44 research outputs found

    Pattern formation in nanoparticle suspensions: a Kinetic Monte Carlo approach

    Get PDF
    Various experimental settings that involve drying solutions or suspensions of nanoparticles often called nano-fluids have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results, the work presented in this thesis relies only on simulations. Using a modified version of the Monte Carlo model first introduced by Rabani et al. [95] the study of structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles is presented. The model has first been used to analyse the influence of the nanoparticles on the basic dewetting behaviour, i.e., on spinodal dewetting and on dewetting by nucleation and growth of holes. We focus, as well, on receding dewetting fronts which are initially straight but develop a transverse fingering instability. One can analyse the dependence of the characteristics of the resulting branching patterns on the driving effective chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows to understand the underlying fingering instability mechanism. We describe briefly how the combination of a Monte Carlo model with a Genetic Algorithm (GA) can be developed and used to tune the evolution of a simulated self-organizing nanoscale system toward a predefined nonequilibrium morphology. This work has presented evolutionary computation as a method for designing target morphologies of self-organising nano-structured systems. Finally, highly localised control of 2D pattern formation in colloidal nanoparticle arrays via surface inhomogeneities created by atomic force microscope (AFM) induced oxidation is presented and some simulations are shown. Furthermore, the model can be extended further, and by including the second type of nanoparticle, the binary mixture behaviour can be captured by simulations. We conclude that Kinetic Monte Carlo simulations have allowed the study of the processes that lead to the production of particular nanoparticle morphologies

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Modelling Fluid Structure Interaction problems using Boundary Element Method

    Get PDF
    This dissertation investigates the application of Boundary Element Methods (BEM) to Fluid Structure Interaction (FSI) problems under three main different perspectives. This work is divided in three main parts: i) the derivation of BEM for the Laplace equation and its application to analyze ship-wave interaction problems, ii) the imple- mentation of efficient and parallel BEM solvers addressing the newest challenges of High Performance Computing, iii) the developing of a BEM for the Stokes system and its application to study micro-swimmers.First we develop a BEM for the Laplace equation and we apply it to predict ship-wave interactions making use of an innovative coupling with Finite Element Method stabilization techniques. As well known, the wave pattern around a body depends on the Froude number associated to the flow. Thus, we throughly investigate the robustness and accuracy of the developed methodology assessing the solution dependence on such parameter. To improve the performance and tackle problems with higher number of unknowns, the BEM developed for the Laplace equation is parallelized using OpenSOURCE tech- nique in a hybrid distributed-shared memory environment. We perform several tests to demonstrate both the accuracy and the performance of the parallel BEM developed. In addition, we explore two different possibilities to reduce the overall computational cost from O(N2) to O(N). Firstly we couple the library with a Fast Multiple Method that allows us to reach for higher order of complexity and efficiency. Then we perform a preliminary study on the implementation of a parallel Non Uniform Fast Fourier Transform to be coupled with the newly developed algorithm Sparse Cardinal Sine De- composition (SCSD).Finally we consider the application of the BEM framework to a different kind of FSI problem represented by the Stokes flow of a liquid medium surrounding swimming micro-organisms. We maintain the parallel structure derived for the Laplace equation even in the Stokes setting. Our implementation is able to simulate both prokaryotic and eukaryotic organisms, matching literature and experimental benchmarks. We finally present a deep analysis of the importance of hydrodynamic interactions between the different parts of micro-swimmers in the prevision of optimal swimming conditions, focusing our attention on the study of flagellated \u201crobotic\u201d composite swimmers

    Topics in Magnetohydrodynamics

    Get PDF
    To understand plasma physics intuitively one need to master the MHD behaviors. As sciences advance, gap between published textbooks and cutting-edge researches gradually develops. Connection from textbook knowledge to up-to-dated research results can often be tough. Review articles can help. This book contains eight topical review papers on MHD. For magnetically confined fusion one can find toroidal MHD theory for tokamaks, magnetic relaxation process in spheromaks, and the formation and stability of field-reversed configuration. In space plasma physics one can get solar spicules and X-ray jets physics, as well as general sub-fluid theory. For numerical methods one can find the implicit numerical methods for resistive MHD and the boundary control formalism. For low temperature plasma physics one can read theory for Newtonian and non-Newtonian fluids etc

