124 research outputs found

    Bio-inspired friction switches: adaptive pulley systems

    Get PDF
    Frictional influences in tendon-driven robotic systems are generally unwanted, with efforts towards minimizing them where possible. In the human hand however, the tendon-pulley system is found to be frictional with a difference between high-loaded static post-eccentric and post-concentric force production of 9-12% of the total output force. This difference can be directly attributed to tendon-pulley friction. Exploiting this phenomenon for robotic and prosthetic applications we can achieve a reduction of actuator size, weight and consequently energy consumption. In this study, we present the design of a bio-inspired friction switch. The adaptive pulley is designed to minimize the influence of frictional forces under low and medium-loading conditions and maximize it under high-loading conditions. This is achieved with a dual-material system that consists of a high-friction silicone substrate and low-friction polished steel pins. The system, designed to switch its frictional properties between the low-loaded and high-loaded conditions, is described and its behavior experimentally validated with respect to the number and spacing of pins. The results validate its intended behavior, making it a viable choice for robotic tendon-driven systems.Comment: Conference. First submission, before review

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    Modeling of Force and Motion Transmission in Tendon-Driven Surgical Robots

    Get PDF
    Tendon-based transmission is a common approach for transferring motion and forces in surgical robots. In spite of design simplicity and compactness that comes with the tendon drives, there exists a number of issues associated with the tendon-based transmission. In particular, the elasticity of the tendons and the frictional interaction between the tendon and the routing result in substantially nonlinear behavior. Also, in surgical applications, the distal joints of the robot and instruments cannot be sensorized in most cases due to technical limitations. Therefore, direct measurement of forces and use of feedback motion/force control for compensation of uncertainties in tendon-based motion and force transmission are not possible. However, force/motion estimation and control in tendon-based robots are important in view of the need for haptic feedback in robotic surgery and growing interest in automatizing common surgical tasks. One possible solution to the above-described problem is the development of mathematical models for tendon-based force and motion transmission that can be used for estimation and control purposes. This thesis provides analysis of force and motion transmission in tendon-pulley based surgical robots and addresses various aspects of the transmission modeling problem. Due to similarities between the quasi-static hysteretic behavior of a tendon-pulley based da Vinci® instrument and that of a typical tendon-sheath mechanism, a distributed friction approach for modeling the force transmission in the instrument is developed. The approach is extended to derive a formula for the apparent stiffness of the instrument. Consequently, a method is developed that uses the formula for apparent stiffness of the instrument to determine the stiffness distribution of the tissue palpated. The force transmission hysteresis is further investigated from a phenomenological point of view. It is shown that a classic Preisach hysteresis model can accurately describe the quasi-static input-output force transmission behavior of the da Vinci® instrument. Also, in order to describe the distributed friction effect in tendon-pulley mechanisms, the creep theory from belt mechanics is adopted for the robotic applications. As a result, a novel motion transmission model is suggested for tendon-pulley mechanisms. The developed model is of pseudo-kinematic type as it relates the output displacement to both the input displacement and the input force. The model is subsequently used for position control of the tip of the instrument. Furthermore, the proposed pseudo-kinematic model is extended to compensate for the coupled-hysteresis effect in a multi-DOF motion. A dynamic transmission model is also suggested that describes system’s response to high frequency inputs. Finally, the proposed motion transmission model was used for modeling of the backlash-like hysteresis in RAVEN II surgical robot

    Towards a Realistic and Self-Contained Biomechanical Model of the Hand

    Get PDF

    Design, Modeling and Control of a 3D Printed Monolithic Soft Robotic Finger with Embedded Pneumatic Sensing Chambers

    Get PDF
    IEEE This paper presents a directly 3D printed soft monolithic robotic finger with embedded soft pneumatic sensing chambers (PSC) as position and touch sensors. The monolithic finger was fabricated using a low-cost and open-source fused deposition modeling (FDM) 3D printer that employs an off-the-shelf soft and flexible commercially available thermoplastic polyurethane (TPU). A single soft hinge with an embedded PSC was optimized using finite element modeling (FEM) and a hyperelastic material model to obtain a linear relationship between the internal change in the volume of its PSC and the corresponding input mechanical modality, to minimize its bending stiffness and to maximize its internal volume. The soft hinges with embedded PSCs have several advantages, such as fast response to very small changes in their internal volume (~0.0026ml/°), linearity, negligible hysteresis, repeatability, reliability, long lifetime and low power consumption. Also, the flexion of the soft robotic finger was predicted using a geometric model for use in real-time control. The real-time position and pressure/force control of the soft robotic finger were achieved using feedback signals from the soft hinges and the touch PSC embedded in the tip of the finger. This study contributes to the development of seamlessly embedding optimized sensing elements in the monolithic topology of a soft robotic system and controlling the robotic system using the feedback data provided by the sensing elements to validate their performance

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    Whole-Hand Robotic Manipulation with Rolling, Sliding, and Caging

    Get PDF
    Traditional manipulation planning and modeling relies on strong assumptions about contact. Specifically, it is common to assume that contacts are fixed and do not slide. This assumption ensures that objects are stably grasped during every step of the manipulation, to avoid ejection. However, this assumption limits achievable manipulation to the feasible motion of the closed-loop kinematic chains formed by the object and fingers. To improve manipulation capability, it has been shown that relaxing contact constraints and allowing sliding can enhance dexterity. But in order to safely manipulate with shifting contacts, other safeguards must be used to protect against ejection. “Caging manipulation,” in which the object is geometrically trapped by the fingers, can be employed to guarantee that an object never leaves the hand, regardless of constantly changing contact conditions. Mechanical compliance and underactuated joint coupling, or carefully chosen design parameters, can be used to passively create a caging grasp – protecting against accidental ejection – while simultaneously manipulating with all parts of the hand. And with passive ejection avoidance, hand control schemes can be made very simple, while still accomplishing manipulation. In place of complex control, better design can be used to improve manipulation capability—by making smart choices about parameters such as phalanx length, joint stiffness, joint coupling schemes, finger frictional properties, and actuator mode of operation. I will present an approach for modeling fully actuated and underactuated whole-hand-manipulation with shifting contacts, show results demonstrating the relationship between design parameters and manipulation metrics, and show how this can produce highly dexterous manipulators

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time
    corecore