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Propositions attached to the thesis: 
"Efficient Evolutionary Algorithms for optimal control" 

by Irineo L. Lopez Cruz 

1. Optimal control problems with multiple local minima are challenging 
problems, which makes them particularly suitable for testing the efficiency of 
global optimization algorithms. 

2. Differential Evolution algorithms are the most efficient evolutionary 
algorithms designed so far. 

3. "The goal of an efficient mutation scheme (in evolutionary algorithms) is to 
generate increments or steps that move existing object variables in the right 
direction by the right amount at the right time". K. V. Price, An introduction to 
Differential Evolution, 1999. 

4. Mathematical models are not only essential in control but in general they are 
fundamental to enlarging knowledge and helping with practical applications. 

5. The no-free-lunch (NFL) theorem implies that it is more important to 
investigate which class of EAs is suitable to solve which class of optimization 
problems instead of trying to design an algorithm able to solve all the classes 
of optimization problems. 

6. "Evolution provides the solution to the problem of how to solve problems". 
David B. Fogel, Evolutionary Computation. Toward a new Philosophy of 
Machine Intelligence, 1995. 

7. That Mayan mathematicians invented independently the number Zero was a 
remarkable achievement. Even more admirable is the evidence that suggests 
they were familiar with the concept of Matrix as well. 

8. Dehumanization of the humankind does not mean that human race is evil by 
nature but only that mankind is not as advanced, civilized and developed as 
many people believe. 



Abstract 
Lopez-Cruz I.L. (2002). Efficient Evolutionary Algorithms for Optimal Control. PhD 
Thesis, Wageningen University, Wageningen, The Netherlands. 

The purpose of this study was to investigate and search for efficient evolutionary 
algorithms to solve optimal control problems that are expected to have local solutions. 
These optimal control problems are called multi-modal. Evolutionary algorithms are 
stochastic search methods that use a population of potential solutions and three 
evolutionary operators: mutation, recombination and selection. The goal was achieved 
by studying and analysing the performance of Differential Evolution (DE) algorithms 
a class of evolutionary algorithms that not only do not share theoretical and practical 
limitations that Genetic Algorithms have as global optimisers, but also they overcome 
those drawbacks. 

However, at the beginning of this research a genetic algorithm with real-valued 
individuals and specialized genetic operators (GENOCOP) was studied by solving 
some hard optimal control problems. Although results showed that the evolutionary 
approach is feasible to solve high-dimensional, multivariable, multimodal and non-
differentiable control problems, some limitations regarding computational efficiency 
were found. 

Differential Evolution algorithms were chosen and used to solve two multi-modal 
(benchmark) optimal control problems. Also some Breeder Genetic Algorithms 
(BGA) and the Iterative Dynamic Programming (IDP) algorithm were applied for 
comparison purposes. The comparison confirmed that DE algorithms stand out in 
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in 
contrast to the majority of Evolutionary Algorithms, which have many algorithm 
parameters that need to be selected or tuned, DE has only three algorithm parameters 
that have to be selected or tuned. These are the population size {/x), the crossover 
constant (CR) and the differential variation amplification (F). All the investigated 
DE algorithms solved the multi-modal optimal control problems properly and 
efficiently. The computational efficiency achieved by the DE algorithms in solving 
the first low multi-modal problem, was comparable to that of IDP. When applied to 
the second highly multi-modal problem, the computational efficiency of DE was 
slightly inferior to the one required by IDP, after tuning of the algorithm parameters. 
However, the selection or tuning of the algorithm parameters for IDP is more difficult 
and more involved. 

Some guidelines for the selection of the DE algorithm parameters were obtained. Take 
the population size less than or equal to two times the number of variables to be 
optimised that result from the control parameterisation of the original optimal control 
problem (ju<2nu). Highly multi-modal optimal control problems require a large 
value of the differential variation amplification (F > 0.9) and a very small or zero 
value for the crossover constant (0<CR<0.2). Low multi-modal optimal control 
problems need a medium value for the differential variation amplification 
(0 .4<F<0.7) and a large or medium value for the crossover constant 
(0.2 <CR< 0.5). To improve further the performance of DE algorithms a parameter 
control strategy was proposed and evaluated on the algorithm DE/rand/1/bin. Results 
show that computational efficiency can be significantly improved. 



Finally, some possibilities of using DE algorithms to solve some practical optimal 
control problems were investigated. The algorithm DE/best/2/bin was applied to solve 
the optimal control of nitrate in lettuce and results were compared with local 
optimisation algorithms of optimal control. A combination of a DE algorithm and a 
first order gradient algorithm was proposed in order to exploit the advantages of both 
approaches. The DE algorithm is used to approximate the global solution sufficiently 
close after which the gradient algorithm can converge to it efficiently. The feasibility 
of this approach, which is especially interesting for multi-modal optimal control 
problems, was demonstrated. 
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1. General introduction 

1.1 Motivation 

Convergence to local solutions is likely, if optimal control problems are solved by 
means of gradient-based local search methods. Recently there has been an increasing 
interest in the use of global optimisation algorithms to solve optimal control problems 
which are expected to have local solutions. These optimal control problems are called 
multi-modal. Evolutionary Algorithms (EAs) are global optimisation algorithms that 
have mainly been applied to solve static optimisation problems. Only rarely 
Evolutionary Algorithms have been used to solve optimal control problems. This may 
be due to the belief that their computational efficiency is insufficient to solve this type 
of problem. In addition the application of Evolutionary Algorithms is a relatively 
young area of research. Together with my personal interest in the application of EA's 
this motivates the research in this thesis which concerns a search for the feasibility 
and efficiency of evolutionary algorithms to solve multi-modal optimal control 
problems. 

The efficiency is a critical issue when applying EA's. Even more so when optimal 
control problems are solved, since in this case, each function evaluation involves a 
system simulation, which is computationally expensive. Therefore in this research we 
tried to focus on EA's that are known or proved to be efficient. The application of 
these algorithms to multi-modal optimal control problems, in most cases, presents a 
new area of research. 

Numerical methods for the solution of optimal control problems can be roughly 
divided into two groups: indirect and direct methods [1]. The first group is based on 
finding a solution that satisfies the Pontryagin's maximum principle or the related 
necessary conditions through solving a two-point boundary-value problem [2]. Direct 
methods are based on an approximation of the infinite dimensional optimal control 
problem by a non-linear programming (NLP) problem. This can be done by either 
control and state parameterisation or control vector parameterisation only [3], The 
non-linear programming problem that results after the parameterisation is often multi
modal. Gradient-based optimisation algorithms are known to converge to local 
optima. To surmount this problem, global optimisation algorithms can be used. Since 
it is well known that Dynamic Programming is hardly ever feasible due to the curse of 
the dimensionality [2], Iterative Dynamic Programming (IDP) has been proposed [4]. 
Other global optimisation methods applied recently to solve multimodal optimal 
control problems are Stochastic Algorithms [5, 6]. Our work is motivated by the 
potential that Evolutionary Algorithms (EAs) have, as global optimisers, to solve 
multimodal optimal control problems. Since the computation time is critical in solving 
optimal control problems and EAs are known not to be very efficient the issue of 
efficiency is addressed. Some of the state of the art evolutionary algorithms will be 
the focus of our investigations. 

1.2 Background 

1.2.1 Brief description of mainstreams of evolutionary algorithms 



In this section a generic description of the most prominent evolutionary algorithms is 
provided. Basically our portrayal follows the work of Back [7] who has proposed, in 
our view, a rather generic framework to describe global stochastic search algorithms 
inspired by evolution. The next meta-algorithm gives a generic description for a wide 
class of evolutionary algorithms: 

Outline of an Evolutionary Algorithm 

g .-= 0; generate P(0) := {a](0),...,^,(0)} e / " ; 

evaluate P(0): {<D(^(0)),...,O(^,(0))}; 

while (i(P(g))^true) do 
Recombine P'(g):=r&r(P(g)); 
Mutate P"(g):=m®m(P'(g)); 

Evaluate P\g): { ^ ^ . . . ^ ( g ) ) } ; 

Select P(g +1) := s0s(P"(g) u Q)\ 
g-=g+i; 

end 

An Evolutionary Algorithm (EA) is a stochastic search method, which maintains a 

populationP(g) := {a,(#),...,«„ (g)} of individuals at e I, i = \,...,ft at generation g, 
where / denotes a space of individuals, and ju e N is the parent population size. 
Each individual represents a potential solution to the problem at hand and it is 
implemented as some generic data structure (i.e. strings of bits in genetic algorithms, 
real numbers in Evolution Strategies). By means of the manipulation of a family of 
solutions, an Evolutionary Algorithm implements a survival of the fittest strategy in 
order to try to find the best solution to the problem. Each individual is evaluated by a 
fitness function O: / —> 91, such that a real value is assigned to each potential 
solution, which represents a measure of how well individuals perform in the problem 
domain. Next, an iterative process starts in which a set of evolutionary operators is 
applied to the population in order to generate new individuals [8]. From a set 
{w©,,..., w@z | w0, : I* -> Ix) u {w0o: I" -^ I1} of probabilistic evolutionary 
w©, operators (for instance: crossover, mutation), each one specified by parameters 
given in the sets 0, c 91, some operators are applied to the population and a new 
evaluation of its fitness is calculated. The evolutionary operators: recombination 
(crossover) r&r :I"-^IA, mutation w0m :IX -»I1 and selection 

s®s : [I
1 u / '**)-> /"are used to transform the population P(g). X e N represents 

the number of offspring or new solutions in the population. The set Q a P(g) denotes 
an additional set of individuals, which can be the empty set, or a subset of the parent 
population P(g). The function i: 1'M —» {true, false} specifies the termination 
criterion. After a number of generations, it is expected that the best individual of the 
population represent a near-optimum solution. 
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Figure 1. Family tree showing the most relevant Evolutionary Algorithms 

Traditionally, three main examples of this generic algorithm have been identified: 
Genetic Algorithms [9, 10, 11], Evolution Strategies [1, 12] and Evolutionary 
Programming [1, 13]. However, other algorithms inspired by evolution share 
similarities with the three original EAs, for instance, Differential Evolution [14, 15], 
Genetic Programming [16] and possibly others. The next subsections summarize main 
properties of Genetic Algorithms, Evolutionary Programming, Evolution Strategies 
and Differential Evolution since they are more important ones from an optimisation 
viewpoint. Figure 1 presents a family tree with a classification of the most important 
Evolutionary Algorithms. 

1.2.1.1 Genetic Algorithms (binary and floating-point representation) 

Binary representation 

In canonical Genetic Algorithms (GAs) [9, 10] an individual is represented by strings 
of binary numbers a e / , where / is the binary space {0,1}. An individual or 
chromosome is just a binary string a = (au...,a,), and / is the length or the used 
number of bits. As this approach is applied to solve continuous parameter 
optimisation problems with n variables xi,i = l,2,...,n to be optimised 

x = [x,,x2,...,xj e DcR", where D: xi e [«,, v , ] , / = 1,2,...,n here w, and v; denote 
lower and upper limits of the variable interval xr Using a binary code [7,11] each 
element xt of x can be coded by elements of a. This is represented by x = y (a ) . 
Regarding the calculation of the fitness function <X>(<5) = (£>'(y/(a)) :R"->R where 
O' is a function that guarantees positive values, since the standard selection 
mechanism of GAs requires positive fitness values. 

Mutation 

Consistent with the binary representation of the solutions a mutation operator 
m{p ( : / —> / modifies an individual a' = m{p){a) according to 

a if x > P 
a' = ' m, V.e[l,...,/] where ^£[0,1] is a uniform random variable, 

1-a, if Xi^Pm 

and pm is a probability of mutation and a, means the /' bit of the string. 



Crossover 

The simplest recombination operator is the so-called one-point crossover 
r{p } : I

2 —> I2, which combines two strings J and v to generate two new individuals 

s' = (su...,sk^,sk,vk+1,...,v,) and v' = (vl,...,vk_i,vk,sk+u...,s,), where k&{\,...,l-\) 

and pc specifies the probability of selecting a pair of strings to be mated. It seems 
that more commonly applied crossover operators are multi-point crossover and 
uniform crossover. The multi-point crossover operator r i: I2 —> I generates a new 

. , . . , , ,. t , <is,i,Vi(Xk<i^XM\k<m 
individual according to: a, = , where 

avi , otherwise 

{Xl,—,%m)e.[\,.~,l-\] denote random crossover positions and m is the number of 

crossover points. The uniform crossover operator r: I2 —> I generates a new 
asnAi > l / 2 

individual according to a'= ' ,V, e[l,...,/], where A,e[0,l] is a uniform 
aVJ,Ai < l / 2 

random variable. Other binary oriented recombination operators are found in the 
literature [7, 9, 10]. 

Selection 

The selection operator s:Ifl—>If' implements a probabilistic survival strategy. First 

selection probabilities are computed Ps(aJ(g)) = Q>(dj(g))/2_,<b(ak(g)), 

7 = 1,2,...,//, which reflect the relative fitness in the population of each individual. 
Using these probabilities a population is chosen according to a sampling mechanism. 
Generally, the Stochastic Universal Sampling scheme [7], which determines the 
number of copies (samples) of each individual from the current to the next population, 
is applied. An example is the Simple Genetic algorithm [9, 10] (see Figure 1). 

Floating-point representation 

In genetic algorithms with a floating-point representation, [11, 17] an individual is 
given by a vector of real numbers such that a = x e 9?". The fitness function is just 
<D(5): R" —> R. However, genetic operators are different in order to deal with this 
representation. 

Mutation 

As far as mutation is concerned more known operators are: uniform, boundary and 
non-uniform mutation as well as mutation of the Breeder Genetic algorithm. Uniform 
mutation m:I —> I alters an individual a into a' according to 

f r, if i = j 
at = < where r e [ui,vi] is a uniform random value within the interval 

[aj, otherwise 

for the /""variable. The boundary mutation m.r): / -> / modifies slightly the previous 



ut, if i = j,r< 0.5 

operator in which the mutated variable is generated by a\ = < v,., if i = j,r >0.5, 

at, otherwise 

where r e [0,1] is a uniform random number. The non-uniform mutation 
m{rbgG) '• I ~* I on the other hand, generates a new individual a' = (a1,...,ai,...,all) 

a, + S(g,v, -a.) if rnb == 0 , 
where « ; = ' ) * ' ' l)J ,,S(g,y) = yr-(l-g/G)b and re[0,l] is 

a uniform random number, r«6 is a random binary digit, G is the maximal 
generation number and b is a parameter. 

The breeder genetic algorithm mutation operator m{ } : / —> I creates a new 

fa, +s-(v- -ut)-S if x,^<0.5 ^ , 
individual 5 according to a, =< , o = > 2 y a , , 

ai e [0,1], s = 0.1, where Xi e [0.1] is a uniform random value. 

Crossover 

Some floating-point crossover operators are: simple, arithmetic, and heuristic. The 
simple crossover r,b) : I

2 —> I2 combines two individuals a1 and a2 to generate two 

new feasible individuals a'1 =(a\,...,a),a2
+l • b + a'+1(l-b),...,a2

n -b + a\ (l-b)) and 

a'2 =(a2,...,a2,a2
+1 -b + aj+l -(\-b),...,a2

n -b + a[ (\-b)), where b e [1,0] is a 

uniform random value and r'e[l,n] is a randomly chosen index. The arithmetic 

crossover r{b} : I
2 -»I2 combines two parents 5, and a2 in order to generate two 

new feasible solutions a[ = b • al + (1 - b)a2 and a'2 = (1 - &)<Jj + &a2, where Z> e [0,1] 

is a random number. Heuristic crossover r(rf) : I
2 -> / combines two parent solutions 

5, and 52 so as to generate a new individual ai =at+d (al-a2) where d e [0,1] is 

a random number, and a, and a2 are selected such that 0(5j) < 3>(a2). 

The discrete recombination operator r,d): I
2 —> / combines two vectors a1 and a2 to 

-3 „.,._„ _3 f«i» ' / ^ < 0 - 5 

obtain only one new individual a where at =\ " ' , i = \,...,n and 
\a I, otherwise 

di e [0,1] is a uniform random number. Similarly the extended intermediate 

recombination operator r{a} : I
2 -> / generates a new individual by 

a] = a) + at(a
2 -a\), i = \,...,n and a, is a uniform random variable from the 

interval [-0.25,1.25]. In case that only one coefficient a is applied to the whole 

difference vector, the operator is called extended line recombination. 

Selection 

In addition to the same scheme of selection as in GAs with a binary representation, in 
case of real-valued vectors several other selection operators have been reported in the 



literature [11, 17]. Two important examples of genetic algorithms with floating-point 
representation of the individuals are the GENOCOP (GEnetic algorithm for 
Numerical Optimization for Constrained Problems) system [11] and the Breeder 
Genetic algorithm (BGA) [17] as can be seen in Figure 1. 

1.2.1.2 Evolution Strategies and Evolutionary Programming 

A set of Evolution Strategies (ES) can be identified [7, 12]. Since more advanced 
Evolutionary Programming (EP) algorithms share properties of ES here only the 
differences between both approaches are mentioned. All ES use a complex 
representation of the chromosomes in the population a = {x,a,a), where x denotes 
the vector of to be optimised variables, a the strategy vector of standard deviations 
associated to x and a rotation angles also associated to x. The fitness function 
becomes ®(a): R" —» R. In ES and EP not only the object vector but also the 
strategy vector and rotation angles vector are subjected to the evolutionary process. In 
case of Evolutionary Programming [7, 13] generally an individual a = (x,v) is 
represented as a vector of object variables and one vector of standard deviations. 

Mutation 

The mutation operator m{T r,^ : / —> / yields a new individual a' = (x',a',d') 

according to: a\ = ai • exp(r2 • N (0,1) + r, • Nt (0,1)), a) =ctj+p- Nj (0,1), 

x' = x + N(0, a', a'), V,. s {1,...,«}, Vy e {1,..., n • (n -1) / 2}, where #(0,1) stands for a 

random variable having expectation zero and standard deviation one, N(0,d',d') 
denotes a multivariate normal distribution with specified covariance matrix, and r,, T2 

are algorithm parameters depending on n, and /? is a constant [1,7]. 

In case of Evolutionary Programming the mutation operator m{() : I —> I produces a 

new individual a' = (x',v') as follows: x\ = x, + ̂ v~ • AT.(0,1), v,' = v,. + ̂ /̂ V~ • 7V,(0,1), 

V, e {l,...,n}, where C, denotes an algorithm parameter. 

Crossover 

Modern ES may use several recombination operators [7, 12], and they may be 
different for object variables, standard deviations and rotating angles. Yet, in general, 
two recombination operators are commonly applied. First, the discrete recombination 
operator defined above. And also the intermediate recombination operator (applied 
here only o n i ) r : / 2 - > / that combines two different randomly selected parents xv, 
xs from the population, to generate a new individual x', in which, 
x\ = xSi +(xVi -xSJ)/2. Recently, Schwefel [12] has proposed some generalizations 

for recombination operators in which each element of the new vector is selected 
probabilistically from all the individuals in the population. Then, the intermediate 
recombination operator r:I/1->I is given by x\ =xSl+(xVj -xSJ)/2 where xv,. 
denotes that a new parent xv is selected for each element of the vector. There are no 



recombination operators in Evolutionary Programming. 

Selection 

The selection mechanism in Evolution Strategies is deterministic. There are two 
general operators. An operator s{ A) : I^

k —» IH selects the best // individuals out 

of the union of parents and offspring while the operator s{fl x) : I
x —> f selects the 

best n individuals out of the offspring only. The selection mechanism is used to 
denote multimembered evolution strategies (// + X) -ES and (//, X) -ES respectively. 
In case // = 1, and X = 1 the two membered evolution strategy is obtained which was 
the first designed ES and is denoted traditionally by (1,1) -ES (see diagram 1). 

In Evolutionary Programming the selection operator s{) : I2" —»IM, on the other 

hand, uses a tournament selection mechanism in order to generate a new population. 
For each individual Oj,je {1,...,2//}, q individuals are chosen randomly from the 

union of the parents n and the offspring A = / / . A score w. e {0,...,^} is obtained 

from counting how many of those individuals perform worse than 5. . All the 

individuals 3j, j e {1,...,2//} are ranked in descending order of their score and the best 

// of them are selected to form the next population. An example of an Evolutionary 

Program is the meta-EP algorithm proposed by Fogel (see Figure 1). 

1.2.1.3 Differential Evolution algorithms 

All Differential Evolution (DE) algorithms use vectors of floating-point numbers to 
represent the individuals in the population [14, 15]. Using the previous notation we 

have: a = x e 9T . The fitness function is <£>(a):/?"-»/?. 

Mutation 
There are several mutation operators in DE algorithms. A mutation mechanism 
m{F) :I—>I yields a mutated individual a' = m{F}(a) by modifying the vector a 

according to: a\ =ar +Fx(ar -ar), V, e{l,...,//}, where rx ^r2^r^^i denote 

mutually different indices. The vector at is named the target vector, which clearly is a 

parent individual. The vector ar is the to be mutated individual which is selected 

randomly from the population. Vectors ar and ar form a difference vector. F is an 

algorithm parameter that affects the differential variation. A second mutation operator 
takes the to be mutated vector equal to the target vector as follows: 
a'j =at+F x(ar -ar), V,. e {1,...,//} where r , ^ r 2 ^ i are mutually different 

indices. 

A third mutation operator is given by a'j = abesl + F x (5rj -a ) , V,. e {1,...,//} 

where r^r2 ^ i denote mutually different indices. In this case the to be mutated 
vector is the best individual in the population (abesl (g)) at the current generation (g) , 



namely Q>(abesl) < 0 (5 , ) , V.,y = 1,...,//. Another mutation mechanism combines 

two difference vectors 5- = abest+ F x(ari +ari - a r j - « r 4 ) , V,. e{l,...,jii} where 

r ^ r j * ^ ^ i are mutually different indices. A more complicated mutation 

operator uses the to be mutated vector to built the difference vectors: 

a'j = ai + F x (3r - ar ) + K x (a,. - a ,), V, e {1,..., //} where r, # r2 * r3 ^ i are 

mutually different indices and K is another algorithm parameter. 

Crossover 

The recombination operator r{a) : I
2 —» / acts on two parents, the mutated vector 

(a't) and the target vector (a,.), which can be considered as a parent individual, so as 

to form a trial vector (a") whose elements are given 

„ < if randb(j) < CR or j = rnbr(i) 
b y : a / z = , i = 1,2,...,ft,j = 1,2,...,n, where CR ajt if randb(j) > CR and j * rnbr(i) 
is the crossover constant, randb(j) e [0,1] denotes the jth evaluation of an uniform 
random number generator, and rnbr(i)e[l,..,n] is a randomly selected index. This 
operator is called binomial crossover. 

A second recombination operator in DE is the so-called exponential crossover. In this 
case each element of the trial vector is generated according to: 

an while randb(j) > CR and j * rnbr(i) 
aM= , V,e{l,...,//},fory = l,...,«} 

ajt afterward 

Selection 

The selection operator s{/l+A} : l
h*^ —> IM picks the ju best individuals from the union 

of parents and offspring (// + A) to form the next population, where // = X. This is 
done by a simple comparison of the fitness of the target (5() and trial (a") 
vectors; = 1,...,//, in such a way that only if the condition 0(5,") < 0(5,) is satisfied 
then a" becomes a member of the new population otherwise a, (the parent 
individual) is selected. An excellent discussion on Differential Evolution algorithms is 
provided by Price [15]. Each Differential Evolution algorithm can be identified by the 
notation DE/x/y/z [14], where x denotes the choice of the vector to be mutated, y is 
the number of difference vectors used for mutation and z specifies the type of 
crossover scheme. Some instances of DE algorithms are listed in Figure 1. 

1.2.2 On the theory of Evolutionary Algorithms 

Although several theories have been proposed to account mainly for the behaviour of 
Genetic Algorithms and Evolution Strategies, it seems that there still is no definite 
theory that explains thoroughly why and how evolutionary algorithms work [18, 19]. 
However, based on the concept of Random Heuristic Search [20] a set of definitions, 
theorems and formal proofs has been developed that mathematically formalize 



evolutionary algorithms. In contrast to other theories, Random Heuristic Search is a 
paradigm that would explain the behaviour of the most important evolutionary 
algorithms: Genetic Algorithms, Evolutionary Programming, Evolution Strategies and 
Genetic Programming. Roughly, Random Heuristic Search is considered to be a 
discrete dynamical system consisting of two parts: a collection of elements 
(population) chosen from a search space, which can be any finite set, and also a 
heuristic search or transition rule which from any population Pt will produce another 

population PM, Since the transition rule is stochastic, a heuristic function is defined, 
which given the current population, produces a vector whose 7-th component is the 
probability that the y'-th element of the search space is chosen as a member of the next 
population PM. A characterization of Random Heuristic Search can be given in terms 
of Markov Chains. An important challenge is not only to show that a particular 
evolutionary algorithm is an instance of Random Heuristic Search but also to find its 
corresponding heuristic function. So far a detailed analysis of the behaviour of the 
Simple Genetic Algorithm has been presented recently [21]. In addition, several 
theoretical results have recently been discussed in the literature [8, 22, 23] based on 
the application of Markov Chains theory to Evolution Strategies. 

1.2.3 Direct optimisation methods in optimal control and Evolutionary 
Algorithms 

Numerical methods for optimal control can be classified into two generic groups: 
indirect and direct methods [1, 25]. The first group is based on finding a solution that 
satisfies the Pontryagin's Maximum Principle or the related necessary optimality 
conditions, which constitute a two-point boundary-value problem. Generally, gradient 
and shooting methods are applied [2, 24]. Direct methods attempt a direct 
minimization of the objective functional of the optimal control problem by control 
parameterisation or control and state parameterisation. Through parameterisation the 
dynamic optimisation problem is transformed into a Non-Linear Programming 
problem. Then both local and global optimisation algorithms to solve this type of 
problems may be applied. In this work only control parameterisation will be 
considered. 

In this thesis we will consider general optimal control problems where the system may 
be non-linear and the cost functional need not be quadratic. Consider the system 

x = f(x,u,p,t) (1.1) 

where x e R" is the state vector, ueRm is the control vector, p eR' the fixed 
parameter vector and t represents time. The optimal control problem is to find the 
control trajectory u(t), t0<t<tf which minimizes the cost functional 

J = </>{x(tf)) + {'L(x,u,t)dt (1.2) 

subject to the system dynamics (1.1), with known initial conditions x(t0) = x0. In 

equation (1.2) ^ e R' represents costs associated to the final state x{tf) and Le R' 

represents the running costs. The system description (1.1) is in state-space form. Any 
causal system can be easily put into this form, which has many advantages both from 
a theoretical and computational point of view. 



The optimal control problem (1.1), (1.2) in general is infinite dimensional because the 
control trajectory u(t) is continuous and infinite dimensional. To turn it into a finite 
dimensional problem we will apply control parameterisation. This can be done e.g. 
using piecewise polynomials or a piecewise constant or linear parameterisation. In the 
case of computer control, the control is truly piecewise constant. Therefore, this type 
of control parameterisation is used throughout the thesis. Furthermore a piecewise 
constant control is easily implemented. It is described by, 
u(t) = u(tk), ts[tk,tk+l),k = 0,l,...,N-l (1.3) 

where tN =tf, and tk, k = 0,1,...,N are so called sampling instants which are usually 
equidistant i.e. tk+l -tk=Ts, k = 0,1,2,...,N-l, where 7̂  is the so-called sampling 
period. N is the number of time intervals. Introducing 
uk=u(tk), k = 0,l,—,N-1 the control trajectory u(t), t0<t<tf is now fully 

determined by uk, k = 0,1,..../V-1 and we may define u = [«f ,u\,...,M^,] the so-

called control parameter vector which fully determines the control trajectory u(t), 

t0 <t <tf. Given u using the initial condition x0 and numerical integration from 

(1.1) and (1.2) we may compute J. Therefore, the optimal control problem (1.1), 
(1.2) constitutes the minimization of J w.r.t. u . 

If terminal state constraints y/{x{tf)) = 0 have to be satisfied the problem becomes a 

constrained function minimization problem. If the final time tf instead of a-priori 

fixed is to be optimised as well, this is possible if we apply time scaling. In that case 
the interval tk+l —tk=Ts=tf IN over which u(tk) = uk is applied, varies with tf. To 

satisfy general state constraints, both the integral [3] and grid approximation 
approaches [25, 26] can be applied. Again this results in a constraint function 
minimization problem. 

The resulting, possibly constraint function minimization problem often has a large 
number of variables and local minima. Because of this, local optimisers often fail in 
computing the true (global) minimum. Evolutionary Algorithms as investigated in this 
work might be able to overcome this difficulty because they are global in nature. 
Normally, only minor modifications of the previous description are necessary when 
evolutionary algorithms are applied to solve optimal control problems. 

1.3 Research objectives 

The main goal of this research is to investigate the possible advantages of the 
application of Evolutionary Algorithms as direct methods to solve optimal control 
problems. 

The feasibility of Evolutionary Algorithms will be investigated to solve high 
dimensional, non-linear, multivariable and multimodal (with multiple local minima) 
optimal control problems. The optimal control problems are benchmark problems and 
an optimal control problem concerning greenhouse cultivation. 

The expected advantage concerns mainly the ability to find the global optimal 
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solution for multimodal problems having multiple (local) solutions. The efficiency of 
Evolutionary Algorithms in general compares unfavourably to the efficiency of other 
optimisation methods. Therefore the research will focus on evolutionary algorithms 
that are very efficient compared to other EA's. Application of such algorithms to 
solve multi-modal optimal control problems is a rather new area of research. Since 
algorithm parameter selection is an important practical issue when using any 
Evolutionary Algorithm this topic will be addressed too. 

Given the objective to locate the global solution of multimodal optimal control 
problems and the lack of efficiency of Evolutionary Algorithms an approach where an 
EA algorithm is combined with a more efficient algorithm will also be investigated. 
Finally, Evolutionary Algorithms will be compared with other algorithms that have 
the potential of locating the global solution such as Iterative Dynamic Programming. 

1.4 Contributions of the thesis 

In this thesis efficient Differential Evolution algorithms, which are global 
optimisation methods, are proposed to solve multimodal optimal control problems. 
Differential Evolution algorithms are considerably more efficient and effective to 
solve optimal control problems than the majority of EAs. DE algorithms have 
advantages over other global search methods such as an Iterative Dynamic 
Programming or Controlled Random Search. They are very easy to implement and are 
easily adapted to solve constrained optimal control problems. 

Many researchers believe that Evolutionary Algorithms are all inefficient in solving 
continuous optimisation problems. By showing some advantages of efficient 
evolutionary algorithms in solving hard optimal control problems this research will 
contribute to the acceptance of some state of the art evolutionary algorithms like 
Differential Evolution to solve practical problems, especially in the area of optimal 
control. 

1.5 Focus and limitations of this research 

Since numerical solutions for optimal control problems generally demand a high 
number of function evaluations, which involve a simulation of the system, they are 
computationally expensive. Theoretically and empirically it has been shown that GAs 
solve separable functions that are 0(n) hard in 0(wln«)time [17, 27], where OQ 
notation denotes the asymptotic order of growth of a function, e.g. the order of the 
largest term in an2 +bn + c is 0(n2). In our case 0(n) refers to the number of 
function evaluations and n specifies the dimension of the optimisation problem. In 
case of functions with highly correlated variables traditional GAs tend to be even 
more inefficient. The cause of this is the high recombination probabilities and small 
mutations (pm = 1/w <1) that are common settings in GAs. Therefore, some of the 

state of the art evolutionary algorithms that have been proposed recently as good 
candidates to surmount these drawbacks are investigated. In contrast to Genetic 
Algorithms, Differential Evolution algorithms are efficient since it seems they use 
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only 0(n) complexity. Also they are rotationally invariant [15] which means they do 
not lose performance due to correlated variables. Evolution Strategies and 
Evolutionary Programming are relatively efficient evolutionary algorithms but they 
are not considered in this work since they demand a higher computational complexity 
0(n2) than Differential Evolution as they include rotational angles. DE as well was 
ES and EP use a mutation probability pm = 1 all the variables are mutated. This work 

does not provide theoretical results but is rather based on the analysis of some 
engineering applications of EAs, especially some classes of difficult optimal control 
problems. 

1.6 Organization of the thesis 

The thesis is organized in several chapters which can be grouped into three parts. The 
first part (chapter 2.1 and chapter 2.2) presents a general introduction to Evolutionary 
Algorithms (chapter 2.1) and discusses the issue of their application to some hard 
optimal control problems (chapter 2.2). The main purpose of chapter 2.1 is to 
summarize the most relevant work reported in the literature up until now regarding the 
application of the Evolutionary Algorithms (Genetic Algorithms, Evolution Strategies 
and Differential Evolution) to solve optimal control problems (OCP). Different kinds 
of representations of the individuals for some classes of OCP and the corresponding 
evolutionary operators are described. In chapter 2.2 the possibility of using 
Evolutionary Algorithms, with real-valued chromosomes representation and 
specialized evolutionary operators is studied. Some optimal control problems from 
chemical engineering characterized by being high-dimensional, non-linear, 
multivariable, multi-modal and non-differentiable are solved and results are compared 
with other direct methods commonly applied in optimal control. 

