606 research outputs found

    Low-temperature amorphous oxide semiconductors for thin-film transistors and memristors: physical insights and applications

    Get PDF
    While amorphous oxides semiconductors (AOS), namely InGaZnO (IGZO), have found market application in the display industry, their disruptive properties permit to envisage for more advanced concepts such as System-on-Panel (SoP) in which AOS devices could be used for addressing (and readout) of sensors and displays, for communication, and even for memory as oxide memristors are candidates for the next-generation memories. This work concerns the application of AOS for these applications considering the low thermal budgets (< 180 ยฐC) required for flexible, low cost and alternative substrates. For maintaining low driving voltages, a sputtered multicomponent/multi-layered high-ฮบ dielectric (Ta2O5+SiO2) was developed for low temperature IGZO TFTs which permitted high performance without sacrificing reliability and stability. Devicesโ€™ performance under temperature was investigated and the bias and temperature dependent mobility was modelled and included in TCAD simulation. Even for IGZO compositions yielding very high thermal activation, circuit topologies for counteracting both this and the bias stress effect were suggested. Channel length scaling of the devices was investigated, showing that operation for radio frequency identification (RFID) can be achieved without significant performance deterioration from short channel effects, which are attenuated by the high-ฮบ dielectric, as is shown in TCAD simulation. The applicability of these devices in SoP is then exemplified by suggesting a large area flexible radiation sensing system with on-chip clock-generation, sensor matrix addressing and signal read-out, performed by the IGZO TFTs. Application for paper electronics was also shown, in which TCAD simulation was used to investigate on the unconventional floating gate structure. AOS memristors are also presented, with two distinct operation modes that could be envisaged for data storage or for synaptic applications. Employing typical TFT methodologies and materials, these are ease to integrate in oxide SoP architectures

    Interpretation and Regulation of Electronic Defects in IGZO TFTs Through Materials & Processes

    Get PDF
    The recent rise in the market for consumer electronics has fueled extensive research in the field of display. Thin-Film Transistors (TFTs) are used as active matrix switching devices for flat panel displays such as LCD and OLED. The following investigation involves an amorphous metal-oxide semiconductor that has the potential for improved performance over current technology, while maintaining high manufacturability. Indium-Gallium-Zinc-Oxide (IGZO) is a semiconductor material which is at the onset of commercialization. The low-temperature large-area deposition compatibility of IGZO makes it an attractive technology from a manufacturing standpoint, with an electron mobility that is 10 times higher than current amorphous silicon technology. The stability of IGZO TFTs continues to be a challenge due to the presence of defect states and problems associated with interface passivation. The goal of this dissertation is to further the understanding of the role of defect states in IGZO, and investigate materials and processes needed to regulate defects to the level at which the associated influence on device operation is controlled. The relationships between processes associated with IGZO TFT operation including IGZO sputter deposition, annealing conditions and back-channel passivation are established through process experimentation, materials analysis, electrical characterization, and modeling of electronic properties and transistor behavior. Each of these components has been essential in formulating and testing several hypotheses on the mechanisms involved, and directing efforts towards achieving the goal. Key accomplishments and quantified results are summarized as follows: โ€ข XPS analysis identified differences in oxygen vacancies in samples before and after oxidizing ambient annealing at 400 ยฐC, showing a drop in relative integrated area of the O 1s peak from 32% to 19%, which experimentally translates to over a thousand fold decrease in the channel free electron concentration. โ€ข Transport behavior at cryogenic temperatures identified variable range hopping as the electron transport mechanism at temperature below 130 K, whereas at temperature greater than 130 K, the current vs temperature response followed an Arrhenius relationship consistent with extended state transport. โ€ข Refinement of an IGZO material model for TCAD simulation, which consists of oxygen vacancy donors providing an integrated space charge concentration NVO = +5e15 cm-3, and acceptor-like band-tail states with a total integrated ionized concentration of NTA = -2e18 cm-3. An intrinsic electron mobility was established to be Un = 12.7 cm2/Vโˆ™s. โ€ข A SPICE-compatible 2D on-state operation model for IGZO TFTs has been developed which includes the integration of drain-impressed deionization of band-tail states and results in a 2D modification of free channel charge. The model provides an exceptional match to measured data and TCAD simulation, with model parameters for channel mobility (Uch = 12 cm2/Vโˆ™s) and threshold voltage (VT = 0.14 V) having a close match to TCAD analogs. โ€ข TCAD material and device models for bottom-gate and double-gate TFT configurations have been developed which depict the role of defect states on device operation, as well as provide insight and support of a presented hypothesis on DIBL like device behavior associated with back-channel interface trap inhomogeneity. This phenomenon has been named Trap Associated Barrier Lowering (TABL). โ€ข A process integration scheme has been developed that includes IGZO back-channel passivation with PECVD SiO2, furnace annealing in O2 at 400 ยฐC, and a thin capping layer of alumina deposited via atomic layer deposition. This process supports device stability when subjected to negative and positive bias stress conditions, and thermal stability up to 140 ยฐC. It also enables TFT operation at short channel lengths (Leff ~ 3 ยตm) with steep subthreshold characteristics (SS ~ 120 mV/dec). The details of these contributions in the interpretation and regulation of electronic defect states in IGZO TFTs is presented, along with the support of device characteristics that are among the best reported in the literature. Additional material on a complementary technology which utilizes flash-lamp annealing of amorphous silicon will also be described. Flash-Lamp Annealed Polycrystalline Silicon (FLAPS) has realized n-channel and p-channel TFTs with promising results, and may provide an option for future applications with the highest performance demands. IGZO is rapidly emerging as the candidate to replace a-Si:H and address the performance needs of display products produced by large panel manufacturing

