47 research outputs found

    Characterizing Atrial Fibrillation Substrate by Electrogram and Restitution Analysis

    Get PDF
    Vorhofflimmern ist die häufigste supraventrikuläre Arrhythmie in der klinischen Praxis. Es gibt Hinweise darauf, dass pathologisches Vorhofsubstrat (Fibrose) eine zentrale mechanistische Rolle bei der Aufrechterhaltung von Vorhofflimmern spielt. Die Behandlung von Vorhofflimmern erfolgt durch Ablation des fibrotischen Substrats. Der Nachweis eines solchen Substrats ist jedoch eine ungelöste Herausforderung, was durch die mangelnden positiven klinischen Ablationsergebnisse ersichtlich wird. Daher ist das Hauptthema dieser Arbeit die Charakterisierung des atrialen Substrats. Die Bestimmung von Signalmerkmalen an Stellen mit fibrotischem Substrat erleichtert die Erkennung und anschließende Ablation solcher Areale in Zukunft. Darüber hinaus kann das Verständnis der Art und Weise, wie diese Areale das Vorhofflimmern aufrechterhalten, die positiven Ergebnisse von Ablationseingriffen verbessern. Schließlich kann Restitutionsinformation ein weiteres Instrument zur Substratcharakterisierung sein, das bei der Unterscheidung zwischen pathologischen und nicht-pathologischen Arealen helfen und somit das Ablationsergebnis weiter verbessert. In dieser Arbeit werden zwei Ansätze zur Substratcharakterisierung vorgestellt: Zunächst wurde eine Charakterisierung des Substrats mit Hilfe des intraatrialen Elektrogramms vorgenommen. Dazu wurde eine Auswahl spezifischer Merkmale des Elektrogramms an Positionen evaluiert, die eine Terminierung von Vorhofflimmern nach Ablation zur Folge hatten. Die Studie beinhaltete 21 Patienten, bei denen eine Ablation nach Pulmonalvenenisolation das klinisch persistierende Vorhofflimmern beendete. Der klinisch vorgeschlagene Grenzwert der Spannungsamplitude von <0:5 mV wurde genutzt, um die Positionen der Ablation zu definieren. Die Bereiche, in denen das Vorhofflimmern erfolgreich terminiert wurde, wiesen ausgeprägte Elektrogramm-Muster auf. Diese waren gekennzeichnet durch kurze lokale Zykluslängen, die fraktionierte Potentiale und Niederspannungspotentiale enthielten. Gleichzeitig zeigten sie eine lokale Konsistenz und deckten einen Großteil der lokalen Vorhofflimmer-Zykluslänge ab. Die meisten dieser Bereiche wiesen auch im Sinusrhythmus pathologisch verzögerte atriale Spätpotentiale und fraktionierte Elektrogramme auf. Im zweiten Teil der Arbeit wurden Restitutionsdaten der lokalen Amplitude und der lokalen Leitungsgeschwindigkeit (CV) erfasst und genutzt, um daraus Informationen über das zugrunde liegende Substrat abzuleiten. Die Daten zur Restitution wurden von 22 Patienten mit Vorhofflimmern aus zwei Kliniken unter Verwendung eines S1S2-Protokolls mit Stimulationsintervallen von 180 ms bis 500 ms gewonnen. Um Restitutionsdaten der Patientengruppe zu erhalten, musste ein automatisierter Algorithmus entwickelt werden, der in der Lage ist, große Mengen an Stimulationsprotokolldaten zu lesen, zu segmentieren und auszuwerten. Dieser Algorithmus wurde in der vorliegenden Arbeit entwickelt und CVAR-Seg genannt. Der CVAR-Seg Algorithmus bietet eine rauschresistente Signalsegmentierung, die mit extremen Rauschpegeln getestet wurde, die weit über dem erwarteten klinischen Pegel lagen. CVAR-Seg wurde unter einer Open-Source-Lizenz für die Allgemeinheit bereitgestellt. Es ermöglicht aufgrund seines modularen Aufbaus den einfachen Austausch einzelner Verfahrensschritte durch alternative Methoden entsprechend den Bedürfnissen des Anwenders. Darüber hinaus wurde im Rahmen dieser Studie eine neuartige Methode, die sogenannte inverse Doppelellipsenmethode, zur Bestimmung der lokalen CV etabliert. Diese Methode schätzt die CV, die Faserorientierung und den Anisotropiefaktor bei beliebiger Elektrodenanordnung. In Simulationen reproduzierte die Doppelellipsenmethode die vorherrschende CV, Faserorientierung und Anisotropie genauer und robuster als die aktuell gängigste Methode. Zusätzlich erwies sich diese Methode als echtzeittauglich und könnte daher in klinischen Elektrophysiologiesystemen eingesetzt werden. Die Doppelellipsenmethode würde durch die lokalisierte Vermessung des Vorhofsubstrats ermöglichen während eines Kartierungsverfahrens gleichzeitig eine CV-Karte, eine Anisotropieverhältniskarte und eine Faserkarte zu erstellen. Die Restitutionsinformationen der Patientenkohorte wurden mit der CVARSeg-Pipeline und der inversen Doppelellipsenmethode ausgewertet, um Amplituden- und CV-Restitutionskurven zu erhalten. Zur Anpassung der Restitutionskurven wurde eine monoexponentielle Funktion verwendet. Die Parameter der angepassten Funktion, die die Restitutionskurven abbilden, wurden verwendet, um Unterschiede in den Restitutionseigenschaften zwischen pathologischem und nicht-pathologischem Substrat zu erkennen. Das Ergebnis zeigte, dass klinisch definierte pathologische Bereiche durch eine reduzierte Amplitudenasymptote und einen steilen Kurvenabfall bei erhöhter Stimulationsrate gekennzeichnet waren. CV-Kurven zeigten eine reduzierte Asymptote und eine große Variation im Parameter der den Kurvenabfall beschreibt. Darüber hinaus wurden die Restitutionsunterschiede innerhalb des Vorhofs an der posterioren und anterioren Wand verglichen, da die Literatur keine eindeutigen Ergebnisse lieferte. In dieser Arbeit wurde nachgewiesen, dass die posteriore Vorhofwand Amplituden- und CV-Restitutionskurven mit höherer Asymptote und moderaterer Krümmung verglichen mit der anterioren Vorhofwand aufweist. Um über den empirisch beschriebenen manuellen Schwellenwert hinauszugehen, wurde der Parameterraum, der von den Anpassungsparametern der Amplituden- und CV-Restitutionskurven aufgespannt wird, nach natürlich vorkommenden Clustern durchsucht. Obgleich Cluster vorhanden waren, deutete ihre unzureichende Trennung auf einen kontinuierlichen, sich mit dem Schweregrad der Substratpathologie verändernden Verlauf der Amplituden- und CV-Kurven hin. Schließlich wurde eine einfachere und schnellere Methode zur Erfassung von Restitutionsdaten vorgestellt, die einen vergleichbaren Informationsgehalt auf der Grundlage der maximalen Steigung anstelle einer vollständigen Restitutionskurve liefert. In dieser Arbeit werden zwei neue Methoden vorgestellt, der CVAR-Seg-Algorithmus und die inverse Doppelellipsenmethode, die eine Auswertung von S1S2 Stimulationsprotokollen und die Bestimmung der lokalen Leitungsgeschwindigkeit beschleunigen und verbessern. Darüber hinaus werden in dieser Arbeit Merkmale von pathologischem Gewebe definiert, die zur Identifizierung von Arrhythmiequellen beitragen. Somit trägt diese Arbeit dazu bei, die Therapie von Vorhofflimmern in Zukunft zu verbessern

    Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction

    Full text link
    [ES] Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente denominada como infarto de miocardio (IM). Tras superar un IM, un considerable número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una reentrada a través de canales de conducción (CC), filamentos de miocardio superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente para interrumpir de manera permanente la propagación eléctrica a través de los CCs responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito relativamente baja. En primer lugar, realizamos una revisión exhaustiva de la literatura referente a los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento de sus principales características y los métodos usados en su construcción, con especial atención sobre los modelos orientados a simulación de EF cardíaca. Luego, usando datos clínicos de un paciente con historial de TV relacionada con infarto, diseñamos e implementamos una serie de estrategias y metodologías para (1) generar modelos computacionales 3D específicos de paciente de ventrículos infartados que puedan usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. Por último, realizamos el estudio retrospectivo por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con el infarto usando diferentes configuraciones de modelado para la ZB. Validamos nuestros resultados mediante la reproducción, con una precisión razonable, del ECG del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación endocárdica obtenidos invasivamente mediante sistemas de mapeado electroanatómico en este último caso. Esto permitió encontrar la ubicación y analizar las características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que nuestro planteamiento está completamente basado en datos clínicos no invasivos adquiridos antes de la intervención real. Estos resultados confirman la viabilidad de la realización de estudios in-silico de EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la metodología propuesta requiere de notables mejoras y validación por medio de es[CA] Les malalties cardiovasculars constitueixen la principal causa de morbiditat i mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de miocardi (IM). Després de superar un IM, un considerable nombre de pacients desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase crònica de l'IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. Aquest tipus concret de TV normalment s'origina per una reentrada a través dels canals de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l'infart fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d'evitar episodis recurrents de TV, l'ablació per radiofreqüència (ARF), un procediment mínimament invasiu realitzat mitjançant cateterisme en el laboratori de electrofisiologia (EF), s'usa habitualment per a interrompre de manera permanent la propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del procediment d'ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies pre-procediment per a millorar la planificació de l'ARF i, d'aquesta manera, augmentar la taxa d'èxit, que es relativament baixa. En primer lloc, realitzem una revisió exhaustiva de la literatura referent als models cardíacs 3D existents, amb la finalitat d'obtindre un profund coneixement de les seues principals característiques i els mètodes usats en la seua construcció, amb especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, usant dades clíniques d'un pacient amb historial de TV relacionada amb infart, dissenyem i implementem una sèrie d'estratègies i metodologies per a (1) generar models computacionals 3D específics de pacient de ventricles infartats capaços de realitzar simulacions de EF cardíaca a nivell d'òrgan, incloent la cicatriu de l'infart i la regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors que permeten l'obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF realitzats en el laboratori de EF abans de l'ablació. La finalitat d'aquestes metodologies és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius d'ablació òptims per al procediment d'ARF. Finalment, a manera de prova de concepte, realitzem l'estudi retrospectiu per simulació d'un cas, en el qual aconseguim induir la TV reentrant relacionada amb l'infart usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així com en ritme sinusal a partir dels mapes d'activació endocardíac obtinguts invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. Això va permetre trobar la ubicació i analitzar les característiques del CC responsable de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat abans del procediment d'ARF, ja que el nostre plantejament està completament basat en dades clíniques no invasius adquirits abans de la intervenció real. Aquests resultats confirmen la viabilitat de la realització d'estudis in-silico de EF personalitzats i pre-procediment d'utilitat, així com el potencial de l'abordatge proposat per a arribar a ser en un futur una eina de suport per a la planificació de l'ARF en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia proposada requereix de notables millores i validació per mitjà d'estudis de simulació amb grans cohorts de pacients.[EN] Cardiovascular diseases represent the main cause of morbidity and mortality worldwide, causing around 18 million deaths every year. Among these diseases, the most common one is the ischaemic heart disease, usually referred to as myocardial infarction (MI). After surviving to a MI, a considerable number of patients develop life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, that is, weeks, months or even years after the initial acute phase. This particular type of VT is typically sustained by reentry through slow conducting channels (CC), which are filaments of surviving myocardium that cross the non-conducting fibrotic infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed by catheterization in the electrophysiology (EP) laboratory, is commonly used to interrupt the electrical conduction through the CCs responsible for the VT permanently. However, besides being invasive, risky and time-consuming, in the cases of VTs related to chronic MI, up to 50% of patients continue suffering from recurrent VT episodes after the RFA procedure. Therefore, there exists a need to develop novel pre-procedural strategies to improve RFA planning and, thereby, increase this relatively low success rate. First, we conducted an exhaustive review of the literature associated with the existing 3D cardiac models in order to gain a deep knowledge about their main features and the methods used for their construction, with special focus on those models oriented to simulation of cardiac EP. Later, using a clinical dataset of a chronically infarcted patient with a history of infarct-related VT, we designed and implemented a number of strategies and methodologies to (1) build patient-specific 3D computational models of infarcted ventricles that can be used to perform simulations of cardiac EP at the organ level, including the infarct scar and the surrounding region known as border zone (BZ); (2) construct 3D torso models that enable to compute the simulated ECG; and (3) carry out pre-procedural personalized in-silico EP studies, trying to replicate the actual EP studies conducted in the EP laboratory prior to the ablation. The goal of these methodologies is to allow locating the CCs into the 3D ventricular model in order to help in defining the optimal ablation targets for the RFA procedure. Lastly, as a proof-of-concept, we performed a retrospective simulation case study, in which we were able to induce an infarct-related reentrant VT using different modelling configurations for the BZ. We validated our results by reproducing with a reasonable accuracy the patient's ECG during VT, as well as in sinus rhythm from the endocardial activation maps invasively recorded via electroanatomical mapping systems in this latter case. This allowed us to find the location and analyse the features of the CC responsible for the clinical VT. Importantly, such in-silico EP study might have been conducted prior to the RFA procedure, since our approach is completely based on non-invasive clinical data acquired before the real intervention. These results confirm the feasibility of performing useful pre-procedural personalized in-silico EP studies, as well as the potential of the proposed approach to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs in the future. Nevertheless, the developed methodology requires further improvements and validation by means of simulation studies including large cohorts of patients.During the carrying out of this doctoral thesis, the author Alejandro Daniel López Pérez was financially supported by the Ministerio de Economía, Industria y Competitividad of Spain through the program Ayudas para contratos predoctorales para la formación de doctores, with the grant number BES-2013-064089.López Pérez, AD. (2019). Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124973TESI