The second part focuses on the study of Differential Evolution algorithms, which are 
considered as the state of the art evolutionary algorithms, designed in the field of 
continuous parameter optimisation. In contrast to genetic algorithms, DE algorithms 
are considerably more efficient and therefore constitute good candidates for solving 
hard dynamic optimisation problems. In chapter 3, DE's are studied by analysing how 
they perform on two multimodal (benchmark) optimal control problems. The 
performance of some evolutionary algorithms based on the Breeder Genetic 
Algorithm (BGA) is also analysed and results are compared to those obtained by DE 
algorithms. Finally, the results are also compared with Iterative Dynamic 
Programming, a global optimisation approach specifically designed for optimal 
control problems. Improvements of the DE algorithms are presented and tested in 
chapter 4. DE algorithms are efficient and easy to use evolutionary algorithms but 
require some tuning of the algorithm parameters: population size, mutation and 
crossover constants. Generally these parameters are kept constant during the 
optimisation process. A more effective algorithm may be obtained if they are 
adaptively tuned [15]. A parameter control strategy that adjusts the crossover and 
mutation constant in accordance with the diversity of the population is proposed and 
evaluated by using the benchmark multimodal dynamic optimisation problem studied 
in chapter 3. 

The third part (chapters 5.1-5.3) of this work presents some applications concerning 
optimal control of greenhouse cultivation. Chapter 5.1 presents the use of a genetic 
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algorithm with both binary and floating representations for the chromosomes, to 
estimate some of the parameters of a dynamic model of a lettuce crop. A two-state 
dynamic model of a lettuce crop (NICOLET) that predicts the nitrate concentration at 
harvest time is described first. Then, evolutionary algorithms are used to optimally fit 
the model parameters to measurements of dry weight of a lettuce crop. Results are 
compared against those obtained by some local search methods. In chapter 5.2 an 
optimal control problem of nitrate (NO3) in lettuce is presented and solved by a first 
order gradient algorithm. First, A modified two-state dynamic model of a lettuce crop 
(NICOLET B3) is described. Next, an optimal control problem with fixed final time 
control constraints and terminal state constraints is put forward. Subsequently, a 
Differential Evolution algorithm is applied to get an approximate global solution. The 
DE algorithm is extended in order to deal with this. In chapter 5.3 a combination of a 
DE and a first order gradient algorithm is proposed to solve the optimal control 
problem of nitrates in lettuce. Finally, in chapter six the thesis ends with an overall 
discussion, conclusions and some suggestions for future research. 
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2. Evolutionary algorithms for optimal control 

2.1. Evolutionary Algorithms for optimal control: a survey 

2.1.1 Abstract 

The purpose of this survey is to present a summary of the most relevant research 
reported in the literature regarding the application of Evolutionary Algorithms 
(Genetic Algorithms, Evolution Strategies, and Differential Evolution) to solve 
optimal control problems. Emphasis is put on benefits and drawbacks of the proposed 
evolutionary algorithms. In addition, some general remarks concerning the main 
properties of the designed and applied evolutionary operators are underlined. 

2.1.2 Introduction 

To solve finite-horizon optimal control problems in continuous-time, by means of 
evolutionary algorithms, control parameterisation is applied to obtain a finite 
dimensional approximate description of the continuous-time control. A finite-horizon 
digital optimal control problem concerns the control of a continuous-time system by 
means of a digital computer. Due to the use of a computer, the control is piecewise 
constant (equation 1.3) and therefore finite dimensional. Within finite-horizon 
discrete-time optimal control problems the system description and the control are 
discrete in time. Again in this case, the control is finite dimensional. Therefore, 
without making any approximations, both finite-horizon digital and discrete-time 
optimal control problems can be solved by means of genetic algorithms. Finite 
horizon discrete-time optimal control problems are usually equivalent to, or an 
approximation of, digital optimal control problems [1,2]. 

A certain type of continuous-time optimal control problems, with bounded control, is 
known a-priori to have an optimal control which is always at the bounds, except for 
certain switching times where it switches from one bound to the other. This type of 
control is called bang-bang control and is fully characterized by the switch times 
which are therefore the only variables that need to be optimised. Assuming the 
number of switches to be finite, again the control is finite-dimensional. 

In the case of digital optimal control problems the sampling instants tk, k = 0,1,.. are 
a-priori known. When applying direct methods for optimal we are also able to vary 
these sampling instants during the optimisation, to try to find a so called optimal 
sampling scheme, where the number of sampling instants is fixed but their values are 
free. Although this is uncommon in the control literature, people who solved optimal 
control problems by means of GA's, on several occasions, have done just this. Clearly 
optimising both the sampling scheme and the control significantly complicates the 
nature of the optimal control problem. In terms of control parameterisation, 
optimising the sampling scheme may be viewed as a special case of optimising the 
control parameterisation. 

Table 1 presents an overview of different types of GA's that have been applied to 
solve the different types of optimal control problems mentioned above. In this table 
we distinguish CT referring to continuous-time optimal control problems, DT 
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referring to discrete-time optimal control problems. SGA stand for Simple Genetic 
Algorithm, GENOCOP for GEnetic algorithm for Numerical Optimization for 
Constrained Problems, BGA for Breeder Genetic Algorithm, DE for Differential 
Evolution, ES for Evolution Strategy, GAs for Genetic Algorithms, and EP-SS for 
Evolutionary Program, with state-space representation. 

This survey follows the information summarized in table 1. In section 2.1.3 
Evolutionary Algorithms with binary representation are considered while chapter 
2.1.4 considers genetic algorithms with floating-point representation. In section 2.1.5 
Evolution Strategies are considered and finally in section 2.1.6 Differential Evolution 
algorithms. Instead of providing a detailed description of the evolutionary operators of 
each algorithm a general description is given together with possible advantageous and 
drawbacks. 

Table 1. Evolutionary algorithms and types of optimal control problems 
GAs 

ES 

DE 

Binary 

Floating
point 

Bang-Bang optimal control 
SGA 

Seywaldetal. 1995 
DT 
GENOCOP 
Michalewicz 
1994 

DT 
Modified ES 
Hashemetal. 1998 
CT 
Optimal time location 
DAE 
DE/best/2/bin 
Wang & Chiou, 1997 

DT & 
CT 
BGA 
Dakev 
et al. 
1995 

CT singular optimal control 
SGA 

Yamashita & Shima, 1997 
CT 
EP-
SS 
Smith 
1995 

CT with 
changing 
controls 
EP 
Bobbin 
1997 

CT 
Multipopulation 
BGAs 
Polheim & 
Heibner 1996 

DT&CT 
Modified ES 
Pham, 1998 
CT 
Modified DE 
Leeetal. 1999 

CT optimal control 
SGA 

Leeetal. 1997 
CT 
singular 
smoother 
GENOCOP 
Roubus et 
al. 1999 

CT 
Initial 

costates 
SGA 
Sim et 
al., 
2000 

CT 
Multi-population ES 
Polheim & Heibner, 1997 
CT 
Hybrid DE 
Chiou etal. 1999 

SGA : Simple Genetic Algorithm,GENOCOP : GEnetic algorithm for Numerical Optimization for 

Constrained Problems, BGA: Breeder Genetic Algorithm, DE: Differential Evolution, ES: Evolution 

Strategy, GAs: Genetic Algorithms, EP-SS: Evolutionary Program, with state-space representation. 

2.1.3 Genetic Algorithms with binary representation in optimal control 

A genetic algorithm with binary individuals (see chapter 1) was applied to solve 
optimal control problems [3] in which the cost functional is given by: 
j = Kx(tf\tf) (l) 

The dynamic system is linear in the controls, 

x(t) = a(x(t), t) + £ bs (x(t), t)ut (0 

with initial condition 

-H'o ) ~ xo 

Terminal state constraints are represented by, 
yr(x(tf),tf) = 0 

and the control constraints by 
a,.(()e[0,l];i = l,..,m 

(2) 

(3a) 

(3b) 

(4) 



The final time tf is free. According to optimal control theory the optimal control is 

bang-bang. Therefore one bit (0 or 1) of each individual was used to represent each 
control parameter. Additional bits were used to represent the unknown final time. The 
genetic algorithm was only applied to generate a solution by which a subsequent 
gradient method was initialised. Although knowing the bang-bang structure only 
switching times need to be optimised, in this paper the authors chose to use a 
piecewise constant approximation (equation 1.3.) of the control in conjunction with 
time-scaling to accommodate for the free final time. 

A binary genetic algorithm was applied to solve an optimal control problem with 
singular arcs, terminal state constraints and free final time [4], The mathematical 
description is given by equations (l)-(3). The control constraints are more 
complicated in this case, 

" y - W ' p K y W ^ u . W ) ) (5) 

The time interval t e [0,tf] was scaled to t e [0,1] and the control inputs u(t) to the 
interval [0,1]. Then, they were approximated by means of cubic Splines functions that 
used a minimum number of bits. A long string of bits was used to represent multi-
input systems. Auxiliary cost functions and associated Lagrange multipliers were 
added to the individuals. Although in this way singular optimal control problems can 
be handled two important drawbacks remain: the inherent limitations of a string of 
bits to accurately represent variables and the poor efficiency of a simple genetic 
algorithm. 

A binary genetic algorithm combined with heuristic constraints for the controls was 
applied to solve a time-optimal control problem of a continuous co-polymerisation 
reactor [5]. The continuous time optimal control problem is given by equations (1.1) 
and (1.2) as specified in chapter 1. However, the controls are constrained 
w <u(t)<u (6) 

and the final time (tf)is free. A piecewise constant control parameterisation was used 
in conjunction with time-scaling to accommodate for the free final time. The vector 
u = [u\,...,u",...,u\,...,u"m] containing all the control parameters was represented by a 
long binary string. In order to alleviate the computational load demanded by the GA, a 
two level hierarchical time-optimal control was implemented. At the highest level, an 
upper bound for the transition time (tf) and steady state control inputs (uiss) were 

calculated. At the lower level, the optimal control inputs and the minimum transition 
time were found using the steady state control from the highest level and a heuristic 
rule that reduces the range of control inputs. Two types of computations were 
performed. One in which the values of tk, k = 0,\,..,N, apart from time-scaling, are 

fixed and one in which they are free to be able to exactly compute the switching 
times. Regarding efficiency, the number of function evaluations required by the GA 
without the heuristic rule turned out to be less efficient than Iterative Dynamic 
Programming, but the GA using the heuristic rule clearly outperformed IDP. The 
main drawback of this approach is the low efficiency associated with a binary GA. 

2.1.4 Genetic Algorithms with floating-point individuals in optimal control 
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Michalewicz [6, 7] designed and applied genetic algorithms with a floating-point 
representation of the individuals and specialized operators to solve the linear-
quadratic problem of the discrete-time scalar system, 
xk+l = axk +buk, k = \,...,N-\ (7) 
with the quadratic performance index, 

N-l 

J^qxl+Y.^xl+rul) (8) 
t=o 

A discrete-time optimal control problem for the same scalar system with a non-
quadratic performance index and an additional equality constraint was also solved. 
Finally, also a discrete-time optimal control problem where the system is second order 
and the performance index quadratic was solved. 

The evolutionary algorithm termed GENOCOP in chapter 1 was evaluated against a 
Simple Genetic Algorithm (SGA with binary individuals) in solving the above-
mentioned problems. GENOCOP was more efficient than SGA by several orders of 
magnitude. This is due to a more appropriate representation of the problem and the 
use of specialized evolutionary operators. Successive extensions of GENOCOP 
(GENOCOP-II, GENOCOP-III) confirmed that GENOCOP is one of the most 
efficient evolutionary algorithms. GENOCOP's main disadvantage is its large number 
of operators and algorithm parameters that a user has to specify before solving a 
particular optimal control problem. 

An evolutionary program was proposed to solve continuous time optimal control 
problems, with constraints for the control inputs and fixed or free final time [8]. This 
approach uses a so-called state-space representation of the individuals (which is 
something else then a state-space realization of a system). The optimisation performed 
by this algorithm in addition to optimising the control approximated by splines and 
the time nodes tk,k = 0,l,..,N also optimises the number of time nodes N. It is 

argued that by optimising the time nodes and their number the algorithm is able to 
concentrate on areas were the control changes rapidly. This would allow for instance 
the exact solution of bang-bang optimal control problems. In this way, a better 
performance can be obtained by optimising the time nodes and their number. 
Accordingly the individual's representation several evolutionary operators were 
proposed: random, perturbation, simple crossover and arithmetic crossover (blend). 
In a subsequent paper [9] the approach was extended to solve constrained optimal 
control problems using penalty functions with time-varying coefficients. Although 
this evolutionary program worked well on the problems presented in the paper, its 
main limitation is that the number of the time nodes TV may become very large or 
very small. The associated solutions, in general, are undesired. 

A general approach to solve optimal control problems with general constraints by 
genetic algorithms with either binary or floating-point representation was proposed 
recently [10, 11]. The performance index is given by: 
J = <l>(x(tf)) (9) 

subjected to the system dynamics: 

x = f(x,u,p,t), x(to) = x0 (10) 
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and general equality and inequality constraints represented by, 
g(x(t),u(t),p,t) = 0 (11) 
h(x(t),u(t),p,t)<0 (12) 

" , , m , „ ^ , ( 0^ , m a * (13) 

In equation (9)-(12) p are the parameters of the dynamic system. The proposed 
evolutionary operators are those contained in the Genetic Algorithm Toolbox for use 
with Matlab [12]. Basically, this implementation follows the Breeder Genetic 
algorithm [13]. However, an important characteristic is the use of sub-populations 
with several topologies, which is argued, can improve the quality of the search and 
alleviate the high computational load. The main disadvantage of this approach is the 
lack of efficiency associated with the Breeder Genetic Algorithm, which is known 
nowadays to be efficient only in solving decomposable optimisation problems [14]. 

A method for the optimisation of dynamic processes by means of genetic algorithms 
with an integer-valued representation of the chromosomes was reported recently [15]. 
The controls were approximated by piecewise linear functions. Several optimal 
control problems with fixed final time and control constraints from bioengineering 
were solved. The genetic algorithm used a relatively small population of individuals. 
A so called elitist selection strategy with the roulette-wheel method was applied to 
select four individuals, which replace the worst individuals in the population. 
Classical crossover and mutation operators were used with a small probability of 
mutation and a high probability of crossover. The main drawback of this approach is 
the extensive tuning of algorithm parameters that is required by the algorithm. Also 
instead of an integer-valued representation a floating-point representation seems much 
more appropriate for solving optimal control problems. 

The application of Evolutionary Algorithms to solve an optimal control problem with 
a control that can only take on certain discrete values and a cost associated to each 
switching time was reported lately [16]. This is a mixed continuous and discrete-time 
optimisation problem which is complex and non-convex. The dynamic system is 
described by, 
x(t) = /WO, "(0), x(t0) = x0 (14) 
where x(t) eR", u{t) c U c T . 

In the case of a piecewise constant control function u(t), the optimal control problem 
is to find the sequences tt, u(tt), i - 0,1,...,n -1 where t, < tM, i = 0,1,...,n -1 which 
minimise the cost function: 

min ftx{tf )) + £>•£ max|w, (tM) - Uj (f, )| (15) 

where D is a constant matrix. 

An individual within the algorithm has a variable length determined by the number of 
control changes (switching times). Given the cost on switching, an individual will not 
continue growing. Based on the algorithm representation the following evolutionary 
operators were proposed: uniform-based crossover, mutation, blend, and insertion 
mutation. 
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The combination of a genetic algorithm using individuals with a floating-point 
representation and a shooting method was proposed recently to solve optimal control 
problems with terminal state constraints and fixed or free final time [17]. In the latter 
case time-scaling is applied. Basically, the GA was applied to seek optimal initial 
values of the co-states. The fitness function consisted of the Hamiltonian of the 
optimal control problem. The genetic algorithm only computes a few generations to 
obtain an estimate of the final time and the initial values of the co-states needed to 
initialise the shooting method with. If the solution is not satisfactory the procedure is 
repeated. 

An evolutionary approach based on the Breeder Genetic Algorithm was applied to 
solve a continuous time optimal control concerning greenhouse climate [18]. An 
important property of the evolutionary algorithm was the use of several sub-
populations instead of just one population. In a subsequent paper, a comparison of the 
performance of two Evolutionary Algorithms on this problem was presented [19]. 
Both algorithms were able to solve the problem. The best result was obtained by 
combining them. The main limitation of this approach is the use of the Breeder 
Genetic Algorithm, which is not very efficient, although the use of sub-populations 
seems to improve the efficiency considerably. 

Recently, the GENOCOP algorithm was extended with filter operators in order to 
allow for the calculation of smoother optimal control trajectories [20]. With this 
algorithm some optimal control problems having singular instead of bang-bang 
solutions were solved. The following two operators realize the smoothing. Firstly 
given an individual 
^ ^ (X! , . . . , ^ , ^ , , . . . , ^ ) (16) 

two neighbouring genes (xk and xM) are selected randomly and both are replaced by 

the average value (xk +xk+1)/2 . Secondly a least squares estimation of a line through 

five successive points (xk_2,...xk+2) is performed. Then, a new individual 

x ~ Kxlf'yXk-\'Xk'Xk+l'-"'Xg) \*') 

is generated were xt_,, xk, and xk+1 are replaced by the corresponding estimates on 
the line. 

2.1.5 Evolution Strategies in optimal control problems 

An Evolutionary Algorithm inspired by ES has been proposed recently [21]. It has 
been applied to solve continuous and discrete-time optimal control problems with 
fixed final time and control constraints. A piece-wise constant approximation for the 
controls was applied. Floating-point numbers represent the individuals in the 
population. Several specialised evolutionary operators were designed to improve the 
local search capabilities of this algorithm. The recombination operators were 
crossover, interpolation and extrapolation. The mutation operators were mutation and 
creep, which used a Gaussian distribution, and also shift, smoothing and swap. The 
algorithm uses small population sizes (2, 4 and 8 individuals), which account for the 
observed high efficiency. Although the algorithm has been used successfully to solve 
some practical problems from chemical engineering the number of evolutionary 
operators and the associated algorithm parameters that need to be tuned present a 
serious drawback. 
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Evolution Strategies (ju + X) -ES improved with an arithmetical crossover operator, 
having sub-populations, and a time-variant mutation operator, were used to solve two 
types of discrete-time optimal control problems [22]. These two types of problems are 
the linear quadratic problem and the push-cart discrete-time control problem. On these 
examples this algorithm outperformed a classical Evolution Strategy in terms of both 
convergence and accuracy of the solution. 

2.1.6 Differential Evolution in optimal control problems 

To generate initial starting points for an SQP algorithm Wang and Chiou [23] have 
applied the Differential Evolution algorithm DE/best/2/bin to solve an optimal control 
concerning a differential-algebraic system. This dynamic system is described by 

dx 
E— = f(x(t),z(t),u(t),t) 

at 

for te[0,tf], where xeR"-, zeR"', ueRm, f = \f\ fl], and E = 

The final time tf can be fixed or free. Here the vectors x and z contain the dynamic 

states and steady-state variables respectively. A special feature of this optimal control 
problem is that two of the initial state variables xx (o), x2 (o) of the initial state vector 
x(0) = x0 are optimised as well. The optimal control problem then is to find a control 
function u(t) e Rm and the two initial values x,(0),x2(0) which minimises 
J = <t>(x(tf),p,tf) (19) 

subjected to the dynamic equations (17) and the additional constraints: 
h(x(t), z(t), u(t), p,t) = 0 (20) 
g(x(t),z(t),u(t),P,t)<0 (21) 
In addition the control variables and xl(0),x2(o) are bounded: 
u < u(t) < u (22) 

x, . <x,(0)<x. , JC, <xJ0)<x7 (23) 
lmin IV / lmax ' 2mm 2 \ / 2max V ' 

A piecewise constant control parameterisation is used and the time nodes 
tk, k = 0,1,..,N, which determine the parameterisation, are optimised as well but there 
number N is fixed a-priori. Time-scaling is used to accommodate for a free final 
time. In order to deal with the constraints (20) and (21) penalty functions were used. 

Lee et al. [24], proposed a modified Differential Evolution algorithm to solve the 
time-optimal control problem described in [5]. The DE applied is the one in which the 
mutated vector combines each target vector with the difference between two randomly 
selected vectors plus the difference between the best current solution in the population 
and the target vector. So the mutation operator is described by: 
a\ =ai+Fx (abesl + a,., - at - 5^ ); / = 1,..., // (24) 

The modification introduced, basically adds to the main loop involved in DE 
algorithm a secondary loop, in such a way that after a trial vector a" was created by 
the mutation equation (24) and binomial crossover (see section 1.2.1.3 in chapter 1) if 

23 



the condition 0(5,") < 0(5,) is satisfied then a 'local search' is implemented as 
follows: 

do 

a\ = a,. + F x (abesl + ar[ - ai -ah);i = 1,..., ft 

„ a^ if randb(j) < CR or j = rnbr(i) . 
a . = , ! = 1,2,...,//}, j = 1,2,...,»} 

ay, z/ randb(j) > CR and j * rnbr(i) 

while <D(3,") < ®(a*) 

where £ is a coefficient that allows to increase the value of the mutation parameter 
(F) and the vectors an dbesl, 5r and ar are the same vectors used at the main loop. 

Although improvements regarding function evaluations were reported this use of the 
algorithm parameter (F) seems to contradict the role it is known to play in DE 
algorithms since by increasing the value of F the global search capability of DE is 
increased instead of local search potential. 

A modified Differential Evolution algorithm was proposed lately [25] to resolve 
optimal control problems with decision parameters and general constraints. The 
dynamic system is described by: 

x = f{x(t), u(t), p,t),te[0,tf] (25) 

where x(t) e R" are the states, u(t) e Rm are the control inputs, and p eR9 is a 
vector of decision parameters. The initial conditions x(0) = x0 are given or can be 
considered as decision parameters. The constraints are: 
hk(x(t),u(t),p,t) = 0, k = \,...,ne, ne<n (26) 

gk{x{t),u{t\p,t)<0,k = \,...,nd (27) 
Additionally control and decision parameter constraints may be included: 
A m i „ ^ A ^ , „ , * ' = U,.,<? (28) 

A piecewise constant control parameterisation is used in which the time nodes 
tk, k = 0,l,..,N and their number N are a-priori fixed. Two new evolutionary 

operators that supposedly make DE algorithms more efficient were proposed and 
tested using the DE/best/2/bin algorithm. The acceleration operator was introduced to 
increase the speed of convergence of the algorithm. It uses the best current solution in 
the population to start a local search as follows: 

-, ( ) = | « te,(g) if J(abesl(g)<J(abesl(g-^) ( 2 9 ) 

l<3'testis)~cc\U otherwise 
where v / is the gradient of the objective function calculated by finite differences, and 
g denotes the current generation. A migration operator is proposed to avoid 
convergence to local minima caused by the previous operator, which is applied only if 
the diversity of the population is less than a specified tolerance. In that situation 
perturbing the best current solution present in the population generates new 
individuals: 
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«, (g) = abest (g) + N(0, tr),i = \,...,fi,i* best (30) 
where N(0,a) denotes a vector of independent random Gaussian numbers with mean 
zero and standard deviation a. 

Even though this approach worked well compared to a classical genetic algorithm a 
detailed study of its performance compared to DE algorithms has not been made yet. 
Furthermore this hybrid algorithm is considerably more complex, since it has more 
algorithm parameters than a classical DE. Nonetheless the proposed operator to 
accelerate the convergence of DE algorithms deserves additional investigation. This 
investigation should also include the influence of the common algorithm parameters 
in DE (population size, mutation parameter) on the convergence and premature 
convergence. 

2.1.7 Conclusions. 

From the previous review it is clear that mainly binary-coded genetic algorithms and 
real-valued evolutionary algorithms have been applied to calculate solutions of 
optimal control problems while Evolution Strategies and Differential Evolution 
algorithms only rarely have been applied. In several references using GA's the control 
parameterisation was not fixed a-priori but was itself part of the optimisation. In terms 
of digital control problems, where the control is piecewise constant, this can be 
interpreted as optimising the sampling scheme. Optimising the control 
parameterisation however highly complicates the optimal control problem, which 
enlarges the probability of finding undesired or local solutions, despite the global 
nature of GA's. Roughly speaking GA's allow optimising almost anything at the same 
time. This possibility carries the danger of not carefully selecting, and judging 
mathematically, the nature and meaningfulness of the problem. 

To the best knowledge of the author, the issue of efficiency of Evolutionary 
Algorithms in solving optimal control problems has been analysed only superficially 
in the literature. The same holds for the potential advantages of Evolutionary 
Algorithms to solve multi-modal optimal control problems. 

The aim of this thesis therefore is to investigate and search for efficient GA's to solve 
multi-modal optimal control problems. An important additional requirement for the 
practical application of these algorithms is that they should require no algorithm 
parameter tuning, or only a little. Algorithms with less algorithm parameters should 
therefore be preferred and guidelines for the choice algorithm parameters and the 
possible development of automatic algorithm parameter tuning strategies are 
important issues. 
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2.2. Evolutionary algorithms for optimal control of chemical 
processes+ 

2.2.1 Abstract 

Because many approaches to Optimal Control problems may find local solutions, 
global optimisation methods are of interest. In the past, global optimisation methods 
such as Iterative Dynamic Programming, Stochastic Algorithms and Genetic 
Algorithms have been used to solve dynamic optimisation problems in chemical 
engineering. Recently, Evolutionary Algorithms have been proposed to solve global 
optimisation problems and there is an increasing interest to use them in the solution of 
high-dimensional, non-linear, multivariable and multi-modal dynamic optimisation 
problems. In this work an Evolutionary Algorithm, which uses a real valued 
chromosomes representation and specialised evolutionary operators is studied by 
solving some dynamic optimisation problems taken from the chemical engineering 
literature. Results show that this approach is suitable and can have some advantages 
over other approaches used by researchers so far. 

Keywords: Chemical processes, Evolutionary Algorithms, Optimal Control, 
Optimization. 

2.2.2 Introduction 

Numerical methods for the solution of optimal control problems can be roughly 
divided in two groups: indirect and direct methods [1,2]. The first group is based on 
finding a solution that satisfies the Pontryagin's maximum principle or the related 
first-order necessary optimality conditions through solving a two-point boundary-
value problem [3]. These methods may find local solutions. Direct methods are based 
on an approximation of the infinite dimensional optimal control problem by a finite 
dimensional optimisation problem, or non-linear programming (NLP) problem. This 
transformation can be done by either control and state parameterisation, or only 
control vector parameterisation [4]. The parameterisation may introduce additional 
local minima [1]. Gradient-based optimisation techniques may converge to a local 
optimum [5]. To surmount this problem, global optimisation algorithms can be used, 
for instance Iterative Dynamic Programming [6], Stochastic Algorithms [7], and 
Evolutionary Algorithms [5, 8]. 

In this research, the use of optimisation algorithms inspired by natural evolution is 
investigated and their performance is compared with solutions obtained using well-
known approaches in chemical engineering. Firstly, a general description of a class of 
optimal control problems we are interested in is given. Next, a general description of 
an Evolutionary Algorithm is provided, and the properties of the approach proposed 
here are outlined. Finally, some examples of optimal control of chemical processes 
are solved to illustrate how this paradigm can be applied. The results are compared 

+ Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Proceedings of the 
IASTED International Conference Control and Applications (CA'2000), May 24-27, Cancun, Mexico, 
pp.155-161. 
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with Sequential Quadratic Programming (SQP) algorithms, Iterative Dynamic 
Programming (IDP) and Stochastic Algorithms. 

2.2.3 The optimal control problem 

We consider the class of optimal control problems in which the plant is described by 
the non-linear time-varying dynamic equation 

x(t) = f(x(t)Mt),0 (1) 
where x(t) e 9T is the state and u(t) e 5R"1 is the control. The control inputs are 
constrained, 
al(t)<u,(t)£fil(t),i = ia,..,m, (2) 
where a,(r) and pt(t) are known time functions. Furthermore, 
x(0) = x0, (3) 
is the initial condition. The performance index associated with the system is, 

'/ 
J (u(t)) = 0(x(tf ),tf)+ JL(x(t), u(t), t)dt, (4) 

0 

where [0, tf] is the interval of interest. The final time tf is fixed. The optimal control 
problem is to find the input u (t) on the time interval [0, tf] that drives the plant along 
the trajectory x (t) such that the cost function J(u(t)), (equation (4)) is minimised [3, 
9]. The previous so called Bolza formulation of an optimal control problem can be, 
conveniently, rewritten as the Mayer formulation that yields a simpler expression that 
makes it more suitable for a numerical solution. By introducing a new state variable, 

x„+i(t) = L(x(t\u{t),t), *„+1(0) = 0, (5) 

equation (1) is re-written as, 

x'(t) = f(x'(t),u(t),t), (6) 

where x'(t) e 5R"+1 and the performance index is converted to: 

J(u(t)) = f (x'(tf \tf) = </>(x{tf ),tf) + xn+l (tf), (7) 

where, 

^ ':9T+1->9?. (8) 

In order to use direct methods to solve this class of optimal control problems, the 
continuous problem has to be transformed into a non-linear programming problem or 
parameter optimisation problem. Let the time interval 10 [to, tj\ be discretized using N 
control time nodes tt such that: 0 = t0 <t, <,...,< tN =tf. In each of these time 

intervals the control u{t) is approximated by a polynomial in t. The control time 
nodes and the coefficients of the polynomials then uniquely define the control. For 
instance, using a piecewise constant approximation the unknown control input u{t) is 
determined by, 
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u(t) = u(tk)=uk,te [tk,tk+1 ),k = 0,1,..,./V-1 
So the control is fully determined by the vector, 
~ \ T T T Y 
U = |W 0 W, . . M J V . J 

(9) 

(10) 

Denote by ui the il element of u . Now, with a guess value for the control history u 
and using the appropriate piecewise polynomial approximation it is possible to 
integrate the dynamic equation (eqn 6). A state trajectory x\u,t)is obtained, from 
which in turn, the parameterised performance index J(u) (eqn 7) can be calculated. In 
this way, the Non-linear Programming problem approximation for the Optimal 
Control Problem defined before can be written as follows, 

min J{u) (11) 

subject to, 

«™w ^ "m*+, ̂  A t* . * = 0,1,..,N- \,i = 1,2,..,m 
where 
«m*+, = max(a,.(')), t e [tk,tM\ k = 0,1,..,N -1, i = 1,2,..,m 

Pmk+i = mm(fi,(*)\ te[tk,tk+l),k = 0,1,..,N-l,i = 1,2,..,m 

(12) 

(13) 

(14) 

2.2.4 Evolutionary Algorithms 

A generic description of an Evolutionary Algorithm is presented in figure 1 [10, 11]. 
An Evolutionary Algorithm is a stochastic search method, which maintains a 

population/3^) := {a, (t),..., aM{t)} of individuals (chromosomes) aiel, at generation 
t, where / is a space of individuals, and /i is the population size. Each individual 
represents a potential solution and it is implemented as some generic data structure. 
By means of the manipulation of a family of solutions, an Evolutionary Algorithm 
implements a survival of the fittest strategy in order to try to find better solutions. 

Each individual is evaluated by a 
fitness function O : / —> 9?, and real 
values are assigned to each potential 
solution that is a measure of how 
individuals perform in the problem 
domain. Next, an iterative process 
starts in which a set of evolutionary 
operators [12] is applied to the 
population in order to generate new 
individuals. From a set 

Procedure Evolutionary Algorithm 
t:=0; 

Generate P(0) := {^(0),. ,",,(0)} e / " ; 

Evaluate P(0): {O(a1(0)),...,O(aA,(0))}; 

While (i(P(t))*true) do 

Recombine P\t) := r@r(P(t)); 

Mutate P"(t):=m®m(P\t)); 

Evaluate P\t): {<D(<(/)),...,O(al(0)}; 

Select P(t + \):=s®s{P"(t)KjQ); 

t-t+1; 

End 

Figure 1. Structure of an Evolutionary Algorithm. 
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{w&l,...,w&z \w®, :lx -+I*}v{w®0:I" ^>IX} of probabilistic evolutionary 
wo, operators (for instance: crossover, mutation), each one specified by parameters 
given in the sets @. c 5R, some operators are applied to the population and a new 
evaluation of its fitness is calculated. A recombination (crossover) operator 
r&r :I''^IX and a mutation operator m®m :Ix^>I:i are applied to the population. 
A selection operator s 8 1 : ( / i u r , 1 ) - » r which may modify the number of 
individuals from A to A+/i, is applied as well, where l , / / e N , and // denotes the 
number of parent individuals and A the number of offspring. As before a set of 
parameters ©s may be used by the selection operator, and Q c P(t) denotes an 

additional set of individuals. r.I"-+ {true, false] is the termination criterion for the 
evolutionary algorithm. After a number of generations, it is expected that the best 
individual of the population represents a near-optimum solution. 

Three main streams of evolutionary algorithms can be identified: Genetic Algorithms 
[13], Evolution Strategies [14], and Evolutionary Programming [15]. They have some 
differences but also they share a number of similarities. Moreover, it is clear that for 
the last several years the boundaries between these approaches have broken down to 
some extend [16]. Recently, researchers have started to apply this paradigm to solve 
optimal control problems in chemical engineering and in bioprocessing. A genetic 
algorithm was used to solve a hierarchical time-optimal control of a continuous co-
polymerisation reactor during start-up or grade change operation [17]. Pham [8] 
investigated the performance of an evolutionary method for the dynamic optimisation 
of several Continuous Stirred Tank Reactor (CSTRs) problems. The application of a 
genetic dynamic optimisation method to solve several problems in bioprocessing is 
given in [18]. The performance of an evolutionary strategy for fed-batch bioreactor 
optimisation has been investigated in [19]. 

