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Preface 

Magnetohydrodynamics (MHD) is concerned with the dynamic motion of electrically
conducting medium (i.e., so-called plasma) in the presence of magnetic field, which is
either applied externally or self-generated. MHD is traditionally interpreted as
follows: “Magneto” has to do with electro-magnetic fields; “hydro” indicates to deal 
with fluid medium; while “dynamics” designates to study its time evolution of 
physical processes. Another kind of interpretation can, however, be as follows: 
“Magnetohydro” refers to the “magneto” type of fluids, in which particles are stuck
together primarily by magnetic field, instead of by collisions. Due to the presentation 
of strong magnetic field, charged particles gyrate around magnetic field lines, so that 
the guiding center of charged particle’s gyro-motion is primarily frozen in the
magnetic field line. Therefore, even in the weak collision case charged particles can 
move collectively as if fluid in the perpendicular direction. The later interpretation 
covers a broad scope in which MHD theory applies.

MHD theory has been used to study controlled nuclear fusion, space/astronomic 
plasma physics, such as solar physics, and low temperature plasma physics, such as
plasma processing, MHD generator, etc. The collective motion of charged particles is
an intrinsically complicated issue, due to the long-range correlation feature of
Coulomb and Lorentz forces. Nevertheless, MHD theory is able to catch the leading
behaviors in a clear and tractable manner. This has led to the success of MHD theory. 

There are several excellent MHD books in the market. Also, MHD theory is described 
about in every plasma physics books. Nevertheless, as plasma physics science
advances, the gap between cutting-edge researches and textbooks always develops. To
fill in this gap, several MHD-related topics are reviewed by eight authors in this book, 
according to authors’ expertise.

In Chapter 1 an overview of MHD theory for toroidal plasma confinement in
controlled nuclear fusion is given. Especially, the toroidal theories for four major types
of MHD modes: interchange, ballooning, toroidal Alfven egenmodes, and kinetically 
driven modes (such as energetic particle modes) are reviewed. In Chapter 2 the recent
development of sub-fluid models in dissipative MHD is reviewed. Especially, three 
models to approach “stochastic coherent structures theory” are described. In Chapter 3
the implicit numerical methods for resistive MHD is reviewed. Especially two broad
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XII Preface

classes of nonlinear methods: Newton-Krylov and nonlinear multigrid are detailed. In 
Chapter 4 magnetic relaxation in spheromaks is investigated and reviewed. Simulation 
results show that full relaxation to Taylor state is only achieved when the magnetic 
fluctuations produce stochastic field line regions of size comparable of that of the 
whole system. In Chapter 5 MHD activity in an extremely high-beta compact device: 
field-reversed configuration (FRC) is reviewed. Both the formation methods for FRC 
plasmas and the MHD behaviors are described. In Chapter 6 MHD theory for solar 
spicules and X-ray jets is presented, to explain the enduring mystery in solar physics 
for why Sun’s outer atmosphere or corona is much hotter than its surface. In Chapter 7 
Hamiltonian representation of MHD for boundary energy controls is described. A 
passive boundary control formalism for ideal MHD systems is then derived from the 
distributed port-Hamiltonian (DPH) representations. In Chapter 8 the MHD rotating 
flow of a fourth grade fluid between two parallel infinite plates is investigated through 
solving nonlinear momentum and mass equations. The results for Newtonian and 
non-Newtonian fluids are compared. 

These results are published in this book to take the advantage of open-access feature 
for distribution through InTech.  

Dr. Linjin Zheng 
The University of Texas at Austin, 

Institute for Fusion Studies, Austin, Texas, 
USA 
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Overview of Magnetohydrodynamics Theory
in Toroidal Plasma Confinement

Linjin Zheng
Institute for Fusion Studies

University of Texas at Austin, Austin, Texas
United States of America

1. Introduction

In this chapter we address magnetohydrodynamics (MHD) theory for magnetically confined
fusion plasmas. To be specific we focus on toroidal confinement of fusion plasmas, especially
tokamak physics.

The biggest challenges mankind ever faces are falling energy sources and food shortages. If
controlled nuclear fusion were achieved with net energy yield, the energy source problem
would be solved. If natural photosynthesis were reproduced, food shortage concern would
be addressed. Though both nuclear fusion and photosynthesis are universal, the difficulties to
achieve them are disproportionally great. Instead, those discoveries harmful to nature, though
naturally unpopular, are invented relatively easily. This tendency reminds us of a bible verse
(Genesis 3:19): "In the sweat of thy face shalt thou eat bread". This verse basically sketches the
dependence of efforts (sweat) demanded for scientific discoveries on the usefulness (bread) of
the discoveries to mankind (see Fig. 1). The more the discovery is relevant to mankind, the
more the sweat is needed for that discovery. This may explain why controlled nuclear fusion
is so difficult and its underlying plasma physics is so complicated.

Fig. 1. Schematic interpretation of Genesis 3:19: the dependence of efforts (sweat) demanded
for scientific discoveries on the usefulness (bread) of the discoveries to mankind.
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When God created universe each day, He always claimed "it was so" and "it was good"
(Genesis 1). The hard aspect of fusion plasma physics lies in that we often miss simplicity
(it was so) and beauty (it was good) in theoretical formalism. MHD theory seems to be unique
in plasma physics. Though many charged particle system, with long mean free path and
long range correlation, is intrinsically complicated, MHD theory is relatively simple and,
nonetheless, gives rise to rather relevant theoretical predictions for experiments: Tokamaks
are designed according to MHD equilibrium theory and nowadays none would expect that
a magnetic confinement of fusion plasmas could survive if MHD theory predicted major
instabilities. As one will see even with MHD description the theoretical formulation of
magnetically confined plasmas in toroidal geometry can still be hard to deal with. Thanks to
decades-long efforts many beautiful MHD theoretical formulations for toroidal confinement
of fusion plasmas have been laid out. In this chapter we try to give a comprehensive review
of these prominent theories. Four key types of modes: interchange/peeling modes Mercier
(1962) Greene & Johnson (1962) Glasser et al. (1975) Lortz (1975) Wesson (1978), ballooning
modes Connor et al. (1979) Chance et al. (1979), toroidal Alfvén egenmodes (TAEs) Cheng et al.
(1985) Rosenbluth et al. (1992) Betti & Freidberg (1992) Zheng & Chen (1998), and kinetically
driven modes, such as kinetic ballooning modes (KBMs) Tsai & Chen (1993) Chen (1994)
and energetic particle driven modes (EPMs) Zheng et al. (2000), are addressed. Besides, we
also describe an advanced numerical method (AEGIS Zheng & Kotschenreuther (2006)) for
systematically investigating MHD stability of toroidally confined fusion plasmas. Description
of global formulation used for numerical computation can also provide an overall picture of
MHD eigen mode structure for toroidal plasmas.

MHD theory is a single fluid description of plasmas. Fluid approach is based on the
assumption that particle movements are spatially localized so that a local thermal equilibrium
can be established. In the conventional fluid theory particle collision is the ingredient for
particle localization. However, for magnetically confined fusion plasmas collision frequency
usually is low. One cannot expect particle collisions to play the role for localizing particles
spatially. The relevance of partial fluid description of magnetically confined fusion plasmas
relies on the presence of strong magnetic field. Charged particles are tied to magnetic field
lines due to gyro-motions. Therefore, in the direction perpendicular to magnetic field lines
magnetic field can play the role of localization, so that MHD description becomes relevant at
least in lowest order. One can expect that perpendicular MHD description needs modification
only when finite Larmor radius effects become significant.

In the direction parallel to magnetic field, however, particles can move rather freely. Collision
frequency is not strong enough hold charged particles together to establish local thermal
equilibrium. One cannot define local thermal parameters, such as fluid density, velocity,
temperature, etc. The trapped particle effect, wave-particle resonances, and parallel electric
field effects need to be included. Plasma behavior in parallel direction is intrinsically non-fuild
and needs kinetic description. Surprisingly, even under this circumstance MHD description
still yields valuable and relevant theoretical predictions without major modifications in the
concerned low (ω � ωsi) and intermediate (ωsi � ω � ωse) frequency regimes, where ω is
mode frequency, ωsi and ωse represent respectively ion and electron acoustic frequencies. In
the low frequency regime coupling of parallel motion results only in an enhanced apparent
mass effect; while in the intermediate frequency regime kinetic effects only gives rise to a new
phenomenological ratio of special heats in leading order.

2 Topics in Magnetohydrodynamics Overview of Magnetohydrodynamics Theory
in Toroidal Plasma Confinement 3

This chapter is arranged as follows: In Sec. 2 the basic set of ideal MHD equations is described;
In Sec. 3 MHD equilibrium is discussed; In Sec. 4 analytical or semi-analytical theories for
four types of major MHD modes are presented; In Sec. 5 the formulation of global numerical
analyses of MHD modes are given; In the last section the results are summarized. Gyrokinetic
and resistive effects are also discussed in this last section.

2. Basic set of ideal MHD equations

The basic set of ideal MHD equations are derived from single fluid and Maxwell’s equations.
They are given as follows

ρ
dv
dt

= −∇P + J × B, (1)

E = −v × B, (2)
∂P
∂t

= −v · ∇P − ΓP∇ · v, (3)

∂ρm

∂t
= −v · ∇ρm − ρm∇ · v, (4)

μ0J = ∇ × B, (5)
∂B
∂t

= ∇ × E, (6)

where ρm is mass density, v denotes fluid velocity, P is plasma pressure, Γ represents the
ratio of specific heats, E and B represents respectively electric and magnetic fields, J is current
density, μ0 is vacuum permeability, and bold faces denote vectors.

The MHD equations (1)-(6) can be linearized. For brevity we will use the same symbols
for both full and equilibrium quantities. Perturbed quantities will be tagged with δ, unless
specified. Equilibrium equations are

J × B = ∇P, (7)

∇ × B = μ0J, (8)

∇ · B = 0. (9)

The linearized perturbed MHD equations become

− ρmω2ξ = δJ × B + J × δB −∇δP, (10)

δB = ∇ × ξ × B, (11)

μ0δJ = ∇ × δB, (12)

δP = −ξ · ∇P − ΓP∇ · ξ, (13)

where ξ = v/(−iω) represents plasma displacement, and the time dependence of perturbed
quantities is assumed to be of exponential type exp{−iωt}. Inserting Eqs. (11)-(13) into
Eq. (10), one obtains a single equation for ξ:

− ρmω2ξ =
1

μ0
∇ × (∇ × ξ × B) × B + J × ∇ × ξ × B +∇ (ξ · ∇P + ΓP∇ · ξ) . (14)

We have not included toroidal rotation effects in the linearized equations (10)-(13). For most
of tokamak experiments rotation is subsonic, i.e., the rotation speed is much smaller than

3Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement
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ion thermal speed. In this case the centrifugal and Coriolis forces from plasma rotation is
smaller than the effects from particle thermal motion — plasma pressure effect. Therefore,
rotation effect can be taken into account simply by introducing the Doppler frequency shift:
ω → ω+nΩnot in MHD equation (14), where Ωrot is toroidal rotation frequency and n denotes
toroidal mode number Waelbroeck & Chen (1991) Zheng et al. (1999).

3. Tokamak MHD equilibrium

In this subsection we discuss tokamak equilibrium theory. MHD equilibrium has been
discussed in many MHD books. Here, we focus mainly on how to construct various flux
coordinates from numerical solution of MHD equilibrium equations.

We first outline the derivation of Grad-Shafranov equation Grad & Rubin (1958) Shafranov
(1966). The cylindrical coordinate system (X, Z, φ) is introduced, where X is radius
from axi-symmetry axis of plasma torus, Z denotes vertical coordinate, and φ is toroidal
axi-symmetric angle. We introduce the vector potential A to represent magnetic field B =
∇ × A. Due to toroidal symmetry φ is an ignorable coordinate. Using curl expression
in cylinder coordinates and noting that ∂AX/∂φ = ∂AZ/∂φ = 0, one can prove that the
vector potential A in X and Z directions (AXZ) can be expressed through the single toroidal
component: Aφ. Without losing generality one can express Aφ = −χ∇φ. Therefore, total
equilibrium magnetic field can be expressed as, by adding (X, Z) components and toroidal
component,

B = ∇× Aφ + XBφ∇φ = ∇φ × ∇χ + g∇φ, (15)

where Bφ is toroidal component of magnetic field and g = XBφ. From Eq. (15) one can prove
that B · ∇χ = 0 and therefore χ = const. labels magnetic surfaces. Equation (15) can be used
to show that 2πχ is poloidal magnetic flux. One can also define the toroidal flux 2πψT(χ).
The safety factor is then defined as q = dψT/dχ, which characterizes the field line winding on
a magnetic surface.

Using Ampere’s law in Eq. (8) one can express equilibrium current density as follows

μ0J = ∇g × ∇φ + X2∇ ·
(∇χ

X2

)
∇φ. (16)

Here, we have noted that ∇φ · ∇ × (∇φ × ∇χ) = ∇ · (∇χ/X2) and ∇θ · ∇ × (∇φ × ∇χ) =
∇χ · ∇ × (∇φ × ∇χ) = 0.

Inserting Eqs. (15) and (16) into force balance equation (7) one obtains

μ0∇P = −∇ ·
(∇χ

X2

)
∇χ − 1

X2 g∇g +∇φ∇g × ∇φ · ∇χ. (17)

From Eq. (7) one can prove that B · ∇P = 0. Therefore, one can conclude that plasma pressure
is a surface faction, i.e., P(χ). From Eq. (17) one can further determine that g is a surface
function as well, through projecting Eq. (17) on ∇φ. Therefore, Eq. (17) can be reduced to the
so-called Grad-Shafranov equation

X2∇ ·
(∇χ

X2

)
= −μ0X2P�

χ − gg�χ. (18)
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Here and later on we use prime to denote derivative with respect to flux coordinate chosen.
This is a nonlinear equation for χ for given functions P(χ) and g(χ). It generally needs
numerical solution. Since it is a two dimensional problem, one needs to introduce a poloidal
angle coordinate θeq around magnetic axis of plasma torus in addition to radial coordinate χ.
The solution is usually given in (χ, θeq) grids for X(χ, θeq), Z(χ, θeq), or inversely, in (X, Z)
grids for χ(X, Z), θeq(X, Z).

Instead of physical cylinder coordinates (X, Z, φ) or (χ, θeq, φ), magnetic flux coordinates
are often used in theoretical analyses, which is characterized by that the magnetic field line
is straight in the covariant representation of coordinate system. Note that the coordinate
system (ψ, θeq, φ) usually is not a flux coordinate system. In most equilibrium codes θeq is
just an equal-arc length poloidal coordinate. One of flux coordinate systems is the so-called
PEST coordinate system Grimm et al. (1976) (χ, θpest, φ), where θpest is generalized poloidal
coordinate, such that the equilibrium magnetic field can be represented as

B = χ� (∇φ × ∇ψpest + q∇ψpest × ∇θpest
)

. (19)

By equating Eqs. (19) and (15) one can find that the Jacobian of PEST coordinates should be

Jpest ≡
1

∇ψpest × ∇θpest · ∇φ
=

qχ�X2

g
. (20)

In PEST coordinate system the flux coordinate is chosen as

ψpest =
2πX0
cpest

∫ χ

0
dχ

q
g

, cpest =
X0
2π

∫

v
dτ

1
X2 ,

where X0 is major radius at magnetic axis and
∫

v dτ denotes volume integration over entire
plasma domain. The PEST poloidal angle θpest can be related to physical angle coordinate θeq
as follows. Using Eq. (20), one can determine poloidal angle in PEST coordinate

θpest =
1
q

∫ θeq

0
dθeq

gJeq

X2 ,

where Jeq = 1/∇χ × ∇θeq · ∇φ, which can be computed from equilibrium solution. Here,
the integration is along the path of constant χ and φ.

Next, we discuss construction of general flux coordinates. The covariant type of
representation as in Eq. (19) is not unique. It is preserved under the following coordinate
transforms

ζ = φ + ν(ψ, θ), θ = θpest + ν(ψ, θ)/q, (21)

such that

B = χ� (∇ζ × ∇ψ + q∇ψ × ∇θ) . (22)

Here, θ and ζ are referred to as generalized poloidal and toroidal angles, respectively. PEST
coordinates are characterized by its toroidal angle coordinate being axisymmetric toroidal
angle. In this general case, by equating Eqs. (22) and (15) in ∇φ projection one can find that

∂ν

∂θeq

∣∣∣∣
ψ,φ

1
Jeq

+ g
1

X2 = χ�q
1
J , (23)
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ion thermal speed. In this case the centrifugal and Coriolis forces from plasma rotation is
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(∇χ
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X2∇ ·
(∇χ

X2

)
= −μ0X2P�

χ − gg�χ. (18)
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where J = 1/∇ψ × ∇θ · ∇ζ. Using Jeq and J definitions, one can prove that

∂θ

∂θeq

∣∣∣∣
ψ,φ

=
χ�Jeq

J . (24)

One can solve Eq. (23), yielding

ν(ψ, θ) =
∫ θeq

0
dθeqJeq

(
χ�q

1
J − g

1
X2

)
= qθ −

∫ θeq

0
dθeq

gJeq

X2 , (25)

where Eq. (24) has been used.

Equations (21)-(25) can be used to construct various types of flux coordinate systems. There
are two classes of them: One is by specifying Jacobian (e.g., Hamada coordinates Hamada
(1962) and Boozer coordinates Boozer (1982)) and the other by directly choosing generalized
poloidal angle (e.g., equal arc-length coordinate). In the Hamada coordinates the volume
inside a magnetic surface is used to label magnetic surfaces, i.e., ψ = V, and Jacobian
Jh = 1/∇V · ∇θh × ∇ζh is set to be unity. With Jacobian specified, Eq. (24) can be used to
solve for θh at given (V,φ). With ν determined by Eq. (25) the definition Eq. (21) can be used to
specify ζh. In the Boozer coordinates Jacobian is chosen to be JB = V� 〈B2〉

s /(4π2B2), where
�·�s represents surface average. The procedure for specifying Boozer poloidal and toroidal
coordinates θB and ζB is similar to that for Hamada coordinates. In the equal-arc-length
coordinates poloidal angle is directly specified as equal-arc-length coordinate θe. In this case,
Jacobian Je can be computed through Eq. (24). With ν determined by Eq. (25) the definition
Eq. (21) can be used to specify ζe.

We can also express current density vector in covariant representation with generalized flux
coordinates. Using Ampere’s law in Eq. (8) for determining J · ∇θ and Eq. (7) for J · ∇ζ, one
can also express equilibrium current density in covariant representation

J = − 1
μ0

g�ψ∇ζ × ∇ψ −
(

q
μ0

g�ψ +
P�

ψ

χ�
ψ

J
)
∇ψ × ∇θ. (26)

This general coordinate expression for J can be alternatively obtained from PEST
representation in Eq. (16) and Grad-Shafranov equation (18) through coordinate transform.
Equation (26) is significantly simplified in the Hamada coordinates. Due to J = 1, Eq. (26)
can be expressed as

J = J�V∇ζ × ∇V + I�V∇V × ∇θ, (27)

where I(V) and J(V) are toroidal and poloidal current fluxes, I� = −g�V/μ0, and J� =
−qg�V/μ0 − P�

V/χ�
V . The force balance equation (7) can be simply expressed as

μ0P�
V = J�Vψ�

V − I�Vχ�
V . (28)

It is also interesting to discuss diamagnetic current and Pfirsch-Schlüter current in plasma
torus. Due to the existence of plasma pressure there is diamagnetic current in tokamak
system. The diamagnetic current alone is not divergence-free and is always accompanied
by a return current in the parallel direction, i.e., the so-called Pfirsch-Schlüter current. The
total equilibrium current is therefore can be expressed as

J =
dP
dχ

(
2λB +

B × ∇χ

B2

)
, (29)
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where the second term is diamagnetic current and the first term denotes the Pfirsch-Schlüter
current. We can determine the Pfirsch-Schlüter current from ∇ · J = 0,

λ = − 1
2χ

∫ θ

0
∇ × B

B2 · ∇χdθ + λ0, (30)

where λ0 is the integration constant and can be determined by Ohm’s law in the parallel
direction.

4. Linear MHD instabilities

In this subsection we overview the linear MHD stability theories in toroidal geometry. We
will detail major analytical techniques developed in this field in the past decades, such as
interchange, ballooning, TAE, and EPM/KBM theories. Due to space limitation, we focus
ourselves on ideal MHD theory.

4.1 Decomposition of linearized MHD equations, three basic MHD waves

There are three fundamental waves in magnetic confined plasmas. The compressional Alfvén
mode characterizes the oscillation due to compression and restoration of magnetic field. It
mainly propagates in the derection perpendicular to magnetic field. Since plasmas are frozen
in magnetic field, such a magnetic field compression also induces plasma compression. Note
that the ratio of plasma pressure to magnetic pressure (referred to as plasma beta β) usually
is low. The compression and restoration forces mainly result from magnetic field energy. The
shear Alfvén wave describes the oscillation due to magnetic field line bending and restoration.
It mainly propagates along the magnetic field lines. Since long wave length is allowed for
shear Alfvén wave, shear Alfvén wave frequency (or restoration force) is usually lower than
that of compressional Alfvén wave. Therefore, shear Alfvén wave is often coupled to plasma
instabilities. Another fundamental wave in magnetic confined plasmas is parallel acoustic
wave (sound wave). Since plasma can move freely along magnetic field lines without being
affected by Lorentz’s force. Parallel acoustic wave can prevail in plasmas. The various types
of electrostatic drift waves are related to it. Due to low beta assumption, the frequency of ion
sound wave is lower than that of shear Alfvén wave by oder

√
β. The behaviors of these three

waves in simplified geometry have been widely studied in many MHD books. Here, we focus
on toroidal geometry theories. MHD equation (14) in toroidal geometry can be hard to deal
with. One usually needs to separate the time scales for three fundamental waves to reduce the
problem. This scale separation is realized through proper projections and reduction of MHD
equation (14).

There are three projections for MHD equation, Eq. (14). We introduce three unit vectors: eb =
B/B, e1 = ∇ψ/|∇ψ|, and e2 = eb × e1 for projections. The e2 projection of the MHD equation
(14) gives

e1 · ∇ × δB = − gP�

B2 e1 · δB − g�e1 · δB +
1
B

e2 · ∇
(

P� |∇ψ|e1 · ξ
)

+ΓP
1
B

e2 · ∇ (∇ · ξ) +
ρmω2

B
e2 · ξ. (31)
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where J = 1/∇ψ × ∇θ · ∇ζ. Using Jeq and J definitions, one can prove that
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where Eq. (24) has been used.
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are two classes of them: One is by specifying Jacobian (e.g., Hamada coordinates Hamada
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can be expressed as
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It is also interesting to discuss diamagnetic current and Pfirsch-Schlüter current in plasma
torus. Due to the existence of plasma pressure there is diamagnetic current in tokamak
system. The diamagnetic current alone is not divergence-free and is always accompanied
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where the second term is diamagnetic current and the first term denotes the Pfirsch-Schlüter
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where λ0 is the integration constant and can be determined by Ohm’s law in the parallel
direction.
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It mainly propagates along the magnetic field lines. Since long wave length is allowed for
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instabilities. Another fundamental wave in magnetic confined plasmas is parallel acoustic
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waves in simplified geometry have been widely studied in many MHD books. Here, we focus
on toroidal geometry theories. MHD equation (14) in toroidal geometry can be hard to deal
with. One usually needs to separate the time scales for three fundamental waves to reduce the
problem. This scale separation is realized through proper projections and reduction of MHD
equation (14).

There are three projections for MHD equation, Eq. (14). We introduce three unit vectors: eb =
B/B, e1 = ∇ψ/|∇ψ|, and e2 = eb × e1 for projections. The e2 projection of the MHD equation
(14) gives
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B2 e1 · δB − g�e1 · δB +
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B
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+ΓP
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B

e2 · ∇ (∇ · ξ) +
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7Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement



8 Will-be-set-by-IN-TECH

Similarly, the e1 projection of the MHD equation (14) yields

e2 · ∇ × δB = − gP�

B2 e2 · δB − g�e2 · δB − P� |∇ψ|
B2 eb · δB − 1

B
e1 · ∇

(
P� |∇ψ|e1 · ξ

)

−ΓP
1
B

e1 · ∇ (∇ · ξ)− ρmω2

B
e1 · ξ. (32)

The eb projection of MHD equation (14) can be reduced to, using ∇ · ξ as an independent
unknown,

ΓPB · ∇
(

1
B2 B · ∇∇ · ξ

)
+ ρmω2∇ · ξ = ρmω2∇ · ξ⊥. (33)

Noting that δJ and δB are determined completely by ξ⊥, one can see that the set of equations
(31) - (33) is complete to determine two components of ξ⊥ and scalar unknown ∇ · ξ.

Two perpendicular equations of motion, Eqs. (31) and (32), result from perpendicular
projections of MHD equation (10) and therefore contain restoration force due to excitation
of compressional Alfvén wave. To suppress compressional Alfvén wave from consideration,
one can apply the operator ∇ · (B/B2) × (· · · ) on Eq. (10), yielding

∇ · B
B2 × ρmω2ξ = B · ∇B · δJ

B2 + δB · ∇σ − J · ∇B · δB
B2 +∇ × B

B2 · ∇δP, (34)

where σ = J · B/B2. Note that compressional Alfvén wave results from the term δJ × B +
J × δB +∇δP → ∇(B · δB + δP) in Eq. (10). Therefore the curl operation in deriving Eq. (34)
can suppress compressional Alfvén wave. Equation (34) is often referred to as shear Alfvén
law or vorticity equation.

Equations (34), (31), and (33) characterize respectively three fundamental MHD waves:
shear Alfvén, compressional Alfvén, and parallel acoustic waves. From newly developed
gyrokinetic theory Zheng et al. (2007) two perpendicular equations (31) and (32) are fully
recovered from gyrokinetic formulation, expect the plasma compressibility effect.

4.2 Singular layer equation: interchange and peeling modes

Interchange modes are most fundamental phenomena in magnetically confined plasmas. It
resembles to the so-called Rayleigh-Taylor instability in conventional fluid theory. Through
interchange of plasma flux tubes plasma thermal energy can be released, so that instability
develops. Perturbation of magnetic energy from field line bending is minimized for
interchange instability. In slab or cylinder configurations such an interchange happens due
to the existence of bad curvature region. In toroidal geometry with finite q value, however,
the curvature directions with respect to plasma pressure gradient are different on high and
low field sides of plasma torus. Good and bad curvature regions appear alternately along
magnetic field line. Therefore, one needs to consider toroidal average in evaluating the change
of plasma and magnetic energies. This makes interchange mode theory in plasma torus
become complicated. The interchange mode theory is the first successful toroidal theory in
this field. It includes the derivations of the so-called singular later equation and interchange
stability criterion, i.e., the so-called Mercier criterion Mercier (1962) Greene & Johnson (1962).

Early derivation of singular layer equation relies on the assumption that the modes are
somewhat localized poloidally. This assumption was released in a later paper by Glasser
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et al Glasser et al. (1975). However, the details have been omitted in this paper and direct
projection method, alternative to the original vorticity equation approach, is used. Here,
we detail the derivation of singular layer equation by vorticity equation approach. These
derivation can tell analytical techniques to separate the compressional Alfvén wave from low
frequency interchange mode and to minimize field line bending effects due to shear Alfvén
mode. The singular equation will be used to derive stability criterion for interchange and
peeling modes.

In order to investigate the modes which localize around a particular rational (or singular)
magnetic surface V0, we specialize the Hamada coordinates to the neighborhood of mode
rational surface V0 and introduce the localized Hamada coordinates x, u, θ as usual, where
x = V − V0 and u = mθ − nζ. In this coordinate system the parallel derivative becomes
B · ∇ = χ�(∂/∂ζ) + (Λx/Ξ)(∂/∂u), where Λ = ψ�χ�� − χ�ψ�� and Ξ = ψ�/m = χ�/n.

Using the coordinates (x, u, θ), we find that, in an axisymmetric torus, equilibrium scalars
are independent of u, and therefore perturbations can be assumed to vary as exp{ikuu} with
ku = 2πn/χ�. As in Refs. Johnson & Greene (1967) and Glasser et al. (1975), ξ and δB are
projected in three directions as follows:

ξ = ξ
∇V

|∇V|2 + μ
B × ∇V

B2 + ν
B
B2 ,

δB = b
∇V

|∇V|2 + v
B × ∇V

B2 + τ
B
B2 .

We consider only singular modes whose wavelength across the magnetic surface λ⊥ is much
smaller than that on the surface and perpendicular to magnetic field line λ∧. This leads us to
choose following ordering scheme as in Ref. Glasser et al. (1975):

x ∼ �,
∂

∂V
∼ �−1,

∂

∂u
∼ ∂

∂θ
∼ 1, (35)

where � � 1, being a small parameter. Furthermore, we consider only the low-frequency
regime

|ω/ωsi| � 1. (36)

where ωsi is parallel ion acoustic frequency.

Since the modes vary on a slow time scale, they are decoupled from compressional Alfvén
wave. It can be verified a posteriori that we can make following ordering assumptions:

ξ = �ξ(1) + · · · , μ = μ(0) + · · · , δP(2) = �2δP(2) + · · · ,

b = �2b(2) + · · · , v = �v(1) + · · · , τ = �τ(1) + · · · ,

where δP(2) = −ΓP∇ · ξ. These ordering assumptions are the same as those in Ref.
Glasser et al. (1975), except that we use δP(2) as unknown to replace ν. With these ordering
assumptions we can proceed to analyze the basic set of linearized MHD equations. As usual,
perturbed quantities are separated into constant and oscillatory parts along the field lines:
ξ = ξ̄ + ξ̃, where ξ̄ = �ξ� ≡

∮
ξ dl/B/

∮
dl/B, l is arc length of magnetic field line, and

ξ̃ = ξ − �ξ�.
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Similarly, the e1 projection of the MHD equation (14) yields

e2 · ∇ × δB = − gP�

B2 e2 · δB − g�e2 · δB − P� |∇ψ|
B2 eb · δB − 1

B
e1 · ∇

(
P� |∇ψ|e1 · ξ

)

−ΓP
1
B

e1 · ∇ (∇ · ξ)− ρmω2

B
e1 · ξ. (32)

The eb projection of MHD equation (14) can be reduced to, using ∇ · ξ as an independent
unknown,

ΓPB · ∇
(

1
B2 B · ∇∇ · ξ

)
+ ρmω2∇ · ξ = ρmω2∇ · ξ⊥. (33)

Noting that δJ and δB are determined completely by ξ⊥, one can see that the set of equations
(31) - (33) is complete to determine two components of ξ⊥ and scalar unknown ∇ · ξ.

Two perpendicular equations of motion, Eqs. (31) and (32), result from perpendicular
projections of MHD equation (10) and therefore contain restoration force due to excitation
of compressional Alfvén wave. To suppress compressional Alfvén wave from consideration,
one can apply the operator ∇ · (B/B2) × (· · · ) on Eq. (10), yielding

∇ · B
B2 × ρmω2ξ = B · ∇B · δJ

B2 + δB · ∇σ − J · ∇B · δB
B2 +∇ × B

B2 · ∇δP, (34)

where σ = J · B/B2. Note that compressional Alfvén wave results from the term δJ × B +
J × δB +∇δP → ∇(B · δB + δP) in Eq. (10). Therefore the curl operation in deriving Eq. (34)
can suppress compressional Alfvén wave. Equation (34) is often referred to as shear Alfvén
law or vorticity equation.

Equations (34), (31), and (33) characterize respectively three fundamental MHD waves:
shear Alfvén, compressional Alfvén, and parallel acoustic waves. From newly developed
gyrokinetic theory Zheng et al. (2007) two perpendicular equations (31) and (32) are fully
recovered from gyrokinetic formulation, expect the plasma compressibility effect.

4.2 Singular layer equation: interchange and peeling modes

Interchange modes are most fundamental phenomena in magnetically confined plasmas. It
resembles to the so-called Rayleigh-Taylor instability in conventional fluid theory. Through
interchange of plasma flux tubes plasma thermal energy can be released, so that instability
develops. Perturbation of magnetic energy from field line bending is minimized for
interchange instability. In slab or cylinder configurations such an interchange happens due
to the existence of bad curvature region. In toroidal geometry with finite q value, however,
the curvature directions with respect to plasma pressure gradient are different on high and
low field sides of plasma torus. Good and bad curvature regions appear alternately along
magnetic field line. Therefore, one needs to consider toroidal average in evaluating the change
of plasma and magnetic energies. This makes interchange mode theory in plasma torus
become complicated. The interchange mode theory is the first successful toroidal theory in
this field. It includes the derivations of the so-called singular later equation and interchange
stability criterion, i.e., the so-called Mercier criterion Mercier (1962) Greene & Johnson (1962).

Early derivation of singular layer equation relies on the assumption that the modes are
somewhat localized poloidally. This assumption was released in a later paper by Glasser
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et al Glasser et al. (1975). However, the details have been omitted in this paper and direct
projection method, alternative to the original vorticity equation approach, is used. Here,
we detail the derivation of singular layer equation by vorticity equation approach. These
derivation can tell analytical techniques to separate the compressional Alfvén wave from low
frequency interchange mode and to minimize field line bending effects due to shear Alfvén
mode. The singular equation will be used to derive stability criterion for interchange and
peeling modes.

In order to investigate the modes which localize around a particular rational (or singular)
magnetic surface V0, we specialize the Hamada coordinates to the neighborhood of mode
rational surface V0 and introduce the localized Hamada coordinates x, u, θ as usual, where
x = V − V0 and u = mθ − nζ. In this coordinate system the parallel derivative becomes
B · ∇ = χ�(∂/∂ζ) + (Λx/Ξ)(∂/∂u), where Λ = ψ�χ�� − χ�ψ�� and Ξ = ψ�/m = χ�/n.

Using the coordinates (x, u, θ), we find that, in an axisymmetric torus, equilibrium scalars
are independent of u, and therefore perturbations can be assumed to vary as exp{ikuu} with
ku = 2πn/χ�. As in Refs. Johnson & Greene (1967) and Glasser et al. (1975), ξ and δB are
projected in three directions as follows:

ξ = ξ
∇V

|∇V|2 + μ
B × ∇V

B2 + ν
B
B2 ,

δB = b
∇V

|∇V|2 + v
B × ∇V

B2 + τ
B
B2 .

We consider only singular modes whose wavelength across the magnetic surface λ⊥ is much
smaller than that on the surface and perpendicular to magnetic field line λ∧. This leads us to
choose following ordering scheme as in Ref. Glasser et al. (1975):

x ∼ �,
∂

∂V
∼ �−1,

∂

∂u
∼ ∂

∂θ
∼ 1, (35)

where � � 1, being a small parameter. Furthermore, we consider only the low-frequency
regime

|ω/ωsi| � 1. (36)

where ωsi is parallel ion acoustic frequency.

Since the modes vary on a slow time scale, they are decoupled from compressional Alfvén
wave. It can be verified a posteriori that we can make following ordering assumptions:

ξ = �ξ(1) + · · · , μ = μ(0) + · · · , δP(2) = �2δP(2) + · · · ,

b = �2b(2) + · · · , v = �v(1) + · · · , τ = �τ(1) + · · · ,

where δP(2) = −ΓP∇ · ξ. These ordering assumptions are the same as those in Ref.
Glasser et al. (1975), except that we use δP(2) as unknown to replace ν. With these ordering
assumptions we can proceed to analyze the basic set of linearized MHD equations. As usual,
perturbed quantities are separated into constant and oscillatory parts along the field lines:
ξ = ξ̄ + ξ̃, where ξ̄ = �ξ� ≡

∮
ξ dl/B/

∮
dl/B, l is arc length of magnetic field line, and

ξ̃ = ξ − �ξ�.
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The condition that δB be divergence free, as required by Eq. (11), yields

∂b(2)

∂x
+

1
Ξ

∂

∂u
v(1) +

∂v(1)

∂θ

B × ∇V · ∇θ

B2 + v(1)∇ · B × ∇V
B2 + χ� ∂

∂θ

τ(1)

B2 = 0.

It can be reduced to

∂b(2)

∂x
+

1
Ξ

∂

∂u
v(1) +

J�

P�
∂v(1)

∂θ
− χ�

P�
∂σv(1)

∂θ
+ χ� ∂

∂θ

τ(1)

B2 = 0. (37)

After surface average it gives

∂b̄(2)

∂x
+

1
Ξ

∂v̄(1)

∂u
= 0. (38)

The two significant orders of induction equation, Eq. (11), in the ∇V–direction are

0 = χ� ∂ξ(1)

∂θ
, (39)

b(2) = χ� ∂ξ(2)

∂θ
+

Λx
Ξ

∂ξ(1)

∂u
. (40)

The component of Eq. (11) in the ∇u–direction, in lowest order, yields

χ� ∂μ(0)

∂θ
= 0. (41)

To satisfy the component of Eq. (11) along the magnetic field line, one must set

(∇ · ξ⊥)
(0) + 2κ · ξ(0) =

∂ξ(1)

∂x
+

1
Ξ

∂μ(0)

∂u
= 0. (42)

where Eq. (41) and ∇ · (B × ∇V/B2) = 2B × κ · ∇V/B2 have been used, and κ = b · ∇b is
magnetic field line curvature.

Next, we turn to momentum equation (14). The two components perpendicular to B of the
momentum equation (14) both lead, in lowest order, to

τ(1) − P�ξ(1) = 0. (43)

This is consistent to Eq. (42). Since both components yield the same information, we can
directly work on the vorticity equation Eq. (34) and obtain

χ� ∂

∂θ

(
|∇V|2

B2
∂v(1)

∂x

)
+ χ� ∂σ

∂θ

∂ξ(1)

∂x
= 0, (44)

−ω2 Ni Mi|∇V|2
B2

∂μ(0)

∂x

= −χ� ∂

∂θ

(
|∇V|2

B2
∂v(2)

∂x
− v

B
B2 · ∇ × B × ∇V

B2 − τ
B
B2 · ∇ × B

B2 +
J�

χ� τ(1)

)

−v(1)
(

J�

P� −
χ�

P� σ

)
∂σ

∂θ
− τ(1) χ�

B2
∂σ

∂θ
− Λx

|∇V|2
ΞB2

∂

∂u
∂v(1)

∂x
+

P�

ΞB2
∂τ(1)

∂u

+P� ∇V · ∇(P + B2)

ΞB2|∇V|2
∂ξ(1)

∂u
− χ� ∂σ

∂θ
Θ

∂ξ(1)

∂u
+

χ�

P�
∂σ

∂θ

∂

∂x

(
δP(2) − P�ξ(2)

)
. (45)
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We will derive the singular layer equation by averaging this equation. Therefore, it is needed
to express unknowns in this equation in terms of ξ(1).

It is trivial to get μ(0) from Eqs. (41) and (42), and τ(1) from Eq. (43). The rest can be obtained
as follows. From Eqs. (39) and (40) one can find that b̄(2) = (Λx/Ξ)(∂ξ(1)/∂u). With b̄(2)

obtained one can determine v̄(1) from Eq. (38):

v̄(1) = −Λ
∂

∂x
(xξ(1)). (46)

Using Eq. (46) to determine integration constant, Eq. (44) can be solved, yielding that

∂v(1)

∂x
= −

(
B2σ

|∇V|2 −
〈

B2σ/|∇V|2
〉

�B2/|∇V|2�
B2

|∇V|2

)
∂ξ(1)

∂x
− Λ

B2/|∇V|2
�B2/|∇V|2�

∂2

∂x2 (xξ(1)).

From Eqs. (40) and (37) one obtains

−χ� ∂2ξ(2)

∂θ∂x
=

1
Ξ

∂ṽ(1)

∂u
+

J�

P�
∂v(1)

∂θ
− χ�

P�
∂σv(1)

∂θ
+ χ� ∂

∂θ

τ(1)

B2 .

We need also to solve the equation of parallel motion, Eq. (33). Taking into consideration of
low frequency assumption in Eq. (36) and the result in Eq. (42), the equation of parallel motion
can be reduced to

χ�2 ∂

∂θ

(
1

B2
∂

∂θ
δP(2)

)
= i

ρmω2

kuΓP
B × ∇V

B2 · κ
∂ξ(1)

∂x
. (47)

Noting that B × ∇V · κ/B2 = χ�(∂σ/∂θ), equation (47) can be solved to yield

χ� ∂

∂θ
δP(2) = i

ρmω2

kuΓP

(
B2σ −

〈
B2σ

〉

�B2� B2

)
∂ξ(1)

∂x
.

Inserting these results into Eq. (45) and averaging over l, one obtains the singular layer
equation

∂

∂x

(
x2 − Mω2

) ∂ξ(1)

∂x
+

(
1
4
+ DI

)
ξ(1) = 0, (48)

where the total mass parameter M = Mc + Mt,

DI ≡ E + F + H − 1
4

,

E ≡
〈

B2/|∇V|2
〉

Λ2

(
J�ψ�� − I�χ�� + Λ

〈
σB2〉

�B2�

)
,

F ≡
〈

B2/|∇V|2
〉

Λ2

(〈
σ2B2

|∇V|2
〉
−

〈
σB2/|∇V|2

〉2

�B2/|∇V|2� + P�2
〈

1
B2

〉)
,

11Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement



10 Will-be-set-by-IN-TECH

The condition that δB be divergence free, as required by Eq. (11), yields

∂b(2)

∂x
+

1
Ξ

∂

∂u
v(1) +

∂v(1)

∂θ

B × ∇V · ∇θ

B2 + v(1)∇ · B × ∇V
B2 + χ� ∂

∂θ

τ(1)

B2 = 0.

It can be reduced to

∂b(2)

∂x
+

1
Ξ

∂

∂u
v(1) +

J�

P�
∂v(1)

∂θ
− χ�

P�
∂σv(1)

∂θ
+ χ� ∂

∂θ

τ(1)

B2 = 0. (37)

After surface average it gives

∂b̄(2)

∂x
+

1
Ξ

∂v̄(1)

∂u
= 0. (38)

The two significant orders of induction equation, Eq. (11), in the ∇V–direction are

0 = χ� ∂ξ(1)

∂θ
, (39)

b(2) = χ� ∂ξ(2)

∂θ
+

Λx
Ξ

∂ξ(1)

∂u
. (40)

The component of Eq. (11) in the ∇u–direction, in lowest order, yields

χ� ∂μ(0)

∂θ
= 0. (41)

To satisfy the component of Eq. (11) along the magnetic field line, one must set

(∇ · ξ⊥)
(0) + 2κ · ξ(0) =

∂ξ(1)

∂x
+

1
Ξ

∂μ(0)

∂u
= 0. (42)

where Eq. (41) and ∇ · (B × ∇V/B2) = 2B × κ · ∇V/B2 have been used, and κ = b · ∇b is
magnetic field line curvature.

Next, we turn to momentum equation (14). The two components perpendicular to B of the
momentum equation (14) both lead, in lowest order, to

τ(1) − P�ξ(1) = 0. (43)

This is consistent to Eq. (42). Since both components yield the same information, we can
directly work on the vorticity equation Eq. (34) and obtain

χ� ∂

∂θ

(
|∇V|2

B2
∂v(1)

∂x

)
+ χ� ∂σ

∂θ

∂ξ(1)

∂x
= 0, (44)

−ω2 Ni Mi|∇V|2
B2

∂μ(0)

∂x

= −χ� ∂

∂θ

(
|∇V|2

B2
∂v(2)

∂x
− v

B
B2 · ∇ × B × ∇V

B2 − τ
B
B2 · ∇ × B

B2 +
J�

χ� τ(1)

)

−v(1)
(

J�

P� −
χ�

P� σ

)
∂σ

∂θ
− τ(1) χ�

B2
∂σ

∂θ
− Λx

|∇V|2
ΞB2

∂

∂u
∂v(1)

∂x
+

P�

ΞB2
∂τ(1)

∂u

+P� ∇V · ∇(P + B2)

ΞB2|∇V|2
∂ξ(1)

∂u
− χ� ∂σ

∂θ
Θ

∂ξ(1)

∂u
+

χ�

P�
∂σ

∂θ

∂

∂x

(
δP(2) − P�ξ(2)

)
. (45)
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We will derive the singular layer equation by averaging this equation. Therefore, it is needed
to express unknowns in this equation in terms of ξ(1).

It is trivial to get μ(0) from Eqs. (41) and (42), and τ(1) from Eq. (43). The rest can be obtained
as follows. From Eqs. (39) and (40) one can find that b̄(2) = (Λx/Ξ)(∂ξ(1)/∂u). With b̄(2)

obtained one can determine v̄(1) from Eq. (38):

v̄(1) = −Λ
∂

∂x
(xξ(1)). (46)

Using Eq. (46) to determine integration constant, Eq. (44) can be solved, yielding that

∂v(1)

∂x
= −

(
B2σ

|∇V|2 −
〈

B2σ/|∇V|2
〉

�B2/|∇V|2�
B2

|∇V|2

)
∂ξ(1)

∂x
− Λ

B2/|∇V|2
�B2/|∇V|2�

∂2

∂x2 (xξ(1)).

From Eqs. (40) and (37) one obtains

−χ� ∂2ξ(2)

∂θ∂x
=

1
Ξ

∂ṽ(1)

∂u
+

J�

P�
∂v(1)

∂θ
− χ�

P�
∂σv(1)

∂θ
+ χ� ∂

∂θ

τ(1)

B2 .

We need also to solve the equation of parallel motion, Eq. (33). Taking into consideration of
low frequency assumption in Eq. (36) and the result in Eq. (42), the equation of parallel motion
can be reduced to

χ�2 ∂

∂θ

(
1

B2
∂

∂θ
δP(2)

)
= i

ρmω2

kuΓP
B × ∇V

B2 · κ
∂ξ(1)

∂x
. (47)

Noting that B × ∇V · κ/B2 = χ�(∂σ/∂θ), equation (47) can be solved to yield

χ� ∂

∂θ
δP(2) = i

ρmω2

kuΓP

(
B2σ −

〈
B2σ

〉

�B2� B2

)
∂ξ(1)

∂x
.

Inserting these results into Eq. (45) and averaging over l, one obtains the singular layer
equation

∂

∂x

(
x2 − Mω2

) ∂ξ(1)

∂x
+

(
1
4
+ DI

)
ξ(1) = 0, (48)

where the total mass parameter M = Mc + Mt,

DI ≡ E + F + H − 1
4

,

E ≡
〈

B2/|∇V|2
〉

Λ2

(
J�ψ�� − I�χ�� + Λ

〈
σB2〉

�B2�

)
,

F ≡
〈

B2/|∇V|2
〉

Λ2

(〈
σ2B2

|∇V|2
〉
−

〈
σB2/|∇V|2

〉2

�B2/|∇V|2� + P�2
〈

1
B2

〉)
,
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H ≡
〈

B2/|∇V|2
〉

Λ

(〈
σB2/|∇V|2

〉

�B2/|∇V|2� −
〈
σB2〉

�B2�

)
,

Mc ≡ Ni Mi

k2
uΛ2

〈
B2

|∇V|2
〉〈 |∇V|2

B2

〉
,

Mt ≡
Ni Mi

k2
uΛ2P�2

〈
B2

|∇V|2
〉(〈

σ2B2
〉
−

〈
σB2〉2

�B2�

)
.

Here, the mass factor Mc results from perpendicular motion and Mt from parallel motion due
to toroidal coupling. Mt is often referred to as apparent mass. In the kinetic description the
apparent mass is enhanced by the so-called small parallel ion speed effect. In the large aspect
ratio configurations this enhancement factor is of order

√
R/a, where R and a are respectively

major and minor radii Mikhailovsky (1974) Zheng & Tessarotto (1994b).

From Eq. (48) one can derive the Mercier criterion, i.e., the stability criterion for localized
interchange modes in toroidal geometry. In the marginal stability ω2 = 0, Eq. (48) becomes
the Euler differential equation. Its solution is

ξ = ξ0x−
1
2 ±

√
−DI . (49)

The system stability can be determined by Newcomb’s theorem 5 Newcomb (1960): system is
unstable, if and only if the solution of Eq. (48) vanishes two or more points. From the solution
in Eq. (49) one can see that if −DI < 0 ξ becomes oscillated. Therefore, interchange mode
stability criterion is simply −DI > 0.

Interchange modes are internal modes. When internal modes are stable, it is still possible to
develop unstable external modes. For external modes one needs to consider the matching
condition between plasma and vacuum solutions. As discussed in conventional MHD books,
these matching conditions are: (1) the tangential magnetic perturbation (δBt) should be
continuous; and (2) total magnetic and thermal force (B · δB + δP) should balance across
plasma-vacuum interface in the case without plasma surface current. It can be proved that for
localized modes the vacuum contribution is of order �2 and therefore can be neglected Lortz
(1975). Consequently, the boundary condition becomes that total magnetic and thermal forces
on the plasma side of the plasma-vacuum interface should vanish. This gives the necessary
and sufficient stability condition for peeling modes

[
x2

2

(
ξ∗

dξ

dx
+ ξ

dξ∗

dx

)
+

(
Δ +

1
2

)
x|ξ|2

]

x=b
> 0, (50)

where b is the coordinate of plasma-vacuum interface, relative to the rational surface, and

Δ =
1
2
+ S−1

〈
B2σ

|∇V|2
〉

, S = χ�ψ�� − ψ�χ��.

Note that the stability condition Eq. (50) can be alternatively obtained by the approach of
minimization of plasma energy Lortz (1975) Wesson (1978).

One can derive the peeling mode stability criterion by inserting Eq. (49) into Eq. (50) Wesson
(1978). In the derivation of peeling stability criterion we assume system to be Mercier stable,
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i.e., −DI > 0. For the case with Δ < 0 we assume that rational surface resides inside plasma
region, so that b > 0. In this case the stability condition becomes

√
−DI + Δ > 0. (51)

For the case with Δ > 0 we assume that rational surface resides outside plasma region, so that
b < 0. In this case the stability condition becomes

√
−DI − Δ > 0. (52)

Note that −DI ≡ Δ2 − Λp, where Λp = S−2 〈J2|∇V|2 + I�ψ� − J�χ��〉 〈B2|∇V|−2〉. Therefore,
both cases, Eqs. (51) and (52), give rise to the same stability criterion for peeling mode: ΛP < 0.
This is more stringent than the Mercier criterion.

4.3 Ballooning modes

In this section we review high-n ballooning mode theory. The stability criterion for
interchange modes takes into account only average magnetic well effect. As it is well-known
tokamak plasmas have good and bad curvature regions, referring to whether pressure
gradient and magnetic field line curvature point in same direction or not. Usually bad
curvature region lies on low field side of plasma torus; good curvature region on high field
side. Although tokamaks are usually designed to have average good curvature, i.e., Mercier
stable, the ballooning modes can still develop as soon as the release of plasma thermal energy
on bad curvature region is sufficient to counter the magnetic energy resulting from field line
bending Connor et al. (1979) Chance et al. (1979). In difference from interchange modes
ballooning modes have high toroidal mode number n, while interchange modes can be either
low and high n. Also, ballooning modes allow normal and geodesic wave lengths to be of
same order λ⊥ ∼ λ∧, but both of them are much smaller than parallel wave length λ�.

We first derive ballooning mode equation. In high n limit, both components of perpendicular
momentum equation, Eqs. (31) and (32), give the same result

B · δB + δP = −(B2 + ΓP)∇ · ξ + B · ∇
(

B · ξ

B2

)
− 2κ · ξ = 0. (53)

In lowest order, one has ∇ · ξ⊥ ∼ ξ/R. This allows to introduce the so-called stream function
δϕ Chance et al. (1979): ξ⊥ = B × ∇δϕ/B2. Equation (34) then becomes,

B · ∇ 1
B2 ∇ ·

(
B2∇⊥

B · ∇δϕ

B2

)
+∇ ·

(
ρω2 ∇⊥δϕ

B2

)

+P�
ψ∇ × B

B2 · ∇
(

B × ∇ψ

B2 · ∇δϕ

)
+ ΓP∇ × B

B2 · ∇∇ · ξ = 0. (54)

Equation (33), meanwhile, can be reduced to

ΓPB · ∇
(

1
B2 B · ∇∇ · ξ

)
+ ρmω2∇ · ξ = ρmω2 2B × κ

B2 · ∇δϕ, (55)

where Eq. (53) has been used.

The key formalism to ballooning mode theory is the so-called ballooning representation Lee
& Van Dam (1977) Connor et al. (1979). Here, we outline its physics basis and derivation,
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H ≡
〈
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〉
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(〈
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〉

�B2/|∇V|2� −
〈
σB2〉

�B2�

)
,

Mc ≡ Ni Mi

k2
uΛ2

〈
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|∇V|2
〉〈 |∇V|2

B2

〉
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Mt ≡
Ni Mi
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uΛ2P�2

〈
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〉(〈

σ2B2
〉
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〈
σB2〉2

�B2�

)
.

Here, the mass factor Mc results from perpendicular motion and Mt from parallel motion due
to toroidal coupling. Mt is often referred to as apparent mass. In the kinetic description the
apparent mass is enhanced by the so-called small parallel ion speed effect. In the large aspect
ratio configurations this enhancement factor is of order

√
R/a, where R and a are respectively

major and minor radii Mikhailovsky (1974) Zheng & Tessarotto (1994b).

From Eq. (48) one can derive the Mercier criterion, i.e., the stability criterion for localized
interchange modes in toroidal geometry. In the marginal stability ω2 = 0, Eq. (48) becomes
the Euler differential equation. Its solution is

ξ = ξ0x−
1
2 ±

√
−DI . (49)

The system stability can be determined by Newcomb’s theorem 5 Newcomb (1960): system is
unstable, if and only if the solution of Eq. (48) vanishes two or more points. From the solution
in Eq. (49) one can see that if −DI < 0 ξ becomes oscillated. Therefore, interchange mode
stability criterion is simply −DI > 0.

Interchange modes are internal modes. When internal modes are stable, it is still possible to
develop unstable external modes. For external modes one needs to consider the matching
condition between plasma and vacuum solutions. As discussed in conventional MHD books,
these matching conditions are: (1) the tangential magnetic perturbation (δBt) should be
continuous; and (2) total magnetic and thermal force (B · δB + δP) should balance across
plasma-vacuum interface in the case without plasma surface current. It can be proved that for
localized modes the vacuum contribution is of order �2 and therefore can be neglected Lortz
(1975). Consequently, the boundary condition becomes that total magnetic and thermal forces
on the plasma side of the plasma-vacuum interface should vanish. This gives the necessary
and sufficient stability condition for peeling modes

[
x2

2

(
ξ∗

dξ

dx
+ ξ

dξ∗

dx

)
+

(
Δ +

1
2

)
x|ξ|2

]

x=b
> 0, (50)

where b is the coordinate of plasma-vacuum interface, relative to the rational surface, and

Δ =
1
2
+ S−1

〈
B2σ

|∇V|2
〉

, S = χ�ψ�� − ψ�χ��.

Note that the stability condition Eq. (50) can be alternatively obtained by the approach of
minimization of plasma energy Lortz (1975) Wesson (1978).

One can derive the peeling mode stability criterion by inserting Eq. (49) into Eq. (50) Wesson
(1978). In the derivation of peeling stability criterion we assume system to be Mercier stable,
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i.e., −DI > 0. For the case with Δ < 0 we assume that rational surface resides inside plasma
region, so that b > 0. In this case the stability condition becomes

√
−DI + Δ > 0. (51)

For the case with Δ > 0 we assume that rational surface resides outside plasma region, so that
b < 0. In this case the stability condition becomes

√
−DI − Δ > 0. (52)

Note that −DI ≡ Δ2 − Λp, where Λp = S−2 〈J2|∇V|2 + I�ψ� − J�χ��〉 〈B2|∇V|−2〉. Therefore,
both cases, Eqs. (51) and (52), give rise to the same stability criterion for peeling mode: ΛP < 0.
This is more stringent than the Mercier criterion.

4.3 Ballooning modes

In this section we review high-n ballooning mode theory. The stability criterion for
interchange modes takes into account only average magnetic well effect. As it is well-known
tokamak plasmas have good and bad curvature regions, referring to whether pressure
gradient and magnetic field line curvature point in same direction or not. Usually bad
curvature region lies on low field side of plasma torus; good curvature region on high field
side. Although tokamaks are usually designed to have average good curvature, i.e., Mercier
stable, the ballooning modes can still develop as soon as the release of plasma thermal energy
on bad curvature region is sufficient to counter the magnetic energy resulting from field line
bending Connor et al. (1979) Chance et al. (1979). In difference from interchange modes
ballooning modes have high toroidal mode number n, while interchange modes can be either
low and high n. Also, ballooning modes allow normal and geodesic wave lengths to be of
same order λ⊥ ∼ λ∧, but both of them are much smaller than parallel wave length λ�.

We first derive ballooning mode equation. In high n limit, both components of perpendicular
momentum equation, Eqs. (31) and (32), give the same result

B · δB + δP = −(B2 + ΓP)∇ · ξ + B · ∇
(

B · ξ

B2

)
− 2κ · ξ = 0. (53)

In lowest order, one has ∇ · ξ⊥ ∼ ξ/R. This allows to introduce the so-called stream function
δϕ Chance et al. (1979): ξ⊥ = B × ∇δϕ/B2. Equation (34) then becomes,

B · ∇ 1
B2 ∇ ·

(
B2∇⊥

B · ∇δϕ

B2

)
+∇ ·

(
ρω2 ∇⊥δϕ

B2

)

+P�
ψ∇ × B

B2 · ∇
(

B × ∇ψ

B2 · ∇δϕ

)
+ ΓP∇ × B

B2 · ∇∇ · ξ = 0. (54)

Equation (33), meanwhile, can be reduced to

ΓPB · ∇
(

1
B2 B · ∇∇ · ξ

)
+ ρmω2∇ · ξ = ρmω2 2B × κ

B2 · ∇δϕ, (55)

where Eq. (53) has been used.

The key formalism to ballooning mode theory is the so-called ballooning representation Lee
& Van Dam (1977) Connor et al. (1979). Here, we outline its physics basis and derivation,
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especially to explain the equivalence of two kinds of representations in Refs. Lee & Van Dam
(1977) and Connor et al. (1979). In tokamak geometry one can introduce the following Fourier
decomposition:

δϕ(nq, θ, ζ) =
+∞

∑
m=−∞

δϕm(nq) exp{−inζ + mθ}. (56)

For simply to describe ballooning mode representation we have used nq as flux surface label.
This is allowed for systems with finite magnetic shear, in which the ballooning representation
applies. For high n modes the distance of mode rational surfaces is of order 1/n, which is
much smaller than equilibrium scale length. Therefore, in lowest order we can neglect the
spatial variance of equilibrium quantities and require mode Fourier harmonics to have the
so-called ballooning invariance:

δϕm(nq) = δϕ(nq − m), (57)

so that the Fourier decomposistion in Eq. (57) can be expressed as

δϕ(nq, θ, ζ) =
+∞

∑
m=−∞

δϕ(nq − m) exp{−inζ + mθ}. (58)

We can further introduce the Laplace tranform

δϕ(nq) =
1

2π

∫ +∞

−∞
δϕ(η) exp{inqη}dη. (59)

Using this transform Eq. (58) can be written as

δϕ(nq, θ, φ) =
1

2π
exp{−inζ}

∫ +∞

−∞
δϕ(η)∑

m
exp{im(θ − η)}dη. (60)

Noting that

1
2π

+∞

∑
m=−∞

exp{im(θ − η)} =
+∞

∑
j=−∞

δ(η − θ − j2π),

Equation (60) is transformed to

δϕ(nq, θ, ζ) =
+∞

∑
j=−∞

δϕ(θ + j2π) exp{−in(ζ − q(θ + j2π))}. (61)

This indicates that we can represent high n modes at a reference surface as

δϕ(nq, θ, ζ) = δϕ(θ) exp{−inβ} (62)

without concern of periodicity requirement. Here, β ≡ ζ − qθ. The periodic eigenfunction
can always be formed through the summation in Eq. (61). This representation characterizes
the most important feature of ballooning modes in a plasma torus that perpendicular wave
number is much larger than parallel one: k⊥ � k�. This reduction shows the equivalence of
two kinds of representations in Eqs. (58) and (61) Lee & Van Dam (1977) Connor et al. (1979).
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Uniqueness and inversion of ballooning mode representation were proved in Ref. Hazeltine
et al. (1981).

With ballooning mode representation described, we can proceed to derive ballooning mode
equation. It is convenient to use the so-called Celbsch coordinates (ψ, β, θ) to construct
ballooning mode equations. In this coordinates ∇ → −in∇β and B · ∇ = χ�(∂/∂θ). Applying
Eq. (62) to Eqs. (54) and (55) and employ the high n ordering, one can obtain following coupled
ballooning mode equations

χ� ∂

∂θ

(
|∇β|2χ� ∂

∂θ
δϕ

)
+ P�∇ × B

B2 · ∇βδϕ + ΓP∇ × B
B2 · ∇βδΞ

+
ω2

ω2
A
|∇β|2δϕ = 0, (63)

ΓPχ� ∂

∂θ

(
1

B2 χ� ∂

∂θ
δΞ

)
+ ρmω2δΞ = ρmω2 2B × κ

B2 · ∇βδϕ, (64)

where δΞ = i∇ · ξ/n. These two equations are coupled second order differential equations.
The derivatives here are along a reference magnetic field line labeled by ψ and β. The
boundary conditions are δϕ, δΞ → 0 at θ → ±∞ to guarantee the convergence of the Laplace
transform in Eq. (59).

In studying ballooning stability at finite beta equilibrium, the so called
steep-pressure-gradient equilibrium model is often used Connor et al. (1978) Greene &
Chance (1981). In this model, finite beta modification is only taken into account for magnetic
shear, while others remain to their low beta values. This model has been proved to be
successful for ballooning mode studies. Here, we outline the formulation in Ref. Berk et al.
(1983). Noting that β = ζ − qθ, one can see that the magnetic shear effect resides at the
quantity ∇β in the ballooning mode equations (63) and (64). From Eq. (22) one can prove that

∇β = Λs∇χ +
B × ∇χ

|∇χ|2 , (65)

where Λs is the so-called shear parameter and can be obtained by applying operator
B × ∇χ · ∇ × · · · on Eq. (65),

χ� dΛs

dθ
= −B × ∇χ · ∇ × (B × ∇χ)

|∇χ|4 . (66)

We need to determine finite beta modification to Λ. We assume that χ = χ0 + χ1 and β =
β0 + β1, where χ0 and β0 are low beta values and χ1 and β1 represent finite beta modifications.
The linearized Ampere’s law can be written as follows:

∇ × (∇χ0 × ∇β1 +∇χ1 × ∇β0) = J =
∂P
∂χ

(
2λ∇χ0 × ∇β0 +

B0 × ∇χ0

B2

)
. (67)

Noting that in the curl operation on left hand side only the gradient component in ∇χ
direction needs to be taken, i.e., ∇ × → ∇χ0∂/∂χ×, equation (67) can be solved

2Pλ∇β0 + B0P +∇Q = ∇χ0 × ∇β1 +∇χ1 × ∇β0, (68)
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where δΞ = i∇ · ξ/n. These two equations are coupled second order differential equations.
The derivatives here are along a reference magnetic field line labeled by ψ and β. The
boundary conditions are δϕ, δΞ → 0 at θ → ±∞ to guarantee the convergence of the Laplace
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In studying ballooning stability at finite beta equilibrium, the so called
steep-pressure-gradient equilibrium model is often used Connor et al. (1978) Greene &
Chance (1981). In this model, finite beta modification is only taken into account for magnetic
shear, while others remain to their low beta values. This model has been proved to be
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(1983). Noting that β = ζ − qθ, one can see that the magnetic shear effect resides at the
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B × ∇χ · ∇ × · · · on Eq. (65),
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dθ
= −B × ∇χ · ∇ × (B × ∇χ)

|∇χ|4 . (66)

We need to determine finite beta modification to Λ. We assume that χ = χ0 + χ1 and β =
β0 + β1, where χ0 and β0 are low beta values and χ1 and β1 represent finite beta modifications.
The linearized Ampere’s law can be written as follows:

∇ × (∇χ0 × ∇β1 +∇χ1 × ∇β0) = J =
∂P
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(
2λ∇χ0 × ∇β0 +
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)
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Noting that in the curl operation on left hand side only the gradient component in ∇χ
direction needs to be taken, i.e., ∇ × → ∇χ0∂/∂χ×, equation (67) can be solved
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where ∇Q is integration factor. Taking the divergence of Eq. (68) for only ∂{P, Q}/∂χ large
gives

2λ
∂P
∂χ

(∇χ0 · ∇β0) +
∂2Q
∂χ2 |∇χ0|2 = 0,

and therefore

∂Q/∂χ = −2λP∇χ · ∇β/|∇χ|2. (69)

Now taking the dot product of Eq. (68) with ∇β0 gives

2Pλ|∇β0|2 + (∇χ0 · ∇β0)
∂Q
∂χ

= −χ� ∂β1
∂θ

,

We can remove subscript 0 afterward for brevity. Now substituting Eq. (69) for ∂Q/∂χ and
noting that ∂β1/∂χ ≡ Λs1, one finds that

χ� ∂Λs1
∂θ

= −2λ
∂P
∂χ

B2

|∇χ|2 .

Therefore, the shear parameter can be evaluated as follows

χ� dΛs

dθ
= −B × ∇χ · ∇ × (B × ∇χ)

|∇χ|4 − 2λ
∂P
∂χ

B2

|∇χ|2 . (70)

The second term here gives rise to the finite beta modification to shear parameter Λs in steep
pressure gradient model. The rest parameters here and in ballooning equations (63) and (64)
can be evaluated with low beta values.

We now consider tokamak model equilibrium with circular cross section, low beta, and large
aspect ratio (i.e., 1/� = R/a � 1). The magnetic field in this model can be expressed as
B = Bφ(r)/(1 + � cos θ)eφ + Bθ(r)eθ . The shear parameter can be expressed as Λs = s(θ −
θk)− α sin θ. Here, α = −(2Rq2/B2)(dP/dr), s = d ln q/d ln r, and θk is integration constant.
Therefore, ballooning equations (63) and (64) can be reduced to

d
dθ

(
(1 + Λ2

s )
dδϕ

dθ

)
+ α(cos θ + Λs sin θ)δϕ +

2ΓRrqP
B

(cos θ + Λs sin θ)δΞ

+
ω2

ω2
A
(1 + Λ2

s )δϕ = 0, (71)

ΓP
R2q2

∂2δΞ
∂θ2 + ρmω2δΞ = −2ρmω2

R2Bθ
(cos θ + Λs sin θ)δϕ. (72)

To further analyze this set of equations it is interesting to consider two limits: the low
frequency (ω � ωsi) and intermediate frequency limit (ωsi � ω � ωse). In the low frequency
limit the second term on left hand side of Eq. (72) can be neglected and inertia term is only
important in the outer region θ → ∞. Equation (72) can be solved to yield

δΞ =
2ρmq2ω2

ΓPBθ
sθ sin θδϕ. (73)
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Here, it has been considered that in sound wave scale the slow variable sθ can be regarded as
constant. Inserting Eq. (73) into Eq. (71) yields that

d
dθ

(
(1 + Λ2

s )
dδϕ

dθ

)
+ α(cos θ + Λs sin θ)δϕ +

ω2

ω2
A
(1 + 2q2)s2θ2δϕ = 0. (74)

Here, we see that the sound wave coupling results in the so-called apparent mass effect: i.e.,
the inertia term is enhanced by a factor (1 + 2q2) Greene & Johnson (1962). In the kinetic
description the 2q2 term is further boosted by the so-called small particle speed effect to
become of order 2q2/

√
r/R for large aspect ratio case Mikhailovsky (1974) Zheng & Tessarotto

(1994b). In the marginal stability ω2 = 0 the ballooning stability can be determined by
Newcomb’s theorem 5 Newcomb (1960): system is unstable, if and only if the solution of
Eq. (48) vanishes two or more points. Refs. Connor et al. (1978) and Lortz & Nührenberg
(1978). have obtained the stability boundaries for ballooning modes.

In the intermediate frequency regime the first term in Eq. (72) can be neglected and therefore
one obtains

δΞ = − 2
R2Bθ

(cos θ + Λs sin θ)δϕ. (75)

Inserting Eq. (75) into Eq. (71) yields Tang et al. (1980)

d
dθ

(
(1 + Λ2

s )
dδϕ

dθ

)
+ α(cos θ + Λs sin θ)δϕ − 4Γq2P

B2 (cos θ + Λs sin θ)2δϕ

+
ω2

ω2
A
(1 + Λ2

s )δϕ = 0. (76)

The sound wave coupling term (3rd term) results in the so-called second harmonic TAE in the
circular cross section case Zheng et al. (1999).

4.4 Toroidal Alfvén eigen modes

In this subsection we review TAE theory. In the last two subsections we see that interchange
and ballooning modes are characterized by having only single dominant or resonant mode at
resonance surfaces. In particular their resonance surfaces locates at mode rational surface
where m − nq = 0. TAEs are different from them. TAEs involve two mode coupling.
In particular, the first TAEs are centered at the surface where q = (m0 + 1/2)/n. Two
neighboring Fourier modes (m0 and m0 + 1) propagate roughly with same speed vA/2Rq
but in opposite directions. They form a standing wave. The toroidal geometry can induce
the first frequency gap so that the standing wave becomes an eigen mode, i.e., TAEs Cheng
et al. (1985) Rosenbluth et al. (1992). In the second TAE case, although they have same mode
resonance surfaces as interchange and ballooning modes, m0 ± 1 mode coupling is involved
to form standing 2nd TAEs. The frequency gap for second TAEs in circular cross section case
is due to plasma compressibility effect Zheng & Chen (1998).