    Advanced electrocardiography in myocardial electrical remodeling : insights from cardiovascular magnetic resonance imaging

    Get PDF
    The electrocardiogram (ECG) is a common diagnostic tool in cardiology thanks to its high accessibility and low cost. However, in several cardiovascular diagnoses, including left ventricular hypertrophy (LVH), current conventional ECG measures and criteria have a poor diagnostic performance. LVH is associated with hypertension and diabetes, but is often missed by the standard 12-lead ECG. LVH is typically diagnosed by non-invasive imaging methods. Cardiovascular magnetic resonance (CMR) is the gold standard for diagnosing LVH. Advanced-ECG (A-ECG) is a term used to describe a combination of advanced ECG analysis methods, and has been shown to be of diagnostic and prognostic utility. The aims of this thesis were to investigate the ability of A-ECG to diagnose LVH, using CMR as reference, as well as investigating the prognostic ability of A-ECG measures with regards to morbidity and mortality. We found that increased extracellular volume fraction by CMR reduces voltage measures of conventional ECG criteria for LVH, including the Sokolow-Lyon index and Cornell indices. This may explain the limited sensitivity of the ECG in detecting LVH. We further investigated different patterns of LVH based on the relation between increased mass and wall thickness, and found that the different patterns differ on their electrocardiographic manifestation by A- ECG. Furthermore, A-ECG had a higher diagnostic performance compared to conventional ECG LVH criteria. The ECG detects electrical changes, while LVH represents a structural change. Therefore, the electrical changes associated with LVH may be better referred to as left ventricular electrical remodeling (LVER). LVER, defined as the A-ECG measure spatial QRS-T angle exceeding the upper limit of normal, was found to have a higher accuracy in diagnosing LVH compared to conventional ECG LVH criteria. We also found that patients with LVER have a worse prognosis compared to patients without LVER. Lastly, we optimized a score based on ECG and CMR measures, respectively, to predict morbidity and mortality, and found that ECG and CMR are both strong and independent predictors of events. In conclusion, conventional ECG criteria lack sensitivity in detecting LVH, which may be explained by increased extracellular volume fraction or different structural patterns in LVH. A-ECG has a higher diagnostic accuracy than conventional ECG criteria for LVH and is prognostic beyond CMR measures. Lastly, we suggest that LVER should be used when electrical changes in LVH are addressed

    Modelling the interaction between induced pluripotent stem cells derived cardiomyocytes patches and the recipient hearts

