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SUMMARY

This paper presents a numerical evaluation of three non-coaxial kinematic models by performing Distinct
Element Method (DEM) simple shear tests on specimens composed of elliptical particles with different
aspect ratios of 1.4 and 1.7. The models evaluated are the double-shearing model, the double-sliding
free-rotating model and the double slip and rotation rate model (DSR2 model). Two modes of monotonic
and cyclic simple shear tests were simulated to evaluate the role played by the inherent anisotropy of the
specimens. The main findings are supported by all the DEM simple shear tests, irrespective of particle shape,
specimen density or shear mode. The evaluation demonstrates that the assumption in the double-shearing
model is inconsistent with the DEM results and that the energy dissipation requirements in the double-
sliding free-rotating model appear to be too restrictive to describe the kinematic flow of elliptical particle
systems. In contrast, the predictions made by the DSR2 model agree reasonably well with the DEM data,
which demonstrates that the DSR2 model can effectively predict the non-coaxial kinematic behavior of
elliptical particle systems. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Non-coaxiality, defined as the deviation of the principal plastic strain increment direction from
the principal stress direction, is an important feature of granular material. It has been demonstrated
[1–13] that non-coaxiality plays a key role in the fundamental mechanical behavior of geo-materials
and in many geotechnical engineering problems that involve the rotation of the principal stresses.
Hence, non-coaxiality should be considered when developing plasticity models for granular material
[14–16]. Starting from the kinematic theory, various plasticity models have been proposed to
describe ‘fully developed’ planar plastic flow of granular material. There are two outstanding
features of these kinematic models: (i) they are formulated by defining the velocity field with several
kinematic equations and (ii) they take the non-coaxiality of granular material into account. The
most well-known kinematic models include the double-shearing model [17], the double-sliding
free-rotating model [18] and the double slip and rotation rate model (DSR2 model) [19]. These
models describe the plastic flow of granular materials with several simple kinematic equations. If a
*Correspondence to: Mingjing Jiang, Department of Geotechnical Engineering, Tongji University, Shanghai 200092,
China.
†E-mail: mingjing.jiang@tongji.edu.cn
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single angular velocity Ω is introduced to describe the rotation rate of granular materials undergoing
plastic flow, a unified formulation of these kinematic models can be obtained [20]. This indicates
that the differences between these models lie in the choice of the angular velocity Ω, which will
be discussed in Section 3. Briefly, the double-shearing model [17] employs the rotation rate of
the principal stresses as the angular velocity; the double-sliding free-rotating model adopts the
rotation rate of sliding elements as the angular velocity [18] and then the energy dissipation is
assumed to be non-negative in each slip direction [21]; the DSR2 model [19] introduces a
quantity termed as the averaged pure rotation rate (APR) as the angular velocity. Therefore,
all these kinematic models describe the non-coaxial macroscopic plastic flow by considering the
deviation between the strain rate tensor and the principal stress tensor. Although all this models have a
rational micromechanical basis, it is necessary to evaluate their ability to characterize non-coaxial
plastic flow.

Constitutive models are usually evaluated by being compared with experimental data. However,
experimental evaluation of the above kinematic models is extremely difficult because of the
technical difficulty in measuring the key variables in physical experiments. For example, the APR in
the DSR2 model [19] is related to the rotation of contacting particles, which is difficult to measure
in the laboratory with current technology. Hence, the Distinct Element Method (DEM) proposed by
Cundall and Strack [22], which has been widely used to investigate the microscopic and
macroscopic mechanical behavior [23–28] and boundary-value problems [29–32] of granular
materials, is an appropriate method to perform such evaluations.

DEM has already been used to investigate the non-coaxial behavior of granular material [33–36].
However, only in the work of Jiang et al. [37] has DEM been used specifically to evaluate
kinematic models for granular material undergoing non-coaxial flow. Jiang et al. [37] examined the
abovementioned kinematic models by simulating monotonic and cyclic simple shear tests on
assemblies of circular particles. It was concluded that (i) the angular velocity in the double-shearing
model [17] is inconsistent with the DEM observations, (ii) the energy dissipation requirement in the
double-sliding free-rotating model [21] is unduly restrictive and (iii) the APR in the DSR2 model
[19] correctly represented the rotation rate of granular material undergoing plastic flow. It is known,
however, that non-circular particle shape has a significant effect on the behavior of granular material
and, in particular, on the ability of particles to rotate [38–41]. A question now arises: are these
conclusions [37] valid for non-circular particle assemblies? This question provides the motivation
for the present study.

This paper evaluates the kinematic models for the non-coaxial plastic flow of assemblies of elliptical
particles. The original DEM code NS2D [27–29] was modified to model elliptical particles. Using the
modified NS2D, the double-shearing model, the double-sliding free-rotating model and the DSR2

model are examined by performing strain-controlled monotonic and cyclic simple shear tests. In the
simulations, specimens with different aspect ratios are used to obtain a convincing conclusion. In
addition, all the specimens are subjected to two different modes of simple shear to check whether or
not the inherent anisotropy influences the conclusions. Although DEM can also be used to
investigate the reasons for non-coaxiality at the microscopic scale and how the micromechanical
behavior creates the macroscopic response of the granular material, these aspects are out of the
scope of the present work and will be the subject of future studies.
2. DEM TESTS ON ELLIPTICAL GRANULAR MATERIALS

2.1. Materials

The original DEM code, NS2D [27–29], was further improved for this investigation. The key
improvements are in the detection of inter-particle or particle–wall contacts and the definition of the
average pure rotation (APR) for elliptical particles. The algorithms proposed in [42] were used for
the contact detection. The definition of APR for elliptical particles will be discussed in Section 3.4.

