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Autonomous vehicles (AVs) have been studied and researched at least since the middle of 19s
century, and the interest in these vehicles has grown in the last decade [1]. There are many vehicle
types with different steering techniques. Each is designed and manufactured depending on the
need to perform specific tasks (for example, transporting passengers, transporting goods, and
doing heavy duties like cutting trees, digging earth, and harvesting crops). This thesis highlights
the autonomous articulated frame steering (AFS) heavy-duty mobile working machines and aims
to address the problems of autonomizing the AFS machine with basic autonomy requirements,
which makes the machine move without the need for human direct and indirect control.

The working environment (like mines, forests, and construction sites), where heavy-duty ma-
chines are used to perform some tasks, requires an expert machine operator to drive it and control
its manipulator, which increases the operator’s workload. However, due to the working environ-
ment’s limited area, the machine mostly has repetitive tasks that include following the same paths;
therefore, we proposed implementing a path-following control system that could be used to help
the operator by reducing the work amount.

The proposed path following [2] is based on controlling the vehicle’s position and orientation
to match the desired positions and orientation on a specified path where the position’s lateral
error and orientation error are minimized to zero while the vehicle follows the given path. The
implemented control system is divided into many subsystems; each is responsible for a specific
task, and to communicate between them we used the Robot Operating System ROS2.

In this thesis, we are focusing on two of these subsystems. The first subsystem, called path
following that, generates linear and angular velocities needed to make the machine follow the path.
The other subsystem, called motion control, is responsible for converting the linear and angular
velocities to machine commands (gear, steering, gas) and controls the machine’s acceleration
and steering angle. The implemented path-following control system required understanding the
machine’s kinematics and modeling the steering system.

The implemented system is tested first using an AFS robot in a simulation environment, then
tested on a real AFS heavy-duty machine owned by Tampere university. Moreover, the tests
repeated for another path following based on the modified pure pursuit technique provided by
ROS2 navigation for compression and evaluation purposes.

Keywords: Path Following, Path Tracking, Motion Control, Articulated Frame Steering, AFS, Heavy
Duty Machines, Mobile Working Machine, ROS2, Autonomous Vehicle, Control System, Robot
Operating System
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1. INTRODUCTION

Mobile Working Machines (MWMs) are vehicles designed and manufactured to perform

specific tasks besides moving from one place to another. Due to their high power, steering

systems, and unique attached tools (saws, drills, booms, grippers, and more), they have

been widely used in many applications containing heavy-duty work, such as cutting trees,

digging the earth, harvesting crops, and lifting heavy objects. Therefore, they are an

essential part of the economy [3].

The working environments (mines, forests, and construction sites) where MWMs are used

have many potential dangers due to the existence of working equipment, materials, and

noises. MWMs increase the possibility of fatal accidents in such limited workspaces [4].

In addition, driving them and controlling their manipulators are stressful and exhausting

tasks [5]. This causes an increase in the probability of human error, which is the main

reason for many accidents [6][7][8][9]. So, providing autonomous driving control systems

has been considered an appropriate solution that increases safety and offers many ad-

vantages like increasing productivity, efficiency, and reducing the workload [10][11][12].

One of the fundamental missions of autonomous vehicles is the concept of path following,

which is the process of moving between two points on a specified path. A good under-

standing of the machine’s kinematics and structure is required to perform an accurate

path following task.[13][14]

The mainly used steering systems in MWMS are Ackerman, skid, and Articulated Frame

Steering (AFS) [15]. From the steering types mentioned above, the vehicles with AFS are

extensively used in the construction, forestry, and mining sectors due to their maneuver-

ability, mobility, and enhanced traction performances [16][17][18][19][20]. Therefore, this

research focuses on implementing path following and motion control for these machines.

Usually, the control system is divided into many sub-systems [21][22][23][24]; and in that

case, it is important to ensure they communicate with each other by using a capable com-

munication system that manages the message exchange within the control system. One

of the available framework that has many features including taking care of the communi-

cations is the Robot Operating Systems (ROS).

During the last few years there have been increase in developing applications with this

platform by the research community and adding features to it [25]. Also, the interest in



2

that framework has been growing among industries. However, it is still not fully adopted

by most of them, unlike Matlab and Simulink, which are widely used in many industries

[26]. Therefore, the main question that will be answered in this thesis is that:-

"Is it possible for ROS2 to be an alternative platform to implement path following and

motion control instead of the popular platforms in industries such as Matlab/Simulink?"

There are many path following methods provided by ROS2 for autonomous vehicles.

However, we are eager to propose a new method that can be used for autonomous artic-

ulated machines. Therefore the other question is:-

"How beneficial is using our proposed path following in compression to an other developed

and commonly used strategy in ROS2 such as Regulated Pure Pursuit (RPP)?"

