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Abstract: The ability of magnetic nanoparticles (MNPs) to transform electromagnetic energy into
heat is widely exploited in well-known thermal cancer therapies, such as magnetic hyperthermia,
which proves useful in enhancing the radio- and chemo-sensitivity of human tumor cells. Since the
heat release is ruled by the complex magnetic behavior of MNPs, a careful investigation is needed
to understand the role of their intrinsic (composition, size and shape) and collective (aggregation
state) properties. Here, the influence of geometrical parameters and aggregation on the specific loss
power (SLP) is analyzed through in-depth structural, morphological, magnetic and thermometric
characterizations supported by micromagnetic and heat transfer simulations. To this aim, different
samples of cubic Fe3O4 NPs with an average size between 15 nm and 160 nm are prepared via
hydrothermal route. For the analyzed samples, the magnetic behavior and heating properties
result to be basically determined by the magnetic single- or multi-domain configuration and by the
competition between magnetocrystalline and shape anisotropies. This is clarified by micromagnetic
simulations, which enable us to also elucidate the role of magnetostatic interactions associated with
locally strong aggregation.

Keywords: nanomedicine; magnetic hyperthermia; magnetic nanoparticles; iron oxide nanocubes;
chemical synthesis; magnetometry; thermometric measurements; micromagnetic simulations;
thermal simulations

1. Introduction

In the last decade, the interest towards the application of magnetic nanoparticles
(MNPs) in biomedicine has increased exponentially, being employed in diagnostics, as
contrast agents in magnetic resonance imaging (MRI) or tracers in magnetic particle imag-
ing (MPI), as well as in therapeutics, as heat mediators in heat-assisted drug release and
magnetic hyperthermia [1–3]. Hyperthermia is an oncological therapy that can be used to
sensitize tumor cells to radiotherapy and chemotherapy, allowing the reduction of radi-
ation and drug dose with the consequent limitation of the related side effects. Magnetic
hyperthermia exploits the capability of MNPs to generate heat when exposed to an alter-
nating current (AC) magnetic field with frequency in the range 50 kHz–1 MHz. As an
example, Fe3O4 (magnetite) NPs have been successfully tested in many clinical trials, using
magnetic fields with frequency of 100 kHz and amplitude variable between 2.5 kA/m and
18 kA/m [4–6].

The hyperthermia efficacy of MNPs is usually measured by means of the specific loss
power (SLP), also known as specific absorption rate (SAR), which expresses the power dissi-
pated per unit mass of magnetic material [7,8]. The mechanisms contributing to SLP involve
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the alignment of the MNP magnetic moment along the direction of the AC magnetic field
by the rotation of the magnetization vectors within MNPs (hysteresis and Néel relaxation)
or by the mechanical rotation of the MNPs in the medium (Brownian relaxation) [9,10]. The
latter is typically inhibited in the tumor microenvironment [11]. The magnetic behavior and
the consequent heating properties are strongly influenced by MNP size, with the presence
of two critical dimensions, which are material dependent [2,12]. The lowest critical size
is associated with the transition from superparamagnetic to single-domain ferromagnetic
behavior, above which the coercivity (zero for the superparamagnetic state), and thus, the
hysteresis losses gradually increase reaching a maximum. This occurs in correspondence of
the highest critical size, which corresponds to the transition to multi-domain ferromagnetic
behavior, after which coercivity and hysteresis losses start to decrease with dimension.

Large research efforts have been devoted to the engineering of novel MNPs with high
SLP values, through the increase in hysteresis losses. Beside size [13], another parameter
that can be varied to tune the hysteresis contribution is the shape [14–17], for example, via
the introduction of faceting and elongation [18]. To this aim, Fe3O4 NPs with different
geometries (e.g., rods [19], disks [20], rings [21,22], octahedrons [23,24], and cubes [25–27])
have been investigated for potential application in magnetic hyperthermia. Thanks to the
introduction of even weak shape anisotropy, increments in the SLP values can be obtained
when moving from spherical to cubic Fe3O4 NPs of certain dimension, as already demon-
strated by calorimetric measurements in water and agar media [25,26]. For instance, good
heating efficacy of Fe3O4 nanocubes with size around 20 nm was found in both in vitro [27]
and in vivo studies when treating epidermoid carcinoma xenografts in mice [28]. Fe3O4
nanocubes were also tested as drug carriers, in order to obtain therapeutic agents with dual
function, combining magnetic hyperthermia and heat-mediated chemotherapy [29].

Another parameter that can influence the hysteresis losses and thus the SLP values
of MNPs is the magnetostatic interaction strength, which strongly depends on the ag-
gregation state (e.g., chain, conglomerate). Several studies investigated the possibility
of exploiting the arrangement of MNPs at the nanoscale to improve their hyperthermia
properties [30–35]. As an example, it was demonstrated that the shape anisotropy induced
by chain formation leads to an enhancement of heating efficiency by up to a factor of two in
the case of 40 nm Fe3O4 NPs [35]. One more way to modify the SLP values is acting directly
on the chemical composition of MNPs, e.g., doping iron oxides NPs with different metals
(Co, Ni, Zn, Cu, Gd, Mn) [36,37]. The doped ferrites can show high magnetocrystalline
anisotropy, resulting in larger coercivity and thus greater hysteresis losses.

