119 research outputs found

    Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating

    Get PDF
    Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, Fe3O4 nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt–Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field

    Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes

    Get PDF
    open10sìThe ability of magnetic nanoparticles (MNPs) to transform electromagnetic energy into heat is widely exploited in well-known thermal cancer therapies, such as magnetic hyperthermia, which proves useful in enhancing the radio- and chemo-sensitivity of human tumor cells. Since the heat release is ruled by the complex magnetic behavior of MNPs, a careful investigation is needed to understand the role of their intrinsic (composition, size and shape) and collective (aggregation state) properties. Here, the influence of geometrical parameters and aggregation on the specific loss power (SLP) is analyzed through in-depth structural, morphological, magnetic and thermometric characterizations supported by micromagnetic and heat transfer simulations. To this aim, different samples of cubic Fe3O4 NPs with an average size between 15 nm and 160 nm are prepared via hydrothermal route. For the analyzed samples, the magnetic behavior and heating properties result to be basically determined by the magnetic single- or multi-domain configuration and by the competition between magnetocrystalline and shape anisotropies. This is clarified by micromagnetic simulations, which enable us to also elucidate the role of magnetostatic interactions associated with locally strong aggregation.openhttps://zenodo.org/record/5040394#.YhVWyejMKUkFerrero, R; Barrera, G; Celegato, F; Vicentini, M; Sozeri, H; Yildiz, N; Dincer, CA; Coisson, M; Manzin, A; Tiberto, PFerrero, R; Barrera, G; Celegato, F; Vicentini, M; Sozeri, H; Yildiz, N; Dincer, Ca; Coisson, M; Manzin, A; Tiberto,

    Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives

    Get PDF
    The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review’s next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.Fil: Montiel Schneider, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Martín, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Otarola, Jessica Johana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Vakarelska, Ekaterina. University of Sofia; BulgariaFil: Simeonov, Vasil. University of Sofia; BulgariaFil: Lassalle, Verónica Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Nedyalkova, Miroslava. University of Sofia; Bulgari

    A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems

    Get PDF
    Magnetic core–shell nanocarriers have been attracting growing interest owing to their physicochemical and structural properties. The main principles of magnetic nanoparticles (MNPs) are localized treatment and stability under the effect of external magnetic fields. Furthermore, these MNPs can be coated or functionalized to gain a responsive property to a specific trigger, such as pH, heat, or even enzymes. Current investigations have been focused on the employment of this concept in cancer therapies. The evaluation of magnetic core–shell materials includes their magnetization properties, toxicity, and efficacy in drug uptake and release. This review discusses some categories of magnetic core–shell drug carriers based on Fe2O3 and Fe3O4 as the core, and different shells such as poly(lactic-co-glycolic acid), poly(vinylpyrrolidone), chitosan, silica, calcium silicate, metal, and lipids. In addition, the review addresses their recent potential applications for cancer treatment.The authors would like to acknowledge Qatar University for funding the project: GCC Co-Fund Program Grant #GCC-2017-001 and student grant QUST-1-CAS-2019-36. The publication of this article was funded by the Qatar National Library.Scopu

    Fabrication and analysis of drug-nanoparticles-based 3D scaffolds for targeted cancer treatment

    Get PDF
    Capstone Project submitted to the Department of Engineering, Ashesi University in partial fulfillment of the requirements for the award of Bachelor of Science degree in Mechanical Engineering, May 2020The mutable nature of cancer has made it one of the toughest diseases to successfully fight against. Due to the aggressive nature of cancer, toxic drugs are administered to stop or slow down the growth of cancerous cells. However, most of the conventional treatment methods lack site targeting and specificity, therefore, affecting any rapidly dividing cells. Destruction of normal cells therefore leads to malfunctioning of body organs. A proposed solution is to use localized drug delivery, with nanocomposite-based scaffolds with tuneable biodegradation, biocompatibility, and porous structures. These drug- and nanoparticle-based scaffolds were fabricated through solvent casting method. Scaffolds containing magnetite nanoparticles were loaded with an experimental drug (Dichapetalin M), Tamoxifen (a control cancer drug) for comparison. Morphological study of the scaffolds was characterised with a scanning electron microscope. Drug release experiments and mechanisms of drug release (kinetics and order of drug release) were studied with ultraviolet visible spectrometer. Porosity of the samples were examined with ImageJ software. The inclusion of nanoparticles in the scaffold structure increased the pore size and pore diameter which also leads to the lowering the yield strength of the scaffold, while pore density and pore area enhanced drug diffusion from the scaffold matrix. Implications of the results were discussed for possible mechanical characterisation of scaffolds and cell viability studies using nanoparticles impregnated scaffolds.Ashesi Universit

    Magnetic nanomaterials for arterial embolization and hyperthermia of parenchymal organs tumors: A review

    Get PDF
    Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor's vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.8X20041; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPC/2020/00

    Iron Oxide Nanoconstructs for the Ablation Therapy in Diseased Tissues: Systemic Analysis and Rational Design