With the improved NS2D, DEM tests were carried out using elliptical particles with the equivalent
particle size distribution shown in Figure 1. The equivalent particle size is defined as d ¼ ffiffiffiffiffiffiffiffiffiffi

dadb
p

,
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Figure 1. Grain size distribution of simulated granular material.

NUMERICAL EVALUATION OF THREE NON-COAXIAL KINEMATIC MODELS
where da and db are the lengths of the major and minor axes of an elliptical particle, respectively. As
shown in Figure 1, the equivalent particle size lies in the range between 6.0mm and 9.0mm, with the
mean diameter d50=7.6mm. The aspect ratio defined as Am= da/db is another characteristic of an
elliptical particle. In the DEM tests, two aspect ratios have been used, Am=1.4 and 1.7, which are
typical of two granular materials used in laboratory tests. Despite the same distribution of equivalent
particle size, the specimens behave differently because of the difference in particle aspect ratio.

The double-shearing model [17] and the double-sliding free-rotating model [18] were originally
proposed for non-dilatant materials and then extended for ideal dilatant materials to consider shear
dilatancy. Because the evaluation will become unnecessarily complicated if volume change is
considered, these kinematic models will be evaluated based on simulations in which the specimens
do not change volume. Loose, medium-dense and dense specimens, are studied in parallel to obtain
reliable conclusions. Table I summarizes the parameters used in the DEM simulations. Each
numerical specimen had a total of 2032 elliptical particles surrounded by four rigid walls. The
numerical specimens were prepared using the under-compaction multi-layer technique (UCM) [43].
The inter-particle and particle–wall contact law can be expressed as

Fn ¼ max knun; 0:0ð Þ
Fs ¼ min ksus;μFnð Þ

�
(1)

where kn and ks are the normal and tangential contact stiffnesses, un and us are the normal and
tangential relative displacements and μ is the friction coefficient. All the particles were frictional
with a coefficient of 0.5 while the walls were frictionless during specimen preparation. In addition,
global damping was used to obtain quasi-static simulations under the given strain rate.
Table I. Parameters of the materials and simple shear tests in the DEM verifications.

Material parameters

Specimen size (mm×mm) About 325 × 340
Total number of particles 2032
Density of particles (kg/m3) 2600
Particle aspect ratio (Am) 1.4 and 1.7
Normal/tangential spring stiffness (N/m) 1.5 × 109, 1.0 × 109

Inter-particle friction coefficient 0.5
Planar void ratio (dense, medium-dense, loose) 0.16, 0.19, 0.22

Shear test parameters
Initial rotation rate :θ0 (rad/min) 0.5 (monotonic test)

0.15 (cyclic test)
Period in cyclic simple shear test T(s) 120
Incremental time Δt (s) 1.0 × 10�4
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2.2. Test program

The DEM tests include the compression and simple shear stages. In the compression stage, the
specimens were vertically compressed under a pressure of 200 or 400 kPa with the two lateral walls
fixed. In this stage, all the four rigid walls were assumed frictionless, and thus the major and minor
principal stresses were perfectly vertical and horizontal, respectively. In the subsequent shear stage,
all the rigid walls were frictional and the particle–wall friction coefficient was set to 0.5 to allow
simple shearing. Note that the rough wall by itself may not necessarily create non-coaxiality. For
example, non-coaxiality is hardly observed before strain localization occurs in biaxial tests. Hence,
the simple shear tests described below were performed, which means that the non-coaxiality studied
in this paper occurs because of shearing. In addition, the shear tests were performed in strain
rate control mode rather than stress control mode. This is because (i) stress control shear tests
require a highly-efficient servo-control mechanism, which makes the stress control shear
tests far more complicated than the strain control tests in either laboratory tests or numerical
simulations, and (ii) the strain softening cannot be observed in stress controlled laboratory tests or
numerical simulations.

In the shear stage, the specimens were subjected to either monotonic or cyclic simple shearing in
which the volume was kept constant. Because there was usually a preferred orientation of particle
contacts or of the major particle axes in an assembly of elliptical particles, all the specimens
generally exhibited a significant inherent anisotropy before the simple shear stage. It is known
that inherent anisotropy usually plays an important role in the mechanical behavior of geomaterials
[44–46]. Hence, all the specimens were loaded in two different modes during the simple shear stage,
as shown in Figure 2, to account for the possible effect of inherent anisotropy. The first shear mode
(Mode I) is when the two lateral walls rotate at the rate _θ while the top and bottom walls are
vertically fixed but move horizontally at a rate of _θ�h=2:0 , where h is the specimen height. The
second shear mode (Mode II) is when the top and bottom walls rotate at a rate _θ while the two
lateral walls are horizontally fixed but move vertically at a rate of _θ�w=2:0, where w is the specimen
width. The rotation rate _θ is constant in the monotonic shear tests and periodic in the cyclic shear
tests, as expressed by

_θ ¼
_θ0; in monotonic shear tests

_θ0cos
2πt
T

� �
; in cyclic shear tests

8<
: (2)

where _θ0 is the maximum rotation rate, T is the rotation period and t is the current time. The rotation
rate is taken as positive when the wall rotates counterclockwise.
Figure 2. Shear modes of DEM simple shear tests.
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NUMERICAL EVALUATION OF THREE NON-COAXIAL KINEMATIC MODELS
During the DEM tests, the velocity of a particle can be computed by the displacement increment
over the corresponding time interval. In the simple shear tests, the distribution of the average
velocity can be theoretically obtained. In Mode I simple shear test, the theoretical solution is given by

vx
vy

� �
¼ � _θ�y

0

� �
(3a)

where y is the y-ordinate value of the given point. In Mode II simple shear test, the theoretical solution
is given by

vx
vy

� �
¼ 0

_θ�x
� �

(3b)

where x is the x-ordinate value of the given point. The theoretical solutions given by Eq. (3a) and Eq. (3b)
will be used to establish the evaluation criteria for the kinematic models, as discussed in Section 3.
Moreover, the theoretical solutions can also serve as the benchmark to verify the DEM simple shear
tests, as shown in Subsection 4.1.