The presence of many influencing parameters (material features, size, shape, aggre-
gation state) makes complex to distinguish and quantify their contribution to the heating
performance, requiring before in vitro and in vivo tests an exhaustive experimental and
modelling analysis of MNP magnetic and calorimetric properties. To this aim, here we
present a detailed characterization of Fe3O4 NPs with cubic shape, produced via hydrother-
mal route by varying synthesis parameters (temperature and reaction time). Four samples
were prepared, with average size between 15 nm and 160 nm, and magnetic behavior that
mainly falls in the single-domain ferromagnetic regime or in the multi-domain one, as
demonstrated by magnetometric measurements combined with micromagnetic calcula-
tions of the static hysteresis loops. The micromagnetic simulations were conducted first on
single MNPs of variable size to determine the second critical size, where the transition from
single- to multi-domain behavior occurs. Then, they were carried out on MNP assemblies
in the form of chains and clusters to investigate the possible contribution of magnetostatic
interactions to remanence, coercivity and specific energy losses.

Finally, the heating efficiency was characterized by performing thermometric mea-
surements of the MNPs dispersed in water as well as thermal modelling. In particular, the
thermometric characterization was carried out under uniform AC magnetic fields with
peak amplitude Ĥa and frequency f that fall between the limits of Atkinson–Brezovich
(Ĥa·f ≤ 4.85 · 108 Am–1s–1) [38] and Hertz–Dutz (Ĥa·f ≤ 5 · 109 Am−1s−1) [39]. This setting
of the AC magnetic field parameters might assure that eddy current effects are maintained
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below safe and tolerable limits. It is worth noting that among the first clinical trials of
magnetic hyperthermia, good tolerability was documented when exposing patients with
different types of tumors to a magnetic field of 100 kHz, with amplitude variable up to
18 kA/m [4–6]. Anyway, caution has to be taken when planning a treatment, to avoid the
occurrence of hot spots and overheating of healthy tissues [40].

2. Materials and Methods
2.1. Magnetic Nanoparticle Synthesis

Fe3O4 NPs were synthesized by hydrothermal method [41]. The molar ratio of
Fe2+/Fe3+ was adjusted to 1:2, and the iron salt solution was prepared by using deoxy-
genated deionized water. Afterward, the solution was transferred into a polytetrafluo-
roethylene lined autoclave. Then, 1 M aqueous NaOH solution was dropped into the iron
oxide solution under nitrogen gas. The autoclave was operated at different temperatures
between 150 ◦C and 200 ◦C, with different reaction times (12 h and 24 h). Four samples
were produced (namely, #1, #2, #3, and #4); sample labelled as #1 was heat treated at 150 ◦C
for 12 h, #2 at 150 ◦C for 24 h, #3 at 175 ◦C for 12 h and #4 at 200 ◦C for 24 h. The prepared
Fe3O4 NPs were collected magnetically and then washed with deionized water three times
and dried at 60 ◦C under vacuum for 24 h.

Iron (II) chloride tetrahydrate (FeCl2·4H2O, ≥99%), iron (III) chloride hexahydrate
(FeCl3·6H2O, ≥98%) and sodium hydroxide (NaOH, ≥98%) employed in the synthesis
process were purchased from Sigma-Aldrich® (St. Louis, MO, USA). All products were
used as received without any further purification.

Fe3O4 NPs were formed during the following chemical reaction:

Fe2++2Fe3++8OH– → Fe3O4+4H2O (1)

2.2. Structural, Morphological and Dimensional Characterization

The investigation of the crystal phase of the synthesized MNPs was carried out by
X-ray Diffractometry (XRD) [42], employing the instrument Shimadzu XRD-6000 (Kyoto,
Japan); the obtained spectra were refined using the Rietveld method.

Transmission Electron Microscopy (TEM) [42] was performed to determine the mor-
phology and size distribution of the MNPs in each of the four samples. The TEM images,
obtained with the instrument JEOL JEM-2100 HRTEM (Tokyo, Japan), were analyzed by
using the open-source ImageJ software [43].

2.3. Magnetometric Characterization

The magnetic characterization was performed at room temperature by means of
Vibrating Sample Magnetometry (VSM) [44], using the instrument Lakeshore, Model 7410
(Westerville, OH, USA). The measurement of the hysteresis loops was carried out under
direct current (DC) magnetic fields, varied from −1200 kA/m to 1200 kA/m in steps of
200 A/m.

2.4. Thermometric Characterization

Thermometric measurements were performed by means of a custom-built setup
described in detail elsewhere [45]. A uniform AC magnetic field with a frequency f of
100 kHz and a peak amplitude Ĥa in the range 24–48 kA/m was applied to an aqueous
suspension of Fe3O4 NPs at a known concentration. The magnetic field parameters were
selected to satisfy the Hergt–Dutz criterion [39].

A fiber optic thermometer records the temperature increase in the magnetic solution
induced by the power released by the MNPs and the subsequent cooling to room tempera-
ture after the magnetic field is turned off. The experimental curves were analyzed by an
ad hoc thermodynamic analytical model, in order to obtain a direct estimation of the SLP
values [45]. This model takes into account the parasitic heating of the water and the heat
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exchange with the surrounding environment under non-adiabatic conditions, which can
be limited by inserting the sample within a thermal insulating polystyrene foam tube [8].

