
Rattana, P; Blyuss, KB; Eames, KTD; Kiss, IZ (2013) A Class of Pair-
wise Models for Epidemic Dynamics on Weighted Networks. Bulletin
of mathematical biology, 75 (3). pp. 466-490. ISSN 0092-8240 DOI:
10.1007/s11538-013-9816-7

Downloaded from: http://researchonline.lshtm.ac.uk/705565/

DOI: 10.1007/s11538-013-9816-7

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/13116968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/705565/
http://dx.doi.org/10.1007/s11538-013-9816-7
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


Bulletin of Mathematical Biology manuscript No.
(will be inserted by the editor)

A class of pairwise models for epidemic dynamics on1

weighted networks2

Prapanporn Rattana · Konstantin B.3

Blyuss · Ken T.D. Eames · Istvan Z. Kiss4

5

the date of receipt and acceptance should be inserted later6

Abstract In this paper, we study the SIS (susceptible-infected-susceptible) and7

SIR (susceptible-infected-removed) epidemic models on undirected, weighted net-8

works by deriving pairwise-type approximate models coupled with individual-9

based network simulation. Two different types of theoretical/synthetic weighted10

network models are considered. Both models start from non-weighted networks11

with fixed topology followed by the allocation of link weights in either (i) random12

or (ii) fixed/deterministic way. The pairwise models are formulated for a general13

discrete distribution of weights, and these models are then used in conjunction14

with network simulation to evaluate the impact of different weight distributions15

on epidemic threshold and dynamics in general. For the SIR dynamics, the basic16

reproductive ratio R0 is computed, and we show that (i) for both network mod-17

els R0 is maximised if all weights are equal, and (ii) when the two models are18

“equally-matched”, the networks with a random weight distribution give rise19

to a higher R0 value. The models are also used to explore the agreement between20

the pairwise and simulation models for different parameter combinations.21

1 Introduction22

Conventional models of epidemic spread consider a host population of23

identical individuals, each interacting in the same way with each of the24

others (see [1,17,33] and references therein). At the same time, in or-25

der to develop more realistic mathematical models for the spread of26

infectious diseases, it is important to obtain the best possible represen-27

tation of the corresponding transmission mechanism. To achieve this,28

more recent models have included some of the many complexities that29
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have been observed in mixing patterns. One such approach consists in30

splitting the population into a set of different subgroups, each with dif-31

ferent social behaviours. Even more detail is included within network32

approaches which allow to include differences between individuals, not33

just between sub-populations. In such models, each individual is repre-34

sented as a node, and interactions that could permit the transmission35

of infection appear as edges linking nodes. The last decade has seen a36

substantial increase in the research of how infectious diseases spread37

over large networks of connected nodes [34,39], where networks them-38

selves can represent either small social contact networks [38] or larger39

scale travel networks [15,19], including global aviation networks [41,42].40

Importantly, the characteristics of the network, such as the average de-41

gree and the node degree distribution have a profound effect on the42

dynamics of the infectious disease spread, and hence significant efforts43

are made to capture properties of realistic contact networks.44

One of the simplifying assumptions often put into network models is45

that all links are equally likely to transmit infection [10,24,34,45]. How-46

ever, a more detailed consideration leads to an observation that this is47

often not the case, as some links are likely to be far more capable of48

transmitting infection than others due to closer contacts (e.g. within49

households [7]) or long-duration interactions [23,44,45,46]. To account50

for this heterogeneity in properties of social interactions, network mod-51

els can be adapted, thus resulting in weighted contact networks, where con-52

nections between different nodes have different weights. These weights53

may be associated with the duration, proximity, or social setting of54

the interaction, and the key point is that they are expected to be cor-55

related with the risk of disease transmission. The precise relationship56

between the properties of an interaction and its riskiness is hugely com-57

plex; here, we will consider a“weight” that is exactly proportional to58

the transmission rate along a link. Although consideration of weighted59

networks may seem as an additional complication for the analysis of60

epidemic dynamics, in fact it provides a much more realistic represen-61

tation of actual contact networks.62

Substantial amount of work has been done on the analysis of weighted63

networks [3,4,5,37] and scale-free networks with different types of weight64

distribution [48]. In epidemiological context, Britton et al. [11] have de-65

rived an expression for the basic reproductive ratio in weighted net-66

works with generic distributions of node degree and link weight, and67

Deijfen [16] has performed a similar analysis to study vaccination in68

such networks. In terms of practical epidemiological applications, weighted69

networks have already been effectively used to study control of global70

pandemics [13,14,22] and the spread of animal disease due to cattle71

movement between farms [26]. Eames et al. [22] have considered an SIR72

model on an undirected weighted network, where rather than using73

some theoretical formalism to generate an idealized network, the au-74

thors have relied on social mixing data obtained from questionnaires75

completed by members of a peer group [44] to construct a realistic76

weighted network. Having analysed the dynamics of epidemic spread77

in a such a network, they showed how information about node-specific78



3

infection risk can be used to develop targeted preventative vaccina-79

tion strategies. Yan et al. [49] analysed a model on weighted scale-free80

networks and found that heterogeneity in weight distribution leads81

to a slowdown in the spread of epidemics. Furthermore, they have82

shown that for a given network topology and mean infectivity, epidemics83

spread fastest in unweighted networks. Yang et al. [51] have shown that84

disease prevalence can be maximized when the edge weights are chosen85

to be inversely proportional to the degrees of receiving nodes but, in this86

case, the transmissibility was not directly proportional to the weights87

and weights were also asymmetric. Yang & Zhou [50] have considered88

SIS epidemics on homogeneous networks with uniform or power-law89

edge weight distribution and shown how to derive a certain type of90

mean-field description for such models.91

In this paper, we consider the dynamics of an infectious disease92

spreading on weighted networks with different weight distributions.93

Since we are primarily concerned with the effects of weight distribution94

on the disease dynamics, the connection matrix will be assumed to be95

symmetric, representing the situation when the weights can only be96

different for different network edges, but for a given edge the weight is97

the same irrespective of the direction of infection. From epidemiological98

perspective, we consider both the case when the disease confers per-99

manent immunity (represented by an SIR model), and the case when100

the immunity is short-lived, and upon recovery the individuals return101

to the class of susceptibles (SIS model). For both of these cases we102

derive the corresponding ODE-based pairwise models and their closure103

approximations. Numerical simulation of both the epidemic spread on104

the network and the pairwise approximations are performed.105

The outline of this paper is as follows. In the next section, the con-106

struction of specific weighted networks to be used for the analysis of epi-107

demic dynamics is discussed. This is complemented by the derivation of108

corresponding pairwise models and their closure approximations. Sec-109

tion 3 contains the derivation of the basic reproductive ratio R0 for the110

SIR model and for different weight distributions as well as numerical111

simulation of both network models and their pairwise ODE counter-112

parts. The paper concludes in Section 4 with discussion of results and113

possible further extensions of this work.114

2 Model derivation115

2.1 Network construction and simulation116

There are two conceptually different approaches to constructing weighted networks117