Table I provides the parameters for the DEM simple shear tests. For each shear mode described
above, eight undrained simple shear tests were performed: two monotonic shear tests on dense and
loose specimens, one monotonic shear test on a medium-dense specimen and one cyclic shear test
on dense, medium-dense and loose specimens. Therefore, a total of 32 simple shear tests were
simulated. The maximum shear strain in the monotonic simple shear tests is chosen to be 18%,
which is large enough to evaluate the abovementioned kinematic models. The same time increments
were chosen for all the tests. The time increment was small enough that the specimens were always
at quasi-static equilibrium during the simple shear tests.
3. EVALUATION CRITERIA FOR THE KINEMATIC MODELS

Evaluation criteria, by which the theoretical results obtained from the kinematic models can be
compared with the DEM data, have been described in detail in the previous work dealing with
circular granular materials [37]. For completeness and readability, these evaluation criteria will be
briefly introduced below, as well as the modifications made for elliptical particles.

The velocity field for granular material undergoing planar flow can be described by the unified
kinematic equations as follows [20]:

d11 þ d22ð Þcos ς þ ξ
2

� �
¼ d11 � d22ð Þcos2ψσ þ 2d12sin2ψσ½ �sin ς � ξ

2

� �

2 Ωþ w12ð Þsin ς þ ξ
2

� �
¼ d11 � d22ð Þsin2ψσ � 2d12cos2ψσ½ �cos ς � ξ

2

� � (4)

where ς and ξ are material parameters, Ω is the angular velocity, the deformation rate dij ¼ 1
2

∂vi
∂xj þ

∂vj
∂xi

� �

and the spin tensor wij ¼ 1
2

∂vi
∂xj �

∂vj
∂xi

� �
with vi being the velocity. The inclination of the major principal

stress ψσ can be calculated from

ψσ ¼
1
2
arctan

2σ12
σ11 þ σ22

� �
(5)

where σij is the stress tensor. By choosing ς =φ (φ is the internal friction angle) and ξ =φ�2χ (χ is the
dilatancy parameter), Eq. (4) can be rewritten as
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d11 þ d22ð Þcos φ� χð Þ ¼ d11 � d22ð Þcos2ψσ þ 2d12sin2ψσ½ �sin χð Þ
2 Ωþ w12ð Þsin φ� χð Þ ¼ d11 � d22ð Þsin2ψσ � 2d12cos2ψσ½ �cos χð Þ (6)

For incompressible granular material undergoing planar flow (χ =0), the kinematic behaviors can be
theoretically described by the models with the following equations [20]:

d11 þ d22 ¼ 0
2 Ωþ w12ð Þsinφ ¼ d11 � d22ð Þsin2ψσ � 2d12cos2ψσ

(7)

As mentioned above, the angular velocity Ω has different interpretations in different kinematic
models [17–19, 21]. In the double-shearing model [17], the angular velocity Ω is regarded as the
rotation rate of the principal stress. In the double-sliding free-rotating model [18, 21], the angular
velocity Ω is interpreted as the rotation rate of the sliding elements. In the DSR2 model [19], the
angular velocity Ω is identified with the average pure rotation rate (APR). In the monotonic or
cyclic simple shear tests, a theoretical solution can be obtained for the angular velocity Ω. Therefore
these kinematic models, except the double-sliding free-rotating model, can be evaluated by directly
comparing the predicted values obtained from DEM tests with the theoretical angular velocity Ω.
The theoretical angular velocity Ω in the double-sliding free-rotating model is indeterminate [21]
and hence is evaluated using the method described below.

3.1. Theoretical rotation rate

By substituting Eq. (2a) or (2b) into Eq. (3b), the theoretical rotation rate Ω can be expressed as

Ω ¼ cos2ψσ

2sinφ
þ 1
2

� �
_θ (8)

where _θ is the rotation rate given by Eq. (2) and ψσ is the inclination of the major principal stress given
by Eq. (5). It was found from biaxial compression tests that the residual frictional angle φ was 24.6°
and 30.0° for Am=1.4 and 1.7, respectively. For simplicity, an identical φ of 30° is used for all
specimens. The theoretical rotation rate Ω was calculated using Eq. (8) during the DEM simple
shear tests to evaluate the three kinematic models.

3.2. Double-shearing model

The double-shearing model regards the angular velocity Ω as the rotation rate of the major principal
stress, i.e. _ψσ , which is defined as the increment of the principal stress inclination over a time
interval Δt and calculated using

_ψσ ¼
ψtþΔt
σ � ψt

σ

Δt
(9)

where ψt
σ is the principal stress inclination given by Eq. (4) at time t.

The double-shearing model will be evaluated by comparing _ψσ with the theoretical rotation rate Ω
given by Eq. (8).