    Indium-Gallium-Zinc Oxide Thin-Film Transistors for Active-Matrix Flat-Panel Displays

    Get PDF
    Amorphous oxide semiconductors (AOSs) including amorphous InGaZnO (a-IGZO) areexpected to be used as the thin-film semiconducting materials for TFTs in the next-generation ultra-high definition (UHD) active-matrix flat-panel displays (AM-FPDs). a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays (OLEDs), large and fast liquid crystal displays (LCDs) as well as three-dimensional (3D) displays, which cannot be satisfied using conventional amorphous silicon (a-Si) or polysilicon (poly-Si) TFTs. In particular, a-IGZO TFTs satisfy two significant requirements of the backplane technology: high field-effect mobility and large-area uniformity.In this work, a robust process for fabrication of bottom-gate and top-gate a-IGZO TFTs is presented. An analytical drain current model for a-IGZO TFTs is proposed and its validation is demonstrated through experimental results. The instability mechanisms in a-IGZO TFTs under high current stress is investigated through low-frequency noise measurements. For the first time, the effect of engineered glass surface on the performance and reliability of bottom-gate a-IGZO TFTs is reported. The effect of source and drain metal contacts on electrical properties of a-IGZO TFTs including their effective channel lengths is studied. In particular, a-IGZO TFTs with Molybdenum versus Titanium source and drain electrodes are investigated. Finally, the potential of aluminum substrates for use in flexible display applications is demonstrated by fabrication of high performance a-IGZO TFTs on aluminum substrates and investigation of their stability under high current electrical stress as well as tensile and compressive strain

    A Second-Order ฮฃฮ” ADC using sputtered IGZO TFTs with multilayer dielectric

    Get PDF
    This dissertation combines materials science and electronics engineering to implement, for the first time, a 2nd-order โˆ‘โˆ† ADC using oxide TFTs. The transistors employ a sputtered IGZO semiconductor and an optimizeddielectric layer, based on mixtures of sputtered Ta2O5and SiO2. These dielectrics are studied in multilayer configurations, being the best results achieved for 7 layers: IG7.5 MV/cm, while keeping ฮบ>10, yielding a major improvement over Ta2O5single-layer. After annealing at 200 ยฐC, TFTs with these dielectrics exhibit ฮผSATโ‰ˆ13 cm2/Vs, On/Offโ‰ˆ107and Sโ‰ˆ0.2 V/dec. An a-Si:H TFT RPI model is adapted to simulate these devices with good fitting to experimental data. Concerning circuits, the โˆ‘โˆ† architecture is naturally selected to deal with device mismatch. After design optimization, ADC simulations achieve SNDRโ‰ˆ57 dB, DRโ‰ˆ65 dB and power dissipation, approximately, of 22 mW (VDD=10 V), which are above the current state-of-the-art for competing thinfilm technologies, such as organics or even LTPS. Mask layouts are currently under verification to enable successful circuit fabrication in the next months.This work is a major step towards the design of complex multifunctional electronic systems with oxide TFT technology, being integrated in ongoing EU-funded and FCT-funded research projects at CENIMAT and UNINOVA

    Circuit Design and Compact Modeling in Printed Electronics Based on Inorganic Materials