for modelling infectious disease spread. In the first approach, there is a seed or a118

primitive motif, and the network is then grown or evolved from this initial seed119

according to some specific rules. In this method, the topology of the network is120

co-evolving with the distribution of weights on the edges [4,5,6,37,51]. Another121

approach is to consider a weighted network as a superposition of an unweighted122

network with a distribution of weights across edges which could be independent123
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of the original network or it may be correlated with node metrics, such as their124

degree, [11,16,25,?]. In this paper we use the second approach in order to investi-125

gate the particular role played by the distribution of weights across edges, rather126

than network topology, in the dynamics of epidemic spread. Besides computa-127

tional efficiency, this will allow us to make some analytical headway in deriving128

and analysing low-dimensional pairwise models which are likely to perform better129

when weights are attached according to the scenarios described above.130

Here we consider two different methods of assigning weights to network links:131

a network in which weights are assigned to links at random, and a network in132

which each node has the same distribution of weighted links connected to it. In133

reality, there is likely to be a great deal more structure to interaction weights, but134

in the absence of precise data and also for the purposes of developing models that135

allow one to explore a number of different assumptions, we make these simplifying136

approximations.137

2.1.1 Random weight distribution138

First we consider a simple model of an undirected weighted network with N nodes139

where the weights of the links can take values wi with probability pi, where i =140

1, 2, . . . ,M . The underlying degree distribution of the corresponding unweighted141

network can be chosen to be of the more basic forms, e.g. homogeneous random142

or Erdős-Rényi-type random networks.143

The generation of such networks is straightforward, and weights can be assigned144

during link creation in the unweighted network. For example, upon using the145

configuration model for generating unweighted networks, each new link will have146

a weight assigned to it based on the chosen weight distribution. This means that147

in a homogeneous random network with each node having k links, the distribution148

of link weights of different type will be multinomial, and it is given by149

P (nw1 , nw2 , . . . , nwM ) =
k!

nw1 !nw2 ! . . . nwM !
pn1
1 pn2

2 . . . pnM

M , (1)

where, nw1 + nw2 + · · · + nwM = k and P (nw1 , nw2 , . . . , nwM ) stands for the150

probability of a node having nw1 , nw2 , . . . , nwM links with weights w1, w2, . . . ,151

wM , respectively. While the above expression is applicable in the most general152

set-up, it is worth considering the case of weights of only two types, where the153

distribution of link weights for a homogenous random network becomes binomial154

P (nw1 , nw2 = k − nw1) =

(
k

nw1

)
pn1
1 (1− p1)k−n1 , (2)

where, p1 +p2 = 1 and nw1 +nw2 = k. The average link weight in the model above155

can be easily found as156

wrandom
av =

M∑
i=1

piwi,

which for the case of weights of two types w1 and w2 reduces to157

w(2r)
av = p1w1 + p2w2 = p1w1 + (1− p1)w2.
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2.1.2 Fixed deterministic weight distribution158

As a second example we consider a network, in which each node has ki links with159

weight wi (i = 1, 2, . . . ,M), where k1 + k2 + · · ·+ kM = k. The different weights160

here could be interpreted as being associated with different types of social inter-161

action: e.g. home, workplace, and leisure contacts, or physical and non-physical162

interactions. In this model all individuals are identical in terms of their connec-163

tions, not only having the same number of links (as in the model above) but also164

having the same set of weights. The average weight in such a model is given by165

wfixed
av =

M∑
i=1

piwi, pi =
ki
k
,

where pi is the fraction of links of type i for each node. In the case of links of two166

types with weights w1 and w2, the average weight becomes167

w(2f)
av = p1w1 + p2w2 =

k1
k
w1 +

k2
k
w2 =

k1
k
w1 +

k − k1
k

w2.

2.1.3 Simulation of epidemic dynamics168

In this study, the simple SIS and SIR epidemic models are considered. The epi-169

demic dynamics is specified in terms of infection and recovery events. The rate170

of transmission across an unweighted edge between an infected and susceptible171

individual is denoted by τ . This will then be adjusted by the weight of the link172

which is assumed to be directly proportional to the strength of the transmission173

along that link. Infected individuals recover independently of each other at rate γ.174

The simulation is implemented using the Gillespie algorithm [27] with inter-event175

times distributed exponentially with a rate given by the total rate of change in176

the network, with the single event to be implemented at each step being chosen177

at random and proportionally to its rate. All simulations start with most nodes178

being susceptible and with a few infected nodes chosen at random.179

2.2 Pairwise equations and closure relations180

In this section we extend the classic pairwise model for unweighted networks [32,181

43] to the case of weighted graphs with M different link-weight types. Pairwise182

models successfully interpolate between classic compartmental ODE models and183

full individual-based network simulation with the added advantage of high trans-184

parency and a good degree of analytical tractability. These qualities makes them185

an ideal tool for studying dynamical processes on networks [20,28,30,32], and they186

can be used on their own and/or in parallel with simulation. The original versions187

of the pairwise models have been successfully extended to networks with het-188

erogenous degree distribution [21], asymmetric networks [47] and situations where189

transmission happens across different/combined routes [20,28] as well as when190

taking into consideration network motifs of higher order than pairs and triangles191

[29]. The extension that we propose is based on the previously established precise192

counting procedure at the level of individuals, pairs and triples, as well as on a193

careful and systematic account of all possible transitions needed to derive the full194
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set of evolution equations for singles and pairs. These obviously involve the precise195

dependency of lower order moments on higher order ones, e.g. the rate of change196

of the expected number of susceptible nodes is proportional to the expected num-197

ber of links between a susceptible and infected node. We extend the previously198

well-established notation [32] to account for the added level of complexity due to199

different link weights. In line with this, the number of singles remains unchanged,200

with [A] denoting the number of nodes across the whole network in state A. Pairs201

of type A − B, [AB], are now broken down depending on link weights, i.e. [AB]i202

represents the number of links of type A − B with the link having weight wi,203

where as before i = 1, 2, . . . ,M and A,B ∈ {S, I,R} if an SIR dynamics is used.204