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide. The single biggest killer is represented by ischemic heart disease. Myocardial infarction causes the formation of non-conductive and non-contractile, scar-like tissue in the heart, which can hamper the heart's physiological function and cause pathologies ranging from arrhythmias to heart failure. The heart can not recover the tissue lost due to myocardial infarction due to the myocardium's limited ability to regenerate. The only available treatment is heart transpalant, which is limited by the number of donors and can elicit an adverse response from the recipients immune system. Recently, regenerative medicine has been proposed as an alternative approach to help post-myocardial infarction hearts recover their functionality. Among the various techniques, the application of cardiac patches of engineered heart tissue in combination with electroactive materials constitutes a promising technology. However, many challenges need to be faced in the development of this treatment. One of the main concerns is represented by the immature phenotype of the stem cells-derived cardiomyocytes used to fabricate the engineered heart tissue. Their electrophysiological differences with respect to the host myocardium may contribute to an increased arrhythmia risk. A large number of animal experiments are needed to optimize the patches' characteristics and to better understand the implications of the electrical interaction between patches and host myocardium. In this Thesis we leveraged cardiac computational modelling to simulate \emph{in silico} electrical propagation in scarred heart tissue in the presence of a patch of engineered heart tissue and conductive polymer engrafted at the epicardium. This work is composed by two studies. In the first study we designed a tissue model with simplified geometry and used machine learning and global sensitivity analysis techniques to identify engineered heart tissue patch design variables that are important for restoring physiological electrophysiology in the host myocardium. Additionally, we showed how engineered heart tissue properties could be tuned to restore physiological activation while reducing arrhythmic risk. In the second study we moved to more realistic geometries and we devised a way to manipulate ventricle meshes obtained from magnetic resonance images to apply \emph{in silico} engineered heart tissue epicardial patches. We then investigated how patches with different conduction velocity and action potential duration influence the host ventricle electrophysiology. Specifically, we showed that appropriately located patches can reduce the predisposition to anatomical isthmus mediated re-entry and that patches with a physiological action potential duration and higher conduction velocity were most effective in reducing this risk. We also demonstrated that patches with conduction velocity and action potential duration typical of immature stem cells-derived cardiomyocytes were associated with the onset of sustained functional re-entry in an ischemic cardiomyopathy model with a large transmural scar. Finally, we demonstrated that patches electrically coupled to host myocardium reduce the likelihood of propagation of focal ectopic impulses. This Thesis demonstrates how computational modelling can be successfully applied to the field of regenerative medicine and constitutes the first step towards the creation of patient-specific models for developing and testing patches for cardiac regeneration.Open Acces

    Quantification of Stem Cell Derived Cardiomyocyte Beating Mechanics using Video Microscopy Image Analysis