    Optimization and Energy Maximizing Control Systems for Wave Energy Converters

    Get PDF
    The book, “Optimization and Energy Maximizing Control Systems for Wave Energy Converters”, presents eleven contributions on the latest scientific advancements of 2020-2021 in wave energy technology optimization and control, including holistic techno-economic optimization, inclusion of nonlinear effects, and real-time implementations of estimation and control algorithms

    Efficient evolutionary algorithms for optimal control

    Get PDF
    If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use of global optimisation algorithms to solve optimal control problems, which are expected to have local solutions. Evolutionary Algorithms (EAs) are global optimisation algorithms that have mainly been applied to solve static optimisation problems. Only rarely Evolutionary Algorithms have been used to solve optimal control problems. This may be due to the belief that their computational efficiency is insufficient to solve this type of problems. In addition, the application of Evolutionary Algorithms is a relatively young area of research. As demonstrated in this thesis, Evolutionary Algorithms exist which have significant advantages over other global optimisation methods for optimal control, while their efficiency is comparable.The purpose of this study was to investigate and search for efficient evolutionary algorithms to solve optimal control problems that are expected to have local solutions. These optimal control problems are called multi-modal. An important additional requirement for the practical application of these algorithms is that they preferably should not require any algorithm parameter tuning. Therefore algorithms with less algorithm parameters should be preferred. In addition guidelines for the choice of algorithm parameter values, and the possible development of automatic algorithm parameter adjustment strategies, are important issues.This study revealed that Differential Evolution (DE) algorithms are a class of evolutionary algorithms that do not share several theoretical and practical limitations that other Genetic Algorithms have. As a result they are significantly more efficient than other Genetic Algorithms, such as Breeder Genetic Algorithms (BGA), when applied to multi-modal optimal control problems. Their efficiency is comparable to the efficiency of Iterative Dynamic Programming (IDP), a global optimisation approach specifically designed for optimal control. Moreover the DE algorithms turned out to be significantly less sensitive to problems concerning the selection or tuning of algorithm parameters and the initialisation of the algorithm.Although it is not a DE algorithm, the GENOCOP algorithm is considered to be one of the most efficient genetic algorithms with real-valued individuals and specialized evolutionary operators. This algorithm was the starting point of our research. In Chapter 2 it was applied to some optimal control problems from chemical engineering. These problems were high dimensional, non-linear, multivariable, multi-modal and non-differentiable. Basically with GENOCOP the same solutions were obtained as with Iterative Dynamic Programming. Moreover GENOCOP is more successful in locating the global solution in comparison with other local optimisation algorithms. GENOCOP'S efficiency however is rather poor and the algorithm parameter tuning rather complicated. This motivated us to seek for more efficient evolutionary algorithms.Mathematical arguments found in the literature state that DE algorithms outperform other Evolutionary Algorithms in terms of computational efficiency. Therefore in Chapter 3, DE algorithms, generally used to solve continuous parameter optimisation problems, were used to solve two multi-modal (benchmark) optimal control problems. Also some Breeder Genetic Algorithms (BGA) were applied to solve these problems. The results obtained with these algorithms were compared to one another, and to the results obtained with IDP. The comparison confirmed that DE algorithms stand out in terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in contrast to the majority of Evolutionary Algorithms, which have many algorithm parameters that need to be selected or tuned, DE has only three algorithm parameters that have to be selected or tuned. These are the population size (µ), the crossover constant (CR) and the differential variation amplification (F). The population size plays a crucial role in solving multi-modal optimal control problems. Selecting a smaller population size enhances the computational efficiency but reduces the probability of finding the global solution. During our investigations we tried to find the best trade-off. One of the most efficient DE algorithms is denoted by DE/best/2/bin . All the investigated DE algorithms solved the two benchmark multi-modal optimal control problems properly and efficiently. The computational efficiency achieved by the DE algorithms