands. Optical planar waveguides stand as one of vital employed 

approach in many studies. Although, their low propagation loss, and low dispersion, they 

suffers from high power losses at sharp bends. For this reason, large radius of curvature is 

required in order to achieve high efficiency and compromise the high level of integration. For 

the purpose of this research, in this thesis different ways to improve the performance of 

optical microcavity ring resonators (MRRs) have been thoroughly investigated and new 

configurations have been proposed. 

The Multiresolution Time Domain (MRTD) technique was further developed and employed 

throughout this thesis as the main numerical modelling technique. The MRTD algorithm is 

used as a computer code. This code is developed and enhanced using self built Compaq 

Visual Fortran code. Creating the structure and Post-processing the obtained data is carried 

out using self built MATLAB code. The truncating layers used to surround the computational 

domain were Uniaxial Perfectly Matched Layers (UPML). The accuracy of this approach is 

demonstrated via the excellent agreement between the results obtained in literature using 

FDTD method and the results of MRTD. 

This thesis has focused on showing numerical efficiency of MRTD where the mesh size 

allowed or the total number of computed points is about half that used with FDTD. 

Furthermore, the MRR geometry parameters such as coupling gap size, microring radius of 
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curvature, and waveguide width have been thoroughly studied in order to predict and 

optimise the device performance. 

This thesis also presents the model analysis results of a parallel-cascaded double-microcavity 

ring resonator (PDMRR). The analysis is mainly focus on the extraction of the resonant 

modes where the effect of different parameters of the structure on transmitted and coupled 

power is investigated.  

Also, accurate analysis of 2D coupled microcavity ring resonator based on slotted 

waveguides (SMRR) has been thoroughly carried out for the purpose of designing optical 

waveguide delay lines based on slotted ring resonator (SCROW).  

The SCROW presented in this thesis are newly designed to function according to the 

variation of the resonance coupling efficiency of a slotted ring resonators embedded between 

two parallel waveguides.  

The slot of the structures is filled with SiO2 and Air that cause the coupling efficiency to vary 

which in turn control both the group velocity and delay time of SCROW structures results 

from the changing the properties of the bent slotted waveguide modes which strongly 

depends on the slot’s position. 

Significant improvements on the quality factor and greater delay time have been achieved by 

introducing sub-wavelength-low-index slot into conventional waveguide. 
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1.1 Future Trend of Optical Communications 

Optical communication is one of the greatest achievements accomplished in the last 

century. This is due to its capability to introduce an excellent solution for the 

information flow. The rapidly growing volume of internet services has led to conversion 

from telecommunication to data communication [14, 41].  

Since the digital data traffic has been quarter every year, fibre-optic communication 

technologies have quickly expanded in order to support this revolution. Compared to 

their counterpart twisted-pair and coaxial-cable, these sophisticated techniques have not 

only provided higher speed but also larger capacity [18].  

Hence, twisted-pair and coaxial-cables are being gradually displaced. Following the 

establishment of long distance fibres, the check point of the optical communication 

system is progressing towards functional photonic components that are utilised to link 

the terminals and the customers. Diverse functional devices such as, optical power 

splitters, optical switches, and optical (de) multiplexers, are needed to either add or drop 

signals [33].  

Planar Lightwave Circuits (PLCs) play an essential role in optical communications 

networks. Conventionally, PLCs suffer from a variety of problems such as polarisation 

dependence and optical losses. In addition, they were temperature sensitive and were 

restricted to only two dimensions. However, in recent years, many of these problems 

have been solved, making PLCs in particular attractive due to their properties of 

compactness, low losses, improved functionality, and also have potential for mass 

productivity [73, 58]. With merit to the recent advances in material technology and 

fabrication techniques, fabricating PLCs with complex functions has been made 
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possible. The requirements of conforming to the demands on integration with as many 

functions as possible, for the lowest cost as possible, as well as computing and signal 

processing devices to complement or competitively replace their microelectronic 

counterparts in integrated circuits, make it essential that PLCs be explored [73, 58].  

In PLCs the signal is carried using optical signals rather than electrical once. This is due 

to the high frequency of light that, not only permits a very large bandwidth transport, but 

also allows huge amount of information to be managed [33]. High bandwidth and 

multiplexing capacity, reduced weight, immunity to electromagnetic interference, low 

transmission loss, high thermal and mechanical stabilities, and low power consumption 

are considered as figures of merit distinguishing PLCs based devices over their 

counterparts based on previous technologies [34]. PLCs are designed to carry out certain 

function such as the generation, guiding, splitting, multiplexing, amplification, 

switching and detection of the light signals [73].  

A variety of devices based on PLC technology have been developed, including arrayed 

waveguide gratings [70, 36], matrix switching [93], star and multimode interference 

couplers [108, 72, 95]. An optical waveguide plays an essential role in constructing the 

photonic components in the same way that the electrical wire is used for electronics 

[52]. To a certain extent, photonics can be considered as the equivalent to electronics 

with the signal being carried using light instead of electric current. Whilst an electrical 

signal exists in the region of high electrical conductivity, an optical signal is travelling 

along in medium of high refractive index. By means of total internal reflection (TIR) of 

light, several of geometrical structures have been used to realise the optical waveguide. 
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Common examples include embedded waveguides, rectangular dielectric waveguides, 

dielectric strip waveguides, rib waveguides, strip-loaded waveguides and ridge 

waveguides [66]. Different materials have been used to construct optical waveguides 

including polymer [48], Silicon on Insulator (SOI) [2], InP [72], SiO2 [5], and LiNbO3 

[83]. 

Each material has advantages and disadvantage relying on specific required functions. 

Due to the outstanding advantages of providing small propagation loss as well as low 

cost, SiO2 stands as an ideal option for passive devices. While SOI can be a good 

platform for high density integration this is due to its ability for providing high-index-

contrast. However, as the silicon is indirect bandgap material, it is difficult to obtain 

light emission. Whereas, InP can be best selected for monolithic integration because of 

its ability to support both active and passive optical functions [58].   

 

1.2 Optical Microcavities 

Optical microcavities can be viewed as photonic devices in which the light can be 

resonantly trapped in structures of physical dimension comparable to optical 

wavelength. Optical microcavity ring resonators stand as the most commonly used 

example, where light can be travelling in medium of circular geometry with curvature 

radius of few tens of microns. Owing to high refractive index of guiding materials, the 

confinement mechanism is performed by means of total internal reflection. Generally, 

optical microcavities play a significant role in many applications ranging from quantum 

electrodynamics to telecommunications components, all the way to optical sensors [6, 

50].  
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A basic property of optical microresonators has been arisen from their size-dependent 

spectral response. The light, once the interference condition takes place, is particularly 

stored in the resonator at precise frequency values that can be used to design filters for 

optical communication applications [22]. In addition, these modes can resonate with 

high quality factor (Q) in the cavity where the long photons lifetime allows the field 

within the cavity to be built from a considerably weaker input. This property makes the 

optical cavities an ideal platform not only to realise optical sensors and studying light-

matter interaction [27, 85] but it also allows for new kinds of laser devices [104].  

In the last few years, research interest has been strongly directed to the design of optical 

ring resonators based on high-index-contrast semiconductor materials [10, 25, 37, 62]. 

These research efforts have clearly demonstrated that those structures naturally permit 

realisation of small-radius microcavities with negligible bending losses resulting in large 

longitudinal mode spacing. For this reason, they allow the integration of a bulky number 

of devices on optical circuits foreseen for very large scale integrated (VLSI) photonics 

[10]. Since the MRRs have been recognised as complicated structures, hence, realistic 

simulations that accurately predict their performance are of major importance.  

There are many benefits of these simulations, some include:- 

1. Saving time and cost of re-fabrication 

2. Accurate analytical simulations lead to modifications and enhancements of the 

MRRs device that in turn leads to improved developed designs 
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1.3 Existing Approaches for Modelling MRRs  

Since 2D MRRs have been considered as complicated structures, both analytical and 

numerical techniques have been adopted in order to investigate the properties of MRRs. 

Although analytical techniques can be used to study the physical effects of the structure, 

they are incapable of predicting experimental realisation [46].  

Therefore, a number of numerical techniques have been developed for such complex 

electromagnetic structures. There are mainly two numerical techniques by which 

Maxwell’s equations in an electromagnetic system can be analysed; frequency-domain 

(FD) and time-domain (TD). The FD techniques have showed significant progress [54]; 

however, even the most advanced FD schemes are exhausted by several volumetrically 

complex structures of interest. Alternatively, TD methods hold many advantages over 

their FD counterpart. One of the main advantages is that one simulation of MRRs 

devices in time-domain results in broadband information that can be analysed.   

In this research, Multiresolution Time Domain scheme is successfully extended to 

accurately model optical devices based on MRRs. The idea behind this technique is to 

apply multiresolution analysis in the context of the Method-of-Moment (MoM) to 

discretise Maxwell’s equations, where electromagnetic field components are expressed 

as weighted sums of specific scaling and wavelet functions in space and in time domain. 

Substituting these expansions into Maxwell’s equations and following the wavelet-

Galerkin method, an arbitrary high-order time domain scheme is derived [9, 62, 68], 

[106]. This scheme has proven in literature to be highly accurate if compared to most 

used FDTD techniques, which strongly suffer from numerical dispersion at fixed 

resolution in space [28, 82, 98].   
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1.4 Aims and Objectives 

Recent years have witnessed a flurry of activities aimed at development of techniques 

that can lead to a significant support of the explosive expansion of high-density, ultra-

fast and efficient systems in the telecommunications markets. In order to support this 

revolution, all-optical systems have been developed rapidly to meet the high 

performance characteristics required by today and next generation telecommunications.  

The progress in integrated optical technology may significantly have an effect on the 

future rate of development of optical networks. It should be noted that despite the 

advances in integrated optical devices they lack in the scale of integration and level of 

sophistication when compared to their integrated electronic counterpart. Therefore 

integrating as many functions as possible is needed for low cost devices. In particular, it 

is desirable when the devices can be created with standard processes in mass production 

scale.  

In addition, versatile building blocks that can not only be utilised for optical functions 

such as filtering, sensing, and switching, but also suitable for integration are of high 

necessity. Recent advances in micro and nanofabrication technology have brought a new 

interest in building optical devices with physical dimensions comparable to optical 

wavelength. Optical microcavities play an important role in modern optical 

communications. It can serve as flexible passive and active components in photonic 

integrated circuits. The requirements of achieving higher performance for the future of 

optical communication devices, as well as computing and signal processing devices to 

complement or competitively replace their microelectronic counterparts in integrated 

circuits, make it essential that novel optical microstructures be explored. Since the 
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microcavity resonators have been recognised as complicated structures, their fabrication 

requires ultra-high degree precision in addition to highly complicated laboratory 

facilities. Hence, the characteristics of these devices usually necessitate a full- wave 

numerical simulator that can allow for design optimisation before fabricating the device. 

Furthermore, accurate computations can be capable of predicting complex physical 

phenomena inherent in these devices.  

This research work has been focused on the numerical modelling of microcavity ring 

resonators from time-dependent Maxwell’s equations. The goal and novelty of this work 

is to investigate the electromagnetic wave interaction with linear Si and SiO2 based 

semiconductor microring resonators and demonstrate the use of such passive devices for 

optical filtering and photonic delay lines.  

In order to choose a particular simulation approach, generally two criteria have to be 

taken into account. Firstly, the desired results need to be accomplished with available 

resources and secondly, CPU simulation time has to be optimised to obtain these results. 

Since the first aspect is related to the convergence rate of the used techniques, large 

computational problems can be studied with a highly convergent algorithm. On the other 

hand, the execution simulation time not only relies on the cost of time per time step but 

also depends on the number of time steps that have to be carried out. Among the 

existing full-wave techniques, Finite Difference Time Domain is known as a popular 

framework for low-cost feasibility studies and permit design optimisation before 

fabricating the device [10]. Although this method is simple and flexible, it puts a heavy 

burden on computer resources particularly when modelling complicated problems with 

large computational domain.  
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For this research, the multiresolution time domain method has served as the basis for the 

computational studies and algorithm development. Since it was introduced in 1996 for 

the microwave ranges [68] and has since been extended also for the optical range [82]. 

This method uses a high order approximation of the derivative in space in order to 

reduce the numerical phase error of FDTD. By doing so, MRTD does not require the use 

of very fine mesh size to discretise the structure geometry, thus high numerical accuracy 

can be achieved while mitigating the computational burden. The possibility of saving 

CPU running time makes MRTD an efficient alternative numerical scheme to the 

commonly used FDTD for the design of optical microring structures.     

 

1.5 New Contributions to the Knowledge 

Optical microcavity ring resonator is an optical waveguide that forms a ring shaped 

structure whose circumference is in the range of tens of hundreds microns. Light in this 

manner can be coupled into and out of this structure by placing it in close proximity 

between another two straight waveguides.  

The design and simulation play a very important role in the development of photonic 

devices. With appropriate simulation tools, the design of such devices becomes much 

more efficient. The cost for product development could be reduced dramatically by 

using efficient designs that give good performance and compactness. Thus this research 

aims at implementing a numerical, yet accurate and comprehensive model that can be 

utilised to explore a detailed study of the MRRs. This aim has been fulfilled through the 

following objectives:- 
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• Review of optical microcavity ring resonators 

• Develop MRTD simulation of MRRs 

•  Numerically provide detailed study of the single MRR geometry 

parameters 

• Model the double MRR systems and assess the system resonance mode, 

where the effect of different parameters of the structure on transmitted 

and coupled power is investigated 

• Investigate slotted MRRs with two different slot materials 

• Analyse optical delay lines based on slotted MRRs and assess their 

performance 

 

In order to meet these aims, the following milestones have been pursued:-  

• Create UPML – MRTD 

• Numerical assessment of the UPML-MRTD through comparison with 

results in literature 

• Investigation of the performance of MRRs based on high-index-contrast 

waveguides 

• Modelling the performance of SMRRs 

• Suggest and demonstrate a novel design of optical delay lines based on 

SMRRs 

All the work and results related to the accomplishment of the objectives stated above 

will be discussed in detail in the next chapters of this thesis 
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1.6 Outline of the Thesis  

Since the initial proposal of microcavity ring resonator [26], both analytical and 

numerical techniques have been adopted. With their unique properties and the potential 

to significantly build up a higher field from a weaker input field, MRRs may find 

applications in many fields of science and engineering. This thesis brings MRRs into 

higher numerical precision realm that can not be predicted analytically to provide a full 

framework to understand and explain the light propagation in MRRs and to optimise the 

device performance before fabrications. 

Chapter 2 the features of optical microcavity ring resonators in wavelength division 

multiplexing are described and their many benefits explained. This covers all the 

necessary general concepts and relevant basic theory which are all well established in 

literature. The optical properties of MRRs are gradually analysed – starting with a form 

of single microring resonator that is useful for understanding their properties such as the 

power exchange phenomena. Also, the electromagnetic derivations based on the single 

ring resonator can be extended and applied in the analysis of more complex structures 

including the two rings configuration.  

In chapter 3, MRTD technique has been proposed for the first time for analysis of 

MRRs. The MRTD method relies on applying multiresolution analysis in context of 

method-of-moments to discretise Maxwell’s equations where electromagnetic 

computational field components are expressed as weighted sums of specific scaling and 

wavelet functions in space and time domain. This scheme has proven in literature to be 

highly accurate compared to the more used FDTD method which strongly suffers from 

numerical dispersion at fixed resolution in space. 
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In chapter 4, several examples have been analysed in order to assess the Uniaxial 

Perfectly Matched Layer for the MRTD in the context of optical slab waveguide as well 

as MRRs. 

Chapter 5 presents MRR based on high-index-contrast waveguide. The effect of the 

structure geometry parameters such as the gap between the ring and input/ output 

waveguides, the ring radius., and the width of the input/output and the ring resonators is 

thoroughly investigated.      

In chapter 6, an accurate analysis of two-dimensional coupled microring resonators 

based on high-index-contrast waveguide is carried out. The normalised transmission 

spectra for a single-ring and double ring configurations have been investigated by using 

robust and accurate MRTD technique in conjunction with UPML absorbing boundary 

condition the rigorously terminate the computational window. Two different 

configurations are considered in this chapter, single-ring resonator, and double-ring 

resonator in parallel. The major physical characteristics of the waveguide-coupled MRR 

have been numerically investigated, including the resonance wavelength, the free 

spectral range, the coupling and rejection ratio, and the resonance-mode quality factor. 

Slotted microcavity ring resonators are analysed in chapter 7. The performance of these 

devices in terms of coupling efficiency and normalised transmission spectra has been 

accurately investigated by means of MRTD technique in conjunction with UPML 

absorbing boundary conditions that rigorously terminate the computational window. 

Two different slot filling materials, air and SiO2, are considered for comparison. The 

variation of coupling efficiency and quality factor with the slot design specifications, 

such as position and width of the slot, has been thoroughly investigated.  
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In chapter 8, a novel design of coupled-resonator optical waveguide delay line based on 

slotted ring resonator (SCROW) is proposed and analysed. Coupling efficiency can be 

reduced to control both group velocity and delay time by changing the geometry of the 

bent slotted waveguide which strongly affects the properties of the propagation modes. 

The coupling efficiency between the multiple coupled resonators plays an essential role 

in the determination of the SCROW performance and can be controlled by changing the 

effective refractive index of the ring. Due to the presence of curved materials 

interference and greatly different length scale linked with the sub-wavelength sized slots 

and the waveguide-resonators coupling region, this typical system offers important 

challenges to both direct numerical solution and semi-analytical methods. The 

simulations are carried out using MRTD scheme in conjunction with UPML boundary 

conditions that rigorously truncate the computational window. 

Finally, in chapter 9, conclusions and final remarks of the present research are drawn, 

and a view of the potential future topics is given.  
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2.1 Introduction 

Microcavity resonators based on Whispering-Gallery-Modes (WGMs) play a significant 

role in many applications ranging from quantum electrodynamics to telecommunication 

devices and optical sensors [101]. In recent years, research has dedicated great attention 

to optical microcavity ring resonators. This is due to their attractive features of 

compactness and functionality. Consequently, they hold promise for future modern 

Wavelength Division Multiplexing (WDM). This chapter gives rigorous overview of the 

microring resonators and their properties. The chapter covers some essential background 

theory, and applications, which in turn shed light on the versatile of such structures.  

 

2.2 Microring Resonators Based  WDM 

2.2.1 Overview of WDM 

The optical fibre in optical communication networks has significant bandwidth which, 

unless exploited properly, would be exhausted on a signal channel being sent via the 

fibre. This is where optical WDM can be practical [35]. According to the different 

wavelengths (colours) of laser light, this technique is based on dividing the light in the 

optical fibre into distinctive channels. Each channel conveys the same amount of data as 

a single fibre that has not been overlapped. The basic idea behind of optical WDM can 

be illustrated in figure 2.1.  
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Figure 2.1 Simplified  point-to-point WDM  transmission system with amplifiers 

  

Transmitters, multiplexer, optical fibre link with perhaps amplifiers, and demultiplexers 

are basic connection components in point to point WDM. For extra nodes in the middle 

of WDM, optical add-drop multiplexers (OADM) are required. At the transmitter side a 

WDM multiplexer combines a number of different signals to a single optical fibre. 

While at the OADM, specific wavelength can be dropped and another one with new data 

can be added. The signals reaching at the demultiplexer will be split and directed to one 

of the N receivers. Ideally, such a system would have a switching device that 

simultaneously broadcasts and receives signals. In telecommunication, the key 

advantage of WDM is its capability to increase the capacity of the network without 

changing its backbone. This is often done by employing filtering devices and deploying 

optical amplifiers all over the optical network [81].   

 

2.2.2 Optical Microcavity Ring Resonators in WDM 

Integrated optical filter in WDM system can be used as (de)multiplexer and add-drop 

components. In general, there are different types of devices that can be employed as 

add-drop filter and (de)multiplexer. This is including the Arrayed Waveguide Grating 
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(AWG), Bragg gratings, and thin films filters [70]. However, more often than not these 

devices are bulky and relatively hard to be incorporated in compact devices with multi 

functionality. Recent advances in micro and nano system technology have brought a 

new interest in building optical devices with physical dimension comparable to optical 

wavelength [10]. In particular, integrated optical filters based on microcavity ring 

resonators can become as small as 10-4
 cm and can be promising candidates in the future 

of VLSI photonics. 

Low-index-contrast and high-index-contrast are two classes of microring resonator 

devices that can be utilised in WDM applications. The conventional low-index-contrast 

resonators have the advantage of showing low propagation loss [10]. On the other hand, 

since a very large bend radius is required to achieve a high efficiency bend, resonators 

based on such waveguides involve a very large radius for the design of the circular 

waveguide which build the ring. As a result, the overall size of the ring resonator is 

increased while the Free Spectral Range (FSR) which is inversely proportional to the 

diameter of the ring is limited [10]. Research efforts have been directed towards 

designing new structures to achieve a wide FSR without decreasing the diameter of the 

ring. Different approaches in literature include double-ring and triple-ring resonators 

[10, 51, 94]. Thanks to the recent advances in material technology and fabrication 

techniques, microring devices with physical dimension comparable to optical 

wavelength have been made possible to be fabricated with negligible bending loss [10]. 