As before, links are doubly counted (e.g. in both directions) and thus the follow-205

ing relations hold: [AB]m = [BA]m and [AA]m is equal to twice the number of206

uniquely counted links of weight wm with nodes at both ends in state A. From this207

extension it follows that
∑M

i=1[AB]i = [AB]. The same convention holds at the208

level of triples where [ABC]mn stands for the expected number of triples where a209

node in state B connects a node in state A and C via links of weight wm and wn,210

respectively. The weight of the link impacts on the rate of transmission across that211

link, and this is achieved by using a link-specific transmission rate equal to τwi,212

where i = 1, 2, . . . ,M . In line with the above, we construct two pairwise models,213

one for SIS and one for SIR dynamics.214

The pairwise model for the SIS dynamics can be written in the form:215

[Ṡ] = γ[I]− τ
∑M

n=1 wn[SI]n,

[İ] = τ
∑M

n=1 wn[SI]n − γ[I],

[ṠI]m = γ([II]m − [SI]m) + τ
∑M

n=1 wn([SSI]mn − [ISI]nm)− τwm[SI]m,

[ ˙II]m = −2γ[II]m + 2τ
∑M

n=1 wn[ISI]nm + 2τwm[SI]m,

[ ˙SS]m = 2γ[SI]m − 2τ
∑M

n=1 wn[SSI]mn,

(3)

where m = 1, 2, 3, ...,M and [AB]m denotes the expected number of links with216

weight wm connecting two nodes of type A and B, respectively (A,B ∈ {S, I}).217

In the case when upon infection individuals recover at rate γ and once recovered218

they maintain a life-long immunity, we have the following system of equations219

describing the dynamics of a pairwise SIR model:220
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˙[S] = −τ
∑M

n=1 wn[SI]n,

˙[I] = τ
∑M

n=1 wn[SI]n − γ[I],

˙[R] = γ[I],

[ṠS]m = −2τ
∑M

n=1 wn[SSI]mn,

[ṠI]m = τ
∑M

n=1 wn([SSI]mn − [ISI]nm)− τwm[SI]m − γ[SI]m,

[ṠR]m = −τ
∑M

n=1 wn[ISR]nm + γ[SI]m,

[İI]m = 2τ
∑M

n=1 wn[ISI]nm + 2τwm[SI]m − 2γ[II]m,

[İR]m = τ
∑M

n=1 wn[ISR]nm + γ([II]m − [IR]m),

[ṘR]m = γ[IR]m,

(4)

where again m = 1, 2, 3, ...,M with the same notation as above. As a check and221

a reference back to previous pairwise models, in Appendix A we show222

how systems (3) and (4) reduce to the standard unweighted pairwise223

SIS and SIR model [32] when all weights are equal to each other, w1 =224

w2 = · · · = wM = W .225

The above systems of equations (3) and (4) are not closed, as equations for the226

pairs require knowledge of triples, and thus, equations for triples are needed. This227

dependency on higher-order moments can be curtailed by closing the equations228

via approximating triples in terms of singles and pairs [32]. For both systems,229

the agreement with simulation will heavily depend on the precise distribution of230

weights across the links, the network topology, and the type of closures that will be231

used to capture essential features of network structure and the weight distribution.232

A natural extension of the classic closure is given by233

[ABC]mn =
k − 1

k

[AB]m[BC]n
[B]

, (5)

where k is the number of links per node for a homogeneous network or the aver-234

age nodal degree for networks with other than homogenous degree distributions.235

However, even for the simplest case of homogenous random networks236

with two weights (i.e. w1 and w2), the average degree is split according237

to weight. Namely, the average number of links of weight w1 across the238

whole network is k1 = p1k ≤ k, and similarly, the average number of239

links of weight w2 is k2 = (1 − p1)k ≤ k, where k = k1 + k2. Attempting240

to better capture the additional network structure generated by the241

weights, the closure relation above can be recast to give the following,242
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potentially more accurate, closures243

[ABC]11 = [AB]1(k1 − 1)
[BC]1
k1[B]

=
k1 − 1

k1

[AB]1[BC]1
[B]

,

[ABC]12 = [AB]1k2
[BC]2
k2[B]

=
[AB]1[BC]2

[B]
,

[ABC]21 = [AB]2k1
[BC]1
k1[B]

=
[AB]2[BC]1

[B]
,

[ABC]22 = [AB]2(k2 − 1)
[BC]2
k2[B]

=
k2 − 1

k2

[AB]2[BC]2
[B]

,

(6)

where, as in Eq. (5), the form of the closure can be derived by con-244

sidering the central individual in the triple, B. The first pair of the245

triple ([AB]i) effectively “uses up” one of B’s links of weight wi. For246

triples of the form [ABC]11, the presence of the pair [AB]1 means that247

B has (k1 − 1) remaining links of weight w1 that could potentially con-248

nect to C. For triples of the form [ABC]12, however, B has k2 weight249

w2 links that could potentially connect to C. Furthermore, expressions250

such [BC]i
ki[B] simply denote the fraction of edges of weight wi that start at251

a node B and connects this to C. The specific choice of closure will depend252

on the structure of the network and, especially, how the weights are distributed.253

For example, for the case of the homogeneous random networks with links allocate254

randomly, both closures offer a viable alternative. For the case of a network where255

each node has a fixed pre-allocated number of links with different weights, e.g. k1256

and k2 links with weights w1 and w2, respectively, the second closure (6) offers257

the more natural/intuitive avenue towards closing the system and obtaining good258

agreement with network simulation.259

3 Results260

In this section we present analytical and numerical results for weighted networks261

and pairwise representations of SIS and SIR models in the case of two different262

link-weight types (i.e. w1 and w2).263

3.1 Threshold dynamics for the SIR model - the network perspective264

The basic reproductive ratio, R0 (the average number of secondary cases produced265

by a typical index case in an otherwise susceptible population), is one of the most266

fundamental quantities in epidemiology ([1,18]). Besides informing us on whether267

a particular disease will spread in a population, as well as quantifying the severity268

of an epidemic outbreak, it can be also used to calculate a number of other im-269

portant quantities that have good intuitive interpretation. In what follows, we will270

compute R0 and R0-like quantities and will discuss their relation to each other,271

and also issues around these being model-dependent. First, we compute R0 from272
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an individual-based or network perspective by employing the next generation ma-273

trix approach as used in the context of models with multiple transmission routes274