    Get PDF
    Until recently, the studying of human cardiac cells had been a difficult and to some extent dangerous task due to the risks involved in cardiac biopsies. Induced pluripotent stem cell technology enables the conversion of human adult cells to stem cells, which can be further differentiated to cardiac cells. These cells have the same genotype as the patient from whom they were derived, allowing the studying of genetic cardiac diseases, as well as the cardiac safety and efficacy screening of pharmaceutical agents using human cardiac cells instead of animal cell models. Using the stem cell derived cardiac cells in these studies, however, requires novel and specialized measurement methods for understanding the functioning of these cells.Long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT) are genetic cardiac diseases, which can induce deadly arrhythmias. The induced pluripotent stem cell derived cardiac cells allow the studying of these diseases in laboratory conditions. A greater understanding of these diseases is important for prevention of sudden cardiac death, more accurate diagnosis, and development of possible treatment options. In order to understand the functioning of these cells, new methods are sought after. Traditionally, the electrical function of these cells are measured. However, the primary function of the cardiac cells is to beat in order to pump blood for circulation. The methods to quantify this mechanical function, the contraction and relaxation movement of cells, has been in lesser focus.The main objective of this work is to develop a measurement method, which allows the in vitro quantification of biomechanics of single human cardiac cells using video microscopy. The method uses digital image correlation to determine movement occurring in cardiac cells during contractile movement. The method is implemented in a software tool, which enables the characterization and parametrization of the cardiomyocyte beating function. The beating function itself can be affected by environmental factors, pharmacological agents and cardiac disease.Here, the quantification of mechanical function is performed using digital image correlation to estimate displacement between subsequent video frames. Velocity vector fields can then be used to calculate signals that characterize the contraction and relaxation movement. We estimate its accuracy in cardiac cell studies using artificial data sets and its feasibility with concurrent electrical measurements. Cardiac diseases are studied by quantifying beating mechanics from Long QT and CPVT specific cell lines. Traditional electrophysiological measurements are used for validation and comparison. The interaction between calcium and contraction is studied with a simultaneous measurement of biomechanics and calcium imaging.This thesis resulted a new and accessible analysis method capable of measuring cardiomyocyte biomechanics. This method was determined to be non-toxic and minimally invasive, and found capable to be automated for high-throughput analysis. Due to not harming the cells, repeated measurements are enabled. Using the method, we observed for the first time abnormal beating phenotypes in two long QT associated mutations in single cardiomyocytes. Further, we demonstrated a concurrent calcium and motion measurement without background corrections. This provided also evidence that this combined analysis could be particularly useful in some cardiac disease cases. The methods and results shown in the thesis represent key early advances in the field.The method was implemented in a software tool, which enabled cell biologists to use it different stages of cardiomyocyte studies. Overall, the results of the thesis represent an accessible method of studying cardiomyocyte biomechanics, which improves the understanding of contraction-calcium coupling and paves way for high-throughput analysis of cardiomyocytes in genetic cardiac disease and pharmacological research.Viime aikoihin asti ihmisen sydämen solujen tutkiminen on ollut vaikeaa ja vaarallista, sillä näytepalojen ottamiseen sydämestä liittyy