The evolutionary algorithms used during this research have the following specific 
properties: the chromosome representation is a real-valued vector where each real 
number represents the value of an unknown parameter («,) of the approximated 
control input u(t). The starting values for the parameters are calculated randomly 
inside the boundaries of the control-input (eqn 2). In order to represent a multi-input 
control system, a long chromosome of real-values was created. This has several 
advantages over the classical binary code of a canonical genetic algorithm [11]. The 
evaluation of the population consists of the integration of the set of dynamic equations 
(eqn 6) in the specified time interval, using the values of the parameterised control 
inputs and the calculation of the performance index (eqn 7). Our solution uses a C-
MEX file s-function and the ODE45 integration routine available in MATLAB to 
integrate the dynamic equations (eqn 6). 

A brief description of the evolutionary operators used for this work is provided next. 
Additional information is available elsewhere [11, 20]. Three recombination 
(crossover) operators were used: arithmetic, heuristic and simple crossover. Let A(t) 
and B(t) be two n-dimensional row vectors denoting parents from the population P(t). 
The arithmetic crossover operator generates two linear combinations of the parent's 
solutions: 
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A'(t) = rA(t) + (l-r)B(t) (15) 

B'(t) = (l-r)A(t) + rB'(t) (16) 
where r is a random number from a uniform distribution from 0 to 1. 

The heuristic crossover operator uses the individual's fitness information to generate a 
new solution: 

A'(t) = A(t) + r(A(t) - B{t)) • if • 0(A(t)) < 0 (5(0) (17) 
and A(t) is feasible according to: 

feasibility A'(t) = \ ' ' ' ' \ (18) 
[ 0, otherwise J 

If after a number of attempts no new feasible solution is found, the operator produces 
no offspring 

A'(t) = A(t) (19) 

with a,, |3, defining the lower and upper bounds respectively for each variable i. 

The simple crossover operator generates a random number r from a uniform 
distribution from 1 to m and creates two new individuals according to: 

f a,,if -i< r ] 
A'(t) = a; = \ "J . (20) 

[o,, otherwise J 

BV)=b;=\b»if
th

i<r\ (2D 
[an otherwise j 

Four mutation operators also were used, namely: boundary, multi-non-uniform, non
uniform and uniform mutation. Boundary mutation randomly selects one variable j 
and sets it equal to either its lower or upper bound, where r is a random number from 
a uniform distribution from 0 to 1. 

A\t) = a[ 

ai,ifi = j,r<0.5 

p„if-i = j,r> 0.5 
a notherwise 

(22) 

Uniform mutation randomly selects one variable j and sets it equal to an uniform 
random number U(a;, Pi): 

At) = a,=< , \ (23) 
[ anotherwise J 
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Non-uniform mutation randomly select one variable j and sets it equal to an non
uniform random number: 

A(t) = a\ = 

fl(+(fl-a,)s(0-»y-1<0.5 
at - (a, + ai)g(t) • if-ri> 0.5, 

anotherwise 

where g(t) = r2(l- t 
) 

omax / 

(24) 

(25) 

ri and r2 are uniform random numbers between (0,1), t is the current generation 
number of the evolutionary algorithm and gmax is the maximum number of 
generations, b is a shape parameter. The multi-non-uniform mutation operator applies 
a non-uniform mutation operator to all the variables in the parent A(t). 

The normalised geometric ranking operator proposed in [21] was used for the 
selection of individuals for the next generation. It is a ranking selection method that 
calculates the probability of an individual to be selected as: 

p(i) = q'(l-qy-l,q' q 

i - ( i - ? ) " 
(26) 

where q is the probability of selecting the best individual (generation gap), r is the 
rank of the individual, // is the population size. The software implementation for the 
MATLAB environment, Genetic Algorithms for Optimization Toolbox (GAOT) [20] 
was used for all our investigations. 

2.2.5 Case studies and results 

2.2.5.1 High-dimensional non-linear continuous stirred tank reactor 

In [6] Luus presents a high-dimensional and non-linear chemical process, which 
includes five simultaneous chemical reactions in an isothermal continuous stirred tank 
reactor. The system in Mayer form is described by eight differential equations: reactor. The system in Mayer 

x\ =u4 -qxx -\1.6xxx2 -23JC1X6M3 

xi =H[ -qx2 -\1.6xlx1 -146x2x3 

Xi = u2 - qxi - l'ix1xl 

XA =-qx4 +35.2x,x2 -51.3x4x5 

xs =-qx5 +219x2x3 -51.3x4x5 

X6 = -qx6 + 102.6x4x5 - 23X,X6H3 

X7 = -qx-j + 4 6 X , X 6 M 3 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 
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x» = 5.8(4*, - " 4 ) - 3 . 7 M , -4.1«2 + ?(23x4 +1 lx5 + 28x6 + 35x7) -5wJ -0.099 (34) 

where the states denote concentrations, 
q{t) = ul{t) + u1{t) + uA{t), (35) 
is the total feed rate and 113(1) is the squared root of the light intensity. The time 
interval is given: 0 < t < tf = O.2/1, and the initial conditions are: 

X(0) = [0.1883,0.2507,0.0467,0.0899,0.1804,0.1394,0.1046,0]7' 
With the constraints for the control inputs: 

0<w,(0<20 

0<w 2 (0<6 

0 < K 3 ( 0 < 4 

0 < K 4 ( 0 < 2 0 

(36) 

(37) 
(38) 
(39) 
(40) 

Thus, the optimal control problems consists in finding the control histories ui(t), U2(t), 
U3(t), U4(t) in the specified time interval such that the performance index: 

J = xs(tf) 

related with the economic profit is maximised. 

(41) 

zzi : 

—| L_ r 

In order to solve this problem by means of a direct approach, the time interval was 
divided in the same number of intervals used by Luus [6], N=10, when three control 
values are taken into account (u4(i)=6.G) and N=l 1 in the case of four control values. 
The value of the performance 
index obtained by the e 

evolutionary algorithm in 3 

the first case was J=20.0893 
with a population size of 40 
individuals and 2000 
generations. No > 
considerable improvement 
was obtained with more 
individuals and an increasing 
number of generations since • 
with a population size of 60 
chromosomes and 3000 
generations a value of 
J=20.0896 was obtained. The F iSu r e 2- Optimal control of a CSTR by EAs and SQP. 
solution obtained by Luus [6], using Iterative Dynamic Programming, was J=20.0895. 
The best value from several runs (ten) using a SQP-based algorithm (fmincon.m 
function from MATLAB's optimisation Toolbox) was 19.6234. The optimal controls 
are shown in figure 2. Shapes of the control functions obtained by the Evolutionary 
Algorithm are almost equal to those obtained by Luus [6]. For N=40, which is 
identical to Luus [6], J=20.0924 was obtained using a population size of 40 
individuals and 2000 generations. However, with an increasing number of individuals 
(100) and more generations (3000) this value was J=20.0935, against a value of 
J=20.0953 obtained by Luus [6]. 
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In the case of four controls a value of J=21.7574 was obtained using a population size 
of 60 individuals and 3000 generations, against J=21.7572 reported using Iterative 
Dynamic Programming. As 
expected the SQP algorithm was 
unable to approximate the IDP 
solution reported previously by f. 
Luus [6]. From ten optimisations 
its best value was J=20.5105. 
Shapes of the controls calculated 
by Sequential Quadratic 
Programming, the Evolutionary 
Algorithm and those reported for 
IDP are presented in figure 3. f 
We can see that for control U3(t) 
and U4(t) the plots of IDP and EAs 
completely overlap and tiny 

differences are shown in the 
case of controls ui(t) and 
U3(t). On the other hand the 
pattern of the solutions found by the SQP algorithm is completely different. 

2.2.5.2 Multimodal continuous stirred tank reactor (CSTR) 

The optimal control of a non-linear CSTR with multiple solutions has been studied by 
a number of researchers [22, 23]. The CSTR model in Mayer form is given by three 
differential equations: 

-

— IDP 

• 'SCP 

\ ^k 

6 

2 
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,..] !.... 
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Figure 3. Optimal control of a CSTR with four controls by 
EAs. 

25* 
xi = -(2 + u)(xl + 0.25) + (x2 + 0.5)exp( - ) 

xt+2 
25* 

xi =0 .5-x2 -(x2 +0.5)exp( - ) 
xl +2 

Xi = xl +x2 + 0.1w 

(42) 

(43) 

(44) 

with the initial conditions x(0) = [0.09,0.09,0.0]r. The final time tf is 0.78. The 
performance index to be minimised is defined as 

J = xi(tf) (45) 

Luus and Galli [22], and Luus [23] reported a local minimum of J=0.244425 and a 
global minimum of J=0.133094 using the Pontryagin's maximum principle. Using 
IDP Luus and Galli [22] found the values J=0.24452 and J=0.13336, respectively. To 
solve this problem by Evolutionary Algorithms, the control time grid was divided in 
the same number of control intervals as used by Luus and Galli [22], N=40 and a 
piecewise constant approximation for the control was selected. The chromosomes of 
the evolutionary algorithm were codified as real-valued vectors with values inside the 
range -10 < u{t) < 10. The population size used was 60 individuals and the number 
of generations was 3000, to obtain a value of the performance index J=0.13336. 
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Whatever the starting values for the parameterised control were, the Evolutionary 
Algorithm never converged to the local minima. The Evolutionary Algorithm was run 
seven times. The same value for the performance index was obtained using a 
population of 100 individuals and 3000 generations. The best solution obtained by an 
SQP-based algorithm with the same boundaries for the control input was J=0.144028 
using a multistart strategy (ten optimisations). 

The Nelder-Mead Simplex algorithm (fminsearch.m function of MATLAB's 
Optimization Toolbox), which does not use derivatives got the solution J=0.133366 as 
a multistart optimisation (ten optimisations) was done. However, both SQP and 
Nelder-Mead's algorithms were very sensitive to the initial guesses since they often 
converged to the solution around the value J=0.2444, the local minimum. The 30% of 
the times the Nelder-Mead algorithm converged to the local minima and this 
percentage was even greater ' 
in the case of the SQP 
algorithm (80%). The 
control functions obtained 
by all three algorithms are 
presented in figure 4. It is 
almost impossible to 
distinguish between the § 
plots of the EA and Nelder-
Mead solutions because they 
overlap. The control history 
obtained when the SQP 
algorithm converges to the 
local minimum is shown as 
well. As done by Luus and 
Galli [22] this problem was 
also solved with less time 
intervals (N=20) by the 
Evolutionary approach. In 

this case the performance index value was J=0.134155 using 40, 60 and 100 number 
of individuals and 3000 generations. The value obtained previously by Luus and Galli 
wasJ=0.13416. 

Time [sec: 

Figure 4. Optimal control of multimodal CSTR using EAs. 

2.2.5.3 A non-differentiable system 

The optimal control of a non-differentiable system has previously been analysed by 
several researchers [7, 23]. A system described by three differential equations is 
considered which a rectangular pulse signal is applied. 

xi = x2 

x2 = —xl —x2+u + d 

x3 =5*! +2.5*2+0.5w 

(46) 

(47) 

(48) 
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where d= 100[U(t-0.5)-U(t-0.6)] (49) 
The final time considered is tf=2.0 seconds and the initial conditions are: 
x(0)=[0 0 Of (50) 
The control trajectory minimising the performance index 
J = x,(tf) (51) 

has to be found. 

To use the evolutionary approach for this problem, the time interval was divided in 
the same number of subintervals used before by Luus [23], N=40, and a piecewise 
constant control was used to approximate the control input. Because the control input 
does not have constraints we have to specify some boundaries for the variables of 
interest. The chromosomes were codified as real numbers inside the range 
- 20 < u(t) < 20. The number of individuals for the evolutionary algorithm was 60, 
and the number of generations 1000 to obtain a value of the performance index of 
J=58.0927, which is less than 
those values reported previously 
(J=58.20) by Luus [23] using 
Iterative Dynamic Programming 
and Banga and Seider [7] 
(J=58.13) using their stochastic 
optimisation method. 

Moreover, a performance f 
value of J=58.1194 is 
obtained with only 500 
generations and a population 
size of 60 individuals. As 
expected, the SQP-based 
algorithms failed completely to 
solve this problem. The Nelder-
Mead's simplex algorithm 

(function fminsearch.m of 
MATLAB's Optimisation 
Toolbox) which does not 
calculate derivatives was used as well and the best value obtained from several 
optimisations (four) was J=58.1057. The calculated control functions, which are very 
similar in shape to the ones calculated by Luus and Banga, are presented in figure 5. It 
is worthwhile to say that even in the case of a lower number of intervals (N=20) the 
Evolutionary Algorithm is able to converge to a very good solution (J=58.1050) but 
requiring in this case a population size of 60 individuals and 2000 generations. 

Tme[secs] 

Figure 5. Optimal control of a non-differentiable system. 

2.2.6 Conclusions 

The potential advantages of the use of Evolutionary approach to solve a class of 
optimal control problems were investigated by solving a high dimensional non-linear, 
a multi-modal non-linear and a non-differentiable, dynamic optimisation problem 
from chemical engineering literature. The results let us conclude that this approach is 
feasible to solve this class of optimal control problems. Moreover, Evolutionary 
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Algorithms seem to be able to always approximate the global optimum where other 
methods have difficulties in doing so. Nevertheless, further research is needed in 
order to investigate whether this approach is competitive computationally compared 
to other global optimisation methods used to solve this kind of problems. Future 
extensions of this work will be the solution of optimal control problems with final 
state constraints, problems with free final time and optimal control problems with 
general state constraints. 
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PART II 

EFFICIENT DIFFERENTIAL EVOLUTION ALGORITHMS IN OPTIMAL 
CONTROL 
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3 Efficient Differential Evolution algorithms for multimodal optimal 
control problems+ 

3.1 Abstract 

Many methods for solving optimal control problems, whether direct or indirect, rely 
upon gradient information and therefore may converge to a local optimum. Global 
optimisation methods like Evolutionary Algorithms, overcome this problem. In this 
work it is investigated how well novel and easy to understand evolutionary 
algorithms, referred to as Differential Evolution (DE) algorithms, and claimed to be 
very efficient when they are applied to solve static optimisation problems, perform on 
solving multimodal optimal control problems. The results show that within the class 
of evolutionary methods, Differential Evolution algorithms are very robust, effective 
and highly efficient in solving the studied class of optimal control problems. Thus, 
they are able of mitigating the drawback of long computation times commonly 
associated with evolutionary algorithms. Furthermore, in locating the global optimum 
these Evolutionary Algorithms present some advantages over the Iterative Dynamic 
Programming (IDP) algorithm, which is an alternative global optimisation approach 
for solving optimal control problems. At present little knowledge is available on the 
selection of the algorithm parameter values that steer the optimisation process when 
DE as they are applied to solve optimal control problems. Our study provides 
guidelines for this selection. In contrast to the IDP algorithm the DE algorithms have 
only a few parameters that are easily determined such that multimodal optimal control 
problems are solved effectively and efficiently 

KEY WORDS: Evolutionary Algorithms, Differential Evolution, Optimal Control, 
Optimization, Multimodal 

3.2 Introduction 

Indirect numerical methods for optimal control based on Pontryagin's Minimum 
Principle use gradient information and local search methods. Therefore, if the optimal 
control problem is multimodal, convergence to a local optimum is likely. 
Deterministic direct methods for optimal control parameterise the controls and also 
use gradient information and local search methods to solve the resulting Non-Linear 
Programming (NLP) problem. Consequently they may also converge to a local 
solution. The simplest way to increase the chances of finding the global solution by 
these approaches is by repeating them several times with different control 
initialisations. Doing so, there still are optimal control problems that require a very 
close guess to the global optimum. To locate the global optimum or a sufficiently 
close approximation, global optimal control approaches are needed. An approximate 
global solution may be used to initialise a direct or indirect local optimisation method 
to obtain the global solution accurately. 

In this study, Evolutionary Algorithms (EAs) are used to solve two optimal control 
problems that are known to have several local minima. Firstly, a First Order gradient 

+ A slightly modified version was submitted to the Journal Applied Soft Computing by I.L. Lopez 
Cruz, L. G. Van Willigenburg and G. Van Straten 
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algorithm from optimal control is used to solve both problems. The objective is to 
illustrate some limitations of this approach in solving multimodal optimal control 
problems. Next, the performance of several evolutionary algorithms is compared with 
that of a direct global method known as Iterative Dynamic Programming, which in the 
literature is reported as a very reliable method for the location of the global optimum 
in optimal control problems. It is well known that many Evolutionary Algorithms tend 
to be inefficient computationally when they are applied to continuous parameter 
optimisation problems. Since the computation time is often critical in solving optimal 
control problems, the design of more efficient evolutionary algorithms is an important 
challenge. In this work it is investigated how well novel and easy to understand 
evolutionary algorithms, referred to as Differential Evolution [1, 2] algorithms, and 
claimed to be very efficient when they are applied to solve static optimisation 
problems, perform on solving multimodal optimal control problems. Additionally, 
almost no knowledge is available on how to choose the algorithm parameters that 
steer the optimisation process, when Differential Evolution algorithms are applied to 
solve multimodal dynamic optimisation problems. Hence in this work, it is 
investigated how the DE algorithm parameters 'population size', 'crossover constant' 
and 'differential variation coefficient' act upon its efficiency and effectiveness in 
solving the selected benchmark problems. Previous work on the application of some 
DE to solve optimal control problems can be found in references [3, 4, 5]. To our best 
knowledge there are no previous studies on the performance of DE to solve 
multimodal optimal control problems. 

The paper is organised as follows: in section two a general description of the class of 
optimal control problems we are interested in is given. In section three a general 
description of an Evolutionary Algorithm, and the specific characteristics of both a 
real-valued genetic algorithm with sub-populations and the Differential Evolution 
algorithm are provided. In section four a brief description of a first order gradient 
algorithm for the solution of optimal control problems is given and also the main 
properties of the Iterative Dynamic Programming algorithm are described. Section 
five presents results obtained when the studied evolutionary algorithms were applied 
to two benchmark optimal control problems belonging to the class of interest. These 
results are then compared to those obtained with the indirect and gradient method and 
the direct Iterative Dynamic Programming algorithm. 

3.3 The class of Optimal Control Problems 

Consider the class of optimal control problems where the system is described by the 
non-linear time-varying dynamic equation: 

x = f(x(t),u(t),t) (1) 
where x(t) e 9T is the state and u{t) e SR" is the control. The control inputs are 
constrained, 

al(t)<ui(t)</3i(t),i = l,2,..,m, (2) 

where at{t) and Pt{t) are known time functions. Furthermore, 

x(0) = x0, (3) 
is the known initial condition. Then, the optimal control problem is to find the input 
u * (?), t e [t0, tf ] that drives the plant along the trajectory x * (t), te[t0,tf] such that 

the cost function 
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J{u(t)) = </>{x{tf ),tf)+ JL(x(t), u(t), t)dt, (4) 
o 

is minimised where the final time tf is fixed [6]. There are two general approaches to 
solve these problems: indirect and direct methods [7]. The first group is based on the 
solution of a calculus of variations problem through the use of the Pontryagin's 
minimum principle (PMP) [8]. 

In using an indirect approach the necessary conditions for a stationary solution are 
derived adding the dynamic equations (1) to the performance index (4) by using a 
time-varying Lagrange multiplier vector A(t) e R" 

J' = <j>{x(tf), tf) + j{L(x(t), i/(0,0 + % ( 0 / 0 ( 0 , i/(0,0 - £ (0 x}dt (5) 
0 

Integrating by parts the last term below the integral and defining the Hamiltonian 
function as: 
H(x(t), ii(0, A(0,0 = * WO, u(t), 0 + XT ( 0 / W O . " (0,0 (6) 
the extended performance index is obtained: 

'/ 
J' = (/>{x(tf ,tf))- AT (tf )x(tf) + AT (0)x(0) + \{H{x(t), i/(0, A(0,0 + % (t)x(t)}dt (7) 

o 
An infinitesimal variation du{i) will produce the variations dx{t) and &/' in the states 
and the performance index respectively: 

&r = [^(tf)-A
T(tf)&] + [AT(0)&]+ \[(8H{x'u'A't)+iT(t))Sx+^u(t)]dt (8) 

dx * dx du 
Hence, by choosing the multiplier functions A(t) in such a way that the coefficients of 
the state's variations vanish from (8) we obtained the Euler-Lagrange equations in the 
Calculus of variations [8]. 
'x dH(x,u,A,t)_ dL(x(t),u(t),t) f df(x(t),u(t),t) (Q) 

dx dx dx 

XT(tf) = -^-^- (10) 
f dx{tf) 

dH(x,u,A,t) _ 8L(x(t),u(t),Q | f df(x(t),u{t),t) = Q Q ̂  ^ f 

du du du ' / 

If the controls are bounded according to Pontryagin's minimum principle, equation 
(8) becomes: 
H(x * (0, u*(t),A*(t),t)<H(x* (0, t/(0, >* * (0 ,0 (12) 
for all admissible u(t). Hence, to find a control vector function u(t) that minimises 
the performance index (4) a two-point boundary value problem with split boundary 
conditions has to be solved. 

In a direct approach, on the other hand, the optimal control problem (l)-(4) is 
approximated by a finite dimensional optimisation problem, which can be cast in a 
non-linear programming (NLP) form and solved accordingly [9, 10]. This is achieved 
through control parameterisation. In our case the control u(t) is assumed to be 
piecewise constant 
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u(tt) = ut, te[tk,tk+1],k = 0,l,...,N-\,t0=0, tN =tf (13) 

This is a realistic assumption in the case of digital control. As a result N x m 

parameters determine the control over [0 ,^] . The NLP problem is to find the stacked 

control vector u eRmxNdefined by u=[ul,.uf ,...,ul,_1] = [u-l,...,umxN], where u,, 

i = 1,2,..., mxN are scalar parameters that minimise the cost function (4). 

3.4 Two classes of Evolutionary Algorithms: Breeder Genetic Algorithms and 
Differential Evolution 

Following Back [11] a generic description of an Evolutionary Algorithm is presented 
in figure 1. An Evolutionary Algorithm is 
a stochastic 
maintains 

search method, which Figure 1. 
Algorithm 

Procedure Evolutionary 

Generate P(0) := {^(O),...,^^)} e I?; 

Evaluate P(0): {0(^(O)),...,O(o^(O))}; 

While (i(P(g))*true) do 

Recombine P'(g) := r@r(P(g)); 

Mutate P\g):=m@m(P\g)); 

Evaluate 

P\g):{<S>(al(g)\...Mal(gm 
Select P(g +1) := s&s (P"(g) u Q); 

g:=g+l; 
End 

populationP(g) := {a, (g),..., «„(#)} of 

individuals (chromosomes) 

a, e/;z = 1,...,//, at generation g, where 
/ is a space of individuals, ju is the 
parent population size. Each individual 
represents a potential solution of the 
problem and it is implemented as some 
generic data structure (strings of bits in 
genetic algorithms, real numbers in 
Evolution Strategies). By means of the 
manipulation of a family of solutions, an 
Evolutionary Algorithm implements a 
survival of the fittest strategy in order to try to find the best solution to the problem. 

Each individual is evaluated by a fitness function O: / —» R, and a real value is 
assigned to each potential solution, which is a measure of how individuals perform in 
the problem domain. Next, an iterative process starts in which a set of evolutionary 
operators [12] is applied to the population in order to generate new individuals. From 
a set {w©!,..., w0z | w©, : lx ->• lx} u {w0o : f -> Ix} of probabilistic evolutionary 
w©. operators (for instance: crossover, mutation), each one specified by parameters 
given in the sets 0, c 9?, some operators are applied to the population and a new 
evaluation of its fitness is calculated. The main evolutionary operators applied to the 
population P{g) are: recombination (crossover) r&r :I

fl^>Ix and mutation 
m0m : Ix -> Ix are. A selection operator s&s: [I* u I"+x)-»I*1 which may modify 
the number of individuals from A or /t+// to n , is applied as well, where X, // e N, 
and // denotes the number of parent individuals and X the number of offspring. As 
before, the selection operator may be governed by a set of parameters defined in 0 s . 
And Q a P(g) denotes an additional set of individuals. The function 
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/ : / ' ' - > {true, false} represents the termination criterion for the evolutionary 
algorithm. After a number of generations it is expected that the best individual of the 
population represent a near-optimum solution. 

3.4.1 Two Evolutionary Algorithms based on the Breeder Genetic algorithm 

The Breeder Genetic Algorithm (BGA) is one of the most efficient genetic algorithms 
available in the domain of continuous parameter optimisation. In addition, an 
extended theory has been proposed that verifies some practical results [13]. BGA 
utilises a real number representation for a chromosome. That is, // real vectors of 
dimension d make up the population P(g). According to the previous notation: 
a = x = {xl,...,xd)&Rd . Each potential solution in the evolutionary framework 
consists of the vector u =[ul,ii2,...,umxN] of parameters obtained from the 

transformation of the continuous optimal control problem into a NLP problem. The 
only necessary modification is a rearrangement of parameters, in order to ensure that 
consecutive realizations of one single element of the control vector appear in adjacent 
positions in a chromosome. That is, a chromosome is implemented specifically as the 
vector of floating-point numbers: a = w , so d = mxN. 

The genetic operators that have been chosen to make up the Evolutionary Algorithm 
are (i) cross-over by Discrete Recombination, (ii) mutation by the operator of the 
Breeder Genetic Algorithm [13], and (iii) selection by Stochastic Universal Sampling. 
Also the option of sub-populations, to be described later, has been implemented in 
order to increase the chances to find the global optimum. According to Muhlenbein 
[13], the discrete recombination rd :I

2 —» / (crossover operator) is defined as follows: 
let 5, = {a\,...,ad) and a2 = (a^,...,ad) be two parent chromosomes. Then each 
element of the offspring a, = (af,...,aj) is computed by 

, (a1 if rand{) < 0.5 
af= ' . ,i = \,...,d (14) 

la, otherwise 

where randO is a uniform random number from [0,1]. This operator is applied // 
times by picking up parents randomly in order to create an offspring population. 

The mutation operator of the Breeder Genetic Algorithm m{p r):I ->I is defined as 

follows: let a = (al,...,ad) be a parent solution. Then, for a given probability of 

mutation pm 6 [0,1] and a specified 'shrinking mutation range' rs e[0,l], a gene 

(variable) a\ is selected and modified to generate a new variable according to: 

, \ai+mr-rangei -8 if rand{)< 0.5 . 
at =< ,i = l,...,d (15) 

[ai - mr • rangej • 8 otherwise 

where ranget = -rs(Pt -at), mr=\ ,5= > y,2 , 
2 [0 otherwise ~J 

randQ is a uniform random number from [0,1], y. e [0,1] with probability 0.05, 

pm =\l d normally, and rs are algorithm parameters that have to be specified, at and 

/?, denote the lower and upper boundaries of the variable at. With the given settings 
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for S the mutation operator is able to locate the optimum up to a precision of 
ranget • rs • 2 

The selection operator s: I,l+X —» IM consists of a combination of an elitist selection 
mechanism and the stochastic universal sampling algorithm. Firstly, the objective 
function /(a,.) = J(u,), i = 1,...,// is calculated, which is equal to the cost function of 
the optimal control problem. The cost J(u) is evaluated through integration of the 
dynamic equation (eq. 1) given parameterised control. Then, the fitness function 
0(a) is calculated using a linear ranking scheme: 

q»(a<) = 2 - 5 < , + 2 ( ^ - l ) / ' ( a ' ) " 1 ; i = l>...,/i (16) 
ju-\ 

with the selection pressure coefficient s = 2.0 and / ' (a , ) the index position in the 

descending ordered population of the objective function value of individual i. The 
stochastic universal sampling algorithm picks the parent chromosomes for the new 
population such that the probability for at being picked equals ps(^i)- PA^i) a r e 

calculated according to: 

Psiat) = ̂ l ,^=£o(2,) (17) 

where 0(5,) is the fitness of individual a,. To implement an elitist selection scheme 

new individuals are generated as a fraction of the population size A = ju*ggap where 

ggap is termed the generation gap, a parameter determined by the user. Once offspring 
are generated and their fitness functions calculated they are inserted into the new 
population. An insertion function replaces old worst individuals allowing the best 
previous solutions to belong to the new population in order to maintain the size of the 
original population /u. 

The sub-population methodology divides the whole population in multiple 
subpopulations or demes. The evolutionary operators evolve during a number of 
generations for each sub-population. From time to time some individuals migrate 
from one sub-population to another. Three parameters have to be specified: the 
migration rate, the manner of selection of individuals for migration and the topology 
over which migration takes place. The migration rate is only a scalar number, which 
specifies the number of individuals to be migrated. The individuals to be migrated can 
be selected randomly or according to their fitness. There are three main migration 
topologies: a ring in which only adjacent sub-populations can interchange individuals, 
a neighbourhood migration, which is an extension of the previous one where 
migration in each adjacent sub-population is allowed. Finally, unrestricted migration 
topology, in which individuals may migrate from any sub-population to another. 
There is some evidence that shows sub-populations help evolutionary algorithms to 
locate the global optimum [14]. The computer implementation of these Evolutionary 
Algorithms is given in the Genetic Algorithm Toolbox for use with MATLAB [15]. 
The integration of the dynamic equations was implemented by using a C-MEX file 
routine in order to speed up the simulations. 

3.4.2 Differential Evolution Algorithms 
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aji(g) = \ . , , , w J = l,2,...,d;i = \,2,-,M (25) 
' [aj if aji{g)<aj 

where a and /? represent the lower and upper boundaries of the control variables, 
respectively. A remarkable advantage of differential evolution algorithms is its 
simplicity, which means that it is relatively easy to understand how they work. Also 
they are easy to program. Our computer implementation is based on the MATLAB 
environment. The core of the algorithm is an m-file that computes a Simulink model 
programmed as a C-MEX s-function, which contains the dynamic equation of the 
system and the objective function. 

3.5 The first order gradient algorithm and the Iterative Dynamic Programming 
algorithm 

3.5.1 The gradient algorithm 

The numerical solution of the Optimal Control Problem described in section 2 can be 
accomplished by means of a first order gradient algorithm properly modified with a 
clipping technique to deal with constraints for the controls. The basis is the algorithm 
described by Bryson [8]. However, a line search procedure was introduced in order to 
calculate the value of the step size parameter (k), which in Bryson's algorithm [8] is 
constant. The gradient algorithm is described next and applies to a Mayer formulation 
of the optimal control problem [8]. 
i) Guess u{t) atN+1 points t-t0 =0,...,NAT,AT = (tf -t0)/N. N is an even 

number, 
ii) Integrate the state equations forward. Store x(t) at t-ta= AT,..., NAT. 

dx 
. . „ . , , , , dH{x,u,X,t) 
IV) Compute and store A(t) and the function at 

du 

T 00 

iii) Evaluate </>[x{tfy\ and A (tr) = —(tf). 

T df(x(t),u(t),t) 
dx 

t-t0 = AT,...,NAT, by integrating backward in time A = -X 

starting at A(t,), where — = A, (t) —\J—L 
du du 

v) Apply a line search algorithm to determine the step size parameter (k). 
vi) Compute Su(t) and the new u(t) according to: 

Su{t) = -k (t), u(t) := u(t) + Su(t) 
du 

vii) Clip the controls if necessary in accordance with: 
\a{t) if u(t) < a(t) u(t) -• , 
[p{t) if «(0 > p{t) 

viii) If \Suavg < e stop. Otherwise go to step ii). 

where eg > 0 is a desired precision and duavg = I— V duT(t)5u{t)dt 
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The previous algorithm was implemented in an enhanced MATLAB-Simulink 
program with a C-MEX file s-function so as to speed up the simulation of the 
dynamic system. 

3.5.2 Iterative Dynamic Programming algorithm 

An iterative version of the Dynamic Programming Algorithm has been proposed by 
Luus [21] as a highly reliable method for locating the global optimum in optimal 
control problems. A brief description of this approach is given next. For more details 
one is referred to [21]. 

Step 0. Initialisation. The time interval [0,^] is divided into N time intervals, each 
of length L. The control is approximated by the piecewise constant control policy 
u(t) = u(tk)e[tk,tM), k = 0,...,N-l, tt+1-tk=L, f0=0, tN=tf 

Choose w0(0),...,w0(AT-l) and r0(0),...,/-0(JV-l) where r0(k), k = 0,1,...,N-1 
specifies the range u0(k)±r0(k) of allowable values of control for the next iteration 
M,(&) , k = 0,..., N -1. Select the number of allowable values for control R > 1 to be 
tried at each stage k = 0,...,N -1. Choose the region contraction factor 0.5 <y < 1.0 
and the number of grid points M for the states. Finally, specify the number of 
iterations / . Set iteration number / = 1. 

Step 1. Use the best control policy from the previous iteration (the guess solution at 

iteration 1) M*_1(0),...,M*.1(^ - 1 ) , and generate M -1 other control policies within the 

region H*_,(k)±rt_x(k), k = 0,...,N-\. Integrate the dynamic equation (eqn 1) from 

t = 0 to tf for all M control policies. The M values of xm(k), k = 0,...,N -1, 

m = 1,2,..., Mat the beginning of each time stage are stored. 