such as household models [2].275

276

Random weight distribution: First we derive an expression for R0 when the un-277

derlying network is homogeneous, and the weights of the links are assigned at278

random according to a prescribed weight distribution. In the spirit of the pro-279

posed approach, the next generation matrix can be easily computed to yield280

NGM = (aij)i,j=1,2 =

∣∣∣∣ (k − 1)p1r1 (k − 1)p1r1
(k − 1)p2r2 (k − 1)p2r2

∣∣∣∣ ,
where281

r1 =
τw1

τw1 + γ
, r2 =

τw2

τw2 + γ

represent the probability of transmission from an infected to a susceptible across282

a link of weight w1 and w2, respectively. Here, the entry aij stands for the average283

number of infections produced via links of type i (i.e. with weight wi) by a typical284

infectious node who itself has been infected across a link of type j (i.e. with weight285

wj). Using the fact that p2 = 1 − p1, the basic reproductive ratio can be found286

from the leading eigenvalue of the NGM matrix as follows287

R1
0 = (k − 1)(p1r1 + (1− p1)r2). (7)

In fact, the expression for R0 can be simply generalised to more than two weights288

to give R0 = (k − 1)
∑M

i=1 piri, where wm has frequency given by pm with the289

constraint that
∑M

i=1 pi = 1. It is straightforward to show that upon assuming290

uniform weight distribution wi = W for i = 1, 2, . . . ,M , the basic reproduction291

number on a homogeneous graph reduces to R0 = (k−1)r as expected, and where,292

r = τW/(τW + γ).293

294

Deterministic weight distribution: The case when the number of links with given295

weights for each node is fixed can be captured with the same approach, and the296

next generation matrix can be constructed as follows297

NGM =

∣∣∣∣ (k1 − 1)r1 k1r1
k2r2 (k2 − 1)r2

∣∣∣∣ .
As before, the leading eigenvalue of the NGM matrix yields the basic reproductive298

ratio,299

R2
0 =

(k1 − 1)r1 + (k2 − 1)r2 +
√

[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2

2
. (8)

It is worth noting that the calculations above are a direct result of300

a branching process approximation of the pure transmission process301

which differentiates between individuals depending on whether he/she302

was infected via a link with of weight w1 or w2, with obvious generali-303

sation to more than two weights. This separation used in the branching304

process leads to the offspring or next generation matrix of the branch-305

ing process [2]. Using the two expressions for the basic reproductive ratio, it is306
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possible to prove the following result.307

308

Theorem 1. Given the setup for the fixed weight distribution and using p1 = k1/k,309

p2 = k2/k and k1 + k2 = k, if 1 ≤ k1 ≤ k− 1 (which implies that 1 ≤ k2 ≤ k− 1),310

then R2
0 ≤ R1

0.311

312

The proof of this result is sketched out in Appendix B. This Theorem effectively313

states that provided each node has at least one link of type 1 and one link of type314

2, then independently of disease parameters, it follows that the basic reproductive315

ratio as computed from (7) always exceeds or is equal to an equivalentR0 computed316

from (8).317

It is worth noting that both R0 values reduce to318

R1
0 = R2

0 = R0 = (k − 1)r =
(k − 1)τW

τW + γ
, (9)

if one assumes that weights are equal, i.e. w1 = w2 = W . As one would expect,319

the first good indicator of the impact of weights on the epidemic dynamics will be320

the average weight. Hence, it is worth considering the problem of maximising the321

values R0 under assumption of a fixed average weight:322

p1w1 + p2w2 = W. (10)

Under this constraint the following statement holds.323

324

Theorem 2. For weights constrained by p1w1 + p2w2 = W (or (k1/k)w1 +325

(k2/k)w2 = W for a fixed weights distribution), R1
0 and R2

0 attain their maxima326

when w1 = w2 = W , and the maximum values for both is R0 = (k − 1)r =
(k − 1)τW

τW + γ
.327

328

The proof of this result is presented in Appendix C.329

The above results suggest that for the same average link weight and when the330

one-to-one correspondence between p1 and k1/k, and p2 and k2/k holds, the basic331

reproductive ratio is higher on networks with random weight distribution than on332

networks with a fixed weight distribution. This, however, does not preclude the333

possibility of having a network with random weight distribution with smaller aver-334

age weight exhibiting an R0 value that it is bigger than the R0 value corresponding335

to a network where weights are fixed and the average weight is higher. The di-336

rect implication is that it is not sufficient to know just the average link weight337

in order to draw conclusions about possible epidemic outbreaks on weighted net-338

works; rather one has to know the precise weight distribution that provides a given339

average weight.340

Figure 1 shows how the basic reproductive ratio changes with the transmission341

rate τ for different weight distributions. When links on a homogeneous network342

are distributed at random (upper panel), the increase in the magnitude of one343

specific link weight (e.g. w1) accompanied by a decrease in its frequency leads to344

smaller R0 values. This is to be expected since the contribution of the different345

link types in this case is kept constant (p1w1 = p2w2 = 0.5) and this implies346

that the overall weight of the network links accumulates in a small number of347

highly weighted links with most links displaying small weights and thus making348

transmission less likely. The statement above is more rigorously underpinned by349
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the results of Theorem 1 & 2 which clearly show that equal or more homogeneous350

weights lead to higher values of the basic reproductive ratio. For the case of fixed351

weight distribution (lower panel), the changes in the value of R0 are investigated352

in terms of varying the weights, so that the overall weight in the network remains353

constant. This is constrained by fixing values of p1 and p2 and, in this case, the354

highest values are obtained for higher values of w1. The flexibility here is reduced355

due to p1 and p2 being fixed, and a different link breakdown may lead to different356

observations. The top continuous line in Fig. 1 (upper panel) corresponds to the357

maximum R0 value achievable for both models if the p1w1 + p2w2 = 1 constraint358

is fulfilled.359

3.2 R0-like threshold for the SIR model - a pairwise model perspective360

To compute the value of R0-like quantity from the pairwise model, we use the ap-361

proach suggested by Keeling [32], which utilises the local spatial/network structure362

and correctly accounts for correlations between susceptible and infectious nodes363

early on in the epidemics. This can be achieved by looking at the early behaviour364

of [SI]1/[I] = λ1 and [SI]2/[I] = λ2 when considering links of only two different365

weights. In line with Eames [20], we start from the evolution equation of [I]366

˙[I] = (τw1[SI]1/[I] + τw2[SI]2/[I]− γ)[I],

where from the growth rate τw1λ1 + τw2λ2 − γ it is easy to define the threshold367

quantity R as follows,368

R =
τw1λ1 + τw2λ2

γ
. (11)

For the classic closure (5), one can compute the early quasi-equilibria for λ1 and369

λ2 directly from the pairwise equations as follows370

λ1 =
γ(k − 1)p1R

τw1 + γR
and λ2 =

γ(k − 1)(1− p1)R

τw2 + γR
.