in solving the first low multi-modal problem, was comparable to that of IDP. When applied to the second highly multi-modal problem, the computational efficiency of DE was slightly inferior to the one of IDP, after tuning of the algorithm parameters. However, the selection or tuning of the algorithm parameters for IDP is more difficult and more involved.From our investigation the following guidelines were obtained for the selection of the DE algorithm parameters. Take the population size less than or equal to two times the number of variables to be optimised that result from the control parameterisation of the original optimal control problem ( µ ≤ 2n u ). Highly multi-modal optimal control problems require a large value of the differential variation amplification ( F ≥0.9) and a very small or zero value for the crossover constant (0≤ CR ≤0.2). Low multi-modal optimal control problems need a medium value for the differential variation amplification (0.4≤ CR ≤0.6) and a large or medium value for the crossover constant (0.2≤ CR ≤0.5). In contrast to IDP, finding near-optimal values for the algorithm parameters is very simple for DE algorithms.Generally, the DE algorithm parameters are kept constant during the optimization process. A more effective and efficient algorithm may be obtained if they are adjusted on-line. In Chapter 4, a strategy that on-line adjusts the differential variation amplification ( F ) and the crossover constant ( CR ) using a measure of the diversity of the individuals in the population, was proposed. Roughly, the proposed strategy takes large values for F and small values for CR at the beginning of the optimization in order to promote a global search. When the population approaches the solution, F is decreased in order to promote a local search, and the crossover parameter CR is enlarged to increase the speed of convergence. When implemented on the DE algorithm DE/rand/1/bin and applied to the two benchmark multi-modal optimal control problems, the computational efficiency significantly improved and also the probability of locating the global solution.To judge the opportunities and advantages of using Evolutionary Algorithms to solve problems related to optimal control, in Chapter 5 several engineering applications concerning optimal greenhouse cultivation control are considered. In Chapter 5.1 genetic algorithms with binary individuals (Simple Genetic Algorithm) and floating-point representation (GENOCOP) for the individuals are used to estimate some of the parameters of a two-state dynamic model of a lettuce crop, the so-called NICOLET model. This model is intended to predict dry weight and nitrate content of lettuce at harvest time. Parameter estimation problems usually suffer from local minima. This study showed that Evolutionary Algorithms are suitable to calibrate the parameters of a dynamic model. However the required computation time is significant. Partly this is due to the high computational load of a single objective function evaluation, which for parameter optimisation problems involves a system simulation. Even though parameter optimisation is very often performed off-line, thus making computation time perhaps less important, more efficient evolutionary algorithms like DE are to be preferred.In Chapter 5.2 an optimal control problem of nitrate concentration in a lettuce crop was solved by means of two different algorithms. The ACW (Adjustable Control-variation Weight) gradient algorithm, which searches for local solutions, and the DE algorithm DE/best/2/bin that searches for a global solution. The dynamic system is a modified two-state dynamic model of a lettuce crop (NICOLET B3) and the control problem has a fixed final time and control and terminal state constraints. The DE algorithm was extended in order to deal with this.The results showed that this problem probably does not have local solutions and that the control parameterisation required by the DE algorithm causes some difficulties in accurately approximating the continuous solution obtained by the ACW algorithm. On the other hand the computational efficiency of the evolutionary algorithm turned out to be impressive. An almost natural conclusion therefore is to combine a DE algorithm with a gradient algorithm.In Chapter 5.3 the combination of a DE algorithm and a first order gradient algorithm is used to solve an optimal control problem. The DE algorithm is used to approximate the global solution sufficiently close after which the gradient algorithm can converge to it efficiently. This approach was successfully tried on the optimal control of nitrate in lettuce, which unfortunately in this case, seems to have no local solutions. Still the feasibility of this approach, which is important for all types of optimal control problems of which it is unknown a-priori whether they have local solutions, was clearly demonstrated.Finally, in Chapter six this thesis ends with an overall discussion, conclusions and suggestions for future research

