91 research outputs found

    Synthesis of Hybrid Fuzzy Logic Law for Stable Control of Magnetic Levitation System

    Get PDF
    In this paper, we present a method to design a hybrid fuzzy logic controller (FLC) for a magnetic levitation system (MLS) based on the linear feedforward control method combined with FLC. MLS has many applications in industry, transportation, but the system is strongly nonlinear and unstable at equilibrium. The fast response linear control law ensures that the ball is kept at the desired point, but does not remain stable at that point in the presence of noise or deviation from the desired position. The controller that combines linear feedforward control and FLC is designed to ensure ball stability and increase the system's fast-response when deviating from equilibrium and improve control quality. Simulation results in the presence of noise show that the proposed control law has a fast and stable effect on external noise. The advantages of the proposed controller are shown through the comparison results with conventional PID and FLC control laws

    IMPLEMENTATION OF CONTROL ALGORITHMS IN BALL MAGNETIC LEVITATION SYSTEM TO IMPROVE SYSTEM PARAMETERS

    Get PDF
    Magnetic Levitation System (Maglev) is an approach which is currently widely applied in different areas like semiconductor, transportation, power generation, household appliances and etc. Since Magnetic Levitation System is a highly non-linear system, constructing a successful controller which has robust performance becomes a big challenge. The most conventional method of building Maglev is PID controller. However findings of controller’s parameters which ar

    IMPLEMENTATION OF CONTROL ALGORITHMS IN BALL MAGNETIC LEVITATION SYSTEM TO IMPROVE SYSTEM PARAMETERS

    Get PDF
    Magnetic Levitation System (Maglev) is an approach which is currently widely applied in different areas like semiconductor, transportation, power generation, household appliances and etc. Since Magnetic Levitation System is a highly non-linear system, constructing a successful controller which has robust performance becomes a big challenge. The most conventional method of building Maglev is PID controller. However findings of controller’s parameters which ar

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Control approaches for magnetic levitation systems and recent works on its controllers’ optimization: a review

    Get PDF
    Magnetic levitation (Maglev) system is a stimulating nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in the air. The electromagnetic force is very sensitive to the noise, which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev benefits the industry since 1842, in which the maglev system has reduced power consumption, increased power efficiency, and reduced maintenance cost. The typical applications of Maglev system are in wind turbine for power generation, Maglev trains and medical tools. This paper presents a comparative assessment of controllers for the maglev system and ways for optimally tuning the controllers’ parameters. Several types of controllers for maglev system are also reviewed throughout this paper

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Robust Adaptive Cerebellar Model Articulation Controller for 1-DOF Nonlaminated Active Magnetic Bearings

    Get PDF
    This paper presents a robust adaptive cerebellar model articulation controller (RACMAC) for 1-DOF nonlaminated active magnetic bearings (AMBs) to achieve desired positions for the rotor using a robust sliding mode control based. The dynamic model of 1-DOF nonlaminated AMB is introduced in fractional order equations. However, it is challenging to design a controller based on the model\u27s parameters due to undefined components and external disturbances such as eddy current losses in the actuator, external disturbance, variant parameters of the model while operating. In order to tackle the problem, RACMAC, which has a cerebellar model to estimate nonlinear disturbances, is investigated to resolve this problem. Based on this estimation, a robust adaptive controller that approximates the ideal and compensation controllers is calculated. The online parameters of the neural network are adjusted using Lyapunov\u27s stability theory to ensure the stability of system. Simulation results are presented to demonstrate the effectiveness of the proposed controller.The simulation results indicate that the CMAC multiple nonlinear multiple estimators are close to the actual nonlinear disturbance value, and the effectiveness of the proposed RACMAC method compared with the FOPID and SMC controllers has been studied previously