2.5. Micromagnetic Simulations

The static hysteresis loops of the Fe3O4 NPs were evaluated by means of an in-house
3D micromagnetic code [46], which solves the Landau–Lifshitz–Gilbert (LLG) equation:

∂M
∂t

= − γ

1 + α2 M×
[

Heff +
α

Ms
(M×Heff)

]
,

(2)

where M is the magnetization vector of constant amplitude equal to saturation magnetiza-
tion Ms; γ = 2.21 · 105 m A−1 s−1 is the absolute value of the gyromagnetic ratio, and α is
the damping coefficient [47]. The effective field Heff is the sum of the applied field Ha, the
magnetostatic field Hm, the exchange field Hex, the magnetocrystalline anisotropy field
Han and the thermal field Hth [47].

The magnetostatic field is expressed as

Hm = − 1
4π
∇
∫
Ω

∇′
(

1∣∣r− r′
∣∣
)
·M
(

r
′
)

d3r
′
, (3)

where r is the vector position of the calculation point, and r’ is the integration variable.
The exchange field is expressed as

Hex =
2kex

µ0M2
s
∇2M, (4)

where µ0 = 4π× 10−7 H/m is the magnetic permeability of vacuum, and kex is the exchange
constant.

For the case of cubic anisotropy with crystal axes coinciding with the coordinate ones,
the magnetocrystalline anisotropy field is expressed as

Han = − 2K
µ0Ms

m, (5)

where K is the magnetic anisotropy tensor, defined as

K =


K1

(
m2

y + m2
z

)
+ K2m2

ym2
z 0 0

0 K1
(
m2

x + m2
z
)
+ K2m2

xm2
z 0

0 0 K1

(
m2

x + m2
y

)
+ K2m2

xm2
y

 (6)

with m being the normalized magnetization vector, and K1 and K2, the first and second
order cubic anisotropy constants, respectively.

When included, the contribution from Hth is calculated following the Langevin ap-
proach and the fluctuation–dissipation theorem [48], resulting in:

Hth = η(r, t)

√
2αkBT

γµ0Ms∆s3∆t
, (7)

where T is the absolute temperature, and kB is the Boltzmann constant. The components
of stochastic vector η are Gaussian random numbers, uncorrelated in space and time,
and with zero mean value and dispersion 1. Parameter ∆s is the average size of the grid
introduced for the spatial discretization and ∆t is the time-step [49].

The 3D micromagnetic solver, described in detail in [46], uses a spatial discretization
based on a grid of hexahedral cells, where M and Heff are assumed to be uniform. GPU-
parallelization is exploited to speed up the computation. The spatial integration of Hm is
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performed with a Fast Fourier Transform (FFT) algorithm, implementing the tensor ap-
proach [50] and calculating the resulting Green’s surface integrals with 36 × 36 quadrature
nodes; Hex is computed with a 26-node-based finite-difference technique [51]. The time
integration is carried out by means of a geometric integration method based on the Cayley
transform, in order to preserve the constraint on the magnetization amplitude [52,53]. Its
time-adaptive variant is used, fixing the truncation error to 10−5 [46].

In all the micromagnetic simulations, the properties of Fe3O4 were set as follows:
saturation magnetization Ms = 410 kA/m; exchange constant kex = 12 pJ/m; cubic mag-
netocrystalline anisotropy with first anisotropy constant K1 = −13.5 kJ/m3 and second
anisotropy constant K2 = −4.4 kJ/m3

. To accelerate the computation of equilibrium points
along the static hysteresis loop and use larger time-steps, the damping coefficient α was
fixed to 0.1 when the thermal field is not included [53,54], employing the procedure detailed
in [53]; otherwise, it was fixed to 0.02. The cell size chosen for spatial discretization was
varied between 1.25 nm and 4.1 nm, accordingly to the MNP dimension.

2.6. Thermal Simulations

To support thermometric measurements, we carried out thermal simulations by means
of an in-house 3D finite element code, which solves the heat transfer equation under the
hypothesis of negligible convection phenomena [55]. This results in

ρCp
∂T
∂t

= ∇ · k∇T + QMNPs + Qext, (8)

where T is the temperature, ρ is the mass density, Cp is the heat capacity, k is the thermal
conductivity, QMNPs is the heating power per unit volume produced by the MNPs in the
particle-fluid suspension (MNPs plus water), and Qext is the heating power per unit volume
due to external field sources.

In particular, QMNPs is defined as

QMNPs = SLP ·mMNPs/Vwater, (9)

where SLP is the value of the specific loss power of MNPs estimated from the thermometric
measurements; mMNPs is the mass of MNPs within the particle-fluid suspension, where
MNPs are assumed to be uniformly dispersed, and Vwater is the water volume [8].

Qext takes into account parasitic eddy current heating effects, which can occur in
the aqueous suspension under the exposure to the AC magnetic field. Here, it is not
numerically evaluated as in [56], but it is obtained along the calibration of the experimental
set-up, by means of the thermodynamic analytical model detailed in [45]. In particular, Qext
is determined by fitting the results of preliminary thermometric measurements performed
on a sample of water with volume Vwater, before the addition of MNPs.