3.3. Double-sliding free-rotating models

The double-sliding free-rotating model interprets Ω as the rotation rate of the sliding elements. Because
the rotation of granular material is regarded as ‘free’, the rotation rate of the sliding elements is
indeterminate. Therefore, De Josselin De Jong [21] stipulated the restriction of non-negative energy
dissipation in each slip direction to apply this model to practical geo-engineering. For
incompressible granular materials, Meharbadi and Cowin [47] further proposed an equivalent
inequality to represent the requirement of non-negative energy dissipation as

A ¼ 2 Ωþ w12j j < skmekm
qcosφ

¼ B (10)
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NUMERICAL EVALUATION OF THREE NON-COAXIAL KINEMATIC MODELS
where w12 is the spin tensor, q is the stress invariant defined by Eq. (11c), skm and ekm are the deviatoric
stress tensor and the deviatoric deformation rate tensor, respectively. In two-dimensions, the variables
on the right hand side of inequality (10) can be calculated from the stress tensor σij and the deformation
rate tensor dij as

sij ¼ σij � 1
2
δijσkk (11a)

eij ¼ dij � 1
2
δijdkk (11b)

q ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ11 � σ22ð Þ2 þ 4σ212

q
(11c)

where δij is the Kronecker delta. The internal friction angle φ is also chosen as 30° for consistency. The
left hand side of inequality (10) can be obtained from the theoretical value of Ω given by Eq. (8) and
the spin tensor w12 is calculated by

w12 ¼ 1
2

∂vx
∂y

� ∂vy
∂x

� �
¼�1

2
_θ (11d)

Therefore, the double-sliding free-rotating model will be evaluated by investigating inequality (10)
in the DEM simple shear tests. Note that inequality (10) is derived in the framework of
thermodynamics and thus the double-sliding free-rotating model can also be theoretically evaluated
by examining the energy dissipation at all contacts during the numerical simulations. Because this
paper focuses on the evaluation of the kinematic models through the angular velocity Ω in the
unified kinematic equations, the energy dissipation is not studied here for simplicity.

3.4. DSR2 model for elliptical granular materials

In the DSR2 model, the angular velocity Ω is interpreted as the average pure rotation (APR) ωc
3, which

is defined based on the kinematic motions of contacting particles. In the previous work [19], the
formulation of APR was proposed for circular particles and is extended for elliptical particles below.

Consider two particles m and n within a granular assembly composed of rigid elliptical particles,
which deforms incrementally in the time interval from t to t+Δt. Particle m remains in contact with
particle n over the time interval Δt, as shown in Figure 3. At time t, particles m and n translate at
velocities _utmi and _utni (i=1, 2), and rotate at the rates of _θtm and _θtn , respectively. The corresponding

translational and rotational accelerations are €utmi and €θ tm, €u
t
ni and €θ tn, respectively.
Figure 3. Kinematics of two ellipses in contact at times t and t+△t.
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At time t, particles m and n rotate transiently with respect to contact C. The respective rotation
radius, rtm and rtn, can be expressed as

rtm ¼ Rt
mcosβ

t
m; rtn ¼ Rt

ncosβ
t
n (12a)

where βtm and βtn are the angles shown in Figure 3(a), Rt
m and Rt

n are the contact radii measured from the
center of particle m and n to the contact C, respectively. When the particles are circular, the relationship
in Eq. (12a) becomes

rtm ¼ Rt
m; rtn ¼ Rt

n: (12b)

Over the time interval Δt, the tangential relative displacement between particle m and n at contact C
can be obtained from

Δus ¼ ∫
tþΔt

t _usdt ¼ ∫
tþΔt

t _umi � _unið Þsi � _θmrm þ _θnrn
� 	
 �

dt (13)

where the tangential vector s
→¼ cosα; sinαð Þ as illustrated in Figure 3(a).

Following the mean value theorem for integrals, the tangential relative displacement at contact C
can be rewritten as

Δus ¼ _utþλΔt
s �Δt (14a)

where 0< λ< 1. The first order Taylor expansion of _utþλΔt
s yields

_utþχΔt
s ¼ _uts þ €uts �λΔt (14b)

where €uts is the tangential relative acceleration. Therefore, the tangential relative displacement over the
time interval Δt can be calculated as

Δus ¼ _uts �Δt þ χ �€uts � Δtð Þ2: (14c)

Let us define the equivalent relative rotation Δθs caused by the tangential relative displacement Δus
as follows:

Δθs ¼ Δus=r (15)

where r=2rmrn/(rm+ rn).
The equivalent relative rotation rate _θs can be expressed as

_θs ¼ lim
Δt→0

Δθs
Δt

¼ 1
r

_umi � _unið Þsi � _θmrm þ _θnrn
� 	
 �

: (16)

Eq. (16) demonstrates that the equivalent relative rotation rate _θs at contact C consists of two
components. The first component accounts for the tangential relative displacement resulting from the
translation of the particles in contact. The second component accounts for the tangential relative
displacement induced by their rotations. Similar to the definition of micro-pure rotation rate of
circular particles [19], the micro-pure rotation rate of elliptical particles is defined as

_θpr ¼ 1
r

_θmrm þ _θnrn
� 	

: (17a)

Eq. (17a) indicates that the micro-pure rotation rate _θpr depends on the rotation rates of contacting
particles and their transient rotation radius with respect to the contact point. Note that, although the
derivation starts with elliptical particles, the aspect ratio does not appear explicitly in Eq. (17a). For
circular particles, Eq. (12b) leads to
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_θpr ¼ 1
R

_θmRn þ _θmRn

� 	
(17b)

where R=2RmRn/(Rm+Rn). Eq. (17b) is the micro-pure rotation rate defined for circular particles by
Jiang et al. [19]. Hence, Eq. (17a) can be regarded as the generalized definition of the micro-pure
rotation rate for granular materials.

For the whole granular assembly of elliptical particles, the average pure rotation rate (APR) can be
calculated from

ωc
3 ¼

1
N

∑
N

c¼1

_θprc ¼ 1
N

∑
N

c¼1

1
rc

_θcmr
c
m þ _θcnr

c
n

� 	
(18)

where N is the total number of contacts. If a particle rotates counterclockwise, the rotation rate _θm is
positive; otherwise, _θm is negative. Eq. (18) has been derived from the interaction of the contacting
particles to calculate the APR of granular materials. Because the APR defined by Eq. (18) is a
macroscopic quantity related to particle size as well as particle rotation, it can serve as an
appropriate bridge between discrete micromechanics and constitutive modeling of granular materials.
By interpreting the angular velocity Ω as APR, the DSR2 model becomes a hybrid model of discrete
and continuum mechanics for non-coaxial granular materials.