    Discrete Event Systems: Models and Applications; Proceedings of an IIASA Conference, Sopron, Hungary, August 3-7, 1987

    Get PDF
    Work in discrete event systems has just begun. There is a great deal of activity now, and much enthusiasm. There is considerable diversity reflecting differences in the intellectual formation of workers in the field and in the applications that guide their effort. This diversity is manifested in a proliferation of DEM formalisms. Some of the formalisms are essentially different. Some of the "new" formalisms are reinventions of existing formalisms presented in new terms. These "duplications" reveal both the new domains of intended application as well as the difficulty in keeping up with work that is published in journals on computer science, communications, signal processing, automatic control, and mathematical systems theory - to name the main disciplines with active research programs in discrete event systems. The first eight papers deal with models at the logical level, the next four are at the temporal level and the last six are at the stochastic level. Of these eighteen papers, three focus on manufacturing, four on communication networks, one on digital signal processing, the remaining ten papers address methodological issues ranging from simulation to computational complexity of some synthesis problems. The authors have made good efforts to make their contributions self-contained and to provide a representative bibliography. The volume should therefore be both accessible and useful to those who are just getting interested in discrete event systems

    Ein Gas-Kinetic Scheme Ansatz zur Modellierung und Simulation von Feuer auf massiv paralleler Hardware

    Get PDF
    This work presents a simulation approach based on a Gas Kinetic Scheme (GKS) for the simulation of fire that is implemented on massively parallel hardware in terms of Graphics Processing Units (GPU) in the framework of General Purpose computing on Graphics Processing Units (GPGPU). Gas kinetic schemes belong to the class of kinetic methods because their governing equation is the mesoscopic Boltzmann equation, rather than the macroscopic Navier-Stokes equations. Formally, kinetic methods have the advantage of a linear advection term which simplifies discretization. GKS inherently contains the full energy equation which is required for compressible flows. GKS provides a flux formulation derived from kinetic theory and is usually implemented as a finite volume method on cell-centered grids. In this work, we consider an implementation on nested Cartesian grids. To that end, a coupling algorithm for uniform grids with varying resolution was developed and is presented in this work. The limitation to local uniform Cartesian grids allows an efficient implementation on GPUs, which belong to the class of many core processors, i.e. massively parallel hardware. Multi-GPU support is also implemented and efficiency is enhanced by communication hiding. The fluid solver is validated for several two- and three-dimensional test cases including natural convection, turbulent natural convection and turbulent decay. It is subsequently applied to a study of boundary layer stability of natural convection in a cavity with differentially heated walls and large temperature differences. The fluid solver is further augmented by a simple combustion model for non-premixed flames. It is validated by comparison to experimental data for two different fire plumes. The results are further compared to the industry standard for fire simulation, i.e. the Fire Dynamics Simulator (FDS). While the accuracy of GKS appears slightly reduced as compared to FDS, a substantial speedup in terms of time to solution is found. Finally, GKS is applied to the simulation of a compartment fire. This work shows that the GKS has a large potential for efficient high performance fire simulations.Diese Arbeit präsentiert einen Simulationsansatz basierend auf einer gaskinetischen Methode (eng. Gas Kinetic Scheme, GKS) zur Simulation von Bränden, welcher für massiv parallel Hardware im Sinne von Grafikprozessoren (eng. Graphics Processing Units, GPUs) implementiert wurde. GKS gehört zur Klasse der kinetischen Methoden, die nicht die makroskopischen Navier-Stokes Gleichungen, sondern die mesoskopische Boltzmann Gleichung lösen. Formal haben kinetische Methoden den Vorteil, dass der Advektionsterms linear ist. Dies vereinfacht die Diskretisierung. In GKS ist die vollständige Energiegleichung, die zur Lösung kompressibler Strömungen benötigt wird, enthalten. GKS formuliert den Fluss von Erhaltungsgrößen basierend auf der gaskinetischen Theorie und wird meistens im Rahmen der Finiten Volumen Methode umgesetzt. In dieser Arbeit betrachten wir eine Implementierung auf gleichmäßigen Kartesischen Gittern. Dazu wurde ein Kopplungsalgorithmus für die Kombination von Gittern unterschiedlicher Auflösung entwickelt. Die Einschränkung auf lokal gleichmäßige Gitter erlaubt eine effiziente Implementierung auf GPUs, welche zur Klasse der massiv parallelen Hardware gehören. Des Weiteren umfasst die Implementierung eine Unterstützung für Multi-GPU mit versteckter Kommunikation. Der Strömungslöser ist für zwei und dreidimensionale Testfälle validiert. Dabei reichen die Tests von natürlicher Konvektion über turbulente Konvektion bis hin zu turbulentem Zerfall. Anschließend wird der Löser genutzt um die Grenzschichtstabilität in natürlicher Konvektion bei großen Temperaturunterschieden zu untersuchen. Darüber hinaus umfasst der Löser ein einfaches Verbrennungsmodell für Diffusionsflammen. Dieses wird durch Vergleich mit experimentellen Feuern validiert. Außerdem werden die Ergebnisse mit dem gängigen Brandsimulationsprogramm FDS (eng. Fire Dynamics Simulator) verglichen. Die Qualität der Ergebnisse ist dabei vergleichbar, allerdings ist der in dieser Arbeit entwickelte Löser deutlich schneller. Anschließend wird das GKS noch für die Simulation eines Raumbrandes angewendet. Diese Arbeit zeigt, dass GKS ein großes Potential für die Hochleistungssimulation von Feuer hat
    corecore