paljon riskejä. Menetelmä indusoitujen pluripotenttien kantasolujen tuottamiseen sallii aikuisten solujen muuntamisen takaisin kantasolumuotoon, josta ne voidaan vielä erilaistaa sydänsoluiksi. Näillä soluilla on sama geeniperimä kuin potilaalla, josta ne on johdettu. Tämä luo mahdollisuuden tutkia geneettisiä sydänsairauksia, ja sallii lääkeaineiden sydänturvallisuuden ja tehokkuuden tutkimisen käyttäen ihmisen sydänsoluja eläinkokeiden sijaan. Kantasolupohjaisten sydänsolujen käyttäminen näissä tutkimuksissa kuitenkin vaatii uusia ja erityisiä mittausmenetelmiä solujen toiminnan ymmärtämiseksi.Pitkä QT-syndrooma (LQTS) ja katekolamiiniherkkä polymorfinen kammiotakykardia (CPVT) ovat perinnöllisiä sydänsairauksia, jotka voivat aiheuttaa kuolemaan johtavia rytmihäiriöitä. Indusoiduista pluripotenteista kantasoluista johdettujen sydänsolujen avulla voidaan tutkia näitä sairauksia laboratorio-oloissa. Ymmärtämällä paremmin näitä sairauksia voidaan saavuttaa tarkempia diagnooseja ja kehittää mahdollisia uusia hoitomuotoja sydänperäisten äkkikuolemien estämiseksi. Uusia mittausmenetelmiä tarvitaan, jotta näiden solujen toimintaa voidaan tutkia. Näiden solujen toiminnallisuutta on perinteisesti tutkittu mittaamalla niiden sähköistä toimintaa. Sydänsolujen pääasiallinen tehtävä on kuitenkin mekaaninen: pumpata verta sydämestä verenkiertoon. Tätä solujen supistumista ja rentoutumista mittaavia menetelmiä on tutkittu vähemmän.Tämän väitöskirjan päämäärä on kehittää mittausmenetelmä, jolla voidaan määrittää yksittäisten ihmisen sydänsolujen biomekaniikkaa in vitro videomikroskopiaa käyttäen. Menetelmä käyttää digitaalista kuvien korrelaatiota määrittämään sydänsoluissa supistusliikkeen aikana tapahtuvan liikkeen. Menetelmää käytetään ohjelmistotyökalussa, jolla voidaan karakterisoida ja parametrisoida sydänsolun syketoimintaa. Syketoimintaan voi vaikuttaa niin ympäristötekijät, lääkeaineet kuin sydänsairaudetkin.Tässä väitöskirjassa sydänsolujen mekaanista toimintaa mitataan videomikroskopian avulla määrittämällä liikettä videon peräkkäisistä kuvista digitaalista kuvakorrelaatiota käyttäen. Saaduista nopeusvektorikentistä lasketaan supistumista ja rentoutumista kuvaavia signaaleja. Arvoimme sen tarkkuutta sydänsolututkimuksissa käyttäen keinotekoisia tietoaineistoja ja sen soveltuvuutta yhtäaikaisilla sähköisillä mittauksilla. Tutkimme perinnöllisiä sydänsairauksia (LQTS ja CPVT) mittaamalla sykinnän mekaniikkaa yksittäisistä sydänsoluista, jotka ovat johdettu näitä sairauksia kantavien potilaiden kantasolulinjoista. Perinteisiä sähköfysiologisia mittauksia käytetään menetelmän validointiin ja vertailuun. Kalsiumin ja sykinnän vuorovaikutusta tutkitaan yhtäaikaisella biomekaniikan ja kalsiumaineenvaihdunnan mittauksella.Tämän väitöskirjan tuloksena saatiin aikaan uusi ja helposti lähestyttävä menetelmä sydänlihassolujen biomekaniikan tutkimiseen. Menetelmä ei ole soluille haitallinen ja se vaikuttaa solujen toimintaan perinteisiin menetelmiin verrattuna vain vähän. Se on automatisoitavissa suuria näytemääriä varten. Koska se ei vahingoita soluja, mittaukset voidaan myös toistaa samoilla soluilla. Tätä menetelmää käyttäen havaitsimme ensimmäisinä kahdesta eri LQT1-mutaatiota kantavista potilaista johdetuissa yksittäisissä sydänsoluissa poikkeavia sykintätyyppejä. Lisäksi, osoitimme yhtäaikaisen kalsiumin ja liikkeen mittauksen olevan mahdollinen ilman laskennallisia taustan korjauksia ja havaitsimme, että näin yhdistetystä analyysista voi olla erityistä hyötyä sydänsairauksien tutkimisessa. Väitöskirjassa esitetyt menetelmät ja tulokset edustavat alan tärkeitä ensimmäisiä edistysaskelia.Tätä menetelmää käytettiin väitöskirjan ohella tehdyssä ohjelmistotyökalussa, jota voidaan käyttää sydänlihassolujen tutkimuksen eri vaiheissa. Väitöskirjan tuloksena syntynyt helposti lähestyttävä menetelmä sallii sydänlihassolujen biomekaniikan analyysin. Sen avulla voidaan myös ymmärtää paremmin supistusliikkeen ja kalsiumin kytkentää. Kokonaisuutena, väitöskirja luo pohjaa sydänlihassolujen suurten näytemäärien analyysille sydänsairauksien ja lääkeaineiden tutkimuksessa