Step 3. a) At stage N, for each of the M stored values for xm(N -I), integrate the 

dynamic equation (eq. 1) from tf-L to tf, with each of the R allowable values for 

the control, which are generated by: 

ui(N-l) = ul1(N-l) + D-ri_1(N-\) (26) 
where u'.^N -1) is the best control value obtained in the previous iteration and D is 
a diagonal matrix of different uniform random numbers between -1 and 1. To deal 
with constraints of the controls whenever an unfeasible solution is generated it is set 
to the violated limit, according to: 

uAN-\) = \ ' (27) 
\P{t)ifui{N-\)>P(t) 

b) From the R values of the control choose the one u ^ N - l ) that gives the best 
performance index and store these values. 
Step 4. a) Step back to stage N -1 and repeat step 3a were Af is replaced by N -1. 
b) The integration is continued from x(N -1) over the last time interval tf - L to t, 

using the stored value for u*(N-l ) corresponding to the state grid point closest to 

the value of the calculated state vector at time tf -L. From the R values of the 

control select u*(Ar-2) that gives the best performance over the time interval 
[N-2,N]. 
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Step 5. Continue the procedure until stage N = 1 is reached corresponding to the 
initial time t = 0. Here there is only one state grid point that corresponds to the initial 
conditions (eqn. 3). Store the trajectories u*(k), x*(k), k = 0,1,...,N - 1 . 
Step 6. Reduce the region for allowable values of the control. 
rM(k) = r-r,(k),k = 0X...,N-l (28) 
Select the best control obtained from step 5 as the midpoint for the allowable values 
for control. Set i = i + l and go to step 1. 
The previous algorithm is continued for the specified number of iterations / and after 
that the results are analysed. Sometimes, the allowable values for controls are selected 
from a uniform distribution (evenly spaced grid) instead of randomly. Also for some 
problems it is desirable to use a multi-pass method, which consists in to restore the 
value of the region contraction factor y to a fraction of its size at the beginning of the 
previous pass. This is implemented to prevent a premature collapse of the search 
region [21]. In that case another parameter called region restoration factor 
0.5 < rj < 1.0 is used. The number of passes (P) must be defined as well. 

From the previous description is apparent that the IDP algorithm has numerous 
algorithm parameters that can be varied. The region contraction factor (y), number of 
allowable values for control (R), number of grid points (N), initial region size values 
(r0(k)), and restoration factor (77) in case of multiple passes. Some insight has been 
obtained about their values as one is applying IDP to a particular problem, but in 
general a parameter tuning approach is required. Luus has reported [21] that with too 
small values of the region contraction factor (y) premature collapse of the region 
r(k), A: = 0,1,---, JV — 1 is very likely and too large values give rise to a very slow 
convergence rate or no convergence at all. Also it is known that small values of y 
work properly with sufficiently large values of the allowable values for control (R). 
Conversely, when small values of R are used, high values of y are required to 
increase the chances of finding the global optimum. The allowable number for 
controls should be chosen as small as possible in order to reduce the computational 
load. Regarding the number of grid points (M) is known that for some problems 
M = 1 works fine, but in other problems M > 1 may be necessary. Our computer 
program of the described Iterative Dynamic Programming algorithm for the 
MATLAB-Simulink environment is an enhanced code, which uses a C-MEX file s-
function to speed up the simulation of the dynamic equations. 

3.6 Benchmark problems solved and results 

3.6.1 The optimal control of a non-linear stirred tank reactor 

A multimodal optimal control problem has been used by Luus [21, 22] to evaluate his 
Iterative Dynamic Programming algorithm. Ali et al. [24] solved this problem by 
stochastic global optimisation algorithms. Also, this problem is a member of the list 
of benchmark problems proposed in the Handbook of Test Problems in Local and 
Global Optimization [25]. A first-order irreversible chemical reaction carried out in a 
continuous stirred tank reactor (CSTR) has been modelled by two non-linear 
differential equations that are the result of a heat and mass balance of the process. 
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x, = - ( 2 + I/)(JC, + 0.25) + (x2+ 0.5) exp( 
25xi ^ 

x, +2 

x2 = 0.5-
25x 

t2-(x2+0.5)exp( L) 
Xj + 2 

(29) 

(30) 

where JCJ represents the deviation from dimensionless steady-state temperature and 
x2 stands for the deviation from the dimensionless steady-state concentration. The 
control u(t) represents the manipulation of the flow-rate of the cooling fluid, which is 
inserted in the reactor through a coil. The optimal control problem is to determine the 
unconstrained u*(t) that minimises the performance index: 

J= ^(x2+x2
2+0.1u2)dt (31) 

where tf = 0.78. The initial conditions are x(0) = [0.09 0.09f. It can be shown that 

this problem has two solutions. In solving this problem numerically the integration of 
the dynamic system was performed with the ode45 routine available in MATLAB, 
with the relative tolerance error set to le-8. The initial guesses for the controls of the 
different algorithms were selected from the interval 0 < u(t) < 5.0. 

For the solution of this problem by the gradient method the step size parameter 
(k=0.12) was kept constant. So the line search was not used. Since this is an optimal 
control problem with fixed final time and without bounds for the controls, and 
because the partial derivatives can be calculated analytically, Bryson's Matlab code 
for Continuous Dynamic Optimization [8] without constraints was applicable. The 
accuracy of the criterion of convergence was specified as e = 0.0001. The 

convergence of the algorithm was straightforward. As can be seen from table 1, the 
convergence of the first order gradient algorithm to the local or global optimum 
depends on the initial values for the control. Actually, by using a constant pattern as 
initial guess, u0(t) = c, 0<t<tf the gradient algorithm always converged to the 

local optimum (J* = 0.2444) if «„(?)< 1.8; otherwise it converges to the global 
optimum (J* = 0.1330). The associated control trajectories have completely different 
shapes. 

Table 1. Optimal Control of a multimodal CSTR 

»°W 
5.0 
4.0 
3.0 
2.5 
2.0 
1.8 
1.0 
0.5 
0.25 
0.0 

J* 
0.1330984 
0.1330977 
0.1330979 
0.1330976 
0.1330980 
0.2444349 
0.2444351 
0.2444347 
0.2444346 
0.2444346 

>y a first order gradient alg 

I terations 

244 
243 
228 
224 
211 
329 
215 
228 
241 
249 

orithm (constant Uo (t)) 

C P U t ime 

411.03 
406.18 
366.16 
398.11 
351.84 
755.95 
483.69 
509.63 
660.69 
657.46 

# sees. Measured on a Pentium III 700 MHZ PC 

In order to solve this problem by means of direct methods, the time interval [0, tf] was 
discretized in N = \3 time intervals since it has been reported that a good 
approximation to the continuous-time optimal control is obtained by doing so [18, 
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19]. A piecewise constant approximation for the control was used at each of those 
time intervals. In the IDP algorithm the parameters values suggested by Luus [21] 
were chosen: the number of state grid points M = 1, the number of allowable values 
for control R = \S. The region reduction factor was y = 0.80, the number of 
iterations I = 20, the number of passes P = 3 and the region restoration factor 
T] = 0.5 after each pass. The allowable values for control were generated randomly 
(see section 4.2). In order to achieve comparable conditions among all the direct 
methods, firstly the initial control trajectory was chosen constant i.e. u0(tk) = c, 
k = 0,1,—. N -1 with c a value randomly taken from the control interval 0 < u(t) < 5. 
A similar procedure was followed for the selection of the initial region value rQ(tt), 
k = 0,1,..., N -1 which was selected from the interval 0 < r0(ft) < 5. Since the control 
has no constrains equation 16 was not used. 

Table 2 shows the results obtained by the IDP algorithm. From the values presented in 
the first four columns it is evident that IDP still can convergence to the local optimum 
(J* = 0.2446), which in this case occurs, when both the initial value for the control 
and the initial region size are too small. Otherwise IDP converges to the global 
optimum (J* = 0.1356). However, Luus and Bojkov [23] have reported that when the 
state grid is equal to M = 1, it is beneficial to use a greater region size. Therefore, by 
selecting a sufficiently large initial region size value ra(tk) > 4, convergence to the 
global optimum is always obtained regardless the initial value for control u0 (tk). This 

is shown in table 2 columns five to seven. Repeated optimisation is necessary since 
the IDP algorithm (see section 4.2.) generates randomly the allowable values for 
control (eqn. 15). So it is very likely may converge to a different value each run. 

Table 2. Optimal control of a multimodal CSTR by Iterative Dynamic Programming 

«o(h) 

3.4990 
2.3744 
0.9718 
1.1568 
3.8732 
4.0504 
0.7557 
4.7105 
4.6422 
4.0494 

r0(tk) 

2.2999 
3.1557 
4.1646 
1.2498 
4.4433 
3.4722 
1.2997 
3.7785 
2.2919 
0.8660 

J* 

0.1355869 
0.1356138 
0.1355876 
0.2446122 
0.1356089 
0.1355970 
0.2446122 
0.1355856 
0.1355816 
0.1355828 

CPU 
time* 

600.79 
620.46 
600.16 
589.43 
590.77 
635.90 
599.58 
602.31 
599.64 
588.51 

"o(h)Mh)=4 

1.0000 
4.2823 
2.0389 
3.9007 
0.7900 
0.0108 
2.3551 
2.7851 
1.0293 
2.9137 

Mean 

J* 

0.1355852 
0.1356766 
0.1356422 
0.1356262 
0.1355806 
0.1355933 
0.1355905 
0.1355866 
0.1356085 
0.1355811 
0.1356070 

CPU 
time* 

700.50 
686.30 
668.74 
665.34 
764.05 
701.57 
872.46 
849.92 
851.20 
683.33 
744.34 

# sees. Measured on a Pentium III 700 MHZ PC, Function Evaluations=2100. 

In order to solve the CSTR optimal control problem by Evolutionary Algorithms, 
firstly a convergence criterion for all of them was defined. A measure of the degree at 
which solutions in the population are close together seems to be a good criterion [26]. 
This involves a way to measure in absolute or relative sense how similar solutions in 
the population are. Sometimes, researchers use the value to reach (VTR) as a stopping 
criterion, which evidently can be applied only when a solution is already known. 
Since the states (x), control (u), and also J are dimensionless in this problem it is a 
good option to select an absolute convergence criterion. This was defined as follows: 
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let Jb be the best objective function value in the population Jb = minJ(ut), 
i-\,...,/j, and Jw the worst function valueJw = maxJ(ut), i = \,...,//, then an 
absolute convergence criterion can be defined byJvl-Jb<ec. In the current 
application sc was selected to be ec = 0.00001, which guarantees good accuracy of 
the solution. Since this optimal control problem is unconstrained equation 14 was not 
used. 

Seven variants of evolutionary algorithms were implemented and evaluated. Two of 
them are based on the Breeder Genetic Algorithm and five are Differential Evolution 
algorithms. Tables 3 to 5 present the main results for various values of the population 
size p. The results reported in the tables are averages from 10 runs. EAi means the 
Breeder Genetic Algorithm with only one population, EA2 denotes the Breeder 
Genetic Algorithm with sub-populations, EA3 denotes the DE algorithm 
DE/rand/1/bin and EA4 stands for the DE algorithm DE/best/1/bin. EA5 denotes the 
DE algorithm DE/best/2/bin. EA6 means the DE/rand/1/exp, and EA7 denotes the 
DE/trial/2,best, trial/bin. These algorithms are evaluated on the basis of four criteria: 
i) the number of function evaluations (F.E.), where each evaluation involves the 
integration of the dynamic equations (eq. 1) from 0 to tf, ii) the CPU time (measured 

on a Pentium III personal computer at 700 MHZ), iii) the performance index value 
(J*), and iv) the convergence efficiency (C.E. %) to the global optimum which is 
measured by the percentual number of times that the algorithm found the global 
solution. 

A parameter tuning approach was applied in order to determine what combination of 
algorithm parameters gives the best performance index with the less number of 
function evaluations. Storn and Price [1] have suggested values for the population size 
from the interval 5d < ju<l0d for static optimisation problems, where d is the 
dimension of the problem. Price [2] proposed selecting the population size from the 
interval 2 • d < ju < 20 • d . Since it is apparent that for optimal control problems 
greater population sizes may increase the computation time dramatically, in this work 
the use of population sizes around the dimension of the optimisation problem 
d = m-N was chosen. After a population size was fixed other parameters of the 
algorithms were tuned in order to obtain the best performance index with the less 
number of function evaluations. The values reported in the tables are the ultimate 
values obtained this way. 

Several remarks need to be made. Firstly, all EAs converged to the global optimum. 
Even in the case that a population size of ten individuals was chosen an acceptable 
value for the performance index in the neighbourhood of the global optimum was 
calculated, in contrast to the expectation that with a smaller value of the population 
size the algorithms might converge to the local optimum. Secondly, the Differential 
Evolution algorithms turned out to be more efficient than those based on the Breeder 
Genetic algorithm taking into account the accuracy of the solutions. Thirdly, within 
the Differential Evolution algorithms the one that solved the problem with the lowest 
number of function evaluations was DE/best/2/bin (EA5). 
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Table 3. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size /z = 20) 

Algorithm 

FE 

CPU time# 

J* 

CE (%) 

Iterations 

Parameters 

EA, 

7401.80 

430.02 

0.1358249 

100 

410.1 

/>m=0.09 

gg«P=0.9 

EA2 

7143.4 

451.10 

0.1355985 

100 

397.3 

Pm=0.09 

mr = 0.8 

ggap=0.9, 

subpop=2 

EA3 

3494 

242.51 

0.1355966 

100 

174.7 

CR=0.5 

F=0.4 

EA4 

2240 

177.06 

0.1356143 

100 

112 

CR=0.5 

F=0.5 

EA5 

2270 

160.44 

0.1355850 

100 

113.5 

CR=0.5 

F=0.4 

EA6 

3578 

277.35 

0.1355929 

100 

177.9 

CR=0.15 

F=0.5 

EA7 

2492 

194.92 

0.1355847 

100 

124.6 

CR=0.5 

F=0.6 

F.E.=Function evaluations, C.E.=Convergence effectiveness. # On a Pentium III, 700 MHZ PC 

Table 4. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size ft = 15) 

Algorithm 

FE 

CPU time# 

J* 

EC (%) 

Iterations 

Parameters 

EA, 

6985.60 

406.85 

0.1362200 

100 

497.9 

Pm=0.09 

gg,p=0.9 

EA2 

5272.6 

314.93 

0.1362479 

100 

438.8 

Pm=0.09, 

mr = 0.8 

ggap=0.9, 

subpop=2 

EA3 

3535.5 

251.44 

0.1355920 

100 

235.7 

CR=0.5 

F=0.5 

EA4 

2100 

154.79 

0.1356205 

100 

140 

CR=0.35 

F=0.5 

EA5 

1783.50 

134.26 

0.1355970 

100 

118.9 

CR=0.5 

F=0.4 

EA6 

3018 

237.95 

0.1357880 

100 

200.2 

CR=0.1 

F=0.5 

EA7 

2083.5 

144.24 

0.1355867 

100 

138.9 

CR=0.6 

F=0.7 

F.E.=Function evaluations, C.E.=Convergence effectiveness. # On a Pentium III, 700 MHZ PC 

Table 5. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size fi = 10) 

Algorithm 

FE 

CPU time# 

J* 

CE (%) 

Iterations 

Parameters 

EA, 

2225.8 

135.57 

0.1449189 

100 

246.20 

/>m=0.09 

gg,P=0.9 

EA2 

7925 

449.50 

0.1365219 

100 

792 

/>m=0.09, 

mr =0.8 

ggap=0.9, 

subpop=2 

EA3 

2097 

200.89 

0.1356905 

100 

290.7 

CR=0.5 

F=0.6 

EA, 

2294 

157.14 

0.1356040 

100 

229.40 

CR=0.25 

F=0.6 

EA5 

1719 

134.80 

0.1356052 

100 

171.9 

CR=0.5 

F=0.5 

EAs 

2843 

206.74 

0.1367922 

100 

283.3 

CR=0.1 

F=0.62 

EA7 

1918 

130.23 

0.1355913 

100 

191.8 

CR=0.4 

F=0.7 

F.E.=Function evaluations, C.E.= Convergence effectiveness. # On a Pentium III, 700 MHZ PC 

In general the parameter settings are different among DE algorithms due to the 
different effect of the mutation operator. In both algorithms EA] and EA2 the mutation 
rate (pm) was selected a bit greater than the default value frequently chosen 
pm = l/(m • TV), in order to improve the probability of the algorithm to converge to the 
global optimum. Clearly, this give rise to a higher number of function evaluations. In 
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case of EA2 it was not possible to obtain a better solution by increasing the number of 
subpopulations by more than two. For EA2 the migration rate (mr) between 
populations was allowed each 20 generations. 

That actually, Differential Evolution algorithms are efficient in solving this problem 
can clearly be demonstrated comparing our results against those reported previously 
by using Controlled Random Search methods for global optimisation [27, 28] which 
hinge, like Evolutionary Algorithms, on the manipulation of a population of potential 
solutions. Ali et al. [24] have reported that from a total of four evaluated controlled 
random search algorithms a modified controlled random search algorithm identified 
as CRS4 [27] obtained the best solution. The number of function evaluations required 
was 8997 to obtain a performance index value of J* = 0.136 using the same number 
of number of time intervals (13) we have used. Clearly, this number of function 
evaluations is greater than the values reported in tables 3 to 5. Moreover, the 
Evolutionary Algorithm that performed worst on this problem (EA6) is more efficient 
than CRS4. From our own MATLAB implementation of the controlled random 
search algorithm (CRS2) [27] the average from ten runs was a performance index 
value of J*=0.13 84931, with the corresponding function evaluations (10675) and 
863.64 seconds of computation time. Again the number of function evaluations is 
greater that those values reported on tables 3 to 5. 

As far as parameter tuning of the Differential Evolution algorithms is concerned, the 
heuristic rules applied to determine the values of the algorithm parameters 
'amplification variation' (F) and 'crossover constant' (CR) were as follows. The 
initial values were F = 0.5, CR = 0.1 according to Storn and Price [1], and then if a 
good convergence was observed the value of the crossover constant was increased in 
order to improve the efficiency of the algorithm. Also smaller values for F were 
tried. It can be seen from the tables that values for F within the range 0.4 < F < 0.7 
were sufficient to obtain a C.E. of 100%. Greater values of CR resulted in solutions 
with worst (with less accuracy) performance but not necessarily to local minima. Also 
it was noticed that the change of CR from 0.1 to 0.5 resulted in considerable faster 
convergence. In contrast to the population size values suggested by Storn and Price 
5*(m*N) < / /< 10*(m*iV) relatively small populations also allowed to find a 
good solution. It seems that because the problem is not highly multimodal a relative 
small value of the differential variation parameter F suffices to explore properly the 
whole search space. 

Compared to results obtained with the IDP algorithm of the evaluated algorithms the 
DE/best/2/bin was able to solve this problem with a smaller number of function 
evaluations*. This shows that DE algorithms are actually very efficient evolutionary 
algorithms. To find the values of the three algorithm parameters that steer the 
optimisation only a few experiments are required. In the IDP algorithm there are more 
algorithm parameters to be tuned than in DE. In contrast to the IDP algorithm, the 
algorithm parameters than guarantee CE=100% are easily obtained for DE algorithms 
considered here. Therefore, taking into consideration the whole preliminary work that 
the application of the IDP algorithm demands it turns out deceptively inefficient. 

! cf. table 2 
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3.6.2 The bifunctional catalyst blend optimal control problem 

A very challenging multimodal optimal control problem has been posed by Luus [21, 
23]. This problem is also proposed as benchmark in the Handbook of Test Problems 
in Local and Global Optimization [25]. A chemical process converting 
methylcyclopentane to benzene in a tubular reactor is modelled by a set of seven 
differential equations: 

A t — IvnXy i **£,& V 4 S 8 9 / S 7 6 10 7 

-*"6 — ^8-^5 ~ *-lX6 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

where x,.,/ = l,...,7 are the mole fractions of the chemical species, and the rate 
constants (&,-) are cubic functions of the catalyst blend u(t): 

kt = cn + ci2u + cnu
2 + cj4«

3, i = 1,...,10. (39) 
The values of the coefficients ciyare given in [21]. The upper and lower bounds on the 
mass fraction of the hydrogenation catalyst are: 0.6 < u(t) < 0.9, and the initial vector 

of mole fraction is x[0] = [l 0 0 0 0 0 0] r . This is a continuous process 
operated in steady state, so that 'time' in equations (32)-(39) is equivalent to travel 
time and thus length along the reactor. The optimal control problem is to find the 
catalyst blend along the length of the reactor, which in the control problem 
formulation is considered at times 0<t<tf where the final effective residence time 

tf = 2000g • h I mol such that the concentration in the reactor is maximised: 

J = x7(tf) x 103. Luus [21] has shown that this problem has a lot of local optima (25). 

Table 6. Optimal control of bifunctional catalyst blend by a first order 
Constant uD(t) 

uu(t) 
0.80 
0.70 
0.85 
0.65 
0.90 
0.79 
0.60 
0.72 
0.78 
0.82 

J* 
9.6419 
8.1215 
9.6419 
8.1214 
9.6419 
9.7577 
8.1214 
8.1223 
9.6574 
9.6419 

iterations 
16 
20 
8 

23 
6 

38 
27 
49 
31 
9 

CPU time# 
166.66 

3689.00 
97.86 

4593.30 
36.03 

494.68 
6928.60 
9072.10 
3355.40 

131.05 

gradient algorithm (N=10) 
Random u°(t) 

J* 
8.7627 
8.0054 
8.4409 
8.1691 
8.5083 
8.4300 
9.3883 
8.2718 
9.1816 
9.0628 

iterations 
22 
37 
24 
46 
30 
21 
17 
22 
38 
89 

CPU time# 
2052.40 
6811.80 
5450.10 
6076.10 
6235.30 
1931.10 
1344.30 
3860.80 
3396.10 

13156.00 
# On a Pentium III, 700 MHZ PC 

In order to solve this problem by means of a first order gradient algorithm a clipping 
technique was added to the basic gradient algorithm so as to deal with control 
constraints. A line search method as described before was added to adjust the step size 
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parameter k efficiently. The convergence tolerance was set to eg = 0.000001. Despite 

both enhancements the classical method failed to locate the global optimum as can be 
seen in table 6 that shows the results of twenty optimisations. The best solutions 
(emphasized in table 6) are clearly far from the global solution which equals 
J* = 10.0942 for a piece-wise constant approximation for the controls. 

However, when the gradient method was started using a solution generated with a 
direct method (for example IDP or any evolutionary algorithm) it converged quickly 
to the value J* = 10.1042. Clearly, due to the presence of many local minima in this 
problem, a first order gradient algorithm is easily trapped by one of them. The 
gradient algorithm is able to converge to the global optimum only if the initial control 
trajectory is in the vicinity of the true solution. Therefore, the use of a global 
optimisation method such as Evolutionary Algorithms to approximate the global 
solution followed by a local optimisation method such as a first order gradient 
algorithm to reach the global optimum exactly seems a good approach in solving 
multi-modal optimal control problems. 

In order to solve this problem by means of direct methods, the time interval was 
divided in N - 10 time subintervals and the control was approximated by a piecewise 
constant signal at each time interval. In solving it by Iterative Dynamic Programming, 
the initial control trajectory u0(tk); k = 0,...,N-1 was chosen constant with a value 
randomly chosen from the control interval 0.6 < u{t) < 0.9. A similar procedure was 
followed to select the initial region value r0(tk), k = 0,...,N-1 which was chosen, 
from the interval 0.6 < r0(tk) < 0.9. 

Table 7. Optim 

«oOJ 
0.6658 
0.8727 
0.6353 
0.8574 
0.7537 
0.6842 
0.6357 
0.8515 
0.8035 
0.7915 
Mean 

al control of bifunctional catalyst 

rM 
0.7814 
0.6677 
0.6330 
0.8600 
0.7033 
0.7090 
0.6099 
0.7711 
0.8417 
0.6154 

FE 

1500 
1350 
1125 
600 

1125 
1500 
825 

1425 
1575 
1050 

1207.5 

by Iterative Dyn 
J* 

10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 
10.0942 

amic Programming 
Iterations 

20 
18 
15 
8 

15 
20 
11 
19 
21 
14 

16.1 

CPU time# 

174.36 
165.58 
126.59 
72.41 

121.19 
137.52 
92.58 

152.20 
169.65 
138.23 
135.03 

FE= function evaluations. # On a Pentium III, 700 MHZ PC 

The algorithm parameters of the IDP algorithm were: number of state grid points 
M = 1, number of allowable values for the control R = 15. The allowable values for 
control were generated randomly. The parameter region contraction factor was 
X = 0.80, which was selected according to Luus' suggestions [21]. The maximum 
number of iterations was ( / = 30), but the optimisation was stopped when it reached 
the condition J*-J <0.00005. Table 7 shows the main results, which show indeed 
the convergence to the global optimum all the time and the associated number of 
function evaluations and iterations. It is clear from the table that if the initial region 
size is large enough IDP always finds the global optimum. 
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However, the sensitivity of IDP to the choice of the initial region value r0(tk) can be 
illustrated by choosing different values for this parameter. Table 8a shows that with a 
value of r0(tk) = 0.27 the IDP algorithm converged to the global optimum only in 

20% of the cases. By using r0(tk) = 0.30 this percentage is increased to 60%. 

Table 8. a. Optimal control of bifunctional catalyst by Iterative Dynamic Programming 

ra(tk) = 0.27 

«o('*) 

0.75 
0.70 
0.80 
0.65 
0.85 
0.68 
0.72 
0.78 
0.82 
0.75 

FE 

2250 
1125 
2250 
2250 
2250 
2250 
1050 
2250 
2250 
2250 

J* 

10.0395 
10.0942 
9.94429 
10.0395 
10.0395 
10.0395 
10.0942 
10.0395 
9.8978 

10.0395 

iterations 

30 
15 
30 
30 
30 
30 
14 
30 
30 
30 

CPU 
time* 

293.78 
370.76 
295.76 
299.92 
286.77 
297.81 
145.40 
300.68 
321.38 
293.78 

r0(4) = 0.30 

" o ( ^ ) 

0.65 
0.68 
0.70 
0.72 
0.75 
0.78 
0.80 
0.82 
0.85 
0.88 

FE 

2250 
675 
450 
975 

2250 
450 

2250 
2250 
900 

1275 

J* 

10.0528 
10.0942 
10.0942 
10.0942 
10.0395 
10.0942 
10.0395 
10.0395 
10.0942 
10.0942 

iterations 

30 
9 
6 

13 
30 
6 

30 
30 
12 
17 

CPU 
time* 

263.18 
88.81 
61.44 

121.72 
320.65 
57.42 

306.41 
328.19 
514.37 
385.43 

FE= function evaluations. # On a Pentium III, 700 MHZ PC 
With greater values than r0(tk) > 0.40, k = 0,1,...,N - 1 for the initial region size the 
IDP is capable to always converge to the global optimum as is shown in table 8b. 
Table 8b shows the average of ten optimisations with different random allowable 
values for control. 

Table 8.b. optimal control of bifunctional catalyst by Iterative Dynamic Programming 

r0(h) 

Function evaluations 

Iterations 

CPU time (sees.)* 

J* 

0.40 

938.70 

13.70 

132.33 

10.0942 

0.50 

1177.5 

15.70 

150.64 

10.0942 

FE= function evaluations. # On a Pentium III, 700 MHZ PC 

In order to solve this problem by the selected Evolutionary Algorithms, first a proper 
and common convergence criterion based on a measure of the quality of the solutions 
in the population was chosen. In contrast to example one, where an absolute criterion 
was selected, here the following relative convergence criterion was applied: 

•*-(./. - • / * ) * £•/(»,) (40) 

where Jwand Jbaie defined as before, ./(«,)is the performance index, and 
ed =0.001 is a constant value selected according to the desired precision. The 
initialisation for all the EAs was done randomly from the control input domain 
0.6 < u0(tk) < 0.9. As before, a parameter tuning approach was applied and the best 
results obtained with the selected parameter values are reported. Tables 9 to 11 show 
the averages of 10 runs for 3 values of the population size (// = 15, 20, 25). Reported 
values of the performance (J *) are averages over successful optimisations. 
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Table 9. Optimal control of the bifunctional catalyst blend problem by EAs (population size p 

Algorithm 

FE 

CPU time" 

J* 

CE (%) 

Iterations 

Parameters 

EA, 

7007.10 

1186.60 

10.0942 

70 

278.28 

ggap -1 

/>m=0.18 

EA2 

4890 

515.14 

10.0929 

80 

202.50 

ggap=l,»Ir = 0.2 

Pm = 0.2, subpop=4 

EA3 

3172.50 

549.75 

10.0941 

100 

126.9 

F=0.9 

CR=0.0 

EA4 

2657.5 

460.11 

10.0942 

100 

106.3 

F=0.9 

CR=0.0 

EA5 

3607.5 

632.84 

10.0941 

100 

144.3 

F=0.9 

CR=0.0 

EAe 

2930 

542.24 

10.0941 

100 

116.2 

F=0.9 

CR=0.0 

= 25) 

EA7 

2897.5 

478.24 

10.0941 

100 

115.9 

F=1.0 

CR=0.0 

F.E.=Function evaluations, C.E.= Convergence effectiveness, # On a Pentium III, 700 MHZ PC 

Table 10. Optimal control of the bifunctional catalyst blend problem (population size // = 20) 

Algorithm 

FE 

CPU time* 

J* 

EC 

Iterations 

Parameters 

EA, 

11493 

1896.90 

10.0934 

60 

572.66 

ggap -1 

Pm = ° - 2 8 

EA2 

18227.5 

3237.20 

10.0916 

80 

910.12 

ggap=l,mr =0.2 

pm = 0.45 ,subpop=4 

EA3 

2496 

453.92 

10.0941 

100 

124.8 

F=0.9 

CR=0.0 

EA4 

1900 

361.07 

10.0941 

100 

95 

F=0.9 

CR=0.0 

EA5 

2736 

537.62 

10.0940 

100 

136.8 

F=0.9 

CR=0.0 

EA« 

2260 

413.77 

10.0940 

100 

112 

F=0.9 

CR=0.0 

EA7 

2104.4 

387.72 

10.0942 

90 

105.22 

F=1.0 

CR=0.0 

F.E.=Function evaluations, E.C.=efficiency of convergence. # On a Pentium III, 700 MHZ PC 

Table 11. Optimal control of the bifunctional catalyst blend problem (population size // = 15) 

Algorithm 

FE 

CPU time" 

J* 

EC 

Iterations 

Parameters 

EA, 

6552.90 

578.99 

10.0937 

70 

434.85 

ggap -1 

Pm=0.29 

EA2 

12718 

2433.40 

10.0854 

50 

793.60 

ggap=l,'"r =0.2 

pm = 0.56 ,subpop=4 

EA3 

1752 

341.28 

10.0940 

100 

116.8 

F=0.9 

CR=0.0 

EA4 

1644 

297.98 

10.0941 

100 

109.6 

F=0.9 

CR=0.0 

EA5 

2268 

385.44 

10.0938 

100 

151.2 

F=1.0 

CR=0.0 

EAe 

1803 

355.07 

10.0922 

100 

119.2 

F=0.9 

CR=0.0 

. EA, 

1518.3 

273.79 

10.0928 

90 

101.22 

F=1.0 

CR=0.0 

F.E.=Function evaluations, E.C.=efficiency of convergence. # On a Pentium III, 700 MHZ PC 

The algorithms EA] and EA2 did not reach CE = 100% with small population sizes. 
However, it was found that by increasing adequately the population size, EA2 
improves remarkably. As a matter of fact, by using a population size of // = 60 with 
four subpopulations and 15 individuals each one, a generation gap g =0.9, a 
migration rate m r=0.2, mutation rate pm=Q.\ and an elapsed time of 10 
generations between migrations, EA2 converged always to a value J*=10.0942. The 
average required number of function evaluations was 7048.6. EAi converged only 
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80% of the times to the global optimum with population size // = 40 and n = 50. 
These results illustrate the benefits of using sub-populations. Anyway, the best result 
of EA2 regarding the number of function evaluations is considerably inferior to those 
results obtained by DE algorithms. Except for EA7 all the Differential Evolution 
algorithms always reached CE = 100% with the tested population sizes. Moreover, 
Differential Evolution algorithms were considerably more efficient than BGAs. 

By comparing tables 9 through 11 it can be seen that both EAi and EA2 require a 
greater value of the mutation rate parameter (pm) to obtain reasonable solutions when 
the population size is diminished. This sometimes leads to an increased number of 
function evaluations. In contrast, the Differential Evolution algorithms require less 
function evaluations, and usually have better convergence to the global optimum. As 
for the number of function evaluations the best algorithm in this case is EA4. But, the 
others are not significantly less efficient than EA4. EA7 required a greater value for F 
in order to improved convergence to the global optimum. However, when the 
population is too small it has some problems to avoid be trapped by local minima. 

As before the DE algorithms were tuned by applying some heuristic rules to 
determine the differential variation parameter (F) and crossover constant (CR) that 
lead to the global optimum efficiently. For the chosen population sizes, starting with 
initial values F = 0.5, and CR =0.1 premature convergence (convergence to a local 
solution) was observed. Therefore, the value of the parameter F was increased. It 
was discovered that increasing CR neither improves the speed of convergence nor 
locating of the global optimum. On the contrary, it was observed that neglecting 
completely the effect of the crossover operator, by setting CR = 0, the effectiveness 
increases considerably. This value (CR = 0) gave the best convergence of the 
algorithms at the expenses of more function evaluations. It seems that the large 
multimodality of this problem demands an extensive exploration of the search space. 
It is recommended to select a value close to one for the differential variation 
parameter (F), and a crossover rate (CR) of zero in highly multimodal problems. 

It must be said that in this problem DE algorithms required more function evaluations 
than the IDP algorithm. However, by comparing the efficiency achieve by EA4 or EA3 
against that of IDP (tables 7, 8b and 11) the difference is relatively small. Moreover, 
one could argue that this difference is not significant taking into account that the IDP 
algorithm requires more previous experiments to tune its critical algorithm parameters 
than in the straightforward procedure associated to the DE algorithms. 