In the numerical evaluations, the DSR2 kinematic model will be examined by comparing APR
calculated by Eq. (18) with the theoretical rotation rate Ω given by Eq.(8).
4. DEM SIMULATION RESULTS

In this section, the DEM simple shear tests are first analyzed from the velocity fields and force
distribution within the specimens. Then, the three kinematic models are evaluated by comparing the
model predictions with the results observed in DEM monotonic simple shear tests. Finally, these
models are further evaluated using the results obtained from DEM cyclic simple shear tests. Note
that these kinematic models are evaluated based on macroscopic quantities defined over the
specimens. Although averaging of these quantities may merge several quite different mechanisms,
the evaluations are still reasonable because these models are proposed to predict the macroscopic
behavior of granular materials, and this paper does not aim to discuss the mechanisms of non-
coaxial behavior of granular materials.

4.1. Macro-mechanical response

Figure 4 presents the variation of the stress component on the non-rotated walls. The stress
components were computed by integrating all the particle–wall contact forces over the
corresponding wall. Figure 4(a) shows that, in both modes of shear tests, the vertical or horizontal
Figure 4. Stress components on the non-rotated walls during monotonic shear tests on medium-dense
specimens: (a) vertical (horizontal) stress, (b) shear stress.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
DOI: 10.1002/nag

https://www.researchgate.net/publication/30045507_Kinematic_models_for_non-coaxial_granular_materials_Part_I_Theory?el=1_x_8&enrichId=rgreq-e4bfd59c63a3f21914b105f453384451-XXX&enrichSource=Y292ZXJQYWdlOzMwMzgwMDAyOTtBUzozNzM4Nzk5NzQ0NDkxNTJAMTQ2NjE1MTM0MDI3OA==


M. JIANG, J. LIU AND M. ARROYO
stress on the non-rotated walls decreases slightly at first and then increases gradually to a value which
is significantly larger than the initial stress. This indicates that the specimens tended to experience shear
dilation at large strain after the initial contraction. Figure 4(b) shows that the shear stress component on
the non-rotated walls increases gradually at first and then increases rapidly. The rate of increase of the
stress components on the non-rotated walls decreases again when the shear strain exceeds 11%, which
may result from the decreasing shear dilation rate.
4.2. Micro-analysis of simple shear tests

4.2.1. Velocity fields. Figure 6 presents the distributions of the average velocities in the x and y
directions along the y-axis during the Mode I monotonic simple shear test on the medium-dense
specimen with Am=1.7. The velocity fields were evaluated using the average velocities defined in a
representative elementary area and the velocity vectors defined on each particle. The representative
elementary area is referred to as a ‘band’ defined along the x- or y-axes, as shown diagrammatically in
Figure 5. Because the band thickness plays an important role in measuring the void ratio of granular
materials [43], several discretizations with different numbers of bands, i.e. 5, 9, 13 and 17, were used to
calculate the average velocities. The band thickness decreased from 8.95 to 2.63 times the mean
particle diameter d50. Figure 6 shows that the measured average velocities in the x direction agree
closely with the theoretical velocities estimated by Eq. (3a). In addition, there are only slight changes in
the average velocities when the number of bands increases, which indicates that, within the investigated
range, band thickness only slightly affects the description of the velocity field. It should be pointed out
that, regardless of particle shape, specimen density or shear mode, the average velocities obtained from
the simulations agree well with the theoretical solutions in all the monotonic simple shear tests. This
demonstrates that the velocity field is well described by Eq. (2) and, therefore, the DEM simple shear
tests performed are valid for the evaluation of the kinematic models.
Figure 5. Bands to compute the average velocities: (a) bands along x-axis; (b) bands along y-axis.

Figure 6. Average velocities along y-axis in Mode IDEM monotonic simple shear test on medium-dense
granular specimen (Am= 1.7): (a) velocity in x direction, (b) velocity in y direction.
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Figure 7 shows the complete velocity field corresponding to the average velocities shown in
Figure 6. Here, the velocity field is defined for each particle as its displacement increment over the
corresponding time interval. Figure 7 shows that the particles near the top and bottom walls move
almost horizontally as described by Eq.(3a), while the particle near the center seem to rotate counter
clockwise. However, as illustrated in Figure 7, the average vertical velocity near the specimen center
is still close to zero because of the anti-symmetrical distribution of the velocity field. Hence, it can
be generally summarized that Eq. (2) can properly describe the velocity field within granular
specimens during DEM simple shear tests. Consequently, the theoretical rotation rate Ω given by
Eq. (8) can serve as an index to evaluate the above kinematic models.

4.2.2. Force distribution. Because the applied forces are transmitted within the granular assembly via the
inter-particle contacts, the evolution of the transmission pathways of the strong forces, which are larger than
their average value, usually controls the mechanical shear behavior of granular materials [48, 49]. Hence,
the force distribution within the granular specimens during DEM simple shear tests is investigated here.

Figure 8 presents the transmission pathways of the strong forces via the interparticle contacts,
i.e. the strong contact force network, at three different shear strains during DEM monotonic simple
shear tests on the medium-dense specimens with Am=1.7. It should be pointed out that the strong
contact force network illustrated in Figure 8 reflects the distribution of normal stress on the
boundaries. Figure 8 shows that, in the Mode I simple shear test, the force network distributes
preferentially in a direction inclined about 45° to the x-axis. In this case, the contact forces in the
upper-right and lower-left zones are relatively larger than in other domains of the specimen. In
contrast, in the Mode II simple shear test, the preferential direction of the force network is inclined
at approximate �40° to the x-axis. Correspondingly, the contact forces generally decrease in the
upper-right and lower-left zones but increase in the upper-left and lower-right zones.
Figure 7. Velocity field in medium-dense specimen(Am=1.7)during Mode I DEM monotonic simple
shear test.

