917 research outputs found

    Modeling robot's world with minimal effort

    Get PDF
    Trabajo presentado al ICRA celebrado en Seattle (US) del 26 al 30 de mayo de 2015.We propose an efficient Human Robot Interaction approach to efficiently model the appearance of all relevant objects in robot's environment. Given an input video stream recorded while the robot is navigating, the user just needs to annotate a very small number of frames to build specific classifiers for each of the objects of interest. At the core of the method, there are several random ferns classifiers that share the same features and are updated online. The resulting methodology is fast (runs at 8 fps), versatile (it can be applied to unconstrained scenarios), scalable (real experiments show we can model up to 30 different object classes), and minimizes the amount of human intervention by leveraging the uncertainty measures associated to each classifier. We thoroughly validate the approach on synthetic data and on real sequences acquired with a mobile platform in outdoor and challenging scenarios containing a multitude of different objects. We show that the human can, with minimal effort, provide the robot with a detailed model of the objects in the scene.Work partially supported by the Spanish Ministry of Science and Innovation under project DPI2013-42458-P, ERA-Net Chistera project ViSen PCIN-2013-047, and by the EU project ARCAS FP7-ICT-2011-28761.Peer Reviewe

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Modeling and Control Strategies for a Two-Wheel Balancing Mobile Robot

    Get PDF
    The problem of balancing and autonomously navigating a two-wheel mobile robot is an increasingly active area of research, due to its potential applications in last-mile delivery, pedestrian transportation, warehouse automation, parts supply, agriculture, surveillance, and monitoring. This thesis investigates the design and control of a two-wheel balancing mobile robot using three different control strategies: Proportional Integral Derivative (PID) controllers, Sliding Mode Control, and Deep Q-Learning methodology. The mobile robot is modeled using a dynamic and kinematic model, and its motion is simulated in a custom MATLAB/Simulink environment. The first part of the thesis focuses on developing a dynamic and kinematic model for the mobile robot. The robot dynamics is derived using the classical Euler-Lagrange method, where motion can be described using potential and kinetic energies of the bodies. Non-holonomic constraints are included in the model to achieve desired motion, such as non-drifting of the mobile robot. These non-holonomic constraints are included using the method of Lagrange multipliers. Navigation for the robot is developed using artificial potential field path planning to generate a map of velocity vectors that are used for the set points for linear velocity and yaw rate. The second part of the thesis focuses on developing and evaluating three different control strategies for the mobile robot: PID controllers, Hierarchical Sliding Mode Control, and Deep-Q-Learning. The performances of the different control strategies are evaluated and compared based on various metrics, such as stability, robustness to mass variations and disturbances, and tracking accuracy. The implementation and evaluation of these strategies are modeled tested in a MATLAB/SIMULINK virtual environment

    Modeling and Control Strategies for a Two-Wheel Balancing Mobile Robot

    Get PDF
    The problem of balancing and autonomously navigating a two-wheel mobile robot is an increasingly active area of research, due to its potential applications in last-mile delivery, pedestrian transportation, warehouse automation, parts supply, agriculture, surveillance, and monitoring. This thesis investigates the design and control of a two-wheel balancing mobile robot using three different control strategies: Proportional Integral Derivative (PID) controllers, Sliding Mode Control, and Deep Q-Learning methodology. The mobile robot is modeled using a dynamic and kinematic model, and its motion is simulated in a custom MATLAB/Simulink environment. The first part of the thesis focuses on developing a dynamic and kinematic model for the mobile robot. The robot dynamics is derived using the classical Euler-Lagrange method, where motion can be described using potential and kinetic energies of the bodies. Non-holonomic constraints are included in the model to achieve desired motion, such as non-drifting of the mobile robot. These non-holonomic constraints are included using the method of Lagrange multipliers. Navigation for the robot is developed using artificial potential field path planning to generate a map of velocity vectors that are used for the set points for linear velocity and yaw rate. The second part of the thesis focuses on developing and evaluating three different control strategies for the mobile robot: PID controllers, Hierarchical Sliding Mode Control, and Deep-Q-Learning. The performances of the different control strategies are evaluated and compared based on various metrics, such as stability, robustness to mass variations and disturbances, and tracking accuracy. The implementation and evaluation of these strategies are modeled tested in a MATLAB/SIMULINK virtual environment

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Influencing robot learning through design and social interactions: a framework for balancing designer effort with active and explicit interactions

    Get PDF
    This thesis examines a balance between designer effort required in biasing a robot’s learn-ing of a task, and the effort required from an experienced agent in influencing the learning using social interactions, and the effect of this balance on learning performance. In order to characterise this balance, a two dimensional design space is identified, where the dimensions represent the effort from the designer, who abstracts the robot’s raw sensorimotor data accord-ing to the salient parts of the task to increasing degrees, and the effort from the experienced agent, who interacts with the learner robot using increasing degrees of complexities to actively accentuate the salient parts of the task and explicitly communicate about them. While the in-fluence from the designer must be imposed at design time, the influence from the experienced agent can be tailored during the social interactions because this agent is situated in the environ-ment while the robot is learning. The design space is proposed as a general characterisation of robotic systems that learn from social interactions. The usefulness of the design space is shown firstly by organising the related work into the space, secondly by providing empirical investigations of the effect of the various influences o
    • …
    corecore