    Get PDF
    Die gedruckte Elektronik ist ein im Vergleich zur konventionellen Siliziumtechnologie junges Forschungsgebiet. Die Idee hinter der gedruckten Elektronik ist es elektronische Bauteile wie Widerstรคnde, Kapazitรคten, Solarzellen, Dioden und Transistoren mit gรคngigen Druckmethoden herzustellen. Dabei ist es mรถglich die elektronischen Bauteile auf unbiegsamen Substrate, wie Glas oder Silizium, als auch auf biegsamen Substrate, wie Papier und Folie, zu drucken. Aufgrund des Druckprozesses, sind die Herstellungskosten gering, da drucken ein additiver Prozess ist und somit teure Masken obsolet sind. In einem Feldeffekttransistor, wird der Halbleiter zwischen zwei Elektroden (Drain- und Source) gedruckt. Die Drain- und Source-Elektroden werden dabei durch einen Vakuum- oder Druckprozess abgeschieden und strukturiert. Der halbleitende Kanal wird durch einen Dielektrikum von der Gate-Elektrode isoliert. Auch fรผr das Dielektrikum und die Gate-Elektrode sind ein Vakuum- oder Druckprozess denkbar. StandardmรครŸig finden organische Materialien Einsatz in der gedruckten Elektronik. Leider weisen organische Halbleiter, in einem Feldeffekttransistor, nur eine geringe Ladungstrรคgerbeweglichkeit (โ‰ค1\leq 1 cm2^2(Vs)โˆ’1^{-1}) auf. Die niedrige Ladungstrรคgerbeweglichkeit fรผhrt zu einer geringen Ladungstrรคgerdichte im Halbleiter und als Resultat zu geringen Stromdichten. Auch sind grรถรŸtenteils nur p-leitende Halbleiter fรผr den Einsatz in Schaltungen vorhanden, weswegen die meisten Schaltungen nur p-leitende Feldeffekttransistoren besitzen. Ein weiterer Nachteil der organischen Elektronik ist, dass die eingesetzten Dielektrika mit dem Halbleiter eine mangelhafte Grenzflรคche bildet. Deshalb sind Versorgungsspannungen in Bereich von 5 V keine Seltenheit. Eine interessante Alternative zu organischen Halbleitern sind Materialien die der Kategorie der Oxide zugeordnet sind. Zum Beispiel in Indiumoxid (In2_{2}O3_{3}) ist eine Ladungstrรคerbeweglichkeit um die 100 cm2^2(Vs)โˆ’1^{-1} messbar. Leider sind durch Oxide realisierte p-leitende Feldeffekttransistoren sehr selten, weshalb die meisten Schaltungen auf n-leitenden Feldeffekttransistoren basieren. Ein weiterer Nachteil von Metalloxidhalbleitern is das hohe Glรผhtemperaturen (\sim 400 \, ^\circC) benรถtigt werden um die richtige Kristallstruktur zu erzielen. Durch den Einsatz eines Elektrolyten, anstatt eines Dielektrikum, werden die benรถtigten hohen Versorgungsspannungen auf 1 V reduziert. Der Grund fรผr die Reduzierung der Versorgungsspannung liegt in der hohen Kapazitรคt (โˆผ5โ€‰ฮผ\sim 5 \, \muF(cm)โˆ’1^{-1}), die sich zwischen der Gate-Elektrode und dem Kanal ausbildet. Die optimale Grenzflรคche zwischen der Gate-Elektrode und dem Elektrolyten sowie als auch zwischen dem Elektrolyten und dem Kanal, wo sich eine Helmholtz-Doppelschicht ausbildet, ist der Grund fรผr die hohe Kapazitรคt. In dieser Arbeit, werden die Vorteile der hohen Ladungstrรคgerbeweglichkeit, resultierend von einem Indiumoxid-Kanal, und der niedrigen Versorgungsspannungen, durch den Einsatz eines Elektrolyten als Isolator, in einem gedruckten Transistor kombiniert. Daher ist das Ziel zunรคchst Transistoren basierend auf einem Elektrolyten und Indiumoxid-Kanal zu charakterisieren und zu modellieren. Auch werden Mรถglichkeiten zum Schaltungsentwurf mit der hier vorgestellten Transistortechnologie ausgearbeitet. Der Schaltungsentwurf wird anhand mikroelektronischen Zellen und Ringoszillator-Strukturen verifiziert. Wichtig fรผr den Schaltungsentwurf sind Modelle die fรคhig sind die elektrischen Eigenschaften eines Transistors abzubilden. Dabei muss die simulierte Kurve Stetigkeit und Kontinuitรคt aufweisen um Konvergenzprobleme wรคhrend der Simulation zu verhindern. Zur Modellierung der elektrischen Eigenschaften und Strรถme der Transistoren wird ein Modell basierend auf den Curtice-Modell entwickelt. Der Bereich รผber der Schwellwertspannung wird daher durch das Curtice-Modell abgebildet und der Bereich unter der Schwellspannung durch ein aus Siliziumtransistoren bekanntes Standard-Modell beschrieben. Kontinuitรคt und Stetigkeit wird durch eine Interpolation zwischen den beiden Transistormodellen gewรคhrleistet. Ein Verglich zwischen gemessenen und simulierten Daten zeigt das das Modell die hier vorgestellte Transistortechnologie sehr gut abbilden kann. Das entwickelte Transistormodel wird zur unterstรผtzung des Schaltungsentwurf in einem Prozesskit (PDK) integriert. Dadurch ist das Verhalten einer Schaltung durch Simulation vorhersehbar. In der Simulation kรถnnen auch der Einfluss der Umwelt, z.B. Luftfeuchtigkeit, auf die Transistoren analysiert werden. In der digitalen Schaltungstechnik wird ein p-leitender Feldeffekttransistor verwendet um ein Eingangssignal hochzusetzen, wรคhrend um ein Signal runterzusetzen, ein n-leitender Feldeffekttransistor von Vorteil ist. Da p-leitende Oxide selten und unzuverlรคssig sind, wird der p-leitende Feldeffekttransistor durch einen Widerstand (Transistor-Widerstand-Logik (TRL)) oder einen n-leitenden Feldeffekttransistor (Transistor-Transistor-Logik (TTL)) ersetzt. Ein Inverter in TRL weist bei einer Versorgungsspannung von 1 V einen Verstรคrkungsfaktor von ungefรคhr -5 auf und eine Signalverzรถgerung von 0.9 ms. Die Oszillatorfrequenz im entsprechend Ringoszillator betrรคgt 296 Hz. Weitere Logikgatter (NAND, NOR und XOR) sind ebenfalls realisierbar mit TRL-Entwรผrfe. In TTL wird der p-leitende Feldeffekttransistor durch einen n-leitenden Verarmungstyps Feldeffekttransistor ersetzt. Die in der TTL entworfene Logikgatter verhalten sich identisch zu den TTR-Zellen aber die Frequenz vom Ringoszillator steigt bis in den unteren kHz-Bereich an. In TTL ist es ebenfalls mรถglich die Verlustleistung um einen Faktor von 6 zu reduzieren