    Advances in Electrocardiograms

    Get PDF
    Electrocardiograms have become one of the most important, and widely used medical tools for diagnosing diseases such as cardiac arrhythmias, conduction disorders, electrolyte imbalances, hypertension, coronary artery disease and myocardial infarction. This book reviews recent advancements in electrocardiography. The four sections of this volume, Cardiac Arrhythmias, Myocardial Infarction, Autonomic Dysregulation and Cardiotoxicology, provide comprehensive reviews of advancements in the clinical applications of electrocardiograms. This book is replete with diagrams, recordings, flow diagrams and algorithms which demonstrate the possible future direction for applying electrocardiography to evaluating the development and progression of cardiac diseases. The chapters in this book describe a number of unique features of electrocardiograms in adult and pediatric patient populations with predilections for cardiac arrhythmias and other electrical abnormalities associated with hypertension, coronary artery disease, myocardial infarction, sleep apnea syndromes, pericarditides, cardiomyopathies and cardiotoxicities, as well as innovative interpretations of electrocardiograms during exercise testing and electrical pacing

    Cyclic Nucleotide Signaling and the Cardiovascular System

    Get PDF
    The cyclic nucleotides 3',5'-adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) play important roles in the control of cardiovascular function under physiological and pathological conditions. In this book, which is a reprint of a Special Issue of the Journal of Cardiovascular Development and Disease entitled "Cyclic Nucleotide Signaling and the Cardiovascular System", internationally recognized experts give an overview of this vibrant scientific field. The first series of articles deal with the localization and function of membrane-bound and soluble adenylate cyclases, followed by articles on the roles of phosphodiesterase isoforms in the heart. Cyclic nucleotide signaling takes place in nanodomains and the A-kinase anchor proteins (AKAPS) are essential for the compartmentalized assembly of signaling proteins into functional complexes. Reviews on the role of AKAP proteins in the physiology and pathophysiology of the heart are also included in this book. Cyclic nucleotides act through effector proteins and articles on EPAC and POPDC proteins inform the reader of recent developments on these topics. A major advancement in our understanding of cyclic nucleotide signaling came through the use of genetically encoded cAMP sensor molecules, and a series of articles review the current insight that these reporter molecules have provided. The final set of articles in this book deals with the association of the cyclic nucleotide pathway and cardiovascular disease as well as the development of novel therapeutic approaches. Thomas Brand and Enno Klussmann Special Issue Editor

    Aspects of Pacemakers

    Get PDF
    Outstanding steps forward were made in the last decades in terms of identification of endogenous pacemakers and the exploration of their controllability. New "artifical" devices were developed and are now able to do much more than solely pacemaking of the heart. In this book different aspects of pacemaker - functions and interactions, in various organ systems were examined. In addition, various areas of application and the potential side effects and complications of the devices were discussed
    corecore