Figure 8. Strong force network in medium-dense granular specimens (Am= 1.7) at different shear strains
during DEM monotonic simple shear tests.
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As discussed above, Figure 8 demonstrates clearly that the force network is generally non-uniformly
distributed, which results in the non-uniformity of boundary stresses during simple shear tests. It has
been found that uniform boundary stresses cannot be achieved in either experimental or numerical
simple shear tests. However, it was accepted that true simple shear conditions can be achieved in the
central and large part of the specimens. In addition, experimental and numerical investigations into
the macro- and micro-mechanical behavior of granular material have shown that the external forces
are mainly resisted by the strong contact forces in the granular assembly rather than equally resisted
by the contact force between each pair of contacting particles, which plays an important role in the
non-uniformity of force network illustrated in Figure 8.

Figure 9 illustrates the orientation distribution of strong contact forces within the medium-dense
specimens at the shear strains presented in Figure 8. Figure 9 shows that the orientation of the
strong contact forces deviates significantly from the vertical direction after simple shearing
commenced. In the simple shear stage, the orientation of strong contact forces is mainly in the range
of 45±30° in Mode I simple shear tests and �60±30° in Mode II simple shear tests. This confirms
the observation made from Figure 8. In addition, Figure 9 shows that there are only slight changes
in the orientation of strong contact forces when the shear strain increases from �5% to �18%. Note
that the shear strain was treated as negative in DEM monotonic simple shear tests because the peak
rotation rate _θ0 is positive and the sign convention of the kinematic models [17–21] is also
employed in our DEM simulations. It should be pointed out that the fabric has not reached the
steady critical state when the maximum shear strain is reached and that simple shearing should be
continued to larger strain if the steady critical state is to be studied, which is not the focus of this paper.

Similar orientational distributions of the strong contact forces can be observed in the other DEM
monotonic simple shear tests irrespective of particle shape, specimen density or shear mode. This
suggests that these factors do not affect the numerical evaluations based on the DEM monotonic
simple shear tests, as will be shown below.
4.3. Model evaluation in DEM monotonic simple shear tests

4.3.1. Double-shearing model. Figure 10 compares the theoretical rotation rates Ω with the rotation
rates of the major principal stress _ψσ obtained from the DEM monotonic simple shear tests on
Figure 9. Strong contact force orientation in medium-dense granular specimens (Am= 1.7)at different shear
strains during DEM monotonic simple shear tests.
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Figure 10. Theoretical rotation rates and rotation rates of the major principal stress in granular specimens
(Am= 1.4) during DEM monotonic simple shear tests: (a)(b) in Mode I, (c)(d) in Mode II.
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elliptical particles with Am=1.4. Figure 10(a) shows that, in Mode I simple shear tests, the theoretical
rotation rates Ω drop rapidly from 0.006 rad/s to 0.001 rad/s when the shear strain increases from 0% to
�1.0%, and then reduces slowly to a very small positive value with the increasing shear strain.
Figure 10(b), however, shows that the rotation rates of the major principal stress _ψσ in Mode I
simple shear tests fluctuate in the range between �0.3 and 0.3 rad/s. Hence, the rotation rates of the
major principal stress _ψσ differ quantitatively and qualitatively from the theoretical rotation rates Ω
in Mode I monotonic simple shear tests. Figure 10(c) shows that, in Mode II monotonic simple
shear tests, the theoretical rotation rates Ω drop from 0.006 rad/s to almost zero at a shear strain of
�1.0% and then remain almost constant. Figure 10(d) shows that the rotation rates of the major
principal stress _ψσ in Mode II shear tests are in the range between �0.2 and 0.05 rad/s. Again, in
Mode II monotonic simple shear tests, the rotation rates of the major principal stress _ψσ are
significantly different from the theoretical rotation rates Ω.

Figure 11 compares the theoretical rotation rates Ω with the rotation rates of the major principal
stress _ψσ obtained from the DEM monotonic simple shear tests on elliptical particles with Am=1.7.
Comparing with Figure 10, Figure 11 shows that there are only slight changes in the values of Ω
and _ψσ when the aspect ratio increases from 1.4 to 1.7. In addition, Figure 11 also demonstrates the
quantitative and qualitative differences between Ω and _ψσ in both modes of simple shear tests, as
already observed in Figure 10. Hence, the assumption Ω ¼ _ψσ in the double-shearing model [17]
appears to contradict the observations obtained from DEM monotonic simple shear tests.

The numerical simulations reveal that the main direction of the inter-particle contacts rotates
gradually to coincide with the major principal stress, while the main direction of the contact forces
is almost always consistent with the principal stress direction. This indicates that the non-coaxial
behavior of granular material is related to the different rotation rates of the main directions of the
inter-particle contacts and the contact forces. However, the double-shearing model relates the
rotation rate only to the major principal stress, which probably accounts for the reason why the
model predictions do not agree with the numerical results.

4.3.2. Double-sliding free-rotation models. Figure 12 presents quantities A and B in inequality (10)
during DEM monotonic simple shear tests Am=1.4. Figure 12(a) shows that both quantities vary
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Figure 11. Theoretical rotation rates and rotation rates of the major principal stress in granular specimens
(Am= 1.7) during DEM monotonic simple shear tests: (a)(b) in Mode I, (c)(d) in Mode II.