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications

    A Practical Control Strategy for the Maglev Self-Excited Resonance Suppression

    Get PDF
    This paper addresses the control strategy for the suppression of maglev vehicle-bridge interaction resonance, which worsens the ride comfort of vehicle and degrades the safety of the bridge. Firstly, a minimum model containing a flexible bridge and ten levitation units is presented. Based on the minimum model, we pointed out that magnetic flux feedback instead of the traditional current feedback is capable of simplifying the block diagram of the interaction system. Furthermore, considering the uncertainty of the bridge’s modal frequency, the stability of the interaction system is explored according to an improved root-locus technique. Motivated by the positive effects of the mechanical damping of bridges and the feedback channels’ difference between the levitation subsystem and the bridge subsystem, the increment of electrical damping by the additional feedback of vertical velocity of bridge is proposed and several related implementation issues are addressed. Finally, the numerical and experimental results illustrating the stability improvement are provided

    Cooperative Manipulation using a Magnetically Navigated Microrobot and a Micromanipulator

    Get PDF
    The cooperative manipulation of a common object using two or more manipulators is a popular research field in both industry and institutions. Different types of manipulators are used in cooperative manipulation for carrying heavy loads and delicate operations. Their applications range from macro to micro. In this thesis, we are interested in the development of a novel cooperative manipulator for manipulation tasks in a small workspace. The resultant cooperative manipulation system consists of a magnetically navigated microrobot (MNM) and a motorized micromanipulator (MM). The MNM is a small cylinder permanent magnet with 10mm diameter and 10mm height. The MM model is MP-285 which is a commercialized product. Here, the MNM is remotely controlled by an external magnetic field. The property of non-contact manipulation makes it a suitable choice for manipulation in a confined space. The cooperative manipulation system in this thesis used a master/slave mechanism as the central control strategy. The MM is the master side. The MNM is the slave side. During the manipulation process, the master manipulator MM is always position controlled, and it leads the object translation according to the kinematic constraints of the cooperative manipulation task. The MNM is position controlled at the beginning of the manipulation. In the translation stage, the MNM is switched to force control to maintain a successful holding of the object, and at the same time to prevent damaging the object by large holding force. Under the force control mode, the motion command to the MNM is calculated from a position-based impedance controller that enforces a relationship between the position of the MNM and the force. In this research, the accurate motion control of both manipulators are firstly studied before the cooperative manipulation is conducted. For the magnetic navigation system, the magnetic field in its workspace is modeled using an experimental measurement data-driven technique. The developed model is then used to develop a motion controller for navigating of a small cylindrical permanent magnet. The accuracy of motion control is reached at 20 µm in three degrees of freedom. For the motorized micromanipulator, a standard PID controller is designed to control its motion stage. The accuracy of the MM navigation is 0.8 µm. Since the MNM is remotely manipulated by an external magnetic field in a small space, it is challenging to install an on-board force sensor to measure the contact force between the MNM and the object. Therefore, a dual-axial o_-board force determination mechanism is proposed. The force is determined according to the linear relation between the minimum magnetic potential energy point and the real position of the MNM in the workspace. For convenience, the minimum magnetic potential energy point is defined as the Bmax in the literature. In this thesis, the dual-axial Bmax position is determined by measuring the magnetic ux density passing through the workspace using four Hall-effect sensors installed at the bottom of an iron pole-piece. The force model is experimentally validated in a horizontal plane with an accuracy of 2 µN in the x- and y- direction of horizontal planes. The proposed cooperative manipulator is then used to translate a hard-shell small object in two directions of a vertical plane, while one direction is constrained with a desired holding force. During the manipulation process, a digital camera is used to capture the real-time position of the MNM, the MM end-effector, and the manipulated object. To improve the performance of force control on the MNM, the proposed dual-axial force model is used to examine the compliant force control of the MNM while it is navigated to contact with uncertain environments. Here, uncertain refers to unknown environmental stiffness. An adaptive position-based impedance controller is implemented to estimate the stiffness of the environment and the contact force. The controller is examined by navigating the MNM to push a thin aluminum beam whose stiffness is unknown. The studied cooperative manipulation system has potential applications in biomedical microsurgery and microinjection. It should be clarified that the current system setup with 10mm ×10 mm MNM is not proper for this micromanipulation. In order to conduct research on microinjection, the size of the MNM and the end-effector of the MNM should be down-scaled to micrometers. In addition, the navigation accuracy of the MNM should also be improved to adopt the micromanipulation tasks
    • …
    corecore