    Sputtered Zn-Sn-O based thin-film transistors: Optimization and circuit simulation

    Get PDF
    The development of amorphous oxide semiconductors (AOS) has been accelerated with their application in thin-film transistors (TFTs) for transparent and flexible displays. Among the many AOS available, zinc tin oxide (ZTO) represents a promising material due to its enhanced chemical and physical properties and the abundance of its elements in nature results in low price, compared to IGZO, and favours its widespread use in mass technology production. In this work, ZTO thin films deposited by sputtering under different oxygen, hydrogen and RF power conditions were investigated. The study focus on their morphology, structure and optical behaviour and on their implementation as active channel layers in TFTs. Great device performance was obtained when deposited at a power of 160 W, in a 10% of oxygen partial pressure and 1% of hydrogen, at a 2.3 mTorr pressure. After an annealing temperature of 180 oC, mobility of 9.1 cm2 V-1s-1, subthreshold slope of 0.29 Vdec-1 and turn-on voltage of -2.0 V were achieved, using a sputtered multilayer dielectric based on Ta2O5-SiO2. The measured output and transfer a-ZTO TFT characteristics were modeled in an artificial neural network (ANNs) empirical model with very good accuracy. The model was used in the Cadence Spectre to simulate three logic gates at DC and transient analysis: inverter, NAND and NOR, with logic levels preserved up to 10 kHz