Figure 12. Measured quantities A and B in inequality (7) of granular specimens (Am=1.4) during DEM
monotonic simple shear tests: (a) in Mode I, (b) in Mode II.
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significantly during Mode I simple shear tests. In addition, quantity A is always positive but quantity B
is almost zero at a shear strain of about �6%. In contrast, Figure 12(b) shows that both quantities are
far larger than zero and tend to increase with shear strain during Mode II simple shear tests. Figure 12
demonstrates clearly that quantity A is generally larger than B in both modes, although their variations
are different.

Figure 13 provides quantities A and B in inequality (10) during monotonic simple shear tests with
Am=1.7. Figure 13(a) shows that, in Mode I, quantity A tends to increase while quantity B tends to
decrease with increasing shear strain. In contrast, Figure 13(b) shows that both quantities tend to
increase with increasing shear strain in Mode II. In addition, Figure 13 also demonstrates that A>B
during monotonic simple shear tests with Am=1.7.

The observations made from Figures 12 and 13 indicate that, irrespective of particle shape,
specimen density or shear mode, quantity A is larger than B during monotonic simple shear tests.
This is opposite to the assumption that quantity A should be smaller than B in the double-sliding
free-rotation models. Therefore, the energy dissipation requirement in the double-sliding
free-rotation models, as given by inequality (10), is not satisfied in DEM monotonic simple shear
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Figure 13. Measured quantities A and B in inequality (7) of granular specimens (Am= 1.7) during DEM
monotonic simple shear tests: (a) in Mode I, (b) in Mode II.
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tests on elliptical granular materials. Hence, this requirement seems to be too strong to describe
the kinematic flow of elliptical granular materials. This agrees with the remarks made by Mehrabadi
and Cowin [47], as well as the theoretical analysis and numerical simulations reported by
Jiang et al. [19, 37].
4.3.3. DSR2 model. Figure 14 provides the theoretical rotation rates Ω obtained from DEM
simulations using Eq. (8) and the APRs predicted by the DSR2 model for the medium-dense
granular specimens with Am=1.4. Figure 14 demonstrates that, despite slight differences, the APRs
agree well with the theoretical rotation rates Ω in both modes, especially at large shear strain.
In Mode I shear tests, as shown in Figure 14(a), Ω decreases gradually from 0.0008 rad/s to
0.0004 rad/s when the shear strain increases from 0 to �10%, and then remains almost constant. The
APR is appear to be always constant around 0.0003 rad/s during Mode I simple shear tests.
Figure 14(b) shows that Ω reduces slightly but steadily with increasing shear strain from an initial
0.0003 rad/s to 0.0001 rad/s, while the APRs fluctuate about 0.00015 rad/s in Mode II simple shear
tests. It is worth mentioning that the APRs agree with the theoretical rotation rates Ω in other DEM
monotonic simple shear tests on elliptical particle specimens (Am=1.4). This can be confirmed by
the agreement between the average values of APR and Ω, as shown in Figure 14.

Figure 15 provides the theoretical rotation rates Ω obtained from DEM simulations using Eq. (8)
and APRs predicted by the DSR2 model for the medium-dense granular specimens with Am=1.7.
Although both quantities in Mode II shear tests are slightly smaller than their respective counterparts
in Mode I shear tests, Figure 15 still demonstrates the good agreement between APRs and Ω
in monotonic simple shear tests, which confirms the observations made from Figure 14. Therefore,
it can be concluded that, regardless of particle shape, the variable APR in the DSR2 model [19]
can be used to predict the angular velocity Ω of elliptical granular materials subjected to monotonic
simple shear.
Figure 14. Theoretical rotation rates and APRs predicted by DSR2 model in medium-dense specimens
(Am= 1.4) during DEM monotonic simple shear tests: (a) in Mode I, (b) in Mode II.
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Figure 15. Theoretical rotation rates and APRs predicted by DSR2 model in medium-dense specimens
(Am= 1.7) during DEM monotonic simple shear tests: (a) in Mode I, (b) in Mode II.
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4.4. Model evaluation in DEM cyclic simple shear tests

4.4.1. Double-shearing models. Figure 16 presents the inclination ψσ and the rotation rates _ψσ of the
major principal stress, as well as the theoretical rotation rates Ω obtained from cyclic simple shear tests
on the medium-dense specimens with Am=1.4. In Mode I cyclic shear tests, as shown in Figure 16(a),
the inclination of the major principal stress changes periodically in the range between �50 and 50
during the cyclic simple shear tests. Figure 16(a) also shows that, in Mode I shear tests, the sign of
_ψσ is generally opposite to that of the theoretical rotation rates Ω, although both quantities undergo
periodic variations between their respective maximum and minimum values. Note that the rotation
rates of the major principal stress _ψσ in Figure 16(a) have been scaled down by a reduction factor of
1/15, so the magnitude of _ψσ is at least 15 times that of the theoretical rotation rates Ω. Hence, _ψσ
differs quantitatively and qualitatively from Ω in Mode I DEM cyclic simple shear tests. The
differences between _ψσ and Ω can also be observed in Mode II cyclic simple shear tests, as shown in
Figure 16(b).

Figure 17 presents ψσ, _ψσ and Ω obtained from cyclic simple shear tests on the medium-dense
specimens with Am=1.7. Figure 17 demonstrates clearly the evident differences between the
Figure 16. Rotation of the major principal stress and rotation rates during DEM cyclic simple shear tests on
medium-dense specimens (Am= 1.4): (a) in Mode I, (b) in Mode II.