To explain two mode coupling picture, we consider tokamak model equilibrium with circular
cross section, low beta, and large aspect ratio (i.e., 1/� = R/a � 1). There is a review paper
on TAEs Vlad et al. (1999). Here, we describe the local dispersion relation for even and odd
modes and explain the 2nd TAEs together with the 1st TAEs. The magnetic field in this model
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become of order 2q2/

√
r/R for large aspect ratio case Mikhailovsky (1974) Zheng & Tessarotto

(1994b). In the marginal stability ω2 = 0 the ballooning stability can be determined by
Newcomb’s theorem 5 Newcomb (1960): system is unstable, if and only if the solution of
Eq. (48) vanishes two or more points. Refs. Connor et al. (1978) and Lortz & Nührenberg
(1978). have obtained the stability boundaries for ballooning modes.

In the intermediate frequency regime the first term in Eq. (72) can be neglected and therefore
one obtains

δΞ = − 2
R2Bθ

(cos θ + Λs sin θ)δϕ. (75)

Inserting Eq. (75) into Eq. (71) yields Tang et al. (1980)

d
dθ

(
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s )
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dθ

)
+ α(cos θ + Λs sin θ)δϕ − 4Γq2P

B2 (cos θ + Λs sin θ)2δϕ

+
ω2

ω2
A
(1 + Λ2

s )δϕ = 0. (76)

The sound wave coupling term (3rd term) results in the so-called second harmonic TAE in the
circular cross section case Zheng et al. (1999).

4.4 Toroidal Alfvén eigen modes

In this subsection we review TAE theory. In the last two subsections we see that interchange
and ballooning modes are characterized by having only single dominant or resonant mode at
resonance surfaces. In particular their resonance surfaces locates at mode rational surface
where m − nq = 0. TAEs are different from them. TAEs involve two mode coupling.
In particular, the first TAEs are centered at the surface where q = (m0 + 1/2)/n. Two
neighboring Fourier modes (m0 and m0 + 1) propagate roughly with same speed vA/2Rq
but in opposite directions. They form a standing wave. The toroidal geometry can induce
the first frequency gap so that the standing wave becomes an eigen mode, i.e., TAEs Cheng
et al. (1985) Rosenbluth et al. (1992). In the second TAE case, although they have same mode
resonance surfaces as interchange and ballooning modes, m0 ± 1 mode coupling is involved
to form standing 2nd TAEs. The frequency gap for second TAEs in circular cross section case
is due to plasma compressibility effect Zheng & Chen (1998).

To explain two mode coupling picture, we consider tokamak model equilibrium with circular
cross section, low beta, and large aspect ratio (i.e., 1/� = R/a � 1). There is a review paper
on TAEs Vlad et al. (1999). Here, we describe the local dispersion relation for even and odd
modes and explain the 2nd TAEs together with the 1st TAEs. The magnetic field in this model
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can simply be expressed as B = Bφ(r)/(1 + � cos θ)eφ + Bθ(r)eθ . The general case will be
addressed in Sec. 5 with AEGIS code formalism. Since their frequency is much larger than
shear Alfvén mode frequency, the compressional Alfvén modes are decoupled. Therefore,
we can use Eqs. (54) and (55) as starting equations for TAE investigation. Noting that Alfvén
frequency is much larger than sound wave frequency, the first term in Eq. (55) can be dropped.
Adopting the Fourier decomposition in Eq. (56), the sound wave equation (55) becomes

i(∇ · ξ)m =
1

BR

�
dϕm+1

dr
− dϕm−1

dr

�
.

Using this solution for ∇ · ξ, Eq. (54) can be reduced to Zheng et al. (1999)

d
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2mq2
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αr2

2mq2
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2q2 Em+1 +
αr
2q2 Em−1 = 0, (77)

where Em = ϕm/r, v2
A = B2

0/ρm, B0 denotes magnetic field at magnetic axis, and w represents
the rest magnetic well terms.

We first examine singular layer physics. In this layer only terms contains second order
derivative in r need to be taken into consideration. From the first six terms in Eq. (77) one can
see that the 2nd TAEs (coupling of Em−1 and Em+1) have structure similarity to the 1st TAEs
(coupling of Em and Em+1). The 1st TAE coupling is due to finite value of aspect ratio; while
the 2nd TAE coupling is due to finite beta value. For brevity we focus ourselves to discuss the
1st TAE case. Denoting ω0 = ωA/2, q0 = (m + 1/2)/n, δω = ω − ω0, and δq = q − q0, the
singular layer equations describing the coupling of m and m + 1 modes becomes

∂
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Introducing even and odd modes: δφ± = δφm ± δφm+1, these two equations become
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Integrating once one obtains
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where D is 2 × 2 matrix and A± are integration constants. Integration of Eq. (78) across
singular layer (i.e., from δq− to δq+) one obtains the dispersion relation

⎛
⎝ δφ+|δq+

δq−
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−

� δq+

δq−

D22dδq
det |D|
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det |D|

⎞
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�� δq+

δq−

D12dδq
det |D|

�2

. (79)

Here, Dij are D matrix elements and two parameters Δ± ≡ δφ±|δq+

δq− /A± are determined by
the outer solutions to the left and right of singular layer. As soon as Δ± are computed from
outer regions, Eq. (79) can be used to determine the frequency. In general this frequency can
be complex.

The denominators of integrations in Eq. (79) involve det |D|. The singularity emerges at
det |D| = 0. In this case the Landau integration orbit needs to be used, as in the case for
particle-wave resonances, and continuum damping occurs Berk et al. (1992). The so-called
1st TAE frequency gap, in which eigen modes can exit without continuum damping, can be
determined by condition det |D| = 0, i.e.,

�
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1
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16

�
1 − 1

(2m + 1)2

�
. (80)

To exclude real δq solution for detD = 0, mode frequency must fall in the gap between δω±,
i.e., ω− < ω < ω+, where

δω± = ± �

2
ω0

�
1 − 1/(2m + 1)2.

One can obtain the gap width Δω = δω+ − δω− = �ω0

�
1 − 1/(2m + 1)2. The 1st TAEs are

Alfvén eigen modes with frequency inside this gap. They are marginally stable and tend to
be excited by resonances with energetic particles. Note that the gap width is proportional to
�. In cylinder limit the gap vanishes. Therefore, existence of TAEs is due to toroidal effects.
Also, we note that the dispersion relation, Eq. (79), allows two types of TAEs: even and odd
types (ϕ±), depending on the values of Δ±.

We have discussed the 1st TEA theory through coupling of neighboring modes. In similar
way one can also develop the 2nd TAE theory through coupling of m ± 1 modes Zheng &
Chen (1998). If FLR effects are taken into consideration, the Alfvén types of singularities can
be resolved, so that discrete modes can emerge in the continuum. This types of modes are
referred to as kinetic TAEs (i.e., KTAEs). Due to correction of gyrokinetic theory Zheng et al.
(2007), several missing FLR effects are recovered. Consequently, KTAE theories by far need to
be reevaluated.

19Overview of Magnetohydrodynamics Theory in Toroidal Plasma Confinement



18 Will-be-set-by-IN-TECH

can simply be expressed as B = Bφ(r)/(1 + � cos θ)eφ + Bθ(r)eθ . The general case will be
addressed in Sec. 5 with AEGIS code formalism. Since their frequency is much larger than
shear Alfvén mode frequency, the compressional Alfvén modes are decoupled. Therefore,
we can use Eqs. (54) and (55) as starting equations for TAE investigation. Noting that Alfvén
frequency is much larger than sound wave frequency, the first term in Eq. (55) can be dropped.
Adopting the Fourier decomposition in Eq. (56), the sound wave equation (55) becomes

i(∇ · ξ)m =
1

BR

�
dϕm+1

dr
− dϕm−1

dr

�
.

Using this solution for ∇ · ξ, Eq. (54) can be reduced to Zheng et al. (1999)

d
dr

�
r3

�
1
q
− n

m

�2 d
dr

Em

�
− d

dr

�
r3 R2ω2

m2v2
A

d
dr

Em

�
− �

�
r3 R2ω2

m2v2
A

d2

dr2 Em+1

�

−�

�
r3 R2ω2

m2v2
A

d2

dr2 Em−1

�
+

ΓPr3

B2m2
d2Em+2

dr2 +
ΓPr3

B2m2
d2Em−2

dr2 − wEm

− αr2

2mq2
dEm+1

dr
+

αr2

2mq2
dEm−1

dr
− αr

2q2 Em+1 +
αr
2q2 Em−1 = 0, (77)

where Em = ϕm/r, v2
A = B2

0/ρm, B0 denotes magnetic field at magnetic axis, and w represents
the rest magnetic well terms.

We first examine singular layer physics. In this layer only terms contains second order
derivative in r need to be taken into consideration. From the first six terms in Eq. (77) one can
see that the 2nd TAEs (coupling of Em−1 and Em+1) have structure similarity to the 1st TAEs
(coupling of Em and Em+1). The 1st TAE coupling is due to finite value of aspect ratio; while
the 2nd TAE coupling is due to finite beta value. For brevity we focus ourselves to discuss the
1st TAE case. Denoting ω0 = ωA/2, q0 = (m + 1/2)/n, δω = ω − ω0, and δq = q − q0, the
singular layer equations describing the coupling of m and m + 1 modes becomes

∂

∂δq

�
δω

2ω0
−

�
1 − 1

2m + 1

�
nδq

�
∂

∂δq
δφm = − �

4
∂2

∂δq2 δφm+1,

∂

∂δq

�
δω

2ω0
+

�
1 +

1
2m + 1

�
nδq

�
∂

∂δq
δφm+1 = − �

4
∂2

∂δq2 δφm.

Introducing even and odd modes: δφ± = δφm ± δφm+1, these two equations become

∂

∂δq

�
δω

2ω0
+

1
2m0 + 1

nδq
�

∂

∂δq
δφ+ − ∂

∂δq
nδq

∂

∂δq
φ− = − �

4
∂2

∂δq2 δφ+,

∂

∂δq

�
δω

2ω0
+

1
2m0 + 1

nδq
�

∂

∂δq
δφ− − ∂

∂δq
nδq

∂

∂δq
φ+ =

�

4
∂2

∂δq2 δφ−.

Integrating once one obtains

D

⎛
⎝

∂δφ+

∂δq
∂δφ−
∂δq

⎞
⎠ ≡

�
δω
2ω0

+ 1
2m0+1 nδq + �

4 −nδq
−nδq δω

2ω0
+ 1

2m0+1 nδq − �
4

�⎛
⎝

∂δφ+

∂δq
∂δφ−
∂δq

⎞
⎠ =

�
A+

A−

�
, (78)

18 Topics in Magnetohydrodynamics Overview of Magnetohydrodynamics Theory
in Toroidal Plasma Confinement 19
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To exclude real δq solution for detD = 0, mode frequency must fall in the gap between δω±,
i.e., ω− < ω < ω+, where
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One can obtain the gap width Δω = δω+ − δω− = �ω0
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Alfvén eigen modes with frequency inside this gap. They are marginally stable and tend to
be excited by resonances with energetic particles. Note that the gap width is proportional to
�. In cylinder limit the gap vanishes. Therefore, existence of TAEs is due to toroidal effects.
Also, we note that the dispersion relation, Eq. (79), allows two types of TAEs: even and odd
types (ϕ±), depending on the values of Δ±.

We have discussed the 1st TEA theory through coupling of neighboring modes. In similar
way one can also develop the 2nd TAE theory through coupling of m ± 1 modes Zheng &
Chen (1998). If FLR effects are taken into consideration, the Alfvén types of singularities can
be resolved, so that discrete modes can emerge in the continuum. This types of modes are
referred to as kinetic TAEs (i.e., KTAEs). Due to correction of gyrokinetic theory Zheng et al.
(2007), several missing FLR effects are recovered. Consequently, KTAE theories by far need to
be reevaluated.
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4.5 Kinetically driven modes: KBMs, EPMs, etc.

In this subsection we describe the kinetically driven modes (KDMs), such as KBMs, EPMs, etc.
The frequencies of these modes usually reside in continuum spectrum. Therefore, they are
generally damped without driving effects. Unlike KTAEs, for which FLR effects are taken into
account to resolve singularity, for KDMs strong kinetic effects from wave-particle-resonances
are included to overcome continuum damping. That is why they are referred to as kinetically
driven modes. Energetic particle drives to marginal stable TAEs can instantly lead unstable
TAEs, but the drives to KDMs need to accumulate sufficient energy to overcome continuum
damping for unstable KDMs to develop Tsai & Chen (1993) Zheng et al. (2000). In Secs. 4.3 and
4.4 one has seen that there are two types of modes: ballooning and TAEs. Therefore, KDMs
also have two types. Those related to ballooning modes are referred to as KBMs, while EPMs
are related to TAEs and usually driven by wave-energetic-particle resonances. We employ
ballooning representation formalism to discuss them.

We start with the ballooning mode equation in intermediate frequency regime, Eq. (76),
with energetic particle effects included. Introducing the transformation ζ = ϕp1/2, Eq. (76)
becomes

∂2ζ

∂θ2 + Ω2(1 + 2� cos θ)ζ +
α cos θ

p
ζ − (s − α cos θ)2

p2 ζ

−4Γg2

p2 +
1

p1/2

∫ dεdμB
|v�|

ωdδgh = 0, (81)

v� · ∇δgh − iωδgh = iω
(

μB + v2
�
) ∂F0h

∂ε
(κr + κθΛ)p−1/2ζ, (82)

where p = 1 + Λ2
s , g = cos θ + Λ sin θ, δgh is perturbed distribution functions for hot ions,

κr and κθ are respectively radial and poloidal components of magnetic field line curvature
κ, Ω = ω/ωA, ωd is magnetic drift frequency, v is particle speed, the subscripts ⊥ and �
represent respectively perpendicular and parallel components to the equilibrium magnetic
field line, ε = v2/2 is particle energy, μ = v2

⊥/2B is magnetic moment, and F0h is equilibrium
distribution function for hot ions. For simplicity we have neglected the finite Larmor radius
effects and only take into account the kinetic effects from energetic ions.

To study KDMs one need to investigate singular layer behavior. In ballooning representation
space, singular layer corresponds to θ → ∞ limit. Again, we exclude the 2nd TAE from
discussion (i.e., assuming Γ = 0). Equation (81) in θ → ∞ limit becomes:

∂2ζ

∂θ2 + Ω2(1 + 2� cos θ)ζ = 0. (83)

This is the well-known Mathieu equation. According to Floquet’s Theorem, its solution takes
following form

ζ(θ) = P(θ) exp{iγθ},

where P(θ + 2π) = P(θ). Since modes with longer parallel-to-B wavelengths tend to be more
unstable, we shall examine solutions corresponding to the two lowest periodicities. The first
one is related to KBMs Tsai & Chen (1993) and the second one is related to EPMs Zheng et al.
(2000).
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We first discuss KBMs. The KBM-type solution is given by

ζK = exp{iγKθ}(A0 + A2 cos θ + · · · ). (84)

Inserting Eq. (84) into Eq. (83), one obtains, noting � � 1,

γ2
K ≈ Ω2(1 + 2�2Ω2),

A2
A0

≈ 2�Ω2.

Therefore, at leading order, one has

ζK = exp{iΩ|θ|}, (85)

where �m{Ω} > 0 for causality. Note here that Eq. (85) is valid for general Ω, so that
frequency at continuum is allowed, as soon as causality condition is satisfied.

Next, we discuss TAE-type KDMs, e.g., EPMs. This type of solutions can be expressed as
Zheng et al. (2000)

ζT = exp{iγTθ}[A1 cos(θ/2) + B1 sin(θ/2) + · · · ]. (86)

Inserting Eq. (86) into Eq. (83), one obtains, for
��Ω2 − 1/4

�� ∼ O(�) and � � 1,

γT =
�
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+)(Ω
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−)
�1/2

,
B1
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�
Ω2 − Ω2

−
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+ − Ω2

�1/2

, (87)

and Ω2
+,− = 1/4 ± �Ω2. The leading order solution can, therefore, be expressed as

ζT = exp
�

i
�
(Ω2 − Ω2

+)(Ω
2 − Ω2

−)
�1/2

|θ|
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⎣cos(θ/2) +
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−
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⎦ . (88)

The causality condition is �m
��

(Ω2 − Ω2
+)(Ω

2 − Ω2
−)

�1/2
�
< 0. Equation (88) can describe

both TAEs and KDMs of TAE type (e.g., EPMs). Existence of TAE solution requires mode
frequency to fall in the gap: Ω− < Ω < Ω+, as shown by the TAE theory in configuration
space in Sec. 4.4. For KDMs mode frequency can be in the continuum, i.e., outside the gap
as soon as causality condition is satisfied. For TAEs ζT contains an O(1) back scattering
and, hence, the continuum damping is either suppressed or much reduced. On the other
hand, for KDMs ζK contains no back scattering from periodic potential in Eq. (83), and,
consequently, there is significant mount of continuum damping. Note that in principle both
types of solutions can co-exist at |Ω| ≈ 1/2 . However, the TAE solution tends to be more
unstable in this case than KDMs, since its continuum damping is much less or absent while
the instability drives are generally comparable.

With outer solutions given by Eq. (85) or Eq. (88), one can obtain the corresponding dispersion
relation by matching outer and inner solutions. For KBMs Eq. (81) can be used to construct
the following quadratic form in inner region:

2 ζ∗
dζ

dθ

����
+∞

−∞
+ δWf + δWk = 0, (89)
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where P(θ + 2π) = P(θ). Since modes with longer parallel-to-B wavelengths tend to be more
unstable, we shall examine solutions corresponding to the two lowest periodicities. The first
one is related to KBMs Tsai & Chen (1993) and the second one is related to EPMs Zheng et al.
(2000).
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We first discuss KBMs. The KBM-type solution is given by

ζK = exp{iγKθ}(A0 + A2 cos θ + · · · ). (84)

Inserting Eq. (84) into Eq. (83), one obtains, noting � � 1,

γ2
K ≈ Ω2(1 + 2�2Ω2),

A2
A0

≈ 2�Ω2.

Therefore, at leading order, one has

ζK = exp{iΩ|θ|}, (85)

where �m{Ω} > 0 for causality. Note here that Eq. (85) is valid for general Ω, so that
frequency at continuum is allowed, as soon as causality condition is satisfied.

Next, we discuss TAE-type KDMs, e.g., EPMs. This type of solutions can be expressed as
Zheng et al. (2000)

ζT = exp{iγTθ}[A1 cos(θ/2) + B1 sin(θ/2) + · · · ]. (86)

Inserting Eq. (86) into Eq. (83), one obtains, for
��Ω2 − 1/4

�� ∼ O(�) and � � 1,
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�
(Ω2 − Ω2

+)(Ω
2 − Ω2

−)
�1/2

,
B1
A1

=

�
Ω2 − Ω2

−
Ω2

+ − Ω2

�1/2

, (87)

and Ω2
+,− = 1/4 ± �Ω2. The leading order solution can, therefore, be expressed as

ζT = exp
�

i
�
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+)(Ω
2 − Ω2

−)
�1/2

|θ|
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�
Ω2 − Ω2

−
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+ − Ω2
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sin(θ/2)

⎤
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The causality condition is �m
��

(Ω2 − Ω2
+)(Ω

2 − Ω2
−)

�1/2
�
< 0. Equation (88) can describe

both TAEs and KDMs of TAE type (e.g., EPMs). Existence of TAE solution requires mode
frequency to fall in the gap: Ω− < Ω < Ω+, as shown by the TAE theory in configuration
space in Sec. 4.4. For KDMs mode frequency can be in the continuum, i.e., outside the gap
as soon as causality condition is satisfied. For TAEs ζT contains an O(1) back scattering
and, hence, the continuum damping is either suppressed or much reduced. On the other
hand, for KDMs ζK contains no back scattering from periodic potential in Eq. (83), and,
consequently, there is significant mount of continuum damping. Note that in principle both
types of solutions can co-exist at |Ω| ≈ 1/2 . However, the TAE solution tends to be more
unstable in this case than KDMs, since its continuum damping is much less or absent while
the instability drives are generally comparable.

With outer solutions given by Eq. (85) or Eq. (88), one can obtain the corresponding dispersion
relation by matching outer and inner solutions. For KBMs Eq. (81) can be used to construct
the following quadratic form in inner region:

2 ζ∗
dζ

dθ

����
+∞

−∞
+ δWf + δWk = 0, (89)
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where

δWf =
∫ +∞

−∞
dθ

{∣∣∣∣
∂ζ

∂θ

∣∣∣∣
2
−

[
α cos θ

p
− (s − α cos θ)2

p2

]
|ζ|2

}
,

δWk =
∫ +∞

−∞
dθζ∗

1
p1/2

∫ dεdμB
|v�|

ωdδgh.

Here, the superscript ∗ represents complex conjugate. Matching inner (Eq. (89)) and outer
(Eq. (85)) solutions one obtains the dispersion relation Tsai & Chen (1993)

− iΩ + δWf + δWK = 0. (90)

Here, we note that kinetic effects from core plasma should also be taken into account in outer
region. As proved in Ref. Zheng & Tessarotto (1994a) this results in the so-called apparent
mass effect and leads Ω in the first term of Eq. (90) to become complicated function of actual
mode frequency.

Similarly, for KDMs of TAE type, for example EPMs, one need to consider even and odd
modes. For even modes the dispersion relation is given by Refs. Zheng et al. (2000) and Tsai
& Chen (1993)

− i

(
Ω2

− − Ω2

Ω2
+ − Ω2

)2

+ δTf + δTK = 0, (91)

where δTf represents MHD fluid contribution and δTK is energetic-particle contribution to the
quadratic form in inner region.

The dispersion relations in Eqs. (90) and (91) extend respectively MHD ballooning modes in
diamagnetic gap and TAEs in Alfvén gap to respective continua. Kinetic drives are the causes
to make causality conditions satisfied.

5. Global numerical analyses of MHD modes: AEGIS code formalism

In Sec. 2.3 analytical or semi-analytical theories are presented to describe four types of
MHD modes in toroidal geometry. Due to the developments of modern numerical method
and computer hardware, conventional asymptotic expansion methods for global modes have
become outdated and been substituted by direct numerical computation. Several excellent
numerical codes have been developed in the past to study linear MHD stability of toroidally
confined plasmas, such as such as PEST Grimm et al. (1976) Chance et al. (1978), GATO
Bernard et al. (1981), DCON Glasser (1997), AEGIS Zheng & Kotschenreuther (2006), etc. In
this section we focus on description of AEGIS code, in view of that AEGIS is an adaptive MHD
shooting code capable to study MHD continuum Zheng et al. (2005). Through describing
AEGIS formalism, we can further explain the general features of MHD eigen modes in
toroidally confined plasmas.

Let us first describe the toroidal system to be investigated. The core part is plasma torus,
which is surround by a resistive wall; Between plasma torus and resistive wall there is inter
vacuum region and outside the resistive wall there is outer vacuum region, which extends to
infinity. For simplicity, it is assumed that the wall is thin. We denote respectively the interfaces
between plasma torus and inner vacuum region, inner vacuum region and wall, and wall and
outer vacuum region as ψa, ψb−, and ψb+.
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5.1 MHD equations and numerical solution method for plasma region

In this subsection we describe how to reduce MHD equations for global mode analyses. The
starting equation is the single fluid MHD equation (14). This is a vector equation and can be
projected onto three directions to get scalar equations. The parallel projection has be derived
in Eq. (33). From parallel equation one can solve for ∇ · ξ, which is the only unknown needed
for two-perpendicular equations to become a complete set of equations. In principle the
parallel motion can not be described by MHD model, since particles are not localized along
magnetic field line. There are wave-partcle resonance, trapped particle, and so-called small
parallel particle speed effects, etc. Nevertheless, from analyses in Sec. 4.3 one can see that in
low frequency regime the parallel coupling results only in the so-called apparent mass effect,
while in intermediate regime the parallel coupling mainly gives rise to the 2nd TAEs. Note
that apparent mass effect can be absorbed by rescaling mode frequency and inclusion of the
2nd TAE effect is straightforward as discussed in Sec. 4.4. For brevity we limit ourselves to
treat only two perpendicular components of Eq. (14) with Γ set to zero. AEGIS-K code has
been developed to include parallel dynamics using kinetic description Zheng et al. (2010).

Using general flux coordnates in Eq. (22), the magnetic field line displacement is decomposed
as follows

ξ × B = ξs∇ψ + ξψχ�(∇ζ − q∇θ). (92)

Since we deal with linear problem, the Fourier transform can be used to decompose perturbed
quantities in poloidal and toroidal directions,

ξ exp{−inζ} =
∞

∑
m=−∞

ξm
1√
2π

exp{i (mθ − nζ)}, (93)

with ξm =
∫ π
−π dθξ exp{−imθ}/

√
2π. With the toroidal symmetry assumed, only a single

toroidal Fourier component needs to be considered. As usual, equilibrium quantities can be
decomposed as matrices in poloidal Fourier space, for example

Jmm� =
1

2π

∫ π

−π
dθ J(θ)ei(m�−m)θ .

In the poloidal Fourier decomposition, the Fourier components are cut off both from lower
and upper sides respectively by mmin and mmax. Therefore, the total Fourier component
under consideration is M = mmax − mmin + 1. We also use bold face (or alternatively [[· · · ]])
to represent Fourier space vectors, and calligraphic capital letters (or alternatively �· · ·�) to
represent the corresponding equilibrium matrices (e.g., J for J) in poloidal Fourier space.

To get scalar equations, we project Eq. (14) respectively onto two directions
J2∇θ × ∇ζ · B × [· · · × B]/B2 and (1/qχ�)J2∇ζ × ∇ψ · B × [· · · × B]/B2, and then
introduce the Fourier transformation in Eq. (93) to two projected equations. These procedures
lead to the following set of differential equations in matrices

(
B†ξs +Dξ�ψ + Eξψ

)�
−

(
C†ξs + E†ξ�ψ +Hξψ

)
= 0, (94)

Aξs + Bξ�ψ + Cξψ = 0. (95)
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Here, the equilibrium matrices contain two parts: plasma/field force and inertia
contributions, e.g., A = Ap + γNAi, where

Ap = n(nG22 + G23M) +M(nG23 + G33M),

Bp = −iχ� [n(G22 + qG23) +M(G23 + qG33)] ,

Cp = −i
[
χ��(nG22 +MG23) + (qχ�)�(nG23 +MG33)

]

−χ�(nG12 +MG31)Q+ i(g�Q − μ0nP�J /χ�),

Dp = χ�2 [(G22 + qG23) + q(G23 + qG33)] ,

Ep = χ� [χ��(G22 + qG23) + (qχ�)�(G23 + qG33)
]
− iχ�2(G12 + qG31)Q+ μ0P�J ,

Hp = χ�� [χ��G22 + (qχ�)�G23
]
+ (qχ�)�

[
χ��G23 + (qχ�)�G33

]

+iχ� [χ��(MG12 − G12M) + (qχ�)�(MG31 − G31M)
]

+χ�2QG11Q+ μ0P�χ��J /χ� + μ0P�J � − g�q�χ�I ,

Ai =
B2

0
X2

0q2
0

〈
J ρN

B2 |∇ψ|2
〉

,

Ci =
B2

0
X2

0q2
0

〈
χ�J ρN

B2 (∇ψ · ∇ζ − q∇ψ · ∇θ)
〉

,

Hi =
B2

0
X2

0q2
0

〈
χ�2J ρN

B2 (|∇ζ|2 + q2|∇θ|2 − 2∇θ · ∇ζ)
〉

,

Bi = Di = Ei = 0, Mmm� = mImm� , Qmm� = (m − nq)Imm� , γN denotes the dimensionless
growth rate normalized by the Alfvén frequency at magnetic axis, ρN is the dimensionless
mass density normalized by the mass density at magnetic axis, subscript "0" refers to
quantities at magnetic axis, and

G11 = �J(∇θ × ∇ζ) · (∇θ × ∇ζ)� ,

G22 = �J(∇ζ × ∇ψ) · (∇ζ × ∇ψ)� ,

G33 = �J(∇ψ × ∇θ) · (∇ψ × ∇θ)� ,

G12 = �J(∇θ × ∇ζ) · (∇ζ × ∇ψ)� ,

G31 = �J(∇ψ × ∇θ) · (∇θ × ∇ζ)� ,

G23 = �J(∇ζ × ∇ψ) · (∇ψ × ∇θ)� .

We can reduce the set of equations (94) and (95) into a set of first order differential equations
as in the DCON formalism Glasser (1997). By solving Eq. (95), one obtains

ξs = −A−1Bξ�ψ −A−1Cξψ.

Inserting this solution into Eq. (94), we get

d
dψ

(
Fξ� +Kξ

)
−

(
K†ξ� + Gξ

)
= 0, (96)
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where F = D − B†A−1B, K = E − B†A−1C, and G = H− C†A−1C. These matrices can be
further simplified as follows Glasser (1997)

F =
χ�2

n2

{
QG33Q+ γ2

NAi −
[
γ2

NAi +Q(nG23 + G33M)
]

×A−1
[
γ2

NAi + (nG23 +MG33)Q
] }

, (97)

K =
χ�

n

{
i
[
γ2

NAi +Q(nG23 + G33M)
]
A−1C

−Q
[
χ��G23 + (qχ�)�G33 − iχ�G31Q− g�I

]
− iγ2

NCi

}
. (98)

Introducing the expanded 2M unknowns u =

(
ξ

u2

)
, where u2 = Fξ� + Kξ, Eq. (96) is

reduced to the set of 2M first order equations

u� = Lu, (99)

where 2M × 2M matrix

L =

(
−F−1K F−1

G −K†F−1K K†F−1

)
.

We note that ξ and u2 in plasma region are related to the magnetic field and pressure as follows

[[J∇ψ · δB]] = iQξ,

− [[J (B · δB − ξ · ∇P)]] = u2.

The set of eigen mode equations in Eq. (99) can be solved numerically by independent solution
method together with multiple region matching technique as described in Ref. Zheng &
Kotschenreuther (2006). With M boundary conditions imposed at magnetic axis, there remain
only M independent solutions:

(
Ξp
W2

)
≡

(
ξ1, · · · , ξM

u1
2, · · · , uM

2

)
,

where the superscripts are used to label independent solutions. We use the cylinder limit to
describe the boundary condition at magnetic axis, i.e., ξψ,m ∝ rm. The general solution can be
then obtained as a combination of the M independent solutions,

(
ξ

u2

)
= i

(
Ξp
Wp

)
cp, (100)

where cp is a constant vector with M elements. Without loss of generality (by defining cp =

Ξ−1
p cnew

p and Wnew
p = WpΞ−1

p ), we can set Ξp to be unity I at plasma edge. Therefore, at
plasma-vacuum interface ψa we have

[[J∇ψ · δB]] = −Qcp, (101)

− [[J (B · δB − ξ · ∇P)]] = iWpcp. (102)
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5.2 The solution of vacuum region

For completeness, in this subsection we briefly review the vacuum solutions in Ref. Zheng &
Kotschenreuther (2006). The vacuum regions are described by the Laplace equation

∇2u = 0, (103)

where u is the magnetic scalar potential and is related to the perturbed magnetic field by
δB = −∇u. Here, we note that this representation of vacuum magnetic field, although being
simple, excludes the consideration of n = 0 modes. To study n = 0 modes, one more scalar
is needed to represent the vacuum magnetic field. For the sake of conciseness, we outline the
general solutions for inner and outer vacuum regions simultaneously.

As in the plasma region, Fourier decompositions are introduced for both poloidal and toroidal
directions to solve Eq. (103). Then Eq. (103) becomes a set of second-order differential
equations of number M for u. This set of second-order differential equations can be
transformed into a set of first-order differential equations of number 2M, by introducing an
additional field v = −[[J∇ψ · δB]], which is related to the magnetic scalar potential in Fourier
space as follows:

v =
〈
J |∇ψ|2

〉 ∂u
∂ψ

+ �iJ∇ψ · ∇θ�Mu.

There are 2M independent solutions for Eq. (103), which can be used to construct the following
independent solution matrices:

(
U1
V1

)
≡

(
u1, · · · , uM

v1, · · · , vM

)
,

(
U2
V2

)
≡

(
uM+1, · · · , u2M

vM+1, · · · , v2M

)
.

The general solutions in the vacuum regions can be expressed as a linear combination of the
independent solutions:

(
u
v

)
=

(
U1
V1

)
cv +

(
U2
V2

)
dv, (104)

where cv and dv are constant vectors in the independent solution space. To distinguish the
inner and outer vacuum solutions, we let cv1 and dv1 denote the constants for inner vacuum
region and cv2 and dv2 for outer vacuum region.

In the outer vacuum region, the scalar potential u is subjected to M boundary conditions
at infinite ψ. With these M boundary conditions imposed, there are only M independent
solutions left. Without loss of generality, we can set cv2 to be zero in this case. Consequently,
eliminating dv2 in Eq. (104), we obtain

u|ψb+ = T v|ψb+ ,

where the M × M matrix T is given by T = U2V−1
2 |ψb+ . The matrix T can be computed by

means of the Green function method Chance (1997).
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In the inner vacuum region, the independent solutions can be constructed, for example, with
the use of an inward numerical shooting Zheng & Kotschenreuther (2006), with the following
boundary conditions imposed at ψb−:

(
U1

V1

)

ψb−

=

(
I
O

)
, (105)

(
U2

V2

)

ψb−

=

(
T
I

)
, (106)

where O is M × M zero matrix. Since the boundary conditions in Eq. (105) give δB · ∇ψ = 0
at wall, these conditions correspond to a set of solutions that corresponds to the perfectly
conducting wall type. On the other hand, since the boundary conditions in Eq. (106)
guarantee that the independent solutions to be continuous with outer vacuum solutions,
these conditions correspond to a set of solutions that corresponds to the no-wall type. Using
the general expression for the solutions in Eq. (104), we can express the normal and parallel
magnetic fields at the plasma-vacuum interface as follows:

[[J∇ψ · δB]] = −V1cv1 − V2dv1, (107)

−[[J B · δB]] = iQ (U1cv1 + U2dv1) . (108)

5.3 Eigenvalue problem

The solutions in the plasma and vacuum regions described in the last two subsections can
be used to construct the eigen value problem Zheng & Kotschenreuther (2006). The normal
magnetic field component and the combined magnetic and thermal pressures are required to
be continuous at the plasma-vacuum interface. Matching plasma [Eqs. (101) and (102)] and
vacuum [Eqs. (107) and (108)] solutions at the interface ψa gives

dv1 = F−1
1 δWbδW−1

∞ F2cv1, (109)

where δW∞ = Wp −Q[U2V−1
2 ]ψaQ, δWb = Wp −Q[U1V−1

1 ]ψaQ, F1 = Q
[
U2 − U1V−1

1 V2

]
ψa

,

and F2 = Q
[
U1 − U2V−1

2 V1

]
ψa

. Note that δW∞ and δWb correspond to the energy matrices

without a wall and with a perfectly conducting wall at ψb, respectively, as can be seen from
the boundary conditions in Eqs. (105) and (106).

We now consider the matching across the thin resistive wall. For the radial magnetic field, the
Maxwell equation ∇ · δB = 0 and the thin wall assumption lead to

v|ψb− = v|ψb+ = dv1.

The current in the resistive wall causes a jump in the scalar magnetic potential. This can be
obtained from the Ampére law

∇ × ∇ × δB = −γμ0σδB, (110)
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where σ is the wall conductivity. Equation (110) can be reduced to

V
(

u|ψb+
− u|ψb−

)
= τwγNdv1, (111)

where τw = μ0σdb/τA, d is the wall thickness, b is the average wall minor radius, and

V = M
〈
J |∇ψ||∇θ| − J |∇ψ · ∇θ|2/(|∇ψ||∇θ|)

〉
M

+n2
〈
J |∇φ|2|∇ψ|/|∇θ|

〉
.

Since cv2 = 0, we find that Eqs. (104) - (106) yield

u|ψb+ − u|ψb− = −cv1. (112)

From Eqs. (109), (111), and (112) we find the eigen mode equations

D0(γN)dv1 ≡ τwγNdv1 + VF−1
2 δW∞δW−1

b F1dv1 = O.

The dispersion relation for this eigen value problem is given by the determinant equation
det |D0(γN)| = 0. In general the Nyquist diagram can be used to determine the roots of
this dispersion relation. For RWMs, however, the growth rate is much smaller than the
Alfvén frequency. Therefore, the growth rate dependence of δW∞δW−1

b can be neglected
for determining the stability condition. Consequently, one can use the reduced eigen value
problem

− VF−1
2 δW∞δW−1

b F1dv1 = τwγNdv1, (113)

with the RWM mode growth rate γN on the right hand side of this equation used as the eigen
value to determine the stability.

5.4 Discussion

Now let us discuss the connection of current global theory with localized analytical theories
described in Sec. 4. The singular layer equation in Eq. (48) is derived by employing mode
localization assumption. Only localized mode coupling is considered. The general eigen
mode equation Eq. (96) in plasma region contains all side band couplings. Noting that Q ∝ x,
one can see from Eqs. (97) and (98) that F ∝ x2 and K ∝ x at marginal stability ω = 0.
We can therefore see the root of Eq. (48) in Eq. (96). If ballooning invariance in Eq. (57) is
introduced, the set of matrix Eq. (96) can be transformed to a single ballooning equation. The
TAE theory in Sec. 4.4 uses just two Fourier components to construct eigen modes. The general
Alfvén gap structure can be determined by det |F | = 0. Note that, if an analytical function is
given on a line on complex ω plane, the function can be determined in whole domain through
analytical continuation by using the Cauchy-Riemann condition. Note also that one can avoid
MHD continuum by scanning the dispersion relation with real frequency �e{ω} for a small
positive growth rate �m{ω}. Using the scan by AEGIS one can in principle find damping
roots through analytical continuation. Due to its adaptive shooting scheme AEGIS can be
used to compute MHD modes with very small growth rate. It has successfully computed
Alfvén continuum damping rate by analytical continuation based on AEGIS code Chen et al.
(2010).
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6. Summary and discussion

In this chapter we have given an overview of MHD theory in toroidal confinement of
fusion plasmas. Four types of fundamental MHD modes in toroidal geometry: interchange,
ballooning, TAEs, and KDMs, are discussed. In describing these modes we detail some
fundamental analytical treatments of MHD modes in toroidal geometry, such as the average
technique for singular layer modes, ballooning representation, mode coupling treatment in
TAEs/KDMs theories. Note that analytical approach is often limited for toroidal plasma
physics. Global numerical treatment of MHD modes is also reviewed in this chapter,
especially the AEGIS code formalism. These theories are reviewed in ideal MHD framework.
Here, we briefly discuss kinetic and resistive modifications to ideal MHD, as well as the
connection of MHD instabilities to transport.

Let us first discuss kinetic effects. Since strong magnetic field is used to contain plasmas in
magnetically confined fusion experiments, MHD theory can be rather good to describe fusion
plasmas in the direction perpendicular to magnetic field. This is because strong magnetic
field can hold plasmas together in perpendicular movement. Therefore, MHD is a very good
model to describe perpendicular physics, if FLR effects are insignificant. However, in parallel
direction the Lorentz force vanishes and particle collisions are insufficient to keep particles
to move collectively. Consequently, kinetic description in parallel direction is generally
necessary. Kinetic effect is especially important when wave-particle resonance effect prevails
in the comparable frequency regime ω ∼ ωsi Zheng & Tessarotto (1994a). In the low frequency
regime ω � ωsi, wave-particle resonances can be so small that kinetic description results
only in an enhancement of apparent mass effect. Kinetic effect in this case can be included
by introducing enhanced apparent mass. Another non-resonance case is the intermediate
frequency regime ωsi � ω � ωse. In this regime kinetic description results in a modification
of ratio of special heats. By introducing proper Γ MHD can still be a good approximation.
Recovery of perpendicular MHD from gyrokinetics has been studied in details in Ref. Zheng
et al. (2007).

Fig. 2. CITM physics picture. The dot-dashed line represents mode rational surface.
Perturbed current at rational surface due to interchange modes leads to field line
reconnection and formation of magnetic islands.
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Next, let us discuss resistivity effects. Resistivity usually is small in magnetically confined
fusion plasmas. Due to its smallness resistivity effects are only important in the singular layer
region. With ideal MHD singular layer theory detailed in Sec. 4.2 one can rederive resistive
singular layer equations given in Ref. Glasser et al. (1975). However, it should be pointed
out that, when kinetic enhancement of apparent mass effect is taken into account, the ratio of
resistivity and inertia layer widths changes. This leads kinetic description of resistive MHD
modes to become substantially different from fluid description Zheng & Tessarotto (1996)
Zheng & Tessarotto (1995). Kinetic analysis of low frequency resistive MHD modes becomes
necessary.

The driving force for ideal MHD instabilities is related to pressure gradient. Resistivity can
instead cause field line reconnection and induce the so-called tearing modes. It is important
to note that if current gradient is taken into account pressure driven modes and tearing modes
are coupled to each other. The underlying driving mechanism for pressure driven modes is
the release of plasma thermal energy from the interchange of magnetic flux tubes. Actually,
interchange-type modes exchange not only thermal and magnetic energies between flux tubes,
but also current. In a plasma with a current (or resistivity) gradient, such an interchange
can create a current sheet at a mode resonance surface and result in the excitation of current
interchange tearing modes (CITMs) as shown in Fig. 2 Zheng & Furukawa (2010).

Instabilities of interchange type have been widely used to explain anomalous transport in
tokamaks in terms of the formation of turbulent eddies through nonlinear coupling. However,
the explanation for experimental observations that the electron energy transport is much
larger than what one would expect from diffusive process due to Coulomb collisions is still
unsatisfactory. The electron Larmor radius is much smaller than ion one. Nonetheless, the
electron thermal transport often is stronger than ion transport. In Ref. Rechester & Rosenbluth
(1978), the broken magnetic surfaces due to formation of magnetic island and stochastic
field lines are used to explain the enhanced electron transport. But, how magnetic islands
are formed in axisymmetric tokamak plasmas has not been given. CITM theory shows that
interchange-type instabilities can directly convert to current interchange tearing modes. This
helps to clarify the source of electron transport in tokamaks.

Another transport issue we need to discuss is the so-called flow shear de-correlation of
turbulences. This concept has been widely used for explaining suppression of plasma
turbulences. In fact, this picture is not right for systems with magnetic shear. We use Fig.
3 to explain it (L. J. Zheng and M. Tessarotto, private communication). In Fig. 3, the dashed
long arrow represents a magnetic field line on a given magnetic surface ψ0, and two solid
long arrows denote the magnetic field lines respectively at two time sequences t0 and t0 + Δt
on an adjacent magnetic surface ψ1. Let us examine the correlation pattern in the local frame
moving together with equilibrium velocity of the dashed long arrow on surface ψ0. The modes
are supposed to locate around the point “O” initially at t = t0. After a time interval Δt, the
field line on surface ψ1 moves relatively to the dashed long arrow on the surface ψ0 due to flow
shear. From Fig. 3 one can see that the fixed pattern has not been de-correlated by flow shear,
instead the pattern just propagates from point “O” at time t = t0 to point “O′” at subsequent
time t = t0 + Δt. This indicates that flow shear does not de-correlate turbulence eddies. Only
flow curvature can result in the de-correlation. This resembles to ballooning mode behavior
in rotating plasmas with Cooper representation Waelbroeck & Chen (1991).
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Fig. 3. Schematic explanation for why flow shear does not de-correlate turbulence eddies.

In conclusion significant progresses have been made for linear ideal MHD theories and
numerical codes in the past dacades. However, the kinetic effects on MHD remains
considerably open. Although correction of gyrokinetics theory has been made recently Zheng
et al. (2007), the applications of the new gyrokinetics theory remain to be worked out. The
theories for FLR effects on ballooning modes, KTAEs, energetic particle effects, etc. need
to be modified with newly corrected gyrokinetics theory. The extension of toroidal resistive
MHD theory Glasser et al. (1975) to take into account the small parallel ion speed effect
Zheng & Tessarotto (1996) and current interchange effects Zheng & Furukawa (2010) is under
consideration.
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are supposed to locate around the point “O” initially at t = t0. After a time interval Δt, the
field line on surface ψ1 moves relatively to the dashed long arrow on the surface ψ0 due to flow
shear. From Fig. 3 one can see that the fixed pattern has not been de-correlated by flow shear,
instead the pattern just propagates from point “O” at time t = t0 to point “O′” at subsequent
time t = t0 + Δt. This indicates that flow shear does not de-correlate turbulence eddies. Only
flow curvature can result in the de-correlation. This resembles to ballooning mode behavior
in rotating plasmas with Cooper representation Waelbroeck & Chen (1991).
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Fig. 3. Schematic explanation for why flow shear does not de-correlate turbulence eddies.

In conclusion significant progresses have been made for linear ideal MHD theories and
numerical codes in the past dacades. However, the kinetic effects on MHD remains
considerably open. Although correction of gyrokinetics theory has been made recently Zheng
et al. (2007), the applications of the new gyrokinetics theory remain to be worked out. The
theories for FLR effects on ballooning modes, KTAEs, energetic particle effects, etc. need
to be modified with newly corrected gyrokinetics theory. The extension of toroidal resistive
MHD theory Glasser et al. (1975) to take into account the small parallel ion speed effect
Zheng & Tessarotto (1996) and current interchange effects Zheng & Furukawa (2010) is under
consideration.
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1. Introduction  
Magneto-Hydrodynamics (MHD) describes the plasma as a fluid coupled with the self-
consistent magnetic field. The regime of validity of the MHD description of a plasma system 
is generally restricted to the temporal and spatial scales much larger than the characteristic 
plasma temporal scales (such as those associated with the plasma frequency, the ion and 
electrons cyclotron frequencies and the collision frequency), or the typical spatial scales (as 
the ion and electron inertial scale, the ion and electron Larmor radii and the Debye length). 
On the large scale, the plasma can be successfully described in terms of a single magnetized 
fluid by means of generally differentiable and smooth functions: this description of plasma 
media has met a wide success. However, the last decade of the 20th Century has brought to 
scientists’ attention a wide amount of experimental and theoretical results suggesting 
substantial changes in classical magnetized plasma dynamics with respect to the MHD 
picture. In particular, two fundamental characteristics of the MHD as a dynamical theory 
have started to appear questionable: regularity and determinism. The MHD variables are, 
indeed, analytically smooth functions of space and time coordinates. Physicists refer to this 
as regularity. Moreover, once the initial conditions are assigned (together with some border 
conditions), the evolution of the MHD variables is unique: hence MHD is strictly 
deterministic. Instead, in in-field and laboratory studies, more and more examples have been 
brought to evidence, where irregularity and stochastic processes appear to play a role in 
magnetized plasma dynamics. This is particularly true when one approaches intermediate 
and small scales where the validity conditions for the MHD description, although still valid, 
are no longer valid in a strict sense, or when we are in the presence of topologically relevant 
structures, whose evolution cannot be described in terms of smooth functions.  From now 
on, the conditions of the MHD variables apparently violating smoothness and/or 
determinism will be referred to as irregular stochastic configurations (ISC). In the following we 
remind, in some detail, these experimental and theoretical results pointing towards the 
existence of ISCs, in the context of space plasmas and fusion plasmas. 

In the framework of space physics, it has been pointed out that both the global, large scale 
dynamics and some local processes related to plasma transport could be better explained in 
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conditions), the evolution of the MHD variables is unique: hence MHD is strictly 
deterministic. Instead, in in-field and laboratory studies, more and more examples have been 
brought to evidence, where irregularity and stochastic processes appear to play a role in 
magnetized plasma dynamics. This is particularly true when one approaches intermediate 
and small scales where the validity conditions for the MHD description, although still valid, 
are no longer valid in a strict sense, or when we are in the presence of topologically relevant 
structures, whose evolution cannot be described in terms of smooth functions.  From now 
on, the conditions of the MHD variables apparently violating smoothness and/or 
determinism will be referred to as irregular stochastic configurations (ISC). In the following we 
remind, in some detail, these experimental and theoretical results pointing towards the 
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In the framework of space physics, it has been pointed out that both the global, large scale 
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terms of stochastic processes, low-dimensional chaos, fractal features, intermittent 
turbulence, complexity and criticality (see e.g. Chang, 1992; Klimas et al., 1996; Chang, 1999; 
Consolini, 2002; Uritsky et al., 2002; Zelenyi & Milovanov, 2004 and references therein). 

A certain confidence exists in stating that the rate of conversion of the magnetic energy into 
plasma kinetic one observed in events of magnetic reconnection is significantly 
underestimated by the traditional, smooth and deterministic, MHD (see for example Priest 
& Forbes, 2000 and also Biskamp, 2000). Lazarian et al. (2004) have found an improvement 
in the calculation of the magnetic reconnection rate by considering stochastic reconnection 
in a magnetized, partially ionized medium. This process is stochastic due to the field line 
probabilistic wandering through the turbulent fluid. In a different context, Consolini et al. 
(2005) showed that stochastic fluctuations play a crucial role in the current disruption of the 
geomagnetic tail, a magnetospheric process occurring at the onset of magnetic substorm in 
the Earth’s magnetotail (see, e.g., Kelley, 1989; Lui, 1996).  Consistently with the relevance of 
stochastic processes in space plasmas, tools derived from information theory have been 
recently applied to describe the near-Earth plasma phenomenology (Materassi et al., 2011; 
De Michelis et al., 2011). On the other hand, turbulence has been shown to play a relevant 
role in several different space plasma media as the solar wind (Bruno & Carbone, 2005) or 
the Earth’s magnetotail regions (see, e.g., Borovsky & Funsten, 2003), etc. 

In fusion plasmas, phenomena important as anomalous diffusion induced by stochastic 
magnetic fields (Rechester & Rosenbluth, 1978) have been suggested to be caused by the 
appearance of irregular modes similar to ISCs: those modes have been documented since a 
rather long time (Goodall, 1982). In tokamak machines ISCs observed are mesoscopic 
intermittent and filamentary structures: recently, studies have shown how such structures 
might be generated by reconnecting tearing modes triggered by a primary interchange 
instability (Zheng & Furukawa 2010). 

The appearance of ISCs should not be expected as an exceptional condition: indeed, time- 
and space-regular MHD relies on very precise hypotheses, not necessarily holding in real 
plasmas. As underlined before, it should be considered that MHD is a long time description 
with respect to the interaction times of particles. In order to expect a smooth deterministic 
evolution in time, “fast phenomena” should be ignored, and clearly this cannot be done 
when “fast phenomena” lead to big changes in the MHD variables themselves, on 
macroscopic scales, as it happens in the fast magnetic reconnection. 

Space regularity requires the scale at which matter appears as granular to shrink to zero, 
and this is possible under the hypothesis that such scale is much smaller than the typical 
scale where the MHD variables do vary. However, in turbulent regimes the scale at which the 
MHD fields vary are so small, that they compare with those scales at which plasma appears 
as granular. 

The phenomenology of plasma ISCs appears to indicate that the role of “fundamental 
entities” should be played by mesoscopic coherent structures, interacting and stochastically 
evolving. These stochastic coherent structures (SCS) have been observed in several space 
plasma regions: in solar wind (Bruno et al., 2001) as field-aligned flux tubes, in the Earth's 
cusp regions (Yordanova et al., 2005), in the geotail plasma sheet as current structures, 2D 
eddies and so on (see, for instance, Milovanov et al., 2001; Borovsky & Funsten, 2003; Vörös 
et al., 2004; Kretzschmar & Consolini, 2006). Recent observations of small-scale magnetic 
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field features in the magnetosheath transition region (as described in Retinò et al., 2007; 
Sundkvist et al., 2007) seem to suggest that the dynamics of such coherent structures can be 
the origin of a coherent dissipation mechanism, a sort of coarse-grained dissipation (Tetrault, 
1992a, b; Chang et al., 2003) due to interactions that result non-local in the k-space. 

A consistent theory of plasmas in ISC should be a consistent theory of SCSs, valid in a 
suitable “midland” of the “coupling constant space” (Chang et al., 1978). This “midland of 
SCSs” should be far from the particle scale (because each SCS involves a large amount of 
correlated particles), but also some steps under the fluid level (because matter should 
appear granular and fields irregular). 

Furthermore, this “midland” is not the usual kinetic-fluid transition as described e.g. in Bălescu 
(1997). In fact, the kinetic description is sensible under some weak coupling approximation allowing 
for a self-consistent Markovian single particle theory to exist, while if mesoscopic coherent 
structures appear, the correlation length and inter-particle interaction scale are so big that the 
single particle evolves only together with a large number of its fellows, excluding such weak 
coupling. Then, if SCSs exist, the kinetic level of the theory does not. 

Well far from trying to give a self-consistent theory of the SCS, here we just discuss some 
models and scenarios retaining some properties that such a theory should have. The 
approaches discussed here are exactly the application of the philosophy well described by 
Bălescu (1997) to dissipative processes in the MHD. Probably, a first principle analytical 
theory of turbulence is going to be out of reach for decades. However, something useful for 
applications can be developed in a more advanced framework than “traditional” statistical 
mechanics by introducing elements of chaos or stochasticity, non-Gaussian or non-
Markovian properties, in some “effective” and “sound” models. In this way, one admits a 
certain “degree of randomness” in the equations, so that the non-Gaussianity of the basic 
stochastic processes, the role of the non-Markovian equations of evolution, the role of fractal 
structures and the emergence of “strange transport” are all SCS theoretical features of which 
one tries to take into account. 

The schemes presented here are models with these properties, trying to interpolate between 
the macroscopic, smooth, deterministic physics of traditional MHD and the mesoscopic, 
irregular, stochastic physics of “that something else” which has not been formulated yet. 
Such phenomenological approach is indicated as sub-fluid. 

In this chapter three sub-fluid models are described, the metriplectic dissipative MHD, the 
stochastic field theory of resistive MHD and the fractal magnetic reconnection. 

In the first model, the metriplectic dissipative MHD (§ 2), we focus on the relationship 
between the fluid dynamical variables and the microscopic degrees of freedom of the 
plasma. The thermodynamic entropy of the plasma microscopic degrees of freedom turns 
out to play an essential role in the metriplectic formalism, a tool developed in the 1980s 
encompassing dissipation within an algebra of observables, and here adapted to MHD. It is 
considered that thermodynamics, i.e. statistics, naturally arises for the description of the 
microscopic degrees of freedom. Fluid degrees of freedom are endowed with energy, linear 
and angular momenta, while an entropy function, measuring how undetermined their 
“mechanical” microscopic configuration is, can be attributed to the microscopic degrees of 
freedom. 
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In the second model treated, the stochastic field theory (SFT) (§ 3), the dissipation 
coefficients appearing in the MHD equations of motion are considered as noise, consistently 
with the fact that, out of its equilibrium, a medium may be treated statistically. In this way, 
MHD turns into a set of Langevin field equations. These may be treated through the path 
integral formalism introduced by Phythian (1977), appearing particularly suitable for non 
equilibrium statistics. Once the resistive MHD theory is turned into a SFT, transition 
probabilities between arbitrary field configurations may be calculated via a stochastic action 
formalism, closely resembling what is usually done for quantum fields. This mimics very 
precisely the idea of an ISC. 

A sub-fluid model of fast magnetic reconnection (FMR) is dealt with in § 4. FMR clearly 
belongs to the class of phenomena in which classical fields apparently undergo quantum-
like transitions in considerably short times: when magnetic field lines reconnect, the field 
topology is changed and a big quantity of magnetic energy, associated to the original 
configuration, is turned into the kinetic energy of fast jets of particles. In order to mimic a 
reconnection rate high enough, a successful attempt may be done relaxing the assumption 
that all the local variables of the plasma and the magnetic field are smooth functions. In 
particular, in a standard 2-dimensional Sweet-Parker scenario (Parker, 1957, 1963; Sweet, 
1958), one assumes that the reconnection region, where finite resistivity exists, is a fractal 
domain of box-counting dimension smaller than 2. This allows for a reconnection rate that 
varies with the magnetic Reynolds number faster than the traditional one. 

2. The dissipation algebrized 
Dissipation is a crucial element of the physical mechanism leading to ISCs in plasmas, and 
dissipative terms already appear in the smooth deterministic MHD. Moreover, the presence 
of dissipation, together with non-linearity, is a fundamental mechanism in order for 
coherent structures to form (Courbage & Prigogine, 1983). 

Many fundamental phenomena giving rise to plasma ISCs in nature, such as turbulence, 
magnetic reconnection or dynamo (Biskamp, 1993), are often described by MHD models 
containing dissipative terms. For instance, this can account for the finite resistivity of the 
plasma and/or  the action of viscous forces. 

Where does dissipation come from? Ultimately, MHD is derived from the Klimontovich 
equations, describing the dynamics of charged particles interacting with electromagnetic 
fields (Klimontovich, 1967). This is a Hamiltonian, consequently non-dissipative, system. 
Nevertheless, dissipative terms appear in some versions of MHD equations as a heritage of 
averaging and approximations carried out along the derivation procedure and which have 
spoilt the original Hamiltonian structure of the Klimontovich system. The presence of 
dissipative terms reflects a transfer of energy from the deterministic macroscopic fluid 
quantities into the microscopic degrees of freedom of the system, to be treated statistically, 
which lie outside a macroscopic fluid description. Such transfer of energy, in turn, implies 
an increase of the entropy of the system. 

If  dissipative terms are omitted, on the other hand, one expects the resulting MHD system 
to be Hamiltonian, with a conserved energy (the constant value of the Hamiltonian of the 
system) and a conserved entropy. Indeed, the non-dissipative version of MHD, usually 
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referred to as ideal MHD, has been shown, long ago, to be a Hamiltonian system (Morrison 
& Greene, 1980). The elements constituting a Hamiltonian structure are the Poisson bracket, 
a bilinear operator with algebraic properties, and the Hamiltonian of the system, depending 
on the dynamical variables: in the case of the MHD, these will be defined in the following 
(see (7) and (9)). The Hamiltonian formulation of the ideal MHD, apart from facilitating the 
identification of conserved quantitites, or the stability analysis of the equilibria, renders it 
evident that the dynamics of the system takes place on symplectic leaves that foliate the phase 
space (Morrison, 1998). 

The inclusion of dissipative terms invalidates the Hamiltonian representation: this dissipative 
breakdown matches the fact that, once dissipation is included, the system becomes “less 
deterministic” in a certain sense, because there is an interaction with microscopic degrees of 
freedom that are described in a statistical manner (friction forces are a statistically effective 
treatment of microscopic stochastic collisions). 

Some dissipative systems possess however an algebraic structure called metriplectic, which 
still permits to formulate the dynamics in terms of a bracket and of an observable, extending 
the concept of Hamiltonian. Metriplectic structures in general occur in systems which 
conserve the energy and increase the entropy. These are the so called complete systems. They are 
obtained adding friction forces to an originally Hamiltonian system, and then including, in 
the algebra of observables, the energy and entropy of the microscopic degrees of freedom. 
The metriplectic formulation permits to reformulate the dynamics of dissipative systems in 
a geometrical framework, in which information, such as the existence of asymptotically 
stable equilibria, may be easily retrieved without even trying to solve the equations. 

In order to define what a metriplectic structure is, and apply this concept to the case of 
MHD, it is convenient to start recalling that,  very frequently, one deals with the analysis of 
physical models of the form 

     , 1,..., ,i i i
t H Dz F z F z i N     (1) 

where z is the set of  the N dynamical variables of the system (N can be infinite; it is actually 
a continuous real index for field theories or the MHD) evolving under the action of a vector 
field FH(z) + FD(z). Such vector field is the sum of a non-trivial Hamiltonian component FH(z) 
and a component FD(z) accounting for the dissipative terms. If FD(z) = 0, the resulting system 
is Hamiltonian and consequently can be written as 

    ,  ,i i i
t Hz F z z H z       (2) 

where H(z) is the Hamiltonian of the system, and [*,*] is the Poisson bracket, an antisymmetric 
bilinear operator, satisfying the Leibniz property and the Jacobi identity (Goldstein, 1980). 
These properties render the Poisson algebra of group-theoretical nature. An immediate 
consequence of the antisymmetry of the bracket is that ∂tH = [H,H] = 0, so that H is 
necessarily a constant of motion. 

It is important to point out that, in many circumstances, the Poisson bracket is not of the 
canonical type. In particular, for Hamiltonian systems describing the motion of continuous 
media in terms of Eulerian variables, as in the case of ideal MHD, the Poisson bracket is 



 
Topics in Magnetohydrodynamics 

 

38

In the second model treated, the stochastic field theory (SFT) (§ 3), the dissipation 
coefficients appearing in the MHD equations of motion are considered as noise, consistently 
with the fact that, out of its equilibrium, a medium may be treated statistically. In this way, 
MHD turns into a set of Langevin field equations. These may be treated through the path 
integral formalism introduced by Phythian (1977), appearing particularly suitable for non 
equilibrium statistics. Once the resistive MHD theory is turned into a SFT, transition 
probabilities between arbitrary field configurations may be calculated via a stochastic action 
formalism, closely resembling what is usually done for quantum fields. This mimics very 
precisely the idea of an ISC. 

A sub-fluid model of fast magnetic reconnection (FMR) is dealt with in § 4. FMR clearly 
belongs to the class of phenomena in which classical fields apparently undergo quantum-
like transitions in considerably short times: when magnetic field lines reconnect, the field 
topology is changed and a big quantity of magnetic energy, associated to the original 
configuration, is turned into the kinetic energy of fast jets of particles. In order to mimic a 
reconnection rate high enough, a successful attempt may be done relaxing the assumption 
that all the local variables of the plasma and the magnetic field are smooth functions. In 
particular, in a standard 2-dimensional Sweet-Parker scenario (Parker, 1957, 1963; Sweet, 
1958), one assumes that the reconnection region, where finite resistivity exists, is a fractal 
domain of box-counting dimension smaller than 2. This allows for a reconnection rate that 
varies with the magnetic Reynolds number faster than the traditional one. 

2. The dissipation algebrized 
Dissipation is a crucial element of the physical mechanism leading to ISCs in plasmas, and 
dissipative terms already appear in the smooth deterministic MHD. Moreover, the presence 
of dissipation, together with non-linearity, is a fundamental mechanism in order for 
coherent structures to form (Courbage & Prigogine, 1983). 

Many fundamental phenomena giving rise to plasma ISCs in nature, such as turbulence, 
magnetic reconnection or dynamo (Biskamp, 1993), are often described by MHD models 
containing dissipative terms. For instance, this can account for the finite resistivity of the 
plasma and/or  the action of viscous forces. 

Where does dissipation come from? Ultimately, MHD is derived from the Klimontovich 
equations, describing the dynamics of charged particles interacting with electromagnetic 
fields (Klimontovich, 1967). This is a Hamiltonian, consequently non-dissipative, system. 
Nevertheless, dissipative terms appear in some versions of MHD equations as a heritage of 
averaging and approximations carried out along the derivation procedure and which have 
spoilt the original Hamiltonian structure of the Klimontovich system. The presence of 
dissipative terms reflects a transfer of energy from the deterministic macroscopic fluid 
quantities into the microscopic degrees of freedom of the system, to be treated statistically, 
which lie outside a macroscopic fluid description. Such transfer of energy, in turn, implies 
an increase of the entropy of the system. 

If  dissipative terms are omitted, on the other hand, one expects the resulting MHD system 
to be Hamiltonian, with a conserved energy (the constant value of the Hamiltonian of the 
system) and a conserved entropy. Indeed, the non-dissipative version of MHD, usually 

 
Sub-Fluid Models in Dissipative Magneto-Hydrodynamics 

 

39 

referred to as ideal MHD, has been shown, long ago, to be a Hamiltonian system (Morrison 
& Greene, 1980). The elements constituting a Hamiltonian structure are the Poisson bracket, 
a bilinear operator with algebraic properties, and the Hamiltonian of the system, depending 
on the dynamical variables: in the case of the MHD, these will be defined in the following 
(see (7) and (9)). The Hamiltonian formulation of the ideal MHD, apart from facilitating the 
identification of conserved quantitites, or the stability analysis of the equilibria, renders it 
evident that the dynamics of the system takes place on symplectic leaves that foliate the phase 
space (Morrison, 1998). 

The inclusion of dissipative terms invalidates the Hamiltonian representation: this dissipative 
breakdown matches the fact that, once dissipation is included, the system becomes “less 
deterministic” in a certain sense, because there is an interaction with microscopic degrees of 
freedom that are described in a statistical manner (friction forces are a statistically effective 
treatment of microscopic stochastic collisions). 

Some dissipative systems possess however an algebraic structure called metriplectic, which 
still permits to formulate the dynamics in terms of a bracket and of an observable, extending 
the concept of Hamiltonian. Metriplectic structures in general occur in systems which 
conserve the energy and increase the entropy. These are the so called complete systems. They are 
obtained adding friction forces to an originally Hamiltonian system, and then including, in 
the algebra of observables, the energy and entropy of the microscopic degrees of freedom. 
The metriplectic formulation permits to reformulate the dynamics of dissipative systems in 
a geometrical framework, in which information, such as the existence of asymptotically 
stable equilibria, may be easily retrieved without even trying to solve the equations. 

In order to define what a metriplectic structure is, and apply this concept to the case of 
MHD, it is convenient to start recalling that,  very frequently, one deals with the analysis of 
physical models of the form 

     , 1,..., ,i i i
t H Dz F z F z i N     (1) 

where z is the set of  the N dynamical variables of the system (N can be infinite; it is actually 
a continuous real index for field theories or the MHD) evolving under the action of a vector 
field FH(z) + FD(z). Such vector field is the sum of a non-trivial Hamiltonian component FH(z) 
and a component FD(z) accounting for the dissipative terms. If FD(z) = 0, the resulting system 
is Hamiltonian and consequently can be written as 

    ,  ,i i i
t Hz F z z H z       (2) 

where H(z) is the Hamiltonian of the system, and [*,*] is the Poisson bracket, an antisymmetric 
bilinear operator, satisfying the Leibniz property and the Jacobi identity (Goldstein, 1980). 
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necessarily a constant of motion. 
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noncanonical and no pairs of conjugate variables can be identified. For such brackets, 
particular invariants, denoted as Casimir invariants, exist. These are quantities C(z) such 
that [C,F] = 0 for every F(z). Consequently ∂tC = [C,H] = 0 in particular, which shows that 
Casimir functions are indeed conserved quantities. 

Energy conservation and entropy increase in metriplectic systems are “algebrized” via a 
generalized bracket and a generalized energy functional. More precisely, a metriplectic 
system is a system of the form 

        ,  , ,  ,i i i i
tz z F z z F z z F z       (3) 

where the metriplectic bracket {*,*} = [*,*] + (*,*) is obtained from a Poisson bracket [*,*] and 
a metric bracket (*,*). The latter is a bilinear, symmetric and semidefinite (positive or 
negative) operation, satisfying also the Leibniz property (strictly speaking, a symmetric 
semi-definite bracket (*,*) should be referred to as semi-metric). The metric bracket is also 
required to be such that (f,H) = 0, for every function f(z), with H being the Hamiltonian of 
the system: this means that dissipation does not alter the total energy, since this already 
includes a part accounting for the energy dissipated. 

The function F in (3) is denoted as free energy, and is given by 

 ,F H C   (4) 

where C is a Casimir of the Poisson bracket, and λ is a constant.  

In the cases of interest here, this C is chosen as the entropy of the microscopic degrees of 
freedom of the plasma, involved in the dissipation. 

Let us assume the metric bracket be semi-definite negative (the case in which it is positive is 
completely analogous). The resulting metriplectic system possesses the following important  
properties: 

- ∂tH = 0, so that the Hamiltonian of the system is still conserved (possibly other 
quantities such as total linear or angular momenta can also be conserved); 

- ∂tC = λ(C,C), so that, due to the semi definiteness of the symmetric bracket one has 
either ∂tC  ≥ 0 or ∂tC  ≤ 0 at all times, depending on whether λ is negative or positive. 
This candidates C to be an equivalent time coordinate wherever it is strictly monotonic 
with t (Courbage & Prigogine, 1983); 

- isolated minima of F are stable equilibrium points. 

Metriplectic structures have been identified for different systems as, for instance, Navier-
Stokes  (Morrison, 1984), free rigid body, Vlasov-Poisson (Morrison, 1986) and, in a looser 
sense, for Boussinesq fluids (Bihlo, 2008) and constrained mechanical systems (Nguyen & 
Turski, 2009). An algebraic structure for dissipative systems based on an extension of the 
Dirac bracket has been proposed by Nguyen and Turski (2001). They have also been used 
for identifying asymptotic vortex states (Flierl and Morrison, 2011). 