Equation (8) is completed by the following boundary condition:

q = −k∇T · n = −h(Text − T), (10)

where q is the outward heat flux, n is the outward normal vector to the boundary surface, h
is the heat transfer coefficient, which includes exterior convective cooling effects, and Text
is the external temperature that can be variable in time. The initial temperature (i.e., at time
instant t = 0) is fixed to Text.

The solution of Equation (8) was obtained by using a tetrahedral mesh and by ap-
proximating T with linear shape functions; the time integration was performed with
Crank–Nicholson’s method [55].

3. Results and Discussion

This section deals with the characterization of the produced Fe3O4 NPs. The aim is
to determine structural properties via XRD analysis, dimensional properties (MNP size
and shape) via TEM imaging, magnetic properties (remanent magnetization, coercivity,
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hysteresis loop) via VSM measurements and hyperthermia properties via thermometric
measurements. Micromagnetic and thermal modelling supports the experimental analysis,
providing a physical insight of the obtained results.

3.1. Structural, Morphological and Dimensional Properties

The XRD patterns of the synthesized MNPs are shown in Figure 1. All spectra reveal a
crystalline phase with diffraction peaks indexed with the cubic spinel structure of magnetite
(Fe3O4) with space group of Fd 3m (JCPDS card No. 19-0629). The lattice parameter a = b = c
of the cubic cell, calculated using TREOR90 software [57], varies between 8.363 Å and
8.381 Å (see Table 1) and is close to the standard lattice parameter of bulk magnetite
(8.393 Å, JCPDS card No. 19-0629).

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 1. X-ray Diffractometry (XRD) spectra of the four synthetized samples of Fe3O4 nanoparticles 
(NPs), analyzed by the Rietveld refinement method. 

 

Figure 1. X-ray Diffractometry (XRD) spectra of the four synthetized samples of Fe3O4 nanoparticles
(NPs), analyzed by the Rietveld refinement method.

Table 1. Lattice constant and relevant magnetic properties for the four prepared samples. The values
are affected by the coarse field sampling.

Sample a (Å)
Ms

(kA/m)
Mr

(kA/m) Mr/Ms
Hc

(kA/m)
E

(kJ/m3)

#1 8.3759 434.8 105.9 0.24 17.3 26.2
#2 8.3627 434.3 95.2 0.22 16.7 25.7
#3 8.3806 411.5 107.4 0.26 17.3 29
#4 8.3813 423.4 56.2 0.13 10.5 12.8

Representative TEM images and size distributions for each of the four samples are
shown in the left and right panels of Figure 2, respectively. The TEM images reveal a
well-defined cubic morphology of the Fe3O4 NPs with a different edge size as a function
of synthesis parameters. Samples #1 and #2 are characterized by a narrow MNP size
distribution well fitted by a Gaussian function having mean value (µ) of 18.3 nm and
14.9 nm and standard deviation (σ) of 9.5 nm and 8.5 nm, respectively. In these samples,
a large fraction of MNPs has dimensions between 10 nm and 20 nm, range to which the
critical size for transition from superparamagnetism to ferromagnetism of Fe3O4 NPs is
expected to belong [58,59].
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Figure 2. Transmission Electron Microscopy (TEM) images of the four samples of Fe3O4 NPs, with
relative size histograms fitted by a Gaussian function having mean value µ and standard deviation σ.
The mean size is equal to: (a) 18.3 nm for sample #1; (b) 14.9 nm for sample #2; (c) 22.1 nm for sample
#3; (d) 162 nm for sample #4.

The MNP size distribution related to sample #3 spans a wider range at higher values;
in particular, the corresponding Gaussian fit curve results in µ = 22.1 nm and σ = 15.7 nm.
No MNPs larger than 50 nm are found in samples #1–3. In contrast, the MNPs in sample
#4, due to the higher temperature (200 ◦C) and longer time (24 h) of reaction synthesis,
exhibit very large sizes with an almost uniform distribution in the wide 50–275 nm range
and only one higher bar centered at 162 nm. In this case, only a rough Gaussian fit can be
extracted with µ = 162 nm and σ = 95 nm.

3.2. Hysteresis Loop Measurement

The room-temperature static hysteresis loops of all the samples are shown in Figure 3a;
details of the same curves in a narrow field interval around zero are magnified in Figure 3b.
All curves exhibit a typical magnetic hysteretic behavior resulting from the ferrimagnetic
ordering of Fe3O4 spinel structure and from the magnetic blocked state of a large fraction
of MNPs in each sample, as predicted by the size distributions in Figure 2. The values of
saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) are listed
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in Table 1. Ms was estimated by fitting the high field portion of the hysteresis loop with the
following expression:

M = Ms

(
1− δ

Ha
− λ

H2
a

)
+ χHa, (11)

which describes the law of approach to saturation [60]. Parameter Ms, as well as δ and λ,
were set as free, while χ was fixed to zero, since for the considered samples, its effect was
estimated to be negligible, due to the absence of paramagnetic features.
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coercivity.