Substituting these into (11) and solving for R yields371

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2Q

2
, (12)

where372

R1 =
τw1[(k − 1)p1 − 1]

γ
, R2 =

τw2[(k − 1)p2 − 1]

γ
,

Q =
k − 2

[(k − 1)p1 − 1][(k − 1)p2 − 1]
,

with details of all calculations presented in Appendix D. We note that R > 1 will373

result in an epidemic, while R < 1 will lead to the extinction of the disease. It374

is straightforward to show that for equal weights, say W , the expression above375

reduces to R = τW (k−2)/γ which is in line with R0 value in [32] for unclustered,376

homogeneous networks. Under the assumption of a fixed total weight W , one can377

show that similarly to the network-based basic reproductive ratio, R achieves its378

maximum when w1 = w2 = W .379
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In a similar way, for the modified closure (6), we can use the same methodology380

to derive the threshold quantity as381

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2(Q− 1)

2
, (13)

where382

R1 =
τw1(k1 − 2)

γ
, R2 =

τw2(k2 − 2)

γ
, Q =

k1k2
(k1 − 2)(k2 − 2)

.

For this closure once again, R > 1 results in an epidemic, while for R < 1,383

the disease dies out. Details of this calculations are shown in Appendix D. It384

is noteworthy that one can derive expressions (12) and (13) by considering the385

leading eigenvalue based on the linear stability analysis of the disease-386

free steady sate of system (4) with the corresponding pairwise closures387

given in (5) and (6).388

Finally, we note that this seemingly R0-lookalike, R = τW (k − 2)/γ for the389

equal weights case w1 = w2 = W is a multiple of (k−2) as opposed to (k−1) as is390

the case for the R0 derived based on the individual-based perspective, where, for391

equal weights, R1
0 = R2

0 = τW (k − 1)/(τW + γ). This highlights the impor-392

tance, in models that are based on an underlying network of population393

interactions, of the way in which an R0-like quantity is defined. In sim-394

ple mass-action-type models the same value is derived whether R0 is395

thought of as the number of new cases from generation-to-generation396

(the NGM method), or as the growth rate of the epidemic scaled by397

the infectious period. In a network model the two approaches have the398

same threshold behaviour, but the clusters of infection that appear399

within the network mean that they produce different values away from400

the threshold. It is important therefore to be clear about what we mean401

by “R0” in a pair-approximation model. It is also important when using402

empirically-derived R0 values to inform pair-approximation models to403

be clear about how these values were estimated from epidemiological404

data, and to consider which is the most appropriate way to incorporate405

the information into the model.406

3.3 The performance of pairwise models and the impact of weight distributions407

on the dynamics of epidemics408

To evaluate the efficiency of the pairwise approximation models, we will now com-409

pare numerical solutions of models (3) and (4) (with closures given by Eq.410

(5) and Eq. (6) for random and deterministic weights distributions, re-411

spectively) to results obtained from the corresponding network simulation. The412

discussion around the comparison of the two models is interlinked with the discus-413

sion of the impact of different weight distributions/patterns on the overall epidemic414

dynamics. We begin our numerical investigation by considering weight distribu-415

tions with moderate heterogeneity. This is illustrated in Fig. 2, where excellent416

agreement between simulation and pairwise models is obtained. The agreement417
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remains valid for both SIS and SIR dynamics, and networks with higher aver-418

age link weight lead to higher prevalence levels at equilibrium for SIS and higher419

infectiousness peaks for SIR.420

Next, we explore the impact of weight distribution under the condition that421

the average weight remains constant (i.e. p1w1 + p2w2 = 1, where without loss of422

generality the average weight has been chosen to be equal to 1). First, we keep423

the proportion of edges of type one (i.e. with weight w1) fixed and change the424

weight itself by gradually increasing its magnitude. Due to the constraint on the425

average weight and the condition p2 = 1− p1, the other descriptors of the weight426

distribution follow. Fig. 3 shows that concentrating a large portion of the total427

weight on a few links leads to smaller epidemics, since the majority of links are428

low-weight and thus have a small potential to transmit the disease. This effect is429

exacerbated for the highest value of w1; in this case 95% of the links are of weight430

w2 = (1 − p1w1)/(1 − p1) = 0.5/0.95 leading to epidemics of smallest impact431

(Fig. 3(a)) and smallest size of outbreak (Fig. 3(b)).432

While the previous setup kept the frequency of links constant while changing433

the weights, one can also investigate the impact of keeping at least one of the434

weights constant (e.g. the larger one) and changing its frequency. To ensure a435

fair comparison, here we also require that the average link weight over the whole436

network is kept constant. When such highly weighted links are rare, the system437

approaches the non-weighted network limit where the transmission rate is simply438

scaled by w2 (the most abundant link type). As Fig. 4 shows, in this case, the439

agreement is excellent, and as the frequency of the highly weighted edges/links440

increases, disease transmission is less severe.441

Regarding the comparison of the pairwise and simulation models, we note that442

while the agreement is generally good for a large part of the disease and weight pa-443

rameter space, the more extreme scenarios of weight distribution result in poorer444

agreement. This is illustrated in both Figs. 3 and 4 (see bottom curves), with the445

worst agreement for the SIS dynamics. The insets in Fig. 3 show that increasing446

the average connectivity improves the agreement. However, the cause of disagree-447

ment is due to a more subtle effect driven also by the weight distribution. For448

example, in Fig. 4, the average degree in the network is 10, higher then used pre-449

viously and equal to that in the insets from Fig. 3, but despite this, the agreement450

is still poor.451

The two different weighted network models are compared in Fig. 5. This is done452

be using the same link weights and setting p1 = k1/k and p2 = k2/k. Epidemics453

on network with random weight distribution grow faster and, given the same time454

scales of the epidemic, this is in line with results derived in Theorem 1 & 2 and455

findings concerning the growth rates. The difference is less marked for larger values456

of τ where a significant proportion of the nodes becomes infected.457

In Fig. 6 the link weight composition is altered by decreasing the proportion458

of highly-weighted links. As expected, the reduced average link weight across the459

network leads to epidemics of smaller size while keeping the excellent agreement460

between simulation and pairwise model results.461
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4 Discussion462