    ์šฉ์•ก ๊ณต์ • ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋’ท ์ฑ„๋„ ์ „์œ„ ๋ฐ ๋“œ๋ฐ”์ด ๊ธธ์ด๋ฅผ ๊ณ ๋ คํ•œ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์™€ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 2. ํ™์šฉํƒ.์ฐจ์„ธ๋Œ€ ๋””์Šคํ”Œ๋ ˆ์ด ์‘์šฉ์˜ ํ•ต์‹ฌ ์†Œ์ž๋กœ ๋น„์ •์งˆ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋น„์ •์งˆ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋Š” ์ „ํ•˜ ์ด๋™๋„์™€ ๊ฐ™์€ ์ „๊ธฐ์  ํŠน์„ฑ, ๊ท ์ผ๋„, ๊ทธ๋ฆฌ๊ณ  ๊ณต์ • ์˜จ๋„ ๋“ฑ์—์„œ ํ•œ๊ณ„์— ์žˆ๋Š” ๊ธฐ์กด์˜ ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๊ณต์ • ๋น„์šฉ ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜์˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋„ ๋งŽ์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณด๋‹ค ๋งŽ์€ ์‘์šฉ์„ ์œ„ํ•ด์„œ๋Š” ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋ฌผ๋ฆฌ์ ์ธ ์„ฑ์งˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ์ƒํ™ฉ์ด๋‹ค. ๋˜ํ•œ ๋’ท ์ฑ„๋„ ์˜์—ญ์˜ ์†Œ์ž ํŠน์„ฑ์— ๋Œ€ํ•œ ์˜ํ–ฅ์€ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋ถ„์„์—์„œ ๊ฐ„๊ณผ๋˜์–ด ์™”์œผ๋‚˜, ์ฑ„๋„ ํŠน์„ฑ์ด ๋’ท ์ฑ„๋„ ์˜์—ญ ํŠน์„ฑ์˜ ์˜ํ–ฅ์„ ๋ฐ›์„ ์ •๋„๋กœ ๋ฐ˜๋„์ฒด ์ธต์ด ์–‡์„ ๋•Œ์—๋Š” ๋’ท ์ฑ„๋„ ์˜์—ญ์˜ ์˜ํ–ฅ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์—†๊ฒŒ ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์šฉ์•ก ๊ณต์ • ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฝ์šฐ 10~20 nm์˜ ๋งค์šฐ ์–‡์€ ๋ฐ˜๋„์ฒด ์ธต์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— ์†Œ์ž๋ฅผ ๋ถ„์„ํ•  ๋•Œ์— ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด์˜ ์˜ํ–ฅ์€ ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์šฉ์•ก ๊ณต์ • ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์™€ ๊ฐ™์€ ์†Œ์ž ๋ฌผ๋ฆฌ์  ํŠน์„ฑ๊ณผ ์ •์ „์•• ์ŠคํŠธ๋ ˆ์Šค์—์„œ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„์™€ ๋“œ๋ฐ”์ด ๊ธธ์ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์—ฐ๊ตฌ ํ•˜์˜€๋‹ค. ๋จผ์ €, ์šฉ์•ก ๊ณต์ • ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ธฐ์กด์— ๋ฐœํ‘œ๋œ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„ ์ถ”์ถœ ๋ฐฉ๋ฒ•๋“ค์€ ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„๋ฅผ 0์œผ๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ด๋Š” ์ธ๊ฐ€๋˜๋Š” ๊ฒŒ์ดํŠธ ์ „์••์˜ ์˜ํ–ฅ์„ ์ถฉ๋ถ„ํžˆ ์ฐจํํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋ฐ˜๋„์ฒด ์ธต์ด ๋‘๊บผ์šธ ๋•Œ์—๋Š” ์ ์ ˆํ•œ ๊ฐ€์ •์ด๋‹ค. ํ•˜์ง€๋งŒ ๋ฐ˜๋„์ฒด ์ธต์ด ๋“œ๋ฐ”์ด ๊ธธ์ด๋ณด๋‹ค ์–‡์€ ๊ฒฝ์šฐ์—๋Š” ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„๊ฐ€ ๊ฒŒ์ดํŠธ ์ „์••์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‹ค. ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฝ์šฐ ์•ฝ 10 nm ์ •๋„์˜ ๋งค์šฐ ์–‡์€ ๋ฐ˜๋„์ฒด ์ธต์œผ๋กœ ์ธํ•ด ๋’ท ์ฑ„๋„์˜ ํ‘œ๋ฉด ์ „์œ„๊ฐ€ ๊ฒŒ์ดํŠธ ์ „์••์— ์˜ํ•ด ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ฐ€์ •์€ ์ˆ˜์ •์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„๋ฅผ 0์œผ๋กœ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋Š” ๊ธฐ์กด์˜ ์ถ”์ถœ ๋ฐฉ๋ฒ•๋“ค์€ ์ •ํ™•ํ•œ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„ ์ถ”์ถœ์„ ์œ„ํ•ด ๋’ท ์ฑ„๋„์˜ ํ‘œ๋ฉด ์ „์œ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ˆ˜์ •๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ฒŒ์ดํŠธ ์ „์••์— ๋”ฐ๋ฅธ ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„์˜ ๋ณ€ํ™”๋Š” ์Šค์บ๋‹ ์ผˆ๋นˆ ํ”„๋กœ๋ธŒ ๋งˆ์ดํฌ๋กœ์Šค์ฝ”ํ”ผ๋กœ ์ธก์ • ํ•˜์˜€์œผ๋ฉฐ ๊ธฐ์กด์˜ ํ•„๋“œ ์ดํŽ™ํŠธ ๋ฐฉ๋ฒ•์„ ์ˆ˜์ •ํ•˜๋Š” ๋ฐ์— ์‚ฌ์šฉ ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ชจ๋ธ๋ง ํ•˜์˜€๋‹ค. ๋’ท ์ฑ„๋„ ํ‘œ๋ฉด ์ „์œ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ƒˆ๋กญ๊ฒŒ ์ˆ˜์ •๋œ ํ•„๋“œ ์ดํŽ™ํŠธ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•์— ๋น„ํ•ด ์ธก์ •๋œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€ ๋ฐ์ดํ„ฐ์™€ ๋” ์ผ์น˜ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ธฐ์กด์˜ ์ถ”์ถœ ๋ฐฉ๋ฒ•์—์„œ๋Š” ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„๊ฐ€ ์‹ค์ œ๋ณด๋‹ค ์ž‘์€ ์ˆ˜์ค€์œผ๋กœ ์ถ”์ถœ๋˜๋Š” ๋ฐ˜๋ฉด, ์ˆ˜์ •๋œ ํ•„๋“œ ์ดํŽ™ํŠธ ๋ฐฉ๋ฒ• ํ†ตํ•ด ๋”์šฑ ์ •ํ™•ํžˆ ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฐœ๋ฐœํ•œ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„ ์ถ”์ถœ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ, ์–ด๋‹๋ง ์˜จ๋„, ์กฐ์„ฑ ๋น„์œจ, ๊ทธ๋ฆฌ๊ณ  ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ์ธต์˜ ๋‘๊ป˜ ๋“ฑ ๊ณต์ • ๋ฐ ์†Œ์ž ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ๊ณต์ • ํŒŒ๋ผ๋ฏธํ„ฐ์— ์˜ํ•œ ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์žฌ๋ฃŒ์ ์ธ ๊ด€์ ์—์„œ์˜ ๋ถ„์„์€ ์ด๋ฃจ์–ด์กŒ์ง€๋งŒ, ์ด๋ฅผ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์™€ ๊ฐ™์€ ์ „๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ๋ง์„ ํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์•„์ง ์ด๋ฃจ์–ด์ง€์ง€ ์•Š์€ ์ƒํ™ฉ์ด๋‹ค. ์ด๋Ÿฌํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ๋ณ€ํ™”์— ์˜ํ•œ ์†Œ์ž์˜ ๋™์ž‘์„ ์ •ํ™•ํžˆ ๋ถ„์„ํ•˜๊ณ  ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์˜ ๋ณ€ํ™” ๋“ฑ์„ ์ „๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ๋ง ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์–ด๋‹๋ง ์˜จ๋„์™€ ์กฐ์„ฑ ๋น„์œจ์ด ๋ณ€ํ™”ํ•จ์— ๋”ฐ๋ผ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„์˜ ์ƒ๋Œ€์ ์œผ๋กœ ๋”ฅ ๋ ˆ๋ฒจ์— ์œ„์น˜ํ•˜๋Š” ์Šคํ…Œ์ดํŠธ์™€ ํ…Œ์ผ ์Šคํ…Œ์ดํŠธ๊ฐ€ ๋ณ€ํ™”ํ•˜์˜€์œผ๋ฉฐ, ์—‘์Šค์„  ๊ด‘์ „์ž ๋ถ„๊ด‘๋ฒ• ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋”ฅ ๋ ˆ๋ฒจ์— ์œ„์น˜ํ•˜๋Š” ์Šคํ…Œ์ดํŠธ๋Š” ์‚ฐ์†Œ ๊ณตํ• ๊ฒฐํ•ฉ๊ณผ, ํ…Œ์ผ ์Šคํ…Œ์ดํŠธ๋Š” ์ž”์—ฌ ์ˆ˜์‚ฐํ™”๋ฌผ ๊ฒฐํ•ฉ๊ณผ ๊ฐ๊ฐ ๊ด€๋ จ์ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ๋‘๊ป˜์˜ ๋ฐ˜๋„์ฒด ์ธต์„ ๊ฐ–๋Š” ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„๋ฅผ ๋ถ„์„, ๋น„๊ตํ•จ์œผ๋กœ์จ ํ•€ํ™€๊ณผ ๊ฐ™์€ ๋ฌผ๋ฆฌ์  ๊ฒฐํ•จ๊ณผ ๋ถˆ๊ทœ์น™์„ฑ์ด ํ…Œ์ผ ์Šคํ…Œ์ดํŠธ์— ์˜ํ–ฅ์„ ์ค€๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋ฐ˜๋„์ฒด ์ธต ๊ฒฐํ•จ์˜ ์›์ธ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐํ•จ๊ตฌ์กฐ๋ฐ€๋„ ๋งต์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ •์ „์•• ์ŠคํŠธ๋ ˆ์Šค์—์„œ์˜ ์šฉ์•ก ๊ณต์ • ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์–‘์˜ ๊ฒŒ์ดํŠธ ์ „์•• ์ŠคํŠธ๋ ˆ์Šค์—์„œ ๋ฌธํ„ฑ ์ „์••์€ ์–‘์˜ ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋™ํ•˜์˜€์œผ๋ฉฐ, ์ง„๊ณต ์ฆ์ฐฉ ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ๋น„์Šทํ•œ ์–‘์ƒ์„ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Œ์˜ ์ „์•• ์ŠคํŠธ๋ ˆ์Šค์—์„œ๋Š” ์ง„๊ณต ์ฆ์ฐฉ ๊ธฐ๋ฐ˜ ์ธ๋“๊ฐˆ๋ฅจ์ง•ํฌ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ๋‹ฌ๋ฆฌ ๋ฌธํ„ฑ ์ „์••์€ ์ŠคํŠธ๋ ˆ์Šค ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์„ ํ˜•์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ดํ™” ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋‹ค๋ฅธ ๋ฐ˜๋„์ฒด ์ธต ๋‘๊ป˜์™€ ๋“œ๋ฐ”์ด ๊ธธ์ด๋ฅผ ๊ฐ–๋Š” ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ์ธก์ •, ๊ทธ๋ฆฌ๊ณ  ํก์ฐฉ๋œ ์–‘ ์ „ํ•˜ ๋ฌผ์งˆ์ด ์†Œ์ž์˜ ์ „๊ธฐ์  ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ 2์ฐจ์› ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์Œ์˜ ๊ฒŒ์ดํŠธ ์ „์•• ์ŠคํŠธ๋ ˆ์Šค์—์„œ ๋ฌธํ„ฑ์ „์••์ด ์„ ํ˜•์ ์œผ๋กœ ์ด๋™ํ•˜๋Š” ์—ดํ™” ํ˜„์ƒ์€ ๊ณต๊ธฐ ์ค‘์˜ ์–‘์˜ ์ „ํ•˜๋ฅผ ๋„๋Š” ๋ฌผ์งˆ์ด ๋’ท ์ฑ„๋„ ์˜์—ญ์— ํก์ฐฉํ•˜๋Š” ๊ฒƒ์— ์˜ํ•œ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Amorphous metal oxide-based thin film transistors (TFTs) have attracted much attention as a most promising candidate for next generation electronic applications. Especially, amorphous indium gallium zinc oxide (IGZO) TFTs are expected to replace conventional silicon-based TFTs which encounter the limitation of electrical properties such as field-effect mobility, uniformity, and process temperature. In addition, there have been many efforts to fabricate IGZO TFTs using solution process to reduce process cost. However, device physics of solution-processed IGZO TFTs still needs to be investigated for further application. Furthermore, the effect of back