The requirements of achieving higher performance for the future of optical 

communication  devices, as well as computing and signal processing devices to 

complement or competitively replace their microelectronic counterparts in integrated 
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circuits, make it essential that novel optical microstructures be explored. High FSR, high 

extinction ratio, small size, and selectivity of coupling to the output ports are considered 

as figure of merits defining the good performance of these kinds of structures [10].    

 

2.3 Microcavity Ring Resonators Devices 

2.3.1 MRRs Shape 

MRRs are a ring-shaped waveguide evanescently coupled at particular points vertically 

or horizontally to one or two straight waveguides as shown in figure 2.2.  

 

Figure 2.2 Schematic drawing of a microcavity ring resonator 

 

At particular wavelengths, the amount of power coupled to and from the ring can be 

determined by either the effective index of the waveguide, the distance between the 

waveguides, or the length of the ring. If, for a given frequency, the optical length of the 

ring is equivalent to a multiple of the frequency then constructive interference takes 
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place and light can be stored in the cavity and as a result the waveguide transmission 

will be decreased [81, 97].  

The shape of the MRRs is basically not constrained to circle. The racetrack is another 

optical resonator geometry [80] which is shown in figure 2.3. 

 

Figure 2.3 Schematic diagram of racetrack resonator 

 

Due to the long and straight coupling path, the coupling between semi-circle resonator 

and the straight bus waveguide can be controlled allowing longer interaction length 

which in turn not only reduces the coupling loss but also permits the enlargements of the 

distance between the semi-circle resonator and the straight bus waveguide. However, 

they are counterbalanced with some drawbacks of introducing transition losses at the 

transition between the curved and straight portions. In addition, due to longer coupling 

length, FSR will be reduced [57].  

An additional common configuration is illustrated in figure 2.4, is known as the disk 

resonator [86].  
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Figure 2.4 Schematic diagram of disk  resonator 

 

Although higher lateral contrast can be achieved compared to the circular resonators, 

thus lower losses can be gained, potentially high order modes can be arisen.   

 

2.3.2 Coupling Scheme of MRRs 

Lateral and vertical coupling scheme are mainly two approaches in which the light can 

be coupled from the input waveguide to the ring and from the ring to the output 

waveguide. This section is devoted to discussing these two schemes in details. 

 

2.3.2.1 The lateral Coupling Scheme 

When the input and output bus waveguides are situated in the same plane with ring, the 

coupling between the waveguides takes place horizontally, this is recognised as lateral 

coupling as shown in figure  2.5. 
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Figure 2.5 Schematic layout of single microcavity ring resonator in top view and cross-section;  

lateral coupling 

 

The coupling efficiency can be controlled by the etched gap between the input/output 

waveguide and the ring [86, 12]. As the strength of the coupling extremely depends on 

the distance between the input/output waveguide and the ring, this scheme is very 

sensitive to the lithography and engraves procedures that construct the gap. For high-

index-contrast structures, as semiconductors, the gap size requires to be in the range of 

100 nm in order to achieve a considerable coupling, for this reason, e-beam lithography 

is necessary. 

 

2.3.2.2 The vertical Coupling Scheme 

This configuration is based on placing the input and output bus waveguides either on top 

or bottom of the ring as illustrated in figure 2.6, where the coupling between the 

waveguides occurs vertically; this is known as vertical coupling scheme. 
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Figure 2.6 Schematic layout of single microcavity ring resonator in top view and cross-section;  

vertical coupling 

 

Although this scheme presents superior coupling efficiency owing to larger region under 

interaction, it is harder to fabricate. This is because of the input and output waveguides 

are placed in different levels [55]. In this case, the coupling strength is calculated by the 

thickness of the layer between the ring and waveguides.  

 

2.4  Cascaded Multiple Microcavity Ring Resonator  Devices 

Optical microcavity ring resonators can be made of either single or multiple resonators. 

Figure 2.2 shows a configuration of horizontal coupling single ring resonator. This kind 

of device has shown promising functionality in all-optical PLCs such as delay signal 

devices.  A specifically tailored delay line response with an increased performance as 

required in applications such as synchronisation can be achieved by cascading multiple 

microcavity ring resonators and selecting appropriate parameters. 



Chapter2   Background of Optical MRRs 

23 
 

Serial and parallel are two configurations in which multiple ring resonators can be 

arranged. In the following section, both arrangements will be explained. 

 

 2.4.1 Serial Configuration 

The schematic diagram of multiple cascaded resonators in serial configuration, known 

as Coupled Resonator Optical Waveguides (CROWs), is illustrated in figure 2.7.  

 

Figure 2.7 Schematic diagram of multiple cascaded resonators in serial configuration 

 

The key point is that a number of coupled resonators are placed between two straight 

bus waveguides acting as input and output ports. The coupling between the input and 

output waveguides and the ring as well as between the rings takes place by means of 

directional couplers with coupling efficiency, κ. The microring radius and separation 

distance are indicated by d and g respectively [24].  

Referring to figure2.7, the light in this manner can be exited through the input port 
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where part of it, on-resonance case, couples into the first ring and starts to travel along 

the ring. After one round trip inside the cavity constructive interference occurs with the 

light that has just joined to the ring leading to coherent build up within the ring. After 

that, a substantial portion of power will be coupled to the neighbour ring and carry on 

until is coupled ultimately to the drop port. In this case, all the rings required to be 

resonate at the same wavelengths. Therefore, an accurate control in terms of fabrication 

process is extremely needed to ensure identical interactions between the nearest 

neighbour cavities. At off-resonance, the portion of light remains uncoupled and keeps 

propagating along the input waveguide where it can be detected at through port [24].   

  

2.4.2 Parallel Configuration 

Figure 2.8 shows the schematic layout of parallel multiple ring resonators configuration, 

also known as Side Coupled Integrated Spaced Sequence of Resonators (SCISSORs).  

 

 

Figure 2.8 Schematic diagram of multiple cascaded resonators in parallel configuration 

 

As shown in figure 2.8, the ring are arranged in such a way there is no straight coupling 

between them, but they are indirectly coupled via the bus waveguide. Thus, the light can 
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travels within unique direction preventing from counter propagation. This kind of 

configuration is found to be more flexible in terms of fabrication process than serial one. 

On the other hands, due to the possibility of phase changing in the connecting length, Λ 

between the rings which optimised only for narrow wavelength range, the useful 

wavelength range of these rings is limited [24]. Exceeding this range could lead the 

output at drop port to be largely varied in unforeseen way owing to interference of light 

coupled from each individual resonator.  

The coupling between each ring and the straight bus waveguide is taken place by means 

of directional coupler. Since each resonator is characterised by the following 

parameters: ring diameter, the gap distance between the rings and bus waveguides, and 

the distance of centre to centre between the nearest neighbour rings that needs to be 

carefully chosen in order to achieve the required interference at the specific wavelength 

range [24].    

 

2.5 Microcavity Ring Resonators Applications 

Over the last decades, optical microcavity ring resonators have attracted a great attention 

in the scientific community. Since then, they found their way in a wide range of 

applications. This section highlights some of these applications. 

 

2.5.1 Dispersion Compensation   

Optical ring resonator can be used as flexible dispersion compensation components in 

WDM [16, 32]. Figure 2.9 shows the block diagram of multistage dispersion 

compensator using microcavity ring resonator. 



Chapter2   Background of Optical MRRs 

26 
 

 

Figure 2.9 Schematic diagram of microcavity ring resonator as multistage dispersion 

compensator 

 

The variation in the group velocity of light propagating along optical fibre with alters in 

optical wavelengths can leads to chromatic dispersion.  

A spectrum of wavelengths are associated within any data pulse propagates along 

optical fibre, in this manner, the shorter wavelength components are likely to be 

travelled faster than the ones with longer wavelength components. This leads to 

broadening the pulse and consequently, interference takes place with neighbouring 

pulses which cause distort the transmitted signal. In this case, practical dispersion 

components that can limit tenability and have uniform insertion loss upon tuning of 

dispersion and multiple wavelength operation are extremely required. Optical 

microcavity ring resonators have the ability to augment the physical length by means of 

forcing the light to pass through the physical distance many times.  

 

2.5.2 Notch Filters and (de) mulitplexers 

By means of strategic coupled of microring and Mach-Zehnder interferometer as in figure 

2.10, it has been possible to design many optical devices in a very easy and compact way. 
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Examples include notch filters [76], and a periodic (de)multiplexer [67].  

 

Figure 2.10 Schematic diagram of microcavity ring resonator coupled to one arm of a Mach-

Zehnder interferometer [76] 

 

2.5.3 Add-Drop Filters 

It has been possible to design add-drop filters based on microcavity ring resonator using 

either double or triple ring resonators integrated with Semiconductor Optical Amplifiers 

(SOAs) for the flexible use of WDM channel in wavelength division multiplexing 

networks [23]. The schematic diagram of add-drop filter is shown in figure 2.11. 
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Figure 2.11 Schematic diagram of add-drop filters integrated with SOA using MRRs [23] 

 

2.5.4 Millimetre Wave Generation  

The use of soliton pulse propagates within system of optical microcavity ring resonator 

can leads to a new design of a simultaneous short-wave and millimetre-wave generation 

[90]. 

 

Figure 2.12 Schematic diagram of cascaded ring resonators used for generation of mm-wave 

signals [90] 
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By means of suitable parameters such as input soliton power, coupling coefficients, and 

ring radii, a novel system of micro and nano ring resonators can be designed in such 

way that can generate broad bandwidth [90]. A similar configuration can also be used 

for chaotic communication [77].   

 

2.5.5 Biosensors  

Optical microcavity ring resonators have found their way even in biology applications as 

biosensors [21]. The design principle of this device is based on monitoring the change in 

transfer characteristics of the microring cavity when biological materials drop on top of 

the ring resonator.  

 

2.5.6 Optical Logic Gates  

Photonic logic gates are vital components for realising optical signal processing and 

computing systems. In this regard, optical microcavity ring resonators have been found 

to be possible candidates for the realisation of photonic logic gates such as NOR gate 

[101] and ultra fast all-optical AND logic gate [89].  

 

2.5.7 Optical Delay Lines  

The slow light can play an important role for applications where the dynamic control of 

the delay is needed for synchronisation purposes, multiplexing, and data storage [8]. In 

this context, optical microcavity ring resonators is one of the most important building 

block for more complicated nano-waveguide based structures which can support slow 

light operations [30, 71, 3, 4].  
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These are only some of the applications which can be realised with microcavity ring 

resonators. The following section presents the operation principles of microcavity ring 

resonators. 
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2.6 Microcavity Ring Resonators: Theory and Operation Principles 

Circular integrated optical micocavity ring resonators are increasingly utilised as 

compact and versatile wavelength filters. The resonators are functionally represented in 

terms of one or two directional couplers with suitable connection using bent and straight 

bus waveguides. This section is dedicated to discuss add-drop model of microavity ring 

resonators.   

 

2.6.1 Add-Drop MRRs Theory 

The typical layout of the add-drop microcavity ring resonator is shown in figure 2.13. It 

consists of ring waveguide and two bus waveguides. 

 

Figure 2.13 Schematic diagram of add-drop microcavity ring resonator 

 

Similar to any resonator, the working principles of this kind of resonator is based on the 

following main quantities, firstly the coupling efficiency, which determine the amount 
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of power coupled to/from the ring, secondly the propagation losses, which have an 

effect on the quality of the resonator, ultimately, the roundtrip phase, which determines 

the resonance condition. 

The structure in figure 2.13 is designed to drop an optical signal at drop port if proper 

phase matching conditions exist [21]. 

λπ mdneff =  (2.1) 

where λ is the signal wavelength inside the medium, neff is the effective refractive index 

of the medium, d is the ring radius, m is an integer. 

When a defined spectral range is injected as a source, the frequencies that can resonate 

inside the ring are coupled to the second waveguide (on-resonance case) via the ring, 

while the others, for which the relation (2.1) is not satisfied, carry on propagating inside 

the first waveguide and can be found at through port (off-resonance case). After one 

roundtrip the field inside the ring is decreased by σ = e-αL/2, where α is the propagation 

loss inside the ring. The coupling of the field between the input bus waveguide and the 

ring, and between the ring and output bus waveguide can be explained by means of the 

coefficients κi and τi. As it is illustrated in figure 2.13, κi is the amplitude coupling 

coefficients, while τi is the amplitude transmission coefficients across the coupling 

region [11, 44].  Assuming lossless coupling, the relation κi + τi=1 holds. Using these 

definitions, the intensity at through port can be expressed by:  
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The intensity at the drop port is proportional to the intensity inside the ring at second 

coupling region: 

RingDrop I
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2.6.2 Add-Drop MRRs Performance Parameters  

The design consideration is based on taking into account the performance of the ring. 

Thus, several parameters are significant in the description of resonators, this including 

the free spectral range, the spectral width, the quality factor, and the finesse. This 

section is devoted to discuss these terms that qualify the performance of the microcavity 

ring resonator.  

According to Equation 2.2, the typical transmission spectrum of add-drop microcavity 

ring resonator is shown in figure 2.14.     
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Figure 2.14  Typical transmission characteristics of microcavity ring resonator at through port 

 

At precise wavelength values, an essential property of optical microcavity ring resonator 

can be stemmed from this size-dependent spectrum. The following quantities can be 

commonly used to describe the microcavity ring resonator behaviour.   

 

2.6.2.1 Free Spectral Range  

A parameter that is inversely proportional to the resonator diameter is the FSR. It is 

defined as the spacing between two adjacent resonant wavelengths. By differentiating 

the equation 2.1 with respect to the wavelength, the FSR can be expressed as [24] 

g
mm nd

FSR
π

λλλ
2

1 =−= +  (2.5) 

where the group effective index, ng which contains the material dispersion can be 

defined as  
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It is obvious from equation 2.5 that the ring diameter is basically having an effect on the 

FSR, where large FSR requires small resonator. For example, A ring diameter of 5µm 

( 3≅effn ) implies FSR=50 nm. 

 

2.6.2.2 The Spectral Width   

The spectral width determines how fast optical data can be processed by microcavity 

ring resonator and can be defined as the full width at half maximum (FWHM) of the 

transmission spectrum peak as shown in figure 2.14. Using equation 2.3 for drop port, 

the intensity can be written as [24]. 
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where 

2
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Equation 2.7 can be rewritten as  
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By means of Euler formula, for smallϕ , )2(1)cos( 2ϕϕ −=  thus  
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Taking into account equation 2.8 and equation 2.10, considering symmetric coupling, 

and after mathematical manipulations the FWHM of wavelength is derived as 
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πτσ
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1 2−=∆      (2.11) 

 It is obvious that the roundtrip loss and the coupling efficiency influence the FWHM. 

 

2.6.2.3 The Quality Factor  

The quality factor of the microcavity ring resonator gives details of the ratio of the 

energy stored in the resonator to the energy lost per one roundtrip [24]: 

powelost

powerstored
Q ×= 0ω  (2.12) 

The quality factor is an important quantity for microcavity ring resonator that measures 

the sharpness of the resonance relatively to its central wavelength and can be 

analytically expressed in other way as [24].    
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2.6.2.4 The Finesse  

The finesse can be defined as the ratio of FSR and ∆λFWHM and can be expressed 

as [24] 

21 τσ
τσπ
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=

∆
=

FWHM

FSR
F  (2.14) 

This relation is very important to balance between the FSR which has to be preferably 

high and ∆λFWHM which has to be rather low to differentiate between the adjacent 

resonance peak and the shift in the working resonance peak. Thus, higher finesses mean 

better sensitivity and selectivity [55]. 
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2.7 Summary 

This chapter has covered the essential background theory of microcavity ring resonators. 

This included highlighting their capability to manipulate the flow of light. The operation 

principles was explained starting from brief overview of WDM followed by reviewing 

MRRs as WDM components, and then the applications of MRRs were presented. The 

phenomena of coupling and controlling the flow of light through MRRs structures were 

covered. 

In order to successfully model and simulate these MRR structures, the MRTD numerical 

modelling method was used. This technique is presented in details in chapter three. 
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3.1 Introduction 

Since 2D MRRs have complicated structures and cannot be analysed using simple 

techniques, several numerical methods have been developed for such complicated 

electromagnetic structures. Therefore, this monograph presents techniques that can be 

used to model such complex structure in MRTD. 

 

3.2 Background 

Introduced for the first time by Krumpholz and Katehi in 1996 [68], MRTD is a known 

technique for the simulation of microwave devices in terms of mitigation of 

computational burden and low numerical dispersion [28, 62, 98]. Recently Letizia and 

Obayya [82] have successfully extended this technique for the accurate analysis of 

photonic devices for linear and nonlinear applications, proving to be a flexible, powerful 

tool for electromagnetic computation in optics.  

The field expansion in space of MRTD is based on the Cohen-Daubechies-Feauveau 

(CDF) scaling basis function of order (2, 4) which being chosen from the family of 

biorthogonal interpolating functions, have proved to give good compromise between 

increased number of computations and improved accuracy [62, 98, 107]. Haar pulse 

functions are instead applied to the field expansion in time leading to a leapfrog scheme 

similar to the one used in FDTD. Furthermore, UPML scheme has been implemented at 

the boundaries to rigorously terminate the computational domain. Being time domain 

technique, it is capable of obtaining a wide range of frequencies with one simulation 

using Fast Fourier Transform (FFT) post-processing of the temporal data. In particular, 

for problems involving complicated structures such as MRR that cannot be analysed 
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using simple techniques, the complicated electromagnetic structures are more efficiently 

modelled numerically in time-domain instead of those operate in frequency-domain. 

Hence, this research is mainly concerned with the time-domain computational 

techniques and specifically the MRTD.  

The MRTD algorithm is used as a computer code that is developed and enhanced to 

analyse the propagation characteristics of MRR structures. The following section 

provides a detailed review of the MRTD. 

 

3.3 Multiresolution Fundamentals 

3.3.1 MRTD Analysis overview  

The MRTD method was introduced in [68] in which the basis of the MRTD technique 

for solving Maxwell’s equations (see Appendix A) in time-domain on space grid was 

explained. Their technique relies on using wavelet expansion followed by Method-of-

Moments (described in Appendix B) as a new way to increase both accuracy and 

efficiency of numerical techniques for solving interaction of electromagnetic wave 

problems. The scheme that they initially proposed in [68] is proving to be flexible and 

capable of providing a general discretisation technique to be utilised with diverse kinds 

of wavelet basis. In a typical manner, the wavelet system used in MRTD is orthonormal 

not only with scaling function but also with mother wavelet. In this scheme, the scaling 

functions are used firstly to develop the mother function which in turn is used to 

generate all the other wavelet basis functions. Numerical accuracy of MRTD stems from 

the levels of wavelet resolution terms. Each level contains a set of functions that can be 
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added to the expansion in order to increase the accuracy of the discretisation. The 

scaling functions ( )xiϕ  can be written as [74] 
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At the same time as a wavelet coefficient  ( )xr
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where r is the wavelet resolution and p is an integer in the range [0, 2r-1]. Each level of 

resolution r consists of 2r wavelets that are offset in space by rx 2∆ . 

The following relationships describe scaling functions and wavelet coefficients [74, 75] 
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From the space of square integrable functions L2(R), all wavelets of resolution r form a 

set of subspaces { } ZiiV ∈  which fulfil the following properties [109]    
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where Z stands for the set of all integers. 

The accuracy of MRTD scheme relies on either increasing or decreasing of the wavelet 

resolution.  

 

3.3.2 MRTD Scheme 

In order to develop a MRTD scheme to solve Maxwell’s equations, the electric and 

magnetic fields have to be represented as expansion in scaling and wavelet functions in 

space and time and then to apply the MoM.  

For the simplest case based on one-dimensional scheme, the expansion of each field 

component in scaling and wavelet functions with arbitrary order of resolution up to rmax 

is expressed as [74]    
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where ϕ,x
in F   and ψ,

,,
x

prin F  are the expansion coefficient which represents the 

magnitudes of the scaling and wavelet functions and i indicate the position in space 

along x-direction. It is obvious that the discretisation is carried out together in space and 

in time. In order to ensure the causality, pulse functions ( )thn  are employed in time. 

These functions in actual fact, do not overlaps in representing a given time step and 

therefore a new event is independent of a past one.   
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For any wavelet basis utilised, the number of expansion coefficients for a given 

maximum resolution can be determined using the following formula [74] 

Number of coefficients
∑

= =
+

zyxi
irD

,,
max,

2  
(3.11) 

where D stands for the dimensionality of the system under investigation.  

Once the number of basis functions has been determined using the above formula, the 

number of grid points can be also calculated [19]. Similar to Yee-FDTD scheme, the 

filed coefficients in [68] are misplaced by a half cell to construct a system in space. 

Similar to FDTD, the new generated equations in MRTD are entirely explicit. Although 

the simplicity of implementation, time steps have to be selected under a stability limit, 

which is described in full detail in Appendix D. Particularly, discretisation in time relied 

on pulse functions brings to a leapfrog arrangement like the one in FDTD with E and H 

fields that are offset of half a time step. Once the field offset is chosen and by means of 

method of moments, the MRTD update scheme (covered in more details in Appendix C) 

is then obtained. 

 

3.4 MRTD Based on Scaling Function  

The accuracy and efficiency of the MRTD method and its ability to simulate a wide 

variety of devices for a large of frequency, from microwave to optical regime, have 

made this method one of the most popular in the research environment. MRTD is 

suggested as a good solution to the numerical dispersion and multi-grid problems 

associated with other numerical technique such as FDTD. The MRTD is employed by 

discretising the differential Maxwell’s equation through method of moments, with the 

field expanded in terms of a family of wavelet and scaling functions. The employ of 
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variety levels of wavelet functions in addition to scaling function lead to a natural 

method of describing different levels of resolutions. Thus, the choices of the field 

expansion that produce a good approximation of the field play a crucial role in reducing 

the numerical dispersion error of the algorithm for a given grid discretisation.  