The present study has explored the impact of weight heterogeneity and highlighted463

that the added heterogeneity of link weights does not manifest itself in the same464

way as most other heterogeneities in epidemic models on networks. Usually, het-465

erogeneities lead to an increase in R0 but potentially for final epidemic size to466

fall [35]. However, for weighted networks the concentration of infectiousness on467

fewer target link, and thus target individuals, leads to a fall in R0 for both homo-468

geneous random and fixed weight distribution models. Increased heterogeneity in469

weights accentuates the locality of contact and is taking the model further from470

the mass-action type models. Infection is concentrated along a smaller number of471

links, which results in wasted infectivity and lower R0. This is in line with similar472

results [11,12,49] where different modelling approaches have been used to capture473

epidemics on weighted networks.474

The models proposed in this paper are simple mechanistic models with ba-475

sic weight distributions, but despite this they provide a good basis for analysing476

disease dynamics on weighted networks in a rigorous and systematic way. The477

modified pairwise models have performed well, and provide good approximation478

to direct simulation. As expected, the agreement with simulations typically breaks479

down at or close to the threshold, but away from it, pairwise models provide a good480

counterpart or alternative to simulation. Disagreement only appears for extreme481

weight distributions, and we hypothesise that this is mainly due to the network482

becoming more modular with islands of nodes connected by links of low weight be-483

ing bridged together by highly weighted links. A good analogy to this is provided484

by considering the case of a pairwise model on unweighted networks specified in485

terms of two network metrics, node number N and average number of links k.486

The validity of the pairwise model relies on the network being connected up at487

random, or according to the configuration model. This can be easily broken by488

creating two sub-networks of equal size both exhibiting the same average connec-489

tivity. Simulations on such type of networks will not agree with the pairwise model,490

and highlights that the network generating algorithm can push the network out491

of the set of ‘acceptable’ networks. We expect that this or similar argument can492

more precisely explain why the agreement breaks down for significant link-weight493

heterogeneity.494

The usefulness of pairwise models is illustrated in Fig. 7, where the I/N values495

are plotted for a range of τ values and for different weight distributions. Here, the496

equilibrium value has been computed by finding the steady state directly from the497

ODEs (3) by finding numerically the steady state solution of a set on nonlinear498

equations (i.e. ˙[A] = 0 and ˙[AB] = 0). To test the validity, the long term solution499

of the ODE is plotted along with results based on simulation. The agreement away500

from the threshold is excellent and illustrates clearly the impact of different weight501

distributions on the magnitude of the endemic threshold.502

The models proposed here can be extended in a number of different ways.503

One potential avenue for further research is the analysis of correlations between504

link weight and node degree. This direction has been explored but in the context505

of classic compartmental mean-field models based on node degree [31,40]. Given506

that pairwise models extend to heterogeneous networks such avenues can be fur-507

ther explored to include different type of correlations or other network dependent508

weight distributions. While this is a viable direction, it is expected that the extra509
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complexity will make the pairwise models more difficult to analyse and disagree-510

ment between pairwise and simulation model more likely. Another theoretically511

interesting and practically important aspect is the consideration of different types512

of time delays, representing latency or temporary immunity [9], and the analysis513

of their effects on the dynamics of epidemics on weighted networks. The method-514

ology presented in this paper can be of wider relevance to studies of other natural515

phenomena where overlay networks provide effective description. Examples of such516

systems include the simultaneous spread of two different diseases in the same pop-517

ulation [8], the spread of the same disease but via different routes [35] or the spread518

of epidemics concurrently with information about the disease [28,36]. These areas519

offer other important avenues for further extensions.520
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5 Appendix525

5.1 Appendix A - Reducing the weighted pairwise models to the unweighted526

equivalents527

We start from the system528

˙[S] = γ[I]− τ
∑M

n=1 wn[SI]n,

˙[I] = τ
∑M

n=1 wn[SI]n − γ[I],

[ṠI]m = γ([II]m − [SI]m) + τ
∑M

n=1 wn([SSI]mn − [ISI]nm)− τwm[SI]m,

[ ˙II]m = −2γ[II]m + 2τ
∑M

n=1 wn[ISI]nm + 2τwm[SI]m,

[ṠS]m = 2γ[SI]m − 2τ
∑M

n=1 wn[SSI]mn,
(14)

where m = 1, 2, . . . ,M . To close this system of equations at the level of pairs, we529

use the approximations530

[ABC]mn =
k − 1

k

[AB]m[BC]n
[B]

.

To reduce these equations to the standard pairwise model for unweighted networks
we use the fact that

∑M
m=1 [AB]m = [AB] for A,B ∈ {S, I} and aim to derive the

evolution equation for [AB]. Assuming that all weights are equal to some W , the
following relations hold,

˙[SI] =
M∑

m=1

˙[SI]m

=
M∑

m=1

(
γ([II]m − [SI]m) + τ

M∑
n=1

wn([SSI]mn − [ISI]nm)− τwm[SI]m

)

= γ([II]− [SI])− τW [SI] + τW
M∑

m=1

M∑
n=1

([SSI]mn − [ISI]nm),

where the summations of the triples can be resolved as follows,

M∑
m=1

M∑
n=1

[SSI]mn =
k − 1

k

M∑
m=1

[SS]m

M∑
n=1

[SI]n
[S]

=
k − 1

k

[SS][SI]

[S]
= [SSI].

Using the same argument for all other triples, the pairwise model for weighted531

networks with all weights being equal (i.e. W = 1) reduces to the classic pairwise532
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model, that is533

˙[S] = γ[I]− τ [SI],

˙[I] = τ [SI]− γ[I],∑M
m=1 [ṠI] = [ṠI] = γ([II]− [SI]) + τ [SSI]− [ISI]− [SI],∑M
m=1 [İI] = [İI] = −2γ[II] + 2τ([ISI] + [SI]),∑M
m=1 [ṠS] = [ṠS] = 2γ[SI]− 2τ [SSI].

A similar argument holds for the pairwise model on weighted networks with SIR534

dynamics.535

5.2 Appendix B - Proof of Theorem 1536

We illustrate the main steps needed to complete the proof of Theorem 1. This537

revolves around starting from the inequality itself and showing via a series of538

algebraic manipulations that it is equivalent to a simpler inequality that holds539

trivially. Upon using that p1k = k1, p2k = k2 and p2 + p1 = 1, the original540

inequality can be rearranged to give541 √
[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2 ≤ (k1−1)r1 +(k2−1)r2 +2r1p2 +2r2p1.

