22,681 research outputs found

    Invited review: Epidemics on social networks

    Get PDF
    Since its first formulations almost a century ago, mathematical models for disease spreading contributed to understand, evaluate and control the epidemic processes.They promoted a dramatic change in how epidemiologists thought of the propagation of infectious diseases.In the last decade, when the traditional epidemiological models seemed to be exhausted, new types of models were developed.These new models incorporated concepts from graph theory to describe and model the underlying social structure.Many of these works merely produced a more detailed extension of the previous results, but some others triggered a completely new paradigm in the mathematical study of epidemic processes. In this review, we will introduce the basic concepts of epidemiology, epidemic modeling and networks, to finally provide a brief description of the most relevant results in the field.Comment: 17 pages, 13 figure

    Dynamics of interacting diseases

    Full text link
    Current modeling of infectious diseases allows for the study of complex and realistic scenarios that go from the population to the individual level of description. However, most epidemic models assume that the spreading process takes place on a single level (be it a single population, a meta-population system or a network of contacts). In particular, interdependent contagion phenomena can only be addressed if we go beyond the scheme one pathogen-one network. In this paper, we propose a framework that allows describing the spreading dynamics of two concurrent diseases. Specifically, we characterize analytically the epidemic thresholds of the two diseases for different scenarios and also compute the temporal evolution characterizing the unfolding dynamics. Results show that there are regions of the parameter space in which the onset of a disease's outbreak is conditioned to the prevalence levels of the other disease. Moreover, we show, for the SIS scheme, that under certain circumstances, finite and not vanishing epidemic thresholds are found even at the thermodynamic limit for scale-free networks. For the SIR scenario, the phenomenology is richer and additional interdependencies show up. We also find that the secondary thresholds for the SIS and SIR models are different, which results directly from the interaction between both diseases. Our work thus solve an important problem and pave the way towards a more comprehensive description of the dynamics of interacting diseases.Comment: 24 pages, 9 figures, 4 tables, 3 appendices. Final version accepted for publication in Physical Review

    The Scaling of Human Contacts in Reaction-Diffusion Processes on Heterogeneous Metapopulation Networks

    Full text link
    We present new empirical evidence, based on millions of interactions on Twitter, confirming that human contacts scale with population sizes. We integrate such observations into a reaction-diffusion metapopulation framework providing an analytical expression for the global invasion threshold of a contagion process. Remarkably, the scaling of human contacts is found to facilitate the spreading dynamics. Our results show that the scaling properties of human interactions can significantly affect dynamical processes mediated by human contacts such as the spread of diseases, and ideas

    A class of pairwise models for epidemic dynamics on weighted networks

    Get PDF
    In this paper, we study the SISSIS (susceptible-infected-susceptible) and SIRSIR (susceptible-infected-removed) epidemic models on undirected, weighted networks by deriving pairwise-type approximate models coupled with individual-based network simulation. Two different types of theoretical/synthetic weighted network models are considered. Both models start from non-weighted networks with fixed topology followed by the allocation of link weights in either (i) random or (ii) fixed/deterministic way. The pairwise models are formulated for a general discrete distribution of weights, and these models are then used in conjunction with network simulation to evaluate the impact of different weight distributions on epidemic threshold and dynamics in general. For the SIRSIR dynamics, the basic reproductive ratio R0R_0 is computed, and we show that (i) for both network models R0R_{0} is maximised if all weights are equal, and (ii) when the two models are equally matched, the networks with a random weight distribution give rise to a higher R0R_0 value. The models are also used to explore the agreement between the pairwise and simulation models for different parameter combinations

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio
    • …
    corecore