3.7 Conclusions 

Evolutionary Algorithms are robust search methods capable of locating the global 
optimum of multimodal optimal control problems. These algorithms are not sensitive 
to the initial control trajectory. They can be initialised randomly. Evolutionary 
Algorithms based on the Breeder Genetic Algorithm are able to solve complex 
multimodal optimal control problems but they demand a large population size or a 
high mutation rate (probability of mutation). Both properties give rise to an increased 
number of function evaluations (simulations) and hence a long computation time. The 
use of sub-populations can improve their convergence to the global optimum as 
problem 2 of this research has shown. 
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This research has shown that within the family of Evolutionary Algorithms 
Differential Evolution algorithms stand out in terms of efficiency as compare the 
Breeder Genetic algorithm. In contrast to the majority of Evolutionary Algorithms, 
where many algorithm parameters have to be tuned, in DE only three parameter 
values (the population size, the crossover constant and the differential variation 
coefficient) are required to steer the search of the algorithm. The population size plays 
a crucial role in solving optimal control problems. Selecting a too small population 
size reduces the probability of finding the global solution. Increasing the population 
size increases the chances that the algorithm finds the global optimum but the 
computation time becomes higher. The two investigated differential evolution 
algorithms solved the two benchmark multimodal optimal control problems properly 
and efficiently. In solving the first problem the efficiency achieved by DE was clearly 
comparable to that of the non Evolutionary Algorithm IDP algorithm. As for the 
second problem the efficiency of DE was slightly inferior to the one required by the 
IDP algorithm when the algorithm parameters have been tuned. On the other hand, the 
determination of appropriate values of the algorithm parameters for IDP is more 
difficult and more involved [24]. In summary, Differential Evolution algorithms are 
reliable and relatively efficient to solve multimodal optimal control problems. Clearly, 
improving the efficiency of the DE algorithms further remains an important issue for 
future research. 

The guidelines to select the algorithm parameter values crossover constant (CR) and 
amplification of the differential variation (F ) in the DE algorithms obtained from this 
investigation can be summarized as follows. Adopt a smaller population size than in 
static optimisation; a population size less than or equal to two times the dimension of 
the optimisation problem (// < 2 * (Af x m)) is desirable for optimal control problems. 
Highly multimodal optimal control problems may require greater values of the 
amplification variation coefficient (F) and a very small or zero value for the 
crossover constant (CR). Low multimodal optimal control problems may need 
medium values of the mutation parameter (F) and greater or medium values for the 
crossover constant (CR). Further research is needed if one is interested in finding 
more generic rules for parameter tuning. 

In order to solve multimodal optimal control problems more efficiently and 
accurately, an efficient Evolutionary Algorithm like Differential Evolution may be 
used to approximate the global minimum. Next, a classical local optimisation 
algorithm can be applied to accurately compute the global optimum. The development 
of such a combined method is the aim of our future work. 
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4 Parameter control strategy in differential evolution algorithm for 
optimal control+ 

4.1 Abstract 

Most optimal control algorithms are not capable of finding the global solution among 
local ones. Because of this we recently proposed the use of a Differential Evolution 
algorithm to solve multimodal optimal control problems. The DE algorithm is 
efficient compared to most other evolutionary algorithms. Still, when applied to 
optimal control problems, the algorithm is significantly less efficient than other, non-
global, optimal control algorithms. In this paper the efficiency of the DE algorithm for 
optimal control is improved significantly through parameter control. In the DE 
algorithm three main parameters have to be set by the user. The parameter values all 
constitute a compromise between the efficiency of the algorithm and the capability of 
finding the global minimum. Instead of keeping these parameters constant, which is 
common practice, these parameters are changed during the optimization. Roughly 
speaking in the beginning of the optimization it is important to search the whole 
space, while after some time, to improve the efficiency, the search must be more 
local. Based on the diversity of intermediate computations, our algorithm makes this 
transition, i.e. the change of the parameters, more quickly or slowly. The algorithm is 
illustrated through numerical solutions of two multimodal optimal control problems. 

KEY WORDS: Evolutionary Algorithms, Differential Evolution, Optimal Control, 
Optimization. 

4.2 Introduction 

Evolutionary Algorithms are appealing because of their capability to locate the global 
optimum of optimal control problems. However, it is well known that the majority of 
those algorithms demand an excessive number of function evaluations. Instead of an 
'ordinary' function evaluation in optimal control problems this evaluation constitutes 
the numerical integration of a set of differential equations. The recently proposed 
Differential Evolution (DE) [1,2] algorithm seems to be a good candidate to surpass 
these drawbacks, since it was shown to converge efficiently to the global optimum in 
some benchmark optimal control problems [3]. In spite of its simplicity, in all 
differential evolution algorithms there are three parameters, namely, the population 
size (//), the amplification of the differential variation (F) and the crossover constant 
(CR) that have to be set by the user. Little is known on the choice of the values of 
these parameters, when applying differential evolution to solve multimodal optimal 
control problems. Following the guidance of Storn and Price [1], which applies to 
static optimization problems, a reasonable set of parameters can be selected a-priori. 
To further improve the performance of the algorithm parameter tuning is proposed. 
This tuning however requires an excessive number of experiments. Several limitations 

f Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Proceedings of the 
IASTED International Conference Artificial Intelligence and Soft Computing, May 21-24, 2001, 
Cancun, Mexico, pp. 211-216. 
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of parameter tuning vis-a-vis the potential advantages of parameter control in 
evolutionary algorithms have been discussed recently [4]. 

In this paper we propose a parameter control strategy for the DE algorithm. The 
proposed algorithm is based on a heuristic rule that takes some feedback information 
from the actual population, a measure of the diversity of the population, in order to 
modify the values of the amplification parameter (F) and also the crossover constant 
(CR). Broadly speaking the strategy modifies the effect of the parameters 
amplification variation and crossover at different stages of the search trying to do a 
search across the whole space at early stages and speeding up the search process when 
it gets close to convergence. That this strategy improves the search of DE is 
demonstrated by implementing it in the differential evolution algorithm in which the 
vector to be mutated is selected randomly. Only one difference vector is used for the 
mutation and the crossover is given by binomial experiments. To evaluate the 
performance of this strategy against a classical parameter tuning approach two 
difficult multimodal benchmark optimal control problems are solved. The paper is 
organized as follows. We first briefly describe the differential evolution algorithm in 
section two. In section three we summarize the parameter tuning approach and we 
describe our parameter control strategy and, finally, in section four the results 
obtained from the solution of two multimodal optimal control problems are discussed. 

1) comprise a class of evolutionary 

4.3 The differential evolution algorithm 

Differential Evolution algorithms (figure 
algorithms recently proposed in the 
literature [1, 2]. Just like Evolution 
Strategies they use chromosomes based on 
floating-point numbers to represent 
candidate solutions. Each individual is 

defined as a (/-dimensional vector a e R 
and the whole population of potential 
solutions at generation g, is given by 
P(g) = {ai,...,afJ}. Here the population 

size /u does not change during the search. 
The main evolutionary operator in DE is 
completely different from other 
evolutionary algorithms since mutation 
neither is based on the alteration of genes 
by using a mutation probability nor rest on 
the use of a defined probability distribution 
function. In DE the mutation operator mutates //vectors through the weighted 
difference of two (or four) others vectors according to: 

Figure 1. Differential Evolution 
algorithm. 

Generate random solutions that cover the 
given space. 
Evaluate each solution. 
g=i; 
while (convergence is not reached) 

for i=l to Population size 
Apply differential mutation. 
Execute differential crossover. 
Clip the solutions if necessary. 
Evaluate the new solution. 
Apply differential selection, 

end 
g=g+i; 

v,- =a +Fx(a -a ) (1) 

where i = 1,2,...,//, and the random indexes r^^,^ e [1,2,...,//] are mutually different 
and also distinct from the index /'. F e [0,2] is a real constant which affects the 
differential variation between two vectors. As in other evolutionary algorithms, the 
crossover operator is introduced in order to increase the diversity of the population. 
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The crossover operator combines the previously mutated vector 
v, =[v,,,v2j,...,vrfl]with a so-called target vector a, =[ali,a2i,...,adi]to generate a 
named trial vector a\ = [a'u,a'2i,...,a'di] according to: 

, [v, if (randb(j) < CR) or j = rnbr(i) . , - , . , - ,-. 
a « H J = h2,-,d;i = 1,2,..., ju (2) 

[aji if (randb(j) > CR) and j * rnbr{i) 

where randb(j) e [0,1] is the j-th evaluation of a uniform random number generator. 
Ci?e[0,l]is the crossover parameter. rnbr(i)e [1,2,...,d]is a randomly chosen index. 
Each member (i) of the population plays once the role of a target vector, thus, there 
are fi competitions at each generation. 

The population size (//), the differential variation parameter (F) and the crossover 
constant (CR) are parameters in the algorithm that have to be set the user. The 
selection operator only compares the cost function value of both competing vectors 
(target and trial vectors) and the better individual becomes a member of the 
population for the next generation. That means: 

if0(a,'(g)) < <D(5, (g)) then a,(g +1) := 5,'(g) 

else ai(g + l):=ai(g);i = l,2,...,fi (3) 

where <D is the performance function that has to be minimized. According to the 
notation proposed by Storn and Price [1] the previous algorithm can be shortly 
described by: DE/rand/1/bin. This stands for a differential evolution algorithm in 
which the vector to be mutated (ar in (1)) is selected randomly from the population. 

Only the difference of two vectors is considered by the mutation operation in (1). The 
crossover is due to the binomial scheme (eq. 2). It is apparent that there are more 
differential evolution algorithms. We have studied the behavior of in total five 
different DEs somewhere else [3]. 

When we want to use DE to solve optimal control problems an extension is required 
in order to deal with constraints for the controls. A clipping technique has been 
introduced to guarantee that only feasible trial vectors are generated after the 
application of mutation and crossover operators, as follows: 

«,,(#) = 1 ' , , . j = l,...,d;i = l,...,ju (4) 

where a, and /?. are the lower and upper bounds on Uj. 

4.4 Parameter tuning and control in differential evolution algorithm 

The values of population size (//), the amplification variation (F) and crossover 
constant (CR) greatly determine whether DE will find an optimum solution and 
whether it will find an acceptable solution efficiently. Roughly speaking, by using 
greater values of population size, DE has more chances to converge to the global 
optimum at the expense of computation time. Greater values of the differential 
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variation coefficient make it possible to explore the whole search space and to prevent 
premature convergence of DE. A value for the crossover constant close to one 
increases the speed of convergence. The values of these parameters can be determined 
either by parameter tuning (PT) or parameter control (PC). 

Parameter tuning (PT) in evolutionary algorithms amounts to finding parameter's 
values that do not change during the optimization. Therefore, a number of 
experiments are needed in order to find out the best combination of those parameters 
that give the solution of the problem accurately and efficiently. An experimental 
design would require a huge amount of experiments. Therefore, in order to solve 
optimal control problems by DE applying a parameter tuning approach, we have 
proceed as follows. Since the rule of thumb of Storn and Price [1] does not give 
enough information about the selection of the population size, we have followed three 
heuristic rules in applying DE to solve dynamic optimization problems. 

Heuristic one: Seeing that in solving optimal control problems a greater value of 
population size entails an increased number of function evaluations and computation 
time, some values for n near the dimension of the optimization problem are tried. If 
premature convergence is observed the population size can be increased. Otherwise it 
can be decreased. 

Heuristic two: Following the rule of thumb suggested by Storn and Price [1] we have 
chosen values of F=0.5 for the amplification variation parameter, and CR=0.1 for the 
crossover constant as starting candidates for each selected population size. Our 
examples show that, indeed, sometimes this value of F works very well (see problem 
1 below), but also sometimes it is necessary to increase that value in order to avoid 
premature convergence (see example 2 below). 

Heuristic three: According to another suggestion of Storn and Price, since changing 
the values of crossover constant CR from 0.1 to 0.9 or 1.0 speeds up convergence, 
possibly at the expense of the quality of the solution, we have tried these higher 
values for CR always. Sometimes increasing the value of the parameter CR is very 
convenient (see example 1 below), but in other cases values different than zero might 
deteriorate the quality of the solution (see example 2 below) due to convergence to a 
local optimum. 

Parameter control (PC) in evolutionary algorithms, on the other hand, means that the 
values of the design parameters are changed during the optimization. There are two 
general ways to do this. Either by using a heuristic rule, which takes feedback from 
the current state of the search and modifies the parameter values accordingly or by 
incorporating the parameters into the chromosomes [4]. Following the first approach 
we have devised a parameter control strategy for the Differential Evolution algorithm. 
We have tested its behaviour on the differential evolution algorithm DE/rand/1/bin. 
Yet, it can be applied to other DE algorithms as well. Our proposed parameter control 
strategy is based on the assumption that for multimodal problems we want to explore 
the search space as much as possible at the beginning of the search. Assuming that the 
population size does not change during a run, this means that the parameter F, 
controlling the differential variation in DE, should take greater values at the beginning 
of the optimization than at later stages as the algorithm is approaching a solution. 
Conversely, the crossover parameter CR at early stages should be smaller than at 
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stages close to convergence. On the other hand, as soon as the algorithm is 
approaching a solution we should reduce the effect of the mutation parameter and 
because we are close to a solution it would be advisable to speed up the convergence 
by enlarging the effect of the crossover parameter. The difficulty, however, is how to 
determine the status of the current search. There are several possibilities to do this, for 
instance, a measure of the population diversity, relative improvements or absolute 
solution quality [4]. Here we have chosen a measure of population diversity [5] 
around the current best solution, which is defined as follows. First a diversity index 
jjji is required: 

Ifi 
1 if 
0 otherwise 

aji aj,best 

lj,best 
>E2 (5) 

where aJbesl is the jth gene of the individual with the best performance 

(i.e.:<t>(abest) < 0(5;),V(- *best) in the population, and e2 is an assigned tolerance 

for the gene diversity. A value of rj = 1 means a diversified gene. Next the degree of 

population diversity (0 < p < 1) is calculated as follows: 

P= Z t,1jiKdx(ji-l)) (6) 
i=l 7=1 
i^best 

Then, by using this measure of diversity in the population (p) a heuristic rule that 
allows us to modify two parameters in DE can be written as follows: 

if p > £•[ then 

F=0.9;CR=0.1 

else 

F=0.5;CR=0.5 (7) 

where s^ is a desired tolerance. 

4.5 Results from two-benchmark multimodal optimal control problems 

4.5.1 The optimal control of a multimodal CSTR 

We have solved by means of differential evolution a well-known multimodal optimal 
control problem that consists in determining the optimal control u(t) in the time 
interval 0<t<tf that minimizes the performance index: 

'/ 
J= j(xf +xl+Q.\u2)dt (8) 

o 
subjected to the dynamic equations: 

25x 
x, = -(2 + M)0, + 0.25) + (x2 + 0.5) exp( '-) (9) 

x, +2 
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25x 
x2=0.5-x2 -(x2 +0.5)exp( l-) (10) 

x, +2 v i 

from chemical reaction engineering [6]. Herein x, represents deviation from 
dimensionless steady-state temperature and x2 stands for deviation from 
dimensionless steady-state concentration. Both state variables model a first-order 
irreversible chemical reaction carried out in a continuous stirred tank reactor (CSTR). 
The control u(t) represents the manipulation of the flow-rate of the cooling fluid 
through a coil inserted in the reactor. The final time tf = 0.78 is fixed. The initial 

conditions are: x(0) = [0.09 0.09]r. It can be shown that according to classical 
methods in optimal control this problem has two solutions. The global optimum is 
associated with a performance index value of J*=0.13309 and the local optimum has a 
cost J*=0.24443 [3]. 

In order to solve this optimal control problem by a direct optimization method like 
Differential Evolution it is necessary to approximate the continuous-time optimal 
control problem to a non-linear programming problem (NLP). This can be done by 
control parameterization [7]. The time interval tt\0,tf\is discretized using N time 

intervals 0 = t0 <?,<,...,<tN =tf. Next the control is assumed to be piecewise 

constant at each time interval: 

u(t) = u(tk) = uk,te [tk,tk+l),k = l,...,N (11) 

This parameterization of the controls is used to solve the dynamic equations (eqns 9 
and 10) and also to evaluate the performance index (J) given by equation (8). 

When a piece-wise constant parameterization of the control with 13 intervals 
(parameters) is adopted, the global optimum for the CSTR optimal control has a cost 
function around J*=0.1356. The local optimum presents a performance index value of 
J*=0.2446. So as to solve this dynamic optimization problem by differential evolution 
it is assumed that the control is inside the bounds 0 < u(t) < 5. The initial population 
of the DE algorithm was generated uniformly from that domain. To evaluate the 
integral (J) accurately the Mayer formulation of this optimal control problem was 
adopted and three differential equations were solved. A variable step size integration 
routine (function ode45.m of MATLAB) was used to integrate the differential 
equations and the relative tolerance for the integration was set to le-8. In order to 
speed up the simulation a C-MEX file s-function containing the dynamic differential 
equations was written. 

An absolute convergence criterion for DE algorithm was chosen as Jw- Jb < sc 

which is reasonable seeing that both the states (x) and the control (u) are normalized 
in this problem. Where Jw and Jb are the worst and the best performance index values 
from the population. Values of the tolerances in the parameter control strategy were 
£•, =0.5and s2 =0.1. The tolerance ^constant was ec =0.00001. Table 1 shows 

main the main results obtained with the two algorithms described before where the 
averages from ten runs are reported. All the time the DE algorithm converged to the 
global optimum solution. 
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Table 1. 

DE strategy 

M 

F.E. 

CPU 

time"[secs] 

J* 

CE(%) 

Generations 

Parameters 

Comparison of parameter tuning and parameter control 
solving the optimal control of a CSTR 

PT PC 

20 

4388 

308.13 

0.1355943 

100 

219.4 

F=0.5,CR=0.5 

4292 

250.91 

0.1355846 

100 

214.6 

eq.(7) 

PT PC 

15 

4402.50 

313.08 

0.1356408 

100 

293.5 

F=0.5,CR=0.2 

2913 

198.41 

0.1355878 

100 

194.2 

eq.(7) 

in DE/rand/1/bin from 

PT PC 

10 

3116 

222.94 

0.1382629 

100 

311.6 

F=0.5,CR=0.2 

1884 

138.33 

0.1360762 

100 

188.4 

eq.(7) 

F.E.=function evaluations. CE=percentage of hitting the global optimum. #On a Pentium III at 700 
MHZ PC. Averages often runs. 

Values for parameters F and CR were, in the case of parameter tuning, obtained 
through the heuristic rules described before (section 3). Clearly the number of 
function evaluations is always less in case of the parameter control strategy and also 
the quality of the solution is slightly better. 

4.5.2 The optimal control of the bifunctional catalyst blend problem. 

A highly multimodal optimal control problem has been posed by Luus [6]. A 
chemical process involves converting methylcyclopentane to benzene in a tubular 
reactor is modeled by a set of seven differential equations (12)-(18): 

X I — ftl J\f\ 

X j — fti JC% v 2 "\) 1 ^A.Xc 

•A"} ~~~ A o A o 

4 — 6 4 5 5 

(12) 

(13) 

(14) 

(15) 

Xe — K-> A 2 1 'tf.XA \ *^4 5 R ^ Q / *^5 "*" 7 6 10 7 

X6 — ^X5 — K1X6 

(16) 

(17) 

Xj /CgJ t j K^QX-J (18) 

where the states x^J = l,...,7are the mole fractions of the chemical species and the rate 

coefficients (£,) are cubic functions of the catalyst blend (control u(t)), according to: 

kt = cn + cj2u + cnu
2 + ci4u

3;i = 1,...,10 (19) 
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where all the values of the constants c^are given in reference [6]. The upper and 
lower bounds on the mass fraction of the hydrogenation catalyst are: 0.6 < u(t) < 0.9, 
and the initial values for the states are: 
x(0) = [l 0 0 0 0 0 Of 

The optimal control problem consist in to find the catalyst blend along the length of 
the reactor in the interval 0<t<tf, where tf = 2000g • h I mol such that the 

concentration of benzene is maximized. Thus the performance index to be maximized 
is given by: 

J = x1(tf)xW (20) 

where 103 is a scaling factor. This problem has been studied by Luus [6] who by using 
Iterative Dynamic Programming has shown that there are a lot of local optima. The 
global optimum is around the performance index value of J*= 10.0942 when a 
piecewise constant control parameterization with ten intervals is adopted. 

In order to solve this problem by differential evolution, the initial population was 
generated randomly from the parameterized control space. As for the first example, a 
variable step size integration routine (function ode45.m of MATLAB) was used to 
integrate the dynamic equations (12-18). A relative tolerance of le-8 was set for the 
integration. Also a C-MEX file s-function with the differential equations was written 
so as to speed up the simulations. Again, a criterion of convergence based on the 
population was selected. But, in contrast to the first example here a relative 
convergence criterion was chosen as follows: 

{Jw-Jb)± E J%) 
1=1 

(21) 

where /„,and J6are defined as earlier and sd =0.001. The values of the tolerances 

for the parameter control strategy were: s1 = 0.02 and s2 = 0.02. 

Table 2. Comparison of parameter tuning and parameter control in DE/rand/1/bin from 
solving the optimal control of the blend of a bifunctional catalyst 

DE strategy 

M 

F.E. 

CPU 

time#[secs] 

J* 

CE(%) 

Generations 

Parameters 

PT PC 

25 

3117.5 

390.07 

10.0942 

100 

124.7 

F=0.9,CR=0.0 

1635 

224.18 

10.0940 

100 

65.40 

eq.(7) 

PT PC 

20 

2604 

339.58 

10.0942 

100 

130.2 

F=0.9,CR=0.0 

1240 

171.70 

10.0906 

100 

62 

eq.(7) 

PT PC 

15 

1858.3 

246.90 

10.0942 

90 

123.88 

F=0.9,CR=0.0 

937.50 

127.70 

10.0919 

80 

62.50 

eq.(7) 

F.E.=ftmction evaluations. CE=percentage 
MHZ PC 

of hitting the global optimum. # On a Pentium III at 700 
Averages often runs. 
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Table 2 shows main results when DE was used to solve this problem. It can be seen 
from table 2 that the DE method mostly converges to the global optimum. However, 
as the population size is smaller the algorithm is affected by premature convergence. 
On the other hand, it is apparent that the number of function evaluations was 
significantly smaller for the parameter control strategy than in the case of parameter 
tuning. It seems possible to improve the quality of the solution obtained by means of 
parameter control by increasing the population size without augmenting too much the 
number of function evaluations. 

4.6 Discussion 

The parameter control strategy introduces two new parameters, namely, the tolerances 
^and e2. However, in contrast to the original parameters these tolerances have a 
clear meaning and, in addition, there are less reasons why they themselves should be 
changed during the optimization. In any case, they have led to larger efficiency 
without any tuning. 

4.7 Conclusions 

Through the solution of two multi-modal optimal control problems we have 
demonstrated that implementation of a parameter control strategy in the Differential 
Evolution algorithm has significant advantages over widely practiced parameter 
tuning approach. The parameter control strategy, which takes into account the 
diversity in the population in order to modify the values of the differential variation 
(F) and crossover (CR) parameters during the optimization is able to significantly 
improve the efficiency of the algorithm, and also the quality of the solution as 
compared to those obtained by parameter tuning. In future work we plan to apply and 
study the behavior of the proposed parameter control strategy in other Differential 
Evolution algorithms. Within the parameter control strategy the design of measures to 
determine the current convergence status of the search is an important issue that will 
be addressed. 
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For a complete description refer to the paper by Seginer et al. 1998 [5]. In Figure 1 a 
relational diagram, the backbone of the model is presented. The nitrate balance is not 
shown there. A summary of the main equations is presented in Appendix 1. A brief 
description of the model is as follows. The model has two state variables: non
structural carbon content (So) and structural carbon content (Scs) measured in moles 
[C] per unit surface area. No distinction between shoot and root is made in the model. 
Also long-term storage of assimilates is neglected. Some additional assumptions are 
that the volume of the vacuoles is a fixed fraction of the total volume of the plant; 
carbon-to-nitrogen ratio in the structure is also fixed, whereas the ratio in the vacuoles 
is variable, but constrained by the need to maintain a constant turgor pressure. It is 
assumed that there are no limitations in the flow of nitrate into the vacuoles to support 
growth and to maintain turgor. The plant grows by building new cells with exactly the 
same proportions as the already existing cells. 

The model assumes that photosynthesis depends on light and CO2 only, whereas 
respiration and growth are assumed to depend on temperature. Both photosynthesis 
and growth depend on the size of the crop as well. In this way, the non-structural 
carbon content is a result of the photosynthetic activity of the plant (Fcav, eqn. 3) 
driven by light (I) and CO2 (Cca)- The maintenance (Fcm, eqn. 5) and growth (Fcg, 
eqn. 6) of the plant draw upon the produced carbohydrates under the influence of 
temperature (T). The photosynthetic process is described by a rectangular hyperbola 
function (eqn. 8). Both photosynthesis and growth functions include an exponential 
canopy closure function (eqn. 10) to relate these processes to light-intercepting leaf 
area. And also both functions have an inhibition function as a mechanism to restrict 
the growth of the plant and the carbohydrates production, as explained below. 

photos ynthes is 

F i g u r e 1 . D y n a m i c m o d e l o f l e t t u c e c r o p . I is g l o b a l s o l a r 
r a d i a t i o n , C c a is the c a r b o n d i o x i d e c o n c e n t r a t i o n and T is the 
a i r t e m p e r a t u r e i n s i d e the g r e e n h o u s e . 

The growth inhibition function (hg{Ccv}, eqn. 12) and photosynthesis inhibition 
function (hp{ Co}, eqn. 9) both depend on the non-structural carbon concentration 
(Co) which is calculated from the state variables of the model (eqn. 7). If as a result 
of the activity of light and CO2 the non-structural carbon concentration (the 

78 



assimilates stock) approaches zero then the growth of the plant is reduced. That means 
that the growth switching function hg{C<>} decreases to zero. On the other hand, 
when the carbon assimilates in the vacuoles is too high the photosynthesis inhibition 
function hp{Ccv} approaches zero and brings the photosynthetic activity to a halt. 
From the basic model it is possible to derive some observable variables or output 
variables, for instance, plant dry weight matter (eqn. 19), which can be used to several 
purposes as the calibration of the model. A simulation program of this model was 
implemented in MATLAB-Simulink environment. The program uses a C-MEX file S-
function so as to increase the speed of simulations. 

5.1.4 Genetic Algorithms 

The use of optimisation algorithms to calibrate a dynamic model is nowadays a 
common activity [8],[4]. We use a method inspired by the theory of evolution and 
natural genetics to calibrate the model aforementioned. A genetic algorithm (GA) [2] 
is an example of an Evolutionary Algorithm [1]. EAs are a relatively novel group of 
probabilistic search methods with robust properties as global optimisation procedures. 
A genetic algorithm has at least four properties: a population of chromosomes P(t) 
which contains candidate solutions to the problem, selection according to the fitness 
of each solution, crossover to produce new offspring, and random mutation [6]. Even 
though a GA is conceptually simple it performs well on many different types of 
problems. In figure 2 the general view of a GA is presented [5]. 

Figure 2. Pseudo-code of a Genetic Algorithm 
Procedure Genetic Algorithm 
begin 

t=0; 
initialise P(t); 
evaluate P(t); 

while (not termination-condition) do 
t=t+l; 
select P(t) from P(t-l); 
alter P(t); 
evaluate P(t); 

end 
end 

A genetic algorithm starts with a randomly or knowledge-based generated population 
P (t) of n candidate solutions to a problem. In a classic GA a binary representation is 
commonly used. For more complex GAs other structures (like vectors of integer or 
real numbers) can be used. Each chromosome of the population is evaluated to obtain 
a measure of its fitness. Then, a new population is formed, by selecting the more fit 
individuals. Some members of the new population are altered by means of crossover 
and mutation operators. The role of crossover is to combine features of the two 
solutions to form two offspring by swapping segments of the parents. We expect that 
through the information exchange of both solutions it can be possible to generate 
better solutions. The mutation operator stochastically modifies some genes of a 
selected chromosome with a probability equal to the mutation rate. The mutation 
operator introduces variability in the population. 
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Table 1. Genetic operators used in the calibration of the model. 
Type of 
chromosome 
Binary 

Real 

Selection 

Normalised 
geometric 
ranking. 
pb =0.08 
Normalised 
geometric 
ranking. 
pb =0.08 

Crossover 

Simple 
(Pc=0.6) 

Arithmetic, 
Heuristic, 
simple 

Mutation 

Binary mutation 
(pm=0.05) 

Boundary, multi-
non-uniform, non
uniform, uniform 
mutation 

In this research both a GA with binary chromosome representation as well as a GA 
with real representation were investigated. Each chromosome of the initial population 
was generated in a random way but they were within a range given by expert-
knowledge. That means that reasonable ranges were defined for all the parameters 
under study. The fitness function was a simple sum of squares of the error between 
observed values of the dry weight matter of the plant and the simulated value. The 
number of generations was five hundred for all the simulations. And the number of 
chromosomes in the population was fifty. Because the genetic operators depend on the 
kind of chromosome representation used they are presented in table 1. The probability 
of selecting the best individual (pb), probability of crossover (pc) and probability of 
mutation (pm) used for the binary GA are presented there. The real GA used the same 
selection operator. We applied the genetic operators proposed by Michalewicz [5] for 
the case of real GA. The values for all their parameters were taken from Houck et al. 
1995 [3]. The Genetic Algorithms Optimization Toolbox (GAOT) software available 
for MATLAB [3] was used for all the simulations because it is easy to link with a 
simulation model built in MATLAB-Simulink. 

5.1.5 Calibration results 

The calibration was done using 
original parameterisation done by 
Seginer et al. [7]. Only the 
parameters that were known from 
previous experience to have a 
strong effect in the model were s 
incorporated in the calibration, f 
Thus, the growth (m), the t 
apparent light efficiency I 
parameter (£•) and the CO2 
transport coefficient (o) 
parameters were considered. Two 
sets of environmental data 
collected by Van Henten [10] 
were used as inputs of the model. 
The calibration results using 
both GA implementations Fiffure 3. Model calibration results for exneriment 1. 

CO 
FbatGAs 
Binary GAs 

0 Observed 

+ 

J* + 

rs 

* j * 

°r 
+ &**^ + 

J* + 

r + 
+ 

Time (days) 
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and a local optimisation method are shown in Figure 3 and Figure 4 respectively. The 
calculated values of the calibrated parameters for both experiments are presented in 
table 2. The results of both GAs are compared with a classic optimisation algorithm 
based on Sequential Quadratic Programming algorithm. Since in many cases the local 
optimisation algorithm converged to a local minimum, a kind of global optimisation 
for it was implemented. The best value reached after forty optimisations using random 
guessed initial parameter values, are presented here. From this table we can conclude 
that the GA implementations were always superior. For the case of experiment 1 the 
solution found by both genetic algorithms was essentially the same. Figure 3 shows 
minor differences between all implementations. 

LO 
BGA 
FGA 

Table 2. Results 
m 

exp. 1 
8.0214 
7.5532 
7.5661 

exp. 2 
32.512 
30.728 
32.995 

of parameters calibration. 
s 

exp. 1 
0.0751 
0.0670 
0.0670 

exp. 2 
0.0717 
0.0717 
0.0708 

a 
exp. 1 
0.0011 
0.0020 
0.0020 

exp. 2 
0.0011 
0.0011 
0.0011 

Error 
exp. 1 
0.2955 
0.2849 
0.2849 

exp. 2 
0.1967 
0.1968 
0.1963 

For experiment 2 the genetic algorithm with real number code chromosomes got the 
lowest error value but the differences are very small. This result confirms some 
advantages of the use of this 
GA instead of the binary 
version [5]. We could observe 
that for several runs the 
floating point GA converged 
to an error of 0.1985 and 
values for the parameters 
m= 20.8843, 8=0.0733, and 
a=0.0011. Even though the | 
difference between both a-
error values is small we can 
see the value of the parameter 
m changes considerably. This 
can be explained by the 
difficulties to determine the 

Figure 4. Model calibration results for experiment 2. 

Trffe (days) 

growth parameter (m) 
using information of 
growth experiments [9]. Figure 4 shows the simulation results using the parameters 
calculated for all calibrations. Minor differences can be observed between both GAs. 

5.1.6 Sensitivity analysis 

In a previous work [9] the sensitivity of the states of this model to its parameters was 
presented. In this study we show the results of the calculation of the sensitivity of 
plant dry weight (YdW) model output to changes of the parameters in the model. The 
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dY^O") 9, 
80, Yd„(t,0°) 

- , and solving the relative sensitivity was calculated using St = 

algebraic equation 

SJ = 8YAt,n^+aYAt,e°}8^+8Ydw(t,0°) a l o n g w i t h t h e s o l u t i o n o f t h e 

8x, 86: <?x, 80, 80, 
sensitivity equations. The results are presented in table 3. 

From this table we can conclude that the most important parameter in the model that 
act upon the plant dry weight is the apparent light use efficiency (£•). The CO2 
transport coefficient (o), closure parameter (a) and growth parameter (rri) have less 
effect. The sensitivity results help to understand the large differences in parameter 
values for m and a between the two experiments. They cannot be determined 
accurately in cases where the sensitivity is low. The differences between the role of m 
and a in both experiments, could be explained by the different environmental 
conditions of both experiments as was discussed before in [9]. 