This section is devoted to review the wavelet expansion and motivate the choice of the 

basic functions then details on the MRTD formulation will be presented. 

 

3.4.1 Cohen-Daubechies-Feauveau based MRTD  

The MRTD method has been demonstrated as an alternative solution to minimise the 

number of grid points without deteriorating the accuracy of the results. In other word, 

producing a better approximation of the field by means of accurate wavelet expansion 

can provides a good solution to the numerical dispersion error of the logarithm for a 

specified grid discretisation.   

In terms of wavelet basis functions, a smooth one dimensional signal f can be 

approximated by [98] 
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(3.12) 

 

where mφ , mφ~  are the scaling function and its dual respectively,  ml ,ψ , 

ml ,
~ψ  are the wavelet function and its dual respectively, m is the index representing 

the shift of scaling/wavelet function, and l is the index representing the scale of the 

wavelet function with shifts performed in increments of 1/2l . 
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To obtain an approximation for function f, the wavelet basis function has to satisfy the 

following properties:- 

- Orthogonality,  the scaling/wavelet functions satisfy the following relationships: 
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(3.13) 

If mφ = m′φ~  and mlml ′′= ,,
~ψψ the expansion will be orthonormal, otherwise it will 

be biorthogonal. 

- Regularity (smoothness) which is the degree of the differentiability of the basis 

functions.    

- Maximise number of vanishing moments where the kth moment define by 

∫= dxxxkm k )()(1 ψ  (3.14) 

- Minimal support: the smaller the support of the wavelet is the less of the signal it 

picks up in a certain wavelet coefficient. For a certain number of vanishing 

moments, there is a minimum, nonzero period (b−a) of the support (a, b) of the 

mother wavelet. 

The choice of any family of wavelet/scaling functions depends on fulfilling the above 

properties. The conventional Haar basis functions are one of the most popular 

scaling/wavelet family applied to MRTD scheme where algorithms comparable to Yee 

FDTD scheme can be created [31]. This kind of function holds the advantages of not 

only to preventing the overlap between the one cell and its neighbour due to their finite 

domain, but also the simplicity of carrying out derivative and integral calculations 
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owing to their pulse nature. However, their main drawback is the lack of smoothness 

that poses problems in terms of numerical dispersion contrasted to other existing 

wavelet families.  

The MRTD technique that is based on Battle-Lemarie scaling/wavelet functions and 

derived from B-spline functions is proposed in [68]. Although they possess good 

regularity properties, they suffer from having unbounded support. This gives, 

theoretically, rise to an infinite number of MRTD terms in the update equations. 

Consequently, truncating of the sequence of MRTD coefficients to a rational number 

(more often than not 8-12 on each side) generates problems in terms of arithmetic 

precision that could vitiate the properties of the wavelet functions imposed by design 

[39].  

By means of maximising the number of vanishing moments, compactly supported 

orthonormal wavelets have been achieved by Daubechies [106, 61]. Through this work, 

MRTD analysis based on Cohen-Daubechies-Feauveau (CDF) biorthogonal scaling 

functions is presented. It was found in literature that the use of this family of functions 

can fulfil well the requirements of MRTD scheme. Since for a given support, it 

demonstrates maximum number of vanishing moments.  

Moreover, a good regularity, and compact support leading to an update equation 

involving a small number of proximate field components [98]. The notation CDF ),( pp  

is adopted to indicate the lengths of the reconstruction and decomposition filters of the 

family. In this work, ϕ  for the field expansions, has been selected of order (2, 4) from 

the CDF family. This order of functions is dependent on a total number of coefficients 
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equal to 5 (compact support) and demonstrates a good compromise between higher-

order accuracy and increased number of operations needed. 

An extensive investigation of numerical dispersion characteristics of CDF-MRTD 

contrasted to other wavelet families is carried out in [98]. Dogaru and Carin demonstrate 

that numerical dispersion relies on many factors for instance the Courant number, the 

spatial resolution, the number of level of wavelets used to expand the fields and the 

angle of electromagnetic propagation. On the other hand, it is found in general that 

MRTD technique permits a grid resolution at least twice coarser than FDTD when the 

same level of accuracy is needed.  

Another significant aspect underscore is that dispersion performances are heavily 

influenced by the adopted Courant number. The selection for a Courant number smaller 

than the required limit for stability means better results in terms of numerical dispersion. 

As a result of this, when the same Courant number is taken, the low-order CDF(2,4) 

family can attain better accuracy than the case in which both scaling and first level of 

wavelet are included that implies a stricter stability limit on the time step size. 

 

3.4.2 Derivation of scaling MRTD scheme  

Starting from Maxwell’s equations and for the two-dimensional problems in x-z plane, 

the transverse electric (TE) mode with components Ey, Hxand Hz is derived under 

assumption that y-axis is the homogenous direction and x-axis as propagation direction. 
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where µ0 is the permeability of the free space, and εr is the relative dielectric constant of 

the medium. 

 

Figure 3.1  Electric and magnetic expansion coefficients as placed inside 2-D MRTD unit cell in 

the case of scaling functions (S-MRTD) 

 

With respect to the unit cell shown in figure 3.1, the electromagnetic fields are expanded 

in terms of scaling functions in space and Haar functions in time as following:- 
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where  n, i, j, are the discrete indexes in time and in space respectively,  ϕ  is the scaling 

function chosen from the CDF(2,4) family, h is the Haar function and represents the 

sampling in time, and  ϕ,

2

1
,
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2

1
y

jin
E

+++
, ϕ,

,
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1
x

ji
n H

+
, ϕ,

2

1
,

z

ji
n H

+
 are the expansion 

coefficients. 

The discretisation in space follows a scheme that is very comparable to the Yee’s 

system. As shown in figure 3.1, the components located in a cell, on which the update 

iteration takes place, are expansion coefficients. At the time step t0 in a point (x0, z0), the 

actual field can be determined using  

( ) ( ) ( )∑
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(3.21) 

where i’,j’  and n’ are the indexes in space and time respectively. 

 With recognition of the finite support of CDF scaling functions, only a few terms of the 

previous summation have to be considered.   

Substituting the field expansion in the form of equations (3.18- 3.20) into the scalar 

Maxwell’s equations and testing them with pulse functions in time and the dual of the 

biorthogonal scaling functions mϕ~  (with m=i, j) in space, by applying the MoM, lead to  

the discretised update equation [82]  
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where  µ0, ε0  are the permeability and permittivity of the free space respectively, ε is the 

relative dielectric constant of the medium, ∆t  is  time step, and ∆x , ∆z   are the spatial 

increments in the direction of x and y respectively. 

The ‘stencil size’ Ls stand for the effective support of the basis function that determines 

the number of expansion coefficients in the summation and it is equal to 5 for CDF (2, 

4), while a(l) represent the connection coefficients that can be numerically calculated 

using [98]  
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The value of the connection coefficients a(l) for the case of CDF (2, 4) are given in 

Table 3.1 [98]. 

 

Table 3.1 Connection Coefficients and Courant Number at the Stability Limit in Two 

Dimensions 

 

 

l CDF(2,2) CDF(2,4) 

1 1.2291667 1.2918134 

2 -0.0937500 -0.1371348 

3 0.0287617 0.0287617 

4 0 -0.0034701 

5 0 0.0000080 

s 0.5300 0.4839 
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The CDF functions have the virtue of making use of finite number of nonzero 

coefficients in MRTD scheme (compact support), thus 

10)( −>−<∀= ss LlandLlla  (3.26) 

0)1()( <∀−−=− llala   (symmetry relation) (3.27) 

 Because of their Interpolation attribute as biorthogonal wavelets, the expansion 

coefficients for CDF families on which the updating take place can be considered as 

physical field value with insignificant error [98]. For example, at arbitrary point in space 

( )zjzxix ∆=∆= 00 ,  at time tnt ∆=0 , the field yE  is given by:- 

( ) ( ) ( ) ( ) ( )∫∫ =−−−= ϕδδδ ,
,000000 ,,,, y

jinyy EdxdzdtttzzxxtzxEtzxE  (3.28) 

Thus, this permits the field coefficients to be taken as actual field value and allows a 

simple simulation algorithm to be built in which the computational overhead of the 

whole reconstruction is saved.  

A sketch of the update process in a 1D space is illustrated in Fig. 3.2. The component 

ϕEn  at position i is computed from a number of components ϕH
n

2

1−
 in a range 

[ ]ss LiLi +−−+ 21;21  that is carried out by the stencil size Ls and are weighted by the 

connection coefficients( )la .  
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Figure 3.2  Scheme of the update process in a 1D space for S-MRTD with compact basis 

functions determined by the stencil size Ls 

 

With the purpose of ensuring the numerical stability of the MRTD method (covered in 

more details in Appendix D), the time interval ∆t has to be smaller than a certain limit as 

follows:- 

yorxr
c

st r =
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≤∆ ,
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(3.29) 
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(3.30) 

where ∆ is spatial step size in a uniform mesh,  c0 is the speed of the light. 

The Courant number s represents the stability factor in two dimensions and is equal to 

0.4839 for S-MRTD with CDF (2, 4), (Table 3.1). Numerical experiments revealed that 
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even though this value is enough to ensure the stability of the algorithm, it cannot 

guarantee a good accuracy of the results with coarser meshes. Smaller value of s, 

typically 5 times less the stability limit, can significantly improve the accuracy of the 

scheme even for coarser spatial step size.  

In the spirit of the numerical comparison performed in [68], it has been found that the 

value s=0.1 is the most suitable to ensure not only numerical stability but also high level 

of accuracy.  

 

3.4.3 UPML boundary condition in S-MRTD  

The two dimensional S-MRTD scheme has been used in conjunction with the UPML 

scheme, first introduced by Gedney in 1996 [87], that rigorously truncates the 

computational domain. Starting from the traditional scalar equations of UPML reported 

in literature for FDTD [10, 87], they are now (see Appendix E), discretised by means of 

testing them with the scaling functions in space domain through Galerkin’s method. 

Second-order central difference is adopted in time domain. It leads to a two-steps update 

scheme for each field component.  

Considering the TE propagation and geometry of the grid (figure 3.2), the following 

discretised equations are obtained   
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where ε is the permittivity of the medium, σx , σz  are the electric conductivity of the 

UPML layers whose geometric grading profile takes the following form. 

( )
m

m

i d

i
i maxσσ =  

   (3.37) 

where i = x, y, d is the depth of the UPML, and  m stands for the order of the polynomial 

variation. The selection of σmax that minimises the reflection from boundaries is [99] 
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(3.38) 

where ∆ is the uniform spatial discretisation adopted. 

 

3.5 Excitation Methods 

3.5.1 Hard source and soft source 

Two types of internal sources can be used with MRTD to excite the electromagnetic 

propagation inside the simulated structure: hard source and soft source. Setting up a 
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hard source means simply to assign the value of the E- or H- field at one or more MRTD 

grid points in space equal to a desired function of time. It becomes like the initial 

condition of an electromagnetic problem in which the E- or H- field is known at a point 

and the values of the radiated fields at the other grid points need to be calculated. 

Depending on how many points values are assigned in space, the source can be point 

wise or a plane wave. As an example, in a 1D system, with propagation in x-direction, a 

point wise hard source can be imposed as follows 

( )tnfEE
n

iz
source

∆= 00 2sin π  (3.39) 

  

where a sinusoidal hard source (continuous wave, CW) Ez is assigned at the grid point 

isource and it starts at the time step n = 0. As a result, the wave will propagate in both the 

directions back, -x, and forward, +x, from the starting point.  

Another commonly used wave source is the low-pass Gaussian pulse that is centred in 

time at the step n0 and has 1/e characteristic decay of a number ndecay of time steps 
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π  (3.40) 

This function presents a finite direct current component and its Fast Fourier Transform 

(FFT) is centred at frequency f0. 

An important aspect of hard source condition is that for a source like the Gaussian, after 

a total simulation time greater than (n0 + ndecay), the hard source acts as an electric mirror 

or Perfect Electric Conductor (PEC); the total tangential E-field is equal to zero.  

Therefore, it cannot take into account the movement of reflected waves through the 

input section isource. Also, in the case of a CW, when the tangential E-field value at the 
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excitation does not come to zero at a certain time, it is demonstrated that a spurious and 

nonphysical back-reflection of the waves toward the +x direction of propagation is 

caused. This happens in any kind of imposed time function because at the source section 

a particular value of E-field is specified without considering in any way the effect of an 

incident field eventually occurring at the same section.  

A way to avoid this effect can be to switch off the hard source after its time function has 

decayed to zero by replacing the equation at isource with the standard FDTD update 

equations. However, this strategy can be adopted only in case of pulse wave forms that 

evolve in time only for a certain interval and not for continuous interacting sources such 

as a sinusoidal wave.  

Alternatively, a soft source consists in the introduction of an electric current. It adds the 

value of the source time function at the FDTD current value of the field at the point 

isource. As a result, the effect of the radiated propagating fields at the source interface will 

be considered and spurious reflections avoided. The soft source is imposed through the 

following 

,
1 nn

iz

n

iz sourceEE
sourcesource

+= −
  for every n, (3.41) 

An existing problem with soft source is that it generates a nonzero DC component in the 

solution. This variation on the amplitude of the fields has to be considered in order to 

achieve correct results. A solution of this problem has been proposed by Furse et al., in 

2000, [17]. It consists in applying a modified source function as  

( ) ( )ttr ωsin  (3.42) 

where r(t) represents a turn-on function defined by  
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The soft-source technique has been utilized to deploy the source in the computational 

domain [66]. The soft-source technique relies on adding the value of the source at each 

computational domain point to the value of the electric filed at the same point; this is 

repeated for every time step. The effective index method was used to obtain the mode 

profile of the waveguide. In the TE-modes for guided modes the formulas are:- 

( )[ ] xhhxEE ccy <−−= , exp γ
          (cover)

 (3.44) 

( ) hxkEE sfxfy <<−= 0, cos φ             (film)
 (3.45) 

( ) 0, exp <= xxEE ssy γ                  (substrate) (3.46) 

where h is the core thickness[100]    

 

3.6 Summary 

This chapter has covered the essential numerical technique with its derivations, starting 

from the Maxwell’s equations, looking at the multiresolution analysis, and the MRTD. 

Numerical dispersion and numerical stability constraints were discussed, and the 

appropriate choice of basic function in the form of the S-MRTD. Since this numerical 

method is applied to electromagnetic wave interaction in optical waveguides with 

infinitely extended computational domains, it is important to apply boundary conditions 

surrounding the computational domain to emulate free space in computer simulations. 

Ultimately, the source excitation techniques were categorised as hard and soft sources, 

and these sources were discussed. 
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In order to assess the performance of the suggested MRTD technique, optical slab 

waveguide and microcavity ring resonator are presented in chapter four as examples for 

numerical assessment of the developed technique.   
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4.1 Introduction 

This chapter makes extensive use of the literature review covered in the previous 

chapters. This is by applying the review and suggested technique in new designs and 

simulating these new designs. In order to demonstrate the ability of any numerical 

technique on modelling optical devices, it is of utmost importance to validate its 

accuracy. This chapter presents the work accomplished in studying the reflection 

coefficients from the UPML boundary in optical planar waveguide using MRTD. Also, 

the results of the simulations that study numerical convergence in the case of MRR 

based on high-index-contrast are presented.  

All numerical simulations have been carried out using self built Compaq Visual Fortran 

code, Appendix F, in conjunction with MATLAB code, Appendix G, which is used to 

construct the structure and post-process the temporal data. Moreover, commercial 

software Full-Wave based on FDTD is used with a view to validate and test the 

accuracy of the developed MRTD. 

 

4.2 Assessment of UPML-MRTD: test and code validation 

4.2.1 Planar waveguide: As Numerical Assessment Example 

The first model analysed is a two-dimension slab waveguide depicted in figure 4.1, with 

core and cladding refractive indices of ncore = 3.6, nclad = 3.42 respectively. In order to 

ensure the single-mode propagation at 860 nm wavelength, the core width is selected to 

be w = 450nm. The structure is discretised into a uniform mesh with cell size ∆x = ∆z = 

∆ = 30 nm. In order to demonstrate the robustness of the UPML boundary condition 

incorporated into S-MRTD the structure is excited with a Gaussian pulse modulated in 
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time by a sinusoidal function with the shape of the fundamental mode profile of the 

waveguide as [82] 

 )2sin()(),(
2

00 )/)((
0 ftezEtzE Ttt

y π−−=  (4.1) 

   

where E0(z) represents the fundamental mode profile of the waveguide, t0 and T0  are the 

time delay and the time width of the Gaussian pulse fixed at 60fs and 15fs respectively. 

 

Figure 4.1 Configuration of planar waveguide of w =  0.45µm, ncore = 3.6, and nclad = 3.42 

 

As shown in figure 4.2, the filed profile represents a Gaussian pulse which is given by 

equation (4.1) and thus a stable field profile will propagate inside the waveguide and the 

time domain variation of incident, and reflected fields are recorded at the reference 

point. 
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Figure 4.2  Field profile inside the planar waveguide shown in figure 4.1 

  

By means of Fast Fourier transform (FFT) of the transmitted and reflected recorded 

time-dependent fields, the reflection coefficient was calculated. The study was carried 

out by surrounding the computational domain with five different numbers of total 

UPML cells, 2, 5, 10, 15 and 20 respectively. The obtained reflection coefficients are 

illustrated in figure 4.3. 
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Figure 4.3 Effect of no. of UPML cells on the reflection coefficient 

 

As may be observed from figure 4.3, the reflection coefficients obtained are about -

25dB, -40dB, -61dB, -71dB, and -78 dB respectively. It can be noted from obtained 

results that the UPML is affected mainly by the cell size and the minimum reflection is 

achieved when the number of UPML cells is equal to 20 and therefore is considered for 

the rest of the simulations in this research study.  

 

4.3 Study the Numerical Convergence of MRTD  

Having established the effectiveness in terms of absorptions of the proposed UPML 

scheme, this UPML scheme is then employed in conjunction with the MRTD technique 

for analysis of optical microcavity ring to study the numerical convergence of MRTD 

method which in turn emphasis the validation of this technique. The single MRR whose 

schematic diagram is shown if figure 4.4, with core width w = 0.3 µm, ring diameter d = 
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5 µm, gap size g = 218 nm, and core and cladding refractive indices of ncore = 3.2 and 

nclad = 1 respectively.  

 

Figure 4.4 Schematic diagram of a microcavity ring resonator excited with a Gaussian pulse at 

1.5 µm in order to study the convergence of MRTD scheme 

 

In order to cover the frequency range of interest, a TE Gaussian pulse with parameter 

fixed to t0 =  80 fs and   T0 = 20 fs with central frequency of 200THz (λ0 = c0 / f0=1.5µm) 

has been injected in the input waveguide. 

As shown in figure 4.4, a different cross-section detector is placed at the source section 

of the input waveguide (A) in order to record the time-domain variation of the incident 

field; another one is located inside the ring resonator (C), one-quarter of the way around 

from the input waveguide, in order to investigate the coupling efficiency. By means of 
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fast Fourier Transform (FFT) of the time-dependent fields, the poynting vectors 

densities along cross-section A, and B have been calculated and used to evaluate the 

coupling coefficient, 1κ  between input waveguide and ring as:-      

1

3
1 P

P
=κ  (4.2) 

The coupling efficiency provides an estimation of how much power is coupled into and 

from the cavity. In order to estimate about 99% of the full modal power, the integration 

for the power densities is carried out along a region that is three times bigger that the 

core width of the waveguide. In figure 4.5, the numerical convergence of MRTD 

method is studied for calculating the coupling efficiency from WG1 and the ring 

resonator 1κ , for four values of ∆, equal to 13.60nm, 21.8nm, 27.25nm, and 30nm 

respectively.  

 

Figure 4.5 Coupling Efficiency 1κ  as a function of frequency with different meshes for g = 218 

nm and 5µm-diameter ring of Fig. 4.4 
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In order to determine the coupling efficiency of the MRR, the simulation needs to be 

terminated before the field inside the ring completes its first round-trip. As it can be seen 

from figure 4.5, due to very small deviation for the three cases and thus are hard to be 

distinguished. This simulation results reveal the main property of the MRTD technique 

and its ability to reduce the expense in the computational domain by allowing the use of 

coarser grid resolution. Therefore, for the rest of the simulations in this research study, 

using ∆ = 27.25 nm is considered to be the best choice in terms of low computational 

burden and saving CPU running time. Figure 4.6 shows the electric field pattern in 

different time intervals, once the pulse has been totally inserted, the frequencies that can 

resonate inside the ring are coupled to WG2 (on-resonance ) via the ring, while the 

others (off-resonance) will carry on propagating along WG1 until reaches the UPML 

edge in the longitudinal direction (x). At this point, it rapidly reduces to negligible 

values showing that the UPML boundary condition performance stably and rigorously.   