    Get PDF
    A plethora of magnetic nanoparticles has been developed and investigated under different alternating magnetic fields (AMF) for the hyperthermic treatment of malignant tissues. Yet, clinical applications of magnetic hyperthermia are sporadic, mostly due to the low energy conversion efficiency of the metallic nanoparticles and the high tissue concentrations required. In this work the hyperthermic performance of commercially available formulations of superparamagnetic iron oxide nanoparticles (SPIOs) are studied. These nanoparticles are operated under a broad range of AMF conditions. Using a computational model for heat transport in a biological tissue, the minimum requirements for local hyperthermia (Ttissue > 42°C) and thermal ablation (Ttissue > 50°C) are derived in terms of particles concentrations, operating AMF conditions and blood perfusion. The resulting maps can be used to rationally design hyperthermic treatments and identifying the proper route of administration – systemic versus intratumor injection – depending on the magnetic and biodistribution properties of the nanoparticles. Moreover, Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been achieved with the same nanoparticle. In the attempt to optimize and fully employ their potentiality in a single particle formulation, magnetic nanoconstructs are obtained by confining multiple, nanocubes within a polymeric (deoxy-chitosan) matrix. The resulting nanoconstructs – Magnetic NanoFlakes (MNFs) – exhibit a hydrodynamic diameter of 156 ± 3.6 nm, with a polydispersity index of about 0.2, and are stable in PBS up to 7 days. Upon exposure to an alternating magnetic fields they provide a specific absorption rate (SAR) about 60-fold than the single Nanocubes alone. The same nanoconstructs provide a remarkably high transversal relaxivity of 500 (mM s)-1, comparable with the hghest values avaiable in the current literature. Moreover, MNFs in phisiological relevant flow conditions shown potentials in magnetic targetted using an external static magnet. The MNFs represent a first step towards the realization of nanoconstructs with superior relaxometric and ablation properties for more effective theranostics

    Vascular Smooth Muscle Cells in Response to Gold Nanoparticles

    Get PDF
    In this master\u27s thesis we look at elucidating the interactions between nanoparticles and cells. Specifically, we looked at how the cell mechanics are affected, cytotoxicity of the nanoparticles, and shifts in cell phenotypes. There has been much research looking into whether nanoparticles are cytotoxic, but limited amounts looking at their effect on mechanics especially with vascular smooth muscle cells. This cell type has two distinct phenotypes of synthetic and contractile that each serve different purposes physiologically. The first experiments we did were cytotoxicity assays to see if the cells could survive the treatment with nanoparticles. If the cells died within a short period of time then we wouldn\u27t be able to take the next step and look at the mechanics of the cells. Most of the nanoparticles used proved to cause no change in proliferation rate of the cells; however, a couple did show some cytotoxic effects and were not used for further experimentation. Since the cells were surviving and proliferating after treatment with these nanoparticles we did atomic force microscopy to determine the elastic modulus of the cells that were treated with nanoparticles and those that were untreated. This allowed us to see if there was a significant increase or decrease caused by the nanoparticles. The results showed that there was a significant decrease in the elastic modulus of the cells treated with nanoparticles. Finally, we wanted to observe any possible phenotypic shifts in the cells by using immunofluorescence. The cells were stained for actin, microtubules (the main components of the cell\u27s cytoskeleton and thus mechanics), and nuclei. Vascular smooth muscle cells at low passage number in culture are typically in the contractile phase and this was proven with our images. The nanoparticle treated cells showed a shift towards the synthetic phenotype which confirmed the decrease in elastic modulus from the AFM data. So, while these nanoparticles are not cytotoxic we are causing a significant change in the cells\u27 mechanics and phenotype

    Ultrasonic Formation of Fe3O4‑Reduced Graphene Oxide−Salicylic Acid Nanoparticles with Switchable Antioxidant Function

    Get PDF
    We demonstrate a single-step ultrasonic in situ complexation of salicylic acid during the growth of Fe3O4-reduced graphene oxide nanoparticles (∼10 nm) to improve the antioxidant and antiproliferative effects of pristine drug molecules. These nanoparticles have a precisely defined electronic molecular structure with salicylic acid ligands specifically complexed to Fe(III)/Fe(II) sites, four orders of magnitude larger electric surface potential, and enzymatic activity modulated by ascorbic acid molecules. The diminishing efficiency of hydroxyl radicals by Fe3O4-rGO-SA nanoparticles is tenfold higher than that by pristine salicylic acid in the electro-Fenton process. The H+ production of these nanoparticles can be switched by the interaction with ascorbic acid ligands and cause the redox deactivation of iron or enhanced antioxidation, where rGO plays an important role in enhanced charge transfer catalysis. Fe3O4-rGO-SA nanoparticles are nontoxic to erythrocytes, i.e., human peripheral blood mononuclear cells, but surpassingly inhibit the growth of three cancer cell lines, HeLa, HepG2, and HT29, with respect to pristine salicylic acid molecules
    corecore