Table 3. Relative sensitivity of plant dry weight to changes in the parameters in decreasing 
order of importance for both experiments. 

e 
a 
m 
K 

0 
k 
0 

bP 

Y 
bg 

c 
s„ 
sa 

Experiment 1 
0.84 
0.49 
0.34 

-0.23 
-0.17 
0.14 
0.13 
0.10 

-0.09 
-0.04 
-0.01 
0.01 
0.01 

e 
CT 
a 
0 
k 
K 

C 

be 

m 

Y 
se 

Sp 

bD 

Experiment 2 
0.86 
0.48 
0.45 

-0.25 
-0.17 
-0.14 
0.08 

-0.05 
0.02 
0.01 

-0.01 
0.00 
0.00 

5.1.7 Conclusions 

This study showed that Genetic Algorithms are suitable to do the calibration of 
dynamic models. However, a high computation time was required. This can be 
attributed to the quantity of function evaluations, a complete simulation of the 
dynamic model, in this case, executed by a GA to calculate the fitness of each 
potential solution. Another explanation can be the inherent slow properties of the 
current interpreted MATLAB GA implementation. Although the computation time 
could not be a limitation to use this approach, additional work is needed to know the 
performance of GAs with more complex dynamic models and also to improve the 
efficiency of the present implementation. 
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Appendix 1. Basic lettuce model (NICOLET) equations 

State equations 

Carbon in vacuoles 

Carbon in structure 

C-fluxes 
photosynthetic assimilation 

growth 

maintenance respiration 

Cv - F F F F 
j rCav rCm rCg r Cvs 

dSa _ p 
dt Cv* 

Fca.=P{I,C.}hp{Sa,Sa)f{Sa} 

Fc,s=g{T}hg{SCv,SCs}f{SCs} 

FCm=e{T}SCs 

[1] 

[2] 

[3] 

[4] 

[5] 
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growth respiration 
Additional relations 

carbon concentration in the 
vacuoles 

uninhibited photosynthesis rate 

photosynthesis inhibition 
function 

canopy closure reduction 
function 
maximum growth rate 

source depletion switching 
(inhibition) function 

specific maintenance 
respiration 
osmotic pressure in vacuoles 
(Pa) 
nitrate concentration in the 
vacuoles 

Outputs 

dry matter (g m"2) 

fresh matter (g m") 

dry weight per head (g) 

Fcs=0F Cvs [6] 

C a = ^ [7] 

P{i,cCa}=
£la{C^-c^ cca>cc, r o i 

FX Cai d + cr(CCa-Cc,) [8] 

A,{CJ = 1- ('—H^HE 
-1 

[9] 

f{Sa) = l-™P{-'*Sa} [ 1 0 ] 

g{T} = mkexp{c(T-T*)} [11] 

*,&>} = H--(^-*'| 
- i 

[12] 

e{T}=kcxV{c(T-T*)} [n] 

nv=pv+nr [ 1 4 ] 

C . = n ' ^ [15] 

DM = rioulc{Sa+SCv)+t]uultlSm [16] 

withSM,=CB,^- [ 1 ? ] 

FM-J^- [18] 
'iDM I FM 

yd„=DM/Np [19] 
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5.2 Optimal control of nitrate in lettuce by gradient and differential 
evolution algorithms* 

5.2.1 Abstract 

Since high concentration levels of nitrate in lettuce are undesirable, its control is 
currently an important problem in the context of European Union regulations. Using a 
dynamic model that predicts the amount of nitrate at harvest time, an optimal control 
problem is formulated and solved through an enhanced classical gradient method and 
a Differential Evolution algorithm. This work shows that in order to avoid local 
minima an efficient evolutionary algorithm may be applied to solve optimal control 
problems or to provide a good initial guess for a classical method, which solves 
smooth continuous-time optimal control problems more accurately and efficiently. 

Keywords: Optimal control, Artificial Intelligence, Genetic Algorithms, Global 
optimization, Gradient methods 

5.2.2 Introduction 

High concentration levels of nitrate in lettuce crop and other leafy vegetables are 
undesirable because they have a negative effect on human health. Therefore, methods 
are sought to control the nitrate levels of a greenhouse lettuce crop. As a first step a 
model of lettuce growth, which predicts the amount of nitrate content at harvest time, 
has been proposed (Seginer et al., 1998). An optimal control problem has been 
formulated and some properties of its solution have been analyzed using a simplified 
lettuce model (Ioslovich and Seginer, 2000). Also the full two-state nonlinear lettuce 
model has been used to get a numerical solution to another optimal control problem 
that uses light and temperature as control inputs by means of a first order gradient 
algorithm (Stigter and Van Straten, 2000). The aim of this paper is to solve a new 
optimal control problem that includes light, temperature and also carbon dioxide 
concentration as control inputs, by an evolutionary algorithm and to compare the 
results with those obtained by the Adjustable Control-variation Weight (ACW) 
gradient algorithm (Bryson, 1999, Weinreb, 1985). The evolutionary algorithm 
selected is the recently proposed Differential Evolution (DE) algorithm (Storn and 
Price, 1997), since DE is an evolutionary algorithm that can approximate the global 
optimum and is also very efficient computationally compared to other evolutionary 
algorithms. The paper is organized as follows: first a brief description of the optimal 
control problem is given; especially some properties of the dynamic lettuce model are 
emphasized. Then, the main characteristics of the Differential Evolution algorithm are 
outlined. Next, the results are described, compared and discussed. 

5.2.3 Optimal control of nitrate in lettuce 

+ Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Artificial Intelligence in 
Agriculture 2001, a proceedings volume from the 4,h IFAC workshop Budapest, Hungary, 6-8 June 
2001, pp. 123-128. 
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The lettuce model is based on carbon balances of the vacuoles and the structure that 
prevail in the plant cells. The so-called NICOLET model (Seginer et al., 1998) has 
two state variables: carbon content in the vacuoles (MCv mol[C] m"2 [ground]) and 

-2 
' C v 

carbon content in the structure (MCs mol[C] m'z [ground]) that represent a carbon 
source-sink relation in the plant driven by sunlight, temperature and carbon dioxide 
concentration. Photosynthesis and growth can proceed uninhibited as long as the non
structural carbon concentration in the vacuoles remains within certain limits. 
However, when affected by environmental conditions the non-structural carbon 
concentration approaches zero, growth will be reduced. In the model, this transition is 
implemented by introducing a smooth switching function which is one for non-
inhibiting levels, but falls off to zero rapidly when the assimilate stock becomes 
empty. When carbon assimilates in the vacuoles are too high a similar switching 
function brings photosynthesis to a halt. 

The core of the model is given by two differential equations: 

MCv = FCav - hgFCm - FCg - FCvs (1) 

Mcs=FCvs-(l-hg)FCm (2) 

which represent the main carbon balances. The F's in equation (1) denote the rates of 
photosynthesis, maintenance, growth respiration and uninhibited growth, respectively, 
which are functions of the states and the inputs light (I [mol PAR m'V1]), carbon 
dioxide (Cca [mol m"3]) and temperature (T °C). hg denotes the inhibition function for 
growth. 

The description of all model equations and parameter values is given in Yarkoni and 
McKenna, (2000). Here it is worthwhile to outline that in the version used here 
(NICOLET B3) two important modifications were made as compared to the original 
NICOLET model (Seginer et al., 1998). In NICOLET version B3 the inhibition 
functions for photosynthesis and growth were changed in such a way that they take a 
value of zero when vacuolar carbon concentrations reach the appropriate bound. And 
also, as seen in Eqns (1) and (2), the new model incorporates the depletion of 
structural matter to meet the requirements of maintenance respiration when the carbon 
content in the vacuoles is low. This situation may occur when the model is exposed to 
a long darkness period. It turned out that the original model predicts negative values 
for the carbon content in the vacuoles when it was used in the solution of an optimal 
control problem by the differential evolution algorithm with three control inputs. 
From the states of the lettuce model several outputs such as dry and fresh matter, 
sugars and nitrate concentration are calculated. The nitrate concentration follows from 
MCv by a negative algebraic correlation, which expresses the plants policy to maintain 
its turgor pressure. 

One formulation of the optimal control of nitrate in lettuce is as follows. While 
minimizing the integral of light 

'/ 
J = jl(t)dt (3) 
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calculate the control trajectories of light, carbon dioxide and temperature such that a 
desired fresh head weight of lettuce (jrf/m[gr]) and a specified amount of nitrate 

(ydNo [pPml) a r e obtained at a specified harvest time (tf) i.e., 

yfm(tf) = ydfm 

yNO}(
tf) = ydNOi 

(4) 

(5) 

where yj-m(tf) and yN0 (?y)are the corresponding outputs of the model. The 

control inputs are bounded because it is apparent that the light intensity cannot be 
negative and the same is true for carbon dioxide. Also the temperature must lie within 
a domain tolerated by the lettuce crop 

Cmin < CCa (0 < Cmax, rmin < 7(0 * Tm ^ 0 < t< tf (6) Imm<I(t)<I, 

5.2.4 Extended Differential evolution algorithms 

Figure I. Differential Evolution algorithm 

Generate random solutions that cover the 
given space. 
Evaluate each solution. 

g=i; 
while (convergence is not reached) 

for i=l to Population Size 
Apply differential mutation. 
Execute differential crossover. 
Clip the new solution if 
necessary. 
Evaluate the new solution. 
Apply differential selection, 

end 
g=g+i; 

end 

A numerical solution to the specified optimal 
control problem can be obtained by indirect 
methods of optimal control like a first order 
gradient method, but also by direct methods. 
In this work a direct method based on 
evolutionary algorithms is used to 
approximate the global optimum solution. In 
the direct method the control trajectory is 
parameterised as a sequence of piece-wise 
constant values, which have to be found by 
the optimisation. The Differential Evolution 
algorithm is a kind of evolutionary algorithm 
that has recently been proposed for the 
solution of static parameter optimisation 
problems (Storn and Price, 1997). This 
algorithm has several nice properties over 
other evolutionary algorithms because it is easy to understand and very efficient 
computationally. An outline of this algorithm is presented in figure 1. As in other 
evolutionary algorithms main operators in DE are mutation, crossover and selection. 
Yet, in contrast to archetype genetic algorithms, they use a floating-point 
representation for the solutions. Also the main operator in DE is rather different than 
in other evolutionary algorithms. Similarly to Evolution Strategies here each 
chromosome is represented as a real parameter vector a = [ay,...,a„], and it is 

required at generation g a population containing fi individuals a,-;i =1,. . . , / / . The 
essential feature of differential evolution algorithm rests on the mutation operator. A 
so-called mutant vector (v(-), is generated by adding the weighted difference between 
two or four selected population vectors to another vector: 

v,. = a r l + F - ( a r 2 - a r 3 ) (7) 

where (a,.) is either a randomly selected vector or it represents the best solution from 

the current population. F e [0,2] is a factor that controls the amplification of the 
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differential variation. The mutation operator implemented in this work was: 
v i = » 6 e S / + F - ( a r l + a r 2 - » r 3 - a r 4 ) ; ' = 1->P (8) 
The crossover operator increases the diversity of the mutated vector by means of the 
combination of two solutions: 

\va if randb<CR or i = randr 
afl= 1 i M rv A - ,;i = \,...,M;j = \,...,q (9) 

[aji y ranab > CR and j * randr 
where v7, is the j-th element of the mutated vector v,, a, is a so-called target vector, 

against which each new solution is compared to, and randb is a uniform random 
number from [0,1]. randr e [1,2,...,q] is a randomly chosen index, and CR is a 
parameter [0,1], which specifies the crossover constant. Selection is implemented only 
on the basis of a comparison between the cost function value of the new solution a) 

and that of the target vector a,. This means that if J(aJ) < / (a , ) the new solution 
becomes a member of the population otherwise the old solution is retained. The inner 
loop in figure 1 implies that there are // competitions at each generation since each 
member of the population plays the role of a target vector once. 

Two extensions have been introduced in the original differential evolution algorithm. 
The first one is related to the fact that the controls are bounded so a clipping technique 
is introduced to prevent inadmissible solutions. 

[u, =a, if H, <a, 
uj=\ ' ' ., \ ' ; j = U.-.,q (10) 

where a and ft represent the lower and upper boundary of the control variables, 
respectively. The second modification is due to the fact that the optimal control of 
nitrate in lettuce presents constraints at harvest time (final time). The solution 
computed is based on the use of penalty functions. The augmented performance index 
is given by 

J' = J + X(g)dist(x(tf)) (11) 

where A(g) is either a penalty factor depending on the current generation or a 
constant penalty factor, J is given by equation (3), and two options for dist are: 

dist(x(tf)) = \ I yf'\ (12) 

5.2. 5 Numerical results 

5.2.5.1 A Solution obtained by a gradient algorithm 

A solution of the optimal control of nitrate in lettuce was obtained by a classical first 
order gradient method. However, in contrast to the solution reported previously 
(Stigter and Van Straten, 2000) here the Adjustable Control Weight (ACW) gradient 
algorithm from Weinreb (1985) was implemented in order to deal with the constraints 



of the controls properly. This method uses an adjustable weighting matrix to modify 
the variation of the controls in the neighbourhood of the hard control bounds. The 
ACW gradient method 
solves the I 
continuous-time | 
optimal control f 
problem according to | 
the Pontryagin's x 

Minimum Principle. The 
required gradients were 
calculated analytically. 
The final time was 
specified at tf = 60 | 

days. The ° 
constraints at the 
final time were 

days 

ydfm = 400 grams of 
fi. • A Figure 2. Optimal trajectories ofhead fresh weight and nitrate 

head fresh weight, and concentration calculated by the ACW gradient algorithm. 
ydNO, = 3 5 0 ° p p m o f 

nitrate concentration. The bounds on the controls were as follows: 0 < / ( / )< 17.5, 
0.01 <CCa(t)<0.04, and 10 <T(t)< 30. From several optimizations which were 
initialized with constant values for the controls a solution with a performance 
J*=306.3420 mol PAR m"2 was obtained. For one of the optimizations figure 2 shows 
the calculated optimal trajectories of fresh matter and nitrate content obtained after 
3000 iterations of the ACW gradient method. The optimal solution satisfies almost 
exactly the two constraints at harvest time. The error for fresh head weight was 
0.0012 grams, and 0.1057 ppm in case of nitrate concentration. 
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Figure 3 presents the optimal control: light, carbon dioxide and temperature. Since 
one goal of the optimal control problem formulation was the minimization of the 
integral of light, the 
calculated optimal solution 
shows that it is possible to 
control the nitrate level at 
harvest time by increasing the 
supply of carbon dioxide 
and decreasing the i°™ 
temperature. This result 8~°02 

confirms that with artificial 
light it is possible to control 
nitrate levels in lettuce 0 

through the control of the °K 

shoot environment (Seginer et 
al., 1998). The optimal 
trajectory of carbon dioxide 
supply is at the upper specified 
limit (0.04 mol m"3), which is 
consistent with the fact that no 
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Figure 3. Optimal control inputs of light, carbon 
dioxide and temperature calculated by the ACW 
gradient algorithm. 
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cost was associated to it in the formulation of the optimal control problem. 

The optimal trajectory of temperature presents a trend that goes down across the 
cultivation period. On the other hand, the optimal trajectory of light presents a sharp 
increase at earliest days, which can be explained by the demand of photosynthetic 
activity required to produce the desired fresh weight. Next, for the rest of the growing 
period, the amount of light is increased but not too much in order to meet the 
specification of the performance index and also to come up to the desired fresh head 
weight and the nitrate content at harvest time. 

5.2.5.2 A solution obtained by a Differential Evolution algorithm 

In order to solve the previous optimal control problem by the differential evolution 
algorithm, the first step is the selection of a reasonable parameterization for the 
control inputs. For the sake of keeping the number of parameters to be optimized as 
small as possible, only twenty time intervals (N=20) were selected. Then a piece-wise 
constant approximation for the three controls (m=3) was chosen: 

u(/) = u(tk) = u\ te[tk,tk+l) k = \,...,N,i = l,...,m (13) 

Therefore the optimization problem has 60 parameters. It was observed that the DE 
algorithm works much better solving the optimal control problem with state 
constraints instead of working with the original outputs head fresh weight and nitrate 
concentration. For that reason, using the desired values of both head fresh weight 
(ydfm ) and nitrate concentration (yd m ), the desired values of the states at harvest 

time (xrf) were calculated. The next step consists of the selection of the design 
parameters (population size, mutation and crossover constant) in the differential 
evolution algorithm. Roughly speaking, using a greater population size (//) the 
algorithm has more chance to convergence to a global optimum at the expense of 
more computation time. A population size around the dimension of the optimization 
problem is a good starting point but, sometimes, smaller values are enough to get 
good results. Greater values of the mutation constant (F) make it possible to explore 
the whole search space and to prevent premature convergence. Crossover constant 
(CR) values around one speed up the convergence of the algorithm. So, a compromise 
has to be established among these three parameter values in the DE algorithm. With 
respect to the penalty functions, several options were tested. However, better results 
were obtained by using varying penalty coefficients (A(g)), which were changed 
exponentially according to the generation number. They were used together with the 
absolute difference between the desired and calculated state values for the function 
dist{x{tf). This approach has been applied in a similar manner by Smith and Stonier 

(1996) in other evolutionary algorithms. 

After some experiments with several values of the population size it was observed that 
even with a relatively small value for the population size (// = 20), F=0.5, and 
CR=0.2 a good solution with a performance index of J*=317.0987 mol PAR m'V1 

was obtained. The penalty coefficients changed exponentially from A(0) = 50 to 
/l(gmax) = 100. The number of generations was 5000. The deviations from the desired 

outputs values were 0.2130 grams for fresh weight, and 0.4272 ppm for nitrate 
concentration. Thus, the final constraints are almost satisfied using relatively small 
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values for the penalty coefficients. Figure 4 presents the optimal trajectories of head 
fresh weight and nitrate content calculated where J*=314.6248. The deviations from 
the final desired outputs were 1.2418 grams and 9.9060 ppm. The number of 
generations was 10000. "^r 
Figure 5 presents the „ 
corresponding s 
optimal controls. The s> 
shape of the sub- | 
optimal trajectories f 
calculated by the DE 
algorithm are different 
from those obtained by 
gradient method but ax,, 
clearly they show a 
trend that resembles _ 
the controls 
presented in figure 
3. 

Tine [days] 

8; 

Near-optimal trajectories of head fresh weight and 
nitrate concentration calculated by the DE algorithm. 

Looking at the rapid 
change during the first 
days of the optimal 
trajectory of light and Figure 4 
temperature, 
calculated by the 
gradient method, it is clear that the piecewise constant control parameterization used 
by the DE algorithm is not able to approximate the continuous-time solution 
accurately. As a result the optimal performance found by the classical method is better 
than that found by the DE algorithm, which is only, near optimal. 

On the other hand, as 
opposed to the classical 
algorithm, the differential 
evolution algorithm 
potentially finds the global 
solution. Therefore, 
efficient evolutionary 
algorithms as DE can be 
used to come up with an 
initial guess for classical 
algorithms, to prevent them 
from finding local minima. 
By increasing the number 0 

of time intervals or by H 

specifying them as variable-
length the solution of the DE 

algorithm will more closely 
approximate the 
continuous-time solution 
obtained by the classical algorithm. Finally, the rapid speed of convergence of the 

Time [days] 

Figure 5. Near-optimal control inputs of light, carbon 
dioxide and temperature calculated by the DE algorithm. 
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differential evolution algorithm near the optimal solution is illustrated in figure 6. 
This appealing characteristic could be exploited to generate the initial guess for a local 
optimization method. 

optimal 
nitrate 
lettuce 
and 

5.2.6 Conclusions 

Through the 
control of 
concentration in 
the benefits 
drawbacks of a i 
Differential , 
Evolution algorithm < 
(DE algorithm) and a . 
classical ACW 
(Adjustable Control-
variation Weight) 
gradient algorithm for 
optimal control were 
demonstrated. The 
Differential Evolution 
algorithm potentially 
finds the global solution 
whereas the classical 
algorithm does not. On 
the other hand, the classical algorithm is able to find the continuous-time solution and 
is more efficient, even though compared to many other evolutionary algorithms, the 
DE algorithm is highly efficient. Therefore, taken together, i.e. using the DE 
algorithm to compute an initial guess for the classical algorithm, an algorithm can be 
obtained that combines the advantages of both approaches. 

Generations 

Figure 6. 
algorithm. 

Convergence of the Differential Evolution 
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5.3 Optimal control of nitrate in lettuce by a hybrid approach: 
differential evolution and ACW gradient algorithms1 

5.3.1 Abstract 

Since high concentration levels of nitrate in lettuce and other leafy vegetables are 
undesirable, cultivation of lettuce according to specified governmental regulations is 
currently an important issue. Therefore, methods are sought in order to produce a 
lettuce crop that allow maximization of the profits of the grower while at the same 
time insuring the quality of the crops. Using a two-state dynamic lettuce model that 
predicts the amount of nitrate at harvest time, an optimal control problem with 
terminal constraints is formulated. The situation considered may be relevant in a plant 
factory where a fixed head weight should be reached in fixed time while minimizing 
light input. First, optimal trajectories of light, CO2 and temperature are calculated 
using the Adjustable Control Weight (ACW) gradient method. Subsequently, novel, 
efficient and modified Differential Evolution (DE) algorithms are used to obtain an 
approximate solution to the same optimal control problem. While the gradient method 
yields a more accurate result, the optimum may be local. In order to exploit the salient 
characteristics of a Differential Evolution algorithm as a global direct search method a 
hybrid-combined approach is proposed. An approximate solution obtained with a 
Differential Evolution algorithm is used to initialize the ACW gradient method. 
Although local minima did not seem to occur in this particular case, the results show 
the feasibility of this approach. 

Keywords: Optimal control, Artificial Intelligence, Differential Evolution, Global 
optimization, Gradient method, Lettuce growth, Nitrate content 

5.3.2 Introduction 

High concentration levels of nitrate in a lettuce crop and other leafy vegetables are 
undesirable because they have a negative effect on human health. Therefore, methods 
are needed to control nitrate levels of a greenhouse lettuce crop as long as a profitable 
amount of head fresh weight is produced. In work associated to the European project 
NICOLET (Nitrate Control in Lettuce and other leafy vegetables), a model of lettuce 
growth, which predicts the amount of nitrate content at harvest time, has been 
proposed (Seginer et al., 1998, 1999). Also, an optimal control problem that considers 
temperature, nitrate supply and plant density as control variables, has been formulated 
and some properties of its solution have been analyzed using a reduced (one state 
variable) lettuce model (Ioslovich and Seginer, 2000). A two-state nonlinear lettuce 
model (original NICOLET model) has been used to calculate a numerical solution to 
another optimal control problem that uses light and temperature as control inputs by 
means of a first order gradient algorithm (Stigter and Van Straten, 2000). In the 
present study, a solution is presented for a new optimal control problem where the 
purpose is to produce a fixed final head weight in fixed final time, with a fixed final 

f Accepted as publication by the Journal Computers and Electronics in Agriculture, special issue on 
Artificial Intelligence in Agriculture 
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nitrate level according to the standard, against minimal cost for artificial lighting. 
Control inputs are light, temperature and carbon dioxide concentration. A two-state 
lettuce model is used. Combinations of two different algorithms are applied in order 
to calculate a numerical solution. The Adjustable Control Weight (ACW) gradient 
algorithm (Weinreb 1985, Weinreb and Bryson 1985) is used first to obtain a solution. 
The recently proposed Differential Evolution (DE) algorithms (Storn and Price, 1997, 
Storn, 1999) are extended and applied to solve the optimal control problem of nitrates 
in lettuce. 

The reason to investigate the potential application of evolutionary algorithms to 
dynamic optimization problems is that Differential Evolution algorithms constitute 
global direct search methods which have shown appealing convergence characteristics 
to solve multimodal optimal control problems (Lopez Cruz et al., 2002). Since 
gradient methods (like ACW algorithm) are mainly local dynamic optimization 
methods, in this work a hybrid method is proposed and applied in which a Differential 
Evolution algorithm provides an approximate solution by which the ACW gradient 
algorithm is initialized. A comparison of the solutions reached by the ACW algorithm 
and the hybrid approach is presented. This paper is organized as follows. In section 
5.3.3 the main properties of the NICOLET (Nitrate Concentration in Lettuce) model 
are explained. Section 5.3.4 presents a description of the optimal control problem of 
nitrates in lettuce. Sections 5.3.5 and 5.3.6 describe the ACW and DE algorithms. 
Finally in section 5.3.7 the results are presented and discussed. 

5.3.3 A dynamic model to predict nitrate concentration in lettuce crop 

A dynamic model that accurately predicts, the nitrate content of a lettuce crop has 
recently been developed (Seginer et al., 1998, 1999). The so-called NICOLET model 
(Seginer et al., 1998) has two state variables: carbon content in the vacuoles (MCv 

mol[C] m"2 [ground]) and carbon content in the structure (MCs mol[C] m"2 [ground]). 
It represents a carbon source-sink relationship in the plant driven by sunlight, 
temperature and carbon dioxide concentration. The core of the model is given by the 
following two differential equations: 

MCv = FCav - hgFCm - FCg - FCvs (1) 

Mcs=FCvs-(\-hg)FCm (2) 

which represent carbon balances of the vacuoles and structure that prevail in the plant 
cells. The terms FCav, FCm, FCg and FCvs (eqns. A1-A4 in appendix A) denote the 

rates of photosynthesis, maintenance respiration, growth respiration and growth, 
respectively. They are functions of the states ( M ^ M ^ and the driving variables 
light (I [mol PAR m"2s-1]), carbon dioxide (Cca [mol m"3]) and temperature (T °C). It 
is assumed that photosynthesis depends on light and carbon dioxide concentration but 
not on temperature, whereas growth and respiration hinges on temperature only. All 
the functions are given in appendix A. Appendix C shows all the values of the 
parameters of NICOLET B3 model. 
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According to the model, both photosynthesis and growth can proceed uninhibited as 
long as the non-structural carbon concentration in the vacuoles (CCv, eqn. Al l ) 
remains within certain limits. However, when due to environmental conditions the 
non-structural carbon concentration approaches zero growth will be reduced. This is 
described by a smooth switching function (h (CCv), eqn. A10) which is equal to one 

for non-inhibiting levels, but falls off to zero rapidly when the assimilate stock in the 
vacuoles becomes empty. When carbon assimilates in the vacuoles are too high a 
similar switching function (hp(CCv), eqn. A9) brings photosynthesis to a halt. 

The original NICOLET model has been modified slightly to deal more properly with 
the inhibition of growth and photosynthesis (McKenna, 2000). The original growth 
and photosynthesis inhibition functions did not completely avoid growth when the 
level of carbon material in the vacuoles is very small, thus leading to negative values 
of carbon content in the vacuoles when the lettuce is exposed to a long period of 
darkness. The new growth inhibition function hg(CCv) (eqn. A10) complies with the 

condition lim hg(CCv) = 0. Likewise, the new photosynthesis inhibition function 

h (CCv) (eqn. A9) fulfills the condition lim h (CCv) = 0. As can be seen from the 
CCv->Elv/^ 

term hg'm equations (1) and (2), the lettuce model used in this study includes the 
depletion of structural matter in order to meet the requirements of maintenance 
respiration when the carbon concentration in the vacuoles is low (hg(CCv) < 1). 

An important characteristic of the NICOLET model is that there exists a negative 
correlation between nitrate and sugar content in the crop. This means that when 
carbohydrates are low the plant responds by accumulating more nitrates and vice 
versa. By this mechanism the plant can maintain its turgor since both nitrates as well 
as carbohydrates are osmotically active components. Accordingly, the nitrate 
concentration in the vacuoles is calculated from an algebraic relationship with the 
carbon concentration and osmotic pressure in the vacuoles (eqn. A12). The difference 
between osmotic pressure in the vacuoles and rhizosphere is defined as the desired 
turgor pressure (eqn. A13). Also it is assumed that there is no limitation of nutrients 
supply, especially of nitrates to the crop. In a further modification of the original 
model this condition has been relaxed (Seginer et al. 1999). Calculation of other 
output variables such as dry and fresh matter and sugars is done by additional 
algebraic relationships that involve the states and additional parameters (eqn. A14-
A19). 

5.3.4 Optimal control of levels of nitrates in lettuce crop 

An important consequence of the turgor maintenance hypothesis behind the 
NICOLET model is that the control of nitrate concentration can be done by 
manipulation of the shoot environment, namely, by increasing the carbon dioxide 
concentration (Cca [mol m"3]) or the light and/or by lowering temperature (T °C). In 
this paper a situation is studied where the market demands fixed desired head fresh 
weight at a fixed harvest date. Consequently, one can formulate an optimal control 
problem with fixed final time and terminal constraints (Bryson 1999, Stigter and Van 
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Straten, 2000). Details concerning this optimal control problem formulation are 
presented in Appendix B. 

Since the supply of artificial light to the greenhouse would be associated with an 
increasing cost in supplied energy, it is reasonable to try to produce a desired lettuce 
head with the lowest possible light. Therefore, a reasonable performance index would 
be the integral of artificial light 

'/ 
J = jl(t)dt (3) 

0 

which has to be minimized by a suitable control in such a way that a desired fresh 
head weight of lettuce (ydfm [grams]) and a specified amount of nitrate (ydN0 [ppm]) 

are obtained at the given harvest time (tf [days]) i.e., 

yjm(t/) = y«m (4) 

ymS'/^ydNo, (5) 

where yfm(tf) and yNOj(tf) are the corresponding predicted fresh head weight and 

the predicted amount of nitrate from the model. Equations (4) and (5) represent here 
terminal state constraints. Furthermore, the control inputs are bounded because it is 
apparent that the light intensity cannot take negative values and the same is true for 
carbon dioxide. Also the temperature must lie within a domain in which no harm is 
done to the lettuce crop. Therefore the optimal control problem has some hard bounds 
according to: 

Imm < 7(0 < 7max, Cmin < CCa (0 < Cmax, Tmm < T{t) < / _ for 0 < t < t, (6) 

where min and max indicate the lower and upper limits for the control inputs. This 
optimal control problem corresponds to a situation one may find in a plant factory 
environment, which is based on artificial lighting (Nakayama, 1991). Also it is easy to 
see that the previous optimal control problem can be changed in one in which we 
would desire to minimize additional artificial light. That would correspond to a plant 
factory situation in which sunlight is incorporated (Takatsuji, 1991). In contrast to the 
formulation of the optimal control of nitrate in lettuce given by Ioslovich and Seginer 
(2000), in our study neither nitrate supply nor plant density are considered as control 
variables. Plant density was kept constant in our calculations. 

5.3.5 The Adjustable Control Weight gradient algorithm 

Basically, the Adjustable Control-variation Weight (Weinreb, 1985, Weinreb and 
Bryson, 1985) gradient method modifies a classical first order gradient algorithm for 
solving optimal control problems with fixed final time and terminal constraints, by 
making Ku in the equation 

Su{t) = -Ku-H'J(t) (7) 
dependent on the control, in order to properly deal with the control bounds 
- 1 < « , < 1 , i = l,...,m. Here Ku is a diagonal matrix with elements ku(ui)>0. 

H*u(t) is the derivative of the Hamiltonian to the controls u{t) and Su(t) is the 
adjustment of the control at each step of the iteration. In order to avoid loss of 
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controllability £„(«,) is decreased in the vicinity of both bounds independently of the 

sign of H*u by means of, 

*„(«,) = 1-|II,| (8) 

during the backward integration of the co-state equations. To prevent that the 
algorithm generates no optimal control at the bounds during the forward integration 
the following function is used 

*>,) = { \-"Y^\SSn(U'H>+l (9) 
[ i — |w,-1 otherwise 

where ulh is a design value close to +1. Because of those modifications the ACW 
gradient algorithm convergences generally slow to an optimal solution. For a more 
extensive description of the ACW gradient algorithm the reader is referred to Weinreb 
(1985). 

5.3.6 Differential Evolution algorithms 

A direct method based on evolutionary algorithms is used to approximate the global 
optimal solution. In this direct method the control trajectory is parameterised as a 
sequence of piece-wise constant values, which have to be found by the optimisation 
algorithm. Differential Evolution algorithms are evolutionary algorithms that have 
recently been proposed for the solution of static parameter optimisation problems 
(Storn and Price, 1997, Storn, 1999). These algorithms have several advantages over 
other evolutionary algorithms because they are easy to understand and very efficient 
computationally. An outline of these algorithms is presented in figure 1. As in other 
evolutionary algorithms the main operators in Differential Evolution are mutation, 
crossover and selection. However, in contrast to archetype genetic algorithms, they 
use a floating-point representation for the solutions. Also the main operator in DE is 
rather different than in other evolutionary algorithms. Similar to Evolution Strategies 
here each chromosome is represented as a real parameter vector a = [a{,...,aq], and it 

is required that at generation g there is a population containing // individuals 
at;i = l,...,fJ • The essential feature of differential evolution algorithms rests on the 
mutation operator. A so-called mutant vector (v,-), is generated by adding the 
weighted difference of two or four randomly selected vectors from the population, to 
another (to be mutated, ar ) vector: 

v, =a n +Fx(a r 2 - a r j ) ; ! = 1,...,// (10) 

where (rx *• r2 * r3 ^ i ) are mutually different indexes. F e[0,2] is a factor that 
controls the amplification of the differential variation. Other schemes for mutation 
found in literature (Fisher et al. 1999, Lee et al., 1999) are: 
v< = Hest +Fx(an + a,2 - a r j - a r 4 ) (11) 

Vi=abest+Fx(*ri - « r 2 ) (12) 

v,. = a , . + f x ( a r a r 2 ) (13) 

v,- = a, + F x (abest + an - a,- - ^ ) (14) 
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where abest is the best individual in the current population and ar denotes a target 
individual (see below). 