All the values of Ms are significantly lower than the one reported for Fe3O4 bulk
material, which is around 480 kA/m [61]. This evidence can be related to a canting effect
or a disorder of the magnetic spins at the surface of the Fe3O4 NPs, leading to a magnetic
inactive (“dead”) layer that reduces the expected saturation magnetization [62,63]. The
degree of this effect is basically determined by the surface-to-volume ratio, as confirmed
by the fact that the value of Ms closest to the bulk one is found for sample #4, which
contains the largest particles. Moreover, the hysteresis loops of samples #1 and #2 are
characterized by a very slow approach to saturation with a marked non-saturating feature
still at 1200 kA/m; whereas, a fully saturating behavior is observed in the loops of samples
#3 and #4. The non-saturating effect observed in the first two samples could be ascribed
to the fraction of MNPs with a size smaller than the critical one required to transit from
superparamagnetism to ferromagnetism [59].

As reported in Table 1, the remanence to saturation ratio Mr/Ms varies between 0.13
and 0.26. Sample #4 is characterized by the lowest value, due to the relative MNP size
distribution, which comprises a predominant fraction of MNPs for which a multi-domain
behavior is expected [59]. Among the first three samples, which have sizes more typical
of the single-domain behavior, the lowest value of Mr/Ms is found for sample #2, which
contains the largest fraction of MNPs in the superparamagnetic state.

The magnetic domain configuration also affects the values of Hc (see Table 1), because
of a different magnetization reversal process. The inversion of magnetization in single-
domain MNPs (samples #1–3) results in a coherent rotation of the magnetization against
the effective anisotropy properties. In multi-domain MNPs (sample #4) the magnetization
reversal is characterized by a non-coherent rotation governed by the magnetostatic energy
minimization, which is a magnetically easy process and consequently results in a smaller
coercivity [61]. The variation in the values of Hc reflects the trend observed for the specific
energy losses, estimated as

E = µ0

∮
Ha · dM. (12)
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3.3. Analysis of the Role of Size and Effective Anisotropy via Micromagnetic Modelling

To support the experimental magnetic characterization, we calculated the hysteresis
loops of the Fe3O4 NPs by using the micromagnetic code described in Section 2.5, separately
investigating all the factors that contribute to hysteresis losses. According to TEM analysis,
in the simulations, the MNPs were approximated as truncated cubes with sizes ranging
from 20 nm to 200 nm (between 10 nm and 20 nm transition from superparamagnetism to
ferromagnetism is expected). Rounded corners were introduced, modelling the MNPs as
objects obtained by intersecting a cube of side l with a sphere of diameter d = l(1 +

√
3)/2,

being d the average between l and the cube diagonal length (schematic in Figure 4a).
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Figure 4. (a) Schematic of the cubic Fe3O4 NP with size l; the red arrows identify the three mag-
netocrystalline anisotropy axes, parallel to cube edge (<100> direction), cube face diagonal (<110>
direction) and cube diagonal (<111> direction). Static hysteresis loops for a single Fe3O4 nanocube
with l ranging from 60 nm to 200 nm, calculated by applying the magnetic field along (b) <100>, (c)
<110> and (d) <111> directions.

First, we studied the influence of size on the hysteresis loop shape considering a
single nanocube, i.e., disregarding the effects of magnetostatic interactions among MNPs.
Thermal effects were not included in the simulations, after having initially verified their
practically negligible contribution. Assuming that the crystal structure is aligned with the
macroscopic structure of the cubic MNP (schematic in Figure 4a), the magnetocrystalline
anisotropy easy and hard axes are oriented along the cube diagonals and the cube edges,
corresponding to <111> and <100> directions, respectively. The cube face diagonals,
<110>, are medium-hard axes. From a preliminary analysis, in which magnetocrystalline
anisotropy was disregarded, the shape anisotropy, whose effect appears for size l larger
than 80 nm, is characterized by easy axes along the <100> directions and hard axes along
the <111> directions. Therefore, the effective anisotropy is a balance between the opposite
magnetocrystalline and shape contributions.

Figure 4 reports the static hysteresis loops calculated by applying the magnetic field
along the three relevant directions for the effective anisotropy, for MNP sizes selected
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within the considered range of variation. The main properties of the computed hysteresis
loops (remanent magnetization Mr, coercivity Hc and specific energy losses E) are resumed
in Figure 5, as a function of size.
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Figure 5. Influence of size (20–200 nm) on (a) remanent magnetization Mr, (b) coercivity Hc and (c)
specific energy losses E for Fe3O4 nanocubes, extracted from the static hysteresis loops calculated by
applying the magnetic field along the <100>, <110> and <111> directions. The data are fitted with
basis spline functions (dotted lines).