channel surface region has been neglected in the analysis of IGZO TFTs. However, the back channel surface effect cannot be ignored when IGZO active layer is very thin, so that channel properties are affected by back channel surface. Therefore, the back channel surface effect needs to be considered in the analysis of solution-processed IGZO TFTs because solution-processed IGZO TFTs generally have very thin active layer, approximately 10~20 nm. In this thesis, device physical properties such as density-of-states (DOS) and reliability under bias stress of solution-processed IGZO TFTs are investigated with consideration of back channel surface potential and Debye length. First, the extraction model is developed to extract accurate DOS of solution-processed IGZO TFTs. In most previously reported DOS extraction methods, back channel surface potential (ฮฆB) was assumed to be zero. This assumption is appropriate when active layer is sufficiently thick to screen the effect of the applied gate voltage (VGS) on ฮฆB. On the contrary, ฮฆB is affected by VGS when active layer is thinner than Debye length. The assumption needs to be modified in the case of solution-processed IGZO TFTs, whose active layer is approximately 10 nm. Therefore, previously reported extraction method, which assumed zero potential at back channel surface, needs to be modified with consideration of ฮฆB for accurate DOS extraction. The variation of ฮฆB with VGS was measured by scanning Kelvin probe microscopy (SKPM) and modeled to be used for modification of conventional field-effect method. The modified field-effect method considering ฮฆB exhibited more consistent activation energy (Ea) extraction result with the measured data than conventional one. Accurate DOS of solution-processed IGZO TFTs was extracted with considering ฮฆB while conventional one underestimated the defect DOS. Second, the effect of process and device parameters on DOS was investigated with varying annealing temperature (Ta), metallic composition ratio or IGZO active layer thickness (tactive). The DOS of each device was extracted by the developed model. The electrical characteristics variation along with various process parameters has been analyzed in the aspect of material chemistry. However, the effect of those parameters on the electrical model such as DOS has not been studied yet. The electrical modeling such as DOS variation is required to simulate device operation accurately as process parameters change. As Ta and metallic composition ratio changed, the relatively deep and tail states of DOS were changed. By comparing the extracted DOS with x-ray photoelectron spectroscopy (XPS) results, it is found that relatively deep and tail states are related to oxygen vacancy and residual hydroxide in solution-processed IGZO film, respectively. It was also found that physical defects, such as pin-holes, and disorder affected tail states from the extracted DOS analysis of solution-processed IGZO TFTs with various tactive. From the DOS analysis, DOS map of solution-processed IGZO TFTs, which shows origins of relatively deep and tail states, is developed. Finally, the stability of solution-processed IGZO TFTs under constant gate bias stress is investigated. Under positive gate bias stress, the transfer characteristics of solution-processed IGZO TFTs were positively shifted and showed similar behavior compared to vacuum-processed IGZO TFTs. However, different behavior of threshold voltage shift (ฮ”Vth) was observed under negative gate bias stress. The time evolution of ฮ”Vth followed linear function. In order to analyze the reliability under negative gate bias stress, the stability of devices with different tactive and Debye length of IGZO layer was measured and the effect of adsorbed charged species on the electrical