The crossover operator increases the diversity of the mutated vector by means of the 
combination of two solutions (mutant (v,) and target (aj) vectors): 

fl« = 
Vji if randb < CR or j = randr 

ajt if randb > CR and j * randr' 
i = \,...,H;j = l,...,q (15) 

where vjt is the j-th element of 
the mutated vector v,, a,- is a 
so-called target vector, against 
which each new solution is 
compared to, and randb is a 
uniform random number from 
[0,1]. randr e [1,2,..., q] is a 
randomly chosen index, and CR 
is a parameter e[0,l], which 
specifies the crossover constant. 
Selection is implemented only 
on the basis of a comparison 
between the cost function value 
of the new solution aj and that 

of the target vector a,. This 

means that if /(aj) <J(a,)is 

true, the new solution (aj) 

becomes a member of the population at generation g + 1 , otherwise the old solution 

(a,) is retained. The inner loop in figure 1 implies that there are ju competitions at 
each generation since each member of the population plays the role of a target vector 
once. 

As one wants to apply DE algorithms to optimal control problems with control 
bounds, it is necessary to introduce a modification in the original algorithm in order to 
avoid the generation of inadmissible solutions. So a clipping technique can be added 
as follows: 

Figure 1. Differential Evolution algorithm 

Generate random solutions covering the given 
space. 
Evaluate each solution. 
g=i; 
while (convergence is not reached) 

for i=l to Population Size 
Apply differential mutation. 
Execute differential crossover. 
Clip the new solution if necessary. 
Evaluate the new solution. 
Apply differential selection, 

end 
g=g+i; 

end 

\uj=aifuj<aj . 
(16) 

where a and p represent the lower and upper boundary of the control variables, 
respectively. Also in order to solve optimal control problems with terminal constraints 
a second extension is required. A solution can be computed by using penalty functions 
that enforce the desired values for the states. An augmented performance index is 
given by 

J' = J + A(g)dist(x(tf)) (17) 
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where A(g) is either a penalty factor depending on the current generation or a 
constant penalty factor, J is given by equation (3), and two options for dist are: 

\\d-\(tf)\ 
dist(x(tf)) = \ I „ V / ' I 

1 \[xd-x{tf)f[xd-x{tf)} 
(18) 

5.3.7. Results 

5.3.7.1 A solution obtained by a gradient algorithm 

Our implementation of the ACW follows Bryson's algorithm for solving optimal 
control problems with fixed final time and terminal constraints (Bryson, 1999). Thus, 
a variable step-size solver was used (ode45.m in Matlab) to integrate the dynamic 
equations and to solve a continuous-time optimal control problem. The co-state 
equations were calculated from analytical expressions of df/dx and dfldu. The 

final time was specified at tf = 60 days. The constraints at the harvest time were 

ydfm = 400 grams of head fresh weight, and ydm = 3500 ppm of nitrate 

concentration. The bounds on the controls were as follows: 0 < I(t) < 17.5 [mol PAR 
m"2], 0.01 < CCa (t) < 0.04 [mol m"3], and 10 < T(t) < 30 [°C], respectively. The upper 
limit for light is somewhat arbitrary but it is not relevant since we want to reduce the 
use of artificial light as much 
as possible. The upper limit 
for CO2 is determined by 
workability conditions in 
the greenhouse. The bounds 
for temperature reflect the 
range for growth of lettuce 
without any stress. 
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The ACW algorithm was run 
using several different 
constant initial values for the 
controls. Every time a 1 
similar cost function value ^. 
was obtained which means z 

probably that this problem is 
not multimodal. For one of the 
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optimizations with a F i g u r e 2. Optimal trajectories of head fresh weight and 
performance index value or nitrate concentration, showing the terminal constraints 
J* = 305.58 [mol PAR m" are satisfied. 
2] figure 2 shows the 
calculated optimal trajectories of fresh head weight of lettuce as well as the optimal 
trajectory of nitrate content obtained after 3000 iterations of the ACW gradient 
algorithm. The optimal solution satisfies almost exactly the two constraints at harvest 
time. The error for fresh head weight was 0.01 grams, and 0.11 ppm in case of nitrate 
concentration. 
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Figure 3 presents the optimal controls: light, carbon dioxide and temperature. Since 
one goal of the optimal control problem formulation was the minimization of the 
integral of light, the calculated optimal solution shows that actually it is possible to 
control the nitrate levels at 
harvest time by increasing the 
supply of carbon dioxide and 
decreasing the temperature. 
This result confirms that with 
artificial light it is possible to 
control nitrate levels in » 
lettuce through the control of 
the shoot environment 
(Seginer et al., 1998). The 
optimal trajectory of carbon 
dioxide supply is at the upper 
specified limit (0.04 mol m" 
3), which is consistent with ' 
the fact that no cost was 
associated to it in the "° « 2 ST 

days 

formulation of the optimal Figure 3. Optimal control inputs of light, carbon 
control problem. dioxide, and temperature. 

Even though starting with a 
different initial constant temperature trajectory the algorithm calculates a slightly 
different optimal trajectory, a trend is fairly clear that temperature goes down across 
the cultivation period, as expected. This can be explained by the fact that a high 
temperature during the early stages of lettuce stimulates growth, especially as long as 
the ground is not completely covered. Directly at the start the optimal reaches fairly 
high levels, because obviously enough light must be supplied to produce 
photosynthetic activity. Next, for the rest of the growing period, the amount of light is 
increased but not too much in order to meet the specification of the performance index 
and also to come up to the desired fresh head weight and the nitrate content at harvest 
time. It can be noticed that during the last 30 days the amount of light is increased a 
bit in order to decrease the concentration of nitrate. 

5.3.7.2 Generating an initial solution to the ACW method by means of Differential 
Evolution algorithms 

In order to solve the previous optimal control problem by differential evolution 
algorithms, a reasonably accurate parameterization for the control inputs must be 
selected that keeps the number of parameters to be optimized as small as possible. A 
piece-wise constant approximation for the three controls (m=3) was chosen, over 
twenty time intervals (N=20). 

u(0 = u(tk) = [ 4 u\ ... u%]Tte[tk,tk+l);k = l,...,N, (19) 

Therefore the optimization problem has 60 parameters. It was found that DE 
algorithms worked much better with state constraints instead of constraints on the 
original outputs head fresh weight and nitrate concentration. For that reason, using the 
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desired values of both head fresh weight (ydfm = 400 grams) and nitrate concentration 

(ydNOj =3500 ppm), the desired values of the states at harvest time 

x1(tf) = MCv(t/) = 2.4866 [mol C m"2 ground s"1] and x2(tf) = MCs(tf) = 8.1840 

[mol C m"2 ground s"1] were calculated. This was done by solving numerically a 
system of two simultaneous algebraic equations derived from equations A14 and A18 
for MCv and MCs. The next step consists of the selection of the design parameters, 
population size (//), mutation (F), and crossover (CR) constants in the differential 
evolution algorithms. Roughly speaking, using a greater population size DE has more 
chance to converge to a global optimum at the expense of more computation time. A 
population size around the dimension of the optimization problem is a good starting 
point but, sometimes, smaller values are enough to get good results. Greater values of 
the mutation constant (F) make it possible to explore the whole search space and to 
prevent premature convergence. Crossover constant (CR) values around one speed up 
the convergence of the algorithm. Therefore, a compromise has to be established 
among these three parameter values in the DE algorithms. With respect to the penalty 
functions, several options were tested. However, better results were obtained by using 
varying penalty coefficients (A(g)), which were changed exponentially according to 
the generation number. They were used together with the absolute difference between 
the desired and calculated state values for the function dist{x(tf ) . Smith and Stonier 

(1996) have applied this approach in a similar manner in other evolutionary 
algorithms. 

Although we have done experiments using in total five Differential Evolution 
algorithms described in section 5.3.6, from now on we report results obtained with the 
DE in which the mutation operator was given by equation (11). After some 
experiments with several values of the population size it was observed that even with 
a relatively small value for the population size (// = 20), and almost standard values 
for mutation constant F=0.5, and crossover constant CR=0.2 (Storn and Price 1997) a 
good solution with a performance index of J*=317.0987 mol PAR m"2 was obtained. 
The penalty coefficients changed exponentially from A(0) = 50 to ^(gmax) = 100. 

The number of generations was 5000. The deviations from the desired outputs values 
were 0.2130 grams for fresh weight, and 0.4272 ppm for nitrate concentration. 
Therefore, the final constraints are almost satisfied using relatively small values for 
the penalty coefficients. Increasing the number of generations to 10000 a performance 
index of J*=314.6248 mol PAR rn2 was obtained. The deviations from the final 
desired outputs were 1.2418 grams and 9.9060 ppm. 

Looking at the optimal trajectory of light and temperature, calculated by the ACW 
gradient method (section 5.3.5.), it is clear that the piecewise constant control 
parameterization used by the DE algorithm is unable to approximate the continuous-
time solution accurately. Consequently, the optimal performance found by the 
classical method is better than that found by the DE algorithm, which is only near 
optimal. Also the shapes of the optimal trajectories were different from those obtained 
by a classical approach (Lopez Cruz et al, 2001). 

The use of a hybrid approach that uses the solution found by the DE to initialize ACW 
is motivated by its potential to locate the global optimum. First the DE algorithm is 
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applied in order to increase the chances to get a near global optimum solution. The 
algorithm is stopped after a reasonable number of iterations, for instance when no 
considerable improvement is observed. Then the ACW algorithm is used to refine the 
solution provided by DE. 
Since by using DE the 
search space is reduced 
we would expect that the 
local method converges 
faster than when it is { 
applied alone. Initializing 
ACW by the DE solution 
possible since the *> 
implemented ACW 40 
gradient algorithm allows \w 

a start with even a small Q»2000 

number of controls, 
because of the variable step 
size integration and 

interpolation (Bryson, 
1999). The computation 
time of the hybrid 
DE/ACW approach 
exceeds that of ACW algorithm alone. However, for a multimodal optimal control 
problem the additional computational load would be justified by the increased chance 
of finding the global optimum of the problem. 

Figure 4. Optimal trajectories of head fresh weight and 
nitrate concentration calculated by a hybrid algorithm. 

Figure 4 shows the optimal trajectories calculated by a hybrid method. The 
Differential Evolution algorithm was run 2000 iterations and then ACW was run 2000 
more iterations. The trajectories obtained by the ACW algorithm alone with 3000 
iterations are shown as well to make a comparison. Both terminal constraints were 
satisfied accurately, since deviations from the target were 0.01 grams for head fresh 
weight and 0.34 ppm in case 
of nitrate concentration. 
Only small differences can 
be observed between both 
optimal state trajectories. 
Also the values of the 
performance index were _ 
quite similar: J*=305.58 j= 
mol PAR m-2 for ACW i 
and J*=305.65 mol PAR 8 
m"2 in case of the hybrid 
algorithm (DE+ACW). 

The optimal control 
trajectories are shown in 
figure 5. The optimal 
trajectories of carbon dioxide 
are exactly the same, apart 
from some oscillations; the 

ACW 
DB-ACW 

, 1 1 1 1 

Figure 5. Optimal trajectories of light, carbon dioxide 
and temperature calculated by a hybrid algorithm. 
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optimal trajectories of light are also similar. However, the trajectory for temperature 
calculated by the hybrid approach shows considerable oscillations even though the 
general decreasing trend is similar. These differences can be explained by a likely 
lack of sensitivity of the cost criterion to changes of the temperature trajectory as long 
as on average they are identical. Table 1 illustrates the idea that a global optimization 
method as a first step is useful to reduce the number of steps for a gradient method. 

Table 1. Results of ACW and a hybrid (DE+ACW) 
method in solving OCP of nitrates in lettuce. 

Method 
ACW 

DE (1000 iterations) 
+ 

ACW 

DE (2000 iterations) 
+ 

ACW 

DE (5000 iterations) 
+ 

ACW 

Values 
J* 

Iterations 

yfm(tf) 

ync(tf) 
j * 

Iterations 

y fi.it f) 

y~(*f) 
J* 

Iterations 

y Mi*/) 

Vncitf) 
J* 

Iterations 

yfi.it/) 

Vncitf) 

307.86 
1000.00 
399.99 

3500.18 

308.54 
1000.00 
399.99 

3500.42 

307.85 
272.00 
399.99 

3500.56 

307.83 
250.00 
399.99 

3499.96 

The ACW method was run 1000 iterations only and the value of the associated cost 
was used as reference for our comparisons. Next, the DE algorithm was run five times 
for three different numbers of generations (1000, 2000, and 5000). Using the best of 
the solutions (those that satisfied the terminal constraints best) to initialize the ACW 
algorithm the optimization problem was solved combining both approaches. The 
ACW algorithm was stopped when it reached the same goal function value. Table 1 
shows, in fact, that by using 2000 and 5000 iterations of the DE and then ACW, there 
is a considerable reduction in the number of iterations of the local optimization 
method to calculate the same solution. These results clearly show that by using DE 
algorithm to initialize ACW is not only possible to achieve similar solutions than 
those attained by ACW alone but also that the initialization with DE significantly 
reduces the time ACW takes to converge. 

5.3.8 Discussion 

According to our results it is likely that the selected optimal control problem is not 
multimodal. Although the same costs were obtained when different initial values for 
the controls were chosen, some differences were observed in the shape of the optimal 
trajectory of temperature. These differences were greater when the ACW gradient 
algorithm was initialized using a non-smooth trajectory generated by the DE 
algorithm. Apparently, the gradient method 'sticks' to another smooth solution pattern 
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after initializing with DE than in the original full problem. However, the optimal 
trajectories of light and CO2 were always similar. This means that, the optimal 
trajectory of temperature and so the solution is not unique. Therefore, the optimal 
control problem is redundant. The redundancy constitutes a difficult situation for any 
search method. It would be preferable to obtain a problem formulation without 
redundancy but this formulation seems difficult to achieve without making further 
assumptions on the lettuce model, by simplifying the model (cf. Ioslovich and Seginer 
2000) or by selecting a different cost function. In addition, the non-uniqueness feature 
of the solution is arguable from a mathematical point of view, but it is quite 
acceptable from an engineering viewpoint while the same minimal cost is found. 

Most significant is the fact that for each of the patterns found, the optimal trajectory 
of temperature showed a decreasing trend over the cultivation period. This result was 
in accordance with one of the hypothesis of the lettuce model that states possibility of 
control levels of nitrates by lowering temperature. In general, the optimal control 
trajectories of light, carbon dioxide and temperature were in agreement with the 
predictions of the lettuce model and have confirmed some possibilities for control of 
nitrate concentration when the shoot environment and artificial lighting are 
considered. Nevertheless, further insight in the model is required to account for the 
behavior observed in case of optimal trajectories of temperature. 

Generally, highly multimodal optimal control problems are very difficult to solve by 
gradient-based optimization methods since they require an initial control rather close 
to the global optimum otherwise are easily trapped by any local solution (Chalabi, 
1994, Lopez Cruz et al, 2002). Although the advantages of using a Differential 
Evolution algorithm most clearly stand out in multimodal problems, the current case 
clearly demonstrates the feasibility of the application of DE algorithms in solving 
optimal control problems in agriculture. 

5.3.9 Conclusions 

Through the optimal control of nitrate concentration in lettuce the feasibility of using 
a Differential Evolution algorithm to provide an initial optimal control trajectory for a 
classical ACW (Adjustable Control-variation Weight) gradient algorithm was 
demonstrated. Although in the current case no local optima were found, the 
Differential Evolution algorithm potentially finds the global optimal solution whereas 
the classical algorithm alone does not. On the other hand, the classical algorithm is 
able to find an accurate solution of a continuous-time optimal control problem. 
Therefore, taken together, i.e. using the Differential Evolution algorithms to compute 
an initial feasible estimate of the optimal controls for the classical algorithm, an 
hybrid algorithm is obtained that combines the advantages of both approaches. 
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Appendix A. Nicolet B3 model equations. 

Mc,=FCav-hgFCm-FCg-Fas (1) 

Mcs=FCvs-{\-hg)FCm (2) 

FCm=p{I,CCa}f{Ma)ht{Ca} (Al) 

FCm=Mae{T) (A2) 

Fcg=9FCvs (A3) 
FCvs=g{T}f{Ma}hg{CcJ (A4) 

/{A/ a} = l - e ( - ^ > (A5) 

£I + a(CCa-C:) 

e{T} = k-ec{T-T") (A7) 
g{T} = ve{T} (A8) 

hv {CCv} =
 l- (A9) 

i+((i-6,)nv /(nv-7ccv))*' 

K{CCv} = (A10) 

CCv=-^- (All) 

peNv+yCCv=nv (A12) 
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n v - n r = pv (Ai3) 

v 1 0 0 ° ** ,LIA^ 
Yfn,=-r7—Mfm (A14) 

pldens 
Mfm =1000-A-Ma+Mdm (A15) 
Mdm=ri0M(kMCv +Ma) + fi„tJ^Ma -£Ma) (A16) 

^ JV03 = ^ " 'tfNOJN '^N03N (A17) 

C«o3 = C„v x(1 -£>Ffl)/1000 (A18) 

DFR = MimIMM (A19) 

Appendix B. The Hamiltonian function and its derivative 

Using a state space representation the optimal control problem presented in section 3 
can be generically described as follows: 
Let equations (1) and (2) be defined as 
• 
x = f(x,u), x(t0) (Bl) 
where x(t) and u(t) represent an n-dimensional state vector and m-dimensional 
control vector respectively. The cost function (3) is given by 

J = </>(x(tf)) + (
f L(x, u)dt (B2) 

where L(x,u) = I(t) and <f>{x(tA) is not defined in our particular problem. Equations 

(4) and (5) are denoted by 
W(x(tf)) = 0 (B3) 

Now, according to optimal control theory, the Hamiltonian function can be written as 
follows: 
H(t) = L(x,u) + ZT(t)f(x,u) (B4) 

T dH 
where A = are the co-states Au and Au associated to the states. The 

8x a a 

derivative of the Hamiltonian function (Bryson and Ho, 1975, page 49) is 
• 8L ,Tdf dH' _ „ 

H = — + A — + u (B5) 
dt 8t du 

The dynamic equations (Bl) as well as the function L do not depend explicitly on 
dH 

time t. And at the stationary condition = 0 is obtained. Therefore H = 0, and 
du 

H(x',X,u') = c for 0 < t < t{, where c is a constant (Bryson and Ho, 1975, Bryson, 

1999). 
Appendix C. Nicolet's model parameter values used during the optimizations. 

Parameter Value Unit 
a 1.7 m2 [ground] mol"'[C] 
s 0.04-0.07 mol[C]/mol [PAP] 
a 1.4e-3 ms" 
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c 
k 
7 
9 
v 
A 
P 
•p* 

c; 

VoMC 

VMMN 

pldens 

0.0693 
0.25e-6 

0.61 
0.3 
13 

1/1200 
6 

20 
0.0011 

0.8 

0.2 

10 

10 

0.03 

0.148 

18 

UC 
s"1 

m3Pa/mol[C] 
dimensionless 

mol[C] m"2 [ground] 
nrWtC]-1 

m3Pa/mol [N] 

°C 
mol[C] m"3 

dimensionless 

dimensionless 

dimensionless 

dimensionless 

Kg [dw]/mol[C] 

Kg [dw]/mol [N] 

Plants m" 
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6. General discussion and conclusions 

6.1 General discussion 

The aim of this work was to evaluate the performance of efficient Evolutionary 
Algorithms on optimal control problems. Within the class of Evolutionary Algorithms 
several approaches based on Genetic Algorithms, either with binary or floating-point 
representation, have been applied in the past. However, fundamental limitations have 
been found which show clearly that Genetic Algorithms are not good candidates to 
solve optimal control problems efficiently [1, 2]. Nowadays, it is well known that 
GAs can solve optimally only separable optimisation problems through applying the 
strategy 'one-parameter-at-time' and small mutations (pm<l). In this case the 
required computational complexity is 0(nln(«))[l, 2] where n is the dimension of 
the optimisation. When this strategy is applied to non-separable functions this 
complexity grows to 0(exp(nlnn)) which is higher than that required by random 
search [2]. Crossover operators speed up the convergence without modifying this 
complexity. Therefore, many Evolutionary Algorithms based on classical GAs, which 
apply small mutations and high crossover probabilities, are not suitable to solve 
optimal control problems efficiently. This is confirmed by the results of this thesis. 

Price [3] has pointed out that should a mutation mechanism be efficient enough to be 
capable of removing the drawbacks of GAs, it should have the following properties: i) 
use a zero-mean distribution for the generation of mutation vectors, if) use dynamic 
scaling of the distribution to suit each variable and Hi) use correlated mutations to 
ensure rotational invariance. It appears that Evolution Strategies, Evolutionary 
Programming and Differential Evolution algorithms fulfil these requirements. 

Evolution Strategies and Evolutionary Programming explicitly use a Gaussian 
distribution with zero mean and standard deviation one, thereby satisfying property i. 
Also they implement self-adaptation for scaling and orienting a mutation vector. This 
implements property ii. To implement property Hi ES use a strategy matrix that adds 
rotation angles to the scale factors. This increases the computational complexity of ES 
to 0(n2) [3]. In practice the use of rotation angles can be avoided. Then the 
demanded computational complexity is only 0(n). But in this case, probably, ES are 
dealing worse with functions having interacting variables. 

Differential Evolution algorithms are a family of evolutionary algorithms having the 
properties i-iii while having only 0(n) computational complexity. Firstly, DE 
guarantees a distribution with zero mean because random sampling from the 
population guarantees that a difference vector xr - xr occurs as often as its opposite 

x - x . Secondly, DE scales mutation step sizes to suit each variable by sampling 

difference vectors, which present a scale comparable to each variable's interval of 
improvement, from a population of them. Thirdly, DE is rotational invariant since the 
mutation distribution generated by difference vectors will always have the same 
orientation as the contour lines of the objective function. In addition, it seems that DE 
algorithms have a property that Price has called a 'universal global mutation 
mechanism' or 'globally correlated mutation mechanism', which seems to be the main 
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property responsible for the appealing performance of DE as global optimisers. 
Additional features of DE algorithms are described in Price [3]. 

The previous discussion justifies the focus of this thesis on Differential Evolution 
algorithms. Nonetheless, chapter 2.2 studied the potential application of the GEnetic 
algorithm for Numerical Optimization for Constrained Problems (GENOCOP) to 
optimal control problems. This algorithm has been reported in the literature as being 
relatively efficient. Basically, GENOCOP uses a floating-point representation of the 
solutions and some specialized genetic operators. Several researchers have reported 
advantages of this algorithm over classical GAs and also over the Simulated 
Annealing algorithm [4, 5]. It is easy to see that, in addition to the benefits given by 
the floating-point representation, the use of a combination of several mutation and 
crossover operators considerably increases the performance of evolutionary 
algorithms similar to GENOCOP. Typically, the same mutation operators are used 
several times at each generation [5]. In chapter 2.2 the selected frequencies were: 
uniform mutation 4, non-uniform mutation 4, multi-non-uniform mutation 6 and 
boundary mutation 4. Given the way all GENOCOP's mutation operators work we 
would expect a low mutation probability, and accordingly, a computational 
complexity similar to that demanded by the Breeder Genetic algorithm. This issue 
deserves further investigation. For several applications the use of more than one 
mutation operator, like in GENOCOP, was reported to account for an improved 
algorithm performance. It can be expected that the introduction of the multi-non 
uniform mutation operator, which is applied to all the variables of a chromosome will 
have an additional beneficial effect, since in that situation the probability of mutation 
is pm « 1. The number of function evaluations required by GENOCOP to obtain the 
solutions reported in chapter 2.2 was: 80,000-180,000 for the first problem, 180,000-
300,000 for the second and 120,000 for the third. Since the dimension of the 
optimisation problem was low, serious limitations are expected when this dimension 
increases. In addition, in contrast to Differential Evolution, GENOCOP is a more 
complicated evolutionary algorithm with several parameters that need to be tuned. 
Despite this, with the proposed improvements (use of multi-non uniform mutation), it 
is worthwhile to investigate whether GENOCOP can compare with DE algorithms. 

In chapter 3 Differential Evolutionary algorithms were investigated in more detail. A 
number of optimal control problems that are difficult to solve, or are unsolvable by 
using classical methods, were selected to illustrate several advantages of DE 
algorithms. The results indicate a relationship between the multi-modality of the 
problem and the proper choice of the algorithm parameters crossover constant (CR) 
and the mutation factor (F). Additional work on other multi-modal optimal control 
problems (especially those with a larger dimension) is needed to further confirm this. 
The possibility, suggested by Price [3], to solve multi-modal optimal control problems 
using small population sizes to achieve the highest possible speed of convergence, 
was investigated. This is especially important, because for optimal control problems, 
each objective function evaluation involves a system simulation. Our results 
confirmed this possibility. 

Several of the resolved optimal control problems have bounds on the controls. 
Originally DE works only for unconstrained problems. Whenever unfeasible solutions 
were generated by the DE algorithm they were set to the limit they exceeded. Price 
has mentioned that this method probably has the effect of reducing the diversity of the 
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population [3]. However, our experience was that this strategy worked well. A 
comparison of three possible techniques to deal with the control bounds is presented 
in table 1 for the case of the DE/rand/1/bin algorithm. The first technique (I) 
randomly selects a value from the interval a^t) < ut(t) < P£t); i = l,..,m each time 
an unfeasible control value is generated [6]. The second technique (II) sets offending 
control values to the limit they exceed (see equation 14 in chapter 3). The third 
technique (III) is the one suggested by Price [3] which is described by the following 
equation: 

{a „ + a,) 12 

(aj,+Pj)'2 
if 

if 
a M < a j 

> Pj, j = l,2,-,d, ;? = 1,2,...,// (1) 
ajt otherwise 

where aj{ represents a variable after the application of mutation and crossover 
operators. The selected DE algorithm parameters were // = 20, CR = 0.5 and 
F = 0.5. Using each technique the algorithm was executed ten times. Almost the 
same solutions were obtained while our technique (II) required the least number of 
function evaluations. 

Table 1. Averaged results of comparison of three methods for constrained control inputs in 
DE/rand/1/bin on CSTR multimodal optimal control problem 
Strategy 
Generations 
J* 
CE (%) 
Function evaluations 

I 
244.5 

0.135586 
100 

4890 

II 
220 

0.135584 
100 

4400 

III 
221.3 

0.135584 
100 

4426 

Table 2 presents similar results which relate to the highly multi-modal optimal control 
problem of the tubular reactor, described in chapter 3. The population size was 
// = 25, the crossover constant CR = 0 and the mutation parameter F = 0.9. Again 
the algorithm was executed ten times. 

Table 2. Averaged results of comparison of three methods for constrained control inputs in 
DE/rand/1/bin on the bifunctional catalyst blend optimal control problem 
Strategy 
Generations 
J* 
CE (%) 
Function evaluations 

I 
235 

10.09184 
100 

5875 

11 
126.9 

10.09410 
100 

3172.50 

III 
194.75 

10.09308 
80 

4868.75 

Again our technique (II) required the least number of function evaluations and 
therefore seems to be preferable. 

The results of chapter 3 regarding Breeder Genetic algorithms (BGA's) confirm that 
these algorithms are not good candidates to solve multi-modal optimal control 
problems efficiently. However, the use of sub-populations improves the efficiency of 
the BGA's. This option deserves further study. 

The results regarding DE algorithms in chapter 3 confirm that these are more efficient 
than other Evolutionary Algorithms in solving optimal control problems. The 
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efficiency of DE's turned out to be comparable with that of the Iterative Dynamic 
Programming (IDP) algorithm, which is especially designed for optimal control 
problems. Moreover, DE algorithms do not demand extensive preliminary 
experimentation with algorithm parameter values as is required by IDP. In spite of the 
efficiency already achieved with DE algorithms there still remains the challenge of 
further improving their efficiency. 

In chapter 4 the problem of improving the efficiency of DE algorithms through 
automatic adjustment of the algorithm parameters was investigated. Price has 
recognized the fact that keeping the algorithm parameters in DE constant is not likely 
to be an optimal solution [3]. Undoubtedly, our strategy is only a first attempt and 
could be improved in the future. For instance, it still does not modify the population 
size. Its main idea is to incorporate information present in the population to select the 
appropriate values of the algorithm parameters mutation and crossover. Although the 
efficiency improved one would expect further improvement by designing new 
heuristic rules based on additional information on the population to modify the 
population size as well. This is an open field of research for the future. 

To explore some potential practical applications of Differential Evolution algorithms 
to optimal control problems that appear in agriculture two main issues were addressed 
in chapters 5.2 and 5.3. Firstly, the DE/best/2/bin algorithm was applied to 
approximate a solution of the continuous-time optimal control problem of nitrate 
concentration in lettuce. A penalty function approach was applied to deal with 
terminal state constraints. General characteristics of optimal control problems in 
agriculture (i.e. greenhouse cultivation) are non-linearity and (in some cases) non-
convexity, which can induce a multiplicity of solutions [7]. Although the optimal 
control problem described and solved in chapter 5.2 is highly non-linear, it seems that 
it is not multi-modal. Therefore a classical method can solve it more efficiently and 
accurately than a direct method like Differential Evolution. Nonetheless, there are two 
options for improvement of the results obtained by DE that might be studied in greater 
detail; a larger number of time intervals and variable-length time intervals. The latter 
constitutes optimisation of the piecewise constant control parameterisation as well. 
This will increase the dimension of the optimisation problem but as DEAs are 
efficient this should not present a major problem. Another issue that has not yet been 
investigated is the use of a more sophisticated parameterisation of the controls like 
linear piece-wise or cubic B-splines polynomials. 

In chapter 5.3 a DE algorithm is used to approximate the global solution of an optimal 
control problem sufficiently close after which a local gradient-based search method is 
used to obtain it accurately and efficiently. Unfortunately the particular optimal 
control problem under consideration turned out not to be multimodal, while this 
approach is specifically promising for multi-modal optimal control problems. Still the 
results indicate clearly the further improvement of the efficiency of this global 
optimal control algorithm. These types of algorithms are also an important area for 
future research. 

6.2 Conclusions 

The feasibility and possible advantages of applying Evolutionary algorithms to solve 
complex optimal control problems being high dimensional, multi-modal and non-
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differentiable were investigated. This study revealed that DE algorithms are 
significantly more efficient than other Genetic Algorithms, such as Breeder Genetic 
Algorithms (BGA), when applied to multi-modal optimal control problems since they 
do not share several theoretical and practical limitations that other Genetic Algorithms 
have. The efficiency of DE is comparable to the efficiency of Iterative Dynamic 
Programming (IDP), a global optimisation approach specifically designed for optimal 
control. Moreover the DE algorithms turned out to be significantly less sensitive to 
problems concerning the selection or tuning of algorithm parameters and the 
initialisation of the algorithm. 

Although it is not a DE algorithm, the GENOCOP algorithm is considered to be one 
of the most efficient genetic algorithms with real-valued individuals and specialized 
evolutionary operators. This algorithm was the starting point of our research. In 
Chapter 2 it was applied to some optimal control problems from chemical 
engineering. These problems were high dimensional, non-linear, multivariable, multi
modal and non-differentiable. Basically with GENOCOP the same solutions were 
obtained as with Iterative Dynamic Programming. Moreover GENOCOP is more 
successful in locating the global solution in comparison with for instance IDP and 
other local optimisation algorithms. GENOCOP'S efficiency however is rather poor 
and the algorithm parameter tuning rather complicated. This motivated us to seek for 
more efficient evolutionary algorithms. 

Mathematical arguments found in the literature state that DE algorithms outperform 
other Genetic algorithms in terms of computational efficiency. Therefore in chapter 3, 
DE algorithms, generally used to solve continuous parameter optimisation problems, 
were used to solve two multi-modal (benchmark) optimal control problems. Also 
some Breeder Genetic Algorithms (BGA) were applied to solve these problems. The 
results obtained with these algorithms were compared to one another, and to the 
results obtained with IDP. The comparison confirmed that DE algorithms stand out in 
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in 
contrast to the majority of Evolutionary Algorithms which have many algorithm 
parameters that need to be selected or tuned, DE has only three algorithm parameters 
that have to be selected or tuned. These are the population size (//), the crossover 
constant (CR) and the differential variation amplification (F) . The population size 
plays a crucial role in solving multi-modal optimal control problems. Selecting a 
smaller population size enhances the computational efficiency but reduces the 
probability of finding the global solution. During our investigations we tried to find 
the best trade-off. One of the most efficient DE algorithms is denoted by 
DE/best/2/bin. All the investigated DE algorithms solved the two benchmark multi
modal optimal control problems properly and efficiently. The computational 
efficiency achieved by the DE algorithms in solving the first low multi-modal 
problem, was comparable to that of IDP. When applied to the second, highly multi
modal problem, the computational efficiency of DE was slightly inferior to the one of 
IDP, after tuning of the algorithm parameters. However, the selection or tuning of the 
algorithm parameters for IDP is more difficult and more involved. 

From our investigation the following guidelines were obtained for the selection of the 
DE algorithm parameters. Take the population size less than or equal to two times the 
number of variables to be optimised that result from the control parameterisation of 
the original optimal control problem (//<2«u). Highly multi-modal optimal control 
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problems require a large value of the differential variation amplification (F>0 .9) 
and a very small or zero value for the crossover constant (0 < CR < 0.2). Low multi
modal optimal control problems need a medium value for the differential variation 
amplification (0.4 < F < 0.6) and a large or medium value for the crossover constant 
(0.2 <CR <0.5). In contrast to IDP, finding near-optimal values for the algorithm 
parameters is very simple for DE algorithms. 

Generally, the DE algorithm parameters are kept constant during the optimization 
process. A more effective and efficient algorithm may be obtained if they are adjusted 
on-line. In Chapter 4, a strategy that adjusts the differential variation amplification 
(F) and the crossover constant (CR) on-line using a measure of the diversity of the 
individuals in the population, was proposed. Roughly, the proposed strategy takes 
large values for F and small values for CR at the beginning of the optimization in 
order to promote a global search. When the population approaches the solution, F is 
decreased in order to promote a local search, and the crossover parameter CR is 
enlarged to increase the speed of convergence. When implemented on the DE 
algorithm DE/rand/1/bin and applied to the two benchmark multi-modal optimal 
control problems, the computational efficiency significantly improved and also the 
probability of locating the global solution. 

To judge the opportunities and advantages of using Genetic Algorithms to solve 
problems related to optimal control, in chapter 5 several engineering applications 
concerning optimal greenhouse cultivation control were considered. In Chapter 5.1 
genetic algorithms with binary individuals (Simple Genetic algorithm) and floating
point representations (GENOCOP) are used to estimate some of the parameters of a 
two-state dynamic model of a lettuce crop, the so-called NICOLET model. This 
model is intended to predict dry weight and nitrate content of lettuce at harvest time. 
Parameter estimation problems usually suffer from local minima. This study showed 
that Genetic Algorithms are suitable to calibrate the parameters of a dynamic model. 
However the required computation time is significant. Partly this is due to the high 
computational load of a single function evaluation which for parameter optimisation 
problems involves a system simulation. Even though parameter optimisation is very 
often performed off-line, thus making computation time perhaps less important, more 
efficient evolutionary algorithms like DE are to be preferred. 

In chapter 5.2 an optimal control problem of nitrate concentration in a lettuce crop 
was solved by means of two different algorithms. The ACW (Adjustable Control-
variation Weight) gradient algorithm which searches for local solutions and the DE 
algorithm DE/best/2/bin that searches for a global solution. The dynamic model is a 
modified two-state dynamic model of a lettuce crop (NICOLET B3) and the control 
problem has a fixed final time and control and terminal state constraints. The DE 
algorithm was extended in order to deal with this. The results showed that this 
problem probably does not have local solutions and that the control parameterisation 
required by the DE algorithm causes some difficulties in accurately approximating the 
continuous solution obtained by the ACW algorithm. On the other hand the 
computational efficiency of the evolutionary algorithm turned out to be impressive. 
An almost natural conclusion therefore is to combine a DE algorithm with a gradient 
algorithm. 
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In chapter 5.3 the combination of a DE algorithm and a first order gradient algorithm 
is used to solve an optimal control problem. The DE algorithm is used to approximate 
the global solution sufficiently close after which the gradient algorithm can converge 
to it efficiently. This approach was successfully tried on the optimal control of nitrate 
in lettuce, which unfortunately in this case, seems to have no local solutions. Still the 
feasibility of this approach, which is especially interesting for multi-modal optimal 
control problems, was clearly demonstrated. 

6.3 References 

[1] Muhlenbein H., Schlierkamp-Voosen D., Predictive Models for the Breeder 
Genetic Algorithm, I. Continuous Parameter Optimization, Evolutionary 
Computation 1 (1), 1993, 25-50. 

[2] Salomon R., Re-evaluating genetic algorithm performance under coordinate 
rotation of benchmark functions. A survey of some theoretical and practical aspects 
of genetic algorithms, BioSystems 39 (1996) 263-278. 

[3] Price K. V. An Introduction to Differential Evolution in Corne D., Dorigo, M. 
and Glover F., New Ideas in Optimization, Mc GrawHill, 1999. 

[4] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, 
Third, revised and extended edition, Springer-Verlag, 1996. 

[5] Houck, C , Joines, J.A., Kay, M.G ., A genetic algorithm to function optimization: 
A MATLAB implementation, NCSU-IE TR 95-09, 1995. 

[6] Lampinen J., Solving problems subject to multiple nonlinear constraints by 
differential evolution, in Radek Matousek and Pavel Osmera (eds.) Proceedings of 
MENDEL 2001, 7th International conference on Soft Computing, June 6-8, 2001, 
Brno, Czech Republic. 

[7] Chalabi Z. S., Optimal control methods for agricultural systems, in Chalabi Z. S. 
and DayW. (editors) Proceedings of the second IFAC/ISHS workshop on 
mathematical and control applications in agriculture and horticulture, Silsoe UK, 
12-15 September 1994, pp. 221-227. 

[8] Storn R. and Price K., Differential Evolution -A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces, Journal of Global Optimization 
11:341-359,1997. 

116 



Summary 

If optimal control problems are solved by means of gradient based local search 
methods, convergence to local solutions is likely. Recently, there has been an 
increasing interest in the use of global optimisation algorithms to solve optimal 
control problems, which are expected to have local solutions. Evolutionary 
Algorithms (EAs) are global optimisation algorithms that have mainly been applied to 
solve static optimisation problems. Only rarely Evolutionary Algorithms have been 
used to solve optimal control problems. This may be due to the belief that their 
computational efficiency is insufficient to solve this type of problems. In addition, the 
application of Evolutionary Algorithms is a relatively young area of research. As 
demonstrated in this thesis, Evolutionary Algorithms exist which have significant 
advantages over other global optimisation methods for optimal control, while their 
efficiency is comparable. 

The purpose of this study was to investigate and search for efficient evolutionary 
algorithms to solve optimal control problems that are expected to have local solutions. 
These optimal control problems are called multi-modal. An important additional 
requirement for the practical application of these algorithms is that they preferably 
should not require any algorithm parameter tuning. Therefore algorithms with less 
algorithm parameters should be preferred. In addition guidelines for the choice of 
algorithm parameter values, and the possible development of automatic algorithm 
parameter adjustment strategies, are important issues. 

This study revealed that Differential Evolution (DE) algorithms are a class of 
evolutionary algorithms that do not share several theoretical and practical limitations 
that other Genetic Algorithms have. As a result they are significantly more efficient 
than other Genetic Algorithms, such as Breeder Genetic Algorithms (BGA), when 
applied to multi-modal optimal control problems. Their efficiency is comparable to 
the efficiency of Iterative Dynamic Programming (IDP), a global optimisation 
approach specifically designed for optimal control. Moreover the DE algorithms 
turned out to be significantly less sensitive to problems concerning the selection or 
tuning of algorithm parameters and the initialisation of the algorithm. 

Although it is not a DE algorithm, the GENOCOP algorithm is considered to be one 
of the most efficient genetic algorithms with real-valued individuals and specialized 
evolutionary operators. This algorithm was the starting point of our research. In 
Chapter 2 it was applied to some optimal control problems from chemical 
engineering. These problems were high dimensional, non-linear, multivariable, multi
modal and non-differentiable. Basically with GENOCOP the same solutions were 
obtained as with Iterative Dynamic Programming. Moreover GENOCOP is more 
successful in locating the global solution in comparison with other local optimisation 
algorithms. GENOCOP'S efficiency however is rather poor and the algorithm 
parameter tuning rather complicated. This motivated us to seek for more efficient 
evolutionary algorithms. 

Mathematical arguments found in the literature state that DE algorithms outperform 
other Evolutionary Algorithms in terms of computational efficiency. Therefore in 
Chapter 3, DE algorithms, generally used to solve continuous parameter optimisation 
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problems, were used to solve two multi-modal (benchmark) optimal control problems. 
Also some Breeder Genetic Algorithms (BGA) were applied to solve these problems. 
The results obtained with these algorithms were compared to one another, and to the 
results obtained with IDP. The comparison confirmed that DE algorithms stand out in 
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in 
contrast to the majority of Evolutionary Algorithms, which have many algorithm 
parameters that need to be selected or tuned, DE has only three algorithm parameters 
that have to be selected or tuned. These are the population size (ju), the crossover 
constant (CR) and the differential variation amplification (F) . The population size 
plays a crucial role in solving multi-modal optimal control problems. Selecting a 
smaller population size enhances the computational efficiency but reduces the 
probability of finding the global solution. During our investigations we tried to find 
the best trade-off. One of the most efficient DE algorithms is denoted by 
DE/best/2/bin. All the investigated DE algorithms solved the two benchmark multi
modal optimal control problems properly and efficiently. The computational 
efficiency achieved by the DE algorithms in solving the first low multi-modal 
problem, was comparable to that of IDP. When applied to the second highly multi
modal problem, the computational efficiency of DE was slightly inferior to the one of 
IDP, after tuning of the algorithm parameters. However, the selection or tuning of the 
algorithm parameters for IDP is more difficult and more involved. 

From our investigation the following guidelines were obtained for the selection of the 
DE algorithm parameters. Take the population size less than or equal to two times the 
number of variables to be optimised that result from the control parameterisation of 
the original optimal control problem (//<2nu). Highly multi-modal optimal control 

problems require a large value of the differential variation amplification (F>0 .9) 
and a very small or zero value for the crossover constant (0 < CR < 0.2). Low multi
modal optimal control problems need a medium value for the differential variation 
amplification (0.4 < F < 0.6) and a large or medium value for the crossover constant 
(0.2 <CR <0.5). In contrast to IDP, finding near-optimal values for the algorithm 
parameters is very simple for DE algorithms. 

Generally, the DE algorithm parameters are kept constant during the optimization 
process. A more effective and efficient algorithm may be obtained if they are adjusted 
on-line. In Chapter 4, a strategy that on-line adjusts the differential variation 
amplification (F ) and the crossover constant (CR) using a measure of the diversity 
of the individuals in the population, was proposed. Roughly, the proposed strategy 
takes large values for F and small values for CR at the beginning of the optimization 
in order to promote a global search. When the population approaches the solution, F 
is decreased in order to promote a local search, and the crossover parameter CR is 
enlarged to increase the speed of convergence. When implemented on the DE 
algorithm DE/rand/1/bin and applied to the two benchmark multi-modal optimal 
control problems, the computational efficiency significantly improved and also the 
probability of locating the global solution. 

To judge the opportunities and advantages of using Evolutionary Algorithms to solve 
problems related to optimal control, in Chapter 5 several engineering applications 
concerning optimal greenhouse cultivation control are considered. In Chapter 5.1 
genetic algorithms with binary individuals (Simple Genetic Algorithm) and floating-
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point representation (GENOCOP) for the individuals are used to estimate some of the 
parameters of a two-state dynamic model of a lettuce crop, the so-called NICOLET 
model. This model is intended to predict dry weight and nitrate content of lettuce at 
harvest time. Parameter estimation problems usually suffer from local minima. This 
study showed that Evolutionary Algorithms are suitable to calibrate the parameters of 
a dynamic model. However the required computation time is significant. Partly this is 
due to the high computational load of a single objective function evaluation, which for 
parameter optimisation problems involves a system simulation. Even though 
parameter optimisation is very often performed off-line, thus making computation 
time perhaps less important, more efficient evolutionary algorithms like DE are to be 
preferred. 

In Chapter 5.2 an optimal control problem of nitrate concentration in a lettuce crop 
was solved by means of two different algorithms. The ACW (Adjustable Control-
variation Weight) gradient algorithm, which searches for local solutions, and the DE 
algorithm DE/best/2/bin that searches for a global solution. The dynamic system is a 
modified two-state dynamic model of a lettuce crop (NICOLET B3) and the control 
problem has a fixed final time and control and terminal state constraints. The DE 
algorithm was extended in order to deal with this. The results showed that this 
problem probably does not have local solutions and that the control parameterisation 
required by the DE algorithm causes some difficulties in accurately approximating the 
continuous solution obtained by the ACW algorithm. On the other hand the 
computational efficiency of the evolutionary algorithm turned out to be impressive. 
An almost natural conclusion therefore is to combine a DE algorithm with a gradient 
algorithm. 

In Chapter 5.3 the combination of a DE algorithm and a first order gradient algorithm 
is used to solve an optimal control problem. The DE algorithm is used to approximate 
the global solution sufficiently close after which the gradient algorithm can converge 
to it efficiently. This approach was successfully tried on the optimal control of nitrate 
in lettuce, which unfortunately in this case, seems to have no local solutions. Still the 
feasibility of this approach, which is important for all types of optimal control 
problems of which it is unknown a-priori whether they have local solutions, was 
clearly demonstrated. 

Finally, in Chapter six this thesis ends with an overall discussion, conclusions and 
suggestions for future research. 
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Samenvatting 

Als optimale besturingsproblemen worden opgelost met locale gradient methodes is 
convergentie naar lokale oplossingen waarschijnlijk. Recentelijk is er een toenemende 
interesse voor globale optimalisatie algoritmen voor het oplossen van optimale 
besturingsproblemen waarvan de verwachting is dat ze lokale oplossingen hebben. 
Evolutionaire Algoritmen zijn globale optimalisatie algoritmen die tot nu toe 
voornamelijk zijn gebruikt voor het oplossen van statische optimalisatie problemen. In 
slechts enkele gevallen zijn dit soort algoritmen gebruikt voor het oplossen van 
optimale besturingsproblemen. Dit zou kunnen worden veroorzaakt door het geloof 
dat dit soort algoritmen niet efficient genoeg is voor het oplossen van deze categorie 
problemen. Daar komt bij dat Evolutionaire Algoritmen een betrekkelijk nieuw 
onderzoeksterrein vormen. In dit proefschrift is aangetoond dat er Evolutionaire 
Algoritmen bestaan die belangrijke voordelen hebben ten opzichte van andere globale 
optimalisatie methodes voor het oplossen van optimale besturingsproblemen, terwijl 
hun efficiency vergelijkbaar is. 

Het doel van deze studie was het zoeken naar en onderzoeken van efficiente 
Evolutionaire Algoritmen voor het oplossen van optimale besturingsproblemen 
waarvan verwacht wordt dat ze locale oplossingen bezitten. Dit soort optimale 
besturingsproblemen wordt in het Engels aangeduid met de term multi-modal. Een 
belangrijke additionele voorwaarde voor de praktische toepassing van dit soort 
algoritmen is dat ze bij voorkeur geen parameter aanpassing behoeven. Daarom 
verdienen algoritmen met weinig parameters de voorkeur. Bovendien zijn richtlijnen 
voor de keuze van algoritme parameters, en de mogelijke ontwikkeling van 
strategieen voor het automatisch aanpassen van algoritme parameters, van groot 
belang. 

Deze studie heeft laten zien dat Differential Evolution (DE) algoritmen een klasse van 
Evolutionaire Algoritmen is zonder de praktische en theoretische bezwaren die andere 
evolutionaire (genetische) algoritmen hebben. Daarom zijn ze belangrijk meer 
efficient dan andere evolutionaire (genetische) algoritmen, zoals de Breeder Genetic 
Algoritmen (BGA), wanneer ze worden gebruikt voor het oplossen van optimale 
besturingsproblemen die locale minima bezitten. De efficiency is vergelijkbaar met de 
efficiency van Iteratief Dynamisch Programmeren (IDP), een globale optimalisatie 
methode speciaal ontworpen voor optimale besturingsproblemen. Bovendien blijken 
de DE algoritmen belangrijk minder gevoelig voor problemen die verband houden 
met het aanpassen van algoritme parameters en de initialisatie van de algoritmen. 

Hoewel het geen DE algoritme is, wordt het zogenaamde GENOCOP algoritme 
beschouwd als een van de meest efficiente Evolutionaire (genetische) Algoritmen met 
individuen gerepresenteerd door reele getallen en met specialistische evolutionaire 
operatoren. Dit algoritme vormde het startpunt voor dit onderzoek. In hoofdstuk 2 
werd het toegepast op een aantal optimale besturingsproblemen uit de chemie. Deze 
problemen zijn hoog dimensionaal, niet lineair, multivariabel, multi-modal, en niet 
differentieerbaar. Met GENOCOP werden in essentie dezelfde oplossingen gevonden 
als met Iteratief Dynamisch Programmeren. Bovendien is GENOCOP beter in het 
vinden van het globale minimum in vergelijking met andere, locale optimalisatie 
algoritmen. De efficiency van GENOCOP is echter vrij pover en het aanpassen van de 
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algoritme parameters vrij ingewikkeld. Daarom hebben we gezocht naar meer 
efficiente Evolutionaire Algoritmen. 

Wiskundige argumenten, gevonden in de literatuur, stellen dat DE algoritmen beter 
zijn, voor wat betreft hun efficiency, dan andere Evolutionaire Algoritmen. DE 
algoritmes die in het algemeen worden gebruikt voor continue parameter optimalisatie 
problemen werden daarom in hoofdstuk 3 gebruikt voor het oplossen van optimale 
besturingproblemen met locale minima (benchmarks). Daarnaast werden deze 
problemen opgelost met een aantal BGA algoritmen. De resultaten werden met elkaar 
vergeleken en met die verkregen door middel van Iteratief Dynamisch Programmeren. 
Deze vergelijking bevestigde dat DE algoritmes efficienter zijn dan de BGA 
algoritmen. Bovendien, in tegenstelling tot andere Evolutionaire Algoritmen welke 
een groot aantal parameters hebben die moeten worden aangepast, behoeven er in DE 
algoritmen slechts drie parameters te worden aangepast of gekozen. Dit zijn de 
populatie grootte (/x) de crossover (CR) en de differential variation amplification 
(F). De populatie grootte speelt een cruciale rol bij het oplossen van optimale 
besturingsproblemen. Een kleine populatiegrootte bevordert de efficiency van het 
algoritme maar vermindert de kans op het vinden van de globale oplossing. Tijdens 
het onderzoek hebben we gezocht naar het beste compromis. Een van de meest 
efficiente DE algoritmen wordt aangeduid met DE/best/2/bin. Alle onderzochte DE 
losten de twee optimale besturingsproblemen (benchmarks) op. De efficiency van het 
DE algoritme was vergelijkbaar met die van IDP voor het eerste probleem dat naast 
het globale slechts een locale oplossing had. Toegepast op het tweede probleem, 
welke een groot aantal locale minima bezat, was het DE algoritme iets minder 
efficient na het aanpassen van de parameters van beide algoritmen. Echter het 
aanpassen van de parameters in het IDP algoritme is moeilijker en vraagt meer tijd. 

Ons onderzoek leverde de volgende richtlijnen op voor het selecteren van de drie DE 
algoritme parameters. Neem de populatiegrootte kleiner of gelijk aan twee keer het 
aantal te optimaliseren variabelen die voortvloeien uit de stuurparameterisatie van het 
optimale besturingsprobleem. (ju < 2nu). Problemen met veel locale minima vereisen 
een grote waarde van de differential variation amplification (F>0 .9 ) en een heel 
kleine waarde of een waarde nul voor de crossover constante (0<Ci?<0.2). 
Problemen met weinig locale minima vereisen een gemiddelde waarde van de 
differential variation amplification (0.4 < F < 0.6) en een hoge of gemiddelde waarde 
van de crossover constante (0.2 < CR <0.5). In tegenstelling tot IDP is het vinden 
van goede waarden voor de algoritme parameters van een DE algoritme erg 
eenvoudig. 

In het algemeen worden de DE algoritme parameters constant gehouden tijdens de 
optimalisatie. Een meer effectief en efficient algoritme kan worden verkregen als deze 
tijdens de optimalisatie worden aangepast. In hoofdstuk 4 werd daartoe een strategie 
ontwikkeld en toegepast die de differential variation amplification (F) en de 
crossover constant (CR) tijdens de optimalisatie aanpast, op grand van een maat voor 
de diversiteit van de populatie. Ruwweg worden in het begin grote waarden voor F 
gekozen en kleine voor CR. Als de populatie neigt naar de oplossing wordt F 
verlaagd om het locaal zoeken te bevorderen terwijl CR wordt verhoogd om de 
convergentiesnelheid op te voeren. Als deze strategie wordt geimplementeerd neemt 
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de efficiency significant toe en ook neemt de kans toe op het vinden van het globale 
minimum bij toepassing van het DE algoritme DE/rand/1/bin op de twee benchmarks. 

Teneinde de mogelijkheden van het gebruik van Evolutionaire Algoritmen te 
beoordelen, voor het oplossen van optimale besturingsproblemen, werden in 
hoofdstuk 5 een aantal toepassingen die betrekking hebben op klimaat regeling in 
kassen beschouwd. In hoofdstuk 5.1 werden genetische algoritmen met binair 
gecodeerde individuen (Simple Genetic Algorithms) en algoritmen met een floating
point representatie (GENOCOP) van individuen toegepast voor het schatten van een 
aantal parameters van het dynamisch model met twee toestanden van een krop sla 
(NICOLET model). Dit model beschrijft het drooggewicht en de nitraat concentratie 
van de krop sla. Parameter optimalisatie problemen bezitten vaak locale minima. Het 
onderzoek toonde aan dat Evolutionaire Algoritmen geschikt zijn voor het kalibreren 
van de parameters van dit model. De rekentijd die dit vraagt is echter aanzienlijk. Dit 
is gedeeltelijk te wijten aan de grote rekentijd die een functie evaluatie vergt, omdat 
een functie evaluatie een simulatie vergt van het systeem. Hoewel parameter 
optimalisatie (kalibratie) meestal off-line plaatsvindt, en de daarvoor benodigde 
rekentijd derhalve niet kritisch is, zijn meer efficiente Evolutionaire Algoritmen, zoals 
DE algoritmen, te prefereren. 

In hoofdstuk 5.2 werd een optimaal besturingsprobleem aangaande de nitraat 
concentratie in sla opgelost met behulp van twee verschillende algoritmen. Het ACW 
(Adjustable Control Weight) gradient algoritme, welke locaal zoekt, en het DE 
algoritme DE/best/2/bin welke zoekt naar een globale oplossing. Het dynamisch 
model (NICOLET B3) heeft twee toestanden en is een gemodificeerde versie van het 
eerder beschreven model. Het optimale besturingsprobleem heeft een vrije eindtijd, 
een begrensde sharing en eindvoorwaarden. Het DE algoritme werd overeenkomstig 
uitgebreid. De resultaten tonen dat dit probleem waarschijnlijk geen locale 
oplossingen heeft. De stuurparameterisatie, nodig voor het toepassen van het DE 
algoritme, veroorzaakt lichte problemen bij het nauwkeurig benaderen van de 
continue oplossing die wordt gevonden door het ACW algoritme. Aan de andere kant 
toont dit probleem de indrukwekkende efficiency van het DE algoritme. Een voor de 
hand liggend idee is beide algoritmen te combineren. 

Deze combinatie werd onderzocht in hoofdstuk 5.3. Een DE algoritme werd gebruikt 
voor het voldoende nauwkeurig benaderen van de globale oplossing waarna een 
gradient algoritme werd gebruikt voor efficiente convergentie naar dit globale 
minimum. Deze aanpak is met succes toegepast op het optimale besturingsprobleem 
betreffende regeling van de nitraat concentratie in sla, welke ongelukkigerwijs, slechts 
een globaal minimum lijkt te bezitten. Niettemin is de toepasbaarheid van deze 
aanpak, welke van belang is voor alle optimale besturingsproblemen waarvan niet a-
priori bekend is of ze locale minima bezitten, duidelijk aangetoond. 

Tenslotte eindigde dit proefschrift in hoofdstuk 6 met een discussie, conclusies en 
aanbevelingen voor toekomstig onderzoek. 
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Resumen 

Si problemas de control optimo son resueltos mediante metodos locales de busqueda 
basados en gradientes es muy probable su convergencia a soluciones locales. 
Recientemente ha aumentado el interes en la aplicacion de algoritmos globales de 
optimizacion para resolver problemas de control optimo que se espera posean 
soluciones locales. Los Algoritmos Evolutivos (AEs) son algoritmos globales de 
optimizacion que han sido usados principalmente para solucionar problemas de 
optimizacion estatica. Raramente se han aplicado algoritmos evolutivos para resolver 
problemas de control optimo debido a que se cree no son suficientemente eficientes 
para esta clase de problemas. Ademas la aplicacion de algoritmos evolutivos es un 
area de investigacion relativamente reciente. Como es demostrado en esta tesis, hay 
algoritmos evolutivos que tienen ventajas significativas sobre otros metodos globales 
de optimizacion mientras que su eficiencia es comparable. 

El objetivo de este estudio fue investigar y buscar algoritmos evolutivos eficientes 
para resolver problemas de control optimo que se espera tengan soluciones locales. 
Estos problemas de control optimo son llamados multimodales. Un importante 
requerimiento adicional para la aplicacion practica de estos algoritmos es que no 
requieran algun ajuste de parametros. Por eso deberan preferirse algoritmos con el 
menor numero de parametros. Aparte de eso, la obtencion de recomendaciones para la 
election de los valores de los parametros del algoritmo y el desarrollo de estrategias 
para un ajuste automdtico de los mismos, son cuestiones importantes. 

Este estudio revelo que los algoritmos Evolucion Diferencial (DE) son una clase de 
algoritmos evolutivos que no comparten las limitaciones teoricas y practicas que 
poseen los Algoritmos Geneticos. Como resultado son significativamente mas 
eficientes que otros Algoritmos Geneticos como los Algoritmos Geneticos Breeder 
(BGA) cuando son aplicados a problemas de control optimo que tienen multiples 
soluciones. Su eficiencia es comparable a aquella de Programacion Dinamica Iterativa 
(IDP) que es un enfoque global de optimizacion especificamente disenado para 
problemas de control optimo. Ademas los algoritmos DE resultaron ser menos 
sensibles en lo que se refiere a problemas de selection y ajuste de sus parametros asi 
como a su initialization. 

Aunque GENOCOP no es un algoritmo basado en Evolucion Diferencial, es 
considerado como uno de los algoritmos geneticos mas eficientes que usa una 
representation de individuos como valores reales y operadores evolutivos 
especializados. Este algoritmo fue el punto de partida de nuestra investigacion. En el 
Capitulo 2 este algoritmo fue aplicado a algunos problemas de control optimo 
encontrados frecuentemente en ingenieria quimica. Estos problemas se caracterizan 
por ser altamente dimensionales, no lineales, multivariable, multimodal y no 
diferenciables. GENOCOP obtuvo las mismas soluciones que el algoritmo IDP. 
Aparte de eso GENOCOP es mas exitoso que otros algoritmos locales de 
optimizacion en encontrar el optimo global. Sin embargo la eficiencia de GENOCOP 
es muy pobre y la afinacion de sus parametros bastante complicada. Esta fue nuestra 
motivation para investigar otros algoritmos evolutivos mas eficientes. 
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Argumentos matematicos encontrados en la literature establecen que los algoritmos 
DE superan a otros algortimos evolutivos en cuanto a eficiencia computacional se 
refiere. Por lo tanto en el Capitulo 3 los algoritmos DE que generalmente se usan para 
resolver problemas de optimizacion de parametros continuos fueron usados para 
solucionar dos problemas de control optimo multimodales (benchmark). Algunos 
algoritmos BGA fueron aplicados tambien. Los resultados obtenidos fueron 
comparados entre ellos y tambien con aquellos obtenidos con IDP. Esta comparacion 
confirmo que los algoritmos DE destacan en terminos de eficiencia comparados con 
los algoritmos BGA. Mas aun, a diferencia de la mayoria de algoritmos evolutivos, 
los cuales tienen muchos parametros que es necesario seleccionar o ajustar, DE tiene 
solamente tres parametros. Estos parametros son el tamano de la poblacion (ju), la 
constante de cruzamiento (CR) y amplificacion de la variacion diferencial (F). El 
tamano de la poblacion tiene un papel crucial en la solucion de problemas de control 
optimo multimodales. Seleccionando una poblacion pequefla se mejora la eficiencia 
computacional pero se reduce la probabilidad de encontrar la solucion global. Durante 
nuestras investigaciones se intento la mejor compromiso. Uno de los algoritmos DE 
mas eficientes es nombrado DE/best/2/bin. Todos los algoritmos DE solucionaron los 
dos problemas de control optimo multimodales debida y eficientemente. Su eficiencia 
computacional alcanzada en la solucion del primer problema fue comparable a aquella 
de IDP. Cuando se aplicaron en el segundo problema la efficiencia resulto ser 
ligeramente inferior a la de IDP. Sin embargo la seleccion o ajuste de los parametros 
en el algoritmo IDP es mas dificil y complicada. 

Como resultado de nuestra investigation algunas normas fueron obtenidas para la 
seleccion de los parametros de los algoritmos DE. Seleccionar el tamano de la 
poblacion menor o igual al doble del numero de variables a ser optimizadas que son el 
resultado de la parametrizacion del problema de control optimo original (ju<2nu). 

Problemas de control altamente multimodales parecen necesitar un valor grande del 
parametro del operador de mutacion (F > 0.9) y un valor muy pequefto o cero para la 
constante del operador de cruzamiento (0<C7?<0.2). Problemas no altamente 
multimodales requieren un valor termino medio para el parametro en el operador de 
mutacion (0.4 < F < 0.6) y un valor pequefto o grande para la constante del operador 
de cruzamiento (0.2 <CR< 0.5). A diferencia de algoritmo IDP, encontrar valores 
cercanos al optimo para estos parametros en DE es muy sencillo. 

Generalmente, los parametros de los algoritmos DE son mantenidos constantes 
durante una optimizacion. Podria obtenerse un algoritmo mas efectivo y eficiente si 
estos parametros se ajustaran automaticamente. En el Capitulo 4, fue propuesta una 
estrategia que on-line ajusta los valores de los parametros amplificacion de la 
variacion diferencial (F) y la constante de cruzamiento (CR) usando una medida de 
la diversidad de los individuos en la poblacion. A grandes rasgos, esta estrategia 
utiliza valores grandes para F y pequefios para CR al inicio de la optimizacion, con 
la idea de favorecer una busqueda global. Cuando la poblacion se aproxima a una 
solucion, F es reducido con objeto de favorecer una busqueda local y el parametro 
de cruzamiento CR es aumentado para incrementar la velocidad de convergencia del 
algoritmo. Esta estrategia fue implementada en el algoritmo DE/rand/1/bin y aplicada 
a los dos problemas de control optimo multimodales, la eficiencia computacional 
mejoro significativamente y tambien la probabilidad de localizar el optimo global. 
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Con la finalidad de conocer las oportunidades y ventajas que los algoritmos 
evolutivos tienen en la solution de problemas relacionados con control optimo en el 
Capitulo 5 son consideradas varias aplicaciones de ingenieria acerca de control 
optimo de cultivos en invernaderos. En el Capitulo 5.1 algoritmos geneticos con 
representation binaria de los individuos (Algoritmo Genetico Simple) y con 
representation de numeros reales (GENOCOP) son usados para estimar algunos de 
los parametros de un modelo dinamico de un cultivo de lechuga con dos estados, el 
llamado modelo NICOLET. Este modelo tiene el proposito de predecir material seca y 
contenido de nitratos en lechuga al momento de la cosecha. Los problemas de 
estimation de parametros generalmente presentan minimos locales. Este estudio 
mostro que los algoritmos evolutivos son adecuados para calibrar los parametros de 
un modelo dinamico. No obstante, el tiempo de computation requerido es 
significativo. Parcialmente esto se debe a la alta carga computational que la 
evaluation de la funcion objetivo requiere, lo cual en este caso implica la ejecucion 
de una simulation completa. Si bien es verdad que la estimation de parametros se 
lleva a cabo comunmente fuera de linea (off-line), lo cual hace que el tiempo de 
computation sea menos importante, es preferible usar algoritmos evolutivos mas 
eficientes como los algoritmos DE. 

En el Capitulo 5.2 un problema de control optimo de concentration de nitratos en un 
cultivo de lechuga fue solucionado mediante dos algoritmos. El algoritmo basado en 
gradientes (ACW Adjustable Control-variation Weight), un metodo local de 
optimization y el algoritmo DE/best/2/bin, un metodo global de optimization. El 
sistema dinamico utilizado es un modelo de un cultivo de lechuga de dos estados 
(NICOLET B3) y el problema de control optimo toma en cuenta tiempo final fijo y 
restricciones terminales de los estados. El algoritmo DE fue ampliado para tener en 
cuenta restricciones tanto en los estados como en los controles. Los resultados 
mostraron que este problema no tiene soluciones locales y que la parametrizacion de 
los controles requerida por DE, genera algunas dificultades para que el metodo directo 
sea capaz de encontrar con exactitud la solution obtenida por el algoritmo ACW. Pero 
por otro lado, la eficiencia computational del algoritmo evolutivo fue impresionante. 
Por eso una conclusion evidente es la combination de un algoritmo DE con un 
algoritmo basado en gradientes. 

En el Capitulo 5.3 una combination de un algoritmo DE y un algoritmo de primer 
orden basado en el calculo de gradientes es usada para resolver un problema de 
control optimo. El algoritmo DE es primeramente usado para obtener una solution 
aproximada en la vecindad del optimo global despues el algoritmo local es usado para 
refinar la solution. Este enfoque fue exitosamente probado en la solution del 
problema de control optimo de niveles de nitratos en lechuga, el cual 
desafortunadamente parece no tener soluciones locales. Aun asi, la viabilidad de este 
enfoque, que es interesante para problemas todo tipo de problemas de control optimo 
de los cuales se desconoce a-priori si tienen soluciones locales, fue claramente 
demostrada. 

Finalmente, en el Capitulo seis esta tesis finaliza con una discusion general, 
conclusiones y algunas sugerencias para investigation futura. 
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