When 20 ≤ l < 80 nm, small variations were found in the loop shape and size. In
particular, a single-domain behavior was observed, with the effective hard axis along the
cube edge or <100> direction (Figure 4b) and an effective easy axis along the cube diagonal
or <111> direction (Figure 4d), due to the dominance of magnetocrystalline anisotropy
effects. For the <100> direction Mr is around 60% of Ms (Figure 5a) and the values of Hc
are in the order of 6.5 kA/m (Figure 5b). For l ≥ 80 nm, the hysteresis loop becomes wider,
with a strong increase in coercivity, which reaches the peak value when l = 105 nm and then
gradually reduces, arriving again at 6.5 kA/m for l = 200 nm. The loop area and thus the
specific energy losses E (Figure 5c) reflect the non-monotonic behavior of coercivity, with a
peak in the order of 50 kJ/m3 around 105 nm, confirming the trend observed by Li et al. [59].
This behavior, noticeable when the magnetic field is applied along the <100> direction, is
due to the transition from a single-domain magnetic configuration to a multi-domain one.

Focusing on the hysteresis loops calculated along the <111> direction (Figure 4d), up to
90 nm, the remanent magnetization is close to saturation (Figure 5a), and for 20 ≤ l < 80 nm,
the coercivity is strongly higher than the one found for the <100> direction, with a maxi-
mum of 15.5 kA/m for l = 20 nm (Figure 5b). Consequently, large specific energy losses
were obtained (Figure 5c), in the order of 30 kJ/m3 for the smaller particles. A similar
behavior, but with reduced values of Mr, Hc and E, was observed when the magnetic field is
applied along the <110> direction (Figure 4b). For the MNPs with l ≥ 80 nm (multi-domain
regime), a decrease in Mr, Hc and E occurs, more pronounced in correspondence of the
transition sizes and for the <110> direction, as a consequence of the balance between shape
and magnetocrystalline anisotropy effects.

3.4. Elucidation of Magnetization Reversal Process

The behavior observed when the magnetic field is applied along the <100> direction
can be explained by analyzing the evolution, along the magnetization reversal process, of
the different energy contributions versus size l (see Figure 6a for l = 60, 80 and 90 nm and
Figure 6b for l = 105, 150 and 200 nm). When l ≤ 60 nm, the system tends to minimize
the exchange energy, which remains very low for the whole process at the expense of the
magnetostatic energy, being practically constant during all the reversal. When the applied
magnetic field decreases, the magnetization gradually and coherently aligns to the easy
axis, as confirmed by the reduction in the magnetocrystalline anisotropy energy and by the
magnetization configuration at remanence shown in Figure 7. When the applied magnetic
field increases in the opposite direction, the Zeeman energy rises until the magnetization
overcomes the energy potential and coherently flips, realigning almost parallel to the easy
axis, but with a change of sign of the magnetization component parallel to the field. From
here, as the applied magnetic field increases, the magnetization reversibly moves from
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the easy axis to the field direction. For sizes l ≥ 80 nm, as the applied magnetic field
reduces, the system starts to favor the minimization of the magnetostatic energy instead of
the exchange energy. In a small central cylindrical volume, which connects the opposing
faces perpendicular to the applied magnetic field, the magnetization is parallel to the field
itself [64]. In the remaining part, the magnetization attempts to arrange itself in a closed
path to minimize magnetic poles, following as much as possible the magnetocrystalline
easy and medium axes directions with a vortex-like configuration (Figure 7).
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Figure 6. Evolution of energy terms versus applied magnetic field during the magnetization reversal process (along static
hysteresis loop) of a single Fe3O4 nanocube with size l equal to (a) 60, 80 and 90 nm and (b) 105, 150 and 200 nm. In the
legend EZ stands for Zeeman energy, Eex for exchange energy, Em for magnetostatic energy and Ean for anisotropy energy.
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Figure 7. Remanence magnetization configuration for Fe3O4 NPs of different sizes, extracted from
the static hysteresis loop calculated with the magnetic field applied along the <100> direction; the
cones represent the magnetization orientation. The color bars refer to the normalized component of
M along the <100> direction (top row) and to the angle (in degrees) between the <010> axis and the
projection of M on the plane orthogonal to the <100> axis (bottom row). The top row well elucidates
the decrease in Mr with size (see Figure 5a for the relative data).

For MNPs of medium size (l = 80–120 nm), when the applied magnetic field reaches
coercivity, the magnetization in the central cylinder flips its orientation, while in the external



Nanomaterials 2021, 11, 2179 12 of 18

part, the magnetization switches to a mirrored vortex configuration, where the component
of the magnetization parallel to the field changes its sign. For larger sizes (e.g., 150 nm and
200 nm), the magnetization in the outer part follows the change of the applied magnetic
field more gradually, while in the internal magnetic core, it goes through an irreversible
jump at very high fields, as a consequence of its increase in length and thus in stability.
This results in more slanted hysteresis loops, as illustrated in Figure 4b.

3.5. Analysis of the Role of Aggregation State via Micromagnetic Modelling

Sample #4, with a mean size µ of 162 nm, shows values of Mr, Hc and E similar to
the ones obtainable from micromagnetic modelling, by averaging the contributions of size
dispersion (Figure 2) and randomness of the orientation of the MNPs with respect to the
applied magnetic field (Figure 5). Within an interval around µ = 162 nm, the simulations
are also able to predict a smooth magnetization reversal, as happens experimentally.

