17,117 research outputs found

    Dynamic Pathways for Viral Capsid Assembly

    Get PDF
    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.Comment: 13 pages, 13 figures. Submitted to Biophys.

    Experimental Validation of External Load Effects for Micro-Contacts under Low Frequency, Low Amplitude Alternating Current (AC) Test Conditions

    Get PDF
    The use of micro-contacts has been demonstrated in various radio frequency (RF) applications. However, the premature failure of such devices under alternating current (AC) operations is still a hurdle to further development. In this work, modified gray scale lithography is performed to fabricate two types of gold–gold (Au–Au) micro-contacts: hemispherical-planar and hemispherical-2D pyramid. The performance of these devices was investigated under low frequency, low amplitude AC conditions with external circuit loads. A custom-made experimental setup which uses various load configurations, controls the frequency of the applied voltage and modifies the cycle rate of switch operation to obtain the contact resistance as a function of number of cycles (up to 107 cycles). Nearly 87% of the tested devices (13 out of 15 hemispherical-planar micro-contacts) were found to be in good operational condition and passed the 10 million cycle mark successfully. A steady gain and large swing in the value of contact resistance was also observed near the end of all, but one, tests. Such changes in contact resistance were found to be permanent as none of the devices recovered completely. On the other hand, the hemispherical-2D pyramid micro-contact performed better than the planar one as it also passed 107 cycle mark with low and remarkably stable contact resistance throughout the testing span. This study suggests that micro-contacts with ‘engineered’ surface structures with external loads applied are a viable solution to premature failure and high contact resistance in micro-contacts under low frequency AC operations

    Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects

    Get PDF
    Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes (LdG) theory provides detailed insights into the structure and energetics of the enormous variety of possible topological defect configurations that may arise when the liquid crystal is in contact with colloidal inclusions or structured boundaries. However, these methods can be computationally expensive, making it challenging to predict (meta)stable configurations involving several colloidal particles, and they are often restricted to system sizes well below the experimental scale. Here we present an open-source software package that exploits the embarrassingly parallel structure of the lattice discretization of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows users to accelerate simulations using both CPU and GPU resources in either single- or multiple-core configurations. We make use of an efficient minimization algorithm, the Fast Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization, requiring little additional memory or computational cost while offering performance competitive with other commonly used methods. In multi-core operation we are able to scale simulations up to supra-micron length scales of experimental relevance, and in single-core operation the simulation package includes a user-friendly GUI environment for rapid prototyping of interfacial features and the multifarious defect states they can promote. To demonstrate this software package, we examine in detail the competition between curvilinear disclinations and point-like hedgehog defects as size scale, material properties, and geometric features are varied. We also study the effects of an interface patterned with an array of topological point-defects.Comment: 16 pages, 6 figures, 1 youtube link. The full catastroph

    Numerical evaluation of three non-coaxial kinematic models using the distinct element method for elliptical granular materials

    Get PDF
    This is the accepted version of the following article: [Jiang, M. J., Liu, J. D., and Arroyo, M. (2016) Numerical evaluation of three non-coaxial kinematic models using the distinct element method for elliptical granular materials. Int. J. Numer. Anal. Meth. Geomech., 40: 2468–2488. doi: 10.1002/nag.2540.], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2540/fullThis paper presents a numerical evaluation of three non-coaxial kinematic models by performing Distinct Element Method (DEM) simple shear tests on specimens composed of elliptical particles with different aspect ratios of 1.4 and 1.7. The models evaluated are the double-shearing model, the double-sliding free-rotating model and the double slip and rotation rate model (DSR2 model). Two modes of monotonic and cyclic simple shear tests were simulated to evaluate the role played by the inherent anisotropy of the specimens. The main findings are supported by all the DEM simple shear tests, irrespective of particle shape, specimen density or shear mode. The evaluation demonstrates that the assumption in the double-shearing model is inconsistent with the DEM results and that the energy dissipation requirements in the double-sliding free-rotating model appear to be too restrictive to describe the kinematic flow of elliptical particle systems. In contrast, the predictions made by the DSR2 model agree reasonably well with the DEM data, which demonstrates that the DSR2 model can effectively predict the non-coaxial kinematic behavior of elliptical particle systems.Peer ReviewedPostprint (author's final draft

    A 3D Framework for Characterizing Microstructure Evolution of Li-Ion Batteries

    Get PDF
    Lithium-ion batteries are commonly found in many modern consumer devices, ranging from portable computers and mobile phones to hybrid- and fully-electric vehicles. While improving efficiencies and increasing reliabilities are of critical importance for increasing market adoption of the technology, research on these topics is, to date, largely restricted to empirical observations and computational simulations. In the present study, it is proposed to use the modern technique of X-ray microscopy to characterize a sample of commercial 18650 cylindrical Li-ion batteries in both their pristine and aged states. By coupling this approach with 3D and 4D data analysis techniques, the present study aimed to create a research framework for characterizing the microstructure evolution leading to capacity fade in a commercial battery. The results indicated the unique capabilities of the microscopy technique to observe the evolution of these batteries under aging conditions, successfully developing a workflow for future research studies
    • …
    corecore