2,243 research outputs found

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Some problems of nonlinear precise vibromechanics and vibroengineering (summary)

    Get PDF
    The investigations of the author in the field of precise vibromechanics and vibroengineering are overviewed. Some effects and qualities of nonlinear systems as well as developments of new principles of operation thereof are considered. Various designs of mechanical systems of different types, new principles, innovations and more than 1750 inventions and patents have been developed with co-authors

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Path Following and Motion Control for Articulated Frame Steering Mobile Working Machine Using ROS2

    Get PDF
    Autonomous vehicles (AVs) have been studied and researched at least since the middle of 19s century, and the interest in these vehicles has grown in the last decade. There are many vehicle types with different steering techniques. Each is designed and manufactured depending on the need to perform specific tasks (for example, transporting passengers, transporting goods, and doing heavy duties like cutting trees, digging earth, and harvesting crops). This thesis highlights the autonomous articulated frame steering (AFS) heavy-duty mobile working machines and aims to address the problems of autonomizing the AFS machine with basic autonomy requirements, which makes the machine move without the need for human direct and indirect control. The working environment (like mines, forests, and construction sites), where heavy-duty machines are used to perform some tasks, requires an expert machine operator to drive it and control its manipulator, which increases the operator’s workload. However, due to the working environment’s limited area, the machine mostly has repetitive tasks that include following the same paths; therefore, we proposed implementing a path-following control system that could be used to help the operator by reducing the work amount. The proposed path following is based on controlling the vehicle’s position and orientation to match the desired positions and orientation on a specified path where the position’s lateral error and orientation error are minimized to zero while the vehicle follows the given path. The implemented control system is divided into many subsystems; each is responsible for a specific task, and to communicate between them we used the Robot Operating System ROS2. In this thesis, we are focusing on two of these subsystems. The first subsystem, called path following that, generates linear and angular velocities needed to make the machine follow the path. The other subsystem, called motion control, is responsible for converting the linear and angular velocities to machine commands (gear, steering, gas) and controls the machine’s acceleration and steering angle. The implemented path-following control system required understanding the machine’s kinematics and modeling the steering system. The implemented system is tested first using an AFS robot in a simulation environment, then tested on a real AFS heavy-duty machine owned by Tampere university. Moreover, the tests repeated for another path following based on the modified pure pursuit technique provided by ROS2 navigation for compression and evaluation purposes

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad
    corecore