Stronger discrepancies between the measured and calculated properties were observed
for the smaller samples (#1–3), specifically for the loop shape and Mr, whose experimental
value results to be in the order of 100 kA/m, i.e., highly lower than the ones computed by
applying the magnetic field along the three relevant directions. A possible explanation to
these differences can be provided by the presence of a non-negligible fraction of particles
in the superparamagnetic state (Figure 2), as well as by the interparticle magnetostatic
interactions, strongly influenced by the state of aggregation [31,35].

Considering the higher level of aggregation of samples #1–3, deducible from TEM im-
ages in Figure 2, we calculated the static hysteresis loops of clusters made of 3 × 3 × 3 MNPs,
with size of 20 nm and different face-to-face distance d, varied between 6 nm and 50 nm.
The loops computed by applying the magnetic field along the direction <100> are reported
in Figure 8a. In comparison to the case of single MNP, we observed a reduction in Mr,
which reaches values in agreement with the measured ones when d = 6 nm; for reciprocal
distances higher than 30 nm, the mutual interaction decreases significantly, and above
50 nm, it becomes almost negligible. Moreover, the loop shape is more similar to the
experimental one, with a more gradual reversal, as a consequence of the non-synchronous
switching of the magnetization, driven by the differences in the effective magnetic field
acting on each MNP. According to the simulations, the magnetostatic interactions occurring
in a cluster of MNPs are also responsible for an increase in coercivity, which practically
doubles when d = 6 nm, approaching the experimental values for the direction <100>, too.
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Figure 8. (a) Static hysteresis loops calculated for a cluster of Fe3O4 nanocubes with size l = 20 nm,
arranged in a 3 × 3 × 3 grid, as a function of the mutual face-to-face distance d. The magnetic field is
applied along the <100> direction. (b) Static hysteresis loops calculated for a chain of 8 nanocubes
with l = 20 nm and d = 6 nm, as a function of the applied magnetic field direction.

Chain arrangements can also be present, and they can lead to great values of Hc and E
when the magnetic field is applied along the <111> direction or parallel to the chain, which
corresponds to the easy axis for shape anisotropy. This is shown in Figure 8b, for a chain of
8 MNPs with size l = 20 nm and face-to-face distance d = 6 nm.
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In conclusion, the overall properties of the analyzed samples can be numerically
reconstructed by introducing an average of the different behaviors obtained by varying
size, orientation of the MNPs with respect to the applied magnetic field and state of MNP
aggregation (e.g., cluster, chain).

3.6. Heating Property Measurement and Thermal Modelling

Thermometric measurements were conducted to evaluate the heating ability of all the
samples (see the schematic of the sample container in Figure 9a). Figure 9b shows the time
evolution of the temperature of the magnetic solution, measured for samples #3 and #4
under the application of an AC magnetic field with peak amplitude Ĥa = 40 kA/m and fre-
quency f = 100 kHz. The fiber optic thermometer placed centrally in the magnetic solution
records the temperature increase due to the MNP activation, when the AC magnetic field
is switched on, and the temperature decrease, when the AC magnetic field is turned off
and the solution is let cool down to room temperature again. The measured curves were
fitted with a thermodynamic analytical model [45], developed to estimate the SLP values
of MNPs.
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Figure 9. (a) Schematic of the sample container, corresponding to the domain considered for thermal
modelling. (b) Time evolution of the temperature of the magnetic solution for samples #3 and #4,
fixing the peak amplitude Ĥa of the alternating current (AC) magnetic field to 40 kA/m and its
frequency to 100 kHz; the graph contains the experimental data and the best fit outputs of the
thermodynamic analytical model [45]. (c) Comparison of measured SLP values for all samples as a
function of Ĥa. Comparison between measured and modelled heating-cooling transients for samples
(d) #3 and (e) #4, considering Ĥa = 48 kA/m. (f) Spatial distribution of the temperature, calculated
for sample #4 at the end of the heating interval (t = 65 min), with specification of the points where the
temperature time-evolution in (d,e) was evaluated.

The variation of the MNP heating efficacy as a function of the peak amplitude Ĥa of
the AC magnetic field is depicted in Figure 9c for all the tested samples. The obtained
values are in good agreement with the ones typically found for Fe3O4 NPs, which are
spread in a wide range (10–200 W/g), in part due to the different AC magnetic field
parameters (peak amplitude and frequency) used in the experiments [65,66]. Sample
#4, containing the largest Fe3O4 NPs, shows the lowest SPL values. This suggests that
the multi-domain magnetic configuration (sample #4) corresponds to a reduced power
release (i.e., lower hysteresis losses) in comparison with the single-domain one (samples
#1–3). The properties of the static hysteresis loops (Mr, Hc and E), reported in Table 1, and
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the outcomes of micromagnetic modelling confirm this hypothesis. Samples #1–2 show
an almost saturating behavior of SLP values above Ĥa = 40 kA/m, indicating that the
dissipation mechanism has reached a full expression, i.e., the dynamic hysteresis loops
are close to the major one. On the other hand, samples #3–4 show an evident rise of SLP
values up to Ĥa = 48 kA/m; in this case, a further increase in the peak amplitude of the AC
magnetic field may result in a further enhancement of the hysteresis losses and thus of SLP
values [67]. However, the safety requirements for hyperthermia treatments [40] must be
kept in mind for the selection of AC magnetic field parameters.