(15)
Based on the assumptions of the Theorem, the right-hand side is positive, and542

thus this inequality is equivalent to the one where both the left- and right-hand543

sides are squared. Combined with the fact that p2 = 1 − p1, after a series of544

simplifications and factorizations this inequality can be recast as545

4p1(1− p1)(r21 + r22) + 8kp1(1− p1)r1r2 ≤ 4kp1(1− p1)(r21 + r22) + 8p1(1− p1)r1r2,
(16)

which can be further simplified to546

4p1(1− p1)(r1 − r2)2(k − 1) ≥ 0, (17)

which holds trivially and thus completes the proof. We note that in the strictest547

mathematical sense the condition of the Theorem should be (k1 − 1)r1 + (k2 −548

1)r2 + 2r1p2 + 2r2p1 ≥ 0. This holds if the current assumptions are observed since549

these are stronger but follow from a practical reasoning whereby for the network550

with fixed weight distribution, a node should have at least one link with every551

possible weight type.552

5.3 Appendix C - Proof of Theorem 2553

First, we show that R1
0 is maximised when w1 = w2 = W . R1

0 can be rewritten to554

give555

R1
0 = (k − 1)

(
p1

τw1

τw1 + r
+ (1− p1)

τw2

τw2 + r

)
. (18)
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Maximising this given the constraint w1p1 + w2(1 − p1) = W can be achieved556

by considering R1
0 as a function of the two weights and incorporating the con-557

straint into it via the Lagrange multiplier method. Hence, we define a new function558

f(w1, w2, λ) as follows559

f(w1, w2, λ) = (k − 1)

(
p1

τw1

τw1 + r
+ (1− p1)

τw2

τw2 + r

)
+λ(w1p1 + w2(1− p1)−W ).

Finding the extrema of this functions leads to a system of three equations560

∂f

∂w1
=

(k − 1)p1τγ

(τw1 + γ)2
+ λp1 = 0,

∂f

∂w2
=

(k − 1)(1− p1)τγ

(τw2 + γ)2
+ λ(1− p1) = 0,

w1p1 + w2(1− p1)−W = 0.

Expressing λ from the first two equations and equating these two expressions yields561

(k − 1)τγ

(τw1 + γ)2
=

(k − 1)τγ

(τw2 + γ)2
. (19)

Therefore,562

w1 = w2 = W, (20)

and it is straightforward to confirm that this is a maximum.563

Performing the same analysis for R2
0 is possible but it is more tedious. Instead,564

we propose a more elegant argument to show that R2
0 under the constraint of565

constant total link weight achieves its maximum when w1 = w2 = W . The argu-566

ment starts by considering R2
0 when w1 = w2 = W . In this case, and using that567

r2 = r1 = r = τW/(τW + γ) we can write,568

R2∗
0 =

(k1 − 1)r1 + (k2 − 1)r2 +
√

[(k1 − 1)r1 − (k2 − 1)r2]2 + 4k1k2r1r2

2

=
r(k1 + k2 − 2) +

√
r2[(k1 − 1)− (k2 − 1)]2 + 4r2k1k2

2

=
r(k1 + k2 − 2) + r

√
(k1 + k2)2

2

=
r(2k1 + 2k2 − 2)

2
= r(k1 + k2 − 1) = (k − 1)r.

However, it is known from Theorem 1 that R2
0 ≤ R1

0, and we have previously shown569

that R1
0 under the present constraint achieves its maximum when w1 = w2 = W ,570

and its maximum is equal to (k − 1)r. All the above can be written as571

R2
0 ≤ R1

0 ≤ (k − 1)r. (21)
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Now taking into consideration that R2∗
0 = (k − 1)r, the inequality above can be572

written as573

R2
0 ≤ R1

0 ≤ (k − 1)r = R2∗
0 , (22)

and this concludes the proof.574

5.4 Appendix D - The R0-like threshold R575

Let us start from the evolution equation for [I](t),

˙[I] = τ(w1[SI]1 + w2[SI]2)− γ[I]

=

[
τw1

(
[SI]1

[I]

)
+ τw2

(
[SI]2

[I]

)
− γ

]
[I]

= (τw1λ1 + τw2λ2 − γ)[I],

where λ1 = [SI]1
[I] and λ2 = [SI]2

[I] , and let R be defined as576

R =
τw1λ1 + τw2λ2

γ
. (23)

Following the method outlined by Keeling [32] and Eames [20], we calculate the577

early quasi-equilibrium values of λ1,2 as follows:578

λ̇1 = 0⇔ ˙[SI]1[I] = ˙[I][SI]1,

λ̇2 = 0⇔ ˙[SI]2[I] = ˙[I]][SI]2.

Upon using the pairwise equations and the closure, consider [ṠI]1[I] = [İ][SI]1:579

[ṠI]1[I] = (τw1[SSI]11 + τw2[SSI]12 − τw1[ISI]11 − τw2[ISI]21 − τw1[SI]1 − γ[SI]1)[I]

= (τw1[SI]1 + τw2[SI]2 − γ[I])[SI]1. (24)

Using the classical closure580

[ABC]12 =
k − 1

k

[AB]1[BC]2
[B]

,

[ABC]21 =
k − 1

k

[AB]2[BC]1
[B]

,

and making the substitution : [SI]1 = λ1[I] , [SI]2 = λ2[I], [I] � 1, [S] ≈ N ,581

[SS]1 ≈ kNp1, [SS]2 ≈ kN(1− p1) together with γR = τw1λ1 + τw2λ2, we have582

(τw1λ1 + τw2λ2)kp1 − (τw1λ1 + τw2λ2)p1 − (τw1λ1 + τw2λ2)λ1 − τw1λ1 = 0,

which can be solved for λ1 to give583

λ1 =
γ(k − 1)p1R

τw1 + γR
.
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Similarly, λ2 can be found as584

λ2 =
γ(k − 1)(1− p1)R

τw2 + γR
. (25)

Substituting the expressions for λ1,2 into the original equation for R yields585

R =
A+B +

√
(A+B)2 + 4τ2w1w2(k − 2)

2γ
,

where A = τw1[(k − 1)p1 − 1] and B = τw2[(k − 1)p2 − 1]. If we define586

R1 =
τw1[(k − 1)p1 − 1]

γ
, and R2 =

τw2[(k − 1)p2 − 1]

γ
,

the expression simplifies to587

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2Q

2
,

where Q =
(k − 2)

[(k − 1)p1 − 1][(k − 1)p2 − 1]
.588

589

590

Substituting the modified closure591

[ABC]11 =
k1 − 1

k1

[AB]1[BC]1
[B]

,

[ABC]12 =
[AB]1[BC]2

[B]
,

[ABC]21 =
[AB]2[BC]1

[B]
,

[ABC]22 =
k2 − 1

k2

[AB]2[BC]2
[B]

,

into (24) and making further substitution : [SI]1 = λ1[I], [SI]2 = λ2[I], [I] � 1,592

[S] ≈ N , [SS]1 ≈ k1N , [SS]2 ≈ k2N , we have593

(τw1λ1 + τw2λ2)k1 − (τw1λ1 + τw2λ2)λ1 − 2τw1λ1 = 0 =⇒ λ1 =
γk1R

2τw1 + γR
.