 

Figure 4.6 Visualization of snapshots in time of MRTD-computed Ey field of a pulse circulating 

around a 5 µm-diameter ring of Fig. 4.4 with ∆ =  27.25 nm and g =  218nm   
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4.4 Assessment of MRTD against FDTD Method  

 The coupling efficiency between the input/output straight bus waveguide and the ring 

resonator plays a very important role in determination of the MRR performance [10], 

and can be controlled by several parameters such as gap width g, coupling length, 

diameter of the ring d, and waveguide width w [86]. For further assessment of MRTD 

scheme, the same MRR presented in figure 4.4 is used.  

The variation of coupling coefficient from WG1 and the ring resonator,1κ  with 

frequency when f = 200THz and d = 5µm is calculated for three different values of g, 

equal to 0.191µm, 0.218µm, and 0.245 µm respectively. The results are shown and 

compared in figure 4.7 to those obtained on the same structure when the FDTD is used.  

 

Figure 4.7 Variation of the coupling coefficients with frequency and gap size, g, using both 

MRTD and FDTD methods for straight waveguide coupled to 5 µm-diameter ring 

microcavity. 
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It can be observed the excellent agreement between the results reported here using 

MRTD and their counterparts reported in [86] using FDTD approach. As noted from this 

figure, MRTD is accurate for the analysis of this class of devices. With the intention of 

emphasis the validation of the suggested technique, the execution times of developed 

MRTD is compared with the one obtained with the commercial software Full-Wave 

based on FDTD for the same structure. The execution times of MRTD and conventional 

FDTD are then compared in Table 4.1. 

 

Table 4.1 comparisons between MRTD and FDTD in terms of computational time  

 

Method ∆ (nm) Run Time (mints) 

MRTD 

FDTD 

27.25 

13.60 

77 

129 

 

From table 4.1, it is evident that, allowing the mesh size to be about half the one adopted 

by FDTD, MRTD scheme can achieve same level of accuracy while the overall smaller 

execution time (by factor of approximately 2) is required. The possibility of saving CPU 

running time makes the MRTD an efficient alternative numerical scheme to the 

commonly used FDTD for the design of MRR structures.  

 

4.5 Summary 

This chapter has presented a detailed numerical assessment of MRTD scheme in 

conjunction with UPML boundary condition. The assessment was firstly performed on a 

planar waveguide with emphasis on investigating the effect of the number of cells used 
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for the UPML structure. Since the suggested UPML has been assessed on optical 

waveguide, it will be used in the design and analysis of MRRs. Next, the developed 

MRTD code has been tested for MRR. A number of simulations have been carried out 

with a variety of mesh size in order to investigate the numerical convergence of MRTD. 

From this simulation results, MRTD provides high numerical precision without the strict 

limitation on the space discretisation. After that, a comparison was made between 

conventional FDTD and the newly suggested MRTD in terms of coupling coefficient. It 

was found that the newly suggested MRTD outperforms the conventional FDTD by 

allowing bigger mesh size. Since the newly developed MRTD has been assessed on 

different optical devices, it will be used in the design and analysis of MRRs in more 

detail in the following chapters, where in chapter five single microcavity ring resonator 

devices are presented, and in chapter six double microcavity ring resonators are 

investigated.  
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5.1 Introduction 

In the recent years, the research has dedicated great attention to develop optical fibre 

networks to support the increasing bandwidth demands of many applications. 

Wavelength division multiplexing is found to be very attractive and promising for 

increasing the bandwidth of installed and future optical fibre system in point-to-point 

transmission links. Since optical filters are key devices for WDM systems, this chapter 

proposes to investigate a compact optical filter with add/drop ability without changing 

the signal quality using semiconductor optical MRRs.  

In this chapter, the developed MRTD code has been used to analyse the MRRs, 

exploring the effect of different structural parameters on both coupled and transmitted 

power. 

 

5.2 Design Considerations of Optical Microcavity Ring Resonators 

5.2.1 Introduction  

Recently, optical MRRs based on high-index-contrast waveguides gained increasing 

attention because of their potential as building blocks for optical wavelength filters [15, 

22, 35, 81  77], optical switches [105], optical routers [20], all the way to optical sensors 

[21], and optical logic gates [101, 89]. The conventional low-index-contrast waveguides 

have the advantages of showing low propagation loss [12]. On the other hand, since a 

very large bend radius is required to achieve a high efficiency bend, MRRs based on 

such waveguide involve a very large radius for the design of the circular waveguide 

which builds the ring.  

As a result, the overall size of the ring resonator is increased while the free spectral 
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range (FSR) which is inversely proportional to the diameter of the ring is limited [12]. 

Research efforts have been directed towards designing new structures to achieve a wide 

FSR without decreasing the diameter of the ring.  

Different approaches in literature including double-ring resonators and triple-ring 

resonators [12], [65, 94]. Thanks to the recent advances in material technology and 

fabrication techniques, MRRs with physical dimensions comparable to optical 

wavelength have been made possible to be fabricated with negligible bending loss [12].  

The requirement of achieving higher performance for future of optical communication 

devices, as well as computing and signal processing devices to complement or 

competitively replace their microelectronic counterparts in integrated circuits, make it 

essential that novel optical microstructures be explored. High FSR, high extinction ratio, 

small size, and selectivity of coupling to the output ports are considered as figure of 

merit defining the good performance of this kind of structures [12]. In this chapter, the 

MRTD scheme is proposed here for the first time, to the best of the author’s knowledge 

for the analysis of MRRs. 

In this chapter is to provide a detailed study of MRR geometry parameters as coupling 

gap size, microring radius of curvature, and waveguide width, in order to predict and 

optimise the device performance.   

 

5.2.2  Coupling Characteristics of MRRs 

The coupling efficiency between input/output straight bus waveguides and the ring 

resonator  plays a very important role in the determination of the MRR performance [7, 

12, 13, 88], and can be controlled by several parameters such as gap width g, coupling 
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length, diameter of the ring d, and waveguide width w [110, 78].  

By means of MRTD technique, the performance of MRRs in terms of coupling 

efficiency will be discussed in this section. A two-dimensional coupled microcavity ring 

resonator surrounded by air with diameter d, and refractive index contrast 

45.02 222 ≅−=∆ cclc nnnn ,  where ncore and nclad are the refractive index of the core and 

cladding respectively, is coupled to parallel straight waveguides, WG1 and WG2 with 

core width w, to represent input and output couplers respectively, as shown in figure 5.1.  

The structure is discretised with square cells ∆ = 27.25 nm while the time step is fixed at 

∆t = 18100896.9 −× s. All the results for the coupled and transmitted power are obtained 

by injecting a source-field along the x-direction, modulated at wavelength 1500 nm and 

20 fs wide Gaussian pulse. The source-field is given as [82] 
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=            (5.1) 

where 
0TEE  corresponds to the fundamental TE0 mode profile of the input waveguide, T0 

is the width of the Gaussian pulse and T0 is chosen to be 20 fs and λ0 =  1.5µm is the 

central wavelength. Reference points are chosen at different locations in the structure at 

which the time variation of the field at each point is recorded. 
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Figure 5.1  Schematic diagram of  the MRR of diameter d = 5µm and width, w = 0.3µm. 

 

As shown in figure 5.1, different cross-section detectors are strategically placed in the 

structure: the first cross-section detector is placed at the source section of the input 

waveguide (A) in order to record the time-domain variation of the incident field, a 

second detector  is  inserted at the output section (B) so as to record the time-domain 

variation of the transmitted field, another one  is located inside the ring resonator (C), 

one-quarter of the way around from the input waveguide, in order to investigate the 

resonance process around the ring and evaluate the coupling efficiency.  

The last cross section detector is placed at the output section of the second waveguide 

(D) to record the time-domain of the dropped field. By means of Fast Fourier Transform 

(FFT) of the time-dependent fields, the Poynting vector densities along cross-section A, 
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C, and D have been calculated and used to evaluate the coupling coefficient, κi , between 

input/output waveguide and the ring as:- 

)(

)(

input

coupld
i PcouplersamethetoPowerInputThe

PcouplereachfromPowerCouplingThe
=κ            (5.2) 

The coupling efficiency provides an estimation of how much power is coupled into and 

from the cavity. In order to estimate about 99% of the full modal power, the integration 

for the power densities is carried out along a region that is three times bigger than the 

core width of the waveguide. The structure in figure 5.1 is designed to drop an optical 

signal to port D if proper phase matching condition exist [21] 

λπ mdn eff =            (5.3) 

where λ represents the signal wavelength inside the medium, neff is the effective 

refractive index of the medium.  

When a defined spectral range is injected as a source, the frequencies that can resonate 

inside the ring are coupled to WG2 (on-resonance case) via the ring, while the others, 

for which the relation (5.3) is not satisfied, carry on propagating inside WG1 and can be 

found in output at port B (off-resonance case).  

 

5.2.2.1 Influence of separation distance on the coupling and transmission efficiency  

The idea in this section is to investigate the effect of change in the separation distance, g 

on the coupling performance using MRTD. The variation of coupling coefficient from 

WG1 and the ring resonator, κ1, with frequency when f0 = 200THz, w = wR = 0.3µm and 

d = 5µm is calculated for three different values of g, equal to 0.191µm, 0.218µm, and 

0.245µm respectively. In order to calculate the coupling efficiency of the MRR, the 
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simulation needs to be terminated before the field inside the ring completes its first 

round-trip. The results are shown and compared in figure 5.2 to the coupling coefficients 

from the ring to WG2, κ2 on the same structure.  

 

Figure 5.2  Variation of the coupling coefficients with frequency and gap size, g, in both side of 

5 µm-MRR (w = wR = 0.3 µm )  

 

The results from this figure is summarised for f = 200 THz (λ = 1.5µm) in Table 5.1. 
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Table 5.1 Summery of coupling coefficients for input/output couplers at λ=1.5µm   for different 

gap size 

MRTD 

g (µm)     κ1 (%)         κ2 (%) 

0.191         2.85         2.807 

0.218         1.58         1.470 

0.245         0.894       0.859  

 

The comparison between κ1 and κ2 demonstrates that the symmetry property of the 

input/output coupling process is satisfied. This property will play an essential role in 

achieving both good transmission and large extinction ratio. Next, figure 5.3 presents 

coupling and the transmission coefficients variation with the gap widths for λ = 1.5µm. 

 

Figure 5.3 MRTD-computed coupling and transmission coefficients as function of the gap width 

for ring diameter d = 5µm at λ=1.5µm (w = wR = 0.3µm). 
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As figure 5.2 and figure 5.3 suggest that when the gap size is increased, the amount of 

power coupled to the ring resonator rapidly decreases while the transmitted power 

increases. At fixed gap size, the coupling efficiency also significantly decreases towards 

higher frequencies as a result of the correspondent increased effective gap size. 

 

5.2.2.2 Influence of the waveguide width on the coupling efficiency  

Following, the influence of waveguide width on coupling efficiency is considered here. 

In this case, the variation of coupling coefficient from WG1 and the ring resonator, κ1, 

with frequency when f0 = 200THz, g = 191 nm and d = 5µm is calculated for five 

different values of w, equal to 0.20µm, 0.21µm, 0.24µm, 0.27µm, and 0.30µm  

respectively. Figure 5.4 shows the variation of coupling efficiency with the waveguide 

width. 

 

Figure 5.4 Variation of coupling coefficients and effective refractive index as function of 

waveguide width for ring diameter d = 5µm, g = 191nm at λ = 1.5µm  
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It is clear that the increase of waveguide width will lead in turn to increase in the 

effective refractive index Thus, the modes in the straight waveguide and the curved 

waveguide which form the ring are not well phase-matched. Therefore, the coupled 

power decreases.  

Figure 5.5 shows the effect of symmetrical changes of both ring and straight waveguide 

width on the coupling efficiency. As evident from figure 5.4, the effective refractive 

index is a function of the waveguide width. Thus, as the waveguide width w and wR are 

increased, the cross coupling between the straight waveguide and the bent waveguide 

which builds the ring decreases. Moreover, the phase mismatch between the straight 

waveguide and the ring resonator can be improved by reducing the width of the 

waveguide which in turn lead to increasing the coupling coefficients.  

 

Figure 5.5 MRTD-computed coupling coefficients as function of  frequency and waveguide 

width (w = wR) for ring diameter d = 5µm, g = 191nm at λ = 1.5µm  
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Due to strong optical confinement of the waveguide, the separation distance between the 

input/output straight waveguide and the cavity needs to be very narrow in order to 

accomplish the required level of coupling strength. A key step in the direction of 

practical production and commercialisation of these devices is the development of a new 

design that is probably capable of alleviating the requirement for such narrow gap. 

Following, the structure is modified to improve the phase matching condition and 

eliminates high-order mode components that can deform the field in the cavity. This is 

assumed to be achieved by reducing the width of the straight waveguide while keeping 

the ring waveguide. A comprehensive study of coupling coefficients variations with 

frequency and gap size is presented in figure 5.6 when the width of the straight 

waveguides and the ring waveguide are 0.2 and 0.3µm, respectively.   

 

Figure5.6 MRTD-computed coupling coefficients as function of frequency and gap size g for 

5µm- diameter ring  (w = 0.2 µm, wR = 0.3 µm) 
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The results from these simulations prove the potential advantage in allowing wider air 

gap while providing the desired coupling level.  

 

5.2.2.3 Influence of the ring size on the coupling efficiency  

For further study, the consequence of the ring size on the coupling efficiency is 

examined in figure 5.7. The variation of coupling coefficient from WG1 and the ring 

resonator, κ1, with ring diameter is computed at λ = 1.5 µm for three different values of 

g, equal to 0.191µm, 0.218µm, and 0.245µm respectively. In this case, the value of both 

straight and bent waveguide width is chosen to be 0.3 µm.   

 

Figure5.7 MRTD-computed coupling coefficients as function of ring diameter d,  and gap size g 

at λ = 1.5 µm (w =  wR  = 0.3 µm) 
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It can be seen that the coupling coefficients critically depends on the ring diameter. The 

amount of power coupled to the ring resonator rapidly increases when the ring diameter 

is increased. This can be explained as a result of the corresponding increased effective 

gap size. Although the coupling coefficients increase while increasing the ring diameter, 

the interaction length for the larger diameter ring is still short to avoid the back coupling 

from the ring to straight waveguide.  

 

5.2.3  Transmission Characteristics of MRRs 

The transmission at port B for a 5µm-diameter MRR is considered. The results are 

obtained using developed MRTD scheme and compared with FDTD results for the same 

ring as presented in [86]. In this case the cavity and the straight waveguides have a core 

of width w = wR = 0.3 µm, and the separation distance is g = 0.245 µm. The single mode 

of the input waveguide is lunched with a source-field along the x-direction, modulated at 

wavelength 1500 nm and 20 fs wide Gaussian pulse. The response of this resonator is 

scanned over frequency range 185 - 211 THz.  

 

5.2.3.1 Extraction of the Resonance Wavelengths  

The power density calculated at port B and normalised to the one at the input port A is 

shown in figure 5.8. In order to calculate the transmittance of the MRR, the simulation 

needs to be run until the energy in the cavity has adequately died down. 
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Figure 5.8 MRTD-computed transmittance of 5µm-diameter microcavity ring resonator (w = wR 

= 0.3µm). 

 

From this figure, the localised resonance peaks of the MRR are derived. In Table 5.2, a 

comparison between these results and once obtained through FDTD analysis in [86] is 

shown. 

 

Table 5.2 Numerical values for selected resonance wavelengths of MMR. The calculations with 

MRTD and FDTD (as taken from Table 1 in [86]) are for the MRR with Parameters 

d = 5 µm and w = 0.3 µm. 

   Resonance wavelengths, λres (µm) 

Present 1.42585 1.46771 1.51209 1.55925 1.61030 

Ref [86] 1.42798 1.47015 1.51488 1.56244 1.61310 
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It is found that results are in good agreement with deviation below 1%.  Following, the 

on-resonance case of a continuous wave injected at wavelength of λres = 1611.17 nm is 

computed. The resulting sinusoidal steady-state field profile is shown in figure 5.9. As it 

can be seen, the most of the energy has switched to WG2 by means of the resonance 

coupling process and is collected in output at port D. 

Figure 5.9 Sinusoidal steady-state of the field distribution in 5µm-diameter microcavity ring 

resonator on-resonance case at 186.3THz. 
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Similarly, the off-resonance case for a continuous wave at wavelength of λres = 1597.44 

nm is carried out and shown in figure 5.10. In this case, the figure shows that no 

coupling between WG1 and the ring has occurred and thus nearly 100% of the signal is 

transmitted at output in port B.  

 

Figure 5.10 Sinusoidal steady-state of the field distribution in 5µm-diameter microcavity ring 

resonator off-resonance case at 187.8THz. 
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5.2.3.2 Calculation of Free Spectral Range 

A micrometric size waveguides exhibit significant dispersion and due to the localised 

resonance wavelengths that are spaced far apart, the effective index will be varied at 

each resonance wavelength. In the vicinity of 1550 nm, a typical result is revealed in 

figure 5.11. 

 

Figure 5.11 Effective index of 5µm-diameter microcavity ring resonator as a function of 

wavelength (w = wR = 0.3µm).   

 

From this figure, it is obvious that the effective refractive index is basically a linear, 

decreasing function of resonance wavelength. The variation of resonance wavelength 

with corresponding wave number is illustrated in figure 5.12.   
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Figure 5.12 Free spectral range of 5µm-diameter microcavity ring resonator as a function of 

mode number (w = wR = 0.3µm).   

 

It may be observed that the entity of FSR decreases as the wavelength decreases due to 

the large dispersion effect of the waveguide. This behaviour agrees with results obtained 

in [86]. The finesses is calculating by forming the ratio of free spectral range, FSR, to 

the width of the resonance, ∆λ, at the half-power points and is found to be ranges 

between 117 and 162. 
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5.2.3.3 Calculation of Q-Factor 

 The quality factor (Q) of the mth resonance is calculated straight from the power 

spectrum presented in figure 5.5 and shown in figure 5.13. 

 

Figure 5.13 Variation of Quality factor and coupling coefficients with resonance frequency of 

5µm-diameter microcavity ring resonator (w = wR = 0.3µm) 

 

These rely on only the coupling efficiency which decreases significantly at higher 

frequencies, the quality factor conversely should increase [12], it is clearly observed for 

the first two resonance (m=25,26). However, then the Q falls at the higher frequency 

resonances duo to side walls roughness that cause strong scattering at high frequencies.  
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5.3 Summary 

In this chapter, the MRTD scheme, based on scaling functions from CDF family of 

order (2, 4) is successfully applied to the numerical analysis of microcavity ring 

resonator coupled to single-mode waveguides. Applied in conjunction with UPML 

scheme for the rigorous truncation of the computational window, the technique has 

proven good level of accuracy in determining the coupling coefficients and resonance 

behaviour of this device. While a coarse grid resolution compared to FDTD technique is 

allowed. Numerical simulation performed on a high-index-contrast microcavity ring 

resonator showed improved computational efficiency of the presented approach by 

allowing the mesh size to be about half that of FDTD. Being suitable accurate and 

efficient numerical analysis of this kind of device, MRTD has been adopted to 

investigate how to optimise structure parameters, such as gap width, waveguide width, 

and ring diameter, in order to obtain the desired coupling coefficients.  

Microcavity ring resonator devices have proven to live up to expectations with high 

potential, especially in optical regime. Here, they were used to design and implement 

WDM devices and in order to achieve high performance; double-ring resonator 

configuration will be discussed in the next chapter.   
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6.1 Introduction 

In this chapter, the MRTD approach based on the expansion in terms of only scaling 

function (S-MRTD) is extended for modelling double ring resonator based on high-

index-contrast. In the passive microring resonators, the coupling coefficients, and the 

resonant-mode quality factor and the rejection ratio depend very much on the 

characteristics of the coupled microring. The analysis is mainly focused on the 

extraction of resonance modes where the effect of different parameters of the structure 

on transmitted and coupled power is investigated. The aim of this chapter is to explore 

the feasibility of employing a parallel-cascaded double-microcavity ring resonator 

(PDMRR) to realise high performance in terms of rejection ratio without compromising 

the quality factor. Parameters such as gap size and distance between the rings have been 

varied and useful concepts for the design of MRR are derived.   

 

6.2 Simulation Results 

The first structure analysed is the single MRR whose schematic diagram is shown in 

figure 6.1, with ring diameter d = 3.4µm, and core and cladding refractive indices of 

ncore = 3.2 and ncl = 1, respectively. The structure is discretised into a uniform mesh with 

cell size 0.02725 µm and is terminated by 545 nm UPML to absorb the reflected power. 

So as to ensure the single-mode propagation at 1550 nm wavelength the width of the 

waveguide, w is chosen to be 0.3µm.   
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Figure 6.1 Schematic diagram of  the 2-D single MRR of diameter d = 3.4µm coupled to two 

straight waveguides where ncore  =  3.2, ncl  =  1  and width, w = 0.3µm. 

  

As shown in figure 6.1, the reference points are labelled as A, B, and C in order to 

record the time domain variation of incident, transmitted, and reflected fields. By means 

of Fast Fourier Transform (FFT) of the recorded time-dependent fields, the coupled 

power at port C and the transmitted power at port B are calculated by dividing the 

coupled and transmitted spectra by incident power at port A. in order to cover the 

frequency range of interest, all the results for the transmitted and reflected power are 

performed by lunching the structure with a Gaussian pulse modulated in time by a 

sinusoidal function with the shape of the fundamental mode profile of the waveguide as 

[82] 
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where E0(z) represent the fundamental mode profile of the waveguide, t0 and T0 are the 

time delay and time width  of the Gaussian pulse fixed at 80fs and 20fs respectively, and 

f is the central frequency which is set to be 200THz (λ0  =  1.5µm).  