characteristics was simulated by 2-dimensional technology computer-aided design simulation. As a result, it is found that linear shift of Vth under negative gate bias stress is attributed to the adsorption of positively charged species on back channel surface region.Chapter 1 Introduction 1 1.1 Recent Flat Panel Display 1 1.2 Dissertation Organization 7 Chapter 2 Review of IGZO TFTs 9 2.1 Oxide Semiconductor for TFT Application 10 2.2 Various Extraction Methods of Density-of-States of TFTs 15 2.3 Process Parameter Variation of IGZO TFTs 24 2.4 Reliability of IGZO TFTs 28 Chapter 3 Development of Modified Field-Effect Method with Consideration of Back ChannelSurface Potential 32 3.1 Introduction 32 3.2 Experiment 35 3.2.1 Fabrication of Solution-Processed IGZO TFTs 35 3.2.2 Device and IGZO Film Characterization 40 3.2.3 Scanning Kelvin Probe Microscopy Measurement 40 3.3 Extraction of Density-of-States (DOS) of Solution-Processed IGZO TFTs with Consideration of Back Channel Surface Potential 43 3.3.1 Temperature-Dependent Electrical Characteristics 43 3.3.2 Back Channel Surface Potential of Solution-Processed IGZO TFTs 48 3.3.3 Modified Field-Effect Method Considering Back Channel Surface Potential 52 3.3.4 DOS Extraction of Solution-Processed IGZO TFTs by Modified Field-Effect Method Considering Back Channel Surface Potential 55 3.3.5 Verification of Assumption of Back Channel Surface Potential 59 3.4 Conclusion 63 Chapter 4 Effect of Process Parameters on DOS of Solution-Processed IGZO TFTs 64 4.1 Introduction 64 4.2 Experiment 66 4.3 Effect of Annealing Temperature on DOS of Solution-Processed IGZO TFTs 68 4.3.1 Device Characteristics 68 4.3.2 DOS Extraction Considering Back Channel Surface Potential and Analysis 77 4.4 Effect of Metallic Composition Ratio on DOS of Solution-Processed IGZO TFTs 84 4.4.1 Device Characteristics 84 4.4.2 DOS Extraction Considering Back Channel Surface Potential and Analysis 91 4.5 Effect of Active Layer Thickness on DOS of Solution-Processed IGZO TFTs 98 4.5.1 Device Characteristics 98 4.5.2 DOS Extraction Considering Back Channel Surface Potential and Analysis 104 4.6 DOS Mapping 110 4.7 Conclusion 112 Chapter 5 Analysis of Stability of Solution-Processed IGZO TFTs under Constant Gate Bias Stress 113 5.1 Introduction 113 5.2 Experiment 115 5.3 Stability under Negative Gate Bias Stress 116 5.4 Stability under Positive Gate Bias Stress 125 5.5 Conclusion 129 Chapter 6 Summary 130 Appendix A Circuit Application of Solution-Processed IGZO TFTs 134 Bibliography 149 ์ดˆ๋ก 158Docto

    Advanced Electrical Characterization of Oxide TFTs Design of a Temperature Compensated Voltage Reference

    Get PDF
    Any electronic device, regardless of its function, needs a reference voltage source that feeds reliably, i.e., which generates a constant voltage, upstream and regardless of external environmental conditions, such as temperature. Since such a characteristic negatively influences the behavior of the devices, whose base elements are transistors, it is essential to design a circuit that provides a voltage which is invariant over a temperature range. In this work is designed a circuit that is responsible for generating a reference voltage using only thin film transistors or TFTs, on glass substrate. However, in order to validate the concept used in the mentioned transistors, it is also dimensioned and simulated the proposed circuit in 130 nm CMOS technology, where the respective results are expected to be comparative between the two technologies. For CMOS technology, for a nominal reference voltage of 124,0 mV, Cadence simulation reveals ยฑ2,2 ppm/ยบC temperature coefficient, between -20 ยฐC and 100 ยฐC. The power consumptions are and 1,434 mW and 4,566 mW for both CMOS and IGZO-TFT technologies, respectively
    • โ€ฆ
    corecore