Similarly, the equation [ṠI]2[I] = [İ][SI]2 yields594

λ2 =
γk2R

2τw2 + γR
.

Substituting these expressions for λ1,2 into (23), we have595

R =
τ(w1k1 + w2k2)− 2τ(w1 + w2)

2γ

+

√
[2τ(w1 + w2)− τ(w1k1 + w2k2)]2 + 8τ2w1w2(k1 + k2 − 2)

2γ
.
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If we define596

R1 =
τw1(k1 − 2)

γ
, R2 =

τw2(k2 − 2)

γ
,

the above expression for R simplifies to597

R =
R1 +R2 +

√
(R1 +R2)2 + 4R1R2(Q− 1)

2
(26)

where598

Q =
k1k2

(k1 − 2)(k2 − 2)
.
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3. Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. (2004). The architecture604

of complex weighted networks. Proc. Natl. Acad. Sci. USA. 101, 3747-3752.605
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Fig. 1 Basic reproductive ratio R0 for random (upper) and deterministic (lower)
weight distributions with different weight and weight frequency combinations, but
with p1w1+p2w2 = 1. Upper panel: the case of homogenous networks with weights as-
signed at random considers the situation where the contribution of the two differ-
ent weight types is equal (p1w1 = p2w2 = 0.5) but with weight w1 increasing and its
frequency decreasing (top to bottom with (p1, w1) = {(0.5, 1), (0.2, 25), (0.05, 10)}). In-
creasing the magnitude of weights but reducing their frequency leads to smaller R0

values. Lower panel: the case of homogeneous networks with fixed number of links
of type w1 and w2 illustrates the situation where w1 increases while p1 = k1/k = 1/3
and p2 = (k−k1)/k = 2/3 remain fixed (bottom to top with w1 = {0.1, 0.5, 1.4}). Here
the opposite tendency is observed with increasing weights leading to higher R0

values. Finally, for the randomly distributed weights case, setting p1 = 1/3, w1 = 1.4
and observing p1w1 + p2w2 = 1, we obtain R0 (?) values which compare almost di-
rectly to the fixed-weights case (top continuous line). Other parameters are set
to k = 6, k1 = 2 and γ = 1.
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Fig. 2 The infection prevalence (I/N) from the pairwise and simulation models for homoge-
neous random networks with random weight distribution (ODE: solid line, simulation: dashed
line and (o)). All nodes have degree k = 5 with N = 1000, I0 = 0.05N , γ = 1 and τ = 1.
From top to bottom, the parameter values are: w1 = 5, p1 = 0.2, w2 = 1.25, p2 = 0.8 (top),
and w1 = 0.5, p1 = 0.5, w2 = 1.5, p2 = 0.5 (bottom). The left and right panels represent the
SIS and SIR dynamics, respectively.
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Fig. 3 The infection prevalence (I/N) from the pairwise and simulation models for homoge-
nous networks with random weight distribution (ODE: solid line, simulation: dashed line and
(o)). All numerical tests use N = 1000, I0 = 0.05N , k = 5, γ = 1, τ = 1 and p1 = 0.05
(p2 = 1−p1 = 0.95). From top to bottom, w1 = 2.5, 5, 10, w2 = 0.875/0.95, 0.75/0.95, 0.5/0.95.
The weight distributions are chosen such that the average link weight, p1w1 + p2w2 = 1, re-
mains constant. Insets of (a) and (b): the same parameter values as for the lowest prevalence
plots but, with k = 10 and τ = 0.5. The left and right panel represent the SIS and SIR
dynamics, respectively.
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Fig. 4 The infection prevalence (I/N) from the pairwise and simulation model for homogenous
networks with random weight distribution (ODE: solid line, simulation: dashed line and (o)).
All numerical tests use N = 1000, I0 = 0.05N , k = 10, γ = 1, τ = 0.5 and w1 = 10. From top to
bottom, P (w1) = 0.01, 0.05, 0.09, w2 = 0.9/0.99, 0.5/0.95, 0.1/0.91. Here also p2 = 1− p1 and
p1w1 + p2w2 = 1. The left and right panel represent the SIS and SIR dynamics, respectively.
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Fig. 5 The infection prevalence (I/N) based on random (model 1) and fixed (model 2) weight
distribution (ODE: black (1) and blue (2) solid line, simulation results: same as ODE but
dashed lines, and (◦) and (∗)). All numerical tests use N = 1000, I0 = 0.05N , k = 10, k1 = 2,
k2 = 8, p1 = k1/k, p2 = k2/k, w1 = 10, w2 = 1.25 and γ = 1. The rate of infection τ = 0.5
(top) and τ = 0.1 (bottom). The left and right panel represent the SIS and SIR dynamics,
respectively.
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Fig. 6 The infection prevalence (I/N) for a fixed weight distribution (ODE: solid lines, sim-
ulation results: dashed lines and (o)). All numerical tests use N = 1000, I0 = 0.05N , k = 6,
γ = 1, τ = 1 and w1 = 1.4, w2 = 0.8. From top to bottom : k1 = 5, 4, 3, 2, 1 and k2 = k − k1.
The left and right panel represent the SIS and SIR dynamics, respectively.
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Fig. 7 Endemic steady state from the SIS model on networks with random weight distri-
bution. The continuous lines correspond to the steady state computed numerically by setting
all evolution equations in the pairwise system to zero. These are complemented by finding
the endemic steady state through direct integration of the ODE system for a long-enough
time (◦), as well as direct simulation (∗). The first marker corresponds to τ = 0.3 followed by
τ = 0.5, 1.0, . . . , 3.0. All results are based on: k = 5, γ = 1 and w1 = 10, w2 = 1. From top to
bottom : p1 = 0.9, 0.5, 0.1, 0.01 and p2 = 1− p1.