 

6.2.1 Influence of air gap width on the coupling and Quality factor 

The effect of the gap size, g on coupled power,κ , and Q is shown in figure 6.2. 

 

Figure 6.2 Variation of coupling coefficients κ  and Quality factor Q with gap width g at 1503 

nm 
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It is apparent that the variation of g has significant effect on both the values of Q andκ . 

In particular, when the gap size increase, the coupling coefficient of the different 

resonance modes decreases as a smaller fraction of power is exchanged between ring 

and waveguide, whereas the value of Q increases.  

The results in figure 6.2 suggest that by using smaller gap size, the coupling coefficient 

can be enhanced in order to reduce the losses in the cavity and improve the performance 

in terms of transmission. However, at smaller values of gap size, the confinement of 

field inside the ring is also affected and as a result the quality factor is lowered. For this 

reason, an optimum value of a gap size need to be carefully chosen in order to achieve 

both reasonable high quality factor and coupling coefficients within the desirable range.  

According to figure 6.2, a good compromise can be achieved when choosing g = 218nm 

when the values of κ  and Q are 1.024 % and 3098 respectively.      

 

6.2.2 Transmission characteristics of 3.4 µm-diameters MRR 

The transmission at port B for a 3.4µm-diameter MRR is considered. The results are 

obtained using developed MRTD scheme. In this case the cavity and the straight 

waveguides have a core of width w = 0.3 µm, and the separation distance is g = 218 nm. 

The response of this resonator is scanned over frequency range 180 - 220 THz.  

 

6.2.2.1 Extraction of the Resonance Wavelengths and corresponding Q-factor 

The transmission at port B for 3.4 µm-diameter ring and g = 218 nm is considered. The 

measured transmission spectrum of the single-ring resonator around 1550 nm is 

presented in figure 6.3. 
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Figure 6.3 Transmission for 1.7-µm-radius single MRR coupled to straight 0.3-µm-wide 

waveguides  

 

From this figure, the localised resonance wavelengths, and corresponding quality factor 

are listed in Table 6.1 

 

Table 6.1 Resonance data from figure 6.3 for 3.4 µm-diameter MRR and w = 0.3 µm  

m               F (THz)               λres(nm)               Q     

18              181.2                   1655.62             1295 

19              190.3                   1576.45             1455 

20              199.4                   1504.51             3098 

21              208.5                   1438.84             2937 

22              217.6                   1378.67             3680 

 

The quality factor of the mth resonance is calculated directly from the spectrum as the 
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ratio of the resonance wavelength (λres ) to the width of the resonance peak (∆λres) at 

half-power.   

 

6.2.2.2 Calculation of Free Spectral Range 

The variation of resonance wavelength with corresponding coupling coefficients and 

wave number is illustrated in figure 6.4.   

 

Figure 6.4  Variation of mode number and coupling coefficients with resonance wavelength of 

3.4-µm-diameter MRR (w  =  0.3µm) 

   

It may be observed that the coupling coefficients significantly increase towards higher 

wavelength as a result of the corresponding decrease the effective refractive index. The 

free spectral range which is defined as the spacing between two adjacent resonant 

wavelengths ranges from 60 nm to 80 nm. Due to strong demand of WDM applications 
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requiring single-channel selectivity and a high number of channels in the transparency 

range of optical fibre, the FSR needs to be larger than 30nm.  

  

6.2.2.3 Influence of air gap width on Extinction ratio 

The extinction ratio, also called on/off ratio, represent the ratio of the transmitted power 

to the not transmitted power. As can be seen from figure 6.5, the rejection ratio can be 

altered by varying the gap size.    

 

Figure 6.5  Variation of rejection ratio with gap width at  λres  = 1566 nm of 3.4-µm-diameter 

MRR (w = 0.3µm) 

 

Adopting a smaller gap size could improve the rejection ratio related to a specific 

resonance mode and minimise the cross talk [10]. However, a small gap size brings also 

the resonance field to be less strongly confined inside the Ring, decreasing the quality 

factor. In some applications such as biomedical sensors where extremely narrow dips of 
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transmitted intensity in the frequency spectrum is required, the quality factor of the 

cavity needs to be high enough [21]. Therefore, in order to increase the rejection ratio, 

without compromising the performance in terms of quality factor, a double parallel 

MRR (PDMRR) is suggested. 

 

6.3 Simulation Results of PDMRR 

The structure, shown in figure 6.6, consists of two ring resonators centred between two 

straight waveguides. The structure parameters are chosen as following: the diameter of 

the two rings is d = 3.4µm, core and cladding have refractive indices of ncore = 3.2 and 

ncl = 1, respectively, the width of the ring and straight waveguides is w = 0.3µm, and gap 

width (g1 = g2) between the outer ring and straight waveguides is set to be 218nm.  

 

Figure 6.6   Schematic diagram of the 2-D PDMRR of diameter d = 3.4µm coupled to two 

straight waveguides where ncore = 3.2, ncl = 1 and width, w = 0.3µm (Λ = 10µm). 
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The structure is excited in the same manner as in the single ring case. The distance from 

centre to centre of the two rings Λ is set to 10 µm. The transmission characteristics 

obtained from the analysed PDMRR is shown in figure 6.7. 

 

Figure 6.7 Transmission for 1.7-µm-radius PDMRR coupled to straight 0.3-µm-wide 

waveguides with Λ = 10 µm 

 

The localised resonance wavelength is extracted and the quality factor of the mth 

resonance is calculated directly from the spectrum following the same procedure as in 

the single ring case. The numerical results are listed in Table 6.2.  
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Table 6.2 resonance data from figure 6.7 for 3.4 µm-diameter PDMRR and w = 0.3 µm 

m               F (THz)               λres(nm)               Q     

18              181.2                   1655.62             1242 

19              190.3                   1576.45             1312 

20              199.4                   1504.51             2819 

21              208.5                   1438.84             3284 

22              217.6                   1378.67             3666 

 

As shown in this table, if compared to the single MRR case, no significant change is 

revealed in terms of quality factor, whereas the extinction ratio at the resonant 

wavelengths is approximately 20 dB.  

Figure 6.8 shows the electric field pattern recorded as results of the simulation. The 

PDMRR is excited with a sinusoidal continuous wave at wavelength 1655.62 nm (180.2 

THz) until the steady state is reached.  
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Figure 6.8    Sinusoidal steady-state amplitude distributed in 1.7-µm-radius PDMRR coupled to 

straight 0.3-µm-wide waveguides with Λ = 10 µm: on-resonance case at 1655.62nm  

 

As it can be seen in this figure, being the source frequency one of the resonance modes 

of the structure, nearly 100% of the power is switched to the cavities and from them 

coupled to the other waveguide (on-resonance case). 

In the same manner, the steady state E-field is computed for the case off-resonance at 

wavelength 1615.50 nm (185.7THz) and the resulting field pattern is illustrated in figure 

6.9.  
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Figure 6.9      Sinusoidal steady-state amplitude distributed in 1.7-µm-radius PDMRR coupled to 

straight 0.3-µm-wide waveguides with Λ = 10 µm: off-resonance case at 1615.50 

nm  

  

As shown in this figure, no coupling occurred between the input waveguide and the 

cavities and nearly 100% of the signal is transmitted at port B. 

 

6.3.1 Influence of air gap width on the coupling and Quality factor 

The effect of changes in the gap size between input/output waveguides and the ring is 

considered focusing in particular on quality factor. Two types of changes of g1 and g2 

are discussed. In the first case, both gap sizes are identically changed (g1 = g2 = 

245nm), while in the second one they are asymmetrically varied (g1 = 245nm and g2 = 

191 nm). The distance between two rings is set to Λ = 10 µm in both simulations. Figure 

6.10 show the numerical result obtained from the two cases of symmetrical gaps and 
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asymmetrical gaps on quality factor.    

 

Figure 6.10      Variation of Quality factor Q with frequency for symmetric and asymmetric gap 

size g1 and g2 for 1.7-µm-radius PDMRR coupled to straight 0.3-µm-wide 

waveguides with Λ = 10 µm 

  

From figure 6.10, it can be noted that as expected, in both cases, the Quality factor 

increases at the highest frequencies where the coupling coefficients is lower. However, 

comparing the two curves obtained, it can be understood that by allowing a smaller gap 

size g1, the amount of power coupled to and from the rings is varying compared to the 

symmetric gap case, and thus, the quality factor in this case has degraded. While the 

increase of quality factor towards high frequencies is not as much dramatic as for g2 = 

245nm.   
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6.3.2 Influence of air gap width on the coupling and rejection ratio 

The consequence of alters in the gap size between input/output waveguides and the ring 

is considered spotlighting in particular on rejection ratio. Two kinds of changes of g1 

and g2 are discussed. In the first case, both gap sizes are identically changed (g1 = g2 = 

245nm), while in the second one they are asymmetrically varied (g1 = 245nm and g2 = 

191 nm). The distance between two rings from centre to centre is set to Λ = 10 µm in 

both simulations. The comparison between these two structures in terms of rejection 

ratio is reported in figure 6.11. 

 

Figure 6.11 Variation of rejection ratio with frequency for symmetric and asymmetric gap size 

g1 and g2 for 1.7-µm-radius PDMRR coupled to straight 0.3-µm-wide waveguides 

with Λ = 10 µm 

 

Figure 6.11 shows the numerical result obtained from the two cases of symmetrical gaps 

and asymmetrical gaps on rejection ratio. From this figure, it is clear that the choice of 
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asymmetrical gap size leads to an improved rejection ratio over all the resonance modes 

in the considered range. It can also be noted that this improvement is particularly 

significant for the lowest frequencies with an increase of about 60% compared to the 

symmetrical gap size case.  

 

6.4 Summary 

In this chapter, optical microcavity ring resonator based on high-index-contrast 

waveguide has been analysed by using MRTD formulation based on CDF (2, 4) scaling 

function and rigorous UPML boundary conditions. The approach has proved a good 

level of accuracy in extracting and studying the resonance behaviour of this structure. 

The optimisation of a number of important parameters, including coupling coefficients, 

quality factor, and rejection ratio has been discussed. A high-order structure consisting 

of a two ring resonators in parallel with centre distance of 10 µm has shown interesting 

potential in increasing the on-off ratio where it is desirable to minimise the cross talk of 

the device. Furthermore, by using asymmetric gap sizes, the rejection ratio of the device 

has significantly increased of about 60 %, compared to the best result as in the 

symmetric gap size case. 
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Chapter 7 

Slotted Microcavity Ring Resonators 

(SMRRs) 
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7.1 Introduction 

In recent years, a great deal of research has been dedicated to optical slotted waveguides 

as they were found to be very attractive and promising for future of modern photonic 

devices. The devices include optical microring resonators separating two waveguides 

such that input signals propagate along the input waveguide, couple into the ring 

resonator and then sent to output waveguide, for certain wavelengths, at selected output 

port. The improved numerical accuracy provided by MRTD scheme is successfully 

applied to the analysis of slotted ring resonators. In this type of structures, coupling 

coefficients and resonant mode quality factor depend very much on the geometrical 

characteristics of the coupled microring. The effect of different parameters such as slot 

position, slot width, and slot filling material on the resonance modes and 

transmitted/coupled power is thoroughly investigated.  

 

7.2 Background 

The single microring resonator is one of the most important building blocks for more 

complicated nano-waveguide based structures which can support slow light operations, 

[26, 40, 49, 59, 69, 85]. These structures consist of periodic spaced resonators with or 

without inter-coupling, such as single-channel side-coupled integrated spaced sequence 

of resonators (SCISSOR), double channel SCISSORs and inter-coupled resonators [6, 

21, 22, 35, 41 50]. Thanks to the recent advances in material technology and fabrication 

techniques, MRRs with physical dimensions comparable to optical wavelength have 

been made possible to be fabricated with negligible bending loss [10, 79]. Particularly, 

MRRs based on high-index-contrast material systems, such as Si/SiO2 or Si/air, has 
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enabled the implementation of highly integrated photonic structures [10, 102]. In these 

structures, the light tends to be strongly confined and guided within the core region by 

means of total internal reflection [84].  

However, despite the high-index contrast between core and cladding, the guiding within 

the core region can still be problematic for some applications. For instance, two-photon 

absorption in silicon at very high optical intensities may cause high optical losses [60]. 

Recently work proposed by Almeida et al. shows that the use of slotted waveguide for 

all-optical data processing such as all-optical switches is one of the most promising 

applications of this new design technology [103].  

It is known that in a slotted waveguide, the electromagnetic field can be guided and 

strongly confined inside nanometric-scale region of low refractive index. This property 

stems from the discontinuity of the normal component of electric field across material 

interference. Thus, strong field can significantly boost the resonance field enhancement 

[53].  

Thus, slotted waveguide and slotted resonator systems are expected to play vital role in 

developing a novel platform for high-performance integrated optics. Due to the nature of 

this research, and the many attributes of slotted waveguides in channelling 

electromagnetic waves, this slotted waveguides have been heavily investigated for the 

purpose of designing, modelling, and simulating switching devices that are highly 

efficient in transmission and tightly compact in design. 
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7.3 Slotted Ring Resonator Cavity  

7.3.1 SMRR filled with SiO2  

The two-channel ring resonator based on slotted waveguide filled with SiO2 whose 

schematic diagram is shown in figure 7.1, with ring diameter d = 5µm and total width 

wtotal =709 nm. 

 

Figure 7.1    Schematic diagram of  the 2-D single SMRR of diameter d = 5µm filled with SiO2 

coupled to two straight waveguides where ncore = 3.2, nclad=1, and nslot = 1.47   

 

The core is made of silicon with refractive index of ncore = 3.2 and is micro-structured to 

exhibit a slot of width wslot with refractive index nslot=1.47. The SMRR is coupled to two 

identical straight silicon waveguides that are ws = 0.3 µm wide. The minimum separation 

distance between the two bus waveguides and the ring resonator is g = 0.245 µm. The 

entire device is placed in an air background. The structure is discretised into a uniform 
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mesh with cell size ∆x = ∆z = ∆ = 27.25 nm and is terminated by 20-cell UPML to 

absorb the reflected power.  In order to cover the spectrum of interest in just one-go 

simulation, the structure is excited with a Gaussian pulse modulated in time by a 

sinusoidal function with the shape of the fundamental mode profile of the waveguide as 

[82] 

( ) ( ) ( )( ) ( )ftezEtzE Ttt
y π2sin,
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00
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−−=  (7.1) 

  

where ( )zE0  represents the fundamental mode profile of the waveguide, t0 and T0 are 

the time delay and the time width of the Gaussian pulse fixed at 80 fs and 20 fs 

respectively, and  f is the central frequency which is set at 200 THz (λ = 1.5µm).  

As shown in Fig. 7.1, different cross-sections are chosen in order to record the time 

domain variation of incident, transmitted, and reflected fields. By means of Fast Fourier 

Transform (FFT) of the recoded time-dependent fields, the coupled power Pr and the 

transmitted power Pt are calculated by dividing the coupled and transmitted spectra by 

incident power Pin. 

 

7.3.1.1 Influence of slot width and slot position on the coupling efficiency 

In this section, the effect of changes in the slot position on the coupling performance of 

the entire resonator is presented for three types of changes of slot position as shown in 

figure 7.2.  
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Figure 7.2   From left to right, the slot position corresponding to η=0.7, η=0.5, and η=0.4  

respectively  filled with SiO2 

 

The slot’s location in the ring is expressed by the asymmetry parameter, η, such that the 

inner width of high-index ring layer is ηw and that of outer high-index ring layer is (1-

η)w, where w = Wtotal - Wslot. 

Firstly, the variation of coupling efficiency, κ, with frequency for different slot positions 

and widths, wslot, is shown in figure7.3. 

 

Figure 7.3 Variation of coupling coefficients κ with frequency and slot width for three different 

SiO2 slot positions of SMRR. 
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From figure 7.3, it can be seen that the coupling coefficients which determine the 

amount of power coupled to/from the ring resonator are quite sensitive to the slot 

position within the ring. This can be explained as a result of the corresponding increase 

or decrease of the effective refractive index which is a function in the waveguide width. 

It can be also noted that the influence of the slot thickness wslot on the coupling 

efficiency is rather small over wide range from 80 to 130 nm for all studied widths, and 

therefore, its value has been fixed at 130 nm throughout the rest of the thesis. In 

addition, at fixed slot position, the coupling efficiency is significantly decreased towards 

higher frequencies. With the purpose of achieving good transmission characteristics and 

large extinction ratio, the amount of power coupling form the input waveguide to the 

slotted ring resonator should be equal to the amount of power coupled form slotted ring 

to the output waveguide. Therefore, the variation of the coupling coefficients is 

considered for different slot position as shown in figure 7.4.  

 

Figure 7.4 Variation of coupling coefficients κ with frequency and slot width for three different 

SiO2 slot positions of SMRR. 
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The result obtained in figure 7.4 reveals that symmetry property of the input/output 

coupling process is fulfilled. A conventional way to increase the resonance effect inside 

the conventional MRR is to increase the distance between ring and coupled waveguides 

towards higher values of g or reducing the ring waveguide width [103]. However, from 

figure 7.4, it can be seen that the use of a slotted configuration allows varying of the 

coupling coefficient in the range of interest by merely acting on the slot position η.   

 

7.3.1.2 Influence of slot position on the spectral response 

For every MRR-based structure, an increase in the coupling coefficient causes the 

resonance field to be less strongly confined inside the ring, decreasing the quality factor. 

Suitable coupling coefficients therefore, can be chosen as a compromise between 

transmittivity and Q-factor. In order to understand how the dependence of Q on the 

coupling coefficient differs in the slotted configurations compared to the conventional 

MRR case, the transmission at throughout port for SiO2 SMRR for different slot 

positions is considered here. 
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Figure 7.5 Spectral transmission for 5-µm-radius SiO2 slotted ring resonator for different slot 

position. 

 

The measured transmission spectrum of the slotted ring resonator filled with SiO2 

around λ = 1.55 µm is presented in figure 7.5. From this Figure, the localised resonance 

wavelengths, and quality factor Q are calculated and listed in Table 7.1. The quality 

factor of the mth resonance is calculated directly from the spectrum as the ratio of the 

resonant wavelength (λm) to the width of the resonance peak (δλ) at half-power.  
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Table 7.1 Resonance data from figure 7.5 for SMRR filled with SiO2, g = 0.245 µm 

 

η=0.4 

λres (nm)     1629.54       1576.45       1523.61       1478.56       1434.72  

      2671           3505             3809             3996            3985                                       Q 

 

η=0.5 

λres (nm)     1620.74       1569.03       1519.75      1474.20       1430.61  

      2133            4241             3897            4914           4335                                       
Q 

 

η=0.7 

λres (nm)     1614.63        1562.50       1513.62      1467.71       1425.17  

        4892          5388              5045           4892            5278                                       Q 

 

As shown in Table 7.1, there is change in the resonance positions, here defined as the 

wavelengths corresponding to the maxima in the transmitted and dropped power. It can 

also be seen that the use of a slotted configuration, filled with SiO2, allows varying the 

coupling coefficient and the quality factor at every resonance frequency in the range of 

interest by merely acting on the slot position η. 

It should be noted that the effective refractive index will be different at each resonance 

wavelength. This is due to the resonance modes for a small ring cavity which are spaced 

far apart [65]. These are clearly shown in figure 7.6 where a number of important results 

can be observed. Firstly, as the slot position changes, each resonance is shifted towards 

shorter wavelength. Secondly, the wavelength decreases with the effective refractive 

index and the FSR decreases as the wavelength decreases. 
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Figure 7.6   Free spectral range of 5µm-diameter SiO2  slotted microcavity ring resonator as a 

function of effective refractive index and slot position   

 

7.3.1.3 Influence of slot position on the finesses 

The finesse is calculating by forming the ratio of free spectral range, FSR, to the width 

of the resonance, ∆λ, at the half-power points. Table 7.2 compare the range of the 

obtained finesses for each slot position.  

 

Table 7.2 the calculated finesses for different slot position of SMRR filled with SiO2, g = 0.245 

µm 

Slot Position Range of Finesse 

η=0.7 

η=0.5 

η=0.4 

142-180 

68-152 

87-132 
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It is clear that the finesses can be altered by varying the position of the slot inside the 

ring and according Table 7.2 high finesses can be achieved for η = 0.7 where the 

finesses ranges between 142 and 180. 

 The variation of the finesses with the intensity attenuation coefficients of the ring is 

illustrated in figure 7.7.   

 

Figure 7.7      Variation of finesses with the intensity attenuation coefficients for three different 

slot positions of SiO2 SMRR. 

 

From this figure, it can be seen that the finesse decreases as the intensity attenuation 

coefficients of the ring increases. This can be explained by the higher internal losses 

associated with each round trip inside the ring. 
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7.3.1.4 Influence of slot position on the inner circulation factor 

Next, the variation of inner circulation factor with the intensity attenuation coefficients 

of the ring is considered here. The performance in terms of inner circulation factor, as 

shown in figure 7.8, clearly indicates that at higher intensity attenuation coefficients, the 

inner circulation factor rapidly decrease which in turn lead to increase the internal losses 

inside the ring.  

 

Figure 7.8    Variation of inner circulation factor with the intensity attenuation coefficients for 

three different slot positions of SMRR filled with SiO2. 