The experimental characterization was further corroborated by thermal simulations
carried out with the numerical code described in Section 2.6, focusing on samples #3 and
#4. The thermal modelling was performed on the system schematized in Figure 9a, which
includes the vial containing the magnetic solution, where MNPs are uniformly dispersed,
and the surrounding water bath. According to the experimental calibration process, we
assumed a uniform coefficient of convective exchange h of 25 Wm−2K−1 between the
holder surface and the external air. Table 2 resumes the materials properties used in the
thermal simulations for the holder, made of quartz, the vial, made of polypropylene, the
water bath and the air within the vial. In addition, it reports the effective parameters for
samples #3 and #4, estimated by considering the fraction of MNPs dispersed in water [8,68].

Table 2. Material properties used in the thermal simulations. The effective parameters for samples #3
and #4 were estimated according to [8,68].

Material ρ
(kg/m3)

Cp
(J kg−1 K−1)

k
(W m−1 K−1)

Water 997.05 4183 0.6
Quartz (holder) 2600 820 3

Polypropylene (vial) 905 1900 0.185
Air 1.16 1007 0.026

Sample #3 1019.8 4086 0.61
Sample #4 1038.1 4011 0.62

The initial temperature of the system was assumed to be uniform in space and equal to
the temperature of air Text in the surroundings of the sample holder. During the transient,
Text in Equation (10) was approximated with a function that is uniform in space and
variable in time. In particular, the time-behavior of Text was described with an exponential
rise law and a subsequent exponential decay law during the heating and cooling phases,
respectively. The two laws were obtained by fitting the curve of the temperature measured
in the air region closer to the quartz holder wall. In this way, we took into account possible
heating effects produced by the copper coil via Joule losses [69] and by the sample itself in
the external air region. It is worth noting that at the end of the heating phase, an increase
in Text up to 9 ◦C was found.

From the knowledge of the SLP values (Figure 9c) and MNP mass in the magnetic
solution (5.43 mg for sample #3 and 9.82 mg for sample #4), QMNPs in Equation (9) was
estimated to be 825 kW/m3 for sample #3 and 894 kW/m3 for sample #4, when the AC
magnetic field has a peak amplitude Ĥa = 48 kA/m. The heating power Qext generated
by the external field sources was estimated to be 45 kW/m3, as deduced from preliminary
thermometric measurements without MNPs [45]. At the end of the heating phase, the heat
sources were set at zero everywhere, enabling the system to cool down to room temperature.
Figure 9d,e reports the heating–cooling transients calculated at different points within the
magnetic solution for samples #3 and #4, respectively; the temperature gradient at the end
of the heating phase is shown in Figure 9f for sample #4. As can be seen for points P4 and
P5 (Figure 9f), which are the closest ones to the real position of the fiber optic thermometer,
the simulation results are in good agreement with the experimental ones. This enables us
to further confirm the validity of the thermodynamic analytical model [45] adopted for the
calibration process and the estimation of the SLP values.
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4. Conclusions

In this paper, we performed an extended study of Fe3O4 NPs, comprising preparation,
characterization of their structural, morphological, dimensional, magnetic and heating
properties, and micromagnetic and thermal modelling.

The hydrothermal method, chosen for the preparation, has proved to be a valid
synthesis route for obtaining highly crystalline Fe3O4 NPs with well-defined cubic shape
and average size in the range 15–160 nm, depending on temperature and reaction time. For
the smaller samples, the size distribution reveals a large fraction of MNPs around the critical
dimension for the transition from superparamagnetism to single-domain blocked state,
while for the largest sample, the size range is typical of multi-domain configuration. As
demonstrated by the magnetometric characterization, the magnetization reversal process
is strictly influenced by the domain configuration; in fact, the remanence to saturation ratio
and the coercivity are higher for single-domain MNPs than for the multi-domain ones.
From thermometric measurements, performed in accordance with the safety requirements
for hyperthermia treatments, the SLP values increase monotonically as a function of the
magnetic field amplitude, but they are disadvantaged by the multi-domain configuration.

The experimental results were successfully supported by micromagnetic simulations,
which have clarified the role of several factors in the generation of hysteresis losses, like
MNP size, effective anisotropy (shape and crystalline contributions) and state of aggrega-
tion. The specific energy losses, calculated with the magnetic field applied along the cubic
MNP edge, reflect the non-monotonic behavior of the coercivity, with a peak at 105 nm,
i.e., after the transition from single-domain to multi-domain configuration, which occurs at
80 nm. Moreover, micromagnetic simulations allowed us to shed light on the magnetization
reversal process, revealing a vortex-like configuration for the multi-domain MNPs.

Discrepancies between the calculated and measured magnetic properties were ex-
plained taking into account the wide distribution of size, orientation of the MNPs with
respect to the applied magnetic field and state of aggregation in the analyzed samples. The
high level of aggregation, observed in TEM images for the smaller samples, was taken
into account by modeling MNP arrangement in chains and clusters. Depending on the
orientation of the magnetic field, a smoother reversal process, more similar to the one
observed experimentally, appears as a consequence of the non-synchronous switching
of the magnetization in each MNP, impacting on the loop shape and thus on the specific
energy losses.
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