Also the visco-resistive plasma falls into the category of complete systems. Indeed, the 
following version of the visco-resistive MHD equations 
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can be shown to possess a metriplectic formulation. In (5) we adopted a notation with SO(3)-
indices, which turns out to be practical in this context. We specify that  
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is the stress tensor, with η and ν indicate the viscosity coefficients, κ is the thermal 
conductivity, T the plasma temperature and s the entropy density per unit mass. In the limit 
κ = ζ = ν = σik = 0, one recovers the ideal MHD system treated by Morrison and Greene 
(1980), reading: 
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Morrison and Greene (1980) showed that the system (6) can indeed be cast in the form (2). 
This is accomplished first, by identifying the dynamical variables zi with the fields 
(B(x,t),V(x,t),ρ(x,t),s(x,t)) (here, the space coordinate x labels the dynamical variables and 
plays the role of a continuous 3-index). The Hamiltonian for ideal MHD is then 
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The three addenda in the integrand correspond to the kinetic, magnetic and internal 
energy of the system, respectively. U(ρ,s) is related to the plasma pressure and the 
temperature as: 
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The Poisson bracket giving rise to the frictionless (6) through the Hamiltonian (7) is given 
by: 
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noncanonical and no pairs of conjugate variables can be identified. For such brackets, 
particular invariants, denoted as Casimir invariants, exist. These are quantities C(z) such 
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This bracket possesses Casimir invariants (e.g. Morrison, 1982, Holm et al., 1985), such as the 
magnetic helicity; particularly relevant in our context, the total entropy is defined as: 

 3 .S sd x   (10) 

S is conserved along the motion of the non-dissipative system (6).  

Some observation should be made here about the role of the plasma entropy as a Casimir. 
Casimir are invariants that a theory shows because of the singularity of its Poisson bracket, 
which is not full-rank. Typically this can happen when a Hamiltonian system is obtained by 
reducing some larger parent one, which possesses some symmetry (see, e.g., Marsden & 
Ratiu, 1999, Thiffeault & Morrison, 2000). In the case of ideal MHD, the reduction which 
leads to the Poisson bracket (9), is the map leading from the Lagrangian to the Eulerian 
representation of the fluid (Morrison, 2009a).  When the system of microscopic parcels is 
approximated as a continuum, its (Lagrangian or Eulerian) fluid variables (as the velocity 
V(x,t)) pertain to the centre-of-mass of the fluid parcels of size d3x within which they may be 
approximated as constants. However, fluids are equipped with some thermodynamic 
variable, as the entropy s per unit mass here, which represent statistically the degrees of 
freedom relative-to-the-centre-of-mass of the parcels in d3x. In the Lagrangian description, 
the  value of the entropy per unit mass is attributed to each parcel at the initial time, and 
remains constant, for each parcel, during the motion. In the Eulerian description, the total 
entropy appears as a Casimir, after the reduction, and the symmetry involved in this case is 
the relabelling symmetry, which is related to the freedom in choosing the label of each 
parcel at the initial time. In this respect, it is worth recalling that this reduction process 
implies a loss of information (e.g. Morrison, 1986) in the sense that, through the Eulerian 
description, one can observe properties of the fluid at a given point in space, but cannot 
identify which parcel is passing at a given point at a given time. 

In a sense, this observation renders the metriplectic a sub-fluid description, because those 
microscopic degrees of freedom interact with the continuum variables through the role of S 
in (10) in the metric part of the evolution. 

If the dissipative terms are re-introduced into Eq. (6) and one goes back to Eq. (5), a complete 
system is obtained, in the sense that H in (7) doesn’t change along the motion (5), while 
entropy S in (10) is increased (Morrison, 2009b). 

Let us illustrate the metriplectic formulation for the system (5). The non-dissipative part of 
the dynamics is algebrized through the Hamiltonian (7) and the Poisson bracket (9). As far 
as the construction of the free energy F in (4) is concerned, the entropy S is taken as the 
Casimir C, whereas the metric bracket reads: 

 
Sub-Fluid Models in Dissipative Magneto-Hydrodynamics 

 

43 

 

  3 21 1 1,

1 1 1 1

1 1

k
k

i i k m m n
ikmn

k n

i i k m m n
ikmn

k n

f gf g d x T
T s T s

f f g fT V V
V T s V T s

f f g fT B B
B T s B T s

 


    

   
       

   
     

           
    

      
                          

    
                   



 .
 

 
  

 (11) 

This metric bracket can be decomposed into two parts. A “fluid” part, corresponding to its 
first two terms,  which was shown to produce the viscous terms of the Navier-Stokes 
equations (Morrison, 1984), and a “magnetic” part, which accounts for the resistive terms. 
The proof that the above metric bracket satisfies the properties required by the metriplectic 
formulation has been given in Materassi & Tassi (2011). The SO(3)-tensors needed are 
defined as: 
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The bracket (11) together with the free energy functional 
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produces the dissipative terms of the system (5). 

Thanks to the metriplectic formulation, it appears evident that the dynamics of the complete 
visco-resistive MHD takes place on surfaces of constant energy but, unlike Hamiltonian 
systems, it crosses different surfaces of constant Casimirs. Choosing C = S, it becomes 
evident that the fact that the dynamics does not take place at a surface of constant Casimir 
reflects of course the presence of dissipation in the system, and in particular the increase in 
entropy. 

Free extremal points of F in (12) (i.e., configurations at which one has F = 0 regardless other 
conditions) correspond to equilibria of the system (5) (even if other equilibria are possible). 
These can be found by setting to zero the first variation of F and solving the resulting 
equation in terms of the field variables. These equilibrium solutions are given by 
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(since it has been obtained as extremal of the free energy functional, this solution is also an 
equilibrium for ideal MHD). The equilibrium (13) is rather peculiar because it corresponds 
to a situation in which all the kinetic and magnetic energy have been dissipated and 
converted into heat. It ascribes a physical meaning to the constant λ, that corresponds to the 
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conditions) correspond to equilibria of the system (5) (even if other equilibria are possible). 
These can be found by setting to zero the first variation of F and solving the resulting 
equation in terms of the field variables. These equilibrium solutions are given by 
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(since it has been obtained as extremal of the free energy functional, this solution is also an 
equilibrium for ideal MHD). The equilibrium (13) is rather peculiar because it corresponds 
to a situation in which all the kinetic and magnetic energy have been dissipated and 
converted into heat. It ascribes a physical meaning to the constant λ, that corresponds to the 
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opposite of the homogeneous temperature the plasma reaches at the equilibrium. Other 
equilibria with non trivial magnetic or velocity fields can in principle be obtained by 
considering Casimir constants other than the entropy, and a different metric bracket, or 
simply by constraining the condition F = 0 onto some manifold of constant value for 
suitable physical quantities. Moreover, the boundary conditions for the system to work in 
this way must be such that all the fields behave “suitably” at the space infinity. All the 
results are obtained for a visco-resistive isolated plasma: indeed, all the algebraic relationships 
invoked hold if V, B, ρ and s show suitable boundary conditions, rendering visco-resistive 
MHD a “complete system”.  

Such metriplectic formulation conserves, in addition to the energy H, also the total linear 
momentum P, the total angular momentum L and the generator of Galileo’s boosts G, which 
are defined by: 

   3 3 3, , .d x d x t d x        P V L x V G x V  

About these quantities P, L and G, it should be stressed that, besides modifying the scheme 
with other quantities conserved in the ideal limit, more interesting equilibria than (13) may 
be identified by conditioning the extremization of F to the initial finite values of the Galilean 
transformation generators. 

3. Sub-fluid physics as noise: A stochastic field theory for the MHD 
The metriplectic theory of the MHD discussed in § 2 clarifies how the dissipative part of 
the dynamics must be attributed to the presence of statistically treated degrees of freedom, 
through their entropy. On the one hand, the metriplectic MHD gives a role to the statistics 
of the medium properties; on the other hand, local equilibrium and space-time-
smoothness of field variables are still assumed. In the sub-fluid model presented in this 
paragraph, the statistical nature of the microscopic degrees of freedom is cast into a form 
going beyond the local equilibrium condition. In particular, strong reference to plasma 
ISCs is made. 

Plasma ISC dynamics resembles more closely a quantum transition than a classical 
evolution: the idea presented here is that localized occurrence of big fluctuations in the 
medium probably initiate and determine those quantum-like transitions of the variables B 
and V. If the fluctuations of the medium are treated as probabilistic stirring forces, or noises, a 
totally new scenario appears.  

The formalism turning those considerations into a mathematical theory was introduced in 
Materassi & Consolini (2008); then, an application of it to the visco-resistive reduced MHD 
in 2 dimensions was obtained in Materassi (2009). 

Let’s consider the resistive incompressible MHD equations: 
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(the choice of incompressible plasma is done for reasons to be clarified later). ζ is the 
resistivity tensor and p is the plasma pressure. The dynamical variables are the fields V and 
B.  The viscosity ν is assumed to be zero. The form of ζ and p, and of the mathematical 
relationships among them (necessary to close the system (14)), depend on the micro-
dynamics of the medium. Usually, constitutive hypotheses provide the information on the 
microscopic nature of the medium (Kelley, 1989). When the (at least local) thermodynamic 
equilibrium is assumed, the constitutive hypotheses read something like: 

    ,...  , , 0,T p T     (15) 

being T the local temperature field. Then, some heat equation is invoked for T, requiring 
other constitutive hypotheses about the specific heat of the plasma. 

The aforementioned procedure will only give ζ and p regular quasi-everywhere. Instead, in 
the sub-fluid approach presented here, irregularities of ζ and p are explicitly considered by 
stating that these local quantities are stochastic fields, and by assigning their probability 
density functions (PDF). The probabilistic nature of the terms ζ and p will be naturally 
transferred to B and V through a suitable SFT. The following vector quantities are defined 
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these Ξ, Δ, and Θ are considered as stochastic stirring forces, and their probability density 
functional is assigned as some Q[Ξ,Δ,Θ]. The resistive MHD equations are then re-written as 
the following Langevin field equations: 
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This scheme, clearly, is not self-consistent because the PDF of the noise terms must be 
assigned a priori, as the outcome of a microscopic dynamics not included in this treatment 
and not predictable by it. Plasma microscopic physics will enter through some PDF Pdyn[ζ,p]: 
as far as Pdyn[ζ,p] keeps trace of the plasma complex dynamics, this represents a (rather 
general) way to provide constitutive hypotheses. Then, the positions (16) are used to 
construct mathematically the passage: 
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A closed form for Q[Ξ,Δ,Θ] should be obtained consistently with any microscopic 
dynamical theory of the ISC plasma, from the very traditional equilibrium statistical 
mechanics to the fractional kinetics reviewed in Zaslavsky (2002). 

Due to the presence of the stochastic terms Ξ, Δ, and Θ two important things happen: first of 
all, from each set of initial conditions, many possible evolutions of B and V develop according to 
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opposite of the homogeneous temperature the plasma reaches at the equilibrium. Other 
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invoked hold if V, B, ρ and s show suitable boundary conditions, rendering visco-resistive 
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the dynamics must be attributed to the presence of statistically treated degrees of freedom, 
through their entropy. On the one hand, the metriplectic MHD gives a role to the statistics 
of the medium properties; on the other hand, local equilibrium and space-time-
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ISCs is made. 
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evolution: the idea presented here is that localized occurrence of big fluctuations in the 
medium probably initiate and determine those quantum-like transitions of the variables B 
and V. If the fluctuations of the medium are treated as probabilistic stirring forces, or noises, a 
totally new scenario appears.  

The formalism turning those considerations into a mathematical theory was introduced in 
Materassi & Consolini (2008); then, an application of it to the visco-resistive reduced MHD 
in 2 dimensions was obtained in Materassi (2009). 
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(the choice of incompressible plasma is done for reasons to be clarified later). ζ is the 
resistivity tensor and p is the plasma pressure. The dynamical variables are the fields V and 
B.  The viscosity ν is assumed to be zero. The form of ζ and p, and of the mathematical 
relationships among them (necessary to close the system (14)), depend on the micro-
dynamics of the medium. Usually, constitutive hypotheses provide the information on the 
microscopic nature of the medium (Kelley, 1989). When the (at least local) thermodynamic 
equilibrium is assumed, the constitutive hypotheses read something like: 
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being T the local temperature field. Then, some heat equation is invoked for T, requiring 
other constitutive hypotheses about the specific heat of the plasma. 

The aforementioned procedure will only give ζ and p regular quasi-everywhere. Instead, in 
the sub-fluid approach presented here, irregularities of ζ and p are explicitly considered by 
stating that these local quantities are stochastic fields, and by assigning their probability 
density functions (PDF). The probabilistic nature of the terms ζ and p will be naturally 
transferred to B and V through a suitable SFT. The following vector quantities are defined 
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these Ξ, Δ, and Θ are considered as stochastic stirring forces, and their probability density 
functional is assigned as some Q[Ξ,Δ,Θ]. The resistive MHD equations are then re-written as 
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This scheme, clearly, is not self-consistent because the PDF of the noise terms must be 
assigned a priori, as the outcome of a microscopic dynamics not included in this treatment 
and not predictable by it. Plasma microscopic physics will enter through some PDF Pdyn[ζ,p]: 
as far as Pdyn[ζ,p] keeps trace of the plasma complex dynamics, this represents a (rather 
general) way to provide constitutive hypotheses. Then, the positions (16) are used to 
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(17), each corresponding to a particular realization of Ξ, Δ, and Θ (Haken, 1983); then B and V 
can be arbitrarily irregular, because they inherit stochasticity from noises; they will possibly 
show sudden changes in time or non-differentiable behaviours in space, as it happens in ISCs. 
The description of such a system may be given in terms of path integrals (Feynman & Hibbs, 
1965). The positions (16) and their consequence (17) are chosen because they reproduce exactly 
the Langevin equations treated in Phythian (1977), on which this model is based. 

The construction introduced in the just mentioned work is the definition of a path integral 
scheme out of a suitable set of Langevin equations. One starts with a dynamical variable ψ, 
with any number of components, undergoing a certain equation with noises. Then, another 
variable χ is defined, referred to as stochastic momentum conjugated to ψ. In this way, it is 
possible to define a kernel 
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so that any statistical outcome of the history of the system between t0 and t is calculated as: 

 0[ , ; , )  .F d d A t t F              

In the kernel in (18) the quantity L(ψ,χ) is referred to as stochastic Lagrangian of the system. In 
Phythian (1977) the key result is a closed “recipe” to build up L(ψ,χ) out of the Langevin 
equation of motion. 

The same procedure may be applied to the system governed by the Langevin equations (17); 
these may be turned into a SFT by identifying the dynamical variables ψ of the system as B 
and V, and introducing as many stochastic momenta χ as the components of ψ (Materassi & 
Consolini, 2008): 

, .    B V Ω Π  

The variables Ω and Π are two vector quantities representing the stochastic momenta of B and 
V respectively. A stochastic kernel A[Ω,Π,B,V;t0,t) is constructed by involving a noise factor 
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all the statistical dynamics of the resistive MHD interpreted as a SFT is then encoded in the 
kernel 
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The quantity L0(Ω,Π,B,V) is interpreted as the part of the Lagrangian of the SFT not 
containing noise terms. L0 shows only space- and time-local terms, always: as it is stressed in 
Chang (1999), the integration of the noise term C[Ω,Π,B,V;t0,t) brings terms in L that are 
non-local in space and in time, due to the self- and mutual correlations of noises. Those 
terms will be collected in a noise-Lagrangian LC, so that all in all one has: 
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The form of Q[Ξ,Δ,Θ], hence of C[Ω,Π,B,V;t0,t), may render the SFT long-range correlated 
and with a finite memory: these conditions of the ISC plasmas described by such a SFT is 
what encourages people to work through the techniques of dynamical renormalization group 
(Chang et al., 1978). Possibly, the stochastic momenta may be eliminated, so that one obtains 
a kernel W involving only physical fields 

 0 0[ , ; , ) [ , , , ; , ) .W t t d d A t t        B V Ω Π Ω Π B V  (21) 

Once W[B,V;t0,t) has been obtained, the calculation of processes in which the magnetized 
plasma changes arbitrarily, from an initial configuration (B(t0),V(t0)) = (Bi,Vi) to a final one 
(B(t),V(t)) = (Bf,Vf), may be done, for any time interval (t0,t): the rate of such transitions 
should be calculated as 
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As a further development of Materassi & Consolini (2008), a complete representation à la 
Feynman of such processes is to be derived from the SFT, with a suitable perturbative theory 
of graphs. 

In order to arrive to a closed expression for a stochastic action at least in one example case, 
hereafter a toy model is reported, in which Ξ, Δ and Θ are assumed to be Gaussian processes 
without any memory, and δ-correlated in space. This hypothesis is surely over-simplifying for a 
plasma in ISC, since there are experimental results stating the presence of non-Gaussian 
distributions (Yordanova et al., 2005), and also of memory effects (Consolini et al., 2005). 
Nevertheless, the Gaussian example is of some use in illustrating the SFT at hand, because a 
Gaussian shape for Q[Ξ,Δ,Θ] allows for the full integration of C[Ω,Π,B,V;t0,t), and the explicit 
calculation of W[B,V;t0,t) from A[Ω,Π,B,V;t0,t) in (21). The probability density functional 
Q[Ξ,Δ,Θ] is obtained via a continuous product out of distributions of the local values of the 
fields Ξ, Δ and Θ of Gaussian nature; for instance, the PDF of the local variable Ξ(x,t) reads: 

            20
3

, , ,
3
,

, .a t t ta t
q t e


 

 
x Ξ x Ξ xx

Ξ x  (23) 

The quantity aΞ(x,t) indicates how peaked the distribution qΞ(Ξ(x,t)) is, i.e. how deterministic 
are the terms in (16) describing the medium: the larger aΞ(x,t) is, the less stochastic is the 
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(17), each corresponding to a particular realization of Ξ, Δ, and Θ (Haken, 1983); then B and V 
can be arbitrarily irregular, because they inherit stochasticity from noises; they will possibly 
show sudden changes in time or non-differentiable behaviours in space, as it happens in ISCs. 
The description of such a system may be given in terms of path integrals (Feynman & Hibbs, 
1965). The positions (16) and their consequence (17) are chosen because they reproduce exactly 
the Langevin equations treated in Phythian (1977), on which this model is based. 

The construction introduced in the just mentioned work is the definition of a path integral 
scheme out of a suitable set of Langevin equations. One starts with a dynamical variable ψ, 
with any number of components, undergoing a certain equation with noises. Then, another 
variable χ is defined, referred to as stochastic momentum conjugated to ψ. In this way, it is 
possible to define a kernel 
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so that any statistical outcome of the history of the system between t0 and t is calculated as: 
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In the kernel in (18) the quantity L(ψ,χ) is referred to as stochastic Lagrangian of the system. In 
Phythian (1977) the key result is a closed “recipe” to build up L(ψ,χ) out of the Langevin 
equation of motion. 

The same procedure may be applied to the system governed by the Langevin equations (17); 
these may be turned into a SFT by identifying the dynamical variables ψ of the system as B 
and V, and introducing as many stochastic momenta χ as the components of ψ (Materassi & 
Consolini, 2008): 
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The variables Ω and Π are two vector quantities representing the stochastic momenta of B and 
V respectively. A stochastic kernel A[Ω,Π,B,V;t0,t) is constructed by involving a noise factor 
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all the statistical dynamics of the resistive MHD interpreted as a SFT is then encoded in the 
kernel 
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The quantity L0(Ω,Π,B,V) is interpreted as the part of the Lagrangian of the SFT not 
containing noise terms. L0 shows only space- and time-local terms, always: as it is stressed in 
Chang (1999), the integration of the noise term C[Ω,Π,B,V;t0,t) brings terms in L that are 
non-local in space and in time, due to the self- and mutual correlations of noises. Those 
terms will be collected in a noise-Lagrangian LC, so that all in all one has: 
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The form of Q[Ξ,Δ,Θ], hence of C[Ω,Π,B,V;t0,t), may render the SFT long-range correlated 
and with a finite memory: these conditions of the ISC plasmas described by such a SFT is 
what encourages people to work through the techniques of dynamical renormalization group 
(Chang et al., 1978). Possibly, the stochastic momenta may be eliminated, so that one obtains 
a kernel W involving only physical fields 
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plasma changes arbitrarily, from an initial configuration (B(t0),V(t0)) = (Bi,Vi) to a final one 
(B(t),V(t)) = (Bf,Vf), may be done, for any time interval (t0,t): the rate of such transitions 
should be calculated as 
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As a further development of Materassi & Consolini (2008), a complete representation à la 
Feynman of such processes is to be derived from the SFT, with a suitable perturbative theory 
of graphs. 

In order to arrive to a closed expression for a stochastic action at least in one example case, 
hereafter a toy model is reported, in which Ξ, Δ and Θ are assumed to be Gaussian processes 
without any memory, and δ-correlated in space. This hypothesis is surely over-simplifying for a 
plasma in ISC, since there are experimental results stating the presence of non-Gaussian 
distributions (Yordanova et al., 2005), and also of memory effects (Consolini et al., 2005). 
Nevertheless, the Gaussian example is of some use in illustrating the SFT at hand, because a 
Gaussian shape for Q[Ξ,Δ,Θ] allows for the full integration of C[Ω,Π,B,V;t0,t), and the explicit 
calculation of W[B,V;t0,t) from A[Ω,Π,B,V;t0,t) in (21). The probability density functional 
Q[Ξ,Δ,Θ] is obtained via a continuous product out of distributions of the local values of the 
fields Ξ, Δ and Θ of Gaussian nature; for instance, the PDF of the local variable Ξ(x,t) reads: 
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The quantity aΞ(x,t) indicates how peaked the distribution qΞ(Ξ(x,t)) is, i.e. how deterministic 
are the terms in (16) describing the medium: the larger aΞ(x,t) is, the less stochastic is the 
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plasma. Formally equal distributions qΔ(Δ(x,t)) and qΘ(Θ(x,t)) describe the local occurrence 
of the values of Δ and Θ. From (23), the expression of the noise kernel C[Ω,Π,B,V;t0,t) 
defined in (19) can be calculated explicitly (Materassi & Consolini, 2008), and the noise 
Lagrangian LC(Ω,Π,B,V) determined in a closed form: 
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This noise Lagrangian is space-local and does not contain any memory term, because the 
PDF Q[Ξ,Δ,Θ] was constructed as the continuous products of infinite terms, each of which 
representing the independent probability qΞ(Ξ(x,t))qΔ(Δ(x,t))qΘ(Θ(x,t)). The total Lagrangian 
is the sum of the noise term LC(Ω,Π,B,V) and of the “deterministic” addendum L0(Ω,Π,B,V) 
presented in (20). The sum L0 + LC gives rise to a perfectly local theory. The total Lagrangian 
L0 + LC gives a kernel A[Ω,Π,B,V;t0,t) that is the continuous product of the exponentiation of 
quadratic terms in Ω and Π, so that the calculation (21) is an infinite-dimensional Gaussian 
path integral, which is again feasible. This means that, under the hypothesis (23) on Ξ, and 
similar assumptions on the two other noises Δ and Θ, the calculation of the stochastic 
evolution kernel can be done in terms of pure “physical fields” B and V, obtaining 
W[B,V;t0,t). If the calculation is performed to the end, the expression of W[B,V;t0,t) reads: 
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The functions ζ0 and p0 are defined as the ensemble expectation value of the homonymous 
stochastic variables. The expression (25) is ready to be used in (22) to calculate the transition 
probabilities between arbitrary field configurations. The quantity N’ in (25), whatever it 
looks like, will not enter the calculations of processes like (22), since it doesn’t depend on V 
and B, and will be cancelled out. Last but not least, consider that the functions defining 
noise statistics, i.e. aΞ, aΔ, aΘ, ζ0 and p0, do enter the Lagrangian as “coupling constants”. 

Intrinsic limitations of the proposed scheme can be recognized. 

First of all, no discussion has been even initiated yet about the convergence of all the 
quantities defined. 
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There is an apparent “necessity” of making the choice (16) in order to follow the scheme 
traced in Phythian (1977). It could be useful to extend the reasoning presented here to other 
forms of the Langevin equations so to avoid the positions (16) and work directly with ζ and 
p as stirring forces in (14). 

It is also to mention that the problem of defining a good functional measure is still to be 
examined, by studying the consistency condition of a Fokker-Planck equation for the SFT, 
starting for example with the Lagrangian density (25), obtained under drastically 
simplifying hypotheses. 

A comment is deserved by the choice of the incompressible plasma hypothesis. The MHD as a 
dynamical system is given by (5): in the absence of incompressibility, the mass density ρ is a 
distinct variable on its own, with a proper independent dynamics. In the stochastic theory à 
la Phythian each dynamical variable should satisfy a Langevin equation, in which noise is in 
principle involved. Now, altering the equation for ρ with noise could invalidate the mass 
conservation, which is a big fact one would like to avoid. Hence, the “sacred principle” of 
non-relativistic mass conservation ∂tρ + ∂·(ρV) = 0 is saved excluding ρ from dynamics, 
rendering it a pure parameter of the theory, via incompressibility. The compressible case 
could be studied considering the local mass conservation a constrain to be imposed to the 
path integrals as it happens in quantum gauge field theories (Hennaux & Teitelboim, 1992). 

Last but not least, the fourth equation in (5) has not been considered at all in this scheme: in 
Phythian’s scheme plasma thermodynamics must be discussed in some deeper way before 
enlarging the configuration space of stochastic fields to the entropy s. 

4. Fractal model of fast reconnection 
Among the many interesting fast and irreversible processes occurring in plasmas, magnetic 
reconnection is surely one of the most important (see e.g. Biskamp, 2000; Birn and Priest, 
2007). The name “magnetic reconnection”, originally introduced by Dungey (1953), refers to 
a process in which a particle acceleration is observed consequently to a change of the 
magnetic field line topology (connectivity). Being associated to a change in the magnetic field 
line topology, the magnetic reconnection process involves the occurrence of magnetic field 
line diffusion, disconnection and reconnection and it is also accompanied by plasma heating 
and particle acceleration, sometimes termed as dissipation (actually, in this case dissipation 
means transfer of energy from the magnetic field to the particle energy, both bulk motion 
energy, the term ρV2/2 in the integrand in (7), and thermal energy, the term U(ρ,s) in the 
same expression of H; in the context of metriplectic dynamics, dissipation is simply the 
transfer of energy into the addendum U(ρ,s)). 

The traditional approach to magnetic reconnection is based on resistive MHD theory. In this 
framework one of the most famous and first scenarios of magnetic reconnection, able to 
make some quantitative predictions, was proposed by Parker (1957) and Sweet (1958). The 
Sweet-Parker model provides a simple 2-dimensional description of steady magnetic 
reconnection in a non-compressible plasmas (see Figure 1). In this model there are two 
relevant scales: the global scale L of the magnetic field and the thickness Δ of the current 
sheet (or of the diffusion region). The main result of such a model may be resumed in the 
very-well known expression for the Alfvèn Mach number MA, 
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plasma. Formally equal distributions qΔ(Δ(x,t)) and qΘ(Θ(x,t)) describe the local occurrence 
of the values of Δ and Θ. From (23), the expression of the noise kernel C[Ω,Π,B,V;t0,t) 
defined in (19) can be calculated explicitly (Materassi & Consolini, 2008), and the noise 
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This noise Lagrangian is space-local and does not contain any memory term, because the 
PDF Q[Ξ,Δ,Θ] was constructed as the continuous products of infinite terms, each of which 
representing the independent probability qΞ(Ξ(x,t))qΔ(Δ(x,t))qΘ(Θ(x,t)). The total Lagrangian 
is the sum of the noise term LC(Ω,Π,B,V) and of the “deterministic” addendum L0(Ω,Π,B,V) 
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similar assumptions on the two other noises Δ and Θ, the calculation of the stochastic 
evolution kernel can be done in terms of pure “physical fields” B and V, obtaining 
W[B,V;t0,t). If the calculation is performed to the end, the expression of W[B,V;t0,t) reads: 
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The functions ζ0 and p0 are defined as the ensemble expectation value of the homonymous 
stochastic variables. The expression (25) is ready to be used in (22) to calculate the transition 
probabilities between arbitrary field configurations. The quantity N’ in (25), whatever it 
looks like, will not enter the calculations of processes like (22), since it doesn’t depend on V 
and B, and will be cancelled out. Last but not least, consider that the functions defining 
noise statistics, i.e. aΞ, aΔ, aΘ, ζ0 and p0, do enter the Lagrangian as “coupling constants”. 

Intrinsic limitations of the proposed scheme can be recognized. 

First of all, no discussion has been even initiated yet about the convergence of all the 
quantities defined. 
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where Rm is the Lundquist number (often referred as magnetic Reynolds number), VA is the 
Alfvén velocity and  is the resistivity.  

 
Fig. 1. A schematic view of 2-dimensional geometry for the Sweet-Parker reconnection 
scenario 

Indeed, being a measure of the electric field normalized by the global electric field, i.e. 

 / /A A AM V V E V B  , (27) 

the Alfvén Mach number MA, reported in Eq. (26), provides an estimate of the reconnection 
rate, which is generally expressed in terms of the electric field at the reconnection site. 

The typical Lundquist number Rm in astrophysical and space plasmas is Rm >> 106, implying 
reconnection rates MA << 10-4. These reconnection rates are too slow to explain the explosive 
nature of several space processes associated with the occurrence of reconnection, so that the 
Sweet-Parker model is considered not suitable to explain reconnection in space plasmas. 

In the course of the time, to overcome such a limitation of the Sweet-Parker model several 
other models have been proposed. Among these models one of the most successful is the 
Petscheck model (Petscheck, 1964), where the diffusion region (associated with the current 
sheet) is greatly reduced in length and the energy conversion is associated with the presence 
of two pairs of standing slow-modes. As a result, the reconnection rate in terms of Alfvénic 
Mach number is 

 
8lnA

m
M

R


  (28) 

which is for most of the space and laboratory plasma situations of the order of MA ≈ 10-1 to 10-2.  
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Although several other models have been proposed (see e.g.: Birn and Priest, 2007), some 
recent MHD simulation have shown that, when the Hall effect is included, it is possible to 
obtain fast magnetic reconnection rates, which are independent on the current sheet or 
reconnection region size. For instance, Huba & Rudakov (2004) obtained  a reconnection rate 
MA ≤ 0.1 in the case of Hall magnetic reconnection.  

All the above approaches to magnetic reconnection move from the assumption that plasma 
media can be viewed as noncollisional fluid. This assumption is clearly valid when the 
inherent local fluctuations x of any local field X are negligible with respect to the large scale 
means, 

 

1
22

110 ,
x

X


  (29) 

being x = X – <X>. Conversely, recent observations evidenced that space plasmas are 
characterized by an intrinsic stochastic character, and that in many situations turbulence is 
present. This is for instance the case of interplanetary space plasmas, such as the solar wind, 
and the Earth’s magnetotail current sheet, characterized by stochastic and turbulent 
fluctuations of the same order of magnitude of the average fields. 

Several attempts have been done to include the stochastic and turbulent nature of the plasma 
media and to discuss its effects on the magnetic reconnection process (see e.g. Yankov, 1997; 
Lazarian & Vishniac, 1999). The common point of such models is the idea that as a 
consequence of the inherent stochasticity and/or turbulent nature of plasma media, the 
current sheet and the diffusion region topology cannot be associated with a simple 
continuous regular medium. Conversely, the current sheet could be imagined like a 
filamentary, complex and not space-filling region. 

 
Fig. 2. A schematic view of 2-dimensional geometry for the fractal reconnection model, of 
size L and Δ, with reconnection area Arec and reconnection active area Ωrec. 
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In 2007 Materassi & Consolini proposed a revised version of the historical Sweet-Parker 
model, in which the diffusion/current sheet region, where the magnetic reconnection takes 
place, is imagined like a fractal object in the plane. The very basic assumption of such a 
fractal reconnection model is that the reconnection active sites form a not space-filling domain 
rec contained in the diffusion region of measure Arec, and that such a non-space-filling 
domain is characterized by a Hausdorff dimension DH < E, being E the embedding 
dimension (here E = 2). Figure 2 shows a schematic view of the 2-dimensional geometry of 
the diffusion region.  

Due to the fractal nature of the diffusion region, the constraint of flux conservation can be 
written as 

 [ ] [ ],
out in

eff eff
S S  V V   (30) 

where Sin (Sout) is the entrance (exit) surface for the plasma passing through the fractal 
domain rec. Here, the flux over the entrance and exit surfaces is given by the following 
expression,
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where 
S

d is a proper elemental measure for the fractal domain S. Thus, the evaluation of 

such fluxes requires an integration over a fractal domain, which can be performed using the 
definitions by Tarasov (2005, 2006) involving irregular integrals. 

According to the results shown in Tarasov (2006), if f is a regular function defined in Rn to be 
integrated over a fractal domain  characterized by a Harsdorff dimension D < n, then the 
integration can be performed by introducing a proper weight function D, i.e. 
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where A is the regular set of dimension n embedding the considered fractal set  

When the above integration technique is applied to the condition of flux conservation (30), 
one gets for the fractal reconnection rate 
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where k is a positive constant such that Vout = kVA, and L are the thickness (typically of the 
order of the ion-inertial length) and the length of the diffusion region, respectively,  = Dout - 
Din is the difference of the Hausdorff dimensions of the projection of the fractal domain in 
the direction of the entrance (Din) and exit (Dout) directions, and finally ℓ0 is a reference 
microscopic length scale. Such a reference length scale has to be much smaller than the typical 
scales at which the medium displays fractal features (Tarasov, 2005). 
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Moving from the above result and assuming k = 1 and Din =Dout = D, Eq. (33) for the fractal 
reconnection rate can be reduced to a more simple expression in terms of the Lundquist 
number Rm: 
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We note that this expression reduces to the standard Sweet-Parker solution of the 
reconnection rate in the limit 1D   and that the fractal reconnection rate is always higher 
than the one predicted by the Sweet-Parker model. Furthermore, although in the limit 

mR   the reconnection rate predicted by the Petschek-like model results the more 
efficient, there exists always a certain range of the Lundquist number Rm, depending on the 
fractal dimension D, for which the fractal reconnection model is more efficient than the 
Petschek-like model. The crucial point of a correct estimation and applicability of the above 
expression stands in the correct evaluation of Din and Dout, which depends on the topology 
of the current sheet. 

In passing we note that when the above scenario is applied using typical length scales 
estimated by in-situ observations of magnetic reconnection in space plasmas, one gets the 
reconnection rates typically observed and in agreement with the estimated Hall 
reconnection rate MA ≈ 0.09 (Huba & Rudakov, 2004) assuming a diffusion region shaped as 
a filamentary structure mainly aligned to the inflow region (direction i in Figure 2). 

The fractal reconnection model described here is not based on first principles, because the 
non-space filling, self-similar nature of the reconnection region is simply assumed. 

The important work necessary for further development will be to give a dynamical sense to 
the quantities Din and Dout, that here might appear just as convenient fitting parameters. 
Studies have been made to regard irregular filamentary structures in plasmas as descending 
from calculable fluid-model processes (Zheng & Furukawa, 2010). 

The feeling is however that it would be very interesting to deduce the fractal nature of the 
reconnection region from kinetic or microscopic-statistical theories, rather than extracting it 
from extreme behaviours of the plasma as a fluid. 

5. Conclusion 
Dissipation consists of the irreversible transfer of energy from the proper MHD variables to 
the particle degrees of freedom of the plasma, considered as “microscopic” (and usually 
treated via Thermodynamics). Depending on the spatial and temporal scales on which 
dissipation takes place, it may activate some “sub-fluid level” of the theory, which 
interpolates between the continuous system, representing the traditional MHD, and the 
discrete one, describing the plasma through the motion of its particles. This “sub-fluid” level 
should probably consist of mesoscopic coherent structures existing because of dissipative 
process, and evolving through a stochastic (strongly noisy) dynamics. Consequently, the 
self-consistent theory describing this intermediate level of plasma description is expected to 
be a theory of SCSs. 

In this Chapter, three models to approach this “SCS Theory” have been exposed: 
metriplectic algebrization of MHD, stochastic field theory and fractal magnetic reconnection. 
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In 2007 Materassi & Consolini proposed a revised version of the historical Sweet-Parker 
model, in which the diffusion/current sheet region, where the magnetic reconnection takes 
place, is imagined like a fractal object in the plane. The very basic assumption of such a 
fractal reconnection model is that the reconnection active sites form a not space-filling domain 
rec contained in the diffusion region of measure Arec, and that such a non-space-filling 
domain is characterized by a Hausdorff dimension DH < E, being E the embedding 
dimension (here E = 2). Figure 2 shows a schematic view of the 2-dimensional geometry of 
the diffusion region.  

Due to the fractal nature of the diffusion region, the constraint of flux conservation can be 
written as 

 [ ] [ ],
out in

eff eff
S S  V V   (30) 

where Sin (Sout) is the entrance (exit) surface for the plasma passing through the fractal 
domain rec. Here, the flux over the entrance and exit surfaces is given by the following 
expression,
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  V V n  (31) 

where 
S

d is a proper elemental measure for the fractal domain S. Thus, the evaluation of 

such fluxes requires an integration over a fractal domain, which can be performed using the 
definitions by Tarasov (2005, 2006) involving irregular integrals. 

According to the results shown in Tarasov (2006), if f is a regular function defined in Rn to be 
integrated over a fractal domain  characterized by a Harsdorff dimension D < n, then the 
integration can be performed by introducing a proper weight function D, i.e. 
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where A is the regular set of dimension n embedding the considered fractal set  

When the above integration technique is applied to the condition of flux conservation (30), 
one gets for the fractal reconnection rate 
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where k is a positive constant such that Vout = kVA, and L are the thickness (typically of the 
order of the ion-inertial length) and the length of the diffusion region, respectively,  = Dout - 
Din is the difference of the Hausdorff dimensions of the projection of the fractal domain in 
the direction of the entrance (Din) and exit (Dout) directions, and finally ℓ0 is a reference 
microscopic length scale. Such a reference length scale has to be much smaller than the typical 
scales at which the medium displays fractal features (Tarasov, 2005). 
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Moving from the above result and assuming k = 1 and Din =Dout = D, Eq. (33) for the fractal 
reconnection rate can be reduced to a more simple expression in terms of the Lundquist 
number Rm: 
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We note that this expression reduces to the standard Sweet-Parker solution of the 
reconnection rate in the limit 1D   and that the fractal reconnection rate is always higher 
than the one predicted by the Sweet-Parker model. Furthermore, although in the limit 

mR   the reconnection rate predicted by the Petschek-like model results the more 
efficient, there exists always a certain range of the Lundquist number Rm, depending on the 
fractal dimension D, for which the fractal reconnection model is more efficient than the 
Petschek-like model. The crucial point of a correct estimation and applicability of the above 
expression stands in the correct evaluation of Din and Dout, which depends on the topology 
of the current sheet. 

In passing we note that when the above scenario is applied using typical length scales 
estimated by in-situ observations of magnetic reconnection in space plasmas, one gets the 
reconnection rates typically observed and in agreement with the estimated Hall 
reconnection rate MA ≈ 0.09 (Huba & Rudakov, 2004) assuming a diffusion region shaped as 
a filamentary structure mainly aligned to the inflow region (direction i in Figure 2). 

The fractal reconnection model described here is not based on first principles, because the 
non-space filling, self-similar nature of the reconnection region is simply assumed. 

The important work necessary for further development will be to give a dynamical sense to 
the quantities Din and Dout, that here might appear just as convenient fitting parameters. 
Studies have been made to regard irregular filamentary structures in plasmas as descending 
from calculable fluid-model processes (Zheng & Furukawa, 2010). 

The feeling is however that it would be very interesting to deduce the fractal nature of the 
reconnection region from kinetic or microscopic-statistical theories, rather than extracting it 
from extreme behaviours of the plasma as a fluid. 

5. Conclusion 
Dissipation consists of the irreversible transfer of energy from the proper MHD variables to 
the particle degrees of freedom of the plasma, considered as “microscopic” (and usually 
treated via Thermodynamics). Depending on the spatial and temporal scales on which 
dissipation takes place, it may activate some “sub-fluid level” of the theory, which 
interpolates between the continuous system, representing the traditional MHD, and the 
discrete one, describing the plasma through the motion of its particles. This “sub-fluid” level 
should probably consist of mesoscopic coherent structures existing because of dissipative 
process, and evolving through a stochastic (strongly noisy) dynamics. Consequently, the 
self-consistent theory describing this intermediate level of plasma description is expected to 
be a theory of SCSs. 

In this Chapter, three models to approach this “SCS Theory” have been exposed: 
metriplectic algebrization of MHD, stochastic field theory and fractal magnetic reconnection. 
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Each of the three models tries to mimic one aspect of the complete theory of SCSs. The 
metriplectic MHD presents the non-Hamiltonian algebrization; the SFT for the resistive 
MHD is characterized by the presence of noise yielding a path integral approach; the fractal 
model of reconnection admits the irregular nature of MHD fields, involving the fractional 
calculus. 

A large amount of work must still be done to imagine how those three approaches could be 
combined in a unique framework, the invoked “SCS Theory”, reducing to the three models 
in different limits: this further research is for sure out of the subject of the work here, in 
which a flavour had to be given about some characteristics that this “SCS Theory” should 
have. 

As a final remark, we underline that the self-consistent “SCS Theory” should present a sort 
of scale-covariance, because all the phenomena concerning plasma ISCs do involve multi-
scale dynamics. The technique of Renormalization Group will then be naturally applied to 
such a thory (see e.g. Chang et al., 1992 and references therein). A first direct application of 
such technique, using the exact full dynamic differential renormalization group for critical 
dynamics can be found in Chang et al. (1978). The use of Renormalization Group techniques 
to predict physical quantities to be compared with real spacecraft data is already well 
established (see e.g. Chang, 1999; Chang et al., 2004), and the results are very encouraging, 
confirming our idea that any “SCS Theory” has to be based on scale-covariance.  
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MHD is characterized by the presence of noise yielding a path integral approach; the fractal 
model of reconnection admits the irregular nature of MHD fields, involving the fractional 
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A large amount of work must still be done to imagine how those three approaches could be 
combined in a unique framework, the invoked “SCS Theory”, reducing to the three models 
in different limits: this further research is for sure out of the subject of the work here, in 
which a flavour had to be given about some characteristics that this “SCS Theory” should 
have. 

As a final remark, we underline that the self-consistent “SCS Theory” should present a sort 
of scale-covariance, because all the phenomena concerning plasma ISCs do involve multi-
scale dynamics. The technique of Renormalization Group will then be naturally applied to 
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1. Introduction

A fluid description of the plasma is obtained by taking velocity moments of the kinetic
equations (Vlasov or Fokker-Planck equations) for electrons and ions and employing certain
closure assumptions. A hierarchy of MHD models can be derived. Generally, if the time
scales of interest are larger than the electron-ion collision time scales, then one may model
the plasma as a single fluid. Furthermore, the fluid description of a plasma is valid when the
length scales under investigation are larger than the Debye length; and the frequencies are
smaller than the cyclotron frequency. The Debye length argument can also be cast in terms
of a frequency: namely the plasma frequency. In addition, it is a standard assumption that
the speeds involved are much smaller than the speed of light. The oft-used term “resistive
MHD” is a single-fluid model of a plasma in which a single velocity and pressure describe
both the electrons and ions. The resistive MHD model of a magnetized plasma does not
include finite Larmor radius (FLR) effects, and is based on the simplifying limit in which
the particle collision length is small compared with the macroscopic length scales.

1.1 Scope of this chapter

The scientific literature has numerous instances of methods and techniques to solve the MHD
system of equations. To limit the scope of this chapter, we focus our discussion to single
fluid resistive and ideal MHD. Although single fluid resistive (or ideal) MHD is in a sense
the simplest fluid model for a plasma, these equations constitute a system of nonlinear partial
differential equations, and hence pose many interesting challenges for numerical methods
and simulations. In particular, there is a vast amount of literature devoted to numerical
methods and simulations of resistive MHD wherein the time stepping method is explicit or
semi-implicit. For example, in simulating MHD flows with shocks, shock-capturing methods
from hydrodynamics have been tailored to MHD and have been very successfully used
(see for example Reference Samtaney et al. (2005)). Such aforementioned shock-capturing
methods almost exclusively employ explicit time stepping. This is entirely sensible given
that the flow speeds are of the same order as, or exceed the fast wave speeds. In several
physical situations, the diffusive time scales are much larger than the advective time scale. In
these cases, the Lundquist number is large (S >> 1) and the diffusion terms are usually much
smaller than the hyperbolic or wave-dominated terms in the equations. Usually the diffusion
terms become important in thin boundary layers or thin current sheets within the physical
domain. We are interested in computing such flows but with the additional constraint that
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system of equations. To limit the scope of this chapter, we focus our discussion to single
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the simplest fluid model for a plasma, these equations constitute a system of nonlinear partial
differential equations, and hence pose many interesting challenges for numerical methods
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that the flow speeds are of the same order as, or exceed the fast wave speeds. In several
physical situations, the diffusive time scales are much larger than the advective time scale. In
these cases, the Lundquist number is large (S >> 1) and the diffusion terms are usually much
smaller than the hyperbolic or wave-dominated terms in the equations. Usually the diffusion
terms become important in thin boundary layers or thin current sheets within the physical
domain. We are interested in computing such flows but with the additional constraint that
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the wave speeds are also much larger than the fluid advective speeds. In such cases, implicit
time stepping methods are preferred to overcome the stiffness induced by the fast waves and
march the flow simulations forward in time at time steps dictated by accuracy rather than
stability constraints.

A brief outline of this chapter is as follows. In Section 2 we will provide a brief survey of
implicit numerical methods for MHD. Following this, we will focus on two broad classes
of nonlinearly implicit methods: Newton-Krylov (Section 3) and FAS or nonlinear multigrid
(Section 4). Instead of writing a survey of a large number of implicit methods, we will present
details of implicit methods with explanations of two different Newton-Krylov approaches
(differing in the preconditioning approach) and on one nonlinear multigrid implementation
for MHD. The chapter will close with a section on simulation test cases, and finally a
conclusion section.

1.1.1 Rationale for implicit treatment

In compressible MHD we encounter the fast magnetosonic, Alfvén, and the slow
magnetosonic waves. Typically, plasma confinement devices, such as tokamaks, stellarators,
reversed field pinches etc. are characterized by a long scale length in the direction of the
magnetic field, and shorter length scale phenomena in the direction perpendicular to the
field. For example, in a tokamak, the magnetic field is dominantly along the toroidal direction
and consequently the long length scale is mostly along the toroidal direction whereas the
short scales are in the radial-poloidal plane. It is known that the Alfvén wave is a transverse
wave with fastest propagation along the magnetic field. The fast magnetosonic, i.e., the fast
compressional wave, is also anisotropic with the fastest propagation perpendicular to the
magnetic field. In explicit methods, the time step is restricted by the familiar CFL condition.
Several MHD phenomena are studied for long-time behavior where long-time is of the order
of resistive or a combination of resistive-Alfvén time scales. For such investigations, the CFL
condition implies an overly restrictive time step which translates to an enormous number of
time steps. It is advantageous and desirable to design numerical schemes which allow us to
have time steps larger than that imposed by the CFL condition, and yet the computational
cost of each time step is only slightly larger than the explicit case. Finally, we remark that
as we progress towards petascale computing and beyond to exascale, it is well recognized
that breakthroughs and discoveries in science will be well-enabled by massive computations.
However, hardware capability alone will not be sufficient and must be complemented by a
large increase in efficiency by the development of clever algorithms. Implicit methods may
prove beneficial as simulations increase in scale, since explicit methods can succumb to poor
parallel weak scaling (Keyes et al. (2006)).

1.2 Resistive MHD equations

The single-fluid resistive MHD equations couple the equations of hydrodynamics and
resistive low-frequency Maxwell’s equations, and may be written in conservation form as

∂U
∂t

+ ∇ · F(U)︸ ︷︷ ︸
hyperbolic terms

= ∇ · Fd(U)︸ ︷︷ ︸
di f f usive terms

,

∂U
∂t

+ R(U) = 0 (1)
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where R(U) ≡ ∇ · F(U)−∇ · Fd(U), and the solution vector U ≡ U(x, t) is

U = {ρ, ρu, B, e}T

and the hyperbolic flux vector F(U) and the diffusive fluxes Fd(U) are given by

F(U) =

{
ρu , ρuu +

(
p +

1
2

B · B
)

¯̄I − BB ,

uB − Bu ,
(

e + p +
1
2

B · B
)

u − B(B · u)
}T

,

Fd(U) =
{

0 , Re−1 ¯̄ø , S−1
(

η∇B − η(∇B)T
)

,

Re−1 ¯̄ø · u +
γ

γ − 1
κ

Re Pr
∇T +

η

S

(
1
2
∇(B · B)− B(∇B)T

)}T
.

(2)

In the above equations ρ is the density, u is the velocity, B is the magnetic field, p and T
are the pressure and temperature respectively, and e is the total energy per unit volume of
the plasma. The plasma properties are the resistivity η, the thermal conductivity κ, and the
viscosity μ, which have been normalized, respectively, by a reference resistivity ηR, a reference
conductivity κR, and a reference viscosity μR. The ratio of specific heats is denoted by γ
and generally fixed at 5/3 in most MHD simulations. The non-dimensional parameters in
the above equations are the Reynolds number, defined as Re ≡ ρ0U0L/μR, the Lundquist
number, defined as S ≡ μ0U0L/ηR, and the Prandtl number, denoted by Pr, which is the
ratio of momentum to thermal diffusivity. The non-dimensionalization is carried out using a
characteristic length scale, L, and the Alfvén speed U0 = B0/

√
μ0ρ0, where B0, ρ0, and μ0 are

the characteristic strength of the magnetic field, a reference density, and the permeability of
free space, respectively. The equations are closed by the following equation of state

e =
p

γ − 1
+

ρ

2
u · u +

1
2

B · B,

and the stress-strain tensor relation

¯̄ø = μ
(
∇u + (∇u)T

)
− 2

3
μ∇ · u¯̄I.

Finally, a consequence of Faraday’s law is that an initially divergence-free magnetic field
must lead to a divergence-free magnetic field for all times, which corresponds to the lack
of observations of magnetic monopoles in nature. This solenoidal property is expressed as
∇ · B = 0.

In the limit of zero resistivity, conductivity and viscosity, the equations of resistive MHD
reduced to those of ideal MHD. These equations are similar to those written above with
κ = μ = η = 0. Ideal MHD equations are hyperbolic PDEs (although not strictly hyperbolic).

2. Brief survey of implicit methods for MHD

2.1 Early approaches

An implicit treatment of the fast magnetosonic wave coupled with arguments of large length
scales dominantly in a certain direction allows one to investigate long-time scale phenomena
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in MHD in a computationally efficient manner. The approach discussed here was developed
by Harned & Kerner (1985). We begin our discussion with a model problem which exposes
the philosophy behind the implicit treatment of the fastest waves in MHD. Consider the
following hyperbolic system of equations.

∂u
∂t

= a
∂v
∂x

,

∂v
∂t

= a
∂u
∂x

.
(3)

This can be rewritten as
∂2u
∂t2 = a2 ∂2u

∂x2 . (4)

We then subtract a term from either side of the above equation as

∂2u
∂t2 − a2

0
∂2u
∂x2 = a2 ∂2u

∂x2 − a2
0

∂2u
∂x2 , (5)

where a0 is a constant coefficient chosen mainly from stability considerations. Furthermore,
a0 is something which mimics the behavior of a, perhaps in some limit. The underlying idea
of the semi-implicit methods discussed here is this: the term containing a0 on the left hand
side of eqn. (4) is treated implicitly, while the same term on the right hand side of eqn. (4) is
treated explicitly. Moreover, the cost of solving the linear system stemming from the implicit
treatment of the term containing a0 should be small relative to the total cost of evolving the
entire system. Harned and Kerner generalized the above approach to the MHD system in
a slab geometry, with implicit treatment of the fast compressional wave. Furthermore, their
method was applicable to a case where the scale lengths in the z-direction are much longer
than those in the x-y plane. The fastest time scale is then due to the fast compressional wave in
the x-y plane. The method for the implicit treatment of the shear Alfvén wave was proposed
by Harned & Schnack (1986). The procedure is somewhat similar to the one adopted for the
fast compressional wave except the linear term which is subtracted on the velocity evolution
equation has a different form. The implicit treatment of the shear Alfvén wave is, in general,
more problematic and required certain ad-hoc heuristics to be employed for stability (See
Reference Harned & Schnack (1986) for details).

The above approaches may be classified as linearly implicit. An example of a nonlinearly
implicit method is the work of Jones, Shumlak & Eberhardt (1997) on an upwind implicit
method for resistive MHD. Their method applied to ideal MHD equations may be written
as:

∂U
∂t

= −R(U) = −
(

∂F
∂x

+
∂G
∂y

)
(6)

where R(U) is the divergence of the hyperbolic fluxes (here in this 2D discussion, F and G
denote the fluxes in the x− and y− directions, respectively). The above equation (or rather
system of equations) is discretized in time as

1
2Δt

(3Un+1
i,j − 4Un

i,j + Un−1
i,j ) = −Rn+1

i,j (7)
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The above equation is implicit and is solved iteratively. Let Un+1,k denote the k-th iteration of
the solution at the n + 1-th time level. Rewrite the above equation as
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= −Rn+1,k+1

i,j , (8)

where (
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A truncated Taylor series expansion yields:
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where ΔUk
i,j = Un+1,k+1

i,j − Un+1,k
i,j . The partial derivative of the divergence of the hyperbolic

fluxes with respect to the solution vector is difficult to evaluate for second order upwind
schemes. Hence, at this stage an approximation is made, i.e., such terms are evaluated with
a first order scheme. The first order hyperbolic flux divergence, denoted as R̄ is at point (i, j)
is coupled to the neighboring four points in 2D. R̂i,j ≡ R̂(Ui,j, Ui+ 1

2 ,j, Ui− 1
2 ,j, Ui,j+ 1

2
, Ui,j− 1

2
).

Substituting all back into equation (8) gives

[
∂R̂k

i,j

∂U
+

3I
2Δt

]
ΔUk

i,j = −
[

Rk
i,j +

(
∂U
∂t

)k

i,j

]
(12)

The above equation is linear and iterated until ΔUk
ij is driven to zero. The matrix in the linear

system above is a large banded matrix and will be generally expensive to invert. Instead Jones
et al. recommend the use of further approximations and using a lower-upper Gauss-Seidel
(LU-SGS) technique. The hyperbolic fluxes R are evaluated with the Harten’s approximate
Riemann solver (Harten (1983)), applied with the framework of the eight-wave scheme
developed by Powell et al. (1999). One philosophical concern about implicit upwinding
methods is as follows. Generally, upwind methods are based on the solution of a Riemann
problem at cell faces; such a solution is self-similar in time, i.e. depends only on x/t for times
until the waves from neighboring cell faces Riemann problems start interacting. In traditional
explicit upwind methods, this problem is avoided because we are operating within the CFL
limit. In an implicit method, the CFL limit is violated and waves from neighboring Riemann
solvers will interact. One may adopt the viewpoint that upwind methods are, in a sense,
providing dissipation proportional to each wave and decrease the dispersion error which
are the bane of central difference schemes. Adopting this viewpoint, one may ignore the
interactions between neighboring Riemann problems.
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(LU-SGS) technique. The hyperbolic fluxes R are evaluated with the Harten’s approximate
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limit. In an implicit method, the CFL limit is violated and waves from neighboring Riemann
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are the bane of central difference schemes. Adopting this viewpoint, one may ignore the
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2.2 Modern approaches

We, somewhat arbitrarily, classify fully implicit numerical methods (in distinction from
semi-implicit or linearly implicit) as “modern”. The main feature which distinguishes these
approaches from semi-implicit or linear implicit is the ability to allow for very large time
steps. The modern era of fully nonlinearly implicitly solvers was ushered in the since the
early-mid nineties. Broadly the fully implicit methods can be classified as: (a) Newton-Krylov
and (b) nonlinear multigrid (also known as FAS, i.e., full approximation scheme). An early
example of an implicit Newton-Krylov-Schwarz method applied to aerodynamics was by
Keyes (1995). Several papers subsequently appeared in the mid-late nineties and in early
part of this century in fluid dynamics. Newton-Krylov methods found applicability in MHD
in the early 2000s. In the subsequent sections, we will elaborate on both the Newton-Krylov
and nonlinear multigrid as applied to MHD.

3. Newton-Krylov (NK) methods for MHD

3.1 General approach

The entire ideal MHD (or resistive MHD and beyond) can be written as a nonlinear function
as follows:

F (Un+1) = 0, (13)

where Un+1 is the vector of unknowns at time step n + 1. For example, if we use a θ-scheme,
one can write the nonlinear function as:

F (Un+1) = Un+1 − Un + θΔtR(Un+1) + (1 − θ)ΔtR(Un) = 0, (14)

where R(U) is the divergence of the fluxes (see equation 1). For compressible MHD, on a two
dimensional N × M mesh, the total number of unknowns would then be 8MN. The above
nonlinear systems can be solved using an inexact Newton–Krylov solver. Apply the standard
Newton’s method to the above nonlinear system gives

δUk = −
[(

∂F
∂U

)n+1,k
]−1

F , (15)

where J(Un+1,k) ≡
(

∂F
∂U

)n+1,k
is the Jacobian; and δUk ≡ Un+1,k+1 − Un+1,k, and k is the

iteration index in the Newton method. For the two dimensional system the Jacobian matrix is
8MN × 8MN which, although sparse, is still impractical to invert directly.

In NK methods, the linear system at each Newton step is solved by a Krylov method. In
Krylov methods, an approximation to the solution of the linear system JδU = −F is obtained
by iteratively building a Krylov subspace of dimension m defined by

K(r0, J) = span{r0, Jr0, J2r0, · · · , Jm−1r0}, (16)

where r0 is the initial residual of the linear system. The Krylov method can be either: one
in which the solution in the subspace minimizes the linear system residual, or two in which
the residual is orthogonal to the Krylov subspace. Within Newton-Krylov methods the two
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most commonly used Krylov methods are GMRES (Generalized Minimum Residual) and
BiCGStab (Bi conjugate gradient stabilized) which can both handle non-symmetric linear
systems. GMRES is very robust but generally is heavy on memory usage, while BiCGStab
has a lower memory requirement, it is less robust given that the residual is not guaranteed to
decrease monotonically.

Steps in a typical NK solver are the following:

1. Begin by guessing the solution Un+1,0. Typically the initial guess is Un+1,0 = Un.
2. For each Newton iteration k = 1, 2, · · ·

(a) Using a Krylov method, approximately solve for δUk,
J(Uk)δUk = −F (Un+1,k) so that ||J(Uk)δUk +F (Un+1,k)|| < Itol.
Each Krylov iteration requires:
a. One matrix-vector multiply with J
b. One preconditioner solve

3. Update the Newton iterate, Un+1,k+1 = Un+1,k + λδUk

4. Test for convergence ||F (Un+1,k+1)|| < f tol.

It the approximate solution Un+1,k is “close” to the true solution U∗ of the nonlinear system,
the convergence is quadratic, i.e.,

||Un+1,k+1 − U∗|| ≤ C||Un+1,k − U∗||2, (17)

where C is a constant independent of Un+1,k and U∗. This result assumes that the linear
system is solved exactly. If the linear systems are solved inexactly as in the Newton-Krylov
method, then Itol, the linear system tolerance, has to be carefully chosen. In inexact NK, Itol =
ηk||F k||. Quadratic convergence is retained if ηk = C||F k||. If we impose the condition that
limk→∞ηk = 0 then convergence is super-linear, and if ηk is constant for all k then convergence
is linear. Since Newton’s method may be viewed as a linear model of the original nonlinear
system, the model is a better approximation as the solution is approached. When “far” from
the solution, it is not essential to solve the linear system to machine-zero convergence. The
following choices for ηk are recommended which take into account how well the nonlinear
system is converging.

ηk =

∣∣∣||F k − ||Jk−1δUk−1 +F k−1||
∣∣∣

||F k−1|| (18)

ηk = γ1

(
||F k||

||F k−1||

)γ

2

, (19)

where γ1 = 0.9 and γ2 = 2 as recommended by Eisenstat & Walker (1996). The first of these
choices is how well the linear model agreed with the nonlinear system at the prior step, while
the second uses a measure of the rate of convergence of the linear system.

In examining the Krylov methods, we notice that these require only matrix-vector products.
Thus it is never necessary to store the entire Jacobian matrix. Hence the term “Jacobian-Free
Newton-Krylov” (abbreviated JFNK) is frequently encountered in the literature. Furthermore,
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systems. GMRES is very robust but generally is heavy on memory usage, while BiCGStab
has a lower memory requirement, it is less robust given that the residual is not guaranteed to
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1. Begin by guessing the solution Un+1,0. Typically the initial guess is Un+1,0 = Un.
2. For each Newton iteration k = 1, 2, · · ·

(a) Using a Krylov method, approximately solve for δUk,
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Each Krylov iteration requires:
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4. Test for convergence ||F (Un+1,k+1)|| < f tol.
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for complicated nonlinear systems such as those arising in MHD, the Jacobian entries are not
even known analytically. Instead one can conveniently evaluate the Jacobian vector product
using first order finite differences as follows:

J(Uk)δUk ≈ F (Un+1,k + σδUk)−F (Un+1,k)

σ
, (20)

where σ is typically used as the square root of machine zero. The above expression
assumes that F is sufficiently differentiable, a property which is easily violated in upwind
methods with its myriad switches, and limited-reconstruction methods. The beauty of the
Newton-Krylov method as outlined above is that it only relies on the evaluation of the
nonlinear function F . For a detailed review of the field of JFNK see the review paper by
Knoll & Keyes (2004).

3.2 Preconditioners

Since all operations in the Newton-Krylov context require only linear complexity operations,
the key component required for scalability of fully implicit simulations using this technology
is an optimal preconditioning strategy for the inner Krylov linear solver (Kelley (1995);
Knoll & Keyes (2004)). In Newton-Krylov algorithms, at each Newton iteration a Krylov
iterative method is used to solve Jacobian systems of the form

J(U)V = −F (U), J(U) ≡ I + γ
∂

∂U

(
R(U)

)
, γ = θΔt. (21)

The number of iterations required for convergence of a Krylov method depends on
the eigenstructure of J, where systems with clustered eigenvalues typically result in
faster convergence than those with evenly distributed eigenvalues (Greenbaum (1997);
Greenbaum et al. (1996); Trefethen & Bau (1997)). Unfortunately, for a fixed Δt, as the spatial
resolution is refined the distribution of these eigenvalues spreads, resulting in increased
numbers of Krylov iterations and hence non-scalability of the overall solution algorithm. The
role of a preconditioning operator P is to transform the original Jacobian system (21) to either

JP−1PV = − f (right prec.), or P−1 JV = −P−1 f (left prec.).

The Krylov iteration is then used to solve one of

(JP−1)W = − f , or (P−1 J)V = X,

where X = −P−1 f is computed prior to the Krylov solve or V = P−1W is computed after
the Krylov solve. Scalable convergence of the method then depends on the spectrum of
the preconditioned operator (JP−1 or P−1 J), as opposed to the original Jacobian operator J.
Hence, an optimal preconditioning strategy will satisfy the two competing criteria:

1. P ≈ J, to help cluster the spectrum of the preconditioned operator.
2. Application of P−1 should be much more efficient than solution to the original system,

optimally with linear complexity as the problem is refined and with no dependence on an
increasing number of processors in a parallel simulation.
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We note that the approximations used in the preconditioner should have no effect on the
overall accuracy of the nonlinear system. It can be shown that JFNK method applied
with right preconditioning preserves the conservation properties of the equations written
in conservation form (Chacón (2004)) regardless of the nonlinear convergence tolerances.
However, one cannot prove this for left preconditioning unless the solution is converged to
machine precision (Chacón (2004)).

Preconditioners can be divided into two broad classes:

• Algebraic preconditioners: The nature of such preconditioners is of the “black-box” type.
These represent a close representation of the Jacobian and are obtained using relatively
inexpensive algebraic techniques such as stationary iterative techniques, incomplete LU
decomposition, multigrid techniques etc. These preconditioners typically require forming
and storing the Jacobian matrix.

• “Physics-based” preconditioners: These preconditioners are derived from other techniques
such Picard iteration, or by semi-implicit techniques. They do not require forming and
storing the entire Jacobian matrix and can be harnessed for Jacobian-free implementations.
The form of the preconditioners here generally tend to exploit the structure of the PDEs
themselves and in this sense this type of preconditioning is “physics-based”.

3.3 JFNK method for resistive MHD I

In this section, we essentially reproduce the work by Chacón (2008a), wherein a JFNK
approach for resistive MHD with physics based preconditioners has been developed. The
approach, given below, essentially relies on the trick of “parabolization” and using a Schur
complement approach. Parabolization refers to the technique by which a hyperbolic system
is converted to a parabolic one which is then amenable to multigrid techniques.

3.3.1 A model illustration

Consider the following hyperbolic system

∂u
∂t

= a
∂v
∂x

,

∂v
∂t

= a
∂u
∂x

. (22)

Differencing with backward Euler we get

un+1 = un + a
(

∂v
∂x

)n+1
,

vn+1 = vn + a
(

∂u
∂x

)n+1
. (23)

Substitute the second equation into the first to obtain:

(
I − a2Δt2 ∂2

∂x2

)
un+1 = un + aΔt

(
∂v
∂x

)n
, (24)
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the key component required for scalability of fully implicit simulations using this technology
is an optimal preconditioning strategy for the inner Krylov linear solver (Kelley (1995);
Knoll & Keyes (2004)). In Newton-Krylov algorithms, at each Newton iteration a Krylov
iterative method is used to solve Jacobian systems of the form

J(U)V = −F (U), J(U) ≡ I + γ
∂

∂U

(
R(U)

)
, γ = θΔt. (21)

The number of iterations required for convergence of a Krylov method depends on
the eigenstructure of J, where systems with clustered eigenvalues typically result in
faster convergence than those with evenly distributed eigenvalues (Greenbaum (1997);
Greenbaum et al. (1996); Trefethen & Bau (1997)). Unfortunately, for a fixed Δt, as the spatial
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JP−1PV = − f (right prec.), or P−1 JV = −P−1 f (left prec.).
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(JP−1)W = − f , or (P−1 J)V = X,

where X = −P−1 f is computed prior to the Krylov solve or V = P−1W is computed after
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the preconditioned operator (JP−1 or P−1 J), as opposed to the original Jacobian operator J.
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1. P ≈ J, to help cluster the spectrum of the preconditioned operator.
2. Application of P−1 should be much more efficient than solution to the original system,

optimally with linear complexity as the problem is refined and with no dependence on an
increasing number of processors in a parallel simulation.
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We note that the approximations used in the preconditioner should have no effect on the
overall accuracy of the nonlinear system. It can be shown that JFNK method applied
with right preconditioning preserves the conservation properties of the equations written
in conservation form (Chacón (2004)) regardless of the nonlinear convergence tolerances.
However, one cannot prove this for left preconditioning unless the solution is converged to
machine precision (Chacón (2004)).

Preconditioners can be divided into two broad classes:

• Algebraic preconditioners: The nature of such preconditioners is of the “black-box” type.
These represent a close representation of the Jacobian and are obtained using relatively
inexpensive algebraic techniques such as stationary iterative techniques, incomplete LU
decomposition, multigrid techniques etc. These preconditioners typically require forming
and storing the Jacobian matrix.

• “Physics-based” preconditioners: These preconditioners are derived from other techniques
such Picard iteration, or by semi-implicit techniques. They do not require forming and
storing the entire Jacobian matrix and can be harnessed for Jacobian-free implementations.
The form of the preconditioners here generally tend to exploit the structure of the PDEs
themselves and in this sense this type of preconditioning is “physics-based”.

3.3 JFNK method for resistive MHD I

In this section, we essentially reproduce the work by Chacón (2008a), wherein a JFNK
approach for resistive MHD with physics based preconditioners has been developed. The
approach, given below, essentially relies on the trick of “parabolization” and using a Schur
complement approach. Parabolization refers to the technique by which a hyperbolic system
is converted to a parabolic one which is then amenable to multigrid techniques.

3.3.1 A model illustration

Consider the following hyperbolic system

∂u
∂t

= a
∂v
∂x

,

∂v
∂t

= a
∂u
∂x

. (22)

Differencing with backward Euler we get

un+1 = un + a
(

∂v
∂x

)n+1
,

vn+1 = vn + a
(

∂u
∂x

)n+1
. (23)

Substitute the second equation into the first to obtain:

(
I − a2Δt2 ∂2

∂x2

)
un+1 = un + aΔt

(
∂v
∂x

)n
, (24)
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which is is much better conditioned because the parabolic operator is diagonally dominant.
Multigrid techniques usually perform well on elliptic and parabolic operators do poorly on
hyperbolic operators which are diagonal submissive.

We now turn to parabolization by the Schur complement approach.
�

D1 U

L D2

�
=

�
I UD−1

2

0 I

� �
D1 − UD−1

2 L 0

0 D2

� �
I 0

D−1
2 L I

�
. (25)

Stiff off-diagonal blocks L and U are now shifted to the diagonal via the Schur complement

D1 − UD−1
2 L. Applied to the model system above, D1 − UD−1

2 L =
�

I − a2Δt2 ∂2

∂x2

�
.