Figure 17. Rotation of the major principal stress and rotation rates during DEM cyclic simple shear tests on
medium-dense specimens (Am= 1.7): (a) in Mode I, (b) in Mode II.
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theoretical rotation rates Ω and the rotation rates of the major principal stress _ψσ in cyclic simple shear
tests. The rotation rates of the major principal stress _ψσ are at least 25 and 10 times the magnitude of Ω
in Mode I and II tests, respectively. It should be pointed out that such differences can be observed in
other cyclic simple shear tests on specimens with Am=1.4 and 1.7, which is in agreement with the
observations made in monotonic simple shear tests. Therefore, irrespective of particle shape,
specimen density or shear mode, the assumption of ϑ ¼ _ψσ in the double-shearing model is not
supported by the evidence obtained from monotonic or cyclic simple shear DEM simulations.
4.4.2. Double-sliding free-rotation models. Figure 18 provides quantities A and Bin inequality (10)
during cyclic simple shear tests on the medium-dense specimens with Am=1.4. Figure 18 clearly
shows that, regardless of shear mode, both quantities change periodically during cyclic simple shear
tests and quantity A is generally larger than quantity B. As given by inequality (10), however, the
double-sliding free-rotation models assume that the value of A should be smaller than B. This
indicates that the energy dissipation described by inequality (10) is inconsistent with the
observations obtained from DEM cyclic simple shear tests. Jiang et al. [19] have pointed out that
particle rotation, which is intrinsic to most granular materials, plays an important role in the energy
dissipation and that the energy dissipation rate is smaller than that calculated from the stress and
plastic strain increment if particle rotation is considered. However, the energy dissipation requirement,
i.e. inequality (10), was derived in a classical continuum mechanics framework without consideration
of particle rotation. This can account for the inconsistency between the assumption given by inequality
(10) and the data obtained from DEM simple shear tests. For specimens with Am=1.7, as shown in
Figure 19, quantity A is also generally larger than quantity B during cyclic simple shear tests, which
is again in contradiction to inequality (10). This confirms the observations made in the monotonic
simple shear tests. Therefore, from the results obtained from DEM monotonic and cyclic simple
shear tests, it can be concluded that the energy dissipation requirement given by inequality (10) in
Figure 19. Measured quantities A and B in inequality (7) during DEM cyclic simple shear tests on
medium-dense specimens (Am=1.7): (a) in Mode I, (b) in Mode II.

Figure 18. Measured quantities A and B in inequality (7) during DEM cyclic simple shear tests on
medium-dense specimens (Am=1.4): (a) in Mode I, (b) in Mode II.
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Figure 21. Theoretical rotation rates and APR predicted by DSR2 model during DEM cyclic simple shear
tests on medium-dense specimens (Am= 1.7): (a) in Mode I, (b) in Mode II.

Figure 20. Theoretical rotation rates and APR predicted by DSR2 model during DEM cyclic simple shear
tests on medium-dense specimens (Am= 1.4): (a) in Mode I, (b) in Mode II.
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the double-sliding free-rotation model is unduly restrictive as a constitutive assumption in describing
the kinematic flow of elliptical granular materials.

4.4.3. DSR2 model. Figure 20 compares the APRs predicted by the DSR2 model with the theoretical
rotation rates Ω obtained from the DEM cyclic simple shear tests on specimens with Am=1.4.
Figure 20 shows that, in both modes of cyclic simple shear tests, the APRs agree well with the
theoretical rotation rates Ω. Both quantities vary periodically between �1.5 × 10�3 and
1.5 ×10�3rad/s with identical periods during the cyclic simple shear tests, regardless of shear mode.
In addition, the averaged APRs are qualitatively and quantitatively consistent with the averaged
theoretical rotation rates Ω. Moreover, the agreement between APRs and the theoretical rotation
rates Ω can also be observed in the cyclic simple shear tests on specimens with Am=1.7, as shown in
Figure 21. Hence, it can be summarized that it is reasonable to employ APR as the angular velocity Ω
in the unified kinematical model [20] and that the DSR2 model can well describe the non-coaxial flow
of elliptical granular materials.
5. CONCLUSIONS

This paper has evaluated numerically three kinematic models associated with the non-coaxiality of
geo-materials by performing DEM simple shear tests on elliptical granular materials. The models
examined are the double-shearing model, the double-sliding free-rotating model and the double slip
and rotation rate model (DSR2 model). The underlying assumptions of these models have been
examined based on results obtained from strain-controlled DEM monotonic and cyclic simple shear
tests in which the volume of the specimens was kept constant. Two different modes of simple shear
tests were considered because the inherent anisotropy of granular specimens may influence the
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evaluation of the results. The following conclusions can be drawn from the observations obtained from
the numerical simulations:

1. The assumption Ω ¼ _ψσ in the double-shearing model is not supported by the numerical results
obtained from DEM monotonic and cyclic simple shear tests on elliptical granular materials with
different aspect ratios. This agrees with the remarks made by Jiang et al. [37, 50] based on
numerical evaluations and theoretical analyses. However, the relationshipΩ ¼ _ψσ=m that appears
to apply for discs [37, 50] does not apply for ellipses, the reason for this needs to be investigated
in the future.

2. The requirement of energy dissipation in the double-sliding free-rotating model seems to be too
strong to describe the kinematic flow of elliptical granular materials, which can be observed in all
DEM simple shear tests irrespective of particle shape, specimen density or shear mode. This
agrees with the observations made in the numerical and theoretical analyses of disc assemblies
[37]. The non-coaxial behavior of granular material during shearing is related to changes to the
inter-particle contacts and the contact forces. Hence, the double-shearing model and the
double-sliding free-rotating model may be improved by incorporating the variables that reflect
the changes to the inter-particle contacts and the contact forces.

3. The APRs predicted by the DSR2 model are in good agreement with the theoretical rotation rates
Ω in all DEM simple shear tests on elliptical granular materials. This is consistent with the
conclusion in previous work [37, 51]. Hence, the concept of APR appears to be a reasonable
variable to use in kinematic models, and the DSR2 model is effective for describing the
non-coaxial flow of both circular and elliptical particles.

In future works it is planned to further examine the three models by using 3D DEM [52, 53] under
simple stress paths or complex stress paths [54, 55].
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