To answer these questions, we address the problem of implementing path following and

motion control for AFS vehicles using ROS2 . Also, in this thesis, we state the differences

between the implemented path following and ready from the shelf path following controller

provided in ROS2 Navigation (Nav2) [27] by comparing the two implementations using a

simulation environment with gazebo and later using an actual AFS vehicle.

In general, the structure of this thesis starts with the needed background to understand

the essential parts of the implemented system, which are introduced in the first four chap-

ters. The current chapter introduces the main topic of this thesis and the importance

of this work, as well as raises the scientific questions that are required to be answered.

Chapter (2) illustrates what mobile working machines are and what makes them suitable

for heavy duties. It also briefly explains the hydraulic system on these vehicles and dis-

cusses the different steering systems they use. Then, autonomous Vehicles (AVs) are

introduced, and the Autonomous control system for these vehicles is explained. Further-

more, lately some sensors that are used on these vehicles are illustrated. In chapter (3),

ROS2 is explained, starting from the main purpose of developing it to the different ser-

vices it provides, and diving into the Nav2, which contains the ready-developed path that

is compared to the work done in this thesis. Chapter (4) demonstrates the path following

concept and strategies, then discusses some research papers in the literature on using

articulated steering machines with the path following, and at the end of this chapter, the

uncovered sides in these papers are mentioned, and the contribution of our work is illus-

trated. Chapter (5) introduces the algorithmic part of the control system that is proposed

in this thesis, and it starts with the path following strategy, then the kinematics models

of the vehicle and the steering actuator, which are needed for the motion control that is

explained at the end of this chapter. Then in chapter(6), the articulated vehicle used in

this thesis is demonstrated, and the implemented control system for that machine is ex-

plained. This chapter covers the entire control system from a high point of view.

Chapter (7) summarizes the test and results to evaluate the proposed path following the

controller and compares it to another popular and tested controller.
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Chapter (8) is the last chapter that contains the conclusion, which summarizes the find-

ings and answers the questions issued in this thesis.
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2. MOBILE WORKING MACHINES (MWM) AND

AUTONOMOUS VEHICLES (AVS)

Mobile working machines have been used widely in many different working environments,

as explained in chapter (1); however, they are unsuitable for carrying passengers [28].

These machines have three characteristics, which can be summarized as follows, they are

mobile, designed and implemented to perform specific tasks in the working environment,

and have a high energy share in their working functions [15][29].

The diversity of these machines comes from the requirements needs to be fulfilled by

them, such as [15]:

• Need for functionality.

• Good productivity and high efficiency.

• Manufacturer and customer economics.

• Easy maintenance, Reliable availability.

• Safety and security.

• Compliance with standards and legislation.

This chapter briefly describes the general structure of mobile working machines and a

few basics of the hydraulic systems that clarify why these systems are used with the

mentioned machines. Then in the last section, autonomous vehicles are introduced, and

some sensor technologies are explained briefly to provide some basic information that

helps to automatize the MWM.

2.1 Typical Structure of Mobile Working Machine

There is a long list of mobile working machines designed to work in different environ-

ments, such as forestry, mining, construction, and logistics, to perform different tasks.

One example of these machines is the loader which is used in construction to move

materials such as soil, rock, and sand from one place to another or load them to other

vehicle. Despite these machines’ diversity, they have common standard structure which

is identified by four parts, work function, operator’s workplace, power train, and chassis.

Fig 2.1 shows different MWMs types with a typical structure [15].
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The work function describes the machine work principle and its construction. The oper-

ator’s working place is the control cabin where the driver is sitting, and it is designed to

allow the driver to perform the essential work functions, driving the machine and see the

travel path. This working place contains monitoring and controlling devices for driving and

working. Moreover, it protects the driver by its surrounding frame or machine structure.

The chassis of these machines include a steering system, locomotion, and attachments,

where the frame is the central load-bearing assembly of the chassis, which can consist

of one solid part or several parts connected by joints. The means of locomotion, such

as wheel axles or crawler tracks, are connected to the frame. The locomotion devices

transfer the vertical and horizontal forces to the ground via fixed, hinged, or suspended

connections. The power train needs a primary energy source. The commonly used en-

ergy source is internal combustion engines. [15]

MWMs are required to perform tasks that need high forces, therefore they use hydraulic

power systems to generate the needed forces for work and steering. These systems are

introduced in 2.1.1.

Figure 2.1. Structure of four typical mobile working machines. adopted from [15].
.

2.1.1 Power System on Mobile Working Machine

Backhoe loaders, tunnel drills, hydraulic excavators, agricultural tractors, bulldozers, and

forestry forwarders are some examples of MWM. Each of these working machines is

designed to do different tasks so that their appearance and structures are different from

the others, and the hydraulic transmission system for each machine is designed and

implemented to let it accomplish its task efficiently.