3.3.2 Application to resistive MHD

We begin by examining the linearized resistive MHD equations. These are written as

δρ = Lρ(δρ, δv) (26)

δp = Lp(δp, δv) (27)

δB = LB(δB, δv) (28)

δv = Lv(δv, δB, δρ, δp), (29)

which illustrates the couplings between the various unknowns. In NK the Jacobian has the
following coupling

JδU =

⎡
⎢⎢⎢⎢⎢⎣

Dρ 0 0 Uρv

0 Dp 0 Upv

0 0 DB UBv

Lρv Lpv LBv Dv

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

δρ

δp

δB

δv

⎤
⎥⎥⎥⎥⎥⎦

, (30)

which shows that the momentum equations are intimately coupled with other equations but
that the density is only coupled with the velocity nonlinearly and so on. The diagonal blocks
are of the “advection-diffusion” type and clearly amenable to multigrid and easily inverted.
The off-diagonal terms denoted by L and U contain the hyperbolic couplings. The above
Jacobian is rewritten as

JδU =

�
M U
L Dv

��
δu

δv

�
, (31)

where

δu =

⎛
⎜⎜⎝

δρ

δp

δB

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

Dρ 0 0

0 Dp 0

0 0 DB

⎞
⎟⎟⎠ . (32)
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The matrix M above is relatively easy to invert and is amenable to multigrid. The Schur
complement analysis of the above 2 × 2 system is given below:

[
M U

L Dv

]−1

=

[
I 0

−LM−1 I

] [
M−1L 0

0 P−1
S

] [
I −M−1U

0 I

]
. (33)

where PS = Dv − LM−1U is the Schur complement. The exact Jacobian inverse require M−1

and P−1
S . The following predictor-corrector algorithm is proposed.

δu∗ = −M−1Fu (Predictor) (34)

δv∗ = −P−1
S [Fv − Lδv∗] (Velocity update) (35)

δu = δu∗ − M−1Uδv (Corrector). (36)

Multigrid is impractical for PS because of the M−1 factor and hence some simplifications are
desirable. For the velocity update and the corrector part in the above equations, we can treat
M−1 ≈ Δt. This gives

δu∗ = −M−1Fu (37)

δv∗ = −P−1
SI [Fv − Lδv∗] (38)

δu = δu∗ − ΔtUδv, (39)

where PSI = Dv −ΔtLU and is block-diagonally dominant. Multigrid is employed to compute
the inverse of PSI and M.

3.4 NK method for resistive MHD II

In this section, we discuss yet another NK approach to resistive MHD. This section is
essentially based on the work by Reynolds et al. (2006) in which they have developed a fully
implicit Jacobian-Free NK method for compressible MHD. The main difference between this
section and the previous one is in the preconditioning strategy employed during the Krylov
step.

The resistive MHD equations are rewritten in a form which allows a method-of-lines
approach. Reynolds et al. use a BDF method (up to fifth order accurate):

g(Un) ≡ Un − Δtnβn,0R(Un)−
qn

∑
i=1

[
αn,iU

n−i + Δtnβn,iR(U
n−i)

]
, (40)

where R(U) is defined using the divergence of the fluxes (both hyperbolic and diffusion terms)
as in equation (1). The time-evolved state Un solves the nonlinear residual equation g(U) =
0. qn determines the method’s order of accuracy and at qn = {1, 2} the method is stable
for any Δtn, with stability decreases as qn increases. αn,i and βn,i are fixed parameters for
a given method order qn. In this approach Δtn, qn are adaptively chosen at each time step
to balance solution accuracy, solver convergence, and temporal stability (Hindmarsh (2000)).
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Multigrid is impractical for PS because of the M−1 factor and hence some simplifications are
desirable. For the velocity update and the corrector part in the above equations, we can treat
M−1 ≈ Δt. This gives

δu∗ = −M−1Fu (37)
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SI [Fv − Lδv∗] (38)

δu = δu∗ − ΔtUδv, (39)

where PSI = Dv −ΔtLU and is block-diagonally dominant. Multigrid is employed to compute
the inverse of PSI and M.

3.4 NK method for resistive MHD II

In this section, we discuss yet another NK approach to resistive MHD. This section is
essentially based on the work by Reynolds et al. (2006) in which they have developed a fully
implicit Jacobian-Free NK method for compressible MHD. The main difference between this
section and the previous one is in the preconditioning strategy employed during the Krylov
step.

The resistive MHD equations are rewritten in a form which allows a method-of-lines
approach. Reynolds et al. use a BDF method (up to fifth order accurate):

g(Un) ≡ Un − Δtnβn,0R(Un)−
qn

∑
i=1

[
αn,iU

n−i + Δtnβn,iR(U
n−i)

]
, (40)

where R(U) is defined using the divergence of the fluxes (both hyperbolic and diffusion terms)
as in equation (1). The time-evolved state Un solves the nonlinear residual equation g(U) =
0. qn determines the method’s order of accuracy and at qn = {1, 2} the method is stable
for any Δtn, with stability decreases as qn increases. αn,i and βn,i are fixed parameters for
a given method order qn. In this approach Δtn, qn are adaptively chosen at each time step
to balance solution accuracy, solver convergence, and temporal stability (Hindmarsh (2000)).
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Alternatively one may also use a θ-scheme

g(Un) = Un − Un−1 + Δt
(

θR(Un) + (1 − θ)R(Un−1)
)

, (41)

where θ = 0.5 corresponds to a Crank-Nicholson approach. The inexact Jacobian-Free NK
approach is adopted to solve the nonlinear function g(Un). The divergence of the fluxes in (1)
is discretized using the following finite difference form

(
∂ f
∂x

)

i,j,k
=

f̃ i+ 1
2 ,j,k − f̃ i− 1

2 ,j,k

Δx
, (42)

where f may represent either the hyperbolic or the parabolic fluxes, and Δx is the mesh
spacing in the x-direction (assumed uniform). The quantity f̃ i+ 1

2 ,j,k is referred to as the

numerical flux through the face {i + 1
2 , j, k} and is computed as a linear combination of the

fluxes at cell centers as

f̃ i+ 1
2 ,j,k =

n

∑
ν=−m

aν fi+ν,j,k. (43)

Reynolds et al. give the options for several spatial difference schemes. For a second-order
central difference implementation, m = 0, n = 1 and a0 = a1 = 1

2 ; for a fourth-order
central difference approximation, m = 1, n = 2, and a−1 = a2 = −1

12 , a0 = a1 = 7
12 ; and

for tuned second-order central differences, a−1 = a2 = −0.197, a0 = a1 = 0.697 (Hill & Pullin
(2004)). These central difference approximations are free of dissipation errors, except perhaps
near domain boundaries. They do, however, suffer from dispersion errors. Consequently,
physical phenomena that are not well resolved can suffer from ringing. The dispersion errors
can be minimized by using schemes such as the tuned-second order scheme, mentioned
above, which has lower dispersion error than the central difference schemes. The numerical
approximation to the divergence ∇ · B is written as

∇ · B =
B̃x

i+ 1
2 ,j,k

− B̃x
i− 1

2 ,j,k

Δx
+

B̃y
i,j+ 1

2 ,k
− B̃y

i,j− 1
2 ,k

Δy
+

B̃z
i,j,k+ 1

2
− B̃z

i,j,k− 1
2

Δz

+O(Δxp) +O(Δyp) +O(Δzp) (44)

where Bα is the α-component of the magnetic field, and the terms B̃α are evaluated as shown
in equation (43), and p is the order of the spatial derivatives. If the numerical approximation
of ∇ · B is ensured to be zero at t = 0 then it can be easily shown that the numerical fluxes, as
computed above, ensure the solenoidal property of the magnetic field in the discrete sense is
automatically satisfied. This conservation property of preserving the solenoidal nature of the
magnetic field in an implicit method is generally very desirable.

3.4.1 Preconditioner formulation

The preconditioner strategy, overall, uses an operator split approach to separate the
wave-dominated portion from the diffusion portion. Instead of solving J δU = −g, we solve
the related system (JP−1)(P δU) = −g, i.e., the right preconditioning approach is adopted.
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Since MHD stiffness results from fast hyperbolic and diffusive effects, we set

P−1 = P−1
h P−1

d = J(U)−1 +O(Δt2).

This operator-splitting approach, widely used as a stand-alone solver, is used to accelerate
convergence of the more stable and accurate implicit NK approach.

Ph: Ideal MHD Preconditioner: The ideal MHD preconditioner discussed here essentially
exploits the local wave structure of the underlying hyperbolic portion of the PDEs. Hence this
approach may be dubbed a “wave-structure”-based preconditioner. For linear multistep time
integration approaches, it is convenient to first rewrite the nonlinear problem (40) in the form

f (U) = U + γ
[
∂xF(U) + ∂yG(U) + ∂z H(U)

]
+ g = 0, (45)

where the terms F(U), G(U) and H(U) denote the x, y and z directional hyperbolic fluxes,
and the term g incorporates previous time-level information into the discretized problem.
This nonlinear problem has Jacobian

J(U) = I + γ
[
∂x(JF(U)(·)) + ∂y(JG(U)(·)) + ∂z(JH(U)(·))

]
, (46)

with, e.g., JF(U) = ∂
∂U F(U). Using the notation (·) to denote the location at which the action

of the linear operator takes place, e.g.

[I + γ∂x(JF(U)(·))]V = V + γ∂x(JF(U)V).

Omitting the explicit dependence on U from the notation, and introducing nonsingular
matrices LF, LG and LH , re-write the Jacobian system (46) as

J = I + γ
[
∂x

(
JF L−1

F LF(·)
)
+ ∂y

(
JGL−1

G LG(·)
)
+ ∂z

(
JH L−1

H LH(·)
)]

= I + γ
[

JF L−1
F ∂x (LF(·)) + ∂x

(
JF L−1

F

)
LF(·)

+ JGL−1
G ∂y (LG(·)) + ∂y

(
JGL−1

G

)
LG(·)

+JH L−1
H ∂z (LH(·)) + ∂z

(
JH L−1

H

)
LH(·)

]

= I + γ
[

JF L−1
F ∂x (LF(·)) + JGL−1

G ∂y (LG(·)) + JH L−1
H ∂z (LH(·))

+∂x

(
JF L−1

F

)
LF(·) + ∂y

(
JGL−1

G

)
LG(·) + ∂z

(
JH L−1

H

)
LH(·)

]
.

The preconditioning scheme in this approach is based on the assumption that the majority
of the stiffness found in the Jacobian is a result of a small number of very fast hyperbolic
waves. To develop an approach for separately treating only these fast waves, consider the
preconditioning matrix, P, constructed using a directional and operator-based splitting of J,

P =
[

I + γJF L−1
F ∂x (LF(·))

] [
I + γJGL−1

G ∂y (LG(·))
] [

I + γJH L−1
H ∂z (LH(·))

]
[

I + γ∂x

(
JF L−1

F

)
LF + γ∂y

(
JGL−1

G

)
LG + γ∂z

(
JH L−1

H

)
LH

]

= J + O(γ2).

(47)
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The preconditioning scheme in this approach is based on the assumption that the majority
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preconditioning matrix, P, constructed using a directional and operator-based splitting of J,

P =
[

I + γJF L−1
F ∂x (LF(·))

] [
I + γJGL−1

G ∂y (LG(·))
] [

I + γJH L−1
H ∂z (LH(·))

]
[

I + γ∂x

(
JF L−1

F

)
LF + γ∂y

(
JGL−1

G

)
LG + γ∂z

(
JH L−1

H

)
LH

]

= J + O(γ2).

(47)
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Denote these components as P = PFPGPHPlocal. Through constructing the operator P as
a product in this manner, the preconditioner solve consists of 3 simpler, 1-dimensional
implicit advection problems, along with one additional correction for spatial variations in the
directional Jacobians JF , JG and JH . Hence, Pu = b may be solved via the steps (i) PF χ = b, (ii)
PG w = χ, (iii) PH v = w, and (iv) Plocal u = v. Note that the splitting (47) is not unique, and
that in fact these operations can be applied in any order. The technique for efficient solution
of each of the above systems is presented in the ensuing paragraphs.

Directional Preconditioner Solves:
First consider solution of the three preconditioning systems PF, PG and PH from (47) of the
form, e.g. (x-direction)

PFχ = b ⇔ χ + γ JF L−1
F ∂x (LFχ) = b. (48)

To this point LF , LG, and LH are still unspecified. These are n × n matrices (n = 7 or 8 for
compressible MHD depending upon whether the seven- or eight-wave formulation is used)
whose rows are the left eigenvectors of the respective Jacobians, giving the identities,

LF JF = ΛF LF , ΛF = diag(λ1, . . . , λn), JFRF = RFΛF ,

where RF ≡ L−1
F are the right eigenvectors (n × n column matrix), and λk are the eigenvalues

of JF . Through pre-multiplication of (48) by LF, gives

LFχ + γ LF JFRF∂x (LFχ) = LFb ⇔ LFχ + γ ΛF∂x (LFχ) = LFb.

Defining the vector of characteristic variables w = LFχ, decouple the equations as ,

w + γΛF∂xw = LFb ⇔ wk + γλk∂xwk = βk, k = 1, . . . , n,

where wk denotes the k-th element of the characteristic vector w, and β = LFb.

Spatial discretization of each of the characteristic variables wk in the same manner as
the original PDE (1), results in a tightly-banded linear system of equations (tridiagonal,
pentadiagonal, etc., depending on the method), to solve for the values wk

j . For example the

tridiagonal version due to a O(Δx2) finite-difference discretization is

wk
j +

γλk
j

2Δx

(
wk

j+1 − wk
j−1

)
= βk

j . (49)

Reynolds et al. use a second order centered finite-volume approximation, with resulting
systems for each wk that are tridiagonal. Moreover, the above approach results not only
in tridiagonal systems for each characteristic variable wk, but the systems are in fact block
tridiagonal, where each block corresponds to only one spatial {x, y, z} row that is decoupled
from all other rows through the domain in the same direction. Thus solution of these
linear systems can be very efficient, as the computations on each row may be performed
independently of one another.

Furthermore, since the initial assumption was that the stiffness of the overall system resulted
from a few very fast waves, one may not construct and solve the above systems for each
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characteristic variable wk. In cases where the wave speeds can be estimated, a pre-defined
cutoff to the number of waves included in the preconditioner can be set. This reduction
allows for significant savings in preconditioner computation. For those waves that are not
preconditioned, approximate them as having wave speed equal to zero, i.e. solving with the
approximation Λ̂F = diag(λ1, . . . , λq, 0, . . . , 0). Omission of the (n − q) slowest waves in this
fashion amounts to a further approximation of the preconditioner to the original discretized
PDE system. Writing P̂F as the x-directional preconditioner based on q waves, consider
�χ − χ̂�p, where χ solves PFχ = b and χ̂ solves P̂Fχ̂ = b, i.e.

χ + γJFRF∂x(LFχ) = b, χ̂ + γ ĴFRF∂x(LFχ̂) = b,

where ĴF = RFΛ̂F LF . Left-multiplying by LF and proceeding as before, to obtain

w + γΛF∂xw = LFb, ŵ + γΛ̂F∂xŵ = LFb,

⇔
wk + γλk∂xwk = (LFb)k, k = 1, . . . , n

ŵk + γλk∂xŵk = (LFb)k, k = 1, . . . , q

ŵk = (LFb)k, k = q + 1, . . . , n.

Since the eigenvector matrices LF and RF may be renormalized as desired, and the eigenvalues
are ordered so that λi ≥ λj, for i < j, the dominant error from preconditioning only the q
fastest waves is approximately

|γλq+1/Δx|
1 − |γλq+1/Δx| .

Hence omission of waves with small eigenvalues compared to the dynamical time scale
(i.e. γλ � 1) will not significantly affect preconditioner accuracy.

Local Non-Constant Coefficient Correction Solve:

The remaining component of the split preconditioner (47) comprises the local system Plocalu =
v,

[
I + γ∂x (JFRF) LF + γ∂y (JGRG) LG + γ∂z (JHRH) LH

]
u = v

⇔ [
I + γ∂x (RFΛF) LF + γ∂y (RGΛG) LG + γ∂z (RHΛH) LH

]
u = v.

Note that for spatially homogeneous Jacobians, ∂x(RFΛF) = 0 (similarly for y and z), so
this system reduces to u = v. Hence this component may optionally be included to correct
for spatial inhomogeneity in JF , JG and JH . In keeping with the previous discretization
approaches, approximate this system as, e.g.

γ∂x (RFΛF) LF ≈ γ
2Δx

(
RF,i+1ΛF,i+1 − RF,i−1ΛF,i−1

)
LF,i.

These solves are spatially decoupled (with respect to u), resulting in a block-diagonal matrix
whose solution requires only n × n dense linear solves at each spatial location.
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this system reduces to u = v. Hence this component may optionally be included to correct
for spatial inhomogeneity in JF , JG and JH . In keeping with the previous discretization
approaches, approximate this system as, e.g.

γ∂x (RFΛF) LF ≈ γ
2Δx

(
RF,i+1ΛF,i+1 − RF,i−1ΛF,i−1

)
LF,i.

These solves are spatially decoupled (with respect to u), resulting in a block-diagonal matrix
whose solution requires only n × n dense linear solves at each spatial location.
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Pd: Diffusive MHD Preconditioner: Pd solves the remaining diffusive effects within the
implicit system,

∂tU −∇ · Fv = 0.

Setting Pd to be the Jacobian of this operator,

Pd = Jv(U) = I − γ ∂
∂U (∇ · Fv)

=

⎡
⎢⎢⎣

I 0 0 0
0 I − γDρv 0 0
0 0 I − γDB 0

−γLρ −γLρv −γLB I − γDe

⎤
⎥⎥⎦

and then its structure may be exploited for efficient and accurate solution. To solve Pd y = b
for y = [yρ, yρv, yB, ye]T:

1. Update yρ = bρ

2. Solve (I − γDρv) yρv = bρv for yρv

3. Solve (I − γDB) yB = bB for yB

4. Update b̃e = be + γ
�

Lρ yρ + Lρv yρv + LB yB
�

5. Solve (I − γDe) ye = b̃e for ye.

Due to their diffusive nature, steps 2, 3 and 5 are solved using a system-based geometric
multigrid solver. Step 4 may be approximated through one finite-difference, instead of
constructing and multiplying by the individual sub-matrices:

Lρ yρ + Lρv yρv + LB yB = 1
σ [∇ · Fv(U + σW)−∇ · Fv(U)]e + O(σ),

where W =
�
yρ, yρv, yB, 0

�T.

As far as implementation details are concerned, Reynolds et al. employ the SUNDIALS
software library (Hindmarsh et al. (2005)). Within SUNDIALS, extensive use is made of the
CVODE ordinary differential equations integration package, as well as KINSOL for nonlinear
solution of algebraic systems.

3.5 Next steps

Once the preconditioner is in place, several heuristic ideas may be applied to further decrease
computational time. Some of these ideas discussed in Reynolds et al. (2010) are: freezing the
Jacobian for a few time steps, freezing the computations of the eigen-values and eigen-vector,
preconditioning only the fastest waves, eliminating the local solve etc. Depending on the
physical problem under investigation, these heuristic ideas can reduce the computational time
significantly. Reynolds et al. (2011) have generalized their approach to tokamak geometry
wherein the poloidal plane is discretized using a curvilinear mesh. The form of the equations
solved are similar to the ones discussed by Samtaney et al. (2007). The complexity of
generating the Jacobian for the Newton-Krylov method makes it an attractive candidate for
automatic differentiation tools. This is, in fact, employed by Reynolds & Samtaney (2012) and
Reynolds et al. (2011) for implicit solution of the resistive MHD in the tokamak geometry.
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They report that auto-differentiation tools can lead to an improvement in the accuracy of the
computed Jacobian compared with a finite difference approach.

4. Nonlinear multigrid method for MHD

The literature on using nonlinear multigrid for MHD is quite sparse. Here we focus on the
recent work by Adams et al. (2010). Multigrid methods are motivated by the observation that
a low resolution discretization of an operator can capture modes or components of the error
that are expensive to compute directly on a highly resolved discretization. More generally, any
poorly locally-determined solution component has the potential to be resolved with coarser
representation. This process can be applied recursively with a series of coarse grids, thereby
requiring that each grid resolve only the components of the error that it can solve efficiently.
These coarse grids have fewer grid points, typically about a factor of two in each dimension,
such that the total amount of work in multigrid iterations can be expressed as a geometric sum
that converges to a small factor of the work on the finest mesh. These concepts can be applied
to problems with particles/atoms or pixels as well as the traditional grid or cell variables
considered here. Multigrid provides a basic framework within which particular multigrid
methods can be developed for particular problems.

Geometric multigrid is useful because it has the potential to be very efficient especially if the
geometric domains of interest are simple enough that explicit coarse grids can be practically
constructed even if, for instance, unstructured grids are used. Geometric multigrid not
only provides a powerful basis on which to build a specific solution algorithm, but also
allows for the straightforward use of nonlinear multigrid, or full approximation scheme (FAS)
multigrid (Brandt (1977)) and matrix-free implementations. Given that the MHD problems
are nonlinear, FAS multigrid is very efficient in that it solves the nonlinear set of equation
directly and obviates the need of an outer (Newton) iteration. This is a critical component in
attaining textbook efficiency on nonlinear problems. Figure 1 shows the standard multigrid
FAS V-cycle and uses the smoother u ← S(A, u, b), the restriction operator Rk+1

k , which maps
residuals and current solutions from the fine grid space k to the coarse grid space k + 1 (the
rows of Rk+1

k are the discrete representation, on the fine grid, of the coarse grid functions),
and the prolongation operator Pk

k+1, which maps the current solution from the coarse grid to
the fine grid. Common notation for this multigrid V-cycle is V(μ1,μ2), where μ1 and μ2 are the
number of pre- and post-smoothing steps, respectively. The canonical model problem is the
Laplacian, for which point-wise Gauss-Seidel smoothers combined with linear interpolation
for the restriction and prolongation operators generate method that reduce error by about an
order of magnitude per V(1,1) cycle. This is theoretically optimal in that this rate of residual
reduction is independent of mesh size and the amount of work in a V-cycle is given by a
geometric sum that converges to about five work units. This so-called textbook efficiency has
been observed, if not proven, for multigrid methods in a wide variety of applications (see
Trottenberg et al. (2000) and references therein for details).

A concept used to determine if a point-wise smoothing method exists is h-ellipticity.
Brandt & Dinar (1979) first introduced h-ellipticity and it is described in Trottenberg et al.
(2000). H-ellipticity is the minimum Fourier symbol of the high half (in at least one
dimension) of the spectrum of a discrete operator divided by the maximum Fourier symbol
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function u ← MGV(Ak, uk, fk)
if coarse grid k + 1 exists

uk ← S(Ak, uk, fk) /* pre-smoothing */
rk ← fk − Akuk
rk+1 ← Rk+1

k (rk) /* restriction of residual to coarse grid */
wk+1 ← Rk+1

k (uk) /* restriction of current solution to coarse grid */
uk+1 ← MGV(Ak+1, wk+1, rk+1 + Ak+1wk+1) /* recursive multigrid application */
uk+1 ← uk+1 − wk+1 /* convert solution to an increment */
uk ← uk + Pk

k+1(uk+1) /* prolongation of coarse grid correction */
uk ← S(Ak, uk, fk) /* restriction of residual to coarse grid */

else
uk ← A−1

k fk /* post-smoothing */
return uk

Fig. 1. Nonlinear FAS multigrid V-cycle algorithm

of the operator. An h-ellipicity bounded well above zero is a necessary and sufficient
condition for the existence of a point-wise smoother for an operator with a symmetric stencil
(Trottenberg et al. (2000)). An important result of h-ellipticity is that effective point-wise
smoothers (eg, Gauss-Seidel and distributive Gauss-Seidel) can be constructed for upwind
discretizations of hyperbolic systems with no restriction on the time step, whereas point-wise
Gauss-Seidel is unstable for a central difference scheme for a large time step. Adams et
al. observed textbook multigrid efficiency with standard multigrid methods (e.g., point-wise
Gauss-Seidel smoothers) using a first-order upwinding method for ideal and resistive
MHD. First-order accuracy is, however, generally not sufficient for many applications, and
second-order schemes are required for efficiency. These stable low-order smoothers have
been used extensively with a higher-order operator via a defect correction scheme, which
is identical to preconditioning, but is more amenable to a nonlinear solve (Atlas & Burrage
(1994); Böhmer et al. (1984); Dick (1991); Hemker (1986); Koren (1991)).

An additional requirement of an optimal solver is to be able to reduce the algebraic error to
the order of the discretization (or truncation) error for steady-state problems. For transient
problems the solver needs to reduce the algebraic error to below the incremental error – that is,
the product of the truncation error of the time integration scheme and the spacial truncation
error. Reducing algebraic error far below that of the incremental error is computationally
wasteful, though potentially useful for debugging. There is generally no need to spend
resources to reduce the algebraic error far below the incremental error. This observation
leads to our definition of an optimal solver as one that can reduce the error to less than the
incremental error with a few work units per time step. This is an ambitious goal in that it
requires both scalability and small constants in the actual computational costs. In fact, this
results in a solver in which the rate of reduction in the residual actually increases as the mesh is
refined, because the truncation error decreases. This goal can be achieved by using a multigrid
V-cycle within what is called an F-cycle iteration (Trottenberg et al. (2000)). Figure 2 shows the
standard nonlinear multigrid F-cycle with defect correction to accommodate the nonlinear
V-cycle with a lower-order operator (Ã is the first-order upwinding operator) for which our
point-wise Gauss-Seidel smoother is stable. The complexity of an F-cycle is asymptotically
similar to a V-cycle, and it can be proven to result in a solution with algebraic error that is
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function u ← MGF(Ak, uk, fk)
if coarse grid k + 1 exists

rk ← fk − Akuk
rk+1 ← Rk+1

k (rk) /* restriction of residual to coarse grid */
wk+1 ← Rk+1

k (uk) /* restriction of residual to coarse grid */
uk+1 ← MGF(Ak+1, wk+1, rk+1 + Ak+1wk+1) /* recursive multigrid application */
uk+1 ← uk+1 − wk+1 /* convert solution to an increment */
uk ← uk + Pk

k+1(uk+1) /* prolongation of coarse grid correction */
uk ← MGV(Ãk, uk, fk − Akuk + Ãkuk) /* low-order V-cycle, defect correction */

else
uk ← A−1

k fk /* accurate solve of coarsest grid */
return uk

Fig. 2. Nonlinear FAS multigrid F-cycle algorithm with defect correction

less than the incremental error on the model problem (Trottenberg et al. (2000)). Multigrid can
thus achieve discretization error with a work complexity of a few residual calculations. An
additional advantage of the FAS multigrid algorithm is that it is an effective global nonlinear
solver in that it does not suffer from the problem of limited radius of convergence of a standard
Newton method.

5. Numerical test cases

5.1 Linear wave propagation

Linear wave propagation refers to the initialization of low amplitude magnetosonic or
Alfvén waves and computing their evolution using the nonlinear equations. If the amplitude
is small (O(�)), these waves will propagate linearly with nonlinear effects essentially being
O(�2). Linear waves may be initialized in 2D using the following procedure. First choose
a background quiescent equilibrium state as Ũ = (ρ, ρu, b, e)T, where ρ = 1, u = 0,

b = (cos α cos θ, sin α sin θ, 0)T. Here, θ = tan−1 ky

kx
, in which the ratio ky

kx
gives the direction of

wave propagation and α is the orientation of the constant magnetic field. We project these
equilibrium conserved quantities to characteristic variables via W = LŨ, where L is the
left eigenvector matrix of the linearized MHD system. The k−th linear wave is setup by
perturbing the k−th characteristic, wk = wk + � cos

(
πkxx + πkyy

)
. The initial condition is

then set as U(x, y, 0) = R(Ũ)W, where R is the right eigenvector matrix. Periodic boundary
conditions should be implemented in both the x- and y-directions. This procedure can be
easily extended to three dimensions.

Chacón (2004) tested the evolution of a magnetosonic wave to verify that the method
had low dissipation using a Newton-Krylov approach but without any preconditioning.
Reynolds et al. (2006) also tested the evolution of a slow magnetosonic wave propagating
45 deg to the mesh, with a Newton-Krylov solver without preconditioning. Numerical tests
at 2562 mesh resolution in 2D indicated that even without preconditioning, the implicit NK
method yielded over a factor of ten decrease in CPU time. Reynolds et al. (2010) reported a
further benefit of over a factor of five decrease in CPU time when the wave-structure based
preconditioner was employed for the linear wave propagation test. Furthermore, for linear
waves aligned with the mesh, the preconditioned solves converged in one Krylov iteration
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function u ← MGV(Ak, uk, fk)
if coarse grid k + 1 exists

uk ← S(Ak, uk, fk) /* pre-smoothing */
rk ← fk − Akuk
rk+1 ← Rk+1

k (rk) /* restriction of residual to coarse grid */
wk+1 ← Rk+1

k (uk) /* restriction of current solution to coarse grid */
uk+1 ← MGV(Ak+1, wk+1, rk+1 + Ak+1wk+1) /* recursive multigrid application */
uk+1 ← uk+1 − wk+1 /* convert solution to an increment */
uk ← uk + Pk

k+1(uk+1) /* prolongation of coarse grid correction */
uk ← S(Ak, uk, fk) /* restriction of residual to coarse grid */

else
uk ← A−1

k fk /* post-smoothing */
return uk

Fig. 1. Nonlinear FAS multigrid V-cycle algorithm

of the operator. An h-ellipicity bounded well above zero is a necessary and sufficient
condition for the existence of a point-wise smoother for an operator with a symmetric stencil
(Trottenberg et al. (2000)). An important result of h-ellipticity is that effective point-wise
smoothers (eg, Gauss-Seidel and distributive Gauss-Seidel) can be constructed for upwind
discretizations of hyperbolic systems with no restriction on the time step, whereas point-wise
Gauss-Seidel is unstable for a central difference scheme for a large time step. Adams et
al. observed textbook multigrid efficiency with standard multigrid methods (e.g., point-wise
Gauss-Seidel smoothers) using a first-order upwinding method for ideal and resistive
MHD. First-order accuracy is, however, generally not sufficient for many applications, and
second-order schemes are required for efficiency. These stable low-order smoothers have
been used extensively with a higher-order operator via a defect correction scheme, which
is identical to preconditioning, but is more amenable to a nonlinear solve (Atlas & Burrage
(1994); Böhmer et al. (1984); Dick (1991); Hemker (1986); Koren (1991)).

An additional requirement of an optimal solver is to be able to reduce the algebraic error to
the order of the discretization (or truncation) error for steady-state problems. For transient
problems the solver needs to reduce the algebraic error to below the incremental error – that is,
the product of the truncation error of the time integration scheme and the spacial truncation
error. Reducing algebraic error far below that of the incremental error is computationally
wasteful, though potentially useful for debugging. There is generally no need to spend
resources to reduce the algebraic error far below the incremental error. This observation
leads to our definition of an optimal solver as one that can reduce the error to less than the
incremental error with a few work units per time step. This is an ambitious goal in that it
requires both scalability and small constants in the actual computational costs. In fact, this
results in a solver in which the rate of reduction in the residual actually increases as the mesh is
refined, because the truncation error decreases. This goal can be achieved by using a multigrid
V-cycle within what is called an F-cycle iteration (Trottenberg et al. (2000)). Figure 2 shows the
standard nonlinear multigrid F-cycle with defect correction to accommodate the nonlinear
V-cycle with a lower-order operator (Ã is the first-order upwinding operator) for which our
point-wise Gauss-Seidel smoother is stable. The complexity of an F-cycle is asymptotically
similar to a V-cycle, and it can be proven to result in a solution with algebraic error that is
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function u ← MGF(Ak, uk, fk)
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rk ← fk − Akuk
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k (rk) /* restriction of residual to coarse grid */
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uk+1 ← MGF(Ak+1, wk+1, rk+1 + Ak+1wk+1) /* recursive multigrid application */
uk+1 ← uk+1 − wk+1 /* convert solution to an increment */
uk ← uk + Pk

k+1(uk+1) /* prolongation of coarse grid correction */
uk ← MGV(Ãk, uk, fk − Akuk + Ãkuk) /* low-order V-cycle, defect correction */

else
uk ← A−1

k fk /* accurate solve of coarsest grid */
return uk

Fig. 2. Nonlinear FAS multigrid F-cycle algorithm with defect correction

less than the incremental error on the model problem (Trottenberg et al. (2000)). Multigrid can
thus achieve discretization error with a work complexity of a few residual calculations. An
additional advantage of the FAS multigrid algorithm is that it is an effective global nonlinear
solver in that it does not suffer from the problem of limited radius of convergence of a standard
Newton method.

5. Numerical test cases

5.1 Linear wave propagation

Linear wave propagation refers to the initialization of low amplitude magnetosonic or
Alfvén waves and computing their evolution using the nonlinear equations. If the amplitude
is small (O(�)), these waves will propagate linearly with nonlinear effects essentially being
O(�2). Linear waves may be initialized in 2D using the following procedure. First choose
a background quiescent equilibrium state as Ũ = (ρ, ρu, b, e)T, where ρ = 1, u = 0,

b = (cos α cos θ, sin α sin θ, 0)T. Here, θ = tan−1 ky

kx
, in which the ratio ky

kx
gives the direction of

wave propagation and α is the orientation of the constant magnetic field. We project these
equilibrium conserved quantities to characteristic variables via W = LŨ, where L is the
left eigenvector matrix of the linearized MHD system. The k−th linear wave is setup by
perturbing the k−th characteristic, wk = wk + � cos

(
πkxx + πkyy

)
. The initial condition is

then set as U(x, y, 0) = R(Ũ)W, where R is the right eigenvector matrix. Periodic boundary
conditions should be implemented in both the x- and y-directions. This procedure can be
easily extended to three dimensions.

Chacón (2004) tested the evolution of a magnetosonic wave to verify that the method
had low dissipation using a Newton-Krylov approach but without any preconditioning.
Reynolds et al. (2006) also tested the evolution of a slow magnetosonic wave propagating
45 deg to the mesh, with a Newton-Krylov solver without preconditioning. Numerical tests
at 2562 mesh resolution in 2D indicated that even without preconditioning, the implicit NK
method yielded over a factor of ten decrease in CPU time. Reynolds et al. (2010) reported a
further benefit of over a factor of five decrease in CPU time when the wave-structure based
preconditioner was employed for the linear wave propagation test. Furthermore, for linear
waves aligned with the mesh, the preconditioned solves converged in one Krylov iteration

77Implicit Numerical Methods for Magnetohydrodynamics



20 Will-be-set-by-IN-TECH

64^2 128^2 256^2
0

500

1000

1500

mesh size

K
ry

lo
v 

ite
ra

tio
ns

Total Krylov Iteration (x−directional propagation)

 

 

No Prec, Δt=5e−2
FW Prec, Δt=5e−2
No Prec, Δt=1e−1
FW Prec, Δt=1e−1
No Prec, Δt=2e−1
FW Prec, Δt=2e−1

64^2 128^2 256^2
0

500

1000

1500

2000

2500

mesh size

K
ry

lo
v 

ite
ra

tio
ns

Total Krylov Iteration (oblique propagation)

 

 

No Prec, Δt=5e−2
FW Prec, Δt=5e−2
No Prec, Δt=1e−1
FW Prec, Δt=1e−1
No Prec, Δt=2e−1
FW Prec, Δt=2e−1

Fig. 3. Krylov iterations for the linear wave tests: x-directional (left) and oblique (right).
Figure obtained from authors of Reference (Reynolds et al. (2010)).

for several tests, indicating that the wave-structure based preconditioner is optimal for such
cases.

Here we reproduce results from Reynolds et al. (2010) of a slow magnetosonic wave
of amplitude � = 10−5 in a periodic domain chosen as [0, 2] × [0, 2]. The wave
is propagated until a final time of 10 units. The equilibrium state chosen in Ũ =
(1, 0, cos α cos θ, sin α sin θ, 0, 0.1)T , α = −44.5o. Two different propagation directions are:
θ = 0, 45o , i.e., the wave propagates aligned with the x− axis, and along the diagonal. Results
for the wave propagation are shown in Figure 3. The total number of Krylov iterations
is plotted for different time step sizes and spatial discretizations (horizontal axis). For the
linear wave propagating aligned with the mesh, the preconditioner is nearly exact, and
hence the Krylov iterations remain nearly constant as the mesh is refined, as compared with
the non-preconditioned tests that increase rapidly. For the oblique propagation case, the
directional splitting does not appear to significantly affect the preconditioner accuracy, again
resulting in nearly constant Krylov iterations with mesh refinement.

5.2 Magnetic reconnection in 2D

Magnetic reconnection (MR) refers to the breaking and reconnecting of oppositely-directed
magnetic field lines in a plasma. In this process, magnetic field energy is converted to
plasma kinetic and thermal energy. A test which has gained a lot of popularity in testing
MHD codes is the so-called GEM reconnection challenge problem (Birn & et al. (2001a)).
The initial conditions consist of a perturbed Harris sheet configuration as described in
Birn & et al. (2001a). Reynolds et al. (2006) computed the GEM reconnection challenge
problem with a Newton-Krylov method without preconditioning and reproduced the
expected Sweet-Parker scaling for the reconnection rate for Lundquist numbers ranging from
S = 200− 104. Furthermore, for a mesh resolution of 512× 256 their implicit method (without
preconditioning) achieved a speedup of about 5.6 compared with an explicit method.

The GEM reconnection problem was also chosen for extensive testing by the nonlinear
multigrid method developed by Adams et al. (2010). In fact, this work also extended the
GEM problem by including a guide field in the third direction, thereby increasing the stiffness
induced by more than a factor of five. Adams et al. also reported on the scalability of
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their approach by demonstrating good weak scaling up to 32K processors on a CRAY XT-5
supercomputer.

Figure 4 (reproduced from Adams et al. (2010)) from shows a time sequence of current density
Jz field during reconnection. The goal is to develop solvers with a complexity equivalent to

(a) (b) (c)

Fig. 4. Time sequence of current density,Jz during reconnection at time (a)t=0, (b)t=15 and
(c)t=60. Parameters for this test are in Adams et al. (2010). Figure obtained from authors of
Reference (Adams et al. (2010)).

a few residual calculations (work units) per time step, with the largest time step that can
accurately resolve the dynamics of the problem. In this study, the solver is fixed at one
iteration of FAS F-cycle with two defect corrected V(1,1) cycles at each level, as described
in Section §4, and with a work complexity of about 18 work units per time step. There are
three applications of the fine grid operator in residual calculations and defect correction in
FAS multigrid, and three fine grid work units in the smoothers and residual calculations
in each of the two V(1,1) cycle, plus lower-order work in restriction/prolongation and FAS
terms. This results in about ten work units on the fine grid. Each successive grid is four times
smaller (in 2D), and F-cycles process the second grid twice, the third grid three times, and so
on, resulting in the equivalent of about eight additional work units for a total of 18 work units
(there are actually fewer total work units in 3D because the coarse grids are relatively smaller).
The smoother is nonlinear Gauss-Seidel with one iteration per grid point and red-black
(or checkerboard) ordering. Even though Adams et al. (2010) use defect correction, they
demonstrate a second-order rate of convergence on several important diagnostic quantities:
these are the kinetic energy, reconnection rate and reconnected magnetic flux as shown in
Figure 5,

5.3 Ideal Kelvin-Helmholtz instability

This test is generally a hard test for implicit solvers because the growth rate of the instability
is high and the dynamics becomes nonlinear very quickly stressing all aspects of an implicit
solver. On a 2562 mesh, Chacón (2008b) reports a speedup in excess of three for the implicit
solver compared with an explicit one, and nearly ten Krylov iterations per time step (and
nearly five Newton steps per time step) for a time step which was 156 times larger than
that for an explicit method. Reynolds et al. (2010) also performed the ideal Kelvin-Helmholtz
instability (KHI) test with their wave preconditioner NK solver, and reported a speed up over
a factor of three compared with simulations without using a preconditioner for a 2562 mesh.
They did not report comparisons with an explicit time stepping solver. In their 2D simulations,
the number of Krylov iterations per time step ranged from 6-13 and the number of Newton
steps ranged from 1-3 per time step. We hasten to add that this is not meant to be a comparison
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Fig. 3. Krylov iterations for the linear wave tests: x-directional (left) and oblique (right).
Figure obtained from authors of Reference (Reynolds et al. (2010)).

for several tests, indicating that the wave-structure based preconditioner is optimal for such
cases.

Here we reproduce results from Reynolds et al. (2010) of a slow magnetosonic wave
of amplitude � = 10−5 in a periodic domain chosen as [0, 2] × [0, 2]. The wave
is propagated until a final time of 10 units. The equilibrium state chosen in Ũ =
(1, 0, cos α cos θ, sin α sin θ, 0, 0.1)T , α = −44.5o. Two different propagation directions are:
θ = 0, 45o , i.e., the wave propagates aligned with the x− axis, and along the diagonal. Results
for the wave propagation are shown in Figure 3. The total number of Krylov iterations
is plotted for different time step sizes and spatial discretizations (horizontal axis). For the
linear wave propagating aligned with the mesh, the preconditioner is nearly exact, and
hence the Krylov iterations remain nearly constant as the mesh is refined, as compared with
the non-preconditioned tests that increase rapidly. For the oblique propagation case, the
directional splitting does not appear to significantly affect the preconditioner accuracy, again
resulting in nearly constant Krylov iterations with mesh refinement.

5.2 Magnetic reconnection in 2D

Magnetic reconnection (MR) refers to the breaking and reconnecting of oppositely-directed
magnetic field lines in a plasma. In this process, magnetic field energy is converted to
plasma kinetic and thermal energy. A test which has gained a lot of popularity in testing
MHD codes is the so-called GEM reconnection challenge problem (Birn & et al. (2001a)).
The initial conditions consist of a perturbed Harris sheet configuration as described in
Birn & et al. (2001a). Reynolds et al. (2006) computed the GEM reconnection challenge
problem with a Newton-Krylov method without preconditioning and reproduced the
expected Sweet-Parker scaling for the reconnection rate for Lundquist numbers ranging from
S = 200− 104. Furthermore, for a mesh resolution of 512× 256 their implicit method (without
preconditioning) achieved a speedup of about 5.6 compared with an explicit method.

The GEM reconnection problem was also chosen for extensive testing by the nonlinear
multigrid method developed by Adams et al. (2010). In fact, this work also extended the
GEM problem by including a guide field in the third direction, thereby increasing the stiffness
induced by more than a factor of five. Adams et al. also reported on the scalability of
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their approach by demonstrating good weak scaling up to 32K processors on a CRAY XT-5
supercomputer.

Figure 4 (reproduced from Adams et al. (2010)) from shows a time sequence of current density
Jz field during reconnection. The goal is to develop solvers with a complexity equivalent to
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Fig. 4. Time sequence of current density,Jz during reconnection at time (a)t=0, (b)t=15 and
(c)t=60. Parameters for this test are in Adams et al. (2010). Figure obtained from authors of
Reference (Adams et al. (2010)).

a few residual calculations (work units) per time step, with the largest time step that can
accurately resolve the dynamics of the problem. In this study, the solver is fixed at one
iteration of FAS F-cycle with two defect corrected V(1,1) cycles at each level, as described
in Section §4, and with a work complexity of about 18 work units per time step. There are
three applications of the fine grid operator in residual calculations and defect correction in
FAS multigrid, and three fine grid work units in the smoothers and residual calculations
in each of the two V(1,1) cycle, plus lower-order work in restriction/prolongation and FAS
terms. This results in about ten work units on the fine grid. Each successive grid is four times
smaller (in 2D), and F-cycles process the second grid twice, the third grid three times, and so
on, resulting in the equivalent of about eight additional work units for a total of 18 work units
(there are actually fewer total work units in 3D because the coarse grids are relatively smaller).
The smoother is nonlinear Gauss-Seidel with one iteration per grid point and red-black
(or checkerboard) ordering. Even though Adams et al. (2010) use defect correction, they
demonstrate a second-order rate of convergence on several important diagnostic quantities:
these are the kinetic energy, reconnection rate and reconnected magnetic flux as shown in
Figure 5,

5.3 Ideal Kelvin-Helmholtz instability

This test is generally a hard test for implicit solvers because the growth rate of the instability
is high and the dynamics becomes nonlinear very quickly stressing all aspects of an implicit
solver. On a 2562 mesh, Chacón (2008b) reports a speedup in excess of three for the implicit
solver compared with an explicit one, and nearly ten Krylov iterations per time step (and
nearly five Newton steps per time step) for a time step which was 156 times larger than
that for an explicit method. Reynolds et al. (2010) also performed the ideal Kelvin-Helmholtz
instability (KHI) test with their wave preconditioner NK solver, and reported a speed up over
a factor of three compared with simulations without using a preconditioner for a 2562 mesh.
They did not report comparisons with an explicit time stepping solver. In their 2D simulations,
the number of Krylov iterations per time step ranged from 6-13 and the number of Newton
steps ranged from 1-3 per time step. We hasten to add that this is not meant to be a comparison
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Fig. 5. Order of spatial accuracy for simulating magnetic reconnection usinga nonlinear
multigrid approach. Error in peak kinetic energy and kinetic energy, reconnection flux rate
and reconnection rate, high viscosity cases, Bz = 0 (left) and low viscosity Bz = 5 (right).
Figure obtained from authors of Reference (Adams et al. (2010)).

between KHI simulations by Chacón and Reynolds et al. because their respective setup and
solver tolerances were not necessarily identical. However, these test results are an indication
of the type of speed up and code performance one may expect with strongly nonlinear MHD
cases with a Newton-Krylov approach. Reynolds et al. (2010) also performed simulation tests
on the 3D version of the ideal KHI.

Here we reproduce results from Reynolds et al. (2010) for the 2D KHI test. We set the

computational domain to
[
− 5

4 , 5
4

]
×
[
− 1

2 , 1
2

]
×
[
− 5

4 , 5
4

]
, with periodic boundary conditions in

the x- and z-directions, and homogeneous Neumann boundary conditions in the y-direction.
We initialize the constant fields ρ = 1, b = (0.1, 0, 10)T , p = 0.25, and uy = uz = By =

0. We then set ux = 1
2 tanh(100y) + 1

10 cos(0.8πx) + 1
10 sin(3πy) + 1

10 cos(0.8πz). This
problem employs the resistive MHD equations, with resistivity, viscosity, and heat conduction
coefficients set to 10−4, and all runs are taken to a final time of Tf = 2. As previous results
on this problem suggest that the instability growth rate is independent of the size of the
resistivity, such small parameters are natural since the instability is predominantly driven by
nonlinear (hyperbolic) effects (Jones, Gaalaas, Ryu & Frank (1997); Knoll & Brackbill (2002)).
Moreover, for these parameters Tf = 2 is well within the nonlinear evolution regime for this
problem. Snapshots of the x and z components of the (initially homogeneous) magnetic field
at t = 2 are shown in Figure 6 for a 2562 mesh simulation computed with a time step of
Δt = 0.0025. Throughout this simulation, the number of nonlinear iterations ranged from 1
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Fig. 6. Snapshots of Bx (left) and Bz (right) in the 2D Kelvin–Helmholtz test at t = 2. Figure
obtained from authors of Reference (Reynolds et al. (2010)).
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Fig. 7. Krylov iterations for the 2D Kelvin–Helmholtz tests. Figure obtained from authors of
Reference (Reynolds et al. (2010)).

to 3, with the associated preconditioned Krylov iteration counts in the range of 6–13 per time
step. Solver results for these tests are shown in Figure 7. For all time step sizes and all spatial
discretizations used, the preconditioner results in significantly fewer linear iterations, with
the disparity growing as the mesh is refined.

5.4 Other examples

There are a variety of other test cases reported in the literature ranging from ideal to resistive
MHD. Chacón (Chacón (2004; 2008a;b)) reports on 2D tearing instability test cases and
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between KHI simulations by Chacón and Reynolds et al. because their respective setup and
solver tolerances were not necessarily identical. However, these test results are an indication
of the type of speed up and code performance one may expect with strongly nonlinear MHD
cases with a Newton-Krylov approach. Reynolds et al. (2010) also performed simulation tests
on the 3D version of the ideal KHI.

Here we reproduce results from Reynolds et al. (2010) for the 2D KHI test. We set the

computational domain to
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4 , 5
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×
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− 1
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×
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, with periodic boundary conditions in

the x- and z-directions, and homogeneous Neumann boundary conditions in the y-direction.
We initialize the constant fields ρ = 1, b = (0.1, 0, 10)T , p = 0.25, and uy = uz = By =

0. We then set ux = 1
2 tanh(100y) + 1

10 cos(0.8πx) + 1
10 sin(3πy) + 1

10 cos(0.8πz). This
problem employs the resistive MHD equations, with resistivity, viscosity, and heat conduction
coefficients set to 10−4, and all runs are taken to a final time of Tf = 2. As previous results
on this problem suggest that the instability growth rate is independent of the size of the
resistivity, such small parameters are natural since the instability is predominantly driven by
nonlinear (hyperbolic) effects (Jones, Gaalaas, Ryu & Frank (1997); Knoll & Brackbill (2002)).
Moreover, for these parameters Tf = 2 is well within the nonlinear evolution regime for this
problem. Snapshots of the x and z components of the (initially homogeneous) magnetic field
at t = 2 are shown in Figure 6 for a 2562 mesh simulation computed with a time step of
Δt = 0.0025. Throughout this simulation, the number of nonlinear iterations ranged from 1

80 Topics in Magnetohydrodynamics Implicit Numerical Methods for Magnetohydrodynamics 23

Fig. 6. Snapshots of Bx (left) and Bz (right) in the 2D Kelvin–Helmholtz test at t = 2. Figure
obtained from authors of Reference (Reynolds et al. (2010)).
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Fig. 7. Krylov iterations for the 2D Kelvin–Helmholtz tests. Figure obtained from authors of
Reference (Reynolds et al. (2010)).

to 3, with the associated preconditioned Krylov iteration counts in the range of 6–13 per time
step. Solver results for these tests are shown in Figure 7. For all time step sizes and all spatial
discretizations used, the preconditioner results in significantly fewer linear iterations, with
the disparity growing as the mesh is refined.

5.4 Other examples

There are a variety of other test cases reported in the literature ranging from ideal to resistive
MHD. Chacón (Chacón (2004; 2008a;b)) reports on 2D tearing instability test cases and
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demonstrates a speedup ranging from 8 − 15 for a 1282 mesh Chacón (2008a). Another
example of a good verification test case in 3D is that of 3D island coalescence (Chacón (2008a)).
Reynolds et al. (2006) reported on a 3D ideal MHD problem which models pellet fueling in
tokamaks.

6. Conclusion

In this chapter, we discussed the need for implicit algorithms for resistive
magnetohydrodynamics. We highlighted two broad classes of nonlinear methods:
Newton-Krylov and nonlinear multigrid. We illustrated two Newton-Krylov approaches
for MHD which are essentially very similar in the overall approach, but differed in
the preconditioning strategies for expediting the iterative solution steps in the Krylov
linear solver stage of the overall method. One preconditioning strategy is based on a
“parabolization” approach while the other utilizes the local wave structure of the underlying
hyperbolic waves in the MHD PDEs. The literature on the use of nonlinear multigrid
for MHD is essentially sparse and therein we focused on a defect-correction approach
coupled with a point-wise Gauss-Seidel smoother utilizing a first order upwind approach.
Both approaches are valid and have their place, but it is clear that the nonlinear multigrid
approach for MHD is still relatively new and could be further developed.

6.1 Future challenges

In this chapter, we have focused exclusively on methods for single fluid resistive MHD.
Future challenges will lie in the area of implicit methods for more complicated extended
MHD models with FLR effects, several of which exhibit dispersive wave phenomena such
as Whistler, Kinetic Alfvén waves, and gyroviscous waves. These dispersive high frequency
waves essentially make the stable explicit time step proportional to the square of the mesh
spacing, i.e., Δt ∝ Δx2; and hence the benefit from implicit methods is much more than those
for single fluid MHD. Some progress in using Newton Krylov approaches for Hall-MHD
has been reported by Chacón & Knoll (2003). However more work is required for general
geometry, and inclusion of all dispersive wave families. Research in the area of nonlinear
multigrid is essentially unexplored for extended MHD. Another interesting challenge in
developing implicit methods for MHD is the combination of JFNK or FAS methods with
adaptive mesh refinement (AMR). Some progress towards JFNK with AMR has been reported
by Philip et al. (2008) on reduced incompressible MHD in 2D. Combining implicit methods
with AMR will help mitigate not only the temporal stiffness issues but also help effectively
resolve the range of spatial scales in MHD.
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1. Introduction

The first attempts to get energy from the controlled fusion of two light atoms nuclei date back
to the beginning of the fifties of the last century. The crucial difficulty to achieve this goal is
that particles need to have a large amount of thermal energy in order to have a significant
chance of overcoming the Coulomb repulsion. At such high temperatures the atoms are
fully ionized conforming a plasma. Such a hot plasma can not be in contact with solid walls
because it will be rapidly cooled down. Two main methods have been developed to confine
plasmas: the magnetic confinement and the inertial confinement. Here we are concerned with
the magnetic confinement approach.

Under certain conditions some magnetic configurations studied in the context of plasma
confinement become unstable and undergo a process called magnetic (or plasma) relaxation.
This process generally causes the system to evolve toward a self-organized state with lower
magnetic energy and almost the same magnetic helicity. A key physical mechanism that
operates during plasma relaxation is the localized reconnection of magnetic field lines. It was
demonstrated that magnetic relaxation can be employed to form and sustain configurations
relevant to magnetic confinement research.

The theoretical description of magnetic relaxation is given in terms of a variational
principle (Taylor, 1974). Despite the remarkable success of this theory to describe the final
self-organized state toward which the plasma evolves, it does not provide any information
on the dynamics of the plasma during relaxation. Since the process of relaxation always
involves fluctuations that degrade plasma confinement it is very important to understand
their dynamics.

The dynamics of the fluctuations induced during the relaxation process can be studied in
the context the magnetohydrodynamic (MHD) model. In this Chapter, we will study the
dynamics of the relaxation in kink unstable spheromak configurations. To that end we will
solve the time-dependent non-linear MHD equations in three spatial dimensions.

The rest of the Chapter is organized as follows. In Section 2 we give a general introduction
to magnetic confinement of high temperature plasma which is the main motivation of this
study. The physical background of this work is the MHD model which is presented in
Section 3. In Section 4 we describe the magnetic relaxation theory and its relationship with
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1. Introduction

The first attempts to get energy from the controlled fusion of two light atoms nuclei date back
to the beginning of the fifties of the last century. The crucial difficulty to achieve this goal is
that particles need to have a large amount of thermal energy in order to have a significant
chance of overcoming the Coulomb repulsion. At such high temperatures the atoms are
fully ionized conforming a plasma. Such a hot plasma can not be in contact with solid walls
because it will be rapidly cooled down. Two main methods have been developed to confine
plasmas: the magnetic confinement and the inertial confinement. Here we are concerned with
the magnetic confinement approach.

Under certain conditions some magnetic configurations studied in the context of plasma
confinement become unstable and undergo a process called magnetic (or plasma) relaxation.
This process generally causes the system to evolve toward a self-organized state with lower
magnetic energy and almost the same magnetic helicity. A key physical mechanism that
operates during plasma relaxation is the localized reconnection of magnetic field lines. It was
demonstrated that magnetic relaxation can be employed to form and sustain configurations
relevant to magnetic confinement research.

The theoretical description of magnetic relaxation is given in terms of a variational
principle (Taylor, 1974). Despite the remarkable success of this theory to describe the final
self-organized state toward which the plasma evolves, it does not provide any information
on the dynamics of the plasma during relaxation. Since the process of relaxation always
involves fluctuations that degrade plasma confinement it is very important to understand
their dynamics.

The dynamics of the fluctuations induced during the relaxation process can be studied in
the context the magnetohydrodynamic (MHD) model. In this Chapter, we will study the
dynamics of the relaxation in kink unstable spheromak configurations. To that end we will
solve the time-dependent non-linear MHD equations in three spatial dimensions.

The rest of the Chapter is organized as follows. In Section 2 we give a general introduction
to magnetic confinement of high temperature plasma which is the main motivation of this
study. The physical background of this work is the MHD model which is presented in
Section 3. In Section 4 we describe the magnetic relaxation theory and its relationship with
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plasma self-organization. The role of the magnetic helicity and magnetic reconnection is
also discussed. In Section 5 we present a study of the dynamics of magnetic relaxation
in kink unstable spheromak configurations. These configurations are of special interest
because they approximate quite well the measurements in spheromaks during sustainment
(Knox et al., 1986);(Willet et al., 1999). Previous works have shown the existence of a
partial relaxation behavior in marginally unstable configurations (Garcia-Martinez & Farengo,
2009a); (Garcia-Martinez & Farengo, 2009b). In this work we analyze this process in detail and
we show, in particular, that this behaviour is connected to the presence of a rational surface
near the magnetic axis. The main conclusions are summarized in Section 6.

2. Magnetic confinement of high temperature plasmas

The charged particles which constitute a high temperature plasma are subjected to the Lorentz
force. The objective of magnetic confinement is to create magnetic field configurations to
constrain the motion of the particles trying to keep them trapped far from the container’s
wall. In order to accomplish this goal the following four conditions must be fulfilled:

1. The configuration must be in magnetohydrodynamic (MHD) equilibrium.
2. The configuration must be stable (or it should be possible to mitigate or control potential

instabilities).
3. Methods to produce, heat and sustain the configuration must be available.
4. The losses due to transport of heat and particles must be low enough to allow the system

to have an adequate confinement time.

Here we will discuss some general aspects of the first three points. A more detailed discussion
on these topics may be found, for instance, in the book of Wesson (2004).

2.1 MHD equilibrium

It is said that a magnetic configuration is in static MHD equilibrium if the Lorentz force cancels
out exactly the pressure force

J × B = ∇p. (1)

This force balance is part of the momentum equation of the MHD model that will be presented
in Sec. 3. The magnetic configurations employed for plasma confinement almost always have
toroidal topology. In this situation, each magnetic field line describes a toroidal magnetic
surface. These toroidal magnetic surfaces are nested around a circle called magnetic axis (see
Fig. 1). The separatrix is the outermost closed surface that does not touch the vessel. Three
axisymmetric toroidal configuration schemes are shown in Fig. 1. It is a common practice
to decompose the magnetic field into its toroidal and poloidal components. If we place a
cylindrical coordinate system at the center of the torus, aligning the z-axis with the axis of
symmetry (of revolution) of the torus, the toroidal direction coincides with the azimuthal
direction and the poloidal plane lies in the r-z plane. In the right column of Fig. 1 we show
the profiles of the toroidal and poloidal magnetic fields as a function of the distance between
the magnetic axis and the separatrix for each configuration. Let’s review the main features of
these configurations.

• Tokamak. The toroidal magnetic field is much larger than the poloidal one. This intense
toroidal field is imposed by a set of large external coils while the poloidal field comes from
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Fig. 1. Three examples of toroidal axisymmetric configurations used in magnetic
confinement research: the tokamak, the reversed field pinch (RFP) and the spheromak.

the toroidal current that flows through the plasma. Typically, this current is produced by
the electric field induced by the temporal variation of the magnetic flux linked by the torus.

• RFP (reversed field pinch). It is also an axisymmetric toroidal device whose aspect ratio
(ratio of the major radius and the minor radius of the torus) is generally larger than that
of the tokamak. The toroidal and poloidal fields have similar strengths. This makes the
system much more prone to develop MHD instabilities. The magnetic field generation is
analogous to that of the tokamak but using smaller coils for the toroidal field. The toroidal
field reverses (changes its sign) near the separatrix opposing the externally applied field as
a result of a magnetic relaxation process.

• Spheromak. It belongs to the family of compact tori. These are toroidal magnetic
configurations formed inside a simply connected volume. The lack of elements being
linked by the plasma represents a great advantage from a constructive and economical
point of view. The two components of the magnetic field have similar strength. This
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plasma self-organization. The role of the magnetic helicity and magnetic reconnection is
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Fig. 1. Three examples of toroidal axisymmetric configurations used in magnetic
confinement research: the tokamak, the reversed field pinch (RFP) and the spheromak.

the toroidal current that flows through the plasma. Typically, this current is produced by
the electric field induced by the temporal variation of the magnetic flux linked by the torus.

• RFP (reversed field pinch). It is also an axisymmetric toroidal device whose aspect ratio
(ratio of the major radius and the minor radius of the torus) is generally larger than that
of the tokamak. The toroidal and poloidal fields have similar strengths. This makes the
system much more prone to develop MHD instabilities. The magnetic field generation is
analogous to that of the tokamak but using smaller coils for the toroidal field. The toroidal
field reverses (changes its sign) near the separatrix opposing the externally applied field as
a result of a magnetic relaxation process.

• Spheromak. It belongs to the family of compact tori. These are toroidal magnetic
configurations formed inside a simply connected volume. The lack of elements being
linked by the plasma represents a great advantage from a constructive and economical
point of view. The two components of the magnetic field have similar strength. This

87Dynamics of Magnetic Relaxation in Spheromaks



4 Will-be-set-by-IN-TECH

configuration is formed as a result of a relaxation process that self-organizes the magnetic
field, closely related to that occurring in the RFP.

In all these three systems as well as in other important configurations the magnetic surfaces
spanned by the magnetic field lines play a central role in confinement. We examine this in
more detail. Let ψ(r, z) be the poloidal flux function defined as

ψ(r, z) =
∫

S(r,z)
B · ds (2)

were S(r, z) is the circle of radius r centered at the position z of the vertical axis. If the
configuration is axisymmetric we can express the poloidal flux function as

ψ(r, z) = 2π
∫ r

0
Bz(χ, z) χdχ. (3)

With this definition ψ reaches its maximum value at the magnetic axis (ψ(rma, zma) = ψma).
The magnetic surfaces, or flux surfaces, can be determined by the equation ψ(r, z) = C where
C is a constant. Note that this useful labeling system for the flux surfaces breaks down when
the axisymmetry is lost (due to an instability for example).

The poloidal flux function acts as a stream function for the poloidal field since

Bp = ∇×
(

ψ(r, z)
2πr

θ̂

)
(4)

where θ̂ is the unit vector pointing in the toroidal direction. Note that the poloidal flux
function is closely related to the toroidal component of the magnetic vector potential A since
Eq. (4) implies that

ψ = 2πrAθ . (5)

This relationship has important consequences for the confinement of the plasma particles.
Due to the axisymmetry, the canonical angular momentum Pθ = mrvθ + qrAθ turns out to
be a constant of the motion of each particle (m and Ze being the mass and the charge of the
particle, respectively). In terms of the poloidal flux we can see that

Pθ = mrvθ +
Ze
2π

ψ (6)

is a constant of motion. If the magnetic field is strong enough the term mrvθ may become
very small compared with Zeψ/(2π). In that case the particles are constrained to move
along surfaces of constant ψ, i.e. along magnetic surfaces. For this reason, an effective way
of confining charged particles can be obtained by creating a set of nested toroidal magnetic
surfaces. The rupture of flux surfaces caused by asymmetries in the field generation or
instabilities certainly has a detrimental effect on confinement.

2.2 Stability

An equilibrium is unstable if it is possible to find a small perturbation that growths
when is applied. Otherwise, the equilibrium is stable. The instabilities observed in
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magnetically confined plasmas can be classified into two groups: the microinstabilities and
the macroinstabilities. The first group is responsible for the turbulence at small scales and
it is generally related to finite Larmor radius effects (the gyroradius of charged particles
turning around the magnetic field) and asymmetries in the velocity distribution function of the
different species that compound the plasma. On the other hand, the macroinstabilities involve
fluctuations having a length scale comparable to that of the whole system and can, in their
simplest version, be described by the MHD model presented in Section 3. Their appearance
generally leads to the termination of the discharge and the destruction of the configuration.
In this Chapter we will deal with this kind of instabilities.

The usual procedure to study the MHD stability of an equilibrium is based on the analysis of
the energy increment δW introduced by a small perturbation to the equilibrium (Friedberg,
1987). Using the linearized equations of the MHD model it is possible to compute the growth
rate of each perturbation. If all possibles modes decay then the equilibrium is MHD stable.

According to the source of energy that feeds the instability, the macroinstabilities can be
divided in:

• External modes. In this case the energy of the instability comes from the interaction
between the plasma and the boundary (the separatrix) or the external magnetic fields. Two
typical examples appearing in spheromaks are the shift and the tilt instabilities. The first
one consists in the displacement of the configuration as a whole while the second one
involves the rigid rotation of the magnetic surfaces. The flux conserver (the chamber of
conducting walls inside which the spheromak is formed) plays a crucial role in suppressing
these instabilities. For instance, in a cylindrical flux conserver the tilt instability can be
avoided if the elongation of the cylinder (ratio between height and radius) is lower than
1.6.

• Current driven modes. They are activated by non uniform current distributions. The most
common example of this kind of instabilities is the kink mode, which may be either an
internal (it does not affect the separatrix) or an external mode. In tokamaks this instability
is closely related to a phenomenon called sawtooth oscillations that limits in practice the
maximum value of toroidal current. In spheromaks and RFP’s the kink mode triggers the
relaxation process that forms and sustains the configuration.

• Pressure modes. Pressure gradients combined with an adverse magnetic field line
curvature may act as a source of energy to develop instabilites (called ballooning or
interchange modes).

In Section 5 we will consider internal kink modes in spheromak configurations.
A comprehensive description of the MHD modes relevant to magnetic confinement
configurations can be found elsewhere (Friedberg, 1987);(Wesson, 2004).

2.3 Formation and sustainment

Once an MHD equilibrium with good stability properties has been devised it is necessary
to find appropriate methods to form and sustain the configuration. The formation methods
depend on the configuration under consideration. In fact, a given configuration can be
obtained using different formation schemes. In most cases, after the formation process the
plasma has a temperature sensibly lower than that required for fusion. Moreover, the resistive
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obtained using different formation schemes. In most cases, after the formation process the
plasma has a temperature sensibly lower than that required for fusion. Moreover, the resistive
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dissipation which is ubiquitous on real plasmas causes the currents and the magnetic fields to
decay, so the configuration would be lost in the resistive time scale. It is then imperative to
apply adequate methods to drive currents and heat the plasma. Some common methods that
have already been successfully implemented are:

• Current induction by a primary coil. A primary coil is located at the center of the torus
and plays the role of the primary of an electric transformer while the plasma itself is the
secondary (the primary coil was not sketched in Fig. 1). This is the usual approach to
induce the toroidal current in tokamaks and RFP’s. It does not allow to operate in truly
steady state and it can not be used in compact tori.

• Radio frequency waves. Energy can be transferred to the plasma from an external source
of electromagnetic waves (antenna). The electric field of the waves transfers momentum to
the particles inducing currents and heating the plasma by collisions. Within a multi-species
plasma there exists a number of resonant frequencies that enhance the coupling between
the plasma and the antenna (ionic and electronic cyclotron resonances, hybrid resonances,
etc.).

• Neutral beam injection. Neutral atoms injected are not deflected by the magnetic field and
can penetrate the plasma until they become ionized through collisions. Once ionized these
particles follow orbits determined by the magnetic field and their energy. This process
heats the plasma and drives localized currents.

• Rotating magnetic fields. Plasma electrons may be dragged, and thus a current may be
induced, by externally applied rotating magnetic fields.

• Helicity injection. When a current is established along the magnetic field some amount
of magnetic helicity (see Sec. 4) is injected in the magnetic configuration. The driven
current may destabilize the configuration triggering a relaxation process that redistributes
the current. This is the main method used in spheromak sustainment and is the subject of
study of this Chapter.

2.4 The spheromak configuration

Early experiments in toroidal pinch configurations exhibited, under certain conditions, the
spontaneous reversal of the toroidal field near the wall of the chamber. This unexpected
feature was succesfully explained in terms of the relaxation theory proposed by Taylor (1974).
According to this theory, MHD fluctuations cause the plasma to minimize its magnetic energy
while conserving the total magnetic helicity (see Sec. 4).

Some years later, it was realized that the minimum energy state, for a given amount of
magnetic helicity, inside a sphere is a system of nested toroidal magnetic flux surfaces
(Rosenbluth & Bussac, 1979). The idea of a configuration relevant for fusion research that
would be self produced (or self-organized) inside a simply connected volume attracted the
attention of the scientific community. Several experiments were designed in order to check
this theoretical prediction. The success of these experiments was considered a proof of the
remarkable robustness of the relaxation theory (Bellan, 2000).

Despite the initial enthusiasm, it was later realized that the relaxation process involves
MHD fluctuations that strongly degrade the confinement. Because of these fluctuations the
confinement peformance of the spheromak is much lower than that of the tokamak or the
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RFP. Little is known about the dynamics of these fluctuations since the relaxation theory is
only able to predict the final state of the plasma but it can not provide any detail on how this
state is attained (Jarboe, 2005).

3. The MHD model

The MHD model describes the macroscopic behavior of a plasma in many situations of interest
in a relatively simple manner. Its validity relies, however, in a number of assumptions that
have to be borne in mind in order to understand what kind of phenomena can be explained
by the model and what effects lie outside this description.

3.1 Basic assumptions of the MHD model

The MHD model regards the plasma as a quasi-neutral electrically conducting fluid. The
first and most fundamental assumption of this description is to regard the ensemble of ions
and electrons conforming the plasma as a single continuum medium. This is valid when the
length scales associated with the magnetic field gradients is much larger than the internal
length scales of the plasma (such as the ionic and electronic gyroradii). This condition holds
in virtually every laboratory plasma dedicated to fusion research.

The second important assumption is to consider that the plasma is in thermodynamic
equilibrium so the particles have a Maxwellian distribution of velocities. This is a good
approximation as long as the shortest time scale of the process under consideration is much
longer than the collision time and the shortest length scale of the system is larger than the
mean free path of the particles. In other words, the plasma should be in a collisional regime
(this condition is required to derive the fluid equations from the kinetic equations (Braginskii,
1965)). The collisionality hypothesis is usually not satisfied at the highest temperatures
obtained in modern tokamak experiments. However, spheromak plasmas are much colder
(T ∼ 102 eV) so that this assumption is still reasonable. Moreover, there are several arguments
supporting the validity of the MHD model even in collisionless systems (Friedberg, 1987);
(Priest & Forbes, 2000).

Finally, in the context of the MHD model the plasma is assumed to be electrically neutral (or
quasi-neutral since the charges are present but exactly balanced). This is approximately true
when the length scales under consideration are larger than the Debye shielding of electrons.

3.2 MHD equations

Now we seek for the equations that describe the evolution of the two main quantities that
govern the dynamics of such an MHD system: the velocity field and the magnetic field. The
equation for the evolution of the plasma velocity u, expresses the balance of linear momentum

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + J × B + μ∇ · Π (7)

where ρ is the mass density and p is the thermodynamic pressure. The second term on the
right hand side is the Lorentz force, where J is the current density and B is the magnetic field.
We note that due to quasi-neutrality the current density is produced by the relative motion
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between ions and electrons. The last term in Eq. (7) is the viscous force where μ = ρν is the
dynamic viscosity, ν is the cinematic viscosity and the tensor Π is given by

Π = ∇u +∇uT − 2
3
(∇ · u)I. (8)

If the flow is incompressible (∇ · u = 0) Π reduces to ∇u.

Let us mention some basic aspects of the Lorentz force term. Using the low-frequency Ampère
law J = ∇× B (we rescale B and J in such a way that μ0 = 1) and the vector identity (∇×
B)× B = (B · ∇)B −∇(B2/2), we can decompose this term into two contributions

J × B = (B · ∇)B −∇
(

B2

2

)
. (9)

The first term on the right represents a magnetic tension force in the direction of B which has
a restoring effect when the magnetic field lines are bent. The second term is regarded as a
magnetic pressure that acts in all directions. Clearly, both forces must cancel out along the
magnetic field lines since the term J × B can not accelerate the fluid in the direction of B.

The equation for the magnetic field evolution comes from the Maxwell equations and a
constitutive law that relates the electric field to the magnetic field and the current density
(the Ohm’s law). We begin with the Faraday’s law in the low-frequency limit (i.e. neglecting
the displacement current)

∇× E = − ∂B
∂t

. (10)

On the other hand, the Ohm’s law relates the current density to the electric field in the frame of
reference of the conducting medium E� = ηJ�, where η is the electric resistivity (the reciprocal
of the conductivity) and the prime denotes that the quantities have to be measured in the
plasma’s reference frame. When this equation is expressed in the lab’s frame (from which the
plasma moves at velocity u) it adopts the form

E = −u × B + ηJ (11)

where relativistic effects have been neglected (u � c, where c is the speed of light).

Combining Eqs. (10) and (11) together with the identity ∇×∇× B = ∇(∇ · B)−∇2B and
the constraint ∇ · B = 0, we obtain the MHD induction equation

∂B
∂t

= ∇× (u × B) + η∇2B (12)

where spatial uniformity of η was assumed. Although not considered in this work, we
point out that, whenever present, resistivity gradients may give rise to the so-called current
interchange effect which constitutes an effective mechanism of current exchange between flux
tubes (Zheng & Furukawa, 2010). Note that the terms J × B and u × B introduce a strong
non-linear coupling between Eqs. (7) and (12).
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3.3 Diffusion of magnetic field lines and frozen-in-flux condition

The two terms in the right hand side of Eq. (12) account for two very different physical effects.
The quotient between the magnitudes of these effects can be estimated as

|∇ × (u × B)|
|η∇2B| ∼ u0/L

η/L2 =
u0L

η
≡ Rm (13)

where u0 and L are typical velocity and length scales and Rm is the magnetic Reynolds
number. Thus, when Rm ∼ 0 the magnetic field simply diffuses and the configuration decays
in the resistive time scale τr = L2/η.

The opposite limit (Rm � 1) is more representative of the actual situation in most laboratory
(in the context of magnetic confinement) and space plasmas. In this limit (called ideal limit)
the induction equation reduces to,

∂B
∂t

= ∇× (u × B) (Rm � 1). (14)

This equation implies the conservation of the magnetic flux through any closed surface that
moves with the local velocity of the fluid. If we regard the magnetic field lines as very thin
flux tubes and we imagine closed curves surrounding them that move with the fluid, we
realize that the plasma drags the field lines as it moves. It is said that the field lines are frozen
in the plasma (frozen-in-flux condition). Since each field line is simply convected by the flow
(assumed to be smooth and continuous) its connectivity is preserved. This means that in the
ideal MHD approximation the changes in the topology of the magnetic field are not possible.
This idea, which is intimately related to the Kelvin’s circulation theorem for inviscid flows,
was first introduced by Hannes Alfvén in 1943. More details on the frozen in flux condition
may be found elsewhere (Biskamp, 2000);(Priest & Forbes, 2000).

3.4 Closing the system of equations

The system formed by Eqs. (7) and (12) and the constraint ∇ ·B = 0, has too many unknowns
and can not be solved. Even if the current density can easily be expressed in terms of the
magnetic field using Ampère’s law, we still need to introduce some information concerning
the density and the pressure. We describe four common approaches to accomplish this.

Firstly, the zero-β approximation gives the simplest option. The nondimensional parameter
β = 2p0/B2

0 measures the ratio between the thermodynamic pressure and the magnetic
pressure. A very low β value (which is the case in most confinement experiments) means
that the dynamics of the plasma is mainly dictated by the magnetic field (via the Lorentz
force) while the pressure gradient has little influence. Thus, we may simply remove the term
∇p from Eq. (7) and assume that ρ = ρ0 is a constant.

The second option is to consider an incompressible flow. In this case ρ is still a constant but
the pressure gradient is no dropped. In this case the required information is completed by
the incompressible condition ∇ · u = 0. The pressure can not be directly computed with this
equation but it can be indirectly inferred. It plays the role of a Lagrange multiplier. Although
this is a less crude and more consistent option, it is not generally a good approximation for
low β plasmas.
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2

)
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. (10)
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∂t
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This equation implies the conservation of the magnetic flux through any closed surface that
moves with the local velocity of the fluid. If we regard the magnetic field lines as very thin
flux tubes and we imagine closed curves surrounding them that move with the fluid, we
realize that the plasma drags the field lines as it moves. It is said that the field lines are frozen
in the plasma (frozen-in-flux condition). Since each field line is simply convected by the flow
(assumed to be smooth and continuous) its connectivity is preserved. This means that in the
ideal MHD approximation the changes in the topology of the magnetic field are not possible.
This idea, which is intimately related to the Kelvin’s circulation theorem for inviscid flows,
was first introduced by Hannes Alfvén in 1943. More details on the frozen in flux condition
may be found elsewhere (Biskamp, 2000);(Priest & Forbes, 2000).

3.4 Closing the system of equations

The system formed by Eqs. (7) and (12) and the constraint ∇ ·B = 0, has too many unknowns
and can not be solved. Even if the current density can easily be expressed in terms of the
magnetic field using Ampère’s law, we still need to introduce some information concerning
the density and the pressure. We describe four common approaches to accomplish this.

Firstly, the zero-β approximation gives the simplest option. The nondimensional parameter
β = 2p0/B2

0 measures the ratio between the thermodynamic pressure and the magnetic
pressure. A very low β value (which is the case in most confinement experiments) means
that the dynamics of the plasma is mainly dictated by the magnetic field (via the Lorentz
force) while the pressure gradient has little influence. Thus, we may simply remove the term
∇p from Eq. (7) and assume that ρ = ρ0 is a constant.

The second option is to consider an incompressible flow. In this case ρ is still a constant but
the pressure gradient is no dropped. In this case the required information is completed by
the incompressible condition ∇ · u = 0. The pressure can not be directly computed with this
equation but it can be indirectly inferred. It plays the role of a Lagrange multiplier. Although
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Thirdly, we could allow compressible flows by using the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (15)

and assuming some simple relationship between the pressure and the density. For instance,
p = c2

s ρ where cs is the speed of sound (isothermal approximation) or p = cadργ where cad is
a constant and γ is the polytropic index (polytropic approximation).

Finally, a more elaborated option can be obtained if we incorporate, besides Eq. (15), an
equation for the energy balance

∂w
∂t

= −∇ · q − Qc,r (16)

where w is the total energy density defined as

w = ρ

(
u2

2
+ e

)
+

B2

2
(17)

e is the internal energy per unit of mass, the term Qc,r accounts for conductive and radiative
losses and q is the energy flux given by

q =

[
ρ

(
e +

u2

2

)
+ p

]
u + E × B − μ

(
u · Π

)
. (18)

The three terms on the right denote respectively the energy flux due to convection, the
electromagnetic energy flux (Poynting’s vector) and the viscous dissipation of energy. In this
context we also need an equation of state of the form p = p(ρ, e). The most common choice is
the ideal gas law p = (γ − 1)ρe where γ is the ratio of specific heats.

3.5 Scales and dimensionless numbers

The results presented in Sec. 5 are obtained by numerically solving the MHD equations.
It is a common practice to use a nondimensionalized version of the considered equations.
The removal of the units is achieved by the choice of suitable scales that can be condensed
in few nondimensional numbers. We will see which are the chosen scales and the relevant
nondimensional quantities in this study.

Since spheromaks are very low-β plasmas, the zero-β approximation is used to close the
system. The resulting equations can be nondimensionalized with a length scale a (the radius
of the cylinder inside which we will solve the equations) and a velocity scale cA = B/

√
ρ,

which is known as the Alfvén velocity. Perpendicular perturbations travel along the magnetic
field lines at this velocity. The time will be normalized by the Alfvén time τA = a/cA, which
represents the typical time scale of the MHD fluctuations.

Using these scales we obtain two nondimensional numbers: the Lundquist number S =
acA/η and ν/acA which is usually expressed in terms of the magnetic Prandtl Pm = ν/η.
The Lundquist number can be rewritten as

S =
a2/η

a/cA
=

τr

τA
(19)

94 Topics in Magnetohydrodynamics Dynamics of Magnetic Relaxation in Spheromaks 11

where τr is the time scale of resistive dissipation. In the simulations presented in Sec. 5 we
have used Pm = 1 and S = 2 × 104.

4. Plasma relaxation

It is common to observe magnetized fluids and plasmas as well as other continuum media to
exist naturally in states with some kind of large scale order. These states are to some extend
independent of the initial conditions, that is to say, they are preferred configurations toward
which the system evolves if the correct boundary conditions are imposed. Moreover, if the
system is perturbed it tends to return to the same preferred state recovering the large scale
order. The large scale order of some quantity always comes together with the disorder at small
scales of another quantity. These preferred configurations are called self-organized sates and
the dynamical process of achieving these states is called self-organization (Hasegawa, 1985).
Plasma relaxation is an example of self-organization.

Self-organized (or relaxed) states can not be deduced from force balance or stability
considerations alone. The theory of magnetic relaxation always relies on some variational
principle, that is to say, the minimization of some quantity subjected to one or more
constraints. Possibly the simplest and surely the most widespread option adopted to describe
plasma relaxation was introduced by Taylor (1974). While a rather obvious choice was made
for the quantity to minimize (the magnetic energy) a very clever option was made for the
constraint. Among all the ideal MHD invariants Taylor chose the total magnetic helicity. The
total magnetic helicity quantifies several topological properties of the system and even when
magnetic reconnection can change the topology of the magnetic field lines, the total helicity of
the system is still a robust invariant. These ideas are further developed below.

4.1 Magnetic helicity

The total magnetic helicity H of the magnetic field B within the volume V is

H =
∫

V
A · B dV (20)

where A is the potential vector (B = ∇× A). A relevant question may be posed at this time
regarding how this quantity is modified by a change in the gauge of A. It is clear that in order
to have a meaningful definition, Eq. (20) should be gauge invariant. The helicity change ΔH
introduced when A is replaced by A +∇χ is

ΔH =
∫

V
∇χ · B dV =

∫

V
∇ · (χB) dV (21)

where we have used the fact that ∇ · B = 0. Applying the divergence theorem in a simply
connected volume V this becomes

ΔH =
∫

S
χB · ds (22)

where S is the surface that encloses V and ds is the outward-pointing normal surface element.
Therefore, the definition (20) is gauge invariant only if the normal component of the magnetic
field vanishes at the boundary of V, which was assumed to be simply connected. We will
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which the system evolves if the correct boundary conditions are imposed. Moreover, if the
system is perturbed it tends to return to the same preferred state recovering the large scale
order. The large scale order of some quantity always comes together with the disorder at small
scales of another quantity. These preferred configurations are called self-organized sates and
the dynamical process of achieving these states is called self-organization (Hasegawa, 1985).
Plasma relaxation is an example of self-organization.

Self-organized (or relaxed) states can not be deduced from force balance or stability
considerations alone. The theory of magnetic relaxation always relies on some variational
principle, that is to say, the minimization of some quantity subjected to one or more
constraints. Possibly the simplest and surely the most widespread option adopted to describe
plasma relaxation was introduced by Taylor (1974). While a rather obvious choice was made
for the quantity to minimize (the magnetic energy) a very clever option was made for the
constraint. Among all the ideal MHD invariants Taylor chose the total magnetic helicity. The
total magnetic helicity quantifies several topological properties of the system and even when
magnetic reconnection can change the topology of the magnetic field lines, the total helicity of
the system is still a robust invariant. These ideas are further developed below.

4.1 Magnetic helicity

The total magnetic helicity H of the magnetic field B within the volume V is

H =
∫

V
A · B dV (20)

where A is the potential vector (B = ∇× A). A relevant question may be posed at this time
regarding how this quantity is modified by a change in the gauge of A. It is clear that in order
to have a meaningful definition, Eq. (20) should be gauge invariant. The helicity change ΔH
introduced when A is replaced by A +∇χ is

ΔH =
∫

V
∇χ · B dV =
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V
∇ · (χB) dV (21)

where we have used the fact that ∇ · B = 0. Applying the divergence theorem in a simply
connected volume V this becomes

ΔH =
∫

S
χB · ds (22)

where S is the surface that encloses V and ds is the outward-pointing normal surface element.
Therefore, the definition (20) is gauge invariant only if the normal component of the magnetic
field vanishes at the boundary of V, which was assumed to be simply connected. We will
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respect these two conditions throughout this work. When the normal component of the
magnetic field does not vanish at the boundary or the volume V is not simply connected
a generalized definition, the so-called relative helicity, must be employed (Finn & Antonsen,
1985).

To see how H can measure topological properties of the system we will consider the concept
of flux tube. The magnetic flux through an open and orientable surface S is

Φ =
∫

S
B · ds =

∮

C
A · dl (23)

where C is the path along the perimeter of S in the counterclockwise direction. Note that the
Eq. (23) holds even if the gauge of A is changed.

We present an example given by Moffat (1978). Consider two linked flux tubes like those
shown in Fig. 2 (a). We assume that there are no other contributions to the magnetic field. In

(a) (b)

Fig. 2. Linked flux tubes.

this simplified case the total helicity can be computed as H = H1 + H2, with Hi =
∫

Vi
A ·B dV,

for i = 1, 2. To compute Hi we note that dV = dl · ds, where dl is the element of length along
the tube and ds its cross section. By construction, dl and ds are parallel to B, so we can
rearrange the integrand as A · B dV = A · B dl · ds = (A · dl)(B · ds), and thus

Hi =
∮

Ci

∫

Si

(A · dl)(B · ds). (24)

Since the magnetic flux is constant along each curve Ci the last equation can be written as

Hi = Φi

∮

Ci

A · dl. (25)

On the other hand, the contour C1 encloses the magnetic flux Φ2 and vice versa, so from Eq.
(23) it is clear that ∮

C1

A · dl = Φ2 and
∮

C2

A · dl = Φ1 (26)

and thus H1 = H2 = Φ1Φ2 which finally gives

Hlink = 2Φ1Φ2 (27)
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for the helicity due to the linking of the tubes. In general, if each tube winds around the other
N times (in Fig. 2 (b) we have N = 6) one obtains H1 = H2 = NΦ1Φ2 (Moffat, 1978). N is the
linking number of the tubes.

The helicity can also measure the self-twisting of a single tube. So far we did not pay attention
to the tube’s cross section shape. In order to compute the helicity of a twisted flux tube it is
convenient to consider structures having elongated cross sections, like the ribbon shown in
Fig. 3 (a). This ribbon is untwisted and has no helicity. If we cut this ribbon, we rotate one end

Fig. 3. (a) An untwisted ribbon-like flux tube, (b) a twisted flux tube and (c) the same twisted
tube marked with different colors.

by 2π and we join both ends together again we obtain the twisted ribbon shown in Fig. 3 (b).
The helicity of this structure may be computed using Eq. (27) obtained for two linked tubes
applying the following reasoning. Regard the twisted tube as two adjacent tubes carrying one
half of the total magnetic flux (see Fig. 3 (c)). The helicity of this system has a contribution
coming from the linking of the two tubes H1

link and also a contribution coming from the self
twisting of the smaller tubes. If Φ is the total magnetic flux of the original twisted tube, the
helicity due to the linking of each half is

H1
link = 2

(
Φ
2

)2

. (28)

Note that this mental process to convert helicity due to twisting into helicity due to linking
can be recursively applied to obtain

Hn
link = 2n

(
Φ
2n

)2

=
Φ2

2n (29)

for each contribution due to linking. Finally, the helicity of the twisted tube is obtained by
adding all these contributions

H = lim
N→∞

N

∑
n=1

Hn
link = Φ2

∞

∑
n=1

1
2n = Φ2. (30)
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4.2 Localized magnetic reconnection

Magnetic reconnection is ubiquitous in almost all space and laboratory plasmas. It consists in
a rearrangement of the topology of the magnetic field due to a change in the connectivity of the
magnetic field lines. This process plays an important role in several confinement devices (such
us the tokamak, the RFP and the spheromak) as well as in several astrophysical phenomena
(Earth magnetosphere, solar corona, solar wind, accretion disks, etc.). Since the majority of
those plasmas have a very high magnetic Reynolds number (and a high Lundquist number as
well) the ideal MHD model should provide an adequate level of description for the physical
system. However, as already mentioned in Sec. 3.3, topological changes in the magnetic
field are not allowed in the ideal limit. What actually happens is that the coupled non linear
evolution of the magnetic field and the flow inevitably develops current sheets, i.e. localized
regions where the magnetic field gradients become very large. Within these highly localized
regions the ideal approximation breaks down and the last term of Eq. (12) becomes relevant
causing the magnetic field to diffuse and change the connectivity of the field lines.

The fundamental ansatz of the plasma relaxation theory is that these localized reconnection
events do not change the total helicity of the system. Even when dissipation is involved in
this process, it is assumed that only magnetic energy is affected. How can magnetic helicity
be conserved during a localized reconnection event is schematically shown in Fig. 4. Two

Reconnection

(a)   H = 2 Φ2 (b)   H = H1+H2 = 2Φ2

H2 = Φ2

H1 = Φ2

After 
reconnection

Fig. 4. (a) Two linked ribbon-like flux tubes undergo a localized reconnection process that
give rise to two separate but twisted tubes (b). The global helicity of the system is conserved.

untwisted flux tubes that are initially linked can be locally reconnected giving rise to a pair of
separate but twisted tubes, in such a way that the total helicity of the system is conserved.

Moreover, plasma relaxation is based on the fact that localized reconnection events allow
topological changes and dissipate magnetic energy much faster than the total helicity. There
exists a number of arguments to justify this behavior (see Sec. 9.1.1 of Priest & Forbes (2000)
or Montgomery et al. (1978)). Let’s consider, for instance, how these two quantities (magnetic
energy and helicity) decay in the presence of a small uniform resistivity η. Magnetic energy,
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W =
∫

V B2/2 dV, decays at the rate

dW
dt

= −η
∫

V
J2 dV. (31)

This expression can be obtained by scalar multiplying Eq. (10) by B and integrating over a
fixed volume at whose boundary the normal component of the Poynting vector vanishes. For
the magnetic helicity we take the time derivative of (20) and obtain

dH
dt

=
∫

V

(
∂A
∂t

· B + A · ∂B
∂t

)
dV =

∫

V

(
∂A
∂t

· B + A · ∇ × ∂A
∂t

)
dV. (32)

Using vector identities and the divergence theorem, the last expression can be rewritten as

dH
dt

= 2
∫

V

∂A
∂t

· B dV −
∫

S
A × ∂A

∂t
· ds (33)

where S is the surface that encloses V. If field lines do not penetrate the volume V the surface
integral in Eq. (33) vanishes. In the absence of charge separation E = −∂A/∂t, and using
Ohm’s law E = ηJ, we finally obtain

dH
dt

= −2η
∫

V
J · B dV. (34)

It is clear that in the absence of resistivity (the ideal limit) W and H are conserved and, for
this reason, it is said that they are ideal invariants. By contrast, in a real plasma both energy
and helicity will decay at a rate proportional to η. However, when turbulence is present,
magnetic fluctuations produce many thin current sheets with thicknesses of order η1/2 and
current densities proportional to Bη−1/2. In such case, the energy decay rate becomes

dW
dt

∝
∫

V
B2 dV

which is independent of η. On the other hand, the total helicity decays as

dH
dt

∝ 2η1/2
∫

V
B2dV

so that as η tends to zero the helicity dissipation becomes negligible. Therefore, it is important
to keep in mind that a plasma will relax (in the sense described here) only if there is a
certain level of small scale fluctuations that gives rise to many localized current sheets. For
this reason, relaxation theory does not apply to devices with a very low level of magnetic
fluctuations, such as the tokamak.

Localized magnetic reconnection events may redistribute currents in the plasma by helicity
transfer between flux tubes. Even when this idea must be applied with care because the
helicity is by definition a global quantity, it is clear that the helicity of a single flux tube may
change after reconnection with another flux tube. This helicity transfer process is certainly
at work during toroidal current drive in spheromaks and other devices sustained by helicity
injection.
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4.2 Localized magnetic reconnection
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Reconnection

(a)   H = 2 Φ2 (b)   H = H1+H2 = 2Φ2

H2 = Φ2

H1 = Φ2

After 
reconnection

Fig. 4. (a) Two linked ribbon-like flux tubes undergo a localized reconnection process that
give rise to two separate but twisted tubes (b). The global helicity of the system is conserved.

untwisted flux tubes that are initially linked can be locally reconnected giving rise to a pair of
separate but twisted tubes, in such a way that the total helicity of the system is conserved.

Moreover, plasma relaxation is based on the fact that localized reconnection events allow
topological changes and dissipate magnetic energy much faster than the total helicity. There
exists a number of arguments to justify this behavior (see Sec. 9.1.1 of Priest & Forbes (2000)
or Montgomery et al. (1978)). Let’s consider, for instance, how these two quantities (magnetic
energy and helicity) decay in the presence of a small uniform resistivity η. Magnetic energy,
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∫
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dW
dt

= −η
∫

V
J2 dV. (31)

This expression can be obtained by scalar multiplying Eq. (10) by B and integrating over a
fixed volume at whose boundary the normal component of the Poynting vector vanishes. For
the magnetic helicity we take the time derivative of (20) and obtain

dH
dt

=
∫

V

(
∂A
∂t

· B + A · ∂B
∂t
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∫
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∂t
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∂t
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4.3 Relaxed states

The magnetic relaxation theory is developed for systems in which the magnetic forces are
dominant, i.e. whenever the parameter β is low. In such cases, the MHD equilibrium Eq. (1)
reduces to the force-free condition

∇× B = λ(r) B (35)

where λ(r) is some scalar function. As discussed in the previous Section, magnetic
fluctuations induce localized reconnection events that relax the plasma toward the state of
minimum magnetic energy maintaining the total helicity of the system (Taylor, 1974). Woltjer
(1958) has shown that force-free fields with λ equal to a constant represent the state of lowest
magnetic energy under the constraint of magnetic helicity conservation in a closed system
(i.e. with no field lines intercepting the boundary). The proof uses the method of Lagrange
multipliers. At a constrained minimum, the variation of magnetic energy is equal to a constant
(the Lagrange multiplier) times the variation of helicity

δW =
λ

2
δH (36)

where λ/2 is the Lagrange multiplier. Substituting W =
∫

V B2/2 dV for the magnetic energy
and Eq. (20) for H yields

∫

V

[
2 B · δB − λ(δA · B + A · δB)

]
dV = 0. (37)

Using the identities
B · δB = δA · ∇ × B −∇ · (B × δA)

and
A · δB = B · δA +∇ · (δA × A)

and the divergence theorem in Eq. (37) one obtains
∫

V
2 (∇× B − λB) · δA d3r = 0 (38)

where we omitted the surface integrals because they vanish in the absence of field lines
penetrating the volume under consideration. Since δA is arbitrary, the parenthesis of the
integrand of Eq. (38) must be identically zero, which finally gives us the linear force-free
condition

∇× B = λB (39)

where λ is a constant. When we impose B · ds = 0 at the boundary, we obtain an eigenvalue
problem that has non trivial solution only for certain discrete values λn (which are real and
positive).

Since ∇×B = λnB, we can write the magnetic field as B = λnA+∇ f , where f is an arbitrary
potential. Thus, we can compute the magnetic energy as

W =
1
2

∫

V
B · (λnA +∇ f )dV =

λn

2

∫

V
B · A dV =

λn

2
H (40)
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since
∫

V B · ∇ f dV =
∫

V ∇ · ( f B)dV =
∫

∂V( f B) · ds = 0. Eq. (40) gives us an important
meaning for the eigenvalue: λn is proportional to the quotient W/H. For this reason it is
clear that for a given amount of helicity, the minimum energy state will be given by the lowest
allowed value of λn (i.e. λ1).

The most frequent model employed to describe a spheromak configuration is the relaxed state
inside a cylindrical flux conserver. Using cylindrical coordinates, the condition B · ds = 0
means Bz = 0 at z = 0 and z = h and Br = 0 at r = a, where h and a are the height and the
radius of the cylinder. In this case the solution to Eq. (39) can be found analytically (Bellan,
2000). In terms of Bessel functions and trigonometric functions the solution is

Br = B0
π

γ1h
J1(γ1r) cos(k1(z − h)) (41)

Bθ = −B0
λ1
γ1

J1(γ1r) sin(k1(z − h)) (42)

Bz = −B0 J0(γ1r) sin(k1(z − h)) (43)

where γ1 = x11/a, k1 = π/h and x11 is the first zero of J1. Note that, since this is an
eigenfunction (of the curl operator) it is defined up to a constant B0. Note also that this
solution has no toroidal dependence (i.e. it is axisymmetric). The corresponding eigenvalue
which depends on the geometry of the flux conserver is

λ1 =

√
x2

11
a2 +

π2

h2 . (44)

In Fig. 5 we show the magnetic field lines obtained after following the trajectories given by
Eqs. (41) - (43) from four different positions.

Fig. 5. Four magnetic field lines showing four nested magnetic flux surfaces. This fully
relaxed state has the same value of λ (equal to λ1) on each surface.
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5. Dynamics of magnetic relaxation in spheromak configurations

The relaxation theory as formulated by Taylor (1974) is a variational principle that can
not give details on the dynamical aspects of the process. All the considerations we have
made regarding the important role of localized reconnection in helicity conservation are only
heuristic arguments that try to explain the remarkable success of the theory at predicting the
self-organized final state of the plasma.

There are a number of reasons that motivate the study of the dynamics of relaxation. For
instance, in the context of spheromak research it is observed that during sustainment the
system does not remain at the lowest energy state. Small deviations from the relaxed state
as well as the ubiquitous presence of fluctuations are crucial issues that are out of the scope of
relaxation theory (Knox et al., 1986);(Willet et al., 1999). In this work we study these aspects
using numerical solutions of the non linear resistive MHD equations described in Sec. 3 as an
initial and boundary value problem in three spatial dimensions. The nondimensional version
described in Sec. 3.5 of these equations is used. The details of the numerical method are not
presented here but can be found elsewhere (Garcia-Martinez & Farengo, 2009b).

In this Section we present a study of the dynamics of the kink mode in spheromak
configurations. We will focus on the dynamics of systems that are only marginally unstable.
Even when this may sound as a rather specific topic we will see that this is a simple setup in
which we can study magnetic reconnection and helicity transfer between flux tubes. Firstly,
we describe the kink unstable configurations used as initial condition and explain how they
can be computed. Secondly, we study the dynamics of the kink instability in several cases and
discuss in which cases it leads to a complete relaxation process (as described in the preceding
Section) and in which cases the relaxation process is only partial. Thirdly, we introduce
the concept of safety factor and resonant surfaces and explain their relevance to the partial
relaxation behavior observed in marginally unstable configurations. Then, we analyze in
detail the reconnection process that is driven by the dominant kink mode. Finally, we discuss
simple models to describe this reconnection process.

5.1 Problem description

The minimum energy state for a given helicity inside a (not very elongated) cylindrical flux
conserver, see Fig. 5, is stable against small MHD perturbations. There exists, however, a
simple modification of this configuration which is MHD unstable, in particular kink unstable.
Now we derive the equations that will allow us to compute as well as to better understand
these modified configurations.

For simplicity we consider force-free configurations. In general this condition may be
expressed as J = λ(r)B, where λ may be an arbitrary function. However, we will restrict
our study to the case in which λ is a flux function, that is to say it takes the same value on each
flux surface and can only change from one surface to another. This condition is expressed as

∇× B = λ(ψ)B. (45)

Since we consider axisymmetric configurations, we can express the poloidal magnetic field
component (Bp) in terms of ψ using Eq. (4), while for the toroidal component we have
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Jz = (∇× B)z =
1
r

∂

∂r
(rBθ) = λBz. (46)

Using this, along with Eq. (3) we obtain

Bθ =
1

2πr

∫ r

0
λBz 2πr̃dr̃ =

1
2πr

∫ ψ

0
λ(ψ̃)dψ̃. (47)

Thus, expressing the magnetic field in terms of ψ we can rewrite the toroidal component of
Eq. (45) as

∂2ψ

∂r2 − 1
r

∂ψ

∂r
+

∂2ψ

∂z2 + λ(ψ)
∫ ψ

0
λ(ψ̃)dψ̃ = 0 (48)

which is the force-free version of the Grad-Shafranov equation. We are interested in solving
Eq. (48) in the rectangle Ω : (r, z) = [0, a]× [0, h], i.e. a cylinder of radius a and height h.

The most simple option for λ(ψ) would be λ = 0, which corresponds to the vacuum solution
(currentless magnetic field). The solution vanishes in this case if homogeneous boundary
conditions (ψ|∂Ω = 0) are applied.

A more interesting case is obtained by setting λ = λn (constant) which gives

− Δ∗ψ = λ2
nψ (49)

where we have introduced the Grad-Shafranov operator defined as Δ∗ = ∂2/∂r2 −
(1/r)∂/∂r + ∂2/∂z2. If we impose homogeneous boundary conditions we obtain an
eigenvalue problem which has non trivial solutions only for a discrete set of real and positive
values of λn. The lowest value (λ1) is given by Eq. (44) and its associated eigenfunction is
the minimum energy state described in detail in Sec. 4.3. Thus, if the appropriate boundary
conditions are imposed, we can also regard the spheromak as the lowest eigenfunction of the
Grad-Shafranov operator.

In this study we will consider initial equilibria having

λ(ψ) = λ̄

[
1 + α

(
2

ψ

ψma
− 1

)]
(50)

which is a linear λ(ψ) profile with slope α and mean value λ̄. When this linear profile
is injected in Eq. (48) a generalized non-linear eigenvalue problem is obtained. Some
mathematical considerations as well as a basic numerical scheme to solve this problem were
given by Kitson & Browning (1990). Note that even if one is able to solve the non-linear
Grad-Shafranov equation, the profile given by Eq. (50) includes ψma which is not know a
priori. The procedure adopted here is to set ψma = 1, fix the desired value of α and iterate over
λ̄ until ψ is equal to one at the magnetic axis. With this procedure we obtain the values of λ̄

listed in Table 1. Note that each α value uniquely defines a configuration.

In Fig. 6 (a) we show two linear λ(ψ) profiles and (b) ψ contours and the λ colormap for the
α = −0.4 case. The reason why we have chosen negative values for α is the following. It is
evident that for negative values of the slope the configuration will have larger λ values in the
outer flux surfaces (at lower ψ values) and vice versa. Since λ is proportional to the current
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α 0 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8

λ̄ 4.95 5.08 5.18 5.32 5.51 5.78 6.23

Table 1. λ̄ values for some prescribed α values.

Fig. 6. (a) Two λ(ψ) profiles. (b) ψ contours and λ colormap for the case with α = −0.4. A
hollow current profile is obtained for negative α values.

density it is said that the configuration has a hollow current profile. This is actually the case for
spheromak configurations during sustainment.

Real spheromaks have some amount of open magnetic surfaces (i. e. there is some magnetic
flux crossing the walls) along which current is driven. This injects magnetic helicity. Then the
system relies on magnetic relaxation to drive the current in the inner flux surfaces. In order
to sustain this current drive process in (quasi) steady state, some current (or λ) gradient is
required. In fact, experiments show that sustained spheromaks are better approximated by a
force-free state with α = −0.3 rather than by the lowest energy state (having α = 0) (Knox et
al., 1986); (Willet et al., 1999).

5.2 Complete relaxation vs partial relaxation

Up to this point we know that the minimum energy state is MHD stable and that we can
modify the configuration by giving the λ(ψ) profile a non zero slope. Now we consider the
stability of configurations having negative α values. A linear MHD stability analysis has
determined that there exists a threshold value for the slope at which the system becomes
unstable (Knox et al., 1986). Configurations with λ(ψ) profiles that are steeper than the
threshold (lower α values) are unstable while configurations with less steep profiles are stable.
The value of this threshold (which lies between −0.3 and −0.4 for the geometry used here)
was also verified using non-linear simulations of spheromak configurations (Garcia-Martinez
& Farengo, 2009b).
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The instability that arises has dominant toroidal number n = 1 (where n stands for the
number of the coefficient of the Fourier decomposition in the toroidal direction). This current
driven n = 1 mode is the kink mode. It is well known that the kink mode triggers the
relaxation process in spheromaks during sustainment. It has been shown that when the initial
unstable configuration has an α value close to the stability threshold, the relaxation process is
not complete (Garcia-Martinez & Farengo, 2009a);(Garcia-Martinez & Farengo, 2009b). This
means that the final state of the evolution is not a minimum energy state. In particular, the
λ profile is not uniform. This partial relaxation behavior can be observed in Fig. 7. In the
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Fig. 7. (a) Toroidal and poloidal magnetic field profiles at t = 0 and t = 200 (final time). The
dashed line shows the fully relaxed profiles. (b) λ(ψ) profiles at three times for the same α
values (Garcia-Martinez & Farengo, 2009b).

α = −0.6 case it is clear that the final state does not have neither the same radial magnetic
field profiles than the minimum energy state (shown in dashed lines) nor a uniform λ profile.
On the other hand, the most unstable case, α = −0.8, exhibits a fully relaxed final state.

Fig. 8 shows the evolution of the magnetic field lines during the kink instability. A magnetic
island is formed due to the helical distortion of the magnetic axis. This island then moves
toward the central position while the flux surfaces originally placed around the magnetic axis
are gradually pushed outward. A localized magnetic reconnection layer can be observed in
the region where the inner flux surfaces come into contact with the outer flux surfaces. This
is indicated in the small box drawn in Fig. 8 (a). After a reconnection process, a system with
axisymmetric nested flux surfaces is recovered (see Fig. 8 (e)).

The Poincaré maps showing the evolution of the α = −0.6 case can be observed in Fig.
9. The overall behavior is analogous to the previously studied case. A magnetic island is
formed at an outer position (relative to the magnetic axis) which then moves and occupies
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α 0 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8

λ̄ 4.95 5.08 5.18 5.32 5.51 5.78 6.23

Table 1. λ̄ values for some prescribed α values.

Fig. 6. (a) Two λ(ψ) profiles. (b) ψ contours and λ colormap for the case with α = −0.4. A
hollow current profile is obtained for negative α values.
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The value of this threshold (which lies between −0.3 and −0.4 for the geometry used here)
was also verified using non-linear simulations of spheromak configurations (Garcia-Martinez
& Farengo, 2009b).
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Fig. 8 shows the evolution of the magnetic field lines during the kink instability. A magnetic
island is formed due to the helical distortion of the magnetic axis. This island then moves
toward the central position while the flux surfaces originally placed around the magnetic axis
are gradually pushed outward. A localized magnetic reconnection layer can be observed in
the region where the inner flux surfaces come into contact with the outer flux surfaces. This
is indicated in the small box drawn in Fig. 8 (a). After a reconnection process, a system with
axisymmetric nested flux surfaces is recovered (see Fig. 8 (e)).

The Poincaré maps showing the evolution of the α = −0.6 case can be observed in Fig.
9. The overall behavior is analogous to the previously studied case. A magnetic island is
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Fig. 8. Poincaré maps at several times showing the evolution of kink instability for the
α = −0.4 case. The black contour shows the initial position of the q = 1 surface.

the magnetic axis position. However, in this case a large region of stochastic magnetic field
lines emerges between the two magnetic o-points and we are no longer able to identify a well
defined localized reconnection layer.

The situation is even more drastic in the case with α = −0.7 shown in Fig. 10. Most of the
initially regular surfaces are quickly destroyed and large regions of stochastic field lines are
observed. Though, a small coherent structure can still be devised even at times of strong
activity (the saturation of the instability takes place at t = 100). After the instability saturation
the toroidal modes decay and new regular nested flux surfaces are formed (t = 200).

Fig. 9. Poincaré maps showing the evolution of the kink instability in the α = −0.6 case.

Fig. 10. Poincaré maps showing the evolution of the kink instability in the α = −0.7 case.
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In contrast with the marginally unstable case analyzed previously (α = −0.4) where the
activity was milder, here the larger level of fluctuations causes the field lines to wander
through the whole domain. This facilitates the helicity transfer and enable a more effective
flattening of the λ(ψ) profile (as shown in Fig. 7).

It is important to keep in mind that these stochastic regions can be produced even by relatively
low wave number magnetic fluctuations. In fact, few toroidal Fourier modes with a rather
gentle dependence along the poloidal plane are enough to produce the disorder observed in
Fig. 10 (d).

These observations are in agreement with the discussion presented in Sec. 4.2. As remarked
there, a significant amount of small scale MHD activity (fluctuations) leading to the formation
of numerous small current sheets is required to obtain the full relaxation behavior. In the
marginal unstable case (α = −0.4) the dominant kink mode produce a regular evolution in
which a single localized current sheet is observed. This is not enough to produce a complete
relaxation behavior with uniform λ in the final state, as it can be observed in Fig. 11.

Fig. 11. λ profiles at t = 0 (λ0) and at t = 100 (after reconnection, λ f ). In this plot the abscissa
measures the distance to the magnetic axis. A partial relaxation behavior is evident, since λ f
is still far away from the eigenvalue λ1.

As α is lowered (λ profile is steepened), the kink mode becomes stronger and activates higher
order modes. Only when a significant level of activity is induced the Taylor’s relaxation
theory becomes applicable to obtain a good approximation of the final state of the system.
Interestingly, the full relaxation behavior is recovered even for a modest separation of scales
(Garcia-Martinez & Farengo, 2009a);(Garcia-Martinez & Farengo, 2009b).

5.3 Kink onset and resonant surfaces

Now we focus on the partial relaxation behavior of the marginally kink unstable
configurations where relaxation theory is not applicable. A very useful concept developed
in the context of the study of MHD modes (in particular the kink mode) is the safety factor q.
The safety factor is the number of times a field line on a flux surface goes around toroidally
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for a single poloidal turn. Based on the equation for a field line

rdθ

ds
=

Bθ

Bp
(51)

where ds is the distance in the poloidal direction while moving a toroidal angle dθ, the safety
factor can be defined as

q =
1

2π

∮ 1
r

Bθ

Bp
ds (52)

where the integral is taken over a single poloidal circuit. Note that q adopts the same value
for every field line lying on the same flux surface and thus it is a flux function q = q(ψ). In

Fig. 12. (a) Safety factor profiles for several configurations. Note that configurations having a
q = 1 surface are unstable. (b) Poincaré map showing ten field lines during the instability
onset in the α = −0.4 case. The dashed line shows the q = 1 surface, where the formation of a
magnetic island is observed.

Fig. 12 (a) the q profiles for several configurations are shown. We already mentioned that
the kink instability threshold lies between α = −0.3 and α = −0.4. In Fig. 12 (a) we can
see that the kink instability is associated to the appearance of a rational surface with q = 1.
Rational surfaces are those where q = m/n being m and n integer numbers and thus q has a
rational value. The field lines lying in such surfaces can not span a closed toroidal surface and
are particularly prone to develop different MHD modes. That is why these surfaces are also
called resonant surfaces. In Fig. 12 (b) we clearly see that it is at the q = 1 surface where the
first modification to the flux surfaces occurs. This crescent shaped structure (which shows the
onset of the island observed in Fig. 8) has a n = 1 toroidal dependence.

Note that, in the α = −0.4 case, all the relevant MHD activity triggered by the kink takes place
inside the q = 1 surface of the initial condition (Fig. 8). Thus, we can not expect this evolution
to cause a complete relaxation process. However, some partial relaxation occurs due to the
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magnetic reconnection of flux surfaces having different λ values, as confirmed in Fig. 11. The
magnetic reconnection process is further studied in the next Section.

5.4 Magnetic reconnection process

Here we describe the magnetic reconnection process that redistributes currents in the case
with α = −0.4. Consider the Poincaré map inside the box shown in Fig. 8 (a). This is

Fig. 13. (a) Poincaré map inside the box shown in Fig.8 (a). Two points, one red and one blue,
are manually selected. (b) The same Poincaré plot including two additional magnetic lines
followed from the selected points. (c) n = 1 component of the poloidal velocity (black
vectors) and the two field lines also shown in (b).

shown in Fig. 13 (a). A reconnection layer is clearly identified, in the middle of which we
have drawn a point (in red). We follow the magnetic field line that passes through this point
for a long distance (ten thousand times the cylinder radius). The results for this single line
are shown in Fig. 13 (b) and (c) (the red points) and in Fig. 14. The flow induced by the
instability, shown with vectors in Fig. 13 (c), produces the helical distortion of the central flux
surfaces. Eventually, one (or more) of these surfaces gets in contact with an outer surface. This
is clearly observed in Fig. 14 where a single field line spans both surfaces. Note that the inner
surface has a lower λ value than the outer one. At the helical reconnection layer λ adopts an
intermediate value.

As a result of this reconnection a new magnetic structure is formed. This structure has
a crescent shape cross section as shown by the blue dots in Fig. 13 (b) and (c). This is
basically the closed surface that encloses the volume between the two reconnecting toroidal
flux surfaces. Fig. 15 shows another visualization of this new magnetic entity. It has been
constructed by following the magnetic field line that passes through the blue point indicated
in Fig. 13 (a). It is interesting to note that this surface has a lower λ value in its inner face
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for a long distance (ten thousand times the cylinder radius). The results for this single line
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instability, shown with vectors in Fig. 13 (c), produces the helical distortion of the central flux
surfaces. Eventually, one (or more) of these surfaces gets in contact with an outer surface. This
is clearly observed in Fig. 14 where a single field line spans both surfaces. Note that the inner
surface has a lower λ value than the outer one. At the helical reconnection layer λ adopts an
intermediate value.

As a result of this reconnection a new magnetic structure is formed. This structure has
a crescent shape cross section as shown by the blue dots in Fig. 13 (b) and (c). This is
basically the closed surface that encloses the volume between the two reconnecting toroidal
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constructed by following the magnetic field line that passes through the blue point indicated
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Fig. 14. A single magnetic field line showing two reconnecting flux surfaces. Its color is
proportional to the local λ value (the color scale is indicated on right). The outer surface has a
higher λ than the inner surface. The helical reconnection layer adopts an intermediate value.

Fig. 15. Magnetic structure formed by the reconnection of the flux surfaces shown in Fig. 14.
The color scale indicates local λ value.

(corresponding to the λ value of the original inner flux surface) and a higher λ value in its
outer face. This clearly shows that the reconnection is a localized process. It is also evident
that the mean λ value of this structure will lie between the λ values of the original surfaces.

With these considerations in mind we can reinterpret Fig. 8. The motion of the island toward
the magnetic axis involves the reconnection of inner and outer surfaces having low and high λ

values, respectively. The new surfaces formed adopt intermediate λ values. The result of this
redistribution is shown in Fig. 11. Note that all this activity takes place in the region where
ψ ≥ 0.8 (the region inside the original location of the q = 1 surface). In Fig. 6 (a) we see that
within this region λ � 4 and thus we can not expect a full relaxation process.

A final comment is made regarding the symmetry of this process. The kink mode has a n = 1
toroidal dependence and thus the reconnection layer shown in Fig. 13 has a dominant helical
shape. However, we want to mention that there are also higher harmonics (n > 1) present
in the reconnection process. This can be observed in Fig. 16 where the inner flux surface
of Fig. 14 is shown. The high λ region (mainly yellow) shows the reconnection layer. It
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Fig. 16. Inner reconnecting magnetic flux surface. A zoom near the zone of higher λ value
reveals the presence of higher toroidal harmonics (n > 1).

has a mainly helical structure, however, a zoom around the region with the highest λ values
(shown in red) reveals the presence of higher toroidal components. It is not clear, at this point,
if higher harmonics play an important role or this process could be recovered considering a
two dimensional problem with helical symmetry.

5.5 Reconnection model for the resistive kink mode

The magnetic reconnection process described so far leads to a flux rearrangement in the region
where q > 1. This process involves a rather regular evolution of the magnetic surfaces with
only one helical current sheet. Without a significant level of MHD activity the magnetic
relaxation theory becomes inapplicable. Now we seek for a simple but adequate model to
describe the final state of the non-linear evolution of the resistive kink.

In the context of tokamak research, the evolution of the resistive kink has been intensively
studied. In particular, it is believed that this mode is responsible for a phenomenon called
sawtooth oscillations that limits in practice the maximum temperature reachable at the core.
One of the first models to describe the final state of the non linear resistive kink mode was
proposed by Kadomtsev (1975) (see also the explanation of Wesson (2004)). In this Section we
describe the Kadomtsev’s model and discuss its applicability to the results of our simulations.
Then, a modification to the model that significantly improves the agreement with our results
will be introduced.

The magnetic field lines on the q = 1 surface form a helix around the magnetic axis. The
Kadomtsev’s model describes the reconnection process in terms of the flux perpendicular to
this helix, called helical flux ψh. This flux can be computed from the helical magnetic field

Bh = Bz(1 − q) (53)

as
ψh(r) = 2π

∫ rma

r
Bz(x, zma)(1 − q)xdx (54)

111Dynamics of Magnetic Relaxation in Spheromaks



26 Will-be-set-by-IN-TECH

Fig. 14. A single magnetic field line showing two reconnecting flux surfaces. Its color is
proportional to the local λ value (the color scale is indicated on right). The outer surface has a
higher λ than the inner surface. The helical reconnection layer adopts an intermediate value.

Fig. 15. Magnetic structure formed by the reconnection of the flux surfaces shown in Fig. 14.
The color scale indicates local λ value.

(corresponding to the λ value of the original inner flux surface) and a higher λ value in its
outer face. This clearly shows that the reconnection is a localized process. It is also evident
that the mean λ value of this structure will lie between the λ values of the original surfaces.

With these considerations in mind we can reinterpret Fig. 8. The motion of the island toward
the magnetic axis involves the reconnection of inner and outer surfaces having low and high λ

values, respectively. The new surfaces formed adopt intermediate λ values. The result of this
redistribution is shown in Fig. 11. Note that all this activity takes place in the region where
ψ ≥ 0.8 (the region inside the original location of the q = 1 surface). In Fig. 6 (a) we see that
within this region λ � 4 and thus we can not expect a full relaxation process.

A final comment is made regarding the symmetry of this process. The kink mode has a n = 1
toroidal dependence and thus the reconnection layer shown in Fig. 13 has a dominant helical
shape. However, we want to mention that there are also higher harmonics (n > 1) present
in the reconnection process. This can be observed in Fig. 16 where the inner flux surface
of Fig. 14 is shown. The high λ region (mainly yellow) shows the reconnection layer. It

110 Topics in Magnetohydrodynamics Dynamics of Magnetic Relaxation in Spheromaks 27

Fig. 16. Inner reconnecting magnetic flux surface. A zoom near the zone of higher λ value
reveals the presence of higher toroidal harmonics (n > 1).

has a mainly helical structure, however, a zoom around the region with the highest λ values
(shown in red) reveals the presence of higher toroidal components. It is not clear, at this point,
if higher harmonics play an important role or this process could be recovered considering a
two dimensional problem with helical symmetry.

5.5 Reconnection model for the resistive kink mode

The magnetic reconnection process described so far leads to a flux rearrangement in the region
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relaxation theory becomes inapplicable. Now we seek for a simple but adequate model to
describe the final state of the non-linear evolution of the resistive kink.
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studied. In particular, it is believed that this mode is responsible for a phenomenon called
sawtooth oscillations that limits in practice the maximum temperature reachable at the core.
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describe the Kadomtsev’s model and discuss its applicability to the results of our simulations.
Then, a modification to the model that significantly improves the agreement with our results
will be introduced.

The magnetic field lines on the q = 1 surface form a helix around the magnetic axis. The
Kadomtsev’s model describes the reconnection process in terms of the flux perpendicular to
this helix, called helical flux ψh. This flux can be computed from the helical magnetic field
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where (rma, zma) is the position of the magnetic axis and this definition is to be used with
r ≤ rma. In what follows we will use the minor radius r̃ = rma − r as the abscissa. In order to
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Fig. 17. (a) Initial q and poloidal field (Bz) profiles. (b) Initial (ψ0
h) and final (ψK

h ) helical flux
predicted by Kadomtsev’s model. ψK

h is obtained by assuming that the area enclosed by the
two reconnecting surfaces before reconnection (c) is equal to the area inside the final
reconnected surface (d).

not overload the notation we will drop the tilde. Fig. 17 (a) shows q and Bz as a function of
the minor radius. Note that Bh changes its sign at r1, where q = 1, producing a minimum in
ψ0

h as shown in Fig. 17 (b). The Kadomtsev’s model model provides a simple way to compute
the helical flux after reconnection ψK

h (see Fig. 17 (b)) from which one can readily obtain the
reconnected poloidal field profile.

The reconnection begins at the minimum value of ψ0
h, i.e. at ψ0

h(r1). It is assumed that this flux
surface will form the new centre of the plasma and thus ψK

h (0) = ψ0
h(r1). The reconnection

then proceeds merging each pair of flux surfaces having the same ψh value. In the particular
example of Fig. 17, the flux surfaces initially located at rin and rout will reconnect forming a
new flux surface at rf. The position of the final surface rf is given by toroidal flux conservation.
Assuming that the toroidal field does not change during the process, the area enclosed by the
two initial surfaces should be equal to the area inside the final surface (see Fig. 17 (c) and (d)).
This means that

r2
f = r2

out − r2
in (55)

where we have simplified the problem by considering flux surfaces with circular cross section.
The reconnection process ends at ψh = 0 so that the flux surfaces located outside rK remain
unaffected.
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Several aspects of this model are in close agreement with the evolution of the marginally
unstable case shown in Fig. 8. First of all, the fact that the reconnection process is restricted
to the core, i.e. the region q � 1, and does not affect the whole configuration (as assumed
by relaxation theory). Secondly, in Fig. 8 we effectively see that the small island formed at r1
(q = 1) moves until it occupies the position of the magnetic axis. Thirdly, in our simulation we
also observe what is called a complete reconnection process. Note that since ψK

h is monotonic
this means that Bh after reconnection does not change its sign. This means in turn that q
does not cross 1 (in fact q is equal to 1 at r = 0). The absence of q = 1 surfaces prevents
the appearance of magnetic islands just after the reconnection and thus it is said that the
Kadomtsev’s model predicts complete reconnection. Accordingly, we do not observe any
island (other that the magnetic axis) after the reconnection (see Fig. 8) and the resulting q
profile does not cross 1, as observed in Fig. 18 (a). Despite this agreement in the overall
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η
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surface at r0 (c) with the surface at rf (d). The shaded regions have the same area.

behavior we will show that the results of the α = −0.4 case are better described by introducing
a modification to the Kadomtsev’s model. In Fig. 18 (b) the initial helical flux ψ0

h and the final
ψK

h predicted by Kadomtsev are compared with the actual final helical flux ψf
h (the red curve)

obtained at t = 100 for the α = −0.4 case. Note that the agreement is not good.

A better approximation can be obtained by looking at Fig. 8 more carefully and noting that the
reconnection process takes place inside the q = 1 surface. Since little or no effect is observed
outside r1 we propose a modified procedure for the construction of the reconnected helical
flux ψm

h . Again, the flux surface at r1 is reconnected with the magnetic axis so ψm
h (0) = ψ0

h(r1).
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where (rma, zma) is the position of the magnetic axis and this definition is to be used with
r ≤ rma. In what follows we will use the minor radius r̃ = rma − r as the abscissa. In order to
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not overload the notation we will drop the tilde. Fig. 17 (a) shows q and Bz as a function of
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ψ0
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r2
f = r2

out − r2
in (55)

where we have simplified the problem by considering flux surfaces with circular cross section.
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unaffected.
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Several aspects of this model are in close agreement with the evolution of the marginally
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the appearance of magnetic islands just after the reconnection and thus it is said that the
Kadomtsev’s model predicts complete reconnection. Accordingly, we do not observe any
island (other that the magnetic axis) after the reconnection (see Fig. 8) and the resulting q
profile does not cross 1, as observed in Fig. 18 (a). Despite this agreement in the overall
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Then, the flux surface initially placed at r0, see Fig. 18 (c), reconnects and ends at rf , Fig. 18
(d), in such a way that

r2
f = r2

1 − r2
0 (56)

which expresses the conservation of the area of the shaded regions of Fig. 18 (c) and (d). With
the initial helical flux ψ0

h and Eq. (56) it is possible to compute the reconnected helical flux
predicted by the modified model ψm

h . This is shown by the green curve of Fig. 18 (b). While
this prediction is much closer than the Kadomtsev’s model to the actual final state there is still
a significant difference. In what follows we will show that this difference is due to resistive
dissipation.

Relations (55) and (56) express the toroidal flux conservation assuming that it does not decay,
i.e. the toroidal fluxes inside rK and r1 do not change. However, as can be observed in
Fig. 18 (a), the toroidal magnetic field is visibly reduced due to resistivity. One way to take
into account this resistive decay is to change the reference radius with which we make the
construction of ψm

h given by Eq. (56). In particular, we define rη as the radius of the circle that
contains at t = 0 the same amount of toroidal flux that is contained inside r1 at t = 100. If
we now compute the reconnected helical flux using Eq. (56) but changing r1 by rη we obtain
ψ

η
h , shown by the dashed line of Fig. 18 (b). The agreement with the actual final helical flux is

very good and this suggests that the modified model indeed captures the basic physics of the
reconnection process.

6. Conclusions

In this Chapter we have presented a general picture of the magnetic confinement of high
temperature plasmas. This has motivated the introduction of the MHD model which provides
an adequate framework to study the macroscopic dynamics of fully ionized plasmas. We
have focused our attention on the physical mechanism called plasma relaxation. In particular
we have studied the magnetic relaxation process driven by the kink instability in spheromak
configurations.

Experiments as well as previous theoretical works showed the existence of a partial relaxation
behavior for marginally unstable configurations (they do not evolve toward the minimum
energy state). This is in contrast to the well established relaxation theory that states that the
plasma should relax to the minimum energy configuration. In this work we have explored
these two regimes, namely complete relaxation and partial relaxation, by varying the slope
of the initial λ(ψ) profile. This controls the degree of instability of the initial configuration as
well as the position of the rational surface having safety factor equal to one. The relevance
of the position of this rational (or resonant) surface to the partial relaxation behavior was
discussed. In particular, we showed that in marginally unstable cases this surface is not far
from the magnetic axis and the MHD activity during relaxation remains inside this resonant
surface (which is no longer resonant after relaxation). These results suggest that the q = 1
surface plays a major role in the evolution of spheromaks during sustainment because in that
situation they operate around the kink instability threshold.

The analysis of more unstable cases showed that the full relaxation process predicted by the
relaxation theory is only achieved when the magnetic fluctuations produce stochastic field
line regions of size comparable of that of the whole system. This result clearly indicates that
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the relaxation theory as formulated by Taylor (1974) is applicable to highly unstable plasmas
but it becomes useless to study the operation of configurations near an instability threshold.

The kink instability produces the helical deformation of the flux surfaces near the magnetic
axis. This drives the reconnection of the inner flux surfaces with the outer ones. This process
has been studied in detail. The reconnection layer has been identified as well as the new
structure resulting from the reconnection of the two flux tubes. Taking the low (high) λ value
of the inner (outer) tube on its inner (outer) side, these crescent shaped structures average
the λ value inside the q = 1 surface. Even when the flux surfaces remain regular during this
evolution, the process involves the full reconnection of all the magnetic tubes inside the q = 1
surface. This is of course undesired from the point of view of confinement and could partially
explain the poor performance of spheromak operation (compared to tokamaks and RFP’s).
However further studies are required on this topic regarding the coupled dynamics between
the kink and the external driving of the system. This could be done by applying appropriate
boundary conditions to model the injection of helicity from a source (Garcia-Martinez &
Farengo, 2010).

Finally, models for the reconnection process driven by the kink mode were discussed. The
Kadomtsev’s model was presented and showed to give a poor description of the actual
simulation results. A modification to this model that greatly improves the agreement with
simulations was proposed. A method to incorporate the correction due to the resistive decay
of the configuration was described.
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1. Introduction 
1.1 Field-reversed configuration (FRC) 

A field-reversed configuration (FRC) plasma is extremely high beta confinement system and 
the only magnetic confinement system with almost 100% of a beta value (Tuszewski, 1988; 
Steinhauer, 2011). The plasma is confined by the only poloidal magnetic field generated by a 
self-plasma current. The FRC has several potentials for a fusion energy system. As the one of 
the candidate for an advanced fusion reactor, for example, D-3He fusion (Momota, 1992), 
FRC plasma is attractive. Recently, this plasma also has an attraction as target plasmas for 
an innovative fusion system, Magnetized Target Fusion (MTF) (Taccetti, 2003), Colliding 
and merging two high- compact toroid (Guo, 2011; Binderbauer, 2010; Slough, 2007a) and 
Pulsed High Density FRC Experiments (PHD) (Slough, 2007b).  

The plasma belongs to a compact toroid system. Here, ‘compact’ denotes a simply connected 
geometry, i.e., the absence of a central column. The system consists of a toroidal magnetic 
confinement system with little or no toroidal magnetic field. The typical magnetic structure 
of the FRC plasma is shown in Fig. 1. The poloidal confinement field (Bze) consists of the 
externally applied magnetic field of an external coil (Bz0), and the self-generated magnetic 
field of the toroidal plasma current (I : I>2Bz0/0). The FRC consists of an axially 
symmetric magnetized plasma, a plasma liner and a simply connected configuration. Then, 
the beta value  2

02zep B  ), which is the ratio of confined plasma pressure (p) to the 

confinement magnetic field pressure (Bze2/20), is extremely high. The system has a closed 
field line region in which the high temperature plasma is confined, and an open field line 
region which acts as a natural diverter.  

A scrape-off layer is formed in the open field line region. Two singularities in the magnetic 
field, i.e., X-points, are formed at the intersections of the symmetric device axis with the 
separatrix (Bze = 0). A null field surface (Bz = 0) is also formed in the closed separatrix region. 
The radius (R) of the null surface at midplane (minor radius) is 2sR r  (rs: radius of the 
separatrix at midplane) in the pressure equilibrium state. The separatrix length ls is defined 
as the distance between the two X-points (Armstrong et al., 1981).  

An FRC has three essential geometrical plasma parameters (S*: radial size parameter; E: 
separatrix elongation; and Xs: normalized separatrix radius), which are related to the physical 
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region which acts as a natural diverter.  
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separatrix at midplane) in the pressure equilibrium state. The separatrix length ls is defined 
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An FRC has three essential geometrical plasma parameters (S*: radial size parameter; E: 
separatrix elongation; and Xs: normalized separatrix radius), which are related to the physical 
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properties of the FRC plasma. S*=rs/(c/pi) is defined as the ratio of the separatrix radius to 
the ion skin depth (c/pi). Here, rs, c and pi are the separatrix radius, speed of light and ion 
plasma frequency, respectively. Two other radial size parameters, 2s iS r  and 

sr
s iR

s rdr r   , are sometimes used, where i and io are the local ion Larmor-radius and the 

reference ion Larmor-radius, respectively, based on the external magnetic field Bze. These 
parameters indicate the importance of the two-fluid (ion and electron fluid) and finite-Larmor-
radius effects; for example, *1.3S S  and 5ss X S under under Ti ~ 2Te (Ti: ion temperature; 
Te: electron temperature) (Steinhauer, 2011). E = ls/2rs is defined as the ratio of the separatrix 
radius to the diameter, and indicates the elongation of the separatrix, which is different from 
that of a tokamak system. It is known that this elongation affects the global plasma stability of 
an FRC. Oblate and prolate FRC plasmas are usually categorized as 0 < E < 1 and E > 1 FRCs, 
respectively. Xs = rs/rw is defined as the ratio of the separatrix to the confinement coil radius. 
This normalized radius has a strong relation to the poloidal flux (p) of an elongated (prolate) 
FRC plasma, and to the FRC confinement time scaling. The average beta value   can be 
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(FRTP) method. 

The FRC topology is similar to an elongated, low-aspect-ratio, toroidal version of the Z-
pinch, as shown in Fig. 1. Since the FRC plasma has no toroidal field, and no center 
conductor, theoretical studies predict that FRC plasma is unstable with respect to an MHD 
mode with low toroidal mode number. The principal instabilities of the FRC, predicted by 
magnetohydrodynamics (MHD) theory, are listed in Table 1 (Tuszewski, 1988; Slough & 
Hoffman, 1993). Here, the tokomak nomenclature has been adopted, with n and m being the 
toroial and poloidal mode numbers, respectively.  

The plasma current of FRC, at just after formation, is primarily carried by electrons. On the 
other hand, ions are approximately at rest. However, in most of the FRC experiments, ions 
soon begin to rotate to a diamagnetic direction. The rotation speed often reaches to a 
supersonic level. Instabilities driven by the Rotational mode is appeared. The origin of 
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rotation has not yet been completely understood. But, given rotation, the condition for 
instability has been fairly well understood. The stability threshold was expressed in terms of 
a parameter=/Di, where andDi are rotation angular frequency and ion diamagnetic 
drift frequency. The threshold for n=1 mode was =1 and in n=2 mode could also grow for a 
greater than 1.2 -1.4, for zero bias limit (Freidberg & Pearlstein, 1978). For FRC plasma, a 
similar threshold is ~1.3-1.5 (Seyler, 1979). 
 

 m (poloidal 
mode) 

Mode 
Character Mode Name Experimental 

Observation 
1. Local Ideal 
Mode     

  0  Interchange Only lowest order 
(n=1,2,3) 

  1,2 Axial or 
Radial

Co-interchange
(Ballooning) No 

2. Global Mode  
No rotating  
0 1 Axial Roman candle No 
1 0 Sausage Shift Interchange Often, occasional 

1 1 Radial Sideways shift 
(Tilt) Seldom 

>1 0 Flute Interchange Often, always  
(high- s ) 

>1 1 Axial Tilt No 
Rotating  
1 1 Radial Wobble Yes  (occasional) 
2 1 Radial n=2 Yes  (always) 
>2 1 Radial n>2 Yes  (often, high- s ) 
3. Resistive 
Mode     

0 2 Radial and 
Axial Tearing Yes  (always?) 

Table 1. FRC Stability: MHD Theory versus Experimental Observation 

These two global ideal modes driven by rotation—the n = 1 wobble, of little concern since it 
saturates at low amplitude, and the n = 2 rotational instability, which destroys most FRCs—
have been regularly observed experimentally. These rotational modes (n = 1, 2) have been 
controlled by applying a straight or helical multi-pole field (Ohi et al., 1983; Shimamura & 
Nogi, 1986; Fujimoto et al., 2002). Higher-order (n > 2) rotational modes have often been 
observed in large- s  FRC experiments, with s  in the region of 3 < s  < 8 (Slough & 
Hoffman, 1993). FRC plasma with a higher s  value behaves as a MHD plasma and with 
low s  one becomes more kinematically. According to the several theoretical works, FRC 
plasmas have been predicted to be unstable because of a bad curvature of a closed 
confinement field. Various local and global non-rotating ideal MHD modes are listed in 
Table 1, and it is worth noting that stable FRC plasma is impregnable against these low n-
modes. The m/n=1/1 tilt mode instability is thought to be most dangerous. The stability of 
prolate and oblate FRC plasma has been investigated experimentally on several FRTP 
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properties of the FRC plasma. S*=rs/(c/pi) is defined as the ratio of the separatrix radius to 
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plasmas have been predicted to be unstable because of a bad curvature of a closed 
confinement field. Various local and global non-rotating ideal MHD modes are listed in 
Table 1, and it is worth noting that stable FRC plasma is impregnable against these low n-
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devices (FRX-C/LSM (Tuszewski et al., 1990, 1991), LSX, (Slough & Hoffman, 1993), 
NUCTE-III (Kumashiro et al., 1993; Asai et al., 2006; Ikeyama et al., 2008), etc.), and on 
spheromak-merging facilities such as the TS-3 (Ono et al., 1993) and MRX (Gerhardt et al., 
2006). In addition, the stability of prolate and oblate FRCs has been analyzed by means of 
visible and x-ray photography with an end-on camera (Slough & Hoffman, 1993; Tuszewski 
et al., 1991), computer tomography reconstruction of the visible emission profile (Asai et al., 
2006), as well as mode analysis of the external B-magnetic probe array (Mirnov coil array) 
(Slough & Hoffman, 1993; Tuszewski et al., 1990, 1991; Kumashiro et al., 1993; Ikeyama et 
al., 2008) and the internal magnetic probe array (Ono et al., 1993; Gerhardt et al., 2006).  

In the following sections, the formation methods for FRC plasma (Section 2) and the stability 
of FRC plasma (Section 3) are described based on these experimental results and some 
theoretical studies. 

2. Formation methods for FRC plasma  
An FRC is formed through a violent formation process dominated by self-organization. In 
this process, plasma pressure is built up, coinciding with the formation of reversed magnetic 
structure and plasma current drive within the diffusion time. The beta value of the FRC at 
the magnetic axis is infinite, and the volume-averaged beta value <> is nearly equal to one.  

The plasma current density j(r), the confinement magnetic field Bze, the coil magnetic field 
Bz0, and the formed plasma pressure p(r), satisfy the following condition: 
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FRC plasma is traditionally formed by the field-reversed theta-pinch (FRTP) method 
(Armstrong et al., 1981). Since the 1990’s, a variety of alternative formation methods have 
emerged (Ono, Y et al., 1993; Gerhardt et al. 2008; Slough & Miller, 2000; Knight & Jones, 
1990; A. Hoffman et al., 2002; Guo et al., 2007; Logan et al., 1976; Davis, 1976; Greenly et al., 
1986; Schamiloglu et. al., 1993). At the same time, the FRTP-based formation method has 
been significantly improved (Slough et al., 1989; Hoffman et al., 1993; Pietrzyk et al., 1987; 
Pierce et al., 1995; Guo et al., 2004, 2005; Asai et al., 2000; Binderbauer et al., 2010; Guo, et al., 
2011). Recently initiated new formation methods include (1) counter-helicity spheromak-
merging (CHSM) (Yamada et al., 1990; Ono et al., 1993; Gerhardt et al. 2008), (2) rotating 
magnetic field (RMF) (Slough & Miller, 2000; Knight & Jones, 1990; A. Hoffman et al., 2002; 
Guo et al., 2007), (3) field-reversed mirror configuration (FRM) driven by neutral beam 
injection (NBI) (Logan et al., 1976), relativistic electron beam (REB) (Davis, 1976), and 
intense light ion beam (ILIB) injections (Greenly et al., 1986; Schamiloglu et. al., 1993).  

Improved FRTP methods have also introduced low inductive voltage and program 
formation by FRTP (Slough et al., 1989; Hoffman et al., 1993), the coaxial slow source (CSS) 
(Pietrzyk et al., 1987; Pierce et al., 1995), translation-trapping formation by FRTP (Guo et al., 
2004, 2005; Asai et al., 2000), and collision FRC merging by FRTP (Binderbauer et al., 2010; 
Guo et al., 2011). Through these innovative new methods and improved FRTP methods, the 
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FRC lifetime has been prolonged to the order of several ms, and the confinement properties 
have also been improved [34]. The plasma parameters and lifetimes of FRCs formed by the 
above methods are summarized in Table 2. 

Experimental and theoretical studies of FRC stability have mainly focused on elongated 
(E > 1) and oblate (0 < E < 1) FRC plasmas, formed by the FRTP (Slough & Hoffman, 
(1993), Fujimoto et al., 2002; Tuszewski, et al., 1990; Tuszewski et al., 1991; Kumashiro et 
al.,1993; Asai et al., 2006) and CHSW methods (Yamada et al., 1990; Ono et al., 1993; 
Gerhardt et al. 2008), respectively. Details of the two methods are introduced in the next 
section. 

 

Formation method Be 
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np 

( 10
20

m
3

)
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(keV)
p 

(mWb)
life  

(ms) E s  

FRTP 0.3-2 0.05-
0.24 5-500 0.1-15 0.4-12 0.03-

0.4 2.5-10 0.5-
5 

FRTP+translation-
trapping 

0.01-
0.06 

0.12-
0.5 0.4-5 0.2-0.5 1.5 0.2-0.4 5-8 0.8 

FRTP+collision-
merging 1.0-1.1 0.3-

0.4 1 0.5-0.6 12 ~1.0 5 1 

RMF 0.006-
0.025 

0.03-
0.45 0.007-0.17 0.02-

0.2 1-10 1-2.5 1-3 - 

Spheromak-merging 0.2-0.3 0.4-
0.5 2 0.02-

0.2  10  
0.075-

0.1 
0.35-
0.65 1-3 

Spheromak-
merging+CS 0.2-0.3 0.4-

0.5 1 0.02-
0.2 2-3 0.35-

0.6 
0.35-
0.65 1-3 

Table 2. FRC Plasma parameters for various formation methods 

2.1 Field-reversed theta-pinch method (FRTP) 

The schematic of a typical field-reversed theta-pinch device, NUCTE-III (Nihon University 
Compact Torus Experiment 3), is shown in Fig. 2 (Asai et al., 2006). A transparent fused silica 
glass discharge tube lies in a cylindrical one-turn coil. The tube is filled with a working gas 
(usually hydrogen or deuterium gas) by static filling or gas puffing, and then a z-discharge or 
inductive theta-discharge (-discharge) generates a pre-ionized plasma of the working gas, 
which is embedded in the reversed-bias field of 0.03-0.08 T, produced by 2 mF of the bias bank. 
A main bank of 67.5 F rapidly reverses the magnetic field in the discharge tube (rising time of 
4 s). The circuit of the main bank is crowbarred on reaching the maximum current, and 
resistively decays with a decay time of 120 s. A thin current sheet is initially formed around 
the inner wall of the discharge tube by an inductive electric field ( 0.5 zE rdB dt  ), and 
shields the plasma from the rising forward field. The rising field works as a ‘magnetic piston’ 
to implode the plasma radially. At both ends of the coil, the reversed-bias field is reconnected 
with the forward field, and a closed magnetic structure is created. The tension formed due to 
the magnetic curvature produces a shock-like axial contraction. Then the radial and axial 
dynamics rapidly dissipate within about 20 s, and the FRC plasma reaches an 
equilibrium/quiescent phase. Figure 3 shows the separatrix and the equi-magnetic surface 
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devices (FRX-C/LSM (Tuszewski et al., 1990, 1991), LSX, (Slough & Hoffman, 1993), 
NUCTE-III (Kumashiro et al., 1993; Asai et al., 2006; Ikeyama et al., 2008), etc.), and on 
spheromak-merging facilities such as the TS-3 (Ono et al., 1993) and MRX (Gerhardt et al., 
2006). In addition, the stability of prolate and oblate FRCs has been analyzed by means of 
visible and x-ray photography with an end-on camera (Slough & Hoffman, 1993; Tuszewski 
et al., 1991), computer tomography reconstruction of the visible emission profile (Asai et al., 
2006), as well as mode analysis of the external B-magnetic probe array (Mirnov coil array) 
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In the following sections, the formation methods for FRC plasma (Section 2) and the stability 
of FRC plasma (Section 3) are described based on these experimental results and some 
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2. Formation methods for FRC plasma  
An FRC is formed through a violent formation process dominated by self-organization. In 
this process, plasma pressure is built up, coinciding with the formation of reversed magnetic 
structure and plasma current drive within the diffusion time. The beta value of the FRC at 
the magnetic axis is infinite, and the volume-averaged beta value <> is nearly equal to one.  

The plasma current density j(r), the confinement magnetic field Bze, the coil magnetic field 
Bz0, and the formed plasma pressure p(r), satisfy the following condition: 
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FRC plasma is traditionally formed by the field-reversed theta-pinch (FRTP) method 
(Armstrong et al., 1981). Since the 1990’s, a variety of alternative formation methods have 
emerged (Ono, Y et al., 1993; Gerhardt et al. 2008; Slough & Miller, 2000; Knight & Jones, 
1990; A. Hoffman et al., 2002; Guo et al., 2007; Logan et al., 1976; Davis, 1976; Greenly et al., 
1986; Schamiloglu et. al., 1993). At the same time, the FRTP-based formation method has 
been significantly improved (Slough et al., 1989; Hoffman et al., 1993; Pietrzyk et al., 1987; 
Pierce et al., 1995; Guo et al., 2004, 2005; Asai et al., 2000; Binderbauer et al., 2010; Guo, et al., 
2011). Recently initiated new formation methods include (1) counter-helicity spheromak-
merging (CHSM) (Yamada et al., 1990; Ono et al., 1993; Gerhardt et al. 2008), (2) rotating 
magnetic field (RMF) (Slough & Miller, 2000; Knight & Jones, 1990; A. Hoffman et al., 2002; 
Guo et al., 2007), (3) field-reversed mirror configuration (FRM) driven by neutral beam 
injection (NBI) (Logan et al., 1976), relativistic electron beam (REB) (Davis, 1976), and 
intense light ion beam (ILIB) injections (Greenly et al., 1986; Schamiloglu et. al., 1993).  

Improved FRTP methods have also introduced low inductive voltage and program 
formation by FRTP (Slough et al., 1989; Hoffman et al., 1993), the coaxial slow source (CSS) 
(Pietrzyk et al., 1987; Pierce et al., 1995), translation-trapping formation by FRTP (Guo et al., 
2004, 2005; Asai et al., 2000), and collision FRC merging by FRTP (Binderbauer et al., 2010; 
Guo et al., 2011). Through these innovative new methods and improved FRTP methods, the 
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FRC lifetime has been prolonged to the order of several ms, and the confinement properties 
have also been improved [34]. The plasma parameters and lifetimes of FRCs formed by the 
above methods are summarized in Table 2. 

Experimental and theoretical studies of FRC stability have mainly focused on elongated 
(E > 1) and oblate (0 < E < 1) FRC plasmas, formed by the FRTP (Slough & Hoffman, 
(1993), Fujimoto et al., 2002; Tuszewski, et al., 1990; Tuszewski et al., 1991; Kumashiro et 
al.,1993; Asai et al., 2006) and CHSW methods (Yamada et al., 1990; Ono et al., 1993; 
Gerhardt et al. 2008), respectively. Details of the two methods are introduced in the next 
section. 
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The schematic of a typical field-reversed theta-pinch device, NUCTE-III (Nihon University 
Compact Torus Experiment 3), is shown in Fig. 2 (Asai et al., 2006). A transparent fused silica 
glass discharge tube lies in a cylindrical one-turn coil. The tube is filled with a working gas 
(usually hydrogen or deuterium gas) by static filling or gas puffing, and then a z-discharge or 
inductive theta-discharge (-discharge) generates a pre-ionized plasma of the working gas, 
which is embedded in the reversed-bias field of 0.03-0.08 T, produced by 2 mF of the bias bank. 
A main bank of 67.5 F rapidly reverses the magnetic field in the discharge tube (rising time of 
4 s). The circuit of the main bank is crowbarred on reaching the maximum current, and 
resistively decays with a decay time of 120 s. A thin current sheet is initially formed around 
the inner wall of the discharge tube by an inductive electric field ( 0.5 zE rdB dt  ), and 
shields the plasma from the rising forward field. The rising field works as a ‘magnetic piston’ 
to implode the plasma radially. At both ends of the coil, the reversed-bias field is reconnected 
with the forward field, and a closed magnetic structure is created. The tension formed due to 
the magnetic curvature produces a shock-like axial contraction. Then the radial and axial 
dynamics rapidly dissipate within about 20 s, and the FRC plasma reaches an 
equilibrium/quiescent phase. Figure 3 shows the separatrix and the equi-magnetic surface 
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estimated by our improved excluded flux method, and the radial profile of bremsstrahlung 
(proportional to 2 0.5

e en T ). An FRC plasma with a separatrix radius of 0.055 m and a length of 
0.8 m is formed at about 20 s, and is isolated from the discharge tube (rt = 0.13 m). 

 
(a) (b) 

Fig. 2. (a) Schematic diagram of NUCTE-III and (b) a typical waveform of magnetic field on 
FRTP method.method. 

 
(a) (b) 

Fig. 3. (a) Time evolution of equi-magnetic surface of FRC at formation phase, and  
(b) pressure profile at equilibrium phase. 

2.2 Counter-helicoty spheromak-merging method (CHSM) 

A spheromak also belongs to the family of compact toroids. The plasma has a toroidal field 
nearly equal to the poloidal field. The spheromak is formed by various means, such as a 
simultaneous axial and  discharge (z-discharge), a coaxial plasma gun, or a toroidal flux 
core containing both toroidal and poloidal winding (Ono et al., 1993; Gerhardt et al., 2006; 
Yamada et al., 1990; Ono et al., 1993; Gerhardt et al., 2008).  

Two spheromaks, with a common geometric axis and opposite helicity (opposite toroidal 
fields) of equal value, are separately formed, and merge to form the FRC. If the respective 
helicity values of the spheromaks differ significantly, the merged plasma remains a 
spheromak (Ono et al., 1993; Yamada et al., 1990). This formation method naturally forms an 
oblate FRC, in contrast to the prolate FRC formed by the FRTP method.  
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In the Tokyo Spheromak 3 (TS-3) experiment, merging spheromaks are formed by z- 
discharge (Ono et al., 1993, 1997). The Swarthmore Spheromak Experiment (SSX) utilizes the 
coaxial plasma gun method (Cohen et al., 2003). The Tokyo Sheromak 4 (TS-4) and the 
Magnetic Reconnection Experiment (MRX) employ the flux core method (Gerhardt et al., 
2006). The TS-3 device is illustrated in Fig. 4 (Ono et al., 1997). The time evolutions of the 
magnetic surface of the poloidal and toroidal fields, the toroidal flow, and the ion 
temperature, are also shown in the figure. 

 
Fig. 4. (a) TS-3 merging device and 2D contours of poloidal flux surface and toroidal 
magnetic field on the R-Z plane; radial profiles of (b) ion toroidal velocity V, and (c) ion 
temperature (Ti), on the midplane, during the counter helicity merging  of two spheromaks 
with equal but opposing Bt. The red and blue colors indicate the positive and negative 
amplitudes of Bt. 

3. MHD behavior of FRCs 
3.1 MHD behavior of prolate FRCs  

3.1.1 General picture of prolate FRC MHD behavior 

The global deformation of the internal structure of an FRC, and its time evolution, were 
investigated by means of an optical diagnostic system (Takahashi et al., 2004), combined 
with tomographic reconstruction, in the NUCTE facility (Asai et al., 2006). Fourier image 
transform was applied to the reconstructed image, and the correlation of global modes with 
n = 1 and 2 was investigated. The typical plasma parameters are separatrix radius of 0.06 m, 
separatrix length of 0.8 m, electron density of 2.5 x 10-20 m-3, total temperature of 270 eV, 
particle confinement time of 80 s, and s -value of 1.9. Figure 5 shows the time evolution of 
the 2D emissivity profile of bremsstrahlung of 550 nm. Here, the intensity of bremsstrahlung 
is proportional to ne2/Te0.5. Figure 5 (b) - (g) shows a reconstructed tomographic image of the 
cross-sectional structure at each phase indicated in the time history of line integrated 
electron density, measured along the y-axis (Fig. 5 (a)). Figure 5 (b) shows the emissivity 
structure 1 s after application of the main compression field. We can see that the radial 
compression has started at the chamber wall. The following radial compression phase is 
shown in Fig. 5 (c). The circular boundary of the bright area indicates azimuthally uniform 
compression. After the formation phase, the equilibrium phase, with a circular cross-
sectional structure, lasts approximately 20 s (Fig. 5 (d)). The oscillation observed in the 
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estimated by our improved excluded flux method, and the radial profile of bremsstrahlung 
(proportional to 2 0.5

e en T ). An FRC plasma with a separatrix radius of 0.055 m and a length of 
0.8 m is formed at about 20 s, and is isolated from the discharge tube (rt = 0.13 m). 

 
(a) (b) 

Fig. 2. (a) Schematic diagram of NUCTE-III and (b) a typical waveform of magnetic field on 
FRTP method.method. 

 
(a) (b) 

Fig. 3. (a) Time evolution of equi-magnetic surface of FRC at formation phase, and  
(b) pressure profile at equilibrium phase. 
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In the Tokyo Spheromak 3 (TS-3) experiment, merging spheromaks are formed by z- 
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2006). The TS-3 device is illustrated in Fig. 4 (Ono et al., 1997). The time evolutions of the 
magnetic surface of the poloidal and toroidal fields, the toroidal flow, and the ion 
temperature, are also shown in the figure. 

 
Fig. 4. (a) TS-3 merging device and 2D contours of poloidal flux surface and toroidal 
magnetic field on the R-Z plane; radial profiles of (b) ion toroidal velocity V, and (c) ion 
temperature (Ti), on the midplane, during the counter helicity merging  of two spheromaks 
with equal but opposing Bt. The red and blue colors indicate the positive and negative 
amplitudes of Bt. 

3. MHD behavior of FRCs 
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3.1.1 General picture of prolate FRC MHD behavior 

The global deformation of the internal structure of an FRC, and its time evolution, were 
investigated by means of an optical diagnostic system (Takahashi et al., 2004), combined 
with tomographic reconstruction, in the NUCTE facility (Asai et al., 2006). Fourier image 
transform was applied to the reconstructed image, and the correlation of global modes with 
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is proportional to ne2/Te0.5. Figure 5 (b) - (g) shows a reconstructed tomographic image of the 
cross-sectional structure at each phase indicated in the time history of line integrated 
electron density, measured along the y-axis (Fig. 5 (a)). Figure 5 (b) shows the emissivity 
structure 1 s after application of the main compression field. We can see that the radial 
compression has started at the chamber wall. The following radial compression phase is 
shown in Fig. 5 (c). The circular boundary of the bright area indicates azimuthally uniform 
compression. After the formation phase, the equilibrium phase, with a circular cross-
sectional structure, lasts approximately 20 s (Fig. 5 (d)). The oscillation observed in the 
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latter phase is caused by rotational instability with toroidal mode number of n = 2. At the 
rst stage of deformation, illustrated in Fig. 5 (e), the reconstructed cross section is deformed 
into an oval shape. 

 
Fig. 5. (a) Time evolution of line integrated electron density, and (b) - (g) reconstructed 
cross-sectional structure of an FRC. 

Generally, this deformation is called ‘elliptical deformation.’ However, the reconstructed 
image indicates an internal shift (n = 1) in an oval separatrix. In this rotational instability 
phase, deformation grows due to centrifugal distortion. In the early stage of the growth of 
instability, the structure of the FRC has a dumbbell-like shape, as shown in Fig. 5 (f). The 
internal structure at the final stage of the discharge is shown in Fig. 5 (g). The distribution of 
emissivity shows two clear peaks which orbit around the separatrix axis like binary stars. 
The analyzed time evolution of mode intensity and phase by the Fourier image transform 
are shown in Fig. 6. This result indicates that the n = 1 shift motion of the plasma column 
(wobble motion) increases prior to the growth of the n = 2 mode. The amplitude of n = 1 
increases in the equilibrium phase of 20 – 30 s. It is thus apparent that the dominant mode 
changes to n = 2 after a modest peak of n = 1. In the tomographic image of this transition 
region of n = 1 to 2 (Fig. 5 (e)), an internal shift of the bright area, which has a different 
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rotational phase from that of the oval plasma boundary, is seen. More specically, this n = 1 
shift motion and the rotational torque are possible sources of the n = 2 mode deformation. 
This result suggests that the suppression of this shift motion in the formation and 
equilibrium phase might impede the growth of n = 2 mode deformation.  

 
Fig. 6. Time evolution of (a) toroidal mode intensity, and (b) phase. 

3.1.2 Stability of prolate FRCs with respect to rotational mode 

These two global ideal modes driven by rotation—the n = 1 wobble and the n = 2 rotational 
instability—have been regularly observed in experiments. These rotational modes have been 
controlled by applying a straight or helical multipole field (Ohi et al., 1983; Shimamura & 
Nogi, 1986). The stability criterion (Bsc (n = 2)) of the straight multipole field of an m-pole for 
the n = 2 rotational instability has already been developed, on the basis of MHD equations, 
by Ishimura (Ishimura, 1984) as  

 01( 2)
2 1sc sB n r

m
 

  


, (2) 

where , r, and 0 are, respectively, the rotational angular velocity of the n = 2 deformation 
(which is twice that of the angular velocity of the plasma column), the mass density of the 
plasma column, and the magnetic permeability of free space. On the other hand, the stability 
criterion for the n = 1 wobble motion (Bsc (n = 1)) has been derived from the experimental 
results of NUCTE-III (Fujimoto et al., 2002) as 

 0
1

1( 1)
2( 1)sc s nB n r

f m
 
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

,  (3) 

where n=1 is the angular velocity of the n = 1 wobble motion, and f is an amplitude 
reduction coefficient which is defined by experiments with different pole numbers and is 
about 0.3 for the NUCTE FRCs. The ratio of Bsc (n = 1)/Bsc (n = 2) suggests that the amplitude 
of n = 1 mode motion can always be maintained at a low level by the application of Bsc (n = 
2), provided n=1/f<n=2. 
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rotational phase from that of the oval plasma boundary, is seen. More specically, this n = 1 
shift motion and the rotational torque are possible sources of the n = 2 mode deformation. 
This result suggests that the suppression of this shift motion in the formation and 
equilibrium phase might impede the growth of n = 2 mode deformation.  
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where n=1 is the angular velocity of the n = 1 wobble motion, and f is an amplitude 
reduction coefficient which is defined by experiments with different pole numbers and is 
about 0.3 for the NUCTE FRCs. The ratio of Bsc (n = 1)/Bsc (n = 2) suggests that the amplitude 
of n = 1 mode motion can always be maintained at a low level by the application of Bsc (n = 
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The experimental results of the FIX (FRC injection experiment) with neutral beam injection 
into FRC plasma formed by FRTP, indicate that the global n = 1 mode motion was controlled 
by neutral beam injection (Asai, et al., 2003). The neutral beam was injected obliquely to the 
axial direction due to the limited poloidal flux. The stabilization effects of ion rings confined 
by mirror fields at each end have been noted. Improved confinement properties (e.g., 
prolonged decay time of plasma volume and increased electron temperature) have also been 
observed. 

TCS (Translation, Confinement and Sustainment) experiments at Washington University 
indicate that the n = 2 mode rotational instability can be controlled by the self-generated 
toroidal field, which converts from a toroidal into a poloidal field during the capture process 
of translated FRCs (Guo et al., 2004, 2005). The stabilization effect of the toroidal fields was 
investigated using the modified energy principle with the magnetic shear effect (Milroy et 
al., 2008). The following analytic stability criterion was derived as 

 00.66SC sB r   . (4) 

This stability criterion is very similar to the one for the multipole field. This formula 
indicates that a relatively modest toroidal field, which is about 12% in comparison to the 
external poloidal field, can stabilize the FRC in the case of TCS experiments.  

To supply the modest toroidal field to the FRC plasma, a magnetized coaxial plasma gun 
(MCPG) has been employed in the NUCTE facility (Asai et al., 2010). The MCPG generates 
a spheromak-like plasmoid which can then travel axially to merge with a pre-existing 
FRC. Since the MCPG is mounted on-axis and generates a significant helicity, it provides 
the FRC-relevant version of coaxial helicity injection (CHI) that has been applied to both 
spheromaks and spherical tokamaks. When CHI is applied, the onset of elliptical 
deformation of the FRC cross section is delayed until 45 - 50 s from FRC formation, 
compared to an onset time of 25 s without CHI. Besides delaying instability, MCPG 
application reduces the toroidal rotation frequency from 67 kHz to 41 kHz. Moreover, the 
flux decay time is extended from 57 to 67 s. These changes occur despite the quite 
modest flux content of the plasmoid: ~ 0.05 mWb of poloidal and 0.01 mWb of toroidal 
flux, compared with the 0.4 mWb of poloidal flux in the pre-formed FRC. The MCPG 
introduces a different stabilization mechanism, which may be the same as that observed 
in translated FRCs, because of the existence of modest toroidal flux. The observed global 
stabilization and confinement improvements suggest that the MCPG can actively control 
the rotational instability. 

 In STX experiments, stabilization effects due to RMF have been observed. The stabilization 
effects can be attributed to two-fluid effects produced by rotational and ponderomotive 
forces. In TCS experiments, the stabilization effects of RMF on the n = 2 interchange mode 
and rotational mode have been reported (Guo et al., 2005). The stability criterion of RMF 
field strength (B) was derived as  

 01.14 sB r   .  (5) 

The stability diagram for FRC formed and sustained by the RMF at a different frequency is 
indicated in Fig. 6 of reference of Guo et al., 2005. 
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3.1.3 Stability of prolate FRCs with respect to tilt mode 

In the FRX-C/LSM, which is a conventional FRTP device using non-tearing reconnection, the 
stability of FRC plasmas with 1 < s  < 3.5 and 3 < E < 9 (highly kinetic and elongated) was 
investigated using a Mirnov loop array of 64 external B pick-up loops and a soft X-ray end-on 
camera (Tuszewski et al., 1991). Tilt-like asymmetries (the n = 1 axial odd component of B) 
were found, which strongly correlates with FRC confinement. Tilt and other instabilities also 
appeared with an increase in the bias magnetic field and/or filling pressure (i.e., higher s -
value). An increase in the bias field and filling pressure also coincidently causes strong axial 
dynamics, which triggers confinement degradation. These experimental results suggest that 
the tilt-stability condition for kinetic and elongated FRCs is in the range of s/e < 0.2 - 0.3 (S*/E 
< 3) (Fig. 7), and becomes s/e ~ 1 for MHD-like FRC (Fig. 8). Strong axial dynamics during 
FRC formation results in lesser elongation of the FRC. Therefore it eventually fosters the 
growth of tilt instability. For an FRC with s/e ~ 1, the tilt instability grows from small initial 
perturbations, and becomes large enough to cause major plasma disruptions after 10 - 20 s, 
which is 3 – 4 times longer than the growth time of instability. In the case of low filling 
pressures, higher order (n = 2 and 3) axially odd asymmetries are also observed. However, the 
amplitude of these modes is much less than that of the n = 1 tilt components. In the case of 
higher filling pressures, higher order modes appear earlier and grow vigorously. 

In the LSX, using an improved FRTP formation method with a programmed formation 
scheme, the correlation between plasma distortions and the confinement properties was 
investigated (Slough & Hoffman, 1993). A B probe array and an end-on soft X-ray camera 
were employed to determine separatrix movement, which might indicate the existence of 
lower order modes, such as tilt mode. Experiments were conducted over a large range of 
s  (1 < s  < 8) and no correlation was observed between the quality of confinement and 
the B signal. In fact, the confinement quality correlates more with the shape of the 
equilibrium radial profile than with s . Details of the experimental results are 
summarized in Table 3. 

 
Fig. 7. Toroidal Fourier analysis of the B for good confinement. The Fourier amplitudes and 
phases are shown as functions of time for (a) even and (b) odd components. The top trace of 
(a) is a line-integrated electron density and (b) diamagnetism. 
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introduces a different stabilization mechanism, which may be the same as that observed 
in translated FRCs, because of the existence of modest toroidal flux. The observed global 
stabilization and confinement improvements suggest that the MCPG can actively control 
the rotational instability. 
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Fig. 7. Toroidal Fourier analysis of the B for good confinement. The Fourier amplitudes and 
phases are shown as functions of time for (a) even and (b) odd components. The top trace of 
(a) is a line-integrated electron density and (b) diamagnetism. 
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Fig. 8. Toroidal Fourier analysis of the B for bad confinement. The Fourier amplitudes and 
phases are shown as functions of time for (a) even and (b) odd components The top trace of 
(a) is a line-integrated electron density and (b) diamagnetism. 

 
(*1) 1 3s  , (*2) 3 5s  , (*3) 5 8s  , (a) Confinement was not influenced until the mode 
amplitude was quite large, (b) Poor confinement correlated with non-optimal formation modes that 
resulted in large-amplitude flutes, (c) All very high-s discharges employed a non-optimal formation 
sequence, (d) A highly nonlinear flute destroyed the configuration formation 

Table 3. Stability properties of FRC in LSX 
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3.1.4 Recent progress in theoretical understanding 

To resolve this discrepancy between MHD predictions and experimental observation, 
significant progress in the theoretical understanding of FRC stability has been achieved. A 
host of stabilization effects—for example, the ion FLR effect, the effects of the Hall term and 
sheared ion flow, resonant particle effects, modern relaxation theory, and two-fluid flowing 
equilibrium—have been considered in the theoretical studies. Systematic studies of the 
stability properties of prolate and oblate FRC plasmas have also been presented in a series of 
Belova’s works (Belova et al., 2000, 2001, 2003, 2004, 2006a, 2006b). 

 
(a) (b) 

Fig. 9. (a) Time evolution of the amplitudes of different n-modes in prolate FRC with S*=20 and 
(b) Growth rate of n = 1 tilt instability for three elliptical FRC equilibria with E = 4, 6 and 12 

The time evolution of the amplitudes (n) of different n-modes in prolate FRC with S* = 20 is 
shown in Fig. 9 (a) (Belova et al., 2004). Nonlinear saturation of the tilt modes, and growth of 
the n = 2 rotational mode due to ion toroidal spin-up, have been demonstrated. For oblate 
FRCs, the scaling of the linear growth rate of n = 1 internal tilt instability, with the 
parameter of S*/E for elliptical FRC equilibria (E = 4, 6, 12), has also been investigated, and 
is shown in Fig. 9 (b) (Belova et al., 2006a). The growth rate of the n = 1 tilt mode is decreased 
in the range of S*/E < 3 ~ 4. For oblate FRC plasma, the stabilized region has been found for 
all n = 1 modes (the tilt mode, the radial shift, the interchange mode, and the co-interchange 
mode), with a closed conducting shell and neutral beam injection (Belova et al. 2006a, 2006b). 

 
(a) (b) 

Fig. 10. Magnitude of (a) n = 1, (b) n = 2, (c) n = 3 perturbation in (a) Br and (b) Bz. Hollow 
symbols are for cases without the center column, and solid symbols for cases with the center 
column. 
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Fig. 10. Magnitude of (a) n = 1, (b) n = 2, (c) n = 3 perturbation in (a) Br and (b) Bz. Hollow 
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column. 
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3.2 MHD behavior and stability of oblate FRCs  

In the MRX device, the stability of oblate FRC plasma was investigated. The plasma 
parameters are electron density of 0.5 - 2 x 1020 m-3, ion temperature of ~18 eV, Bz of 300 - 
200 G, E of 0.65 - 0.35, s  of 1-3, and s E  of 2-5 (Gerhardt et al., 2006). Without a passive 
stabilizer (a hollow conducting center conductor), tilt and shift instability (n = 1 mode of Fig. 
10 (a) and (b)) often appeared. The tilt mode limits the plasma lifetime. The tilt instability 
can be mitigated by either including a passive stabilizing conductor or forming highly 
oblate plasmas with a strong mirror field. Without the center column, the growth of the shift 
mode is reduced, apparently by the large magnetic fields on the outboard side of device. 
Large perturbations (n = 2 and 3) may still remain after passive stabilization is applied ((b) 
and (c) of Fig. 10 (a)). These perturbations have the characteristics of co-interchange modes, 
which have never been observed in conventional oblate FRCs. Such modes cause the early 
termination of the oblate FRC shape. These co-interchange modes can be stabilized in oblate 
plasma with a high mirror ratio, and this produces an FRC with maximum configuration 
lifetime.  

4. Summary  
In Table 4, the MHD stability properties of both prolate and oblate FRCs are summarized 
(Yamada et al., 2007). In oblate FRC plasma, the global mode (n = 1 external tilt and shift 
mode, co-interchange mode) is unstable. But these modes can be stabilized by employing a 
close-fitting conducting shell or shaping with a strong external magnetic field. In prolate 
plasma, the internal tilt mode and co-interchange mode are MHD-unstable. However, these 
can be stabilized by nonlinear effects, such as FLR, rotation and sheared flow. It is difficult 
to observe these modes clearly in the experiments. The most destructive rotational mode (n 
= 2), and wobble (n = 1) mode, are almost always observable in experiments. Active 
stabilization methods without degradation of confinement, such as CHI, need to be 
developed.  
 

 Prolate [E>1] Oblate [E<1] 

Internal Tilt, n=1 
MHD unstable, stabilized by 
FLR, rotation and nonlinear 

effects for S*<20, E5. 
MHD Stable 

External Tilt and Radial 
Shift, n=1 MHD stable MHD unstable, stabilized by 

conducting shell 

Co-interchange, n>1 MHD unstable, stabilized by 
FLR 

MHD unstable, stabilized by NBI 
+ conducting shell 

Interchange, n>1 MHD unstable, stabilized by 
compressional effects 

MHD unstable, stabilized by 
compressional effects 

Rotational, n=2 
MHD unstable, stabilized by 
quadrupole field, RMF and 

conducting shell 

MHD unstable, stabilized by 
quadrupole field, RMF and 

conducting shell 

Table 4. Stability properties of prolate and oblate FRCs 
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1. Introduction

One of the most enduring mysteries in solar physics is why the Sun’s outer atmosphere, or
corona, is millions of kelvins hotter than its surface. Among suggested theories for coronal
heating is one that considers the role of spicules – narrow jets of plasma shooting up from
just above the Sun’s surface – in that process (Athay & Holzer, 1982; Athay, 2000). For
decades, it was thought that spicules might be sending heat into the corona. However,
following observational research in the 1980s, it was found that spicule plasma did not reach
coronal temperatures, and so this line of study largely fell out of vogue. Kukhianidze et al.
(Kukhianidze et al., 2006) were first to report the observation of kink waves in solar spicules
– the wavelength was found to be ∼3500 km, and the period of waves has been estimated
to be in the range of 35–70 s. The authors argue that these waves may carry photospheric
energy into the corona and therefore can be of importance in coronal heating. Zaqarashvili
et al. (Zaqarashvili et al., 2007) analyzed consecutive height series of Hα spectra in solar limb
spicules at the heights of 3800–8700 km above the photosphere and detected Doppler-shift
oscillations with periods of 20–25 and 75–110 s. According to authors, the oscillations can
be caused by waves’ propagation in thin magnetic flux tubes anchored in the photosphere.
Moreover, observed waves can be used as a tool for spicule seismology, and the magnetic filed
induction in spicules at the height of ∼6000 km above the photosphere is estimated as 12–15
G. De Pontieu et al. (De Pontieu et al., 2007) identified a new class of spicules (see Fig. 1) that
moved much faster and were shorter lived than the traditional spicules, which have speeds of
between 20 and 40 km s−1 and lifespans of 3 to 7 minutes. These Type II spicules, observed in
Ca II 854.2 nm and Hα lines (Sterling et al., 2010), are much more dynamic: they form rapidly
(in ∼10 s), are very thin (�200 km wide), have lifetimes of 10 to 150 s (at any one height), and
shoot upwards at high speeds, often in excess of 100–150 km s−1, before disappearing. The
rapid disappearance of these jets had suggested that the plasma they carried might get very
hot, but direct observational evidence of this process was missing. Both types of spicules are
observed to carry Alfvén waves with significant amplitudes of order 20 km s−1. In a recent
paper, De Pontieu et al. (De Pontieu et al., 2011) used new observations from the Atmospheric
Imaging Assembly on NASA’s recently launched Solar Dynamics Observatory and its Focal
Plane Package for the Solar Optical Telescope (SOT) on the Japanese Hinode satellite. Their
observations reveal “a ubiquitous coronal mass supply in which chromospheric plasma in
fountainlike jets or spicules (see Fig. 2) is accelerated upward into the corona, with much of
the plasma heated to temperatures between ∼0.02 and 0.1 million kelvin (MK) and a small
but sufficient fraction to temperatures above 1 MK. These observations provide constraints
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Fig. 1. Solar spicules on the Sun recorded on August 3, 2007. Credit: NASA/STEREO.

Fig. 2. Solar spicules recorded by the Solar Dynamics Observatory on April 25, 2010. Credit:
NASA/SDO.

on the coronal heating mechanism(s) and highlight the importance of the interface region
between photosphere and corona.” Nevertheless, Moore et al. (Moore et al., 2011) from Hinode
observations of solar X-ray jets, Type II spicules, and granule-size emerging bipolar magnetic
fields in quiet regions and coronal holes, advocate a scenario for powering coronal heating
and the solar wind. In this scenario, Type II spicules and Alfvén waves are generated by the
granule-size emerging bipoles in the manner of the generation of X-ray jets by larger magnetic
bipoles. From observations and this scenario, the authors estimate that Type II spicules and
their co-generated Alfvén waves carry into the corona an area-average flux of mechanical
energy of ∼7 × 105 erg s−1 cm−2. This is enough to power the corona and solar wind in quiet
regions and coronal holes, hence indicates that the granule-size emerging bipoles are the main
engines that generate and sustain the entire heliosphere. The upward propagation of high-
and low-frequency Alfvén waves along spicules detected from SOT’s observations on Hinode
was also reported by He et al. (He et al, 1999) and Tavabi et al. (Tavabi et al., 2011). He et al.
found in four cases that the spicules are modulated by high-frequency (�0.02 Hz) transverse
fluctuations. These fluctuations are suggested to be Alfvén waves that propagate upwards
along the spicules with phase speed ranges from 50 to 150 km s−1. Three of the modulated
spicules show clear wave-like shapes with short wavelengths less than 8 Mm. We note that at
the same time, Kudoh & Shibata (Kudoh & Shibata, 1999) presented a torsional Alfvén-wave
model of spicules (actually the classical Type I spicules) and discussed the possibility for wave
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coronal heating – the energy flux transported into corona was estimated to be of about 3× 105

erg s−1 cm−2, i.e., roughly half of the flux carried by the Alfvén waves running on Type II
spicules (Moore et al., 2011). Tavabi et al. (Tavabi et al., 2011), performed a statistical analysis
of the SOT/Hinode observations of solar spicules and their wave-like behavior, and argued
that there is a possible upward propagation of Alfvén waves inside a doublet spicule with a
typical wave’s period of 110 s.

No less effective in coronal heating are the so called X-ray jets. We recall, however, that whilst
the classical spicules were first discovered in 1870’s by the Jesuit astronomer Pietro Angelo
Secchi (Secchi, 1877) and named as “spicules” by Roberts (Roberts, 1945), the X-ray jets are
relatively a new discovered phenomenon. They, the jets, were extensively observed with the
Soft X-ray Telescope on Yohkoh (Shibata et al., 1992; Shimojo et al., 1996), and their structure
and dynamics have been better resolved by the X-Ray Telescope (XRT) on Hinode, in movies
having 1 arc sec pixels and ∼1-minute cadence (Cirtain et al., 2007) – see Fig. 3. According

Fig. 3. Three X-ray jets recorded by the Hinode spacecraft on January 10, 2007. Credit:
SAO/NASA/JAXA/NAOJ.

to Cirtain et al. (Cirtain et al., 2007), “coronal magnetic fields are dynamic, and field lines
may misalign, reassemble, and release energy by means of magnetic reconnection. Giant
releases may generate solar flares and coronal mass ejections and, on a smaller scale, produce
X-ray jets. Hinode observations of polar coronal holes reveal that X-ray jets have two distinct
velocities: one near the Alfvén speed (∼800 kilometers per second) and another near the
sound speed (200 kilometers per second). The X-ray jets are from 2× 103 to 2× 104 kilometers
wide and 1 × 105 kilometers long and last from 100 to 2500 seconds. The large number of
events, coupled with the high velocities of the apparent outflows, indicates that the jets may
contribute to the high-speed solar wind.” The more recent observations (Madjarska, 2011;
Shimojo & Shibata, 2000) yield that the temperature of X-ray jets is from 1.3 to 12 MK (i.e.,
the jets are hotter than the ambient corona) and the electron/ion number density is of about
(0.7–4)× 109 cm−3 with average of 1.7 × 109 cm−3. The X-ray jets can have velocities above
103 km s−1, reach heights of a solar radius or more, and have kinetic energies of the order of
1029 erg.

Since both spicules and X-ray jets support Alfvén (or more generally magnetohydrodynamic)
waves’ propagation it is of great importance to determine their dispersion characteristics
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and more specifically their stability/instability status. If while propagating along the jets
MHD waves become unstable and the expected instability is of the Kelvin–Helmholtz type,
that instability can trigger the onset of wave turbulence leading to an effective plasma jet
heating and the acceleration of the charged particles. We note that the Alfvénic turbulence is
considered to be the most promising source of heating in the chromosphere and extended
corona (van Ballegooijen et al., 2011). In this study, we investigate these travelling wave
properties for a realistic, cylindrical geometry of the spicules and X-ray jets considering
appropriate values for the basic plasma jet parameters (mass density, magnetic fields, sound,
Alfvén, and jet speeds), as well as those of the surrounding medium. For detailed reviews
of the oscillations and waves in magnetically structured solar spicules we refer the reader to
(Zaqarashvili & Erdélyi, 2009) and (Zaqarashvili, 2011). Our research concerns the dispersion
curves of kink and sausage modes for the MHD waves travelling primarily along the Type
II spicules and X-ray jets for various values of the jet speed. In studying wave propagation
characteristics, we assume that the axial wave number kz (ẑ is the direction of the embedded
constant magnetic fields in the two media) is real, while the angular wave frequency, ω, is
complex. The imaginary part of that complex frequency is the wave growth rate when a given
mode becomes unstable. All of our analysis is based on a linearized set of equations for the
adopted form of magnetohydrodynamics. We show that the stability/instability status of the
travelling waves depends entirely on the magnitudes of the flow velocities and the values of
two important control parameters, namely the so-called density contrast (the ratio of the mass
density inside to that outside the flux tube) and the ratio of the background magnetic field of
the environment to that of the spicules and X-ray jets.

2. Geometry and basic magnetohydrodynamic equations

The simplest model of spicules is a straight vertical cylinder (see Fig. 4) with radius a

Fig. 4. Geometry of a spicule flux tube containing flowing plasma with velocity U.
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filled with ideal compressible plasma of density ρi ∼ 3 × 10−13 g cm−3 (Sterling, 2000) and
immersed in a constant magnetic field Bi directed along the z axis. Such a cylinder is usually
termed magnetic flux tube or simply ‘flux tube.’ The most natural discontinuity, which occurs
at the surface binding the cylinder, is the tangential one because it is the discontinuity that
ensures an equilibrium total pressure balance. Moreover, it is worth noting that the jet is
non-rotating and without twist – otherwise the centrifugal and the magnetic tension forces
should be taken into account. Due to the specific form of the real flux tube which models
a spicule, that part of the whole flux tube having a constant radius actually starts at the
height of 2 Mm from the tube footpoint. The flow velocity, Ui, like the ambient magnetic
field, is directed along the z axis. The mass density of the environment, ρe, is much, say
50–100 times, less than that of the spicule, while the magnetic field induction Be might be
of the order or less than Bi ∼ 10–15 G. Both the magnetic field, Be, and flow velocity, Ue
(if any), are also in the ẑ-direction. We note that while the parameters of classical Type I
spicules are well-documented (Beckers, 1968; 1972) those of Type II spicules are generally
disputed; Centeno et al. (Centeno et al., 2010), for example, on using a novel inversion code
for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and
Zeeman effects to interpret the observations, claim that magnetic fields as strong as ∼50 G
were detected in a very localized area of the slit, which might represent a lower field strength
of organized network spicules.

The flux tube modelling of the X-ray jets is actually the same as that for spicules, however,
with different magnitudes of the mass densities, flow velocities, and background magnetic
fields. When studying waves’ propagation and their stability/instability status for a given
solar structure (spicule or X-ray jet), the values of the basic parameters will be additionally
specified. Now let us see what are the basic magnetohydrodynamic equations governing the
motions in a flowing solar plasma.

2.1 Basic equations of ideal magnetohydrodynamics

Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids.
Examples of such fluids include plasmas and liquid metals. The field of MHD was initiated
in 1942 by the Swedish physicist Hannes Alfvén (1908–1995), who received the Nobel Prize
in Physics (1970) for “fundamental work and discoveries in magnetohydrodynamics with
fruitful applications in different parts of plasma physics.” The fundamental concept behind
MHD is that magnetic fields can induce currents in a moving conductive fluid, which in turn
creates forces on the fluid and also changes the magnetic field itself. The set of equations,
which describe MHD are a combination of the equations of motion of fluid dynamics
(Navier–Stokes equations) and Maxwell’s equations of electromagnetism. These partial
differential equations have to be solved simultaneously, either analytically or numerically.

Magnetohydrodynamics is a macroscopic theory. Its equations can in principle be derived
from the kinetic Boltzmann’s equation assuming space and time scales to be larger than
all inherent scale-lengths such as the Debye length or the gyro-radii of the charged
particles (Chen, 1995). It is, however, more convenient to obtain the MHD equations in a
phenomenological way as an electromagnetic extension of the hydrodynamic equations of
ordinary fluids, where the main approximation is to neglect the displacement current ∝ ∂E/∂t
in Ampère’s law.
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In the standard nonrelativistic form the MHD equations consist of the basic conservation laws
of mass, momentum, and energy together with the induction equation for the magnetic field.
Thus, the MHD equations of our magnetized quasineutral plasma with singly charged ions
(and electrons) are

∂ρ

∂t
+∇ · ρv = 0, (1)

where ρ is the mass density and v is the bulk fluid velocity. Equation (1) is the so called
continuity equation in our basis set of equations.

The momentum equation is

∂(ρv)
∂t

+ ρ(v · ∇)v = j × B −∇p + ρg, (2)

where j × B (with j being the current density and B magnetic field induction) is the Lorentz
force term, −∇p is the pressure-gradient term, and ρg is the gravity force.

Faraday’s law reads
∂B
∂t

= −∇× E, (3)

where E is the electric field. The ideal Ohm’s law for a plasma, which yields a useful relation
between electric and magnetic fields, is

E + v × B = 0. (4)

The low-frequency Ampère’s law, which neglects the displacement current, is given by

μ0j = ∇× B, (5)

where μ0 is the permeability of free space.

The magnetic divergency constraint is

∇ · B = 0. (6)

By determining the current density j from Ampère’s Eq. (5), the expression of the Lorentz
force can be presented in the form

j × B =
1

μ0
(B · ∇)B −∇

(
B2

2μ0

)
,

where the first term on the right hand side is the magnetic tension force and the second term
is the magnetic pressure force. Thus, momentum Eq. (2) can be rewritten in a more convenient
form, notably

∂(ρv)
∂t

+ ρ(v · ∇)v = −∇
(

p +
B2

2μ0

)
+

1
μ0

(B · ∇)B + ρg. (7)

On the other hand, on using Ohm’s law (4) the Faraday’s law (or induction equation) takes
the form

∂B
∂t

= −∇× (v × B). (8)
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Finally, the equation of the thermal energy is given by

d
dt

p
ργ

= 0,

where γ = 5/3 is the ratio of specific heats for an adiabatic equation of state. This equation
usually is written as an equation for the pressure, p,

∂p
∂t

+ v · ∇p + γp∇ · v = 0. (9)

Equation (9) implies that the equation of state of the ideal fully ionized gas has the form

p = 2(ρ/mi)kBT,

where T is the temperature, mi the ion mass, kB is the Boltzmann constant, and the factor 2
arises because ions and electrons contribute equally.

In total the ideal MHD equations thus consist of two vector equations, (7) and (8), and two
scalar equations, (1) and (9), respectively. Occasionally, when studying wave propagation
in magnetized plasmas, one might also be necessary to use Eq. (6). We note that the basic
variables of the ideal MHD are the mass density, ρ, the fluid bulk velocity, v, the pressure, p,
and the magnetic induction, B; the electric field, E, has been excluded via Ohm’s law.

In MHD there is a few dimensionless numbers, which are widely used in studying various
phenomena in magnetized plasmas. Such an important dimensionless number in MHD
theory is the plasma beta, β, defined as the ratio of gas pressure, p, to the magnetic pressure,

β =
p

B2/2μ0
.

When the magnetic field dominates in the fluid, β � 1, the fluid is forced to move along with
the field. In the opposite case, when the field is weak, β � 1, the field is swirled along by the
fluid.

We finish our short introduction to MHD recalling that in ideal MHD Lenz’s law dictates that
the fluid is in a sense tied to the magnetic field lines, or, equivalently, magnetic filed lines are
frozen into the fluid. To explain, in ideal MHD a small rope-like volume of fluid surrounding
a field line will continue to lie along a magnetic field line, even as it is twisted and distorted
by fluid flows in the system. The connection between magnetic field lines and fluid in ideal
MHD fixes the topology of the magnetic field in the fluid.

3. Wave dispersion relations

It is well-known that in infinite magnetized plasmas there exist three types of MHD waves
(Chen, 1995), namely the Alfvén wave and the fast and slow magnetoacoustic waves. Alfvén
wave (Alfvén, 1942; Gekelman et al., 2011), is a transverse wave propagating at speed
vA = B0/(μ0ρ0)

1/2, where B0 and ρ0 are the equilibrium (not perturbed) magnetic field
and mass density, respectively. The propagation characteristics of magnetoacoustic waves
depend upon their plasma beta environment. In particular, in high-beta plasmas (β � 1)
the fast magnetoacoustic wave behaves like a sound wave travelling at sound speed cs =
(γp0/ρ0)

1/2, while in low-beta plasmas (β � 1) it propagates roughly isotropically and across
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the magnetic field lines at Alfvén speed, vA. The slow magnetoacoustic wave in high-beta
plasmas is guided along the magnetic field B0 at Alfvén speed, vA – in the opposite case
of low-beta plasmas it is a longitudinally propagating along B0 wave at sound speed, cs. A
question that immediately raises is how these waves will change when the magnetized plasma
is spatially bounded (or magnetically structured) as in our case of spicules or X-ray jets. The
answer to that question is not trivial – we actually have to derive the normal modes supported
by the flux tube, which models the jets.

As we will study a linear wave propagation, the basic MHD variables can be presented in the
form

ρ = ρ0 + δρ, p = p0 + δp, v = U + δv, and B = B0 + δB,

where ρ0, p0, and B0 are the equilibrium values in either medium, Ui and Ue are the flow
velocities inside and outside the flux tube, δρ, δp, δv, and δB being the small perturbations of
the basic MHD variables. For convenience, we chose the frame of reference to be attached to
the ambient medium. In that case

Urel = Ui − Ue

is the relative flow velocity whose magnitude is a non-zero number inside the jet, and zero in
the surrounding medium. For spicules, Ue ≈ 0; which is why the relative flow velocity is
indeed the jet velocity, which we later denote as simply U.

With the above assumptions, the basic set of MHD equations for the perturbations of the mass
density, pressure, fluid velocity, and magnetic field become

∂

∂t
δρ + (U · ∇)δρ + ρ0∇δv = 0, (10)

ρ0
∂

∂t
δv + ρ0 (U · ∇) δv +∇

(
δp +

1
μ0

B0 · δB
)
− 1

μ0
(B0 · ∇)δB = 0, (11)

∂

∂t
δB + (U · ∇)δB − (B0 · ∇)δv + B0∇ · δv = 0, (12)

∂

∂t
δp + (U · ∇)δp + γp0∇ · δv = 0, (13)

∇ · δB = 0. (14)

We note that the gravity force term in momentum Eq. (11) has been omitted because one
assumes that the mass density of the jet does not change appreciably in the limits of the
spicule’s length of order 10–11 Mm.

From Eq. (10) we obtain that

∇ · δv = − 1
ρ0

[
∂

∂t
δρ + (U · ∇)δρ

]
. (15)

Inserting this expression into Eq. (13) we get
[

∂

∂t
+ (U · ∇)

]
δp − c2

s

[
∂

∂t
+ (U · ∇)

]
δρ = 0,

which means that the pressure’s and density’s perturbations are related via the expression

δp = c2
s δρ, where cs = (γp0/ρ0)

1/2 . (16)
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Assuming that each perturbation is presented as a plain wave g(r) exp [i (−ωt + mϕ + kzz)]
with its amplitude g(r) being just a function of r, and that in cylindrical coordinates the nabla
operator has the form

∇ ≡ ∂

∂r
r̂ +

1
r

∂

∂ϕ
ϕ̂ +

∂

∂z
ẑ,

Eq. (11) reads

− iρ0(ω − k · U)δvr +
d
dr

(
δp +

1
μ0

B0δBz

)
− ikz

1
μ0

B0δBr = 0, (17)

− ρ0(ω − k · U)δvϕ +
m
r

(
δp +

1
μ0

B0δBz

)
− kz

1
μ0

B0δBϕ = 0, (18)

− ρ0(ω − k · U)δvz + kz

(
δp +

1
μ0

B0δBz

)
− kz

1
μ0

B0δBz = 0. (19)

Accordingly Eq. (13) yields

− i(ω − k · U)δp + γp0∇ · δv = 0. (20)

Induction Eq. (12) gives
(ω − k · U)δBr − kzB0δvr = 0, (21)

(ω − k · U)δBϕ − kzB0δvϕ = 0, (22)

− i(ω − k · U)δBz − ikzB0δvz + B0∇ · δv = 0. (23)

Finally Eq. (14) yields
d
dr

δBr +
1
r

δBr + i
m
r

δBϕ + ikzδBz = 0. (24)

From Eq. (19) we obtain

δvz =
kz

ω − k · U
1
ρ0

δp or δp = ρ0
ω − k · U

kz
δvz, (25)

while Eq. (20) gives

δp = −i
1

ω − k · U
γp0∇ · δv,

which means that

δvz = −i
kz

(ω − k · U)2
γp0
ρ0

(
d
dr

δvr +
1
r

δvr + i
m
r

δvϕ + ikzδvz

)
.

After some rearranging this expression can be rewritten in the form

d
dr

δvr +
1
r

δvr + i
m
r

δvϕ = i
(ω − k · U)2 − k2

zc2
s

kzc2
s

δvz (26)

Let us now differentiate Eq. (17) with respect to r:

− iρ0(ω − k · U)
d
dr

δvr +
d2

dr2

(
δp +

1
μ0

B0δBz

)
− 1

μ0
B0ikz

d
dr

δBr = 0. (27)
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But according to Eqs. (26) and (24)

d
dr

δvr = −1
r

δvr − i
m
r

δvϕ − ikz

[
1 − (ω − k · U)2

k2
zc2

s

]
δvz,

d
dr

δBr = −1
r

δBr − i
m
r

δBϕ − ikzδBz.

Then Eq. (27) becomes

iρ0(ω − k · U)
1
r

δvr − ρ0(ω − k · U)
m
r

δvϕ − ρ0(ω − k · U)

[
1 − (ω − k · U)2

k2
zc2

s

]
kzδvz

+
d2

dr2

(
δp +

1
μ0

B0δBz

)
+

1
μ0

B0ikz
1
r

δBr −
1

μ0
B0kz

m
r

δBϕ − 1
μ0

B0k2
zδBz = 0 (28)

In order to simplify notation we introduce a new variable, namely the perturbation of the total
pressure, δptot = δp + 1

μ0
B0δBz. From Eqs. (17) to (19) one can get that

1
μ0

B0ikz
1
r

δBr = −iρ0(ω − k · U)
1
r

δvr +
1
r

d
dr

δptot,

− 1
μ0

B0ikz
m
r

δBϕ = ρ0(ω − k · U)
m
r

δvϕ − m2

r2 δptot,

− 1
μ0

B0ik2
zδBz = ρ0(ω − k · U)kzδvz − k2

zδptot.

Inserting these expressions into Eq. (28), we obtain
[

d2

dr2 +
1
r

d
dr

−
(

k2
z +

m2

r2

)]
δptot + ρ0

(ω − k · U)3

kzc2
s

δvz = 0. (29)

Bearing in mind that according to Eq. (15)

∇ · δv = i(ω − k · U)
δρ

ρ0
,

from Eq. (23) we get

(ω − k · U)δBz − kzB0δvz + B0(ω − k · U)
δρ

ρ0
= 0.

On using Eq. (16) we express δρ in the above equation as δp/c2
s , multiply it by

− 1
μ0

B0
1

ω − k · U

to get after some algebra that

δp +
1

μ0
B0δBz = − kzρ0

ω − k · U
B2

0
μ0ρ0

δvz + δp

(
1 +

v2
A

c2
s

)
,
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where, we remember, vA = B0/(μ0ρ0)
1/2 is the Alfvén speed. After inserting in the above

equation δp expressed in terms of δvz – see Eq. (25) – and performing some straightforward
algebra we obtain that

δvz = − 1
ρ0

ω − k · U
kz

k2
zc2

s

k2
zc2

s v2
A − (ω − k · U)2

(
c2

s + v2
A
) δptot.

Next step is to insert above expression of δvz into Eq. (29) and combine the −k2
z δp-term with

the last member in the same equation to get a new form of Eq. (29), notably
[

d2

dr2 +
1
r

d
dr

−
(

κ2 +
m2

r2

)]
δptot = 0. (30)

Here, κ2 is given by the expression

κ2 = −
[
(ω − k · U)2 − k2

zc2
s
] [

(ω − k · U)2 − k2
zv2

A
]

(
c2

s + v2
A
) [

(ω − k · U)2 − k2
zc2

T
] , (31)

where
cT =

csvA(
c2

s + v2
A
)1/2 (32)

is the so-called tube velocity (Edwin & Roberts, 1983). It is important to notice that both κ2

(respectively κ) and the tube velocity, cT, have different values inside and outside the jet due to
the different sound and Alfvén speeds, which characterize correspondingly the jet and its
surrounding medium.

As can be seen, Eq. (30) is the equation for the modified Bessel functions Im and Km and,
accordingly, its solutions in both media (the jet and its environment) are:

δptot(r) =
{

Ai Im(κir) for r � a,
AeKm(κer) for r � a.

From Eq. (17) one can obtain an expression of δvr and inserting it in the expression of δBr
deduced from Eq. (21) one gets a formula relating δvr with the first derivative (with respect to
r) of δptot

δvr = − i
ρ0

ω − k · U
(ω − k · U)2 − k2

zv2
A

d
dr

δptot. (33)

It is clear that we have two different expressions of δvr, which, bearing in mind the solutions
to the ordinary second order differential Eq. (30), read

δvr(r � a) = − i
ρi

ω − k · U

(ω − k · U)2 − k2
zv2

Ai

κi Ai I�m(κir)

and
δvr(r � a) = − i

ρe

ω

ω2 − k2
zv2

Ae
κe AeK�

m(κer),

respectively. Now it is time to apply some boundary conditions, which link the solutions
of total pressure and fluid velocity perturbations at the interface r = a. The appropriate
boundary conditions are:
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But according to Eqs. (26) and (24)
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equation δp expressed in terms of δvz – see Eq. (25) – and performing some straightforward
algebra we obtain that

δvz = − 1
ρ0

ω − k · U
kz

k2
zc2

s

k2
zc2

s v2
A − (ω − k · U)2

(
c2

s + v2
A
) δptot.

Next step is to insert above expression of δvz into Eq. (29) and combine the −k2
z δp-term with

the last member in the same equation to get a new form of Eq. (29), notably
[

d2

dr2 +
1
r

d
dr

−
(

κ2 +
m2

r2

)]
δptot = 0. (30)

Here, κ2 is given by the expression

κ2 = −
[
(ω − k · U)2 − k2

zc2
s
] [

(ω − k · U)2 − k2
zv2

A
]

(
c2

s + v2
A
) [

(ω − k · U)2 − k2
zc2

T
] , (31)

where
cT =

csvA(
c2

s + v2
A
)1/2 (32)

is the so-called tube velocity (Edwin & Roberts, 1983). It is important to notice that both κ2

(respectively κ) and the tube velocity, cT, have different values inside and outside the jet due to
the different sound and Alfvén speeds, which characterize correspondingly the jet and its
surrounding medium.

As can be seen, Eq. (30) is the equation for the modified Bessel functions Im and Km and,
accordingly, its solutions in both media (the jet and its environment) are:

δptot(r) =
{

Ai Im(κir) for r � a,
AeKm(κer) for r � a.

From Eq. (17) one can obtain an expression of δvr and inserting it in the expression of δBr
deduced from Eq. (21) one gets a formula relating δvr with the first derivative (with respect to
r) of δptot

δvr = − i
ρ0

ω − k · U
(ω − k · U)2 − k2

zv2
A

d
dr

δptot. (33)

It is clear that we have two different expressions of δvr, which, bearing in mind the solutions
to the ordinary second order differential Eq. (30), read

δvr(r � a) = − i
ρi

ω − k · U

(ω − k · U)2 − k2
zv2

Ai

κi Ai I�m(κir)

and
δvr(r � a) = − i

ρe

ω

ω2 − k2
zv2

Ae
κe AeK�

m(κer),

respectively. Now it is time to apply some boundary conditions, which link the solutions
of total pressure and fluid velocity perturbations at the interface r = a. The appropriate
boundary conditions are:
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• δptot has to be continuous across the interface,

• the perturbed interface,
δvr

ω − k · U
, has also to be continuous (Chandrasekhar, 1961).

After applying the boundary conditions (we recall that for the ambient medium U = 0) finally
we arrive at the required dispersion relation of the normal MHD modes propagating along the
jet (Nakariakov, 2007; Terra-Homen et al., 2003)

ρe

ρi

(
ω2 − k2

zv2
Ae

)
κi

I�m(κia)
Im(κia)

−
[
(ω − k · U)2 − k2

zv2
Ai

]
κe

K�
m(κea)

Km(κea)
= 0. (34)

For the azimuthal mode number m = 0 the above equation describes the propagation of
so called sausage waves, while with m = 1 it governs the propagation of the kink waves
(Edwin & Roberts, 1983). As we have already seen, the wave frequency, ω, is Doppler-shifted
inside the jet. The two quantities κi and κe, whose squared magnitudes are given by Eq. (31)
are termed wave attenuation coefficients. They characterize how quickly the wave amplitude
having its maximal value at the interface, r = a, decreases as we go away in both directions.
Depending on the specific sound and Alfvén speeds in a given medium, as well as on the
density contrast, η = ρe/ρe, and the ratio of the embedded magnetic fields, b = Be/Be, the
attenuation coefficients can be real or imaginary quantities. In the case when both κi and κe are
real, we have a pure surface wave. The case κi imaginary and κe real corresponds to pseudosurface
waves (or body waves according to Edwin & Roberts terminology (Edwin & Roberts, 1983)). In
that case the modified Bessel function inside the jet, I0, becomes the spatially periodic Bessel
function J0. In the opposite situation the wave energy is carried away from the flux tube –
then the wave is called leaky wave (Cally, 1986). The waves, which propagate in spicules and
X-ray jets, are generally pseudosurface waves, that can however, at some flow speeds become
pure surface modes.

For the kink waves one defines the kink speed (Edwin & Roberts, 1983)

ck =

(
ρiv2

Ai + ρev2
Ae

ρi + ρe

)1/2

=

(
v2

Ai + (ρe/ρi)v2
Ae

1 + ρe/ρi

)1/2

, (35)

which is independent of sound speeds and characterizes the propagation of transverse
perturbations.

Our study of the dispersion characteristics of kink and sausage waves, as well as their stability
status will be performed in two steps. First, at given sound and Alfvén speeds inside the jet
and its environment and a fixed flow speed U, we solve the transcendental dispersion Eq. (34)
assuming that the wave angular frequency, ω, and the wave number, kz, are real quantities.
In the next step, when studying their stability/instability status, we assume that the wave
frequency and correspondingly the wave phase velocity, vph = ω/kz, become complex. Then,
as the imaginary part of the complex frequency/phase velocity at a given wave number, kz,
and a critical jet speed, Ucrt, has some non-zero positive value, one says that the wave becomes
unstable – its amplitude begins to grow with time. In this case, the linear theory is no longer
applicable and one ought to investigate the further wave propagation by means of a nonlinear
theory. Our linear approach can determine just the instability threshold only.

In the next two section we numerically derive the dispersion curves of kink and sausage waves
running along spicules and X-ray jets, respectively.
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4. Dispersion diagrams of MHD surface waves in spicules

Before starting solving the wave dispersion relation (34), we have to specify some input
parameters, characterizing both media (the jet and its surrounding). Bearing in mind, as we
have already mention in the beginning of Sec. 2, the mass density of the environment is much
less (50–100 times); thus we take the density contrast – the ratio of equilibrium plasma density
outside to that inside of spicule – to be η = 0.02. Our choice of the sound and Alfvén speeds
in the jet is csi = 10 km s−1 and vAi = 80 km s−1, respectively, while those speeds in the
environment are correspondingly cse ∼= 488 km s−1 and vAe = 200 km s−1. All these values
are in agreement with the condition for the balance of total pressures at the flux tube interface
– that condition can be expressed in the form

pi +
B2

i
2μ

= pe +
B2

e
2μ

,

which yields (Edwin & Roberts (1983)

ρe

ρi
=

c2
si +

γ
2 v2

Ai
c2

se +
γ
2 v2

Ae
. (36)

The two tube speeds (look at Eq. (32)) are cTi = 9.9 km s−1 and cTe = 185 km s−1. The kink
speed, associated with the kink waves, in our case (see Eq. (35)) is 84 km s−1.

It is obvious that dispersion Eq. (34) of either mode can be solved only numerically. Before
starting that job, we normalize all velocities to the Alfvén speed vAi inside the jet thus defining
the dimensionless phase velocity Vph = vph/vAi and the Alfvén–Mach number MA = U/vAi.
The wavelength is normalized to the tube radius a, which means that the dimensionless
wave number is K = kza. The calculation of wave attenuation coefficients requires the
introduction of three numbers, notably the two ratios β̄ = c2

s /v2
A correspondingly in the jet

and its environment, and the ratio of the background magnetic field outside to that inside
the flow, b = Be/Bi, in addition to the density contrast, η. We recall that the two β̄s are 1.2
times smaller than the corresponding plasma betas in both media – the latter are given by the
expressions

βi,e = 2β̄i,e/γ.

Thus, the input parameters in the numerical procedure are

η = 0.02, β̄i ∼= 0.016, β̄e ∼= 5.96, b ∼= 0.35, and MA.

The value of the Alfvén–Mach number, MA, naturally depends on the value of the streaming
velocity, U. Our choice of this value is 100 km s−1 that yields MA = 1.25. With these input
values, we calculate the dispersion curves of first kink waves and then sausage ones.

4.1 Kink waves in spicules

We start by calculating the dispersion curves of kink waves assuming that the angular wave
frequency, ω, is real. As a reference, we first assume that the plasma in the flux tube is
static, i.e., MA = 0. The dispersion curves, which present the dependence of the normalized
wave phase velocity on the normalized wave number, are in this case shown in Fig. 5.
One can recognize three types of waves: a sub-Alfvénic slow magnetoacoustic wave (in
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• δptot has to be continuous across the interface,

• the perturbed interface,
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After applying the boundary conditions (we recall that for the ambient medium U = 0) finally
we arrive at the required dispersion relation of the normal MHD modes propagating along the
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For the azimuthal mode number m = 0 the above equation describes the propagation of
so called sausage waves, while with m = 1 it governs the propagation of the kink waves
(Edwin & Roberts, 1983). As we have already seen, the wave frequency, ω, is Doppler-shifted
inside the jet. The two quantities κi and κe, whose squared magnitudes are given by Eq. (31)
are termed wave attenuation coefficients. They characterize how quickly the wave amplitude
having its maximal value at the interface, r = a, decreases as we go away in both directions.
Depending on the specific sound and Alfvén speeds in a given medium, as well as on the
density contrast, η = ρe/ρe, and the ratio of the embedded magnetic fields, b = Be/Be, the
attenuation coefficients can be real or imaginary quantities. In the case when both κi and κe are
real, we have a pure surface wave. The case κi imaginary and κe real corresponds to pseudosurface
waves (or body waves according to Edwin & Roberts terminology (Edwin & Roberts, 1983)). In
that case the modified Bessel function inside the jet, I0, becomes the spatially periodic Bessel
function J0. In the opposite situation the wave energy is carried away from the flux tube –
then the wave is called leaky wave (Cally, 1986). The waves, which propagate in spicules and
X-ray jets, are generally pseudosurface waves, that can however, at some flow speeds become
pure surface modes.

For the kink waves one defines the kink speed (Edwin & Roberts, 1983)
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which is independent of sound speeds and characterizes the propagation of transverse
perturbations.

Our study of the dispersion characteristics of kink and sausage waves, as well as their stability
status will be performed in two steps. First, at given sound and Alfvén speeds inside the jet
and its environment and a fixed flow speed U, we solve the transcendental dispersion Eq. (34)
assuming that the wave angular frequency, ω, and the wave number, kz, are real quantities.
In the next step, when studying their stability/instability status, we assume that the wave
frequency and correspondingly the wave phase velocity, vph = ω/kz, become complex. Then,
as the imaginary part of the complex frequency/phase velocity at a given wave number, kz,
and a critical jet speed, Ucrt, has some non-zero positive value, one says that the wave becomes
unstable – its amplitude begins to grow with time. In this case, the linear theory is no longer
applicable and one ought to investigate the further wave propagation by means of a nonlinear
theory. Our linear approach can determine just the instability threshold only.

In the next two section we numerically derive the dispersion curves of kink and sausage waves
running along spicules and X-ray jets, respectively.
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have already mention in the beginning of Sec. 2, the mass density of the environment is much
less (50–100 times); thus we take the density contrast – the ratio of equilibrium plasma density
outside to that inside of spicule – to be η = 0.02. Our choice of the sound and Alfvén speeds
in the jet is csi = 10 km s−1 and vAi = 80 km s−1, respectively, while those speeds in the
environment are correspondingly cse ∼= 488 km s−1 and vAe = 200 km s−1. All these values
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The two tube speeds (look at Eq. (32)) are cTi = 9.9 km s−1 and cTe = 185 km s−1. The kink
speed, associated with the kink waves, in our case (see Eq. (35)) is 84 km s−1.

It is obvious that dispersion Eq. (34) of either mode can be solved only numerically. Before
starting that job, we normalize all velocities to the Alfvén speed vAi inside the jet thus defining
the dimensionless phase velocity Vph = vph/vAi and the Alfvén–Mach number MA = U/vAi.
The wavelength is normalized to the tube radius a, which means that the dimensionless
wave number is K = kza. The calculation of wave attenuation coefficients requires the
introduction of three numbers, notably the two ratios β̄ = c2
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and its environment, and the ratio of the background magnetic field outside to that inside
the flow, b = Be/Bi, in addition to the density contrast, η. We recall that the two β̄s are 1.2
times smaller than the corresponding plasma betas in both media – the latter are given by the
expressions

βi,e = 2β̄i,e/γ.

Thus, the input parameters in the numerical procedure are

η = 0.02, β̄i ∼= 0.016, β̄e ∼= 5.96, b ∼= 0.35, and MA.

The value of the Alfvén–Mach number, MA, naturally depends on the value of the streaming
velocity, U. Our choice of this value is 100 km s−1 that yields MA = 1.25. With these input
values, we calculate the dispersion curves of first kink waves and then sausage ones.

4.1 Kink waves in spicules

We start by calculating the dispersion curves of kink waves assuming that the angular wave
frequency, ω, is real. As a reference, we first assume that the plasma in the flux tube is
static, i.e., MA = 0. The dispersion curves, which present the dependence of the normalized
wave phase velocity on the normalized wave number, are in this case shown in Fig. 5.
One can recognize three types of waves: a sub-Alfvénic slow magnetoacoustic wave (in

147Review of the Magnetohydrodynamic Waves and Their Stability in Solar Spicules and X-Ray Jets



14 Will-be-set-by-IN-TECH

Fig. 5. Dispersion curves of kink waves propagating along the flux tube at MA = 0.

magenta colour) labelled cTi (which is actually the normalized value of cTi to vAi), an almost
Alfvén wave labelled ck (the green curve), and a family of super-Alfvénic waves (the red
dispersion curves). We note that one can get by numerically solving Eq. (34) the mirror
images (with respect to the zeroth line) of the ck-labelled dispersion curve, as well as of the fast
super-Alfvénic waves – both being backward propagating modes that are not plotted in Fig. 5.
The next Fig. 6 shows how all these dispersion curves change when the plasma inside the

Fig. 6. Dispersion curves of kink waves propagating along the flux tube at MA = 1.25.

tube flows. One sees that the flow first shifts upwards the almost Alfvén wave now labelled
chk , as well as high-harmonic super-Alfvénic waves. Second, the slow magnetoacoustic wave
(cTi in Fig. 5) is replaced by two, now, super-Alfvénic waves, whose dispersion curves (in
orange and cyan colours) are collectively labelled cTi. These two waves have practically
constant normalized phase velocities equal to 1.126 and 1.374, respectively, which are the
(MA ∓ c0

Ti)-values, where c0
Ti is the normalized magnitude of the slow magnetoacoustic wave

at MA = 0. Unsurprisingly, one gets a clk-labelled curve, which is the mirror image of the
chk-labelled curve. That is why this curve is plotted in green and, as can be seen, it is now
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a forward propagating wave that has, however, a lower normalized phase velocity than that
of its sister chk-labelled dispersion curve. Moreover, there appears to be a family of generally
backward propagating waves (below the clk-labelled curve) plotted in blue colour that can
similarly be considered as a mirror image of the high-harmonic super-Alfvénic waves.

The most interesting waves especially for the Type II spicules seems to be the waves labelled
ck. It would be interesting to see whether these modes can become unstable at some, say
critical, value of the Alfvén–Mach number, MA. To study this, we have to assume that the
wave frequency is complex, i.e., ω → ω + iγ̄, where γ̄ is the expected instability growth
rate. Thus, the dispersion equation becomes complex (complex wave phase velocity and real
wave number) and the solving a transcendental complex equation is generally a difficult task
(Acton, 1990).

Before starting to derive a numerical solution to the complex version of Eq. (34), we can
simplify that equation. Bearing in mind that the plasma beta inside the jet is very small
(βi ∼= 0.02) and that of the surrounding medium quite high (of order 7), we can treat the
jet as a cool plasma and the environment as a hot incompressible fluid. We point out that
according to the numerical simulation of spicules by Matsumoto & Shibata (Matsumoto &
Shibata, 2010) the plasma beta at heights greater than 2 Mm is of that order (0.03–0.04) – look
at Fig. 4 in their paper. For cool plasma, cs → 0; hence the normalized wave attenuation

coefficient κia =
[
1 − (Vph − MA)

2
]1/2

K, while for the incompressible environment cs → ∞
and the corresponding attenuation coefficient is simply equal to kz, i.e., κea = K. Under these
circumstances the simplified dispersion equation of kink waves takes the form

(
V2

phη − b2
) [

1 −
(

Vph − MA

)2
]1/2 I�1(κia)

I1(κia)
−

[(
Vph − MA

)2
− 1

]
K�

1(K)
K1(K)

= 0, (37)

where, we recall, that κia =
[
1 − (Vph − MA)

2
]1/2

K, and the normalized wave phase velocity,
Vph, is a complex number. We note that this simplified version of the dispersion equation of
the kink waves closely reproduces the dispersion curves labelled ck in Figs. 5 and 6.

To investigate the stability/instability status of kink waves we numerically solve Eq. (37) using
the Müller method (Muller, 1956) for finding the complex roots at fixed input parameters η =
0.02 and b = 0.35 and varying the Alfvén–Mach number, MA, from zero to some reasonable
numbers. Before starting any numerical procedure for solving the aforementioned dispersion
equation, we note that for each input value of MA one can get two ck-dispersion curves one of
which (for relatively small magnitudes of MA) has normalized phase velocity roughly equal
to MA − 1 and a second dispersion curve associated with dimensionless phase velocity equal
to MA + 1. These curves are similar to the dispersion curves labelled clk and chk in Fig. 6.
The results of the numerical solving Eq. (37) are shown in Fig. 7. For MA = 0, except for
the dispersion curve with normalized phase velocity approximately equal to 1, one can find
a dispersion curve with normalized phase velocity close to −1 – that curve is not plotted in
Fig. 7. Similarly, for MA = 2 one obtains a curve at Vph = 1 and another at Vph = 3, and
so on. With increasing the magnitude of the Alfvén–Mach number kink waves change their
structure – for small numbers being pseudosurface (body) waves and for MA � 4 becoming
pure surface modes. Another effect associated with the increase in MA, is that, for instance
at MA � 6, the shapes of pairs of dispersion curves begin to visibly change as can be seen
in Figs. 7 and 8. The most interesting observation is that for MA � 8 both curves begin to
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a forward propagating wave that has, however, a lower normalized phase velocity than that
of its sister chk-labelled dispersion curve. Moreover, there appears to be a family of generally
backward propagating waves (below the clk-labelled curve) plotted in blue colour that can
similarly be considered as a mirror image of the high-harmonic super-Alfvénic waves.

The most interesting waves especially for the Type II spicules seems to be the waves labelled
ck. It would be interesting to see whether these modes can become unstable at some, say
critical, value of the Alfvén–Mach number, MA. To study this, we have to assume that the
wave frequency is complex, i.e., ω → ω + iγ̄, where γ̄ is the expected instability growth
rate. Thus, the dispersion equation becomes complex (complex wave phase velocity and real
wave number) and the solving a transcendental complex equation is generally a difficult task
(Acton, 1990).

Before starting to derive a numerical solution to the complex version of Eq. (34), we can
simplify that equation. Bearing in mind that the plasma beta inside the jet is very small
(βi ∼= 0.02) and that of the surrounding medium quite high (of order 7), we can treat the
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according to the numerical simulation of spicules by Matsumoto & Shibata (Matsumoto &
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To investigate the stability/instability status of kink waves we numerically solve Eq. (37) using
the Müller method (Muller, 1956) for finding the complex roots at fixed input parameters η =
0.02 and b = 0.35 and varying the Alfvén–Mach number, MA, from zero to some reasonable
numbers. Before starting any numerical procedure for solving the aforementioned dispersion
equation, we note that for each input value of MA one can get two ck-dispersion curves one of
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to MA − 1 and a second dispersion curve associated with dimensionless phase velocity equal
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The results of the numerical solving Eq. (37) are shown in Fig. 7. For MA = 0, except for
the dispersion curve with normalized phase velocity approximately equal to 1, one can find
a dispersion curve with normalized phase velocity close to −1 – that curve is not plotted in
Fig. 7. Similarly, for MA = 2 one obtains a curve at Vph = 1 and another at Vph = 3, and
so on. With increasing the magnitude of the Alfvén–Mach number kink waves change their
structure – for small numbers being pseudosurface (body) waves and for MA � 4 becoming
pure surface modes. Another effect associated with the increase in MA, is that, for instance
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Fig. 7. Dispersion curves of kink waves propagating along the flux tube at various values of
MA.

Fig. 8. Dispersion curves of kink waves propagating along the flux tube for relatively large
values of MA.

merge and at MA = 8.5 they form a closed dispersion curve. The ever increasing of MA
yields yet smaller closed dispersion curves – the two non-labelled ones depicted in Fig. 8
correspond to MA = 8.8 and 8.85, respectively. All these dispersion curves present stable
propagation of the kink waves. However, for MA � 8.9 we obtain a new family of wave
dispersion curves that correspond to an unstable wave propagation. We plot in Fig. 8 four
curves of that kind that have been calculated for MA = 8.9, 8.95, 9, and 9.05, respectively. The
growth rates of the unstable waves are shown in Fig. 9. The instability that arises is of the
Kelvin–Helmholtz type. We recall that the Kelvin–Helmholtz instability, which is named after
Lord Kelvin and Hermann von Helmholtz, can occur when velocity shear is present within a
continuous fluid, or when there is a sufficient velocity difference across the interface between
two fluids (Chandrasekhar, 1961). In our case, we have the second option and the relative jet

150 Topics in Magnetohydrodynamics Review of the Magnetohydrodynamic Waves and Their Stability in Solar Spicules and X-Ray Jets 17

Fig. 9. Growth rates of unstable kink waves propagating along the flux tube at values of MA
equal to 8.9, 8.95, 9, and 9.05, respectively.

velocity, U, plays the role of the necessary velocity difference across the interface between the
spicule and its environment.

The big question that immediately springs to mind is whether one can really observe such an
instability in spicules. The answer to that question is obviously negative – to register the onset
of a Kelvin–Helmholtz instability of kink waves travelling on a Type II spicule one would
need to observe jet velocities of the order of or higher than 712 km s−1! If we assume that
the density contrast, η, possesses the greater value of 0.01 (which means that the jet mass
density is 100 times larger than that of the ambient medium) and the ratio of the background
magnetic fields, b, is equal to 0.36 (which may be obtained from a slightly different set of
characteristic sound and Alfvén speeds in both media), the critical Alfvén–Mach number at
which the instability starts is even much higher (equal to 12.6) – in that case the corresponding
jet speed is Ucrt = 882 km s−1 – too high to be registered in a spicule. The value of 882 was
computed under the assumption that the Alfvén speed inside the jet is 70 km s−1.

We note that very similar dispersion curves and growth rates of unstable kink waves like
those shown in Figs. 8 and 9 were obtained for cylindrical jets when both media were treated
as incompressible fluids. In that case, dispersion Eq. (37) becomes a quadratic equation
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that provides solutions for the real and imaginary parts of the normalized wave phase velocity
in closed forms, notably (Zhelyazkov, 2010; 2011)

Vph =
−MAB ±

√
D

ηA − B
,

where
A = I�m(K)/Im(K), B = K�

m(K)/Km(K),
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Fig. 7. Dispersion curves of kink waves propagating along the flux tube at various values of
MA.

Fig. 8. Dispersion curves of kink waves propagating along the flux tube for relatively large
values of MA.

merge and at MA = 8.5 they form a closed dispersion curve. The ever increasing of MA
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Fig. 9. Growth rates of unstable kink waves propagating along the flux tube at values of MA
equal to 8.9, 8.95, 9, and 9.05, respectively.
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and the discriminant D is

D = M2
AB2 − (ηA − B)

[(
1 − M2

A

)
B − Ab2

]
.

Obviously, if D � 0, then

Re(Vph) =
−MAB ±

√
D

ηA − B
, Im(Vph) = 0,

else

Re(Vph) = − MAB
ηA − B

, Im(Vph) =

√
D

ηA − B
.

We note that our choice of the sign of
√

D in the expression of Im(Vph) is plus although, in
principal, it might also be minus – in that case, due to the arising instability, the wave’s energy
is transferred to the jet.

It is interesting to note that for our jet with b = 0.35 and η = 0.02 the quadratic dispersion
Eq. (38) yields a critical Alfvén–Mach number for the onset of a Kelvin–Helmholtz instability
equal to 8.87, which is lower than its magnitude obtained from Eq. (37). With this new
critical Alfvén–Mach number, the required jet speed for the instability onset is ∼=710 km s−1.
The most astonishing result, however, is the observation that the dispersion curves and the
corresponding growth rates, when kink waves become unstable, – look at Figs. 10 and 11
– are very similar to those shown in Figs. 8 and 9. It is worth mentioning that for the

Fig. 10. Dispersion curves of kink waves derived from Eq. (38) for relatively large values of
MA.

same η = 0.02, but for b = 1 (equal background magnetic fields), the quadratic equation
yields a much higher critical Alfvén–Mach number (=11.09), which means that the critical
jet speed grows up to 887 km s−1. This consideration shows that both the density contrast,
η, and the ratio of the constant magnetic fields, b, are equally important in determining the
critical Alfvén–Mach number. Moreover, since Eq. (37) and its simplified form as quadratic
Eq. (38) yield almost similar results (both for dispersion curves and growth rates when kink
waves become unstable) firmly corroborates the correctness of the numerical solutions to the
complex dispersion Eq. (37).
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Fig. 11. Growth rates of unstable kink waves calculated from Eq. (38) at values of MA equal
to 8.87, 8.9, 8.95, and 9, respectively.

4.2 Sausage waves in spicules

The dispersion curves of sausage waves both in a static and in a flowing plasma shown in
Figs. 12 and 13 are very similar to those of kink waves (compare with Figs. 5 and 6). The latter
curves were calculated from dispersion Eq. (34) with azimuthal mode number m = 0 for the

Fig. 12. Dispersion curves of sausage waves propagating along the flux tube at MA = 0.

same input parameters as in the case of kink waves. The main difference is that the ck-labelled
green dispersion curve is replaced by a curve corresponding to the Alfvén wave inside the jet.
We note that the dispersion curve in Fig. 13 corresponding to a normalized phase velocity 0.25
is labelled vlAi because it can be considered as the one dispersion curve of the (1.25∓ 1)-curves
that can be derived from the dispersion equation. As in the case of kink waves, the dispersion
curve corresponding to the higher speed has the label vhAi. Here we also get the two almost
dispersionless curves collectively labelled cTi (in the same colours, orange and cyan, as in
Fig. 6) with normalized wave phase velocities equal to 1.126 and 1.374.
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same input parameters as in the case of kink waves. The main difference is that the ck-labelled
green dispersion curve is replaced by a curve corresponding to the Alfvén wave inside the jet.
We note that the dispersion curve in Fig. 13 corresponding to a normalized phase velocity 0.25
is labelled vlAi because it can be considered as the one dispersion curve of the (1.25∓ 1)-curves
that can be derived from the dispersion equation. As in the case of kink waves, the dispersion
curve corresponding to the higher speed has the label vhAi. Here we also get the two almost
dispersionless curves collectively labelled cTi (in the same colours, orange and cyan, as in
Fig. 6) with normalized wave phase velocities equal to 1.126 and 1.374.
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Fig. 13. Dispersion curves of sausage waves propagating along the flux tube at MA = 1.25.

When examining the stability properties of sausage waves as a function of the Alfvén–Mach
number, MA, we use the same Eq. (37) while changing the order of the modified Bessel
functions from 1 to 0. As in the case of kink waves, we are interested primarily in the
behaviour of the waves whose phase velocities are multiples of the Alfvén speed. The results
of numerical calculations of the complex dispersion equation are shown in Fig. 14. It turns
out that for all reasonable Alfvénic Mach numbers the waves are stable. This is unsurprising

Fig. 14. Dispersion curves of sausage waves propagating along the flux tube at various
values of MA.

because the same conclusion was drawn by solving precisely the complex dispersion equation
governing the propagation of sausage waves in incompressible flowing cylindrical plasmas
(Zhelyazkov, 2010; 2011). In Fig. 14 almost all dispersion curves have two labels: one for
the (MA − 1)-labelled curve at given MA (the label is below the curve), and second for the
(M�

A + 1)-labelled curve associated with the corresponding (M�
A = MA − 2)-value (the label

is above the curve). This labelling is quite complex because for all MA we find dispersion
curves that overlap: for instance, the higher-speed dispersion curve (i.e., that associated with
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the (MA + 1)-value) for MA = 0 coincides with the lower-speed dispersion curve (i.e., that
associated with the (MA − 1)-value) for MA = 2. In contrast to the kink waves, which for
MA � 4 are pure surface modes, the sausage waves can be both pseudosurface and pure
surface modes, or one of the pair can be a surface mode while the other is a pseudosurface
one. For example, all dispersion curves for MA = 0 and 8 correspond to the pseudosurface
waves while the curves’ pair associated with MA = 4 describes the dispersion properties of
pure surface waves. For the other Alfvén–Mach numbers, one of the wave is a pseudosurface
and the other is a pure surface. However, there is a ‘rule’: if, for instance, the higher-speed
wave with MA = 10 is a pseudosurface mode, the lower-speed wave for MA = 12 is a pure
surface wave. We finish the discussion of sausage waves with the following conclusion: with
increasing the Alfvén–Mach number MA the initially independent high-harmonic waves and
their mirroring counterparts begin to merge – this is clearly seen in Fig. 14 for MA = 12 – the
resulting dispersion curve is in red colour. A similar dispersion curve can be obtained, for
example, for MA = 10; the merging point of the corresponding two high-harmonic dispersion
curves moves, however, to the right – it lies at kza = 1.943. It is also evident that in the long
wavelength limit the bottom part of the red-coloured dispersion curve describes a backward
propagating sausage pseudosurface wave. Another peculiarity of the same dispersion curve
is the circumstance that for the range of dimensionless wave numbers between 0.7 and 1.23,
one can have two different wave phase velocities. Which one is detected, the theory cannot
predict.

5. Dispersion diagrams of MHD surface waves in soft X-ray jets

The geometry model of solar X-ray jets is the same as for the spicules – straight cylinder with
radius a. Before starting the numerical calculations, we have to specify, as before, the input
parameters. The sound and Alfvén speed that are typical for X-ray jets and their environment
are correspondingly csi = 200 km s−1, vAi = 800 km s−1, cse = 120 km s−1, and vAe = 2300
km s−1. With these speeds the density contrast is η = 0.13. The same η (calculated from
a slightly different set of sound and Alfvén speeds) Vasheghani Farahani et al. (Vasheghani
Farahani et al., 2009) used in studying the propagation of transfer waves in soft X-ray coronal
jets. Their analysis, however, is restricted to the long-wavelength limit, |k|a � 1 in their
notation, while our approach considers the solving the exact dispersion relation without
any limitations for the wavelength – such a treating is necessary bearing in mind that the
wavelengths of the propagating along the jets fast magnetoacoustic waves might be of the
order of X-ray jets radii. We remember that the soft X-ray coronal jets are much ticker than the
Type II spicules.

With our choice of sound and Alfvén speeds, the tube velocities in both media (look at
Eq. (32)), respectively, are cTi ∼= 194 km s−1 and cTe = 119.8 km s−1. The kink speed (see
Eq. (35)) turns out to be rather high, namely ∼=1078 km s−1. To compare our result of the critical
jet speed for triggering the Kelvin–Helmholtz instability with that found by Vasheghani
Farahani et al. (Vasheghani Farahani et al., 2009), we take the same jet speed as theirs, notably
U = 580 km s−1, which yields Alfvén–Mach number equal to 0.725. (For simplicity we assume
that the ambient medium is static, i.e., Ue = 0.) Thus, our input parameters for the numerical
computations are

η = 0.13, β̄i ∼= 0.06, β̄e ∼= 0.003, b = 1.035, and MA = 0.725.
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We note that b = 1.035 means that the equilibrium magnetic fields inside and outside the
X-ray coronal jet are almost identical. Moreover, due to the relatively small plasma betas,
βe = 0.0033 and βi = 0.075, respectively, the magnetic pressure dominates the gas one in
both media and the propagating waves along X-ray jets should accordingly be predominantly
transverse.

5.1 Kink waves in soft X-ray coronal jets

The dispersion diagrams of kink waves propagating along a static-plasma (U = 0) flux tube
are shown in Fig. 15. They, the dispersion curves, have been obtained by numerically finding

Fig. 15. Dispersion curves of kink waves propagating along a flux tube modelling X-ray jet at
MA = 0.

the solutions to dispersion Eq. (34) with mode number m = 1 and input data listed in the
introductory part of this section with MA = 0. The dispersion curves are very similar to those
for spicules (look at Fig. 5). Here, there is, however, one distinctive difference: the cTe-labelled
dispersion curve (blue color) lies below the curve corresponding to the tube velocity inside
the jet (magenta coloured line labelled cTi). The dispersion curves of the high-harmonic
super-Alfvénic waves (red colour) lye, as usual, above the green curve associated with the
kink speed. What actually does the flow change when is taken into account? The answer
to this question is given in Fig. 16. As in the case with spicules, the flow duplicates the
cTi-labelled dispersion curve in Fig. 15. The two, again collectively labelled cTi dispersion
curves, are sub-Alfvénic waves having normalized phase velocities equal to 0.482 and 0.968
in correspondence to the (MA ∓ c0

Ti)-rule. All the rest curves have the same behaviour and
notation as in Fig. 6. The only difference here is the circumstance that the lower-speed
ck-curve lies below the zero line, i.e., it describes a backward propagating kink pseudosurface
wave. This is because the Alfvén–Mach number now is less than one. We note also that the
cTe-labelled dispersion curve is unaffected by the presence of flow.

The most intriguing question is whether the ck-labelled wave can become unstable at any
reasonable flow velocity. Before answering that question, we have, as before, to simplify
dispersion Eq. (34). Since the two plasma betas, as we have already mentioned, are much
less that one, we can treat both media (the X-ray jet and its environment) as cool plasmas. In
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Fig. 16. Dispersion curves of kink waves propagating along a flux tube modelling X-ray jet at
MA = 0.725.

this case, the simplified dispersion equation of kink waves (in complex variables!) takes the
form

(
V2

phη − b2
) [

1 −
(

Vph − MA

)2
]1/2 I�1(κia)

I1(κia)

−
[(

Vph − MA

)2
− 1

] (
1 − V2

phη
) K�

1(κea)
K1(κea)

= 0, (39)

where

κia =

[
1 −

(
Vph − MA

)2
]1/2

K and κea =
(

1 − V2
phη

)1/2
K.

We numerically solve this equation by varying the magnitude of the Alfvén–Mach number,
MA, using as before the Müller method and the dispersion curves of both stable and unstable
kink waves are shown in Fig. 17. In this figure, we display only the most interesting, upper,
part of the dispersion diagram, where one can observe the changes in the shape of the
dispersion curves related to the corresponding ck-speeds. First and foremost, the shape of
the merging dispersion curves (labelled 4, 4.1, 4.2, and 4.23 in Fig. 17) is distinctly different
from that of the similar curves in Fig. 8. Here, the curves, which are close to the dispersion
curves corresponding to an unstable wave propagation (the first one is with label 4.25) are
semi-closed in contrast to the closed curves in Fig. 8. The wave growth rates corresponding to
Alfvén–Mach numbers 4.25, 4.3, 4.35, and 4.4 are shown in Fig. 18. As can be seen, the shape
of those curves is completely different to that of the wave growth rates shown in Figs. 9 and
11. We note that all dispersion curves for MA � 4 correspond to pure surface kink waves.

It is clear from Figs. 17 and 18 that the critical Alfvén–Mach number, which determines the
onset of a Kelvin–Helmholtz instability of the kink waves, is equal to 4.25 – the corresponding
flow speed is 3400 km s−1, that is much higher than the value we have used for calculating
the dispersion curves in Fig. 16. The critical Alfvén–Mach number evaluated by Vasheghani
Farahani et al. (Vasheghani Farahani et al., 2009), is 4.47, that means the corresponding flow
speed must be at least 3576 km s−1. If we use our Eq. (39) with the same ρe/ρi = 0.13, but
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Fig. 16. Dispersion curves of kink waves propagating along a flux tube modelling X-ray jet at
MA = 0.725.
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We numerically solve this equation by varying the magnitude of the Alfvén–Mach number,
MA, using as before the Müller method and the dispersion curves of both stable and unstable
kink waves are shown in Fig. 17. In this figure, we display only the most interesting, upper,
part of the dispersion diagram, where one can observe the changes in the shape of the
dispersion curves related to the corresponding ck-speeds. First and foremost, the shape of
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from that of the similar curves in Fig. 8. Here, the curves, which are close to the dispersion
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semi-closed in contrast to the closed curves in Fig. 8. The wave growth rates corresponding to
Alfvén–Mach numbers 4.25, 4.3, 4.35, and 4.4 are shown in Fig. 18. As can be seen, the shape
of those curves is completely different to that of the wave growth rates shown in Figs. 9 and
11. We note that all dispersion curves for MA � 4 correspond to pure surface kink waves.

It is clear from Figs. 17 and 18 that the critical Alfvén–Mach number, which determines the
onset of a Kelvin–Helmholtz instability of the kink waves, is equal to 4.25 – the corresponding
flow speed is 3400 km s−1, that is much higher than the value we have used for calculating
the dispersion curves in Fig. 16. The critical Alfvén–Mach number evaluated by Vasheghani
Farahani et al. (Vasheghani Farahani et al., 2009), is 4.47, that means the corresponding flow
speed must be at least 3576 km s−1. If we use our Eq. (39) with the same ρe/ρi = 0.13, but
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Fig. 17. Dispersion curves of kink waves propagating along a flux tube modelling X-ray jets
for relatively large values of MA.

Fig. 18. Growth rates of unstable kink waves propagating along a flux tube modelling X-ray
jets at values of MA equal to 4.25, 4.3, 4.35, and 4.4, respectively.

with a little bit higher Be/Bi = 1.1132, we get that the critical jet speed for triggering the
Kelvin–Helmholtz instability in a soft X-ray coronal get would be 4.41vAi = 3528 km s−1.
It is necessary, however, to point out that the correct density contrast that can be calculated
from Eq. (36) with csi = 360 km s−1, vAi = 800 km s−1, cse = 120 km s−1, and vAe = 2400
km s−1 (the basic speeds in Vasheghani Farahani et al. paper) is ρe/ρi = 0.137698, which is
closer to 0.14 rather than to 0.13. The solving Eq. (39) with the exact value of the density
contrast (=0.1377) and the same Be/Bi as before (=1.1132) yields a critical flow speed equal to
4.31vAi = 3448 km s−1. All these calculations show that even small variations in the two ratios
ρe/ρi and Be/Bi lead to visibly different critical Alfvén–Mach numbers – our choice of the
sound and Alfvén speeds gives the smallest value of the critical MA. According to the more
recent observations (Madjarska, 2011; Shimojo & Shibata, 2000), the soft X-ray coronal jets can
have velocities above 103 km s−1 and it remains to be seen whether a speed of 3400 km s−1 can
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trigger the onset of a Kelvin–Helmholtz instability of the kink surface waves running along
the jets.

5.2 Sausage waves in soft X-ray coronal jets

The dispersion diagram of sausage waves in a static-plasma flux tube should be more or less
similar to that of the kink waves under the same circumstances. Here, however, the green
curve in Fig. 15, associated with the kink speed ck, is now replaced by a dispersionless line

Fig. 19. Dispersion curves of sausage waves propagating along a flux tube modelling X-ray
jet at MA = 0.

Fig. 20. Dispersion curves of sausage waves propagating along a flux tube modelling X-ray
jet at MA = 0.725.

related to the Alfvén speed – see the green curve in Fig. 19. Another difference is the number
of the red-coloured high-harmonic super-Alfvénic waves – here it is 3 against 2 in Fig. 15. The
dispersion diagram of the same mode in a flow with MA = 0.725 (U = 580 km s−1) is also
predictable – the presence of the flow is the reason for splitting the green vAi-labelled curve
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in Fig. 19 into two sister curves labelled, respectively, vlAi and vhAi – look at Fig. 20. Observe
that the normalized speeds of those two waves are, as expected, equal to MA ∓ 1 – in our case
the lower-speed Alfvén wave is a backward propagating one. The two sub-Alfvénic waves,
whose dispersion curves are in orange and cyan colours and collectively labelled cTi have
practically the same normalized phase velocities as the corresponding curves in Fig. 16. We
note that one of the aforementioned curve is slightly decreasing (the orange curve) whilst
the other, cyan-coloured, curve is slightly increasing when the normalized wave number kza
becomes larger – the same holds for the analogous waves in spicules. One can see in Fig. 20 a
symmetry between the upper and bottom parts of the dispersion diagram – the ‘mirror line’
lies somewhere between the orange and cyan dispersion curves.

The ‘evolution’ of the green vAi-labelled curves in Fig. 20 with the increase in the Alfvén–Mach
number is illustrated in Fig. 21. It is unsurprising that the sausage surface waves in soft X-ray

Fig. 21. Dispersion curves of sausage waves propagating along a flux tube modelling X-ray
jets at various values of MA.

coronal jets (like in spicules) are unaffected by the Kelvin–Helmholtz instability. Similarly
as in Fig. 14, we have an overlapping of the dispersion curves associated with different
Alfvén–Mach numbers. The labelling of dispersion curves in Fig. 21 is according to the
previously discussed in Sec. 4.2 rule, namely each horizontal dispersion curve possesses two
labels: one for the (MA − 1)-curve at given MA (the label is below the curve), and second
for the (M�

A + 1)-curve associated with the corresponding (M�
A = MA − 2)-value (the label

is above the curve). Interestingly, even for the relatively low MA = 1 both the lower- and
the high-speed curves describe pure surface sausage waves. The same is also valid for the
dispersion lines corresponding to Alfvén–Mach numbers equal to 4 and 5. The lower-speed
Alfvénic curve at MA = 6 is related to a pseudosurface sausage wave while the higher-speed
one (with normalized phase velocity equal to 7) corresponds to a pure surface mode. (With
MA = 2 we have just the opposite situation.) At MA � 7 all waves are pseudosurface ones.
Each choice of the Alfvén–Mach number indeed requires separate studying of the wave’s
proper mode. Apart from Alfvénic waves and the pair of sub-Alfvénic modes (orange and
cyan curves in Fig. 20), there appear to be families of high-speed harmonic waves (with
red and blue colours of their dispersion curves), which also change with the increase of
MA. Initially being independent, with the growing of the Alfvén–Mach number, they change
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Fig. 22. Zoomed part of the dispersion diagram in Fig. 21 where two dispersion curves of
super-Alfvénic sausage waves (at MA = 5) are touching each other.

their shapes and one may occur to observe the merging of, for instance, the first curves of
each family as this has been shown in Fig. 14 (see the red curve there). Here, however, the
situation is über-complicated – instead of merging we encounter a new phenomenon, notably
the touching of two dispersion curves – see the green and red curves in Fig. 21 (calculated for
MA = 5), and with more details in Fig. 22. The tip of the horizontal spike lies at kza = 1.395.
Another peculiarity of this complex curve is the inverted-s shape of the red curve between
the dimensionless wave numbers 1.28 and 1.29. Across that range, at a fixed kza, one can
‘detect’ four different normalized wave phase velocities. Similar sophisticated dispersion
curves might also be obtained for MA = 4 or MA = 6. Maybe nowadays the sausage mode
is not too interesting for the spacecrafts’ observers but, who knows, it can sometime become
important in interpretation observational data.

6. Conclusion

We now summarize the main findings of our chapter. We have studied the dispersion
properties and the stability of the MHD normal modes running along the length of Type
II spicules and soft X-ray coronal jets. Both have been modelled as straight cylindrical jets
of ideal cool plasma surrounded by a warm/hot fully ionized medium (for spicules) or as
flux tubes of almost cool plasma surrounded by a cool medium (for the X-ray jets). The
wave propagation has been investigated in the context of standard magnetohydrodynamics
by using linearized equations for the perturbations of the basic quantities: mass density,
pressure, fluid velocity, and wave magnetic field. The derived dispersion equations describe
the well-known kink and sausage mode influenced by the presence of spicules’ or X-ray jets’
moving plasma. The streaming plasma is characterized by its velocity U, which is directed
along the background magnetic fields Bi and Be inside the jet and in its environment. An
alternative and more convenient way of specifying the jet is by defining the Alfvén–Mach
number: the ratio of jet speed to the Alfvén speed inside the jet, MA = U/vAi. The
key parameters controlling the dispersion properties of the waves are the so-called density
contrast, η = ρe/ρi, the ratio of the two background magnetic fields, b = Be/Bi, and the two
ratios of the squared sound and Alfvén speeds, β̄e = c2

se/v2
Ae and β̄i = c2

si/v2
Ai. How does the
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jet change the dispersion curves of both modes (kink and sausage waves) in a static-plasma
flux tube? The answers to that question are as follows:

• The flow shifts upwards the specific dispersion curves, the kink-speed curve for kink
waves and Alfvén-speed curve for sausage waves, as well as the high-harmonic fast waves
of both modes. The sub-Alfvénic tube speed inside the jet, cTi, belongs to two waves with
normalized phase velocities equal to MA ∓ cTi/vAi. One also observes such a duplication
of the ck- or vAi-speed curve of kink or sausage waves. Below the lower-speed ck- or
vAi-curve there appears to be a set of dispersion curves, which are a mirror image of the
high-harmonic fast waves. We note that the flow does not affect the cTe-speed dispersion
curve associated with the tube velocity in the environment.

• For a typical set of characteristic sound and Alfvén speeds in both media (the jet and its
environment) at relatively small Alfvén–Mach numbers both modes are pseudosurface
waves. With increasing MA, some of them become pure surface waves. For kink waves,
this finding is valid for MA � 4.

• The kink waves running along the jet can become unstable when the Alfvén–Mach
number, MA, exceeds some critical value. That critical value depends upon the two input
parameters, η and b; the increase in the density contrast, ρe/ρi, decreases the magnitude
of the critical Alfvén–Mach number, whilst the increase in the background magnetic fields
ratio, Be/Bi, leads to an increase in the critical MA. For our choice of parameters for Type
II spicules (η = 0.02 and b = 0.35) the value of the critical MA is 8.9. This means that the
speed of the jet must be at least 712 km s−1 for the onset of the Kelvin–Helmholtz instability
of the propagating kink waves. Such high speeds of Type II spicules have not yet been
detected. For the soft X-ray coronal jets, due to the greater density contrast (η = 0.13) and
almost equal background magnetic fields (b = 1.035), the critical Alfvén–Mach number is
approximately twice smaller (=4.25), but since the jet Alfvén speed is 10 times larger than
that of spicules, the critical flow speed, Ucrt, is much higher, namely 3400 km s−1. Such
high jet speeds can be in principal registered in soft X-ray coronal jets.
A rough criterion for the appearance of the Kelvin–Helmholtz instability of kink waves is
the satisfaction of an inequality suggested by Andries & Goossens (Andies & Goossens,
2001), which in our notation reads

MA > 1 + b/
√

η.

This criterion provides more reliable predictions for the critical MA when b ≈ 1
(Zhelyazkov, 2010). In particular, for a X-ray jet with η = 0.13 and b = 1.035 the above
criterion yields MA > 3.87, which is lower than the numerically found value of 4.25.

• The onset of the Kelvin–Helmholtz instability for kink surface waves running along a
cylindrical jet, modelling a Type II spicule, is preceded by a substantial reorganization
of wave dispersion curves. As we increase the Alfvén–Mach number, the pairs of high-
and low-speed curves (look at Fig. 8) begin to merge transforming into closed dispersion
curves. After a further increase in MA, these closed dispersion curves become smaller –
this is an indication that we have reached the critical MA at which the kink waves are
subjected to the Kelvin–Helmholtz instability – the unstable waves propagate across the
entire kza-range having growth rates depending upon the value of the current MA. We
note that this behaviour has been observed for kink waves travelling on flowing solar-wind
plasma (Zhelyazkov, 2010; 2011).
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For the X-ray jets, the dispersion curves’ reorganization, because the environment has
been considered as a cool plasma, is different – now, at high enough flow speeds, the
merging lower- and higher-speed ck-dispersion curves take the form of semi-closed loops
(see Fig. 17). As we increase the flow speed (or equivalently the Alfvén–Mach number), the
semi-closed loops shrink and at some critical flow speed the kink wave becomes unstable
and the instability is of the Kelvin–Helmholtz type. We note that the shapes of the waves’
growth rates of kink waves in spicules and soft X-ray coronal jets are distinctly different –
compare Figs. 9 and 18.

• We have found that the sausage waves are unaffected by the Kelvin–Helmholtz instability.
This conclusion was also previously drawn for the sausage modes in flowing solar-wind
plasma (Zhelyazkov, 2010; 2011).

As we have seen, very high jet speeds are required to ensure that the Kelvin–Helmholtz
instability occurs for kink waves propagating in Type II spicules associated with a subsequent
triggering of Alfvén-wave turbulence, hence the possibility that this mechanism is responsible
for chromospheric/coronal heating has to be excluded. However, a twist in the magnetic field
of the flux tube or its environment may have the effect of lowering the instability threshold
(Bennett et al., 1999; Zaqarashvili et al., 2010) and eventually lead to the triggering of the
Kelvin–Helmholtz instability. According to Antolin & Shibata (Antolin & Shibata, 2010),
a promising way to ensure spicules’/coronal heating is by means of the mode conversion
and parametric decay of Alfvén waves generated by magnetic reconnection or driven by
the magneto-convection at the photosphere. However, spicules can be considered as Alfvén
wave resonant cavities (Holweg, 1981; Leroy, 1981) and as Matsumoto & Shibata (Matsumoto
& Shibata, 2010) claim, the waves of the period around 100–500 s can transport a large
amount of wave energy to the corona. Zahariev & Mishonov (Zahariev & Mishonov,
2011) state that the corona may be heated through a self-induced opacity of high-frequency
Alfvén waves propagating in the transition region between the chromosphere and the corona
owing to a considerable spectral density of the Alfvén waves in the photosphere. Another
trend in explaining the mechanism of coronal heating is the dissipation of Alfvén waves’
energy by strong wave damping due to the collisions between ions and neutrals (Song &
Vasyliūnas, 2011; Tsap et al., 2011). In particular, Song & Vasyliūnas, by analytically solving a
self-consistent one-dimensional model of the plasma–neutral–electromagnetic system, show
that the damping is extremely strong for weaker magnetic field and less strong for strong
field. Under either condition, the high-frequency portion of the source power spectrum is
strongly damped at the lower altitudes, depositing heat there, whereas the lower-frequency
perturbations are nearly undamped and can be observed in the corona and above when the
field is strong.

The idea that Alfvén waves propagating in the transition region can contribute to the coronal
heating was firmly supported by the observational data recorded on April 25, 2010 by
NASA’s Solar Dynamics Observatory (see Fig. 2). As McIntosh et al. (McIntosh et al., 2011)
claim, “SDO has amazing resolution, so you can actually see individual waves. Previous
observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s−1)
to supply the energy flux (100–200 W m−2) required to drive the fast solar wind or balance
the radiative losses of the quiet corona. Here we report observations of the transition region
(between the chromosphere and the corona) and of the corona that reveal how Alfvénic
motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous
outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s−1
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plasma (Zhelyazkov, 2010; 2011).
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For the X-ray jets, the dispersion curves’ reorganization, because the environment has
been considered as a cool plasma, is different – now, at high enough flow speeds, the
merging lower- and higher-speed ck-dispersion curves take the form of semi-closed loops
(see Fig. 17). As we increase the flow speed (or equivalently the Alfvén–Mach number), the
semi-closed loops shrink and at some critical flow speed the kink wave becomes unstable
and the instability is of the Kelvin–Helmholtz type. We note that the shapes of the waves’
growth rates of kink waves in spicules and soft X-ray coronal jets are distinctly different –
compare Figs. 9 and 18.

• We have found that the sausage waves are unaffected by the Kelvin–Helmholtz instability.
This conclusion was also previously drawn for the sausage modes in flowing solar-wind
plasma (Zhelyazkov, 2010; 2011).

As we have seen, very high jet speeds are required to ensure that the Kelvin–Helmholtz
instability occurs for kink waves propagating in Type II spicules associated with a subsequent
triggering of Alfvén-wave turbulence, hence the possibility that this mechanism is responsible
for chromospheric/coronal heating has to be excluded. However, a twist in the magnetic field
of the flux tube or its environment may have the effect of lowering the instability threshold
(Bennett et al., 1999; Zaqarashvili et al., 2010) and eventually lead to the triggering of the
Kelvin–Helmholtz instability. According to Antolin & Shibata (Antolin & Shibata, 2010),
a promising way to ensure spicules’/coronal heating is by means of the mode conversion
and parametric decay of Alfvén waves generated by magnetic reconnection or driven by
the magneto-convection at the photosphere. However, spicules can be considered as Alfvén
wave resonant cavities (Holweg, 1981; Leroy, 1981) and as Matsumoto & Shibata (Matsumoto
& Shibata, 2010) claim, the waves of the period around 100–500 s can transport a large
amount of wave energy to the corona. Zahariev & Mishonov (Zahariev & Mishonov,
2011) state that the corona may be heated through a self-induced opacity of high-frequency
Alfvén waves propagating in the transition region between the chromosphere and the corona
owing to a considerable spectral density of the Alfvén waves in the photosphere. Another
trend in explaining the mechanism of coronal heating is the dissipation of Alfvén waves’
energy by strong wave damping due to the collisions between ions and neutrals (Song &
Vasyliūnas, 2011; Tsap et al., 2011). In particular, Song & Vasyliūnas, by analytically solving a
self-consistent one-dimensional model of the plasma–neutral–electromagnetic system, show
that the damping is extremely strong for weaker magnetic field and less strong for strong
field. Under either condition, the high-frequency portion of the source power spectrum is
strongly damped at the lower altitudes, depositing heat there, whereas the lower-frequency
perturbations are nearly undamped and can be observed in the corona and above when the
field is strong.

The idea that Alfvén waves propagating in the transition region can contribute to the coronal
heating was firmly supported by the observational data recorded on April 25, 2010 by
NASA’s Solar Dynamics Observatory (see Fig. 2). As McIntosh et al. (McIntosh et al., 2011)
claim, “SDO has amazing resolution, so you can actually see individual waves. Previous
observations of Alfvénic waves in the corona revealed amplitudes far too small (0.5 km s−1)
to supply the energy flux (100–200 W m−2) required to drive the fast solar wind or balance
the radiative losses of the quiet corona. Here we report observations of the transition region
(between the chromosphere and the corona) and of the corona that reveal how Alfvénic
motions permeate the dynamic and finely structured outer solar atmosphere. The ubiquitous
outward-propagating Alfvénic motions observed have amplitudes of the order of 20 km s−1
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and periods of the order of 100–500 s throughout the quiescent atmosphere (compatible with
recent investigations), and are energetic enough to accelerate the fast solar wind and heat the
quiet corona.”

Notwithstanding, as we have already mentioned in the end of Sec. 5.1, the possibility for the
onset of a Kelvin–Helmholtz instability of kink waves running along soft X-ray coronal jets
should not be excluded – at high enough flow speeds, which in principal are reachable, one
can expect a dramatic change in the waves’ behaviour associated with an emerging instability,
and subsequently, with an Alfvén-wave-turbulence heating.

In all cases, the question of whether large coronal spicules can reach coronal temperatures
remains open – for a discussion from an observational point of view we refer to the paper by
Madjarska et al. (Madjarska et al., 2011).
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and periods of the order of 100–500 s throughout the quiescent atmosphere (compatible with
recent investigations), and are energetic enough to accelerate the fast solar wind and heat the
quiet corona.”

Notwithstanding, as we have already mentioned in the end of Sec. 5.1, the possibility for the
onset of a Kelvin–Helmholtz instability of kink waves running along soft X-ray coronal jets
should not be excluded – at high enough flow speeds, which in principal are reachable, one
can expect a dramatic change in the waves’ behaviour associated with an emerging instability,
and subsequently, with an Alfvén-wave-turbulence heating.

In all cases, the question of whether large coronal spicules can reach coronal temperatures
remains open – for a discussion from an observational point of view we refer to the paper by
Madjarska et al. (Madjarska et al., 2011).
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1. Introduction

1.1 Brief summary of this chapter

This chapter shows that basic boundary control strategies for magnetohydrodynamics (MHD)
can be derived from a formal system representation, called a port-Hamiltonian system (Van
der Schaft and Maschke, 2002). The port-Hamiltonian formulation clarifies collocated
input/output pairs used for stabilizing and assigning a global stable point. The controls called
passivity-based controls (Arimoto, 1996; Ortega et al., 1998; Van der Schaft, 2000; Duindam et
al., 2009) are simple and robust to disturbances. Moreover, port-Hamiltonian systems can be
connected while keeping their consistency with respect to energy flows. Finally, we show that
port-Hamiltonian systems can be used for boundary controls. In the future, this theory might
be specialized, for instance, in order to control disruptions of Tokamak plasmas (Wesson, 2004;
Pironti and Walker, 2005; Ariola and Pironti, 2008). This chapter emphasizes the versatility of
control system representations.

1.2 Background and motivation

Control theory significantly progressed during the last two decades of the 20th century. Linear
control theory (Zhou et al., 1996) was developed for systems whose states are limited to a
neighborhood around stable points. The theory was extended to include particular classes of
distributed parameter systems and nonlinear systems (Khalil, 2001; Isidori, 1995). However,
dispite this progress, simpler and more intuitive methods like PID controls (Brogliato et al.,
2006) are still in the mainstream of practical control designs. One reason for this trend
is that advanced methods do not always remarkably produce significant improvements to
the performance of controlled systems despite their theoretical complexity; rather, they are
prone to modeling errors. The other reason is that simple methods are understandable and
adjustable online, although the resulting performance is not exactly optimal.

On the other hand, actual controlled systems can be regarded as distributed parameter
systems from a macroscopic viewpoint, e.g., as elastic continuums, and as discrete nonlinear
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1. Introduction

1.1 Brief summary of this chapter

This chapter shows that basic boundary control strategies for magnetohydrodynamics (MHD)
can be derived from a formal system representation, called a port-Hamiltonian system (Van
der Schaft and Maschke, 2002). The port-Hamiltonian formulation clarifies collocated
input/output pairs used for stabilizing and assigning a global stable point. The controls called
passivity-based controls (Arimoto, 1996; Ortega et al., 1998; Van der Schaft, 2000; Duindam et
al., 2009) are simple and robust to disturbances. Moreover, port-Hamiltonian systems can be
connected while keeping their consistency with respect to energy flows. Finally, we show that
port-Hamiltonian systems can be used for boundary controls. In the future, this theory might
be specialized, for instance, in order to control disruptions of Tokamak plasmas (Wesson, 2004;
Pironti and Walker, 2005; Ariola and Pironti, 2008). This chapter emphasizes the versatility of
control system representations.

1.2 Background and motivation

Control theory significantly progressed during the last two decades of the 20th century. Linear
control theory (Zhou et al., 1996) was developed for systems whose states are limited to a
neighborhood around stable points. The theory was extended to include particular classes of
distributed parameter systems and nonlinear systems (Khalil, 2001; Isidori, 1995). However,
dispite this progress, simpler and more intuitive methods like PID controls (Brogliato et al.,
2006) are still in the mainstream of practical control designs. One reason for this trend
is that advanced methods do not always remarkably produce significant improvements to
the performance of controlled systems despite their theoretical complexity; rather, they are
prone to modeling errors. The other reason is that simple methods are understandable and
adjustable online, although the resulting performance is not exactly optimal.

On the other hand, actual controlled systems can be regarded as distributed parameter
systems from a macroscopic viewpoint, e.g., as elastic continuums, and as discrete nonlinear

7



2 Magnetohydrodynamics

systems from a microscopic viewpoint, e.g., as molecular dynamics systems. Moreover, their
stable points are not always unique and vary according to the environment. Multi-physics and
multi-scaling models are becoming increasingly significant in science and engineering because
of rapid advances in computational devices and micromachining technology. However, such
complexities have tended to be ignored in system modeling of conventional control designs,
because controllers have to be simple enough to be integrated with other mechanisms and be
quickly adjustable. Moreover, numerical analyses using more detailed models can be executed
off-line by trial and error and in circumstance where there are no physical size limitations on
the computational devices. Hence, it would be desirable to have a new framework of simple
control designs like PID controls, but for complex systems. The port-Hamiltonian system,
which is introduced in this chapter, is one of the most promising frameworks for this purpose.
This chapter addresses the issue of how to derive simple and versatile controls for partial
differential equations (PDEs), especially, those of MHD, from considerations about the storage
and dissipation of energy in port-Hamiltonian systems.

1.3 History of topic and relevant research

Port-Hamiltonian systems are a framework for passivity-based controls. Passivity (Van der
Schaft, 2000) is a property by which the energy supplied from the outside of systems through
input/output variables can be expressed as a function of the stored energy. The storage
function is equivalent to a Hamiltonian in dynamical systems. The collocated input/output
variable pairs, called port variables, are defined systematically in terms of port-Hamiltonian
systems, and they are used as controls and for making observations. Passivity-based controls
consist of shaping Hamiltonians and damping assignments. The Hamiltonians of these systems
can be changed by "connecting" them to other port-Hamiltonian systems by means of the port
variables. The Hamiltonian of controlled systems is equal to the sum of those of the original
system and controllers. Thus, if we can design such a changed Hamiltonian beforehand,
the connections give the Hamiltonian of the original system "shaping". Such connected
port-Hamiltonian systems with a shaped Hamiltonian can be stabilized to the minimum of
the storage function by adding dissipating elements to the port variables.

The energy preserving properties of port-Hamiltonian systems can be described in terms of a
Dirac structure (Van der Schaft, 2000; Courant, 1990), which is the generalization of symplectic
and Poisson structures (Arnold, 1989). Dirac structures enable us to model complex systems as
port-Hamiltonian representations, e.g., distributed parameter systems with nonlinearity (Van
der Schaft and Maschke, 2002), systems with higher order derivatives (Le Gorrec et al.,
2005; Nishida, 2004), thermodynamical systems (Eberard et al., 2007), discretized distributed
systems (Golo et al., 2004; Voss and Scherpen, 2011) and their coupled systems. This chapter
mainly uses the port-Hamiltonian representation of PDEs for boundary controls based on
passivity, i.e., the DPH system. The boundary integrability of DPH systems is derived from a
Stokes-Dirac structure (Van der Schaft and Maschke, 2002), which is an extended Dirac structure
in the sense of Stokes theorem. Because of this boundary integrability, the change in the
internal energy of DPH systems is equal to the energy supplied through port variables defined
on the boundary of the system domain. Hence, passivity-based controls for distributed
parameter systems can be considered to be boundary energy controls.
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1.4 Construction of this chapter

In Section 2, we derive the geometric formulation of MHD defined by using differential
forms (Flanders, 1963; Morita, 2001). After that, we rewrite the model in terms of DPH
systems. The modeling procedure is systematically determined by a given Hamiltonian. Next,
we explain passivity-based controls that can be applied to the DPH system of MHD, and their
energy flows by means of the bond graph (Karnopp et al., 2006). Finally, we show that the
boundary power balance equation of the DPH system is the extended energy principle of
MHD (Wesson, 2004) in the sense of dynamical systems and boundary controls.

In Section 3, we extend the DPH model of MHD to include non-Hamiltonian subsystems
corresponding to external force terms in Euler-Lagrange equations. Actual controlled systems
represented by MHD might be affected by model perturbations, e.g., disturbances or other
controllers, or model improvements. Such variations cannot always be modeled in terms
of Hamiltonian systems. Some systems of PDEs can be decomposed into a Hamiltonian
subsystem, which we call an exact subsystem, and a non-Hamiltonian subsystem, which we
call a dual-exact subsystem (Nishida et al., 2007a). Through this decomposition, a PDE system
can be described as a coupled system consisting of a port-Hamiltonian subsystem determined
by a pseudo potential and other subsystems representing, e.g., external forces, dissipations and
distributed controls.

In Section 4, we derive a boundary observer for detecting symmetry breaking (Nishida et
al., 2009) from the DPH system of conservation laws associated with MHD. For example,
Hamiltonian systems can be regarded as the conservation law with a symmetry that is the
invariance of energy with respect to the time evolution. If a symmetry is broken, the associated
conservation law becomes invalid. Symmetry breaking can be detected by checking whether
quantities are conserved with the boundary port variables of the DPH system. Furthermore,
we present a basic strategy for detecting the topological transitions of the domain of DPH
systems. The formulation using differential forms defined on Riemannian manifolds can
describe systems affected by such transitions. We use a general decomposition of differential
forms on Riemannian manifolds and of vector fields on three-dimensional Riemannian
manifolds and derive the boundary controls for creating a desired topological energy flow
from this decomposition.

The last section is devoted to a brief introduction of future work on this topic.

2. Port-Hamiltonian systems and passivity-based controls for MHD

2.1 Ideal magnetohydrodynamical equations

Magnetohydrodynamics (MHD) is a discipline involving modeling magnetically confined
plasmas (Wesson, 2004; Pironti and Walker, 2005; Ariola and Pironti, 2008). The ideal MHD
system is a coupled system consisting of a single fluid and an electromagnetic field with
certain constitutive relations.

The fluid is described by the two equations in three dimensions. The first is the mass
conservation law,

∂ρ

∂t
+∇ · (ρv) = 0, (1)
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+∇ · (ρv) = 0, (1)
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where ρ(t, x) ∈ R is the local mass density at time t ∈ R at the spatial position x =
(x1, x2, x3) ∈ R3, and v(t, x) ∈ R3 is the fluid (Eulerian) velocity at t and x. The second is
Newton’s law applied to an infinitesimal plasma element with an electromagnetic coupling,

ρ
∂v
∂t

= −ρv · ∇v −∇p + J × B, (2)

where p(t, x) ∈ R is the kinetic pressure in plasma, J(t, x) ∈ R3 is the free current density,
B(t, x) ∈ R3 is the magnetic field induction, and the Lorentz force term J × B means the
coupling.

The electromagnetic field satisfies the Maxwell’s equations consisting of Ampere’s law,
Faraday’s law, and Gauss’s law for the magnetic induction field:

− ∂D
∂t

= −∇× H + J, − ∂B
∂t

= ∇× E, ∇ · B = 0, (3)

where the time derivative of the electric field induction D ∈ R3 is neglected in MHD.

The constitutive relations are given by

B = μH, E + v × B = ηJ, (4)

where μ is the magnetic permeability and η is the resistance coefficient that is assumed to be
zero in an ideal MHD system.

2.2 Geometric formulation of MHD

The main framework of this chapter is the port-Hamiltonian system for PDEs called a
distributed port-Hamiltonian (DPH) system (Van der Schaft and Maschke, 2002). DPH systems
are expressed in terms of differential forms (Flanders, 1963; Morita, 2001). Moreover, a
formulation using differential forms defined on Riemannian manifolds can describe the
relation between the vector fields of systems and the topological properties of system domains
(see Section 4). Thus, we shall rewrite the equations of MHD by using differential forms to
derive the DPH representation of MHD.

Let Y be an n-dimensional smooth Riemannian manifold. Let Z be an n-dimensional smooth
Riemannian submanifold of Y with a smooth boundary ∂Z. We assume that the time
coordinate t ∈ R is split from the spatial coordinates x = (x1, · · · , xn) ∈ Z in the local chart
of Z. We denote the space of differential k-forms on Z by Ωk(Z) for 0 ≤ k ≤ n. We denote
the infinite-dimensional vector space of all smooth vector fields in Z by X(Z). We identify the
1-from v with the vector field v� ∈ X(Z). The fluid equations (1) and (2) can be rewritten as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ

∂t
= −dev,

∂v
∂t

= −deρ + g1 + g2,

ev = iv�ρ, eρ =
1
2
�v�, v��+ w(∗ρ),

g1 = −(∗ρ)−1∗(∗dv ∧ ∗ev), g2 = (∗ρ)−1∗(∗ J ∧ ∗B),

(5)
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where n = 3, ρ ∈ Ω3(Z) is the mass density, v ∈ Ω1(Z) is the fluid velocity, J ∈ Ω2(Z) is the
free current density, B ∈ Ω2(Z) is the magnetic field induction, �v�, v�� = �v��2 is the inner
product with respect to v�, and we have introduced the following operators:

• d : Ωk(Z) → Ωk+1(Z) · · · The exterior differential operator d on Z is defined as

dω =
n

∑
j=1

∂ fi1···ik

∂xj dxj ∧ dxi1 ∧ · · · ∧ dxik (6)

for ω = fi1···ik
(x) dxi1 ∧ · · · ∧ dxik ∈ Ωk(Z), where i1 · · · ik is the combination of k different

integers selected from 1 to n, and j �= i1 �= · · · �= ik.

• ∗ : Ωk(Z) → Ωn−k(Z) · · · The Hodge star operator ∗ induced in terms of a Riemannian
metric on Z is defined as

∗ω = ∑
i1<···<ik

sgn(I, J) fi1···ik
dxj1 ∧ · · · ∧ dxjn−k ∈ Ωn−k(Z) (7)

for ω = ∑i1<···<ik
fi1···ik

(x) dxi1 ∧ · · · ∧ dxik ∈ Ωk(Z), where j1 < · · · < jn−k is the
rearrangement of the complement of i1 < · · · < ik in the set {1, · · · , n} in ascending
order, and sgn(I, J) is the sign of the permutation of i1, · · · , ik, j1, · · · , jn−k generated by
interchanging of the basic forms dxi (if we interchange dxi and dxj in ω for arbitrary i and
j, the sign of ω changes, i.e., it is alternating).

• iv� : Ωk(Z) → Ωk−1(Z) · · · The interior product iv� with respect to v� is defined as

iv�ω =

{
(−1)m−1 fi1···ik

gim dxi1 ∧ · · · ∧ dxim−1 ∧ dxim+1 ∧ · · · ∧ dxik if j = im,
0 if j �= im

(8)

for v� = gj(x)(∂/∂xj) and ω = fi1···ik
(x)dxi1 ∧ · · · ∧ dxik .

In (5), we used the formula (v · ∇)v = (1/2)∇(v · v) + Curl v × v, and the enthalpy w(∗ρ) =
(∂/∂∗ρ) (∗ρ U(∗ρ)) is related to the pressure p(∗ρ) by (∗ρ)−1dp(∗ρ) = dw(∗ρ), where
U(ρ) is the internal energy function of the fluid satisfying p(∗ρ) = w(∗ρ)∗ρ − U(∗ρ)∗ρ.

Next, Maxwell’s equations are defined as follows:

− ∂D
∂t

= −dH + J, − ∂B
∂t

= dE, dB = 0, dD = �, (9)

where D ∈ Ω2(Z) is the electric field induction, H ∈ Ω1(Z) is the magnetic field intensity,
E ∈ Ω1(Z) is the electric field intensity, and � ∈ Ω3(Z) is the free charge density.

The constitutive relations are written as follows:

B = μ∗H, ∗(E + iv� B) = ηJ. (10)

2.3 Definition of port-Hamiltonian system

Let us recall the definition of DPH systems. The advantage of these systems will be explained
from the viewpoint of passivity and boundary controls in later sections.
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∂t

= dE, dB = 0, dD = �, (9)
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2.3 Definition of port-Hamiltonian system

Let us recall the definition of DPH systems. The advantage of these systems will be explained
from the viewpoint of passivity and boundary controls in later sections.
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The inner product of k-forms can be defined on Z as

�ω, η� = ω ∧ ∗η, �ω, η�Z =
�

Z
�ω, η� (11)

for ω, η ∈ Ωk(Z). Moreover, we can identify the 1-from v with the vector field v� ∈ X(Z);
therefore, (11) can be defined as the inner product of vector fields, as in (5). DPH systems are
defined by Stokes-Dirac structures (Van der Schaft and Maschke, 2002; Courant, 1990) with
respect to the inner product (11).

Definition 2.1. Let
⎧
⎪⎪⎨
⎪⎪⎩

( f p, f q, f b) ∈ Ωp(Z)× Ωq(Z)× Ωn−p(∂Z),
(ep, eq, eb) ∈ Ωn−p(Z)× Ωn−q(Z)× Ωn−q(∂Z),
( f p

d , f q
d ) ∈ Ωp(Z)× Ωq(Z),

(ep
d , eq

d) ∈ Ωn−p(Z)× Ωn−q(Z),

(12)

where all f i and ei for i ∈ {p, q, b} and all f i
d and ei

d for i ∈ {p, q} constitute the pairs with respect to
the inner product � · , · �Z. The Stokes-Dirac structure is defined as follows:

�
f p

f q

�
=

�
0 (−1)rd
d 0

� �
ep

eq

�
−

�
f p
d

f q
d

�
,
�

ep
d

eq
d

�
=

�
ep

eq

�
,
�

f b

eb

�
=

�
ep|∂Z

(−1)peq|∂Z

�
, (13)

where r = pq + 1, p + q = n + 1, |∂Z is the restriction of differential forms to ∂Z, d f p
d �= 0, and

d f q
d �= 0.

A DPH system is formed by substituting the following variables obtained from a Hamiltonian
density in the above Stokes-Dirac structure.

Definition 2.2. Let H(αp, αq) ∈ Ωn(Z) be a Hamiltonian density, where αi ∈ Ωi(Z) for i ∈ {p, q}.
A DPH system is defined by substituting

f p = − ∂αp

∂t
, f q = − ∂αq

∂t
, ep =

∂H
∂αp , eq =

∂H
∂αq (14)

into (13), where ∂/∂αi means the variational derivative with respect to αi . The variables f p
d and f q

d
cannot be derived from any Hamiltonian.

DPH systems satisfy the following boundary integrable relation that comes from Stokes
theorem (Flanders, 1963; Morita, 2001).

Proposition 2.1 (Van der Schaft and Maschke (2002)). A DPH system satisfies the following power
balance:

�

Z
(ep ∧ f p + eq ∧ f q) +

�

Z

�
ep

d ∧ f p
d + eq

d ∧ f q
d

�
+

�

∂Z
eb ∧ f b = 0. (15)

where each term ei ∧ f i for i ∈ {p, q, b} has the dimension of power.

In DPH systems, each f i and ei for i ∈ {p, q} are called port variables, and f b and eb

are called boundary port variables that are a pair of boundary inputs and outputs. We call
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eb ∧ f b a boundary energy flow. On the other hand, the terms ep
d ∧ f p

d and eq
d ∧ f q

d are
non-boundary-integrable; therefore, we cannot detect changes in them from the boundary
energy flows. We call ep

d ∧ f p
d and eq

d ∧ f q
d distributed energy flows.

2.4 Passivity and boundary integrability of energy flows

The advantages of DPH systems are grounded in the following stability.

Definition 2.3. Consider a system with an input vector u(t) and an output vector y(t). The system
is called passive if there exists a C0 class non-negative function V(x) such that V(0) = 0 and

V(x(t1))− V(x(t0)) ≤
∫ t1

t0

u�(s)y(s) ds (16)

for all inputs u(t) and an initial value x(t0), where t0 ≤ t1 and � means the transpose of vectors.

V(x) can be regarded as the internal energy of the systems, which is an extended Lyapunov
function. The inequality in (16) means that the energy always decreases; therefore, the system
is stable in the sense of Lyapunov. Controls using the relation (16) are called passivity-based
controls. Standard control systems with pairs of inputs/outputs satisfying (16) are called
port-Hamiltonian systems. In this case, V(x) corresponds with the Hamiltonian of the system.
Hence, in (15), all port variables ei

j and f i
j for i ∈ {p, q, b} and j ∈ { f , e} might be inputs and

outputs for passivity-based controls.

The boundary port variables f b
j and eb

j in (15) can be used as passivity-based boundary
controls (Van der Schaft, 2000; Duindam et al., 2009) (details are given in Section 2.6). In (15),
the first integral means the time variation of Hamiltonian; i.e., it is calculated by taking the
interior product between a possible variational vector field and the variational derivative of
Hamiltonian: iXi dHi for i ∈ { f , e}, where Xi = ∑j(∂αj/∂t)(∂/∂αj) is the variational vector
field and αj is the variational variable. The power of the first integral can be transformed
into that of the third integral by appealing to boundary integrability of Stokes theorem. The
second integral means non-boundary-integrable energy flows. Hence, if the second integral is
zero, we can detect the variation of energies distributed on system domains from the variation
on the boundary. In this sense, the power balance (15) is the principle of passivity-based
boundary controls.

2.5 Port-Hamiltonian representation of MHD

In this section, we derive the DPH representation of MHD from the geometric formulation
presented in Section 2.2, which has been partially treated as Maxwell’s equations and as an
ideal fluid in (Van der Schaft and Maschke, 2002).

Let n = 3. The DPH representation can be systematically constructed in terms of the
Hamiltonian densities of the fluid and the electromagnetic field

H f =
∫

Z

1
2
�v�, v��ρ + U(∗ρ)ρ, He =

∫

Z

1
2
(E ∧ D + H ∧ B) (17)
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into that of the third integral by appealing to boundary integrability of Stokes theorem. The
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zero, we can detect the variation of energies distributed on system domains from the variation
on the boundary. In this sense, the power balance (15) is the principle of passivity-based
boundary controls.

2.5 Port-Hamiltonian representation of MHD

In this section, we derive the DPH representation of MHD from the geometric formulation
presented in Section 2.2, which has been partially treated as Maxwell’s equations and as an
ideal fluid in (Van der Schaft and Maschke, 2002).

Let n = 3. The DPH representation can be systematically constructed in terms of the
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under constraints defined by the system equations (5), (9) and (10). Indeed, the DPH system
of MHD can be constructed as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�−ρt
−vt

�
=

�
0 d
d 0

� �
eρ

ev

�
−

�
0

g1 + g2

�
,

�
f b

f
eb

f

�
=

�
eρ|∂Z
−ev|∂Z

�
,

�−Dt
−Bt

�
=

�
0 −d
d 0

� �
E
H

�
+

�
J
0

�
,

�
f b
e

eb
e

�
=

�
E|∂Z
H|∂Z

�
,

(18)

where the subscript t means the partial derivative with respect to t, and we have defined

⎧
⎪⎨
⎪⎩

ev = iv�ρ, eρ =
1
2
�v�, v��+ w(∗ρ),

g1 = −(∗ρ)−1∗(∗dv ∧ ∗ev), g2 = (∗ρ)−1∗(∗ J ∧ ∗B),
B = μ∗H, ∗(E + iv� B) = ηJ,

(19)

having set p = 3, q = 1, and r = 3 · 1 + 1 for the fluid, and p = 2, q = 2, and r = 2 · 2 + 1 for
the electromagnetic field. The DPH system satisfies the following power balance equations:

�

Z

�
−eρ ∧ ρt − ev ∧ vt

�
−

�

Z
ev ∧ g2 −

�

∂Z
ev ∧ eρ = 0, (20)

�

Z
(−E ∧ Dt − H ∧ Bt)−

�

Z
E ∧ J +

�

∂Z
H ∧ E = 0, (21)

where ev ∧ g1 = −(∗ρ)−1ev ∧ ∗(∗dv ∧ ∗ev) = −(∗ρ)−1∗ev ∧ ∗dv ∧ ∗ev = 0 and (21) which
corresponds to Poynting’s theorem. Note that the definition of the boundary energy flow in
(21) is invariant even if Dt is assumed to be zero, as is done in the standard theory of MHD.
The first integrals of (20) and (21) correspond to the total change in energy of the system
defined on Z, and the third integral is equal to the energy flowing across ∂Z.

2.6 Passivity-based boundary controls

The basic strategy of passivity-based controls is to connect controllers through pairs of
port variables, e.g., new port-Hamiltonian systems for changing the total Hamiltonians,
or dissipative elements for stabilizing the system to the global minimum of the shaped
Hamiltonian. The passivity-based boundary controls for DPH systems are applied to the
boundary port variables f b

j and eb
j for j ∈ { f , e}. The product eb

j ∧ f b
j has the dimension of

power; therefore, f b
j and eb

j can be considered to be a generalized velocity and a generalized
force in analogy to mechanical systems (the correspondence might be the inverse in some
cases).

Applying the output f b
j magnified by a negative gain to the input eb

j means velocity feedback.
This is one of most important passivity-based controls, i.e, damping assignment. Moreover,
the boundary energy flow eb

j ∧ f b
j balances the internal energy of DPH systems; therefore, the

total energy of the controlled system decreases, and the system becomes stable in the sense of
passivity (16).

On the other hand, the Hamiltonian of the original DPH system can be changed by connecting
other DPH systems to the original. The connection by means of port variables is expressed by
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bond graph theory (Karnopp et al., 2006), which is a generalized circuit theory for describing
physical systems from the viewpoint of energy flows. For instance, the following diagram is
the bound graph representation of the DPH system of MHD:

∂Z

eb
ef b

e �
���

�−1 : C 0�
�

Dt

E��

EJ �
���

E
−dH

� � ��

±d

:DTF 1�
�

H
dE�� Bt

H
� � ��

I : μ

1
E+vB

J
� � �� R : η−1

GY : ρ−1B

vBJ

� ���

ρ−1 : I 1
��
−g2ev

� �

ev

vt���� �� deρ

ev

� �
��
−g1ev �
�

DTF

:d
0

dev

eρ���� �� eρ

ρt

� �
C : ρ−1eρ

−ρ(dv)−1 : R ∂Z

eb
ff b

f

� ���

(22)

where ∂Z is the boundary of the systems, and we have defined the following bond graph
elements:

• The arrow with the pair of variables e and f means the energy flow e ∧ f .

• The direction arrow indicates the sign of the energy flow.

• The causal stroke | at the edge of the arrows indicates the direction in which the effort
signal is directed.

• The n pairs of variables ei and fi around the 0-junction satisfy e1 = e2 = · · · = en and
∑n

i=1 si fi = 0, where si = 1 if the arrow is directed towards the junction and si = −1
otherwise.

• The n pairs of variables ei and fi around the 1-junction satisfy f1 = f2 = · · · = fn and
∑n

i=1 siei = 0.

• The C element with a parameter K means the capacitor satisfies e = K
∫ t
−∞ f dt.

• The I element with a parameter K means the inductor satisfies f = K−1 ∫ t
−∞ edt.

• The R element with a parameter K means the resister satisfies e = K f .

• The GY element with a parameter M means the gyrator satisfies e2 = M f1 and e1 = M f2.

• The DTF element means the differential transformer that has a Stokes-Dirac structure. In
the case with the symbol d, e2 = de1, f1 = d f2, f b = e1|∂Z and eb = − f2|∂Z. In the case
with the symbol ±d, e2 = de1, f1 = −d f2, f b = e1|∂Z and eb = f2|∂Z.

The Hamiltonian is shaped by connecting new systems to it through the pairs of boundary
port variables ( f b

f , eb
f ) and ( f b

e , eb
e ). For example, we can connect an electromagnetic system as

a controller on the boundary ∂Z of the upper part of (22) as follows:
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R : η�−1

��−1 : C 0�
�

Dt

E�� E
−dH
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EJ

� ���

DTF

:±d

eb�
ef b�

e �
���
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�

H
dE�� Bt

H
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���
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EJ ����

E
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� � ��
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:DTF 1�
�

H
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H
� � ��
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...

(23)

where Z� is the domain of the new electromagnetic system and each system is connected
through the common boundary ∂Z = ∂Z�. In this case, the original Hamiltonian H f +He is
changed into the controlled Hamiltonian H f +He +H�

e, where H�
e is the Hamiltonian of the

new electromagnetic system. Note that the Hamiltonians can only be shaped to control the
energy flows of boundary port variables or energy levels of the original system, not to control
the distributed states in the sense of boundary value problems.

The energy flow through the boundary ∂Z = ∂Z� can be described as

Hδt =
∫

∂Z
eb ∧ f b − eb� ∧ f b�, (24)

where eb� and f b� are the pair of the boundary port variables defined on ∂Z�. In general, when
the port variable eb is regarded as an input, the power balance (15) is changed into

∫

Z
(ep ∧ f p + eq ∧ f q) +

∫

Z

{
ep

d ∧ ( f p
d + up

d) + eq
d ∧ ( f q

d + uq
d)
}
+

∫

∂Z
ub ∧ f b = 0, (25)

where eb = ub is the boundary control, and up
d and uq

d are the distributed controls. If f b is
regarded as an input, then the boundary control is replaced by f b = ub.

Damping terms are assigned by connecting of resisters to the pair on the system domain;
they are illustrated as R elements in the bond graph. If systems with dissipative elements
are connected to the boundary of a controlled system, it corresponds to a boundary damping
assignment that absorbs the energy of the original system through the boundary. For example,
in (25), the controls

ub = −Kb f b, up
d = −Kp

d αp, uq
d = −Kq

dαq (26)

are equivalent to connecting an R element to the port variables, where Kb is the gain function
defined on ∂Z, Kp

d and Kp
d are the gain functions defined on Z, and f i = −(∂αi/∂t). For

eliminating distributed energy flows f p
d and f q

d that are exactly known, we can use the controls

up
d = − f p

d , uq
d = − f q

d , (27)
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where the inputs up
d and uq

d distributed on Z. Moreover, in (23), R : η�−1 distributed on Z� is
considered as an element to create energy flowing across the boundary of the original MHD
system.

A practical problem is whether the boundary port variables eb
i and f b

i can actually be used
as inputs and outputs. In this section, we show all possible boundary port variables of
MHD regardless of whether they are actually usable or not. The input/output pairs for the
passivity-based boundary control of MHD are the boundary port variables

(eb
f , f b

f ) = (−ev|∂Z, eρ|∂Z), (eb
e , f b

e ) = (H|∂Z, E|∂Z). (28)

(eb
f , f b

f ) can be transformed as follows:

∫

∂Z
ev ∧ eρ =

∫

∂Z
iv�ρ ∧

(
1
2
�v�, v��+ w(∗ρ)

)

=
∫

∂Z
iv�

(
1
2
�v�, v��ρ + U(∗ρ)ρ

)
+

∫

∂Z
iv� (∗p), (29)

where the first term corresponds to the boundary energy flow of convections and the second
term means external work. Hence, the altered port variables are

(eb
f 1, f b

f 1) = (H f |∂Z, v|∂Z), (eb
f 2, f b

f 2) = (p|∂Z, v|∂Z). (30)

2.7 Port representation of balanced MHD

This section discusses the stability of the DPH systems of MHD (18) with (19) in a balanced
state. If the change in the potential energy of MHD caused by physically admissible
perturbation is positive, then the equilibrium of MHD is stable. This fact is called the energy
principle of MHD (Wesson, 2004). We derive the basic equation of the energy principle from
the DPH system.

If the 2-form dv is zero at a certain time t = t0, it continues to be zero after t0. Accordingly, (5)
can be reduced as follows:

∂ρ

∂t
= 0,

∂v
∂t

= (∗ρ)−1 {−dp(∗ρ) + ∗(∗ J ∧ ∗B)} = 0. (31)

Now, let us consider the variation in energy with respect to an infinitesimal variation in
displacement:

Wδt =
∫

Z
δx

δ

δt
{−dp(∗ρ) + ∗(∗ J ∧ ∗B)} , (32)

where the subscript δt means the variational derivative with respect to the time, and δ means
an infinitesimal variation. From (9), we obtain

δJ
δt

= d
δH
δt

, (33)
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through the common boundary ∂Z = ∂Z�. In this case, the original Hamiltonian H f +He is
changed into the controlled Hamiltonian H f +He +H�

e, where H�
e is the Hamiltonian of the

new electromagnetic system. Note that the Hamiltonians can only be shaped to control the
energy flows of boundary port variables or energy levels of the original system, not to control
the distributed states in the sense of boundary value problems.

The energy flow through the boundary ∂Z = ∂Z� can be described as

Hδt =
∫
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where eb� and f b� are the pair of the boundary port variables defined on ∂Z�. In general, when
the port variable eb is regarded as an input, the power balance (15) is changed into

∫

Z
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d) + eq
d ∧ ( f q
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}
+

∫
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ub ∧ f b = 0, (25)

where eb = ub is the boundary control, and up
d and uq

d are the distributed controls. If f b is
regarded as an input, then the boundary control is replaced by f b = ub.

Damping terms are assigned by connecting of resisters to the pair on the system domain;
they are illustrated as R elements in the bond graph. If systems with dissipative elements
are connected to the boundary of a controlled system, it corresponds to a boundary damping
assignment that absorbs the energy of the original system through the boundary. For example,
in (25), the controls

ub = −Kb f b, up
d = −Kp

d αp, uq
d = −Kq

dαq (26)

are equivalent to connecting an R element to the port variables, where Kb is the gain function
defined on ∂Z, Kp

d and Kp
d are the gain functions defined on Z, and f i = −(∂αi/∂t). For

eliminating distributed energy flows f p
d and f q

d that are exactly known, we can use the controls
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where the inputs up
d and uq

d distributed on Z. Moreover, in (23), R : η�−1 distributed on Z� is
considered as an element to create energy flowing across the boundary of the original MHD
system.

A practical problem is whether the boundary port variables eb
i and f b

i can actually be used
as inputs and outputs. In this section, we show all possible boundary port variables of
MHD regardless of whether they are actually usable or not. The input/output pairs for the
passivity-based boundary control of MHD are the boundary port variables

(eb
f , f b

f ) = (−ev|∂Z, eρ|∂Z), (eb
e , f b

e ) = (H|∂Z, E|∂Z). (28)

(eb
f , f b

f ) can be transformed as follows:

∫

∂Z
ev ∧ eρ =

∫

∂Z
iv�ρ ∧

(
1
2
�v�, v��+ w(∗ρ)

)

=
∫

∂Z
iv�

(
1
2
�v�, v��ρ + U(∗ρ)ρ

)
+

∫

∂Z
iv� (∗p), (29)

where the first term corresponds to the boundary energy flow of convections and the second
term means external work. Hence, the altered port variables are

(eb
f 1, f b

f 1) = (H f |∂Z, v|∂Z), (eb
f 2, f b

f 2) = (p|∂Z, v|∂Z). (30)

2.7 Port representation of balanced MHD

This section discusses the stability of the DPH systems of MHD (18) with (19) in a balanced
state. If the change in the potential energy of MHD caused by physically admissible
perturbation is positive, then the equilibrium of MHD is stable. This fact is called the energy
principle of MHD (Wesson, 2004). We derive the basic equation of the energy principle from
the DPH system.

If the 2-form dv is zero at a certain time t = t0, it continues to be zero after t0. Accordingly, (5)
can be reduced as follows:

∂ρ

∂t
= 0,

∂v
∂t

= (∗ρ)−1 {−dp(∗ρ) + ∗(∗ J ∧ ∗B)} = 0. (31)

Now, let us consider the variation in energy with respect to an infinitesimal variation in
displacement:

Wδt =
∫

Z
δx

δ

δt
{−dp(∗ρ) + ∗(∗ J ∧ ∗B)} , (32)

where the subscript δt means the variational derivative with respect to the time, and δ means
an infinitesimal variation. From (9), we obtain

δJ
δt

= d
δH
δt

, (33)
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where we have assumed that Dt = 0 and η = 0; therefore,

dDt = �t = 0, �t = dJ = 0, E = −iv� B. (34)

The DPH system of balanced MHD can be constructed as follows:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�−ρt
0

�
=

�
0 d
d 0

� �
wδt(∗ρ)

iv�ρ

�
−

�
0

(∗ρ)−1dpδt

�
,

�
f b

f s
eb

f s

�
=

�
wδt(∗ρ)|∂Z
−iv�ρ|∂Z

�
,

�
0

−Bt

�
=

�
0 −d
d 0

� �−iv� B
Hδt

�
+

�
Jδt
0

�
,

�
f b
es

eb
es

�
=

�−iv� B|∂Z
Hδt|∂Z

�
,

(35)

where δx = v. The DPH system (35) satisfies the power balance equations,

−
�

Z
wδt(∗ρ) ∧ ρt +

�

Z
iv�ρ ∧ (∗ρ)−1dpδt −

�

∂Z
iv�ρ ∧ wδt(∗ρ) = 0, (36)

−
�

Z
Hδt ∧ Bt +

�

Z
iv� B ∧ Jδt −

�

∂Z
Hδt ∧ iv� B = 0. (37)

As a result, we obtain the boundary port variables

( f b
f s, eb

f s) = (wδt(∗ρ)|∂Z,−iv�ρ|∂Z), ( f b
es, eb

es) = (−iv� B|∂Z, Hδt|∂Z) (38)

from (35).

The energy principle is frequently used to analyze the stability of MHD. The DPH system of
MHD generates the power balance equation (37) for an analysis. The boundary port variables
of (35) correspond to those of the DPH system of dynamical MHD (18) except for the term
depending on v. Hence, (18) can be considered to be a generalized system following the
energy principle of MHD. If active controls are used in MHD systems, e.g., in Tokamaks, the
control side of the DPH system able to be used, e.g., as a boundary control for subdivided
MHD systems.

3. Construction pseudo potentials for non-Hamiltonian subsystems

3.1 DPH systems of MHD with perturbations

Section 2 discussed the energy structure of the DPH system of MHD on the basis of its
physical meaning. However, model perturbations caused by, for instance, disturbances,
additional terms derived by using system identification methods for model refinements, or
controllers designed by a control theory do not always have physical interpretations. In
this section, we show a method of determining the energy structure of such perturbations.
Precisely speaking, we decompose a given perturbation into a Hamiltonian subsystem
and a non-Hamiltonian subsystem that can be regarded as an external force in terms of
Euler-Lagrange equations (Nishida et al., 2007a).

In this section, we consider an n-dimensional smooth Riemannian manifold Y that is
homeomorphic to an n-dimensional Euclidian space (i.e., topologically same, and one can
be deformed into the other). Let Z be an n-dimensional smooth Riemannian submanifold
of Y with a smooth boundary ∂Z. The DPH system (18) of MHD defined on a domain Z is
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extended so as to have perturbations as follows:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

�−ρt
−vt

�
=

�
0 d
d 0

� �
eρ

ev

�
−

�
0

g1 + g2

�
+

�
Δp

f
Δq

f

�
,

�
f b

f
eb

f

�
=

�
eρ|∂Z
−ev|∂Z

�
,

�−Dt
−Bt

�
=

�
0 −d
d 0

� �
E
H

�
+

�
J
0

�
+

�
Δp

e
Δq

e

�
,

�
f b
e

eb
e

�
=

�
E|∂Z
H|∂Z

�
,

(39)

where each Δi
j for i ∈ {p, q} and j ∈ { f , e} means a perturbation. Now, let us consider the

subsystem of DPH systems, Δi
j(u

a
I ), where i ∈ {p, q}, j ∈ { f , e}, ua for 1 ≤ a ≤ l is the

function defined by the local coordinates xk of Y for 1 ≤ k ≤ n, and we denote all possible
derivatives up to the order r of ua by ua

I and denote the order by 0 ≤ |I| ≤ r. For example,
ua

I for r = 2 means {ua, ua
t , ua

y, ua
z , ua

tt, ua
ty, ua

tz, ua
yy, ua

yz, ua
zz} for (x1, x2, x3) = (t, y, z), and the

subscript means the partial derivative.

3.2 Decomposition of model perturbations of DPH systems

Consider the DPH system (39) of MHD with perturbations. We assume that the DPH system
includes up to second-order derivatives: r = 2. Accordingly, Δi

j can be uniquely decomposed
into

Δi
j = dϕi

j + γi
j, (40)

where ϕi
j is a pseudo potential derived from

γi
j du = Δ du − dϕ̃i

j, ϕi
j du = Δ du − γi

j du, (41)

the temporal variable ϕ̃i
j is calculated as

ϕ̃i
j = hv(Δi

j dua) =
� 1

0
ua · Δi

j(xk, λua
I ) dλ, (42)

hv is the homotopy operator for ω ∈ Ωk(Z) with respect to an equilibrium point ua
cI , called a

homotopy center, defined by

hv(ω) =
� 1

0
iν̄ω(x, λūI) λ−1dλ, ν̄ = ∑

a,I
(ua

I − ua
cI)

∂

∂ua
I

, (43)

where ūa
I = ua

cI + λ(ua
I − ua

cI), and usually ua
cI = 0. In (40), we call dϕi

j an exact system and call

γi
j a dual exact system, which corresponds to a distributed energy variable.

For example, let us consider Δi
j = 1+ wt + wtt for some i and j, where u1 = w and x0 = t. The

temporal variable

ϕ̃i
j = w +

1
2

wwt +
1
2

wwtt (44)
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where we have assumed that Dt = 0 and η = 0; therefore,
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from (35).

The energy principle is frequently used to analyze the stability of MHD. The DPH system of
MHD generates the power balance equation (37) for an analysis. The boundary port variables
of (35) correspond to those of the DPH system of dynamical MHD (18) except for the term
depending on v. Hence, (18) can be considered to be a generalized system following the
energy principle of MHD. If active controls are used in MHD systems, e.g., in Tokamaks, the
control side of the DPH system able to be used, e.g., as a boundary control for subdivided
MHD systems.

3. Construction pseudo potentials for non-Hamiltonian subsystems

3.1 DPH systems of MHD with perturbations

Section 2 discussed the energy structure of the DPH system of MHD on the basis of its
physical meaning. However, model perturbations caused by, for instance, disturbances,
additional terms derived by using system identification methods for model refinements, or
controllers designed by a control theory do not always have physical interpretations. In
this section, we show a method of determining the energy structure of such perturbations.
Precisely speaking, we decompose a given perturbation into a Hamiltonian subsystem
and a non-Hamiltonian subsystem that can be regarded as an external force in terms of
Euler-Lagrange equations (Nishida et al., 2007a).

In this section, we consider an n-dimensional smooth Riemannian manifold Y that is
homeomorphic to an n-dimensional Euclidian space (i.e., topologically same, and one can
be deformed into the other). Let Z be an n-dimensional smooth Riemannian submanifold
of Y with a smooth boundary ∂Z. The DPH system (18) of MHD defined on a domain Z is
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extended so as to have perturbations as follows:
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where each Δi
j for i ∈ {p, q} and j ∈ { f , e} means a perturbation. Now, let us consider the

subsystem of DPH systems, Δi
j(u

a
I ), where i ∈ {p, q}, j ∈ { f , e}, ua for 1 ≤ a ≤ l is the

function defined by the local coordinates xk of Y for 1 ≤ k ≤ n, and we denote all possible
derivatives up to the order r of ua by ua

I and denote the order by 0 ≤ |I| ≤ r. For example,
ua

I for r = 2 means {ua, ua
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y, ua
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ty, ua
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yy, ua
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zz} for (x1, x2, x3) = (t, y, z), and the

subscript means the partial derivative.

3.2 Decomposition of model perturbations of DPH systems

Consider the DPH system (39) of MHD with perturbations. We assume that the DPH system
includes up to second-order derivatives: r = 2. Accordingly, Δi

j can be uniquely decomposed
into

Δi
j = dϕi

j + γi
j, (40)

where ϕi
j is a pseudo potential derived from

γi
j du = Δ du − dϕ̃i

j, ϕi
j du = Δ du − γi

j du, (41)

the temporal variable ϕ̃i
j is calculated as

ϕ̃i
j = hv(Δi

j dua) =
� 1

0
ua · Δi

j(xk, λua
I ) dλ, (42)

hv is the homotopy operator for ω ∈ Ωk(Z) with respect to an equilibrium point ua
cI , called a

homotopy center, defined by

hv(ω) =
� 1

0
iν̄ω(x, λūI) λ−1dλ, ν̄ = ∑

a,I
(ua

I − ua
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∂

∂ua
I

, (43)

where ūa
I = ua

cI + λ(ua
I − ua

cI), and usually ua
cI = 0. In (40), we call dϕi

j an exact system and call

γi
j a dual exact system, which corresponds to a distributed energy variable.

For example, let us consider Δi
j = 1+ wt + wtt for some i and j, where u1 = w and x0 = t. The

temporal variable

ϕ̃i
j = w +

1
2

wwt +
1
2

wwtt (44)
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is derived from hv(Δi
j dw). Hence,

dϕ̃i
j = (1 + wtt) dw, γi

j = Δi
j dw − dϕ̃i

j = wt dw. (45)

On the other hand, from the relation

Δi
j dw = (1 + wt + wtt) dw

=

(
1 +

1
2

wt + wtt

)
dw +

(
−1

2
w − wt

)
dwt (46)

that is transformed in terms of an integration by parts, we obtain

ϕ̃i
j = w − 1

2
w2

t . (47)

This result yields the same relation dϕ̃i
j = (1 + wtt) dw. Thus, the expression ϕ̃i

j has variations

generated by an integration by parts; therefore, we should recalculate ϕi
j as in (41).

3.3 Necessary and sufficient condition of decomposition

We can check whether a given Δi
j is an exact system or a dual exact system from the

self-adjointness of the differential operator DΔi
j

defining Δi
j: D∗

Δi
j
= DΔi

j
(Olver, 1993, pp.

109, 307, 329 and 364). Here, the Fréchet derivative DF of a second-order subsystem F (uI) is
an (l × k)-matrix with elements

(DF )ab(h) =

(
∂Fa

∂ub +
n

∑
i=0

∂Fa

∂ub
xi

∂

∂xi +
n

∑
i=0

n

∑
j=0

∂Fa

∂ub
xi xj

∂

∂xi
∂

∂xj

)
h (48)

and the adjoint operator D∗F of DF is a (k × l)-matrix with elements

(D∗F )ba(h) =
∂Fa

∂ub h −
n

∑
i=0

∂

∂xi

(
∂Fa

∂ub
xi

h

)
+

n

∑
i=0

n

∑
j=0

∂

∂xi
∂

∂xj

(
∂Fa

∂ub
xi xj

h

)
(49)

for a = 1, · · · , k and b = 1, · · · , l, where h = h(uI) is any function and we assume k = l.

For example, consider Δq
f = 1 + νv + vt in (39), where u1 = w, wt = v and x0 = t. Then,

ϕ
q
f = 1 + vt and γ

q
f = νv, because g = νv is non-self-adjoint: D∗

g �= D g, and we have used
(48) and (49) with a = b = 1, i.e.,

D g(h) =
∂g

∂ux0

∂

∂x0 (h) = ν
∂h
∂t

, D∗
g(h) = − ∂

∂x0

(
∂g

∂ux0
h
)
= −ν

∂h
∂t

. (50)

3.4 Elimination of decomposed perturbations

The uniqueness of the decomposition is determined by the topology of Y. That is, differential
k-forms for k ≥ 1 defined on such a domain can be always described as in (40). If a pseudo
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potential can be defined for a perturbation, the perturbation can be included in the variables
ep or eq of the Stokes-Dirac structure. Hence, such a perturbation can be detected in terms of
the following boundary power balances:

∫

Z

(
−(eρ + ϕ

q
f ) ∧ ρt − (ev + ϕ

p
f ) ∧ vt

)
−

∫

Z
eρ ∧ γ

p
f −

∫

Z
ev ∧ (g2 + γ

q
f )

−
∫

∂Z
(ev + ϕ

p
f ) ∧ (eρ + ϕ

q
f ) = 0, (51)

∫

Z

{
−(E + ϕ

q
e ) ∧ Dt − (H − ϕ

p
e ) ∧ Bt

}
−

∫

Z
E ∧ (J + γ

p
e )−

∫

Z
H ∧ γ

q
e

+
∫

∂Z
(H − ϕ

p
e ) ∧ (E + ϕ

q
e ) = 0. (52)

Moreover, from these relations, we can see that the exact subsystem of perturbations can be
controlled by boundary port variables. Indeed, we can construct the boundary controls in the
fourth integrals of the power balance equations (51) and (52) as follows:

∫

∂Z
(ev + ϕ

p
f + uq

f ) ∧ (eρ + ϕ
q
f + up

f ), (53)
∫

∂Z
(H − ϕ

p
e + uq

e ) ∧ (E + ϕ
q
e + up

e ), (54)

where ui
j is the boundary input for compensating pseudo potentials such that

uq
f = −ϕ

p
f , up

f = −ϕ
q
f , uq

e = ϕ
p
e , up

e = −ϕ
q
e . (55)

On the other hand, the decomposed perturbations corresponding dual exact subsystems
cannot be eliminated by boundary controls. Hence, we should introduce the distributed
controls in the second and third integrals of the power balance equations (51) and (52) as
follows:

−
∫

Z
eρ ∧ (γ

p
f + up

d f )−
∫

Z
ev ∧ (g2 + γ

q
f + uq

d f ), (56)

−
∫

Z
E ∧ (J + γ

p
e + up

de)−
∫

Z
H ∧ (γ

q
e + uq

de), (57)

where ui
dj is the distributed input for eliminating dual exact subsystems such that

up
d f = −γ

p
f , uq

d f = −γ
q
f , up

de = −γ
p
e , uq

de = −γ
q
e . (58)

4. Boundary observer for detecting topological symmetry breaking

4.1 Symmetry and power balance equations

In this section, we first discuss the influence of topological variations in the system domains
on the power balance equation of DPH systems. We can detect such changes by checking
the boundary power balance of the original system; if there is an imbalance. According to
Noether’s theorem (Olver, 1993), conservation laws are associated with symmetries present
in systems. That is, our purpose is to construct a boundary observer for detecting symmetry
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is derived from hv(Δi
j dw). Hence,

dϕ̃i
j = (1 + wtt) dw, γi

j = Δi
j dw − dϕ̃i

j = wt dw. (45)

On the other hand, from the relation

Δi
j dw = (1 + wt + wtt) dw

=

(
1 +

1
2

wt + wtt

)
dw +

(
−1

2
w − wt

)
dwt (46)

that is transformed in terms of an integration by parts, we obtain

ϕ̃i
j = w − 1

2
w2

t . (47)

This result yields the same relation dϕ̃i
j = (1 + wtt) dw. Thus, the expression ϕ̃i

j has variations

generated by an integration by parts; therefore, we should recalculate ϕi
j as in (41).

3.3 Necessary and sufficient condition of decomposition

We can check whether a given Δi
j is an exact system or a dual exact system from the

self-adjointness of the differential operator DΔi
j

defining Δi
j: D∗

Δi
j
= DΔi

j
(Olver, 1993, pp.

109, 307, 329 and 364). Here, the Fréchet derivative DF of a second-order subsystem F (uI) is
an (l × k)-matrix with elements

(DF )ab(h) =

(
∂Fa

∂ub +
n

∑
i=0

∂Fa

∂ub
xi

∂

∂xi +
n

∑
i=0

n

∑
j=0

∂Fa

∂ub
xi xj

∂

∂xi
∂

∂xj

)
h (48)

and the adjoint operator D∗F of DF is a (k × l)-matrix with elements

(D∗F )ba(h) =
∂Fa

∂ub h −
n

∑
i=0

∂

∂xi

(
∂Fa

∂ub
xi

h

)
+

n

∑
i=0

n

∑
j=0

∂

∂xi
∂

∂xj

(
∂Fa

∂ub
xi xj

h

)
(49)

for a = 1, · · · , k and b = 1, · · · , l, where h = h(uI) is any function and we assume k = l.

For example, consider Δq
f = 1 + νv + vt in (39), where u1 = w, wt = v and x0 = t. Then,

ϕ
q
f = 1 + vt and γ

q
f = νv, because g = νv is non-self-adjoint: D∗

g �= D g, and we have used
(48) and (49) with a = b = 1, i.e.,

D g(h) =
∂g

∂ux0

∂

∂x0 (h) = ν
∂h
∂t

, D∗
g(h) = − ∂

∂x0

(
∂g

∂ux0
h
)
= −ν

∂h
∂t

. (50)

3.4 Elimination of decomposed perturbations

The uniqueness of the decomposition is determined by the topology of Y. That is, differential
k-forms for k ≥ 1 defined on such a domain can be always described as in (40). If a pseudo
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potential can be defined for a perturbation, the perturbation can be included in the variables
ep or eq of the Stokes-Dirac structure. Hence, such a perturbation can be detected in terms of
the following boundary power balances:

∫

Z

(
−(eρ + ϕ

q
f ) ∧ ρt − (ev + ϕ

p
f ) ∧ vt

)
−

∫

Z
eρ ∧ γ

p
f −

∫

Z
ev ∧ (g2 + γ

q
f )

−
∫

∂Z
(ev + ϕ

p
f ) ∧ (eρ + ϕ

q
f ) = 0, (51)

∫

Z

{
−(E + ϕ

q
e ) ∧ Dt − (H − ϕ

p
e ) ∧ Bt

}
−

∫

Z
E ∧ (J + γ

p
e )−

∫

Z
H ∧ γ

q
e

+
∫

∂Z
(H − ϕ

p
e ) ∧ (E + ϕ

q
e ) = 0. (52)

Moreover, from these relations, we can see that the exact subsystem of perturbations can be
controlled by boundary port variables. Indeed, we can construct the boundary controls in the
fourth integrals of the power balance equations (51) and (52) as follows:

∫

∂Z
(ev + ϕ

p
f + uq

f ) ∧ (eρ + ϕ
q
f + up

f ), (53)
∫

∂Z
(H − ϕ

p
e + uq

e ) ∧ (E + ϕ
q
e + up

e ), (54)

where ui
j is the boundary input for compensating pseudo potentials such that

uq
f = −ϕ

p
f , up

f = −ϕ
q
f , uq

e = ϕ
p
e , up

e = −ϕ
q
e . (55)

On the other hand, the decomposed perturbations corresponding dual exact subsystems
cannot be eliminated by boundary controls. Hence, we should introduce the distributed
controls in the second and third integrals of the power balance equations (51) and (52) as
follows:

−
∫

Z
eρ ∧ (γ

p
f + up

d f )−
∫

Z
ev ∧ (g2 + γ

q
f + uq

d f ), (56)

−
∫

Z
E ∧ (J + γ

p
e + up

de)−
∫

Z
H ∧ (γ

q
e + uq

de), (57)

where ui
dj is the distributed input for eliminating dual exact subsystems such that

up
d f = −γ

p
f , uq

d f = −γ
q
f , up

de = −γ
p
e , uq

de = −γ
q
e . (58)

4. Boundary observer for detecting topological symmetry breaking

4.1 Symmetry and power balance equations

In this section, we first discuss the influence of topological variations in the system domains
on the power balance equation of DPH systems. We can detect such changes by checking
the boundary power balance of the original system; if there is an imbalance. According to
Noether’s theorem (Olver, 1993), conservation laws are associated with symmetries present
in systems. That is, our purpose is to construct a boundary observer for detecting symmetry
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breaking (Nishida et al., 2009). Finally, we derive a boundary control for creating desired
energy flows from topological properties of manifolds.

We shall clarify the first problem by means of the following example. Consider a DPH system
defined on a 2-dimensional domain Z. We assume that the energy flow of the system can be
split along the x- and y-axis. Next, we divide the domain Z into subdomains, i.e., Z =

⋃
i Zi,

where Zi is the i-th subdomain of Z. We denote the common boundary between Zi and Zj by
∂Zij. The following power balance holds:

Hδt =
∫

∂Zij ∑
i,j

(
ebi ∧ f bi − ebj ∧ f bj

)
= 0, (59)

where ebi and f bi are the boundary port variables defined on ∂Zi. The DPH system can be
regarded as a connected structure of DPH systems defined on Zi in terms of boundary port
variables of ∂Zij. We shall simplify the shapes of Z and each Zi to be squares as in the left
diagram below:
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(60)

Accordingly, we can split the original boundary ∂Z and denote the boundaries with respect to
the x- and y-axis by ∂Zx and ∂Zy, respectively. Hence, the following power balance holds:

Hδt = Hδt|∂Zx +Hδt|∂Zy = 0. (61)

Now, let us assume that a structural change occurs in the inner part of Z on a segment along
x-axis that we denote as ∂Z�

y in the right diagram of (60). Such changes are caused by, for
instance, energy dissipations, or energy transformations to other physical systems, and they
can be illustrated as a new element connected to ∂Z�

y in the bond graph. This means the energy
preserving symmetry is broken along the x-axis. In this case, (61) should be revised to

H�
δt = Hδt|∂Zx +Hδt|∂Z�

y
+Hδt|∂Zy = 0. (62)

Hence, we can detect that the power on ∂Zy: Hδt|∂Zy = 0 becomes imbalanced if the port
variables in (61) are observable. In other words, this change can be regarded as a change in
the topology of the system domain, i.e., a deformation from Z � Rn to Z \ ∂Z�

y � Rn \ {0},
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where � means topological equivalence (i.e., homeomorphic), \ means subtraction of sets,
and {0} is a point.

4.2 Topological decomposition of differential forms and vector fields

This section discusses the relation between the topology of the domain Z of DPH systems
and the decomposable components of vector fields on Z. After this discussion, the symmetry
breaking explained in the previous section will be extended to a change in energy flows of
DPH systems defined on compact manifolds.

In Section 2, we assumed that the system domain Z is a subdomain of a manifold that is
topologically the same as a Euclidian space. Actually, this assumption restricted the form of
diffrential forms. In this case, differential k-forms for k ≥ 1 can be decomposed into two types,
i.e., an exact form and a dual exact form as in (40). That is, differential forms ωe ∈ Ωk(Z) are
called exact forms if there exists some η ∈ Ωk−1(Z) such that ωe = dη, i.e., dωe = d(dη) = 0
because of the nature of exterior differentiation. The forms ωd ∈ Ωk(Z) such that dωd �= 0
are called dual exact forms. In general, there might also exist harmonic forms ωh ∈ Ωk(Z)
satisfying �ωh = 0, where � = dd† + d†d is the Laplacian and d† = (−1)n(k+1)+1∗d∗ is the
adjoint operator of exterior differentiation. The components of differential forms depend on
the topology of domains. All classifications of differential forms defined on a compact domain
with a smooth boundary are given by the Hodge decomposition theorem (Morita, 2001); i.e., an
arbitrary differential form on an oriented compact Riemannian manifold can be uniquely
decomposed into an exact form, a dual exact form, and a harmonic form:

ω = ωe + ωd + ωh ∈ Ωk(Z). (63)

Moreover, a unique harmonic form on an oriented compact Riemannian manifold corresponds
to a topological quantity of the manifolds called a homology. Precisely speaking, from
Hodge theorem, Poincaré duality thorem and the duality between homology and (de Rham)
cohomology, we obtain the isomorphism Hk(Z, ∂Z) ∼= Ωn−k

h (Z) (Morita, 2001; Gross and
Kotiuga, 2004, pp. 102), where Hk(Z) is the vector space with real coefficients of the k-th
homology of Z, and Ωk

h(Z) is the space of harmonic forms.

If n = 3, the homology of Z consists of the following vector spaces:

• H0(Z) · · · The vector space is generated by such equivalence classes of points in Z as two
points are equivalent if they can be connected by a path in Z. dim H0(Z) is the number of
components of Z. Note that H0(Z) ∼= R for a connected Z and the element of H0(Z) is a
constant function.

• H1(Z) · · · The vector space is generated by such equivalence classes of oriented loops in Z
as two loops are equivalent if their difference is the boundary of an oriented surface in Z.
The number of holes of closed surfaces is called a genus. dim H1(Z) is the number of total
genus of Z.

• H2(Z) · · · The vector space is generated by such equivalence surfaces of points in Z as two
surfaces are equivalent if their difference is the boundary of some oriented subregion of Z.
dim H2(Z) is the number of the difference between components of ∂Z and those of Z.

• H3(Z) · · · dim H3(Z) is always 0.
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breaking (Nishida et al., 2009). Finally, we derive a boundary control for creating desired
energy flows from topological properties of manifolds.

We shall clarify the first problem by means of the following example. Consider a DPH system
defined on a 2-dimensional domain Z. We assume that the energy flow of the system can be
split along the x- and y-axis. Next, we divide the domain Z into subdomains, i.e., Z =

⋃
i Zi,

where Zi is the i-th subdomain of Z. We denote the common boundary between Zi and Zj by
∂Zij. The following power balance holds:

Hδt =
∫

∂Zij ∑
i,j

(
ebi ∧ f bi − ebj ∧ f bj

)
= 0, (59)

where ebi and f bi are the boundary port variables defined on ∂Zi. The DPH system can be
regarded as a connected structure of DPH systems defined on Zi in terms of boundary port
variables of ∂Zij. We shall simplify the shapes of Z and each Zi to be squares as in the left
diagram below:
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(60)

Accordingly, we can split the original boundary ∂Z and denote the boundaries with respect to
the x- and y-axis by ∂Zx and ∂Zy, respectively. Hence, the following power balance holds:

Hδt = Hδt|∂Zx +Hδt|∂Zy = 0. (61)

Now, let us assume that a structural change occurs in the inner part of Z on a segment along
x-axis that we denote as ∂Z�

y in the right diagram of (60). Such changes are caused by, for
instance, energy dissipations, or energy transformations to other physical systems, and they
can be illustrated as a new element connected to ∂Z�

y in the bond graph. This means the energy
preserving symmetry is broken along the x-axis. In this case, (61) should be revised to

H�
δt = Hδt|∂Zx +Hδt|∂Z�

y
+Hδt|∂Zy = 0. (62)

Hence, we can detect that the power on ∂Zy: Hδt|∂Zy = 0 becomes imbalanced if the port
variables in (61) are observable. In other words, this change can be regarded as a change in
the topology of the system domain, i.e., a deformation from Z � Rn to Z \ ∂Z�

y � Rn \ {0},
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where � means topological equivalence (i.e., homeomorphic), \ means subtraction of sets,
and {0} is a point.

4.2 Topological decomposition of differential forms and vector fields

This section discusses the relation between the topology of the domain Z of DPH systems
and the decomposable components of vector fields on Z. After this discussion, the symmetry
breaking explained in the previous section will be extended to a change in energy flows of
DPH systems defined on compact manifolds.

In Section 2, we assumed that the system domain Z is a subdomain of a manifold that is
topologically the same as a Euclidian space. Actually, this assumption restricted the form of
diffrential forms. In this case, differential k-forms for k ≥ 1 can be decomposed into two types,
i.e., an exact form and a dual exact form as in (40). That is, differential forms ωe ∈ Ωk(Z) are
called exact forms if there exists some η ∈ Ωk−1(Z) such that ωe = dη, i.e., dωe = d(dη) = 0
because of the nature of exterior differentiation. The forms ωd ∈ Ωk(Z) such that dωd �= 0
are called dual exact forms. In general, there might also exist harmonic forms ωh ∈ Ωk(Z)
satisfying �ωh = 0, where � = dd† + d†d is the Laplacian and d† = (−1)n(k+1)+1∗d∗ is the
adjoint operator of exterior differentiation. The components of differential forms depend on
the topology of domains. All classifications of differential forms defined on a compact domain
with a smooth boundary are given by the Hodge decomposition theorem (Morita, 2001); i.e., an
arbitrary differential form on an oriented compact Riemannian manifold can be uniquely
decomposed into an exact form, a dual exact form, and a harmonic form:

ω = ωe + ωd + ωh ∈ Ωk(Z). (63)

Moreover, a unique harmonic form on an oriented compact Riemannian manifold corresponds
to a topological quantity of the manifolds called a homology. Precisely speaking, from
Hodge theorem, Poincaré duality thorem and the duality between homology and (de Rham)
cohomology, we obtain the isomorphism Hk(Z, ∂Z) ∼= Ωn−k

h (Z) (Morita, 2001; Gross and
Kotiuga, 2004, pp. 102), where Hk(Z) is the vector space with real coefficients of the k-th
homology of Z, and Ωk

h(Z) is the space of harmonic forms.

If n = 3, the homology of Z consists of the following vector spaces:

• H0(Z) · · · The vector space is generated by such equivalence classes of points in Z as two
points are equivalent if they can be connected by a path in Z. dim H0(Z) is the number of
components of Z. Note that H0(Z) ∼= R for a connected Z and the element of H0(Z) is a
constant function.

• H1(Z) · · · The vector space is generated by such equivalence classes of oriented loops in Z
as two loops are equivalent if their difference is the boundary of an oriented surface in Z.
The number of holes of closed surfaces is called a genus. dim H1(Z) is the number of total
genus of Z.

• H2(Z) · · · The vector space is generated by such equivalence surfaces of points in Z as two
surfaces are equivalent if their difference is the boundary of some oriented subregion of Z.
dim H2(Z) is the number of the difference between components of ∂Z and those of Z.

• H3(Z) · · · dim H3(Z) is always 0.
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On the other hand, the dual space of Hk(Z) is Hn−k(Z, ∂Z), where Hk(Z, ∂Z) is called the k-th
relative homology of Z modulo ∂Z. In n = 3, the relative homology of Z modulo ∂Z consists of
the following vector spaces with real coefficients:

• H0(Z, ∂Z) · · · dim H0(Z) is always 0.

• H1(Z, ∂Z) · · · The vector space is generated by such equivalence classes of oriented paths
whose endpoints lie on ∂Z as two such paths are equivalent if their difference (possibly
paths on ∂Z) is the boundary of an oriented surface in Z.

• H2(Z, ∂Z) · · · The vector space is generated by such equivalence classes of oriented surface
whose boundaries lie on ∂Z as two such surfaces are equivalent if their difference (possibly
portions of ∂Z) is the boundary of some oriented subregion of Z.

• H3(Z, ∂Z) · · · The vector space has the oriented components of Z as a basis. Thus,
dim H3(Z, ∂Z) is the number of components of the subregions of Z whose boundaries
lie on ∂Z. Note that H3(Z, ∂Z) ∼= R for a connected Z and the element of H3(Z, ∂Z) is a
constant function.

Hence, Hk(Z, ∂Z) ∼= H3−k(Z) for 0 ≤ k ≤ 3.

As we mentioned before, the space of vector fields X can be identified with that of
1-forms Ω1 in the sense of a Riemannian metric. Thus, vector fields are affected by the
decomposition of differential forms. Indeed, the space of vector fields on a compact domain
Z in three-dimensional space with a smooth boundary can be decomposed as follows.

Theorem 4.1 (Cantarella et al. (2002)). Consider vector fields v� ∈ X(Z) on a compact domain Z
with a smooth boundary ∂Z in three-dimensional space. Let W denote any smooth orientable surface in
Z whose boundary ∂W lies on the boundary ∂Z: W ⊂ Z and ∂W ⊂ ∂Z, and called it a cross-sectional
surface. The space X(Z) is the direct sum of five mutually orthogonal subspaces:

X(Z) = XK(Z)�XG(Z), (64)

where v ∈ Ω1(Z), v� ∈ X(Z), ϕ ∈ Ω0(Z),

XK(Z) =
{

v� ∈ X(Z) : ∗d∗v = 0, v� · n� = 0
}

, XG(Z) =
{

v� ∈ X(Z) : v = dϕ
}

, (65)

which are called knots and gradients, respectively, and n� means all unit vector fields normal to ∂Z.
Furthermore,

XK(Z) = XFK(Z)�XHK(Z), XG(Z) = XCG(Z)�XHG(Z)�XGG(Z), (66)

where

XFK(Z) =
{

v� ∈ X(Z) : ∗d∗v = 0, �v, n�∂Z = 0, �v, m�W = 0
}

, (67)

XHK(Z) =
{
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XCG(Z) =
{
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XHG(Z) =
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v� ∈ X(Z) : v = dϕ, ∗d∗v = 0, ϕ = C
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, (70)

XGG(Z) =
�

v� ∈ X(Z) : v = dϕ, ϕ|∂Z = 0
�

(71)

dim H1(Z) = dimXHK(Z), dim H2(Z) = dimXHG(Z). (72)

which are respectively called fluxless knots, harmonic knots, curly gradients, harmonic gradients
and grounded gradients, and m� means all unit vector fields normal to W, and C is a function on ∂Z
that is locally constant.

For example, consider a vector field defined on a three-dimensional disc. There is no v� ∈
XHK(Z) on the disc, because the genus is 0 and dim H1(Z) = dimXHK(Z) = 0. Thus, all
rotation vector fields on the disc are v� ∈ XFK(Z) that is the rotating vector field whose axis
is an inner point of the disc. v� ∈ XCG(Z) is a constant vector field flowing across the disc;
therefore, it is divergence-free and zero flux through the one and only component of ∂Z. v� ∈
XGG(Z) is a radiational vector field flowing from an inner point of the disc, where the potential
ϕ is constant on ∂Z. There is no v� ∈ XHG(Z) on the disc, because the numbers of components
of ∂Z and Z are each 1, i.e., dimXHG(Z) = 0. However, a three-dimensional solid torus has
a hole; therefore, dimXHK(Z) = 1, but dimXHG(Z) = 0. v� ∈ XHK(Z) is a circulative vector
field flowing around the hole. Moreover, for a region between two concentric round spheres,
dimXHG(Z) = 1. v� ∈ XHK(Z) is a radiational vector field flowing from a common center in
the small sphere.

4.3 DPH systems with harmonic energy flows

In this section, we extend the DPH system of MHD to include the global energy flows
originating from topological shapes of manifolds.

Let Z be a three-dimensional smooth Riemannian submanifold of Y with a smooth boundary
∂Z. The DPH system (18) of MHD defined on a domain Z is extended to have energy
flows regarding harmonic knots and harmonic gradients that we call harmonic energy flows
as follows:
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where we defined the following harmonic forms yielding harmonic energy flows:

�
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(74)

Note that Hk(Z) ∼= Hn−k(Z, ∂Z) ∼= Ωk
h(Z), there is the dual from of ωh with respect to � , �Z,

called a Poincaré dual: Ωk
h(Z) ∼= Ωn−k

h (Z), and f p
h f and ep

h f are constant functions. The system
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(73) satisfies the power balances
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4.4 Boundary detection and control of topological transitions

In fact, it is difficult to determine specific harmonic forms in (74). Hence, let us apply
the classification of vector fields to the power balance equation for detecting topological
transitions of systems and controlling energy flows.

Consider the cross-sectional surface W of Z such that W ⊂ Z and ∂W ⊂ ∂Z. Let ∂Z = ∪i∂Zi

be a set of subdivided domains of ∂Z or W in which each ∂Zi is homeomorphic to Euclidian
spaces (e.g., each component of ∂Zx and ∂Zy in (60)). In this setting, we can approximate port
variables distributed on ∂Zi, for instance, by using those on the boundary of each subdivided
domain ∂(∂Zi) if the subdivision is sufficiently fine. Let

(v�1, v�2, v�3, v�4, v�5) ∈ XFK(Z)�XHK(Z)�XCG(Z)�XHG(Z)�XGG(Z). (77)

Then, we can rewrite (61) as follows:
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= 0, (78)

where Hδt(v
�
r) means the split energy flow generated by v�r for 1 ≤ r ≤ 5. If all boundary port

variables are available as inputs and outputs, the balance of each decomposed energy flows
can be confirmed from (78).

On the other hand, desired energy flows depending on the topology of system domain can be
reinforced by servo feedback in terms of boundary port variables. If the cause of a change is
a known structural perturbation and the boundary surrounds all energy flows generated by
the perturbation, we can use the power balance defined on such appropriate boundaries to
realize an energy flow control. Indeed, the control law is

∫

∂Zj
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∑
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where ebi is the boundary control input or output, f bi is the boundary output or input, ēbi and
f̄ bi are the desired energy flows, and gij is the feedback gain.
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5. Conclusion

This chapter derived the boundary controls based on passivity for ideal
magnetohydrodynamics (MHD) systems in terms of distributed port-Hamiltonian (DPH)
representations. In Section 2, We first rewrote the geometric formulation of MHD as a DPH
system. Next, we explained the passivity-based controls for the DPH system of MHD by
using collocated input/output pairs, i.e., port variables for stabilizing and assigning a global
stable point. The boundary power balance equation of the DPH system could be considered
as an extended energy principle of MHD in the sense of dynamical systems and boundary
controls. In Section 3, we considered the DPH model of MHD with model perturbations.
The perturbation can be uniquely decomposed into a Hamiltonian subsystem, called an
exact subsystem, and a non-Hamiltonian subsystem, called a dual-exact subsystem. We
presented the method of creating a pseudo potential for an exact subsystem of the DPH
model. In Section 4, we explained a symmetry breaking of conservation laws associated with
the DPH system. The breaking can be detected by checking quantities with the boundary port
variables of the DPH system. Finally, we showed that the boundary port variables can detect
the topological change of the domain of DPH systems and can create desired topological
energy flows.

These results open the way to active disturbance rejections or plasma shape controls. If an
actual MHD system is not ideal or includes modeling errors, the power balance equations
should be revised. In this case, the pseudo potential construction might be used for improving
the model. The boundary control using the boundary port variables might be approximated
by the discretization of port-Hamiltonian systems (Golo et al., 2004).
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Mechanics of non-linear fluids present a special challenge to physicists, mathematician and 
engineers. The non-linearity can manifest itself in a variety of ways. Materials such as clay 
coatings and other suspensions, polymer melts, drilling muds, certain oils and greases, 
elastomers and many emulsions have been treated as non-Newtonian fluids. There is no 
single model which clearly exhibits all properties of non-Newtonian fluids and there has 
been much confusion over the classification of non-Newtonian fluids. However, non-
Newtonian fluid may be classified as (1) fluids for which the shear stress depends only on 
the rate of shear; (2) fluids for which the relation between shear stress and shear rate 
depends on time; (3) the visco-elastoic fluids, which possess both elastic and viscous 
properties. 

It is not possible to recommend a single constitutive equation which exhibits all 
properties of non-Newtonian fluids due to the great diversity in the physical structure of 
non-Newtonian fluids. For this reason, several non-Newtonian models or constitutive 
equations have been proposed and most of them are empirical or semi empirical. One of 
the simplest ways in which the visco-elastic fluids have been classified is the 
methodology given in [1,2]. They present constitutive relations for the stress tensor as a 
function of the symmetric part of the velocity gradient and its higher derivatives. 
Another class of models is the rate-type fluid models such as the Oldroyd model [3]. 
Although many constitutive equations have been suggested, many questions are still 
unsolved. Some of the continuum models do not give satisfactory results in accordance 
with the available experimental data. For this reason, in many practical applications, 
empirical or semi empirical equations have been used. A complete and thorough 
discussion of various models can be found in [4-7]. Various authors [8-12] investigated 
non-Newtonian fluids. 
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The study of an electrically conducting fluid flows in channels under the action of a 
transversely applied magnetic field has important applications in many devices such as 
magnetohydrodynamic (MHD) pumps, aerodynamics heating, MHD power generators, 
accelerators, centrifugal separation of matter from fluid, flow meters, electrostatic 
precipitation, fluid droplets sprays, purification of crude oil, petroleum industries and 
polymer technology. Hartmann [13] first studied an incompressible viscous electrically 
conducting fluid under the action of a transverse magnetic field. Under different physical 
conditions it was considered by Sutton and Shermann [14], Hughes and Young [15], 
Cowling [16] and Pai [17]. Rajagopal and Na [18] studied the flow of a third grade fluid due 
to an oscillation of plate, Mollica and Rajagopal [19] examined secondary flows due to axial 
shearing of a third grade fluid between two eccentrically placed cylinders, Siddiqui and 
Kaloni [20] investigated plane flow of a third grade fluid. Rotating disk flows of conducting 
fluids have practical applications in many areas such as computer storage devices, 
lubrication, crystal growth processes, viscometry and rotating machinery. The effect of an 
external uniform magnetic field on the flow due to a rotating disk was studied [21-25], and 
eccentric rotation of disks was studied [26-29]. In many process of industries, the cooling of 
threads or sheets of some polymer materials is of great importance in the production line. 
Magneto convection plays an important role in various industrial applications including 
magnetic control of molten iron flow in the steel industry and liquid metal cooling in 
nuclear reactors. Palani and Abbas [30] investigated the combined effects of 
magnetohydrodynamic and radiation on free convection flow past an impulsively started 
isothermal vertical plate with Rosseland diffusion approximation, Farzaneh-Gord et al. [31] 
studied two-dimensional steady-state incompressible viscoelastic boundary layer 
magnetohydrodynamics flow and heat transfer over a stretching sheet in the presence of 
electric and magnetic fields. The highly non-linear momentum and heat transfer equations 
are solved analytically. 

The MHD fluid flow as lubricant is of interest in industrial applications, because it 
prevents the unexpected variation of lubricant viscosity with temperature under certain 
extreme operating conditions. The MHD lubrication in an externally pressurized thrust 
bearing has been investigated both theoretically and experimentally by Maki et al. [32]. 
Hughes and Elco [33] and Kuzma et al. [34] have investigated the effects of a magnetic 
field in lubrication. These authors had neglected the inertial terms in the Navier–Stokes 
equations. Hamza [35] considered the squeezing flow between two discs in the presence 
of a magnetic field. The problem of squeezing flow between rotating discs has been 
studied by Hamza [36] and Bhattacharyya and Pal [37]. Considering two-dimensional 
unsteady MHD flow of a viscous fluid between two moving parallel plates, Sweet et al. 
[38] have shown that the flow is strongly influenced by the strength of the magnetic field 
and the density of the fluid. Abbas et al. [39] have investigated the unsteady MHD 
boundary layer flow and heat transfer in an incompressible rotating viscous fluid over a 
stretching continuous sheet. The resulting system of partial differential equations is 
solved numerically using Keller-box method. Turkylimazoglu [40] has analyzed the 
MHD time-dependent von Karman swirling electrically conducting viscous fluid flow 
having a temperature-dependent viscosity due to a rotating disk impulsively set into 
motion. 
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Hayat et al. [41] have considered the unsteady rotating MHD flow of an incompressible 
second grade fluid in a porous half space. The flow is induced by a suddenly moved plate in 
its own plane. Both the fluid and plate rotate in unison with the same angular velocity. 
Assuming the velocity field of the form [ ( , ), ( , ), ( , )],u z t v z t w z tV  analytical solutions are 
presented using Fourier sine transforms and it is shown that with an increase in MHD 
parameter the real and imaginary parts of velocity as well as the boundary layer thickness 
decreases. 

The classical theories of continuum mechanics are inadequate to explicate the microscopic 
manifestations of microscopic events. The fluids with microstructure belonging to a class 
of fluid with non-symmetrical stress tensor referred to as polar fluids are called 
Micropolar fluids. Physically they represent fluids consisting of randomly oriented 
particles suspended in a viscous medium. Eringen [42] presented the earliest formulation 
of a general theory of fluid microcontinua taking into account the inertial characteristics 
of the substructure particles which are allowed to undergo rotation in 1964. This theory 
has been extended by Eringen [43] to take into account thermal effects. The theory of 
micropolar fluids and its extension thermomicropolar fluids [44] may form suitable non-
Newtonian fluid models which can be used to explain the flow of colloidal fluids, 
polymeric suspensions, liquid crystals, animal blood, etc. Eldabe et al. [45] have discussed 
the problem of heat transfer to MHD flow of a micropolar fluid from a stretching sheet 
with suction and blowing through a porous medium. The numerical results indicate that 
the velocity and the angular velocity increase as the permeability parameter increases but 
they decrease as the magnetic field increases. On the other hand, the temperature 
decreases as the permeability parameter increases but it increases as the magnetic field 
increases. 

The study of laminar boundary layer flow of non-Newtonian fluids over continuous 
moving surfaces is very important because of its practical importance in a number of 
engineering processes. For example, cooling of an infinite metallic plate in a cooling 
bath, the boundary layer along a liquid film in condensation processes, aerodynamic 
extrusion of plastic sheets and a polymer sheet or filament extruded continuously from a 
dye. Furthermore, it has several practical applications in the field of metallurgy and 
chemical engineering such as material manufactured by extrusion process and heat-
treated materials traveling between a feed roll and a wind-up roll or on conveyor belt 
possess, the feature of a moving continuous surface. Also, glass blowing, continuous 
casting, and spinning of fibers involve the flow due to a stretching surface. Sarpakaya 
[46] studied the MHD flow of a non-Newtonian fluid, Char [47] studied the MHD flow of 
a viscoelastic fluid over a stretching sheet by considering the thermal diffusion in the 
energy equation. However, the effects of thermal radiation on the viscoelastic boundary 
layer flow and heat transfer can be quite significant at high operating temperatures. In 
view of this, Raptis [48], Raptis and Perdikis [49] and Raptis et al. [50] studied the 
viscoelastic flow and heat transfer over a flat plate with constant suction, thermal 
radiation and viscous dissipation. Recently, the effects of viscous dissipation, radiation, 
in presence of temperature dependent heat sources/sinks on heat transfer characteristics 
of a viscoelastic fluid is considered by Siddheshwar and Mahabaleswar [51]. Khan [52] 
extended the problem by including the effects of suction/injection, heat source/sink and 
radiation effects. Abel et al. [53] investigated the effects of viscous dissipation and non-
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uniform heat source on viscoelastic boundary layer flow over a linear stretching sheet. 
Abel and Nandeppanavar [54] studied the effect of non-uniform heat source/sink on 
MHD viscoelastic boundary layer flow, further Nandeppanavar et al. [55] studied the 
effects of elastic deformation and non-uniform heat source on viscoelastic boundary 
layer flow. Motivated by these studies, Mahantesh et al. [56] extended the results of 
researchers [53,54,55] for MHD viscoelastic boundary layer flow with combined effects of 
viscous dissipation, thermal radiation and non-uniform heat source which was ignored 
by [53,54,55]. Furthermore, they analyzed the effects of radiation, viscous dissipation, 
viscoelasticity, magnetic field on the heat transfer characteristics in the presence of non-
uniform heat source with variable PST and PHF temperature boundary conditions. 
Kayvan Sadeghy et al. [57] have investigated theoretically the applicability of magnetic 
fields for controlling hydrodynamic separation in Jeffrey-Hamel flows of viscoelastic 
fluids. It is shown that for viscoelastic fluids, it is possible to delay flow separation in a 
diverging channel provided that the magnetic field is sufficiently strong. It is also shown 
that the effect of magnetic field on flow separation becomes more pronounced the higher 
the fluid’s elasticity.  

In the present paper we have modeled the unsteady flow equations of a fourth grade fluid 
bounded between two non-conducting rigid plates in a rotating frame of reference with 
imposed uniform transverse magnetic field. It is interesting to note that we are able to 
couple the equations arising for the velocity field. The steady rotating flow of the non-
Newtonian fluid subject to a uniform transverse magnetic field is studied. The non-linear 
differential equations resulting from the balance of momentum and mass are solved 
numerically. The effects of exerted magnetic field, Ekman number and material parameter 
on the velocity distribution are presented graphically. The results for Newtonian and non-
Newtonian fluids are compared. 

2. Mathematical model of the problem 
We introduce a Cartesian coordinate system with z-axis normal to the plane of the parallel 
plates. The plates are located at 0z   and z L  and the plates and the fluid bounded 
between them are in a rigid body rotation with constant angular velocity   about the z-
axis. The fluid is electrically conducting and assumed to be permeated by an imposed 
magnetic field 0B  perpendicular to the parallel plates. The disturbance in the fluid is 
produced by small amplitude non-torsional oscillations of the lower plate. For the present 
model we take the velocity field of the form. 

 ( , ),  ( , ),  0  ,u z t v z t   V  (1) 

where u  and v  are the x and y components of the velocity field. The Cauchy stress tensor for 
the fourth grade fluid can be obtained by the model introduced by Coleman and Noll [58] 
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where   is the co-efficient of shear viscosity; and  

( 1,2),   ( 1,2,3),   ( 1,2,...,8)i j ki j k      

are material constants. The Rivlin- Ericken tensors nA  are defined by the recursion 
relation 
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When 0 ( 1,2,...,8),k k    the fourth grade model reduces to third grade model, when 
0 ( 1,2,3)j j    and 0 ( 1,2,...,8)k k    then above model reduces to second grade model 

and if 0 ( 1,2),  0 ( 1,2,3),  0 ( 1,2,...,8)i j ki j k         the flow model reduces to 

classical Navier-Stokes viscous fluid model.  

The hydromagnetic flow is generated in the uniformly rotating fluid by small amplitude 
non-torsional oscillations of the plate located at 0.z   With the Cartesian coordinate system 
Oxyz the unsteady motion of the incompressible fourth grade conducting fluid in the 
presence of magnetic field B is governed by the law of balance of linear momentum and 
balance of mass i.e.  
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We introduce a Cartesian coordinate system with z-axis normal to the plane of the parallel 
plates. The plates are located at 0z   and z L  and the plates and the fluid bounded 
between them are in a rigid body rotation with constant angular velocity   about the z-
axis. The fluid is electrically conducting and assumed to be permeated by an imposed 
magnetic field 0B  perpendicular to the parallel plates. The disturbance in the fluid is 
produced by small amplitude non-torsional oscillations of the lower plate. For the present 
model we take the velocity field of the form. 

 ( , ),  ( , ),  0  ,u z t v z t   V  (1) 

where u  and v  are the x and y components of the velocity field. The Cauchy stress tensor for 
the fourth grade fluid can be obtained by the model introduced by Coleman and Noll [58] 

 
1

.
n

j
j

p


   T I S  (2) 

For the fourth grade fluid we have 4n   and the first four tensors jS  are given by  
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 1 1 ,S A  (3) 

 2
2 1 2 2 1 ,  S A A  (4) 

 2
3 1 3 2 2 1 1 2 3 1 1( ) ( ) ,tr     S A A A A A A A  (5) 

 

 

2
4 1 4 2 3 1 1 3 3 2

2 2 2
4 2 1 1 2 5 2 2 6 2 1

7 3 8 2 1 1

( )

     ( ) ( ) ( )
      ( ) ( ) ,

tr tr
tr tr

  

  

 

   

   

 

S A A A A A A

A A A A A A A A
A A A A

 (6) 

where   is the co-efficient of shear viscosity; and  

( 1,2),   ( 1,2,3),   ( 1,2,...,8)i j ki j k      

are material constants. The Rivlin- Ericken tensors nA  are defined by the recursion 
relation 

 1
1 1( ) ( ) ,  1,Tn

n n n
d grad grad n

dt


    
AA A V V A  (7) 

 1 ( ) ( ) ,Tgrad grad A V V  (8) 

where  

 (.) (.).d
dt t

     
V.  (9) 

When 0 ( 1,2,...,8),k k    the fourth grade model reduces to third grade model, when 
0 ( 1,2,3)j j    and 0 ( 1,2,...,8)k k    then above model reduces to second grade model 

and if 0 ( 1,2),  0 ( 1,2,3),  0 ( 1,2,...,8)i j ki j k         the flow model reduces to 

classical Navier-Stokes viscous fluid model.  

The hydromagnetic flow is generated in the uniformly rotating fluid by small amplitude 
non-torsional oscillations of the plate located at 0.z   With the Cartesian coordinate system 
Oxyz the unsteady motion of the incompressible fourth grade conducting fluid in the 
presence of magnetic field B is governed by the law of balance of linear momentum and 
balance of mass i.e.  

 
1 12( ) ( ) div ( ),d

dt  
       

V Ω V Ω Ω r T J B  (10) 

 div 0V , (11) 
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where   is the density, J is the current density and 0( ,   B B b b being the induced 
magnetic field) is the total magnetic field. 

In the absence of displacement currents, the Maxwell equations and the generalized Ohm’s 
law can be written as  

 0,  ,  ,m t
 

       

BB B J E  (12) 

 ( ), J E B  (13) 

where m  is the magnetic permeability, E is the electric field and   is the electrical 
conductivity of the fluid. 

The magnetic Reynolds number is assumed to be very small so that the induced 
magnetic field is negligible [14]. This assumption is reasonable for the flow of liquid 
metals, e.g. mercury or liquid sodium (which are electrically conducting under 
laboratory conditions). The electron–atom collision frequency is assumed to be relatively 
high so that the Hall effect can be included [14]. The Lorentz force per unit volume is 
given by  

 2
0 .B  J B V  (14) 

For the velocity field defined in Eq. (1), the equation of continuity (11) is identically satisfied 
and Eq. (10) in component form can be written as  
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Defining the modified pressure  
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where   is the density, J is the current density and 0( ,   B B b b being the induced 
magnetic field) is the total magnetic field. 

In the absence of displacement currents, the Maxwell equations and the generalized Ohm’s 
law can be written as  

 0,  ,  ,m t
 

       

BB B J E  (12) 

 ( ), J E B  (13) 

where m  is the magnetic permeability, E is the electric field and   is the electrical 
conductivity of the fluid. 

The magnetic Reynolds number is assumed to be very small so that the induced 
magnetic field is negligible [14]. This assumption is reasonable for the flow of liquid 
metals, e.g. mercury or liquid sodium (which are electrically conducting under 
laboratory conditions). The electron–atom collision frequency is assumed to be relatively 
high so that the Hall effect can be included [14]. The Lorentz force per unit volume is 
given by  

 2
0 .B  J B V  (14) 

For the velocity field defined in Eq. (1), the equation of continuity (11) is identically satisfied 
and Eq. (10) in component form can be written as  
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Defining the modified pressure  
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 In view these substitutions we 

can write Eqs. (19)-(21) in the following manner:  
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 In view these substitutions we 

can write Eqs. (19)-(21) in the following manner:  
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Redefining the modified pressure  
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Differentiating Eqs. (26) and (27) with respect to z and making use of Eq. (28), and then 
integrating with respect to z to obtain  
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Differentiating Eqs. (26) and (27) with respect to z and making use of Eq. (28), and then 
integrating with respect to z to obtain  
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On multiplying Eq. (30) by i and then adding the resulting equation in Eq. (29) we get  
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For steady state the Equations (29) and (30) reduce to 
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Introducing the dimensionless variables 
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in above equations and simplifying the resulting equations and dropping ‘*’ to obtain 
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and E  is the Ekman number while H is the Hartmann number.  

3. Numerical procedure 
Consider a simplest boundary value problem 

 ( , , , ) 0,F u u u z    (39) 

 ( )  and ( ) .u a A u b B   (40) 

To solve the boundary value problem the derivatives u  and u  involved in the problem 
are approximated by finite differences of appropriate order. If we employ second order 
central difference formulation, then we can write  
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On multiplying Eq. (30) by i and then adding the resulting equation in Eq. (29) we get  
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For steady state the Equations (29) and (30) reduce to 
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Introducing the dimensionless variables 
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in above equations and simplifying the resulting equations and dropping ‘*’ to obtain 
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and E  is the Ekman number while H is the Hartmann number.  

3. Numerical procedure 
Consider a simplest boundary value problem 

 ( , , , ) 0,F u u u z    (39) 

 ( )  and ( ) .u a A u b B   (40) 

To solve the boundary value problem the derivatives u  and u  involved in the problem 
are approximated by finite differences of appropriate order. If we employ second order 
central difference formulation, then we can write  
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This converts the given boundary value problem into a linear system of equations involving 
values of the function u  at ,  ,  2 , ,b.a a h a h      For higher accuracy, one should choose h  
small. However, this increases the number of equations in the system which in turn 
increases the computational time. 

Depending upon the size of this resulting system of linear equations, it can either be solved 
by exact methods or approximate methods. 

In the present problem the governing differential equations (36) and (37) are highly non-
linear which cannot be solved analytically. These equations are discretized using second 
order central finite difference approximations defined in Eqs. (41) and (42). The resulting 
system of algebraic equations is solved using successive under relaxation scheme. The 
difference equations are linearized employing a procedure known as lagging the coefficients 
[59]. The iterative procedure is repeated until convergence is obtained according to the 
following criterion 

( 1) ( )max ,n nu u     

where superscript ' 'n  represents the number of iteration and ' '  is the order of accuracy. In 
the present case   is taken as 810 .  

4. Numerical results and discussion 
The steady velocity components u  and v  are plotted against independent variable z  for 
different values of Ekman number ,E  Hartmann number H  and material parameter   and 
results are compared for two types of fluids: the Newtonian fluid, for which 0 ( 1,2,3)i i   , 
and the non-Newtonian fluid, in which we choose 1.   Fig. 1 shows the effect of Hartmann 
number H  on the velocity components u  and .v  We fixed 1E   and varied H= 0,1,3,5.  It is 
observed that an increase in the Hartmann number reduces the velocity components u  and v  
due to the effects of the magnetic force against the flow direction. Figs. 1a and 1b show that 
with an increase of Hartmann number H , the curvature of the velocity component u  profile 
increases for both a Newtonian fluid and non-Newtonian fluid. Quite contrary, increasing 
Hartmann number H  causes the velocity component v  profile to become less parabolic, see 
Figs. 1c and 1d. It is also noted that decrease in u  and v  in the Newtonian fluid is larger as 
compared with non-Newtonian fluid. Furthermore, the boundary layer thickness is drastically 
decreased by increasing .H  It means that the magnetic field provides some mechanism to 
control the boundary layer thickness. 

The dependence of the velocity components u  and v  on the Ekman number is shown in 
Fig. 2. In Fig. 2 we fixed 1H   and varied 0.1,  0.2,  0.3.E   It is observed that velocity 
component u  increases with an increase in Ekman number E  for the Newtonian fluid 
while it remains almost unaffected for non-Newtonian fluid (Figs. 2a, 2b). Moreover, a 
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Fig. 1. Variation of velocity components u  and v  with z for 0,1,3,5;H   1, 0E    in (a), 
(c); 1, 1E    in (b), (d). 

backflow is observed near the boundary 0z    for 0.1.E  On the contrary, the magnitude 
of velocity component v  decreases with an increase in Ekman number E  for the both types 
of the fluids (Figs. 2c, 2d). This velocity component has larger magnitude in Newtonian fluid 
as compared with non-Newtonian fluid. 
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of velocity component v  decreases with an increase in Ekman number E  for the both types 
of the fluids (Figs. 2c, 2d). This velocity component has larger magnitude in Newtonian fluid 
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Fig. 2. Variation of velocity components u  and v  with z  for 0.1,  0.2,  0.3;E   1, 0H    
in (a), (c); 1, 1H    in (b), (d). 

Figs. 3,4 depict the variation of the velocity components u  and v  with z  for various values 
of material parameter   fixing 1E   and taking 1H   in Figs. 3a and 3c, while 5H   in 3b, 
3d, and in Fig. 4. It is observed from Fig. 3b and 4a that when the material parameter   
increases from 1   to a large value of 20, the velocity component u  tend to approach the 
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Fig. 3. Variation of velocity components u  and v  with z  for 1,  3,  5;   fixing 1,  5E H  . 
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Fig. 2. Variation of velocity components u  and v  with z  for 0.1,  0.2,  0.3;E   1, 0H    
in (a), (c); 1, 1H    in (b), (d). 

Figs. 3,4 depict the variation of the velocity components u  and v  with z  for various values 
of material parameter   fixing 1E   and taking 1H   in Figs. 3a and 3c, while 5H   in 3b, 
3d, and in Fig. 4. It is observed from Fig. 3b and 4a that when the material parameter   
increases from 1   to a large value of 20, the velocity component u  tend to approach the 
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Topics in Magnetohydrodynamics 

 

206 

linear distribution; thus, the shearing can unattenuately extend to the whole flow domain 
from the boundaries, corresponding to a shear-thickening phenomenon. A further increase 
of   will not effect this velocity component further. The magnitude of velocity component 
v  decreases when   increases and the curvature of the velocity profile decreases with an 
increase in material parameter   (see Figs. 3c, 3d and 4b). It is also found that the flow 
behaviour depends strongly on the choice of the parameters, for example, for large H , u  
increases with an increase of material parameter  , whereas this velocity component is 
independent of   for small .H  On the contrary, the magnitude of velocity component v  
decreases with   for both small and large values of .H  
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Fig. 4. Variation of velocity components u  and v  with z  for large values of 
1,5,  10,  15,20;   fixing 1, 5E H  . 

5. Conclusions  
The unsteady rotating flow of a uniformly conducting incompressible fourth-grade fluid 
between two parallel infinite plates in the presence of a magnetic field is modeled. The 
steady rotating flow of the non-Newtonian fluid subject to a uniform transverse magnetic 
field is studied. The governing non-linear equations are solved numerically. The numerical 
results of the non-Newtonian fluid are compared with those of a Newtonian fluid. The 
major findings of the present works can be summarized as follows: 

 The transverse magnetic field decelerates the fluid motion. When the strength of the 
magnetic field increases, the flow velocity decreases. 

 It is observed that the boundary layer thickness decreases drastically by increasing .H  
It means that the magnetic field provides some mechanism to control the boundary 
layer thickness. 
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 It is noted that the flow behaviour depends strongly on the choice of the parameters. 
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linear distribution; thus, the shearing can unattenuately extend to the whole flow domain 
from the boundaries, corresponding to a shear-thickening phenomenon. A further increase 
of   will not effect this velocity component further. The magnitude of velocity component 
v  decreases when   increases and the curvature of the velocity profile decreases with an 
increase in material parameter   (see Figs. 3c, 3d and 4b). It is also found that the flow 
behaviour depends strongly on the choice of the parameters, for example, for large H , u  
increases with an increase of material parameter  , whereas this velocity component is 
independent of   for small .H  On the contrary, the magnitude of velocity component v  
decreases with   for both small and large values of .H  
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Fig. 4. Variation of velocity components u  and v  with z  for large values of 
1,5,  10,  15,20;   fixing 1, 5E H  . 

5. Conclusions  
The unsteady rotating flow of a uniformly conducting incompressible fourth-grade fluid 
between two parallel infinite plates in the presence of a magnetic field is modeled. The 
steady rotating flow of the non-Newtonian fluid subject to a uniform transverse magnetic 
field is studied. The governing non-linear equations are solved numerically. The numerical 
results of the non-Newtonian fluid are compared with those of a Newtonian fluid. The 
major findings of the present works can be summarized as follows: 

 The transverse magnetic field decelerates the fluid motion. When the strength of the 
magnetic field increases, the flow velocity decreases. 

 It is observed that the boundary layer thickness decreases drastically by increasing .H  
It means that the magnetic field provides some mechanism to control the boundary 
layer thickness. 
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 It is noted that the flow behaviour depends strongly on the choice of the parameters. 
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