 

Again, high inner circulation factor can be accomplished for η = 0.7 which means lower 

internal losses. 
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7.3.2 SMRR filled with Air 

In the second test, the slot position again varied, but this time, the material filling the 

slot ring was changed to be air instead of SiO2 as shown in figure 7.9. 

   

Figure 7.9 From left to right, the slot position corresponding to η=0.7, η=0.5, and η=0.4 

respectively filled with air  

 

Again, the ring diameter d = 5µm and total width Wtotal   = 0.709 µm. The core is made 

of silicon with refractive index of ncore = 3.2 and is micro-structured to exhibit a slot of 

width Wslot with refractive index nslot = 1. The slotted ring is sandwiched between two 

identical straight silicon waveguides of ws = 0.3 µm wide.  

The minimum separation distance between the two bus waveguides and the ring 

resonator is g = 0.245 µm. The entire device is placed in an air background as illustrated 

in figure 7.10. The structure is discretised in the same manner as explained in the 

previous section. Then, the same Gaussian pulse modulated in time by a sinusoidal 

function with the shape of the fundamental mode profile of the waveguide was inserted 

into structure. 



Chapter 7                                                                                                                               SMRRs 

120 

 

 

Figure 7.10 Schematic diagram of  the 2-D single SMRR of diameter d=5µm filled with air 

coupled to two straight waveguides where ncore = 3.2, ncladcl = 1, and nslot = 1  

 

7.3.2.1 Influence of slot position on the coupling and transmission efficiency 

In this section, the consequence of altering the slot position on coupled and transmitted 

power of the entire resonator is presented for different slot position, η = 0.7, η = 0.5, and 

η = 0.4 respectively. 
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Figure 7.11 Variation of coupling and transmission coefficients with frequency for three 

different air slot positions of SMRR. 

 

Figure 7.11 shows the performance, which is in terms of coupling and transmission 

efficiency, clearly indicates that at higher frequencies, the amount of power coupled to 

the ring resonator rapidly decrease while the transmitted power increases.   

 

7.3.2.2 Influence of slot position on the spectral response 

The optimisation approach taken in this study was to fill the slot with a material in order 

to better trap photons and enhance controlling the lightwave. Air slotted ring resonator 

was introduced so as to optimise the efficiency of the structure in terms of ratio of the 

output signal PT to input signal Pin.  
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Figure 7.12 Spectral transmission for 5-µm-radius air slotted ring resonator for different slot 

position. 

 

The measured transmission spectrum of the slotted ring resonator filled with air around 

λ = 1.55 µm is presented in figure 7.12. From this Figure, the localised resonance 

wavelengths, and quality factor Q are calculated and listed in Table 7.3. The quality 

factor of the mth resonance is calculated directly from the spectrum as the ratio of the 

resonant wavelength (λm) to the width of the resonance peak (δλ) at half-power.  
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Table 7.3 Resonance data from figure 7.12 for SMRR filled with air, g =0.245 µm 

 

As shown in Table 7.3, there is also altering in the resonance positions. In addition, the 

use of a slotted configuration, filled with air, allows varying the coupling coefficient and 

the quality factor at every resonance frequency in the range of interest by merely acting 

on the slot position η. 

 The variation of resonance wavelength with corresponding effective refractive index is 

illustrated in figure 7.13.   

 

 

η=0.4 

λres (nm)     1620.74       1566.57       1517.45       1471.31       1427.89  

      4156           4747             4598             4204            5100                                       Q 

 

η=0.5 

λres (nm)     1615.50       1563.31       1515.91      1469.86       1427.21  

      2785            4343             4890            5069           4904                                       
Q 

 

η=0.7 

λres (nm)     1613.77        1561.68       1513.62      1466.94       1424.50  

        5043          5577              5219           5059            6475                          Q 
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Figure 7.13 Free spectral range of 5µm-diameter  air slotted microcavity ring resonator as a 

function of effective refractive index and slot position 

 

It may be observed that the entity of FSR decreases as the wavelength decreases, the 

FSR also significantly decreases towards higher effective refractive index.  

 

7.3.2.3 Influence of slot position on the finesses 

The ratio of the two preceding quantities and measures the separation between the 

resonance dips is considered here. Table 7.4 compare the range of the calculated ratio 

for each position.  
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Table 7.4 the calculated finesses for different slot position of SMRR filled with air, g = 0.245 

µm 

Slot Position Range of Finesse 

η=0.7 

η=0.5 

η=0.4 

146-193 

90-159 

124-164 

 

From Table 7.4, it is observed that at all slot’s position there is substantial improvements 

on finesses and optimum value is achieved for η = 0.7 where the finesses ranges 

between 146 and 193. 
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Figure 7.14 shows the variation of the finesses with the intensity attenuation coefficients 

of the ring. 

 

Figure 7.14 Variation of finesses with the intensity attenuation coefficients for three different 

slot positions of air SMRR. 

 

It can be seen from this figure that the finesse decreases as result of increasing of the 

intensity attenuation coefficients of the ring due to roundtrip internal losses inside the 

ring. 
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7.3.2.4 Influence of slot position on the inner circulation factor 

Figure 7.15 demonstrates the performance, which is in terms of inner circulation factor; 

obviously indicates that at higher intensity attenuation coefficients, the inner circulation 

factor rapidly decrease which in turn lead to increase the internal losses inside the ring.  

 

Figure 7.15 Variation of inner circulation factor with the intensity attenuation coefficients for 

three different slot positions of SMRR filled with air. 

 

7.3.2.5 Influence of slot position on the number of stored bits inside the ring 

The variation number of stored bits with coupling efficiency for SMMR filled with SiO2 

is shown in figure 7.16 where the number of stored bits in the SMRR is calculated using 

[1] 

)2ln(8

2 2κ−=N  (7.2) 

where κ  is the coupling efficiency between the input waveguide and the ring. 
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Figure 7.16 Variation of stored bits with coupling coefficients at resonance for three different 

slot positions of SMRR filled with air. 

 

The variation number of stored bits with coupling efficiency for SMMR filled with air is 

shown in figure 7.16.  It is apparent that for all values of coupling coefficients at 

resonance, the number of stored bits ranges between 0.3606 and 0.3607 and found to be 

in excellent agreement with the desired value which typically equal to 0.36 as reported 

in [1]. This result gives clear indication that delay elements based on this kind of 

resonators can play a significant role in quantum computing and optical signal 

processing which call for the need of efficient controlled delay elements with large 

characteristics storage time.    

Table 7.5 below holds direct comparison between all three structures and their 

performance in terms of finesses and quality factor.      
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Table 7.5 Microcavity ring resonator structure performance comparison 

Structure Quality Factor at 1425 nm Range of Finesses 

Ring Resonator without slot 4008 117-162 

Slotted ring resonator filled 

with SiO2 (η=0.7) 

5278 142-180 

Slotted ring resonator filled 

with Air (η=0.7) 

6475 146-193 

 

From Table 7.5, it is observed that new design, that includes the inserted slot filled with 

air, is the optimum design, suppressing the other two competitive designs.  

 

7.4 Summary 

A new optical microcavity ring resonator with a single slot has been proposed to 

improve the performance in terms of coupling efficiency, finesses and quality factor. 

Since the variation of coupling efficiency, finesses, the internal losses, the quality factor, 

and the number of stored bits inside the ring with the slot design specifications, such as 

width, position, and material of the slot, has been thoroughly investigated and compared.  

The S-MRTD has been employed to analyse and optimise the performance of a new ring 

resonator based on slot waveguides. Results have revealed that the slotted configurations 

allow for an increased quality factor at fixed gap size between central ring and 

input/output waveguides. Moreover, the desired compromise between the coupling 

efficiency and resonance effect inside the ring can be achieved by mere optimisation of 

the slot geometrical characteristics. It has been demonstrated that higher improved 

performance can be achieved by introducing sub-wavelength slot to the waveguide 

constricting the ring.    
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8.1 Introduction 

Having established the effectiveness in terms of coupling efficiency, finesse, and quality 

factors of the SMRR configuration, this structure is then used as building block for a 

new optical delay line. Firstly, in this chapter the fundamental principles of slotted- 

coupled-resonator optical waveguide (SCROW) delay line are investigated, then two 

different designs for SCROW optical delay lines are presented and their performance is 

analysed and compared to the case of conventional MRR delay line. 

 

8.2 Overview of Optical Delay Lines 

The progress in integrated optical technology may significantly have an effect on the 

future rate of development of optical networks. Carrying out the process of buffering via 

electronics can lead to bottlenecks in high-speed optical networks [30, 37]. Thus, optical 

buffering and storage can open new era in future all optical packet- switched networks 

and computer systems to prevent traffic contention [30]. Optical delay lines play an 

essential role in avoiding traffic contention particularly when multiple packets are 

simultaneously destined for the same output port [29, 37]. Different schemes have been 

proposed in order to construct on-chip delays: routing the data along waveguides of 

differing length, and exploiting group-delay effects in microresonators. Recent years 

have seen spectacular progress in development of optical pulse delays based on 

integrated optic cavities such as microrings, microdisks, and photonic crystals 

microcavities.  

In this context, Yanik et al., have revealed that dynamic tuning procedures are essential 

to stop light pulses [63-64]. The design they proposed is based on photonic crystal 
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coupled microcavities. However, it involves the employment of many microcavities 

which are bulky and can lead to minimise the level of integration of optical devices [42, 

43, 63, 64, 91, 92, 111].   

Recently published work has shown excellent comparison of three on-chip optical delay 

devices: an all pass filter (APF) with cascade of 36 ring resonators, a coupled-resonator 

optical waveguide (CROW) consisting of 100 ring resonators, and a simple non-

resonant 4 cm waveguide delay line [30]. In this chapter, slotted miocrocavity ring 

resonators are employed to propose novel design of optical delay lines. Due to the E-

field discontinuity across material interferences, SMRRs are capable of supporting 

strongly confined light within low-refractive index materials by means of TIR 

mechanism at a level that cannot be accomplished by using conventional waveguides 

[103].  

 

8.3 Coupled Resonator Optical Waveguide Structures: Design Principles 

The optical resonators are found to be ideal platform for storing light in physical small 

sizes. In particular, serial coupled microresonators may offer a new scheme for 

controlling the group velocity of optical pulses in compact way on a chip [45].  

The architecture of CROW incorporating an array of directly coupled ring resonators 

with the same geometrical length place between two bus waveguides as shown in Fig. 

8.1.  
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Figure 8.1    Schematic diagram of CROW 

  

Input light pulses propagate in microring CROWs by means of coupling between 

neighbouring resonators and spend the most of their time circulating within each 

resonator, consequently large group delay can be achieved. The general characteristics 

of the CROWs such as dispersion relation and band structure can be described by the 

coupling between the adjacent resonators and input bus waveguides, the FSR, and the 

Q-factor. The performance of the CROWs can be affected primly by the parameters that 

set the resonators [45].  

In order to design CROW based on MRRs, it is essential to understand and control the 

coupling of light between the MRRs and input and output bus waveguides. When a 

chain of directly coupled ring resonators are coupled to linear waveguides which serve 

as input/output ports, the system behaves like tunable and frequency dependent time 

delay. Poon et al., successfully presented in [45] theoretical framework model used to 

analysis coupled resonator optical waveguides using transfer matrix method. These 

accurate analytical formulas are found to be valid to any kind of resonators. When 
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looking at this expression from a coupling efficiency point of view, these formulas are 

function of coupling coefficients which can be calculated numerically by one of accurate 

existing numerical techniques. 

As described in [45], in the limit of weak coupling κ << 1, the dispersion relation can be 

derived as  

( )







Λ±Ω= K

m
K cos1)(

π
κ

ω  (8.1) 

where Ω is the resonance frequency of an uncoupled resonator in radians per second, K 

is the Bloch wave vector, Λ is the periodicity of the structure, m=(Ω neff R/c) is the 

azimuthal modal number, R is the ring radius, c is the velocity of light in vacuum, neff  is 

the effective refractive index of the ring. The maximum of group velocity at the centre 

of the CROW transmission band where ω=Ω and KΛ= 2π can be calculated using the 

following formula [45] 

)(
)(

Ω
Λ

=Ω
eff

g nR

c
v

π
κ

 (8.2) 

The delay time of a pulse propagate through CROW is determined at the centre of 

CROW band by distance traversed in the CROW and the group velocity which can be 

expressed by the following equation [45] 

∑
=

Ω
=

N

i i

eff
d c

nR

1

1)(

κ
π

τ  (8.3) 

where N is the number of the rings.  

It is obvious from equation 8.3 that the CROW performs as customary waveguide with 

group velocity c/neff but with effective length of [45] 
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i ieff
eff R

n

c
L

1

1

κ
πτ

 (8.4) 

The quality that describes the ratio of the group velocity in free space to the group 

velocity in CROW is the slowing factor, S which can be determined by [45] 

κ
π

2

)( Ω
=Ω

effn
S  (8.5) 

The total loss from the input to the output of the CROW can be obtained by the 

following equation [45] 

∑
=

=
N

i i
tot L

1 2

1

κ
αα  (8.6) 

where αL is the intensity attenuation coefficient of the ring ,L is the ring circumference, 

exp(-α
tot

) is the net power attenuation coefficients of CROW, and exp-αL is the power 

attenuation in the waveguide of the constituent resonators. 

The quantitative benchmark to determine the quality of a delay line is called figure of 

merit (FOM) and can be expressed as [45] 

L
FOM

α
κ2

=  (8.7) 

 

8.4 Newly Suggested Coupled Resonator Optical Waveguide Structures 

To enhance the performance of the suggested structure, a new design is proposed and 

shown in Fig. 8.2. In order to promote the electrical field confinement and improve the 

resonance effects, micrometric-scale low-index slot is inserted into the bent waveguide 

build the ring.  
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Figure 8.2   Schematic diagram of proposed SCROW 

 

The main advantage of this slotted configuration is that the coupling coefficients can be 

controlled by simply engineering the slot microring. The slotted microcavity resonating 

at resonance frequencies is able to trap these frequencies from the primary waveguide 

where they can take some time propagating within the cavity by means of TIR and then 

drop them into secondary waveguide. In particular, by chaining a row of side-coupled 

resonators instead only one, the delay efficiency will be shown to be greatly improved.  

A preliminary study of SCROW is carried out in this thesis to investigate numerically 

the resonance frequency and the coupling efficiency of the wave travelling across the 

slotted ring waveguide. This work carried out here uses the S-MRTD technique to 

simulate single stage of SCROW (N = 1). Assuming the coupling coefficients are 

identical between other rings, the numerically obtained coupling coefficients for the 
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SMRRs applied to the mathematical derivations described in the previous section to 

predict the performance of suggested delay lines. 

 

8.5 SCROW Performance 

The structure is selected to enable direct comparison between the design results in this 

work and those in [45]. The frequency range of interest includes wavelengths around λ = 

1.55µm. Thus, the SCROW structure that consists of a sequence of directly coupled 

slotted microcavity ring resonator whose schematic is shown in Fig. 8.2 is considered. 

Each microring of diameter d = 5 µm and width wtotal = 709 nm is made of silicon 

(refractive index ncore = 3.2) and is micro-structured to exhibit a slot of width wslot =130 

nm. These slotted ring resonators are coupled to two identical straight silicon 

waveguides (refractive index ncore = 3.2) that are ws = 0.3 µm wide. The minimal 

separation between the bus waveguides and the rings is set to be g = 245 nm. The entire 

device is placed in air background (refractive index nair = 1). 

Based on the results obtained in chapter 7, it is found that a good compromise between 

coupling efficiency and quality factor can be fulfilled for SMRR positioned at η = 0.7. 

Therefore, the design issue of slowing light and building delay lines with SCROWs at η 

= 0.7 is addressed here for the first time, to the best of the author’s knowledge, for two 

different materials filling the slot which are SiO2 and air respectively. 
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8.5.1 SCROW Filled with SiO2  

Figure 8.3 presents the variation of coupling coefficients with the resonance wavelength 

in the SCROW configuration where SiO2 is used to fill the slots and η = 0.7. The work 

carried out here employs the S-MRTD technique to simulate single stage of SCROW (N 

= 1). 

 

Figure 8.3 Variation of coupling coefficients κ with resonant wavelength λres at η = 0.7 for 

SCROW filled with SiO2 where N = 1 

  

It is clear that the amount of coupled power at resonance rapidly increases towards 

higher wavelengths. It can be seen from this figure that the percentage of coupling 

ranges between 0.54% and 1.38 %.  

Next, figure 8.4 shows the variation of maximum group velocity as a function of 

resonant wavelength. It can be seen that at higher resonant wavelengths, the maximum 

group velocity is maximised while it decreases at lower resonance, this is due to 
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increased coupled efficiency occurring at high resonant wavelengths. 

 

Figure 8.4  Variation of group velocity with resonant wavelength λres at η = 0.7 for SCROW 

filled with SiO2 

 

From this figure, it can be seen that the maximum group velocity ranges between 

510917.2 × m/s and 510062.9 × m/s. 

Inversely, as shown in figure 8.5, the slowing factor decreases rapidly at high resonant 

wavelengths as it is expected for higher values of coupling efficiency.  
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Figure 8.5 Variation of slowing factor with resonant wavelength λres at η = 0.7 for SCROW 

filled with SiO2 

 

From figure 8.5, the slowing factor is found to be in the ranges from 331 to 1029.  

Final results in terms of delay time are given in figure 8.6 where the variation of delay 

time with required coupling coefficients is considered in different SCROW 

configurations for which the number of rings is made vary from a minimum of 4 to a 

maximum of 16. 
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Figure 8.6 Variation of delay time with coupling efficiency for different N at η = 0.7 for 

SCROW filled with SiO2 

 

Figure 8.6 suggests that, when the number of rings is increased, the amount of obtained 

delay time rapidly increases. At fixed number of stages, the delay time also significantly 

decreases when higher coupling efficiency are allowed.    

 

8.5.2 SCROW filled with Air  

Figure 8.7 shows the MRTD results obtained from the 5-µm-diameter slotted microring 

resonator with the same position investigated in Figure 8.3. At η = 0.7 when the slot is 

filled with air and N = 1. 
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Figure 8.7 Variation of coupling coefficients κ with resonant wavelength λres at η = 0.7 for 

SCROW filled with air 

  

Compared to the SMRR filled with SiO2 previously considered, the SMRR filled with 

air shows slightly lower coupling efficiency at fixed resonance frequency with values in 

the range %35.1%5.0 ≤≤ κ . 

Carrying on the analysis, the maximum group velocity versus resonant wavelength is 

reported in figure 8.8. It can be seen that the maximum group velocity ranges between 

510666.2 × m/s and 510905.8 × m/s in the frequency window of interest. 

 



Chapter 8                                                                              Optical Delay Lines Based on SMRRs 

 

143 

 

 

Figure 8.8 Variation of group velocity with resonant wavelength λres at η = 0.7 for SCROW 

filled with air 

  

Next, figure 8.9 shows the variation of slowing factor with the resonant wavelength. It 

shows that the slowing factor decreases in the high resonant wavelengths.  
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Figure 8.9 Variation of slowing factor with resonant wavelength λres at η = 0.7 for SCROW 

filled with air 

  

From figure 8.9, the slowing factor is found in the range from 337 to 1125 which is 

slightly increased if compared to the case of SiO2 filled SCROW at fixed frequencies.  

Then, the variation of delay time of SCROW with coupling coefficients for different 

number of resonators is shown in figure 8.10. 
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Figure 8.10 Variation of delay time with coupling efficiency for different N at η = 0.7 for    

SCROW filled with Air 

 

This figure shows the delay time variation for different coupling coefficients and 

number of stages taken in the SCROW. Similarly to the case of SiO2 filled SCROW.  

Figure 8.10 suggests that, when the number of rings is increased, the amount of delay 

time rapidly increases. Comparing the two cases of different slot materials, it can be 

noted that at fixed values of N and κ, the SCROW filled with air allows for slightly 

higher delay times. 

Table 8.1 below holds a direct comparison of 10 resonators delay line composed of 

various types of resonators in different material system at 1.55 µm. 
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Table 8.1 comparison of CROW delay lines consisting of N = 10 resonators 

 

Resonator Type neff       R (µm)    κ(%)      Q      Net loss   Delay    FOM 

                                                     (dB)       (ps)       

SMRR filled with SiO2 

SMRR filled with Air 

III-V semiconductor 

MRR [ 43, 81] 

2.908      2.5       1.38      4892       35          55       1.248 

2.895      2.5       1.35      5043       34          56       1.256 

3             10        1           5000       33          31       1.300   

 

As evidenced by the comparison in Table 8.1, application requirements, such as 

acceptable losses, and material system, dictates the type of resonator that will be the 

most suitable. In order to achieve long delay without too much attenuation, resonators 

with high quality factor are required. Therefore, from Table 8.1, it is observed that the 

proposed design, based on air slot ring resonators, outperforms the counterpart designs, 

including the structure reported in [43], [81], and therefore it is identifies as optimum 

design for the desired purposes.   

 

8.6 Summary 

This chapter has presented an overview of optical delay lines based on optical 

microcavity ring resonators, with a detailed look at delay line parameters. A number of 

key issues in designing delay lines have been addressed. After that, the chapter 

explained the specific case of implementing slotted ring resonators for optical delay 

lines. Coupling efficiency of the SMRRs has been numerically investigated by 2D S-

MRTD. The group velocity, slowing factor, and delay time have been determined by 

analytical expressions that are rigorously employed to analyse and optimise the 

performance of optical delay lines based on such configuration. After that, a comparison 
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was made between conventional delay lines and newly suggested optical delay lines in 

terms of achievable delay time, losses, and figure of merit. It was found that the newly 

suggested optical delay line based on slotted ring resonators can achieve higher delay 

time with overall smaller ring size while keeping the same level of losses.    
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9.1 Conclusion 

This thesis has addressed MRTD computational modelling and design of micro- and 

nano-scale integrated optical devices. Particularly, micarocavity ring resonators for the 

potential of high-density integration with other photonic devices. The primary objectives 

of this research were to develop and refine MRTD algorithms for modelling the 

electrodynamics of optical materials and structures, and to put into practice these 

techniques to the emerging class of microcavity devices. 

During the course of this research, MRTD formulations based on UPML approach were 

developed for modelling microcavity ring resonators. Rigorous validations of this 

algorithm have demonstrated the potential for high accuracy of this model over large 

bandwidth. This thesis presented detailed MRTD modelling results for micarocavity 

ring resonators, and discussed the key design parameters and tradeoffs that were 

identified consequently of these modelling investigations. The MRTD approach proved 

to be much more accurate in modelling the MRR than the previously used FDTD 

approach. Finally, the comparison between different slot and non slot configurations 

within the microcavity illustrated the advantage of the slotted ring structure for 

providing higher performance of coupled -resonator optical waveguide structures which 

are found to be useful in designing optical delay lines.      

 

Future Research Directions 

Since the introduction of MRRs in 1969, researchers have never stopped to seek for new 

analytical and numerical tools to allow a better understanding and the accurate design of 

these structures. Even though the work in this field has allowed for the design and 
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analysis of MRRs based devices, there is much room for improvement, and there are 

many stones which have been left unturned. For instance, waveguide losses and ring 

losses have to be technologically improved in order to realise more complex functions 

and devices.  Although, plenty of technological steps are being tackled, the complexity 

of the devices increases and the design and characterisation of the devices need more 

attention. For this reason, accurate tools predicting the behaviour of complex devices are 

of particular interest to come to grips with these complexities with many parameters and 

design choices.   

In this thesis, microcavity ring resonators and its application to optical communications 

have been studied and analysed thoroughly. The performance of the MRRs is mainly 

determined by coupling efficiency, and propagation loss inside the microring resonator. 

Consequently, simulation tools that can be employed in order to perform a more realistic 

analysis and describe the field propagation as affected by the out-of-plane losses have to 

be available. 

In the case of lateral coupling scheme, the coupling efficiency can be estimated in the 

context of the effective index method by reducing waveguide problems from 3D to 2D 

and then calculate the field overlap between the mode in the bus waveguide and the ring. 

Therefore, fully 3D MRTD is necessary to investigate the nature of the process in more 

realistic way that can enable improved optimisation of the design of MRRs and allow 

better comparison with experimental data. 

It is clear the MRRs will play groundbreaking role in future optical signal processing 

and computing. However, owing to their small space scale that involves expensive 

fabrication processes, a small number of those devices have been realised. The 
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prohibitive costs of these fabrication processes have pushed research efforts be directed 

towards creating innovative, comprehensive, and accurate numerical tools for the 

analysis and design of such devices which can represent a solid foundation for the 

growth of photonics. Therefore, adding scaling/wavelet in the expansion of the field. 

MRTD can offer great potential to build time and space adaptive codes where the level 

of resolution in time and space dramatically changes.  

Another possible direction is to investigate the features and properties of MRRs in 

nonlinear materials that can be basic building blocks for nonlinear components. This is 

can be achieved by adapting the MRTD code at hand in order to cope with nonlinear 

phenomena such as dispersion within the field. 

The aims and milestone set at the beginning of this project have been met, and the main 

contributions to knowledge generated in this work can be summarised as follows 

• Become thoroughly familiar with the MRTD numerical modelling technique 

and developed numerical technique for implementing very fine resolution in 

time and in space, successfully implemented them within the MRTD method, 

and made full assessment of its performance. 

• Created novel design MRRs for the purpose of optical communication. 

•  Carried out the analysis of MRRs based slotted waveguides. 

•  Offered new highly competitive and highly efficient designs of optical delay 

lines based slotted ring resonators. 
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Appendix A 

 

A.1 Maxwell’s Equations 

Maxwell’s equations are a powerful tool to account for the propagating 

electromagnetic waves in dielectric media and, in particular, in MRRs devices. There 

are mainly four electromagnetic field vectors that govern the electromagnetic 

phenomena. These four electromagnetic vectors describe the relationship between 

electric and magnetic fields that are function of both position r [m] and time t [s] [38]. In 

their differential form, Maxwell’s equations for EM propagating are written as:- 

M
t

B
E +

∂
∂−=×∇  (A.1) 

J
t

D
H +

∂
∂=×∇  

(A.2) 

ρ=∇ D.  (A.3) 

0. =∇ B  (A.4) 

where E is the vectorial electric field, in V/m, H is the vectorial magnetic field, in A/m, 

D is the electric flux density, in Coul/m2, B is magnetic flux density, in Wb/m2, M is the 

(fictitious) equivalent magnetic current density, in V/ m2, J is the current density, in 

A/m2, ρ is the free charge density, in Coul/m3.  

The physical background behind theses equations is that according to (A.1) the origin of 

the electrical field vortices ( E×∇ ) is the time-dependent change of magnetic field 

( t
B

∂
∂− ). At the same time as (A.2), the magnetic field vortices ( H×∇ ) can be either 

time-dependent change of the electric flux density ( t
D

∂
∂ ) or a result of the current 



Appendices                                                                             

154 

 

density in the material (J).  

In order for a linear, homogeneous, and isotropic medium, the following constitutive 

relations are written  

HB µ=  (A.5) 

ED ε=  (A.6) 

EJ σ=  (A.7) 

HM ∗= σ  (A.8) 

where ϵ is the dielectric permittivity, in F/m, µ is the magnetic permeability of the 

medium, in H/m, σ is the electric conductivity, in S/m, σ* is the equivalent magnetic 

loss,  in Ω/m. 

By handling equations (A.1) and (A.2), the following system of six scalar equations in 

Cartesian coordinate are obtained from Maxwell’s equations for electromagnetic 

propagation theory, as expressed below:- 
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Appendix B 

 

B.1 Introduction to Method of Moment (MoM) 

Like any numerical techniques based on method of moments, MRTD can be derived 

with applying specific expansion and testing function [109]. The idea behind method of 

moments is to represent the unknown function, ),( txf as a sum of unknown 

coefficients, na multiplied by known basis functions, nc . The unknown coefficients can 

be calculated using a system of equations that is developed by choosing a number of 

testing functions nω that is equal to the number of unknown coefficients. For instance, in 

1D problem if:- 

( ) ( )
x

xb
xf

∂
∂=  

(B.1) 

where ( )xf  represent unknown function and )(xb  is known function. 

Thus the function in (B.1) is expanded as following 

( ) ( )∑
=

=
N

n
nn xcatxf

0

,  
(B.2) 

By means of inner product,   

( ) ( )∫==〉〈 dxxfxbf nnn ωωω ',,  (B.3) 

A system of linear equations can be created as   
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Solving these equations lead to determining unknown coefficients na . It is obvious from 

(B.4) that the matrix becomes diagonal when the following property for testing 

functions holds 

nmnm c ,, δω =  (B.5) 

So that each coefficient can be calculated as  

', ba nn ω=  (B.6) 

The base function can also be used as testing function if the following holds 

nmnm ,, δωω =  (B.7) 

This technique is called Galerkin’s procedure.  
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Appendix C 

 

C.1 Updated MRTD Technique 

By means of Galerkin’s method, the MRTD update equations can be calculated with 

wavelet discretisation of electric and magnetic fields. The MRTD update equations are 

evaluated by localising the coefficients in time and space, using the time basis functions 

and scaling/wavelet functions respectively.   

 

C.2 Approximation in time: testing with pulse functions   

MRTD update in time is performed by testing with the time basis functions that give the 

localization of the expansion coefficients in time. Thus, in order to construct explicit 

scheme in MRTD, the pulse functions, whose time derivatives lead to two Dirac Delta 

functions placed at the edges of the pulse as shown in figure C.1, are used as time 

expansion coefficient [74]  

( )




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i

)
2

1
()

2

1
(2

1

δδ  

(C.1) 

The time derivatives of the pulse functions that form the time discretisation are Delta 

series as depicted by top line of figure C.1.  
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Figure C.1  Representation of the derivative of the basis functions in time when ih are pulses 

functions 

 

From Maxwell’s equations, the coefficients of D (and E) are located at time step n. At 

the same time as B (and H) coefficients are located at time step n+1/2.  The expansion of 

the E-field in time is expressed by [74] 

( ) ( ) ( )rEthtrE i

N

i
i∑

=

=
0

,  
(C.2) 

where ( )rEi  is the wavelet/scaling discretisation in space at time step i, hi(t) is 

testing pulse functions as shown in figure C.1. 

Similarly, B-field can be expressed as [74] 

( ) ( ) ( )rBthtrB
i

N

i i
2

1
0 2

1,
+= +
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(C.3) 
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where ( )rB
i

2
1+

 is the wavelet/scaling discretisation in space at time step i+1/2.  

Assuming no magnetic loss, equation (A.12) can be rewritten as 
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By performing the inner product to equation C.4 with hi (t)  
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Taking the following expressions into account 
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The following formula is obtained 
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(C.8) 

Subsequently, the updated term ( )rBx
i

r

2

1+
 is obtained 
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(C.9) 

It is clear from (C.9) that the new field component Bx at i+1/2 is dependently calculated 

from the value at previous time step at i-1/2.   
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C.3 Approximation in space: testing with scaling/wavelet functions   

In 3D space, the basis functions are separable functions expressed as V(x)V(y)V(z), 

where V represents either lϕ  scaling functions, or 
r

pl ,ψ
wavelet functions, with 

kjil ,,= as directional index in the three space directions. The approximation of 

derivatives in space domain can be performed by applying testing functions through the 

time differentiated functions in (C.9).  

For practical purposes, the discretisation of the field is required to be represented in 

vectorial notation that is a generalised form for any wavelet basis [19]. Therefore, all the 

wavelet/scaling coefficients are expressed as  
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(C.10) 

The vector, V, represents wavelet/scaling function is introduced as follows 
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(C.11) 

Therefore  
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By performing the inner product of equation (C.9) with each wavelet/scaling 

coefficients in equation (C.11), the updated equation of B component can be derived and 

written as [74] 
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 (C.13) 

where U represents the matrix of the inner products between E and B basis functions.  

From equation (C.13), it can be noted that Bx field is expressed by the basis functions 

which are misplaced in the positive y and z direction. Whereas the basis functions 

represent Ey and Ez are offset in z-direction and in y-direction respectively.  

For two different field components, F1 (being the updated field generated) and F2 (being 

the updated field generator), the general form of the U matrices is [74] 



Appendices                                                                             

163 

 



































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

n

V
V

n

V
V

n

V
V

n

V
V

n

V
V

n

V
V

n

V
V

U

mLF

LF
mLF

LF

mF

F
mF

F

mLF

F
mF

F
mF

F

F
mF

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

2

,,

,,

,,,

2

2

2

2

1

2

1

1

1

,

OM

K

 

 

 

 

(C.14) 

 

where n∂∂  is the derivative in space with n=y,z, m represents the offset in the direction 

of differentiation, L= zyx rrr max,max,max,32 +++ , is the rank of U matrices. 

As an illustration, both Bx and Ey fields are collocated in x and y direction and they are 

misplaced in z-direction. Considering the offset in x-, y-, and z-directions are sx, sy, and 

sz respectively, the entry (2, 2) of (C.14) will be [74] 
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 Separating the integral by direction, the following formula is obtained 
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Since the collocated basis functions are orthogonal, therefore equation (C.16) can be 

written as 
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As it can be seen from equation (C.17), the triple integral is converted into 1D integral 

and its value relays on the selection of the basis functions being evaluated either 

analytically or numerically. Based on each basis functions family used, these values can 

be tabulated and as a result they do not need to be calculated for each simulation. 

Following this procedure all the update equations for the rest components can be derived 

in the same way.  

 

C.4 Media discretisation   

Having updated the B and D components and by means of constitutive relationship, the 

actual H and E fields can be calculated depends on the media characteristics. By means 

of isotropic and anisotropic media, the material constant can be either scalar or tensor 

quantity. In this thesis, only materials that are linear, isotropic, and nondispersive are 

considered. Supposing a medium with magnetic permeability µ=µ0, the only constitutive 

relationship to be taken into account is the one to obtain E field from update of D and it 

can be written as  

( ) ( ) ( )trD
tr

trE dd ,
,

1
,

ε
=  

(C.18) 

where ( )tr ,ε  represents the space- and time-dependent permittivity of the media, d is the 

direction can be x, y or z.   

Following the Galarkin’s method and by using scaling function in space and pulse 

function in time, equation (C.18) can be discretised. 
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  For simplicity, the discretisation of the field components is considered for the case of 

expansion in only scaling function in space which are expressed as  
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where ( ) ( ) ( )[ ]trDtrEtrF rrr ,,,, = , with r=x,y,z,
 

r
nmlkFϕ

,,  is the field expansions coefficients 

in terms of scaling functions, l,m,n, and k are the indices that describe the localisation in 

space and time. 

In time, the function hk (t) is given by 
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while in space, the scaling function is defined as 
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(C.24) 

After substituting the field expansions into equation (C.18) and sampling them with 

pulse functions in time and scaling functions in space, it is assumed that 

( ) ( ) ( ) ( ) ( )tzyxtr rrrrr εεεεε =,  (C.25) 
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For instance, the sampling of x-component of equation (C.18) with ( )xl 21+ϕ , ( )ymϕ , 

( )znϕ , and ( )thk  brings to 
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where the coefficients ( ) x

mmy ϕε '. , ( )x
kkt ',ε  represent the integrals 
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Appendix D 

 

D.1 Numerical Dispersion and Stability 

Numerical dispersion is always associated with all simulations carried out with any 

numerical techniques. This is due to the variation of phase velocity of the propagation 

waves along the computational domain with wavelength. 

 The level of variation relies on different factors such as the wavelength of propagated 

wave, the direction in which the wave is propagating inside the computational domain, 

and the selected mesh size for the discretisation of the computational domain. Thus, the 

numerical dispersion has proven itself as non-physical phenomena and it is unwanted for 

the reason that it can be associated with either phase delay or phase error which can be 

seen as pseudo reflections. Therefore, in order to overcome the unavoidable side effect 

of the discretised nature of all numerical techniques, the restrictions upon the space 

discretisation have to be set in place so as to minimise the numerical dispersion.  

Similar to the restrictions set upon the time discretisation, they are put in place so as to 

keep away from numerical instability that can cause the computed results to increase 

with no limit as time-marching continues.  

This section focuses on laying out the scheme used in this work in terms of choosing the 

proper space and time step size in order to minimise the unavoidable numerical 

dispersion and avoid numerical instability. 

 

D.2 numerical dispersion 

In Simulations carried out with the MRTD method it is possible to note that the 



Appendices                                                                             

168 

 

wavenumber of the propagating waves in the updating of the numerical scheme can be 

varying in computational domain with angular frequency. This phenomenon is known as 

numerical dispersion and it has to be taken into account in order to keep away from 

delays or phase errors travelling into the computational domain that may cause non-

physical results. This can be accomplished by choosing proper space and time step size. 

The dispersion relation in three-dimensions for the ideal case in isotropic, nondispersive 

and linear medium is 

kkjkikk zyx
ˆˆˆ ++=

r
 (D.1) 

where 

222
zyx kkkk ++=  (D.2) 

with 

c
k

ω±=  
(D.3) 

and 

µε
1=c  

(D.4) 

Taking into account these parameters, the phase vp, and group velocity vg are obtained 

c
k

v p ±=±= ω
 

(D.5) 

c
k

vg ±=
∂
∂±= ω

 
(D.6) 

 It is obvious from equations (D.5) and (D.6) that the frequency and the wavelength are 

linearly linked and that both phase velocity and group velocity are not connected with 

frequency.  
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These relationships turn out to be more complex due to the discretised nature of the 

scheme which is intrinsically related to time and space. The space is a number of small 

cells which build up the grid in which the waves propagate rather than in any direction 

whereas the time is considered as a sequence of discrete time steps. This means that the 

propagation velocity of the numerical wave modes is totally reliant on both direction 

and frequency. 

As stated in [10], the numerical dispersion for a discretised computational domain for 

FDTD is  
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(D.7) 

Contrast to the above dispersion equation, which is only equivalent to MRTD scheme 

with Haar scaling functions, it is shows clearly that increasing the resolution by one 

level efficiently doubles the resolution of the method. Therefore, the general relationship 

can be formulated simply multiplying the space step by u as follows [98] 
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where 
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Likewise, the general dispersion analysis for any wavelet basis and resolution level can 

be obtained as  
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where 
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D.3 Numerical stability   

It has been clearly shown in the above that careful choice of space and time step size can 

have an effect on the wave propagation characteristics and substantially decrease 

numerical dispersion. In the same way, bounding the time step can guarantee numerical 

stability. MRTD with expansion in scaling functions only impose a specific limit on the 

selection of the time step that is linked to the space step [74] 
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In the specific case of a cubic cell having ∆x= ∆y= ∆z=∆, the criteria is written as 

follows    
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It can be easily seen that in the two-dimensional case, for a uniform mesh in x-z plane, 

the relation becomes 
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where s stand for the Courant number and can be evaluated by   
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The Courant number represents the stability factor in two dimensions and highly relies 

on the order of the utilised basis functions [98]. From equation (D.14) it is obvious that 

time limit, compared to time limit for FDTD scheme, is smaller when the same cell size 

is adopted. While a coarser grid resolution is allowed. Consequently, overall accurate 

and efficient results can be obtained. 

The general formula of the stability condition, for any MRTD basis and any level of 

wavelet resolution is demonstrated in [19] as 
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Appendix E 

 

E.1 Uniaxial Perfectly Matched Layers 

The two dimensional S-MRTD scheme has been used in conjunction with the UPML 

scheme, first introduced by Gedney in 1996 [87], that rigorously truncates the 

computational domain. Contrasted to Perfectly Matched Layer (PML) scheme proposed 

by Berenger [47] and based on a non-physical split-field [47], this formulation considers 

the edge layer as an artificial anisotropic and uniaxial absorbing material by translating 

the mathematical model of PML into a physical one.  

The key advantage of UPML formulation is that it does not require any splitting of the 

electromagnetic field component, although the absorbing characteristics remain 

unaffected. In order to establish a foundation for discussion of UPML, the derivation of 

the properties of this non-physical medium is shown in this section and can be found in 

full details in [47]. In order to do so, a two dimensional space is considered as illustrated 

in figure E.1. 

 

Figure E.1  Schematic diagram of a 2D TEy polarised plane wave propagating between two 

media 
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Figure E.1 shows a TEy polarised uniform plane wave that is propagating on free-space 

towards an uniaxial medium which interference is at x = 0, whose electric and magnetic 

tensors are given by [10] s2εε =  , s2µµ =  where    
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(E.1) 

where 2ε
, 2µ  are the electric permittivity and the magnetic permeability, respectively, of 

the uniaxial medium in medium 2.  

zoryxi
j

ks i
ii ,

0

=+=
ωε
σ

 
(E.2) 

The parameters ik
  
absorb the energy of evanescent waves that reach the UPML layers 

while iσ   are attenuation factors in the UPML region.
 
No reflection is generated, and 

the plane wave is entirely transmitted into the uniaxial region for all angles of incidence 

θ. Such a medium is fundamentally indistinguishable to the PML proposed by Berenger 

and its defined UPML due to its uniaxial anisotropy. Each side of MRTD grid can be 

bounded with layer of UPML. However, there are areas in which the UPML itself is not 

uniaxial in strict sense of the definition. These areas are the corner regions as shown, for 

a 2D case, in figure E.2  
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Figure E.2  Schematic diagram of UPML boundary condition for a 2D-TEy  MRTD grid 

 

It can be noticed from this figure that in corner areas there is superposition of different 

UPML layers. In this case, the expression of the tensor that multiplies the electric 

permittivity and magnetic permeability for this medium is given by  
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 (E.3) 

with xs  and ys  defined as in equations (E.2). While the corner regions in a 3D case are 

shown in figure E.3. 
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Figure E.3  Schematic diagram of UPML boundary condition for a 3D-TEy  MRTD grid 

The tensor at the corner region is described as 
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E.2 UPML boundary condition in S-MRTD  

The work carried out in this thesis uses the MRTD method to simulate the optical 

devices based on microcavity ring resonators. As such, the required mathematical 

derivations for the UPML boundary condition applied to MRTD technique are shown 
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here. The derivations are based on the previously introduced work in [10, 87] in the 

context of the FDTD algorithm.  

Starting from Maxwell’s equations in frequency domain  

HjE µωµ 0−=×∇  (E.5) 

EjH εωε 0=×∇  (E.6) 

In the UPML layers, applying for a 2D case for TEy propagation, the time-domain 

equations   (E.5) and (E.6) are written as [10]  
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Using the following proper constitutive relations  
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 The following relationships between D, H, B, and E in the UPML region are expressed 

as   
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Following the Galerkin’s method, the above equations are descretised by testing them 

with scaling function in space domain. In this regard, second-order central difference in 

time domain is approved. While two-steps update scheme for each field component is 

achieved. Referring to the geometry of the grid in figure 3.1, and with 1=ik  

and 0=yσ , the following set of discretised equations is obtained 
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where ε is the permittivity of the medium, σx , σz  are the electric conductivity of the 

UPML layers. So as to optimise the absorption properties of the UPML layers, the 

parameters iσ  (i=x, z) must have a proper spatial distribution in the UPML regions.  

Here, the geometric grading profile has been adopted so that 
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where d is the depth of the UPML,  m stands for the order of the polynomial variation.  

The selection of σmax that minimises the reflection from boundaries is [99] 
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where ∆ is the uniform spatial discretisation adopted. 
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Appendix F 

 

F.1 2-D S-MRTD code with UPML absorbing boundary condition 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

!                        2-D MRTD code with UPML absorbing boundary condition 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

!      Program Author: Nabeil Abduljallil Abubaker Abujnah 

!                                  Faculty of Advanced Technology 

!                                  University of Glamorgan 

!                                  Pontypridd, CF37 1DL 

!                                  Wales, UK 

!          Copy right 2011 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

implicit none 

real(8), parameter::pi=3.14159265358979, c0= 2.99792458d8, n_1=10  

real(8), parameter::mu0=4.*pi*1.d-7, eps0=1./(c0**2*mu0)           

real(8), parameter:: epsr1=10.24, epsr2=1                          

real(8), parameter::taus=20d-15, delays=80d-15                     

real(8), parameter::ix=444, iz=444                                 

real(8), parameter::n_step=25000                                    

real(8), parameter::ix_out1m=2.5e-6,ix_out2m=9.599e-06             

real(8), parameter::iz_out3m=6.0495e-6                             

real(8), parameter::ix_sorm=1.46e-6                                
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real(8), parameter::pmlx=20, pmlz=20                               

real(8), parameter::dx=0.02725d-6, dz=0.02725d-6                   

real(8), parameter::Ls=5, q=0.1                                    

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

!!!!                        Declare Parameters                                                                          

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

real(8), dimension(ix,iz):: ey, hx, hz, dy,eppy, epy,hpx,hpz,dpy,sigmax , sigmaz, bpx, 

bpxold, bpz, bpzold, dpyold 

real(8), dimension(ix,iz):: eps_inf, coe1, coe2, der1,der2,der3,der3old, num_hpx, 

denom_hpx, num_bpz, denom_bpz 

real(8)::                   lambda_f, omega_f, dt, tem, lambda_sh, 

etax,etaz,r0,sigmax0,sigmaz0,kx,kz,sigmaxm,sigmazm 

real(8), dimension(1,21):: Ey_out, Ey_ing, Ey1, Ey2,Hz1,Hz2,Hx1,Hx2,Ey3,Ey4 

,Hx3,Hx4,Hz3,Hz4 

real(8), dimension(1,iz):: te_ey, Ey_1,Ey_2,Ey_3,Ey_4, Hz_1,Hz_2,Hz_3,Hz_4 

real(4)::                  dur,field 

real(4)::                  c,z,m, tau, delay, ix_out1, ix_out2,iz_out3, ix_sor 

real(8), dimension(n_step):: source1, energy1, energy2 

integer::                  i,j,p,n,t1,t2,rat,rat2,n_2,nn,nnn,r,s,l,nc,t3,t4,Nf,Nsh,shift 

real(8), dimension(1,2*Ls):: a_4,a_2,a_cdf_24, a_cdf_26 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

open(unit=100, file='eps_inf.dat', status='old')           
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open(unit=151, file='te_ey.dat', status='old')            

open(unit=153, file='CDF(2,4).dat', status='old')         

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

!                    This step is to open new files to be used to store the calculated Data         ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!! 

open(unit=157, file='sigmax.dat', status='unknown') 

open(unit=158, file='sigmaz.dat', status='unknown') 

open(unit=108, file='ddt.dat') 

open(unit=109, file='der1.dat') 

open(unit=110, file='der2.dat') 

open(unit=111, file='eppy.dat') 

open(unit=112, file='hppx.dat') 

open(unit=113, file='hppz.dat') 

open(unit=902, file='dt', status='unknown') 

open(unit=903, file='Ey1', status='unknown') 

open(unit=904, file='Ey2', status='unknown') 

open(unit=905, file='Ey3', status='unknown') 

open(unit=906, file='Ey4', status='unknown') 

open(unit=909, file='Hz1', status='unknown')               

open(unit=910, file='Hz2', status='unknown')               

open(unit=916, file='Hx2', status='unknown')                  
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!                               Reading data                                                            ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

do i=1,ix 

read(100,3000) (eps_inf(i,j), j=1,iz) 

end do 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!               stability criterion                                                                       ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

dt=q*(dx/c0) 

write(*,*) 'step dt=' , dt 

write(902,5000) dt 

n_2=n_step/n_1 

lambda_f=1.5d-6                                                     

omega_f=2.*pi*c0/lambda_f 

coe2=eps0*eps_inf 

kx=1          

kz=1          

m=2.5         

etaz=sqrt(mu0/(eps0*epsr1)) 

etax=sqrt(mu0/(eps0*epsr2)) 

field=0. 

sigmaxm=(m+1)/(150*pi*dx*sqrt(epsr2))     
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do i=Ls+1,pmlx+Ls 

sigmax(i,Ls:iz-Ls)=sigmaxm*((pmlx+Ls-i+1)/pmlx)**m 

end do 

do i=ix-pmlx+1-Ls,ix-Ls 

sigmax(i,Ls:iz-Ls)=sigmaxm*((i-ix+pmlx+Ls)/pmlx)**m 

end do 

sigmax(pmlx+Ls+1:ix-pmlx-Ls,Ls:iz-Ls)=0 

sigmazm=(m+1)/(150*pi*dz*sqrt(epsr1))      

do j=Ls+1,pmlz+Ls 

end do 

do j=iz-Ls-pmlz+1,iz-Ls 

sigmaz(Ls:ix-Ls,j)=sigmazm*((j-iz+pmlz+Ls)/pmlz)**m 

end do 

sigmaz(Ls:ix-Ls,Ls+pmlz+1:iz-Ls-pmlz)=0 

do i=1,ix 

write(157,3000) (sigmax(i,j), j=1,iz) 

write(158,3000) (sigmaz(i,j), j=1,iz) 

end do 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!! COEFFICIENT CALCULATING 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

do r=1,ix 

do s=1,iz 
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num_bpz(r,s)=2*eps0*kx-sigmax(r,s)*dt 

denom_bpz(r,s)=2*eps0*kx+sigmax(r,s)*dt 

num_hpx(r,s)=2*eps0*kz-sigmaz(r,s)*dt 

denom_hpx(r,s)=2*eps0*kz+sigmaz(r,s)*dt    

end do 

end do 

delay=real(delays)/real(dt) 

write(*,*) delay 

tau=real(taus)/real(dt) 

write(*,*) 'tau=', tau 

ix_sor=int(real(ix_sorm)/real(dx)) 

write(*,*) 'ixsor=', ix_sor 

ix_out1=int(real(ix_out1m)/real(dx)) 

write(*,*) 'ix_out1=', ix_out1 

ix_out2=int(real(ix_out2m)/real(dx)) 

iz_out3=int(real(iz_out3m)/real(dx)) 

do n=1,n_step 

tem=((real(n-delay)/real(tau))**2) 

end do 

do nn=1,n_2 

call system_clock(t1,rat) 

do nnn=1,n_1 

   n=n_1*(nn-1)+nnn 
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der1=0 

der2=0 

der3=0 

do r=Ls,ix-Ls-1 

do s=Ls,iz-Ls-1 

   do l=1,2*Ls 

   der1(r,s)=der1(r,s)+a_cdf_24(1,l)*(epy(r,s-(l-Ls)+1)) 

   end do 

end do 

end do 

do r=Ls,pmlx+Ls 

do s=Ls,iz-1-Ls 

   bpx(r,s)=bpx(r,s)-(dt/dz)*der1(r,s) 

end do 

end do 

do r=ix-pmlx-Ls,ix-Ls-1 

do s=Ls,iz-1-Ls 

   bpx(r,s)=bpx(r,s)-(dt/dz)*der1(r,s) 

end do 

end do 

do r=Ls,ix-Ls-1 

do s=Ls,Ls+pmlz 

   bpx(r,s)=bpx(r,s)-(dt/dz)*der1(r,s) 
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end do 

end do 

do r=Ls,ix-Ls-1 

do s=iz-Ls-pmlz,iz-Ls-1 

   bpx(r,s)=bpx(r,s)-(dt/dz)*der1(r,s) 

hpx(r,s)=(num_hpx(r,s)/denom_hpx(r,s))*hpx(r,s)+(1/(denom_hpx(r,s)*mu0))*(denom_

bpz(r,s)*bpx(r,s)-num_bpz(r,s)*bpxold(r,s)) 

end do 

bpxold=bpx 

do r=Ls+pmlx+1,ix-Ls-1-pmlx 

do s=Ls+pmlz+1,iz-Ls-1-pmlz 

   hpx(r,s)=hpx(r,s)-(dt/(mu0*dz))*der1(r,s) 

end do 

end do 

do r=Ls,ix-Ls-1 

do s=Ls,iz-Ls-1 

   do l=1,2*Ls 

   der2(r,s)=der2(r,s)+a_cdf_24(1,l)*(epy(r-(l-Ls)+1,s)) 

   end do 

end do 

end do 

do r=Ls,ix-Ls-1 

do s=Ls,Ls+pmlz 
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bpz(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*bpz(r,s)+((2*dt*eps0)/dx/denom_bpz(r,s))*der

2(r,s) 

  hpz(r,s)=hpz(r,s)+(denom_hpx(r,s)/(2*eps0*mu0))*bpz(r,s)-

(num_hpx(r,s)/(2*eps0*mu0))*bpzold(r,s) 

end do 

end do 

do r=Ls,ix-Ls-1 

do s=iz-Ls-pmlz,iz-Ls-1 

   hpz(r,s)=hpz(r,s)+(denom_hpx(r,s)/(2*eps0*mu0))*bpz(r,s)-

(num_hpx(r,s)/(2*eps0*mu0))*bpzold(r,s) 

end do  

end do 

do r=Ls,Ls+pmlx 

do s=Ls,iz-Ls-1  

bpz(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*bpz(r,s)+((2*dt*eps0)/dx/denom_bpz(r,s))*der

2(r,s) 

   hpz(r,s)=hpz(r,s)+(denom_hpx(r,s)/(2*eps0*mu0))*bpz(r,s)-

(num_hpx(r,s)/(2*eps0*mu0))*bpzold(r,s) 

end do 

end do 

do r=ix-pmlx-Ls,ix-Ls-1 

do s=Ls,iz-Ls-1 
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bpz(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*bpz(r,s)+((2*dt*eps0)/dx/denom_bpz(r,s))*der

2(r,s) 

end do 

end do 

bpzold=bpz 

do r=Ls+pmlx+1,ix-Ls-1-pmlx 

do s=Ls+pmlz+1,iz-Ls-1-pmlz 

   hpz(r,s)=hpz(r,s)+(dt/(mu0*dx))*der2(r,s) 

end do 

end do 

do r=Ls+1,ix-Ls 

do s=Ls+1,iz-Ls 

   do l=1,2*Ls 

   der3(r,s)=der3(r,s)+a_cdf_24(1,l)*(-hpx(r,s-(l-Ls))/dz+hpz(r-(l-Ls),s)/dx) 

   end do 

end do 

end do 

do r=Ls+1,ix-Ls 

do s=Ls+1,Ls+1+pmlz-1 

dpy(r,s)=(num_hpx(r,s)/denom_hpx(r,s))*dpy(r,s)+((2*eps0*dt)/denom_hpx(r,s))*der3(

r,s) 

epy(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*epy(r,s)+((2*eps0)/(coe2(r,s)*denom_bpz(r,s))

)*(dpy(r,s)-dpyold(r,s)) 
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end do 

do r=Ls+1,ix-Ls 

do s=iz-pmlz-Ls+1,iz-Ls 

dpy(r,s)=(num_hpx(r,s)/denom_hpx(r,s))*dpy(r,s)+((2*eps0*dt)/denom_hpx(r,s))*der3(

r,s)   

epy(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*epy(r,s)+((2*eps0)/(coe2(r,s)*denom_bpz(r,s))

)*(dpy(r,s)-dpyold(r,s)) 

end do 

end do 

do r=Ls+1,Ls+pmlx 

do s=Ls+1,iz-Ls    

dpy(r,s)=(num_hpx(r,s)/denom_hpx(r,s))*dpy(r,s)+((2*eps0*dt)/denom_hpx(r,s))*der3(

r,s)  

epy(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*epy(r,s)+((2*eps0)/(coe2(r,s)*denom_bpz(r,s))

)*(dpy(r,s)-dpyold(r,s)) 

end do  

end do 

do s=Ls+1,iz-Ls 

dpy(r,s)=(num_hpx(r,s)/denom_hpx(r,s))*dpy(r,s)+((2*eps0*dt)/denom_hpx(r,s))*der3(

r,s) 

epy(r,s)=(num_bpz(r,s)/denom_bpz(r,s))*epy(r,s)+((2*eps0)/(coe2(r,s)*denom_bpz(r,s))

)*(dpy(r,s)-dpyold(r,s)) 

end do 
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end do 

dpyold=dpy 

do r=Ls+1+pmlx,ix-Ls-pmlx 

do s=Ls+1+pmlz,iz-Ls-pmlz 

 dpy(r,s)=dpy(r,s)+dt*(der3(r,s)) 

 end do 

end do 

epy(ix_sor,pmlz+Ls+1:iz-Ls-1)=epy(ix_sor,pmlz+1+Ls:iz-pmlz-1-

Ls)+te_ey(1,pmlz+1:iz-pmlz-1-Ls)*source1(n) 

Ey1(1,1:21)=epy(ix_out1,106:126) 

Ey2(1,1:21)=epy(ix_out2,106:126) 

Ey3(1,1:21)=epy(298:318,iz_out3) 

Ey4(1,1:21)=epy(ix_out1,318:338) 

Hz1(1,1:21)=hpz(ix_out1,106:126) 

Hz2(1,1:21)=hpz(ix_out2,106:126) 

Hz3(1,1:21)=hpz(298:318,iz_out3) 

Hz4(1,1:21)=hpz(ix_out1,318:338) 

Hx1(1,1:21)=hpx(ix_out1,106:126) 

Hx2(1,1:21)=hpx(ix_out2,106:126) 

Hx3(1,1:21)=hpx(298:318,iz_out3) 

Hx4(1,1:21)=hpx(ix_out1,318:338) 

write(903,3000) Ey1(1,1:21) 

write(904,3000) Ey2(1,1:21) 
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write(905,3000) Ey3(1,1:21) 

write(906,3000) Ey4(1,1:21) 

write(909,3000) Hz1(1,1:21) 

write(910,3000) Hz2(1,1:21) 

write(911,3000) Hz3(1,1:21) 

write(912,3000) Hz4(1,1:21) 

write(915,3000) Hx1(1,1:21) 

write(916,3000) Hx2(1,1:21) 

write(917,3000) Hx3(1,1:21) 

write(918,3000) Hx4(1,1:21) 

if (mod(n,1250).eq.0) then  

do i=1,ix 

write(950,3000) (epy(i,j), j=1,iz) 

end do 

end if 

end do 

3000 format(<iz>E25.16 E3) 

6000 format(<ix>E25.16 E3) 

4000 format(<n_step>E25.16 E3) 

5000 format(1E25.16E3) 

call system_clock(t2,rat) 

dur=real(t2-t1)/real(rat) 

field=field+dur 
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write(*,100) n,dur,field/60. 

end do 

write(*,*) 'TOTAL DURATION= ', field/60., 'MINTS' 

100 format('STEP  n=  ', I9 , '  PARTIAL DURATION=  ' , F7.3,'  ELAPSED  ', F7.1 ,'  

MINTS  ') 

end program         
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Appendix G 

 

G.1 MATLAB m. file to build up the MRR 

%************************************************** ******************* 

%    This MATLAB m-file build up the structure of interest that is going to be 

%considered            (this code is for microcavity ring resonator)                                                                                

%************************************************** ******************* 

%     Program author: Nabeil Abduljallil Abubaker Abujnah                                         %                    

%                     Faculty of Advanced Technology 

%                     University of Glamorgan 

%                     Pontypridd 

%                     CF37 1DL 

%                     Wales, UK 

%                     naabujna@glam.ac.uk 

%                    Copyright 2011  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

clc 

tic 

c0=2.99792458e8;                                        

mu0=4*pi*1e-7;                                          

eps0=1/c0^2/mu0;                                        

lambda0= 1.5e-06;                                        
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n1=1;                                                   

n3=n1;                                                  

n2=3.2;                                                 

g1=0.245e-06;                                           

g2=g1;                                                                                

W=0.3e-06;                                             

R1=2.5e-06;                                             

R2=R1-W;                                                 

d=(2*R1);                                               

dx=0.02725e-06;                                         

dz=dx;                                                  

Lx=12.099e-06;                                          

ix=round(Lx/dx);                                        

Loff=3e-06;                                             

A=round(Loff/dx);                                       

B=round(W/dz);                                           

C=round(g1/dz);                                     

D=round(R1/dx);                                          

Loff=A*dx;                                                                                                                                

Lz1=(2*Loff)+(2*W)+(2*g1)+(2*R1); 

iz=(2*A)+(2*B)+(2*C)+(2*D);                             

Lz=iz*dz;                                               

    izcore1=A+1;                                       



Appendices                                                                             

195 

 

    izcore2=A+B;                                        

    izcore3=(iz/2)+D+C;                                 

    izcore4=izcore3+B-1;                                 

    eps_00=[n1^2 n2^2 n3^2];                                             

    DeltaZ=null(1,1); 

    DeltaX=null(1,1); 

    DeltaX=repmat(dx,ix); 

    DeltaX=DeltaX(1,:); 

    DeltaZ=repmat(dz,iz); 

    DeltaZ=DeltaZ(1,:); 

eps_inf(1:ix,1:iz)=eps_00(1); 

eps_inf(1:ix,izcore1:izcore2)=eps_00(2); 

eps_inf(1:ix,izcore3:izcore4)=eps_00(2); 

fz=round(iz/2); 

fx=round(ix/2); 

for i=1:ix 

    for j=1:iz 

        if (R2^2<=(((i-fx)*dx)^2+((j-fz)*dz)^2) & (((i-fx)*dx)^2+((j-fz)*dz)^2) <= R1^2) 

            eps_inf(i,j)=eps_00(2); 

        end; 

        end  

end  

DeltaZZ(1)=DeltaZ(1); 
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DeltaXX(1)=DeltaX(1); 

for i=2:iz 

       DeltaZZ(i)=DeltaZZ(i-1)+DeltaZ(i); 

end  

 for i=2:ix 

    DeltaXX(i)=DeltaXX(i-1)+DeltaX(i); 

end 

figure (2) 

surf(eps_inf) 

shading flat 

colorbar 

view(2) 

toc 

save eps_inf.dat eps_inf -ascii -double 

save DeltaX.dat DeltaX -ascii -double 

save DeltaZ.dat DeltaZ -ascii -double 

figure (3) 

surf(DeltaZZ,DeltaXX,eps_inf) 

xlabel('x') 

ylabel('y') 

xlabel('z') 

view(2) 

save DeltaXX.dat DeltaXX -ascii -double 
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save DeltaZZ.dat DeltaZZ -ascii –double 

function [neff,Ey,Hz,x]=te(lambda0,n1,n2,n3,W,dx);                                                                         

AA=input('Loff(this value have to be taken from the workspace )=');           

Lz= input('Lz(this value have to be taken from the workspace )=');          

LL=Lz-(AA+W); 

k0=2*pi/lambda0; 

c0=2.99792458e8; 

f0=c0/lambda0; 

mi0=1.256637061e-6; 

neff=fzero(@(x)(k0*sqrt(n2^2-x^2)+... 

    atan(sqrt((n2^2-x^2)/(x^2-n1^2)))+... 

    atan(sqrt((n2^2-x^2)/(x^2-n3^2)))),[(n1+n1/1000) n2]); 

alfa=-atan(G1/G2); 

C1=1; 

C2=-C1*G1/(G2*sin(alfa)); 

C3=-G2*sin(G2*W+alfa)*C2/G3; 

x1=((-1*AA):dx:(0.0e-6-dx-dx)); 

x2=(0.0e-6:dx:(W-dx)); 

x3=(W:dx:((LL+W)));              

Hz1=-G1/(j*(2*pi*f0)*mi0)*C1*exp(G1.*x1); 

Hz2=G2/(j*(2*pi*f0)*mi0)*C2*sin(G2.*x2+alfa); 

Hz3=G3/(j*(2*pi*f0)*mi0)*C3*exp(-G3.*(x3-W)); 

Ey1=C1*exp(G1.*x1); 
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Ey2=C2*cos(G2.*x2+alfa); 

Ey3=C3*exp(-G3.*(x3-W)); 

Hz=[Hz1,Hz2,Hz3]; 

Hz=Hz/max(Hz); 

Ey=[Ey1,Ey2,Ey3]; 

Ey=Ey/max(Ey); 

x=[x1,x2,x3]; 

x=x/1e-6; 

te_ey=abs(Ey); 
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