In general, the hydraulic power transmission system is designed to transmit the input en-
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ergy from its source using pressurized hydraulic fluid to its point of deployment, where

the transmission of energy in this system starts from the input kinetic energy that is trans-

formed to pressure potential energy, then to work, and this work is converted at the end

to kinetic energy again, as shown in Fig 2.2. [30]

Figure 2.2. Illustration of the principle of energy transmission process in a hydraulic
power system [30].

In Fig 2.2, the motor provides input mechanical power to the pump in the hydraulic trans-

mission system, which produces a fluid flow to the cylinder. That action pressurizes the

fluid in the cylinder, increasing the energy level from zero to the maximum value.

Hoses deliver the fluid to the control valve, and the valve regulates the pressurized fluid’s

amount and flow direction to deliver it to different cylinder ports to achieve the work. Dur-

ing the fluid flow from the pump to the actuator, the fluid friction and the leaking of the

pressurized fluid, which is possibly noticeable, are causing some energy loss.[30]

Power generation, distribution, deployment, and regulation are the subsystems of the hy-

draulic power system, which are determined according to the system’s functions. The

supplied energy generated by the prime mover is converted from kinetic energy to poten-

tial hydraulic energy in the pressurized fluids using a pump, which mainly represents the

power generation subsystem. On the other hand, the fluid flow directions, rate, and pres-

sure are regulated and controlled by the power distribution subsystem, which contains

various control valves to do its function. The power deployment subsystem is responsible

for moving the loads by utilizing the potential energy carried by the pressurized fluid. Fi-

nally, the power regulation subsystem contains the fluid tank, hydraulic hoses, filters, and

accumulators. [30]
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2.1.2 Fundamentals of Hydraulic Power Transmission

There are three fundamental concepts of the hydraulic power transmission, that explain

the power transmission process in hydraulic systems. These concepts are [30]:

• Multiplication of force:

Pascal’s law is one of the fundamental rules for fluid power transmission that serves

as the foundation for static pressure transmission for the fluid. According to Pascal’s

rule, the pressure applied to a contained fluid operates equally in all directions at

right angles to the confining surface, implying that fluids may convey energy when

confined. Therefore, applying force on the arm of a small hydraulic cylinder that is

transmitting the compressed fluid to a larger cylinder will increase the force on the

larger cylinder’s arm. Similar to using a car jack, a hand applies force on the jack

handle, causing the lifting of the heavy car.

• Conservation of Energy:

Energy conservation can be seen in the hydraulic transmission system, where the

input kinetic mechanical power is converted to hydraulic potential energy first by a

hydraulic pump and then to kinetic mechanical energy power by a hydraulic actuator

at the output.

• Continuity of fluids:

The fluid flows continuously within the power transmission system. This continuous

flow principle is critical in hydraulic system analysis. The flow continuity expresses

the state that the total inlet flow rate equals the total outlet flow rate for steady flow

in a control volume.

2.2 Steering Systems for Mobile Working Machines

The commonly used steering principles in mobile working vehicles are Ackerman steer-

ing, skid steering, and articulated frame steering, which can be shown in Fig 2.3. Where

Ackerman steering is the standard for many types of vehicles, including tractors, exca-

vators, and telehandlers; these vehicles use steering actuators that steer either one axle

or two axles. Skid steering depends on different tires’ speeds to steer the vehicle by ro-

tating each tire from the same side at the same speed, similar to differential drive robots

or tanks. Articulated frame steering (AFS) vehicles are designed to be separated into

two parts connected using a center joint and can be steered using attached hydraulic

cylinders to the parts [15].
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Figure 2.3. Mobile working vehicles steering types.

2.2.1 Ackerman steering

This steering type also called four-bar linkages, it is the generally used mechanism to

steer four-wheel vehicles [31], [32]. To steer the machine, a steering box transmits the

input motion from the steering wheel to the steering knuckles, using Ackerman steering

linkages [33]. In Ackerman, the tire closer to the curved path center has a smaller turning

radius than the other tire, so that it is steered with a greater angle, which helps to prevent

tire rubbing.

2.2.2 Skid steering

It is accomplished by driving wheel pairs on one side of the vehicle with different speed

than the other side wheels. Even though the skid steering system provides certain me-

chanical benefits, controlling it is a complex undertaking since following the curved path

require the wheels to skid [34]. Skidding may result to change the position of the instan-

taneous center of rotation which affects the vehicle’s motion stability [35].

2.2.3 Articulated Frame Steering (AFS)

Due to their superior maneuverability and high steering generated force compared to

other steering types, mobile working machines with AFS are dominant in many working

environments, such as mines, forestry industries, and construction sites [36][37]. In gen-

eral, vehicles that use articulated frame steering are made up of two separate front and

rear bodies connected by an articulated joint. That joint could have up to two degrees of

freedom on roll (rotation around the x-axis, it is usually the vehicle heading axis) and yaw

(rotation around the z-axis).
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Haulers, have two degrees of freedom, and other vehicles, such as compact-size loaders,

have only one degree of freedom around the z-axis. In Fig 2.4 the loader center joint has

two degree of freedom on roll and yaw.

Figure 2.4. Illustration of roll, pitch and yaw of the center joint.

When the steering wheel is turned, a hydraulic cylinders changes the articulation joint

angle. Most of the AFS machines are used for off-roading, but they have the ability to

travel on roads and highways.[38]

Driving these vehicles with high speeds causes issues primarily related to the vehicle’s

stability while moving on a specific path. For example, at high speed, a slight change in

the center joint angle causes the two bodies of the vehicle to oscillate relative to each

other, which leads to oscillation in movement. [38][39]

2.3 Autonomous Vehicles (AVs)

Vehicles that can move and take action without any human direct or teleportation control

are known as Autonomous Vehicles (AVs) [40]. These vehicles have been explored and

investigated since at least the mid-nineteenth century. Carnegie Mellon university created

the first autonomous car in 1984 [41][42], then in 1987, Munich university and Mercedes-

Benz developed it [43]. AVs are known to be able to sense the environment and operate

without human involvement. These vehicles are able to imitates the human drivers without

the need of human presence [44][45].

The Society of Automotive Engineers (SAE) categorizes Automated Driving Systems

(ADS) into six levels starting from 0 (no autonomy) to 5 (fully autonomous) according
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to SAEJ3016 standard. The levels are [46][47][48]:

• Level 0 (No Autonomy): The vehicles are manually controlled by the human driver.

• Level 1 (Driver Assistance): It is considered the lower level of automation, where

the vehicle contains one feature to assist the driver.

• Level 2 (Partial Driving Automation): A driving assistant can control the steering

and the vehicle’s speed, and the driver supervises the driving process and can take

control at any time.

• Level 3 (Conditional Driving Automation): Despite that, the driver can override

the vehicle’s automated control as the driver is needed onboard; the vehicle can

make decisions and have environmental detection.

• Level 4 (High Driving Automation): At this level, the vehicle can be driven by a

human; still, it can fully drive itself and make decisions so that human presence is

not required in most cases.

• Level 5 (Full Driving Automation): The vehicle is self driven, and it is not equipped

with any manual control, such as steering or paddles, so the human can not take

manual control at any time.

In the levels higher than 2, the AVs perform the driving task by dividing it into three stages,

starting with sensing and perception, path planning, and path following (path tracking).

This thesis focuses on the last stage (Path following) and the motion control for articulated

frame steering.

2.3.1 Autonomous Vehicle System

Some researchers devide the autonomous vehicles system to four parts, sensing, per-

ception, planning, and control, as shown in Fig 2.5 [49][50][51]. Other researchers divide

it into five parts which are sensing, perception, modeling, planning, and control, where

the modeling include constructing the environment and creating world map for navigation

[52].

The vehicle senses the environment using number of sensors installed on the AV. The

sensors are hardware components that can collect the information about their surround-

ings. The perception block can be defined as the process of collecting the data from

the sensors and combining it into meaningful information, then passing it to the modeling

for mapping and to the planner, which uses the received information after the perception

presses and mapping to perform behavior planning and path planning for long and short

paths. The output from the planning is used by the control block to generate control com-

mands and sends them to the vehicle’s actuator to ensure that the vehicle follows the

behavior and the planned path determined by the planner.[53][54][55]
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Figure 2.5. Autonomous vehicle system block diagram [53].

In the next section we are focusing on some of the common sensors used in many au-

tonomous vehicles.

2.3.2 Sensors in Autonomous Vehicles

In AVs, sensors such as cameras, lidar, radar, sonar, Global Navigation Satellite Systems

(GNSS), an Inertial Measurement Unit (IMU), rotary encoders, and resolvers are essential

components. These sensors collect data to be processed by the computer in the AV and

used to determine the control actions for the steering, braking, and speed. In addition to

the sensor’s data, another source is the environment information stored by other AVs in

the cloud, which are used to make vehicle control decisions.[53]

Some of these sensors are demonstrated shortly below:

• IMU

It used at first in aircraft navigation at 1930s [56]. It is mainly works as three com-

bined sensors, gyroscope, accelerometers and magnetometer to measure the ori-

entation, velocity and acceleration As shown in Fig 2.6 [57][58][59]. Therefore, it

can be used in many devices, such as robotic arms, to perform the trajectory track-

ing of the arm’s gripper [60].

• Camera

In autonomous vehicles, one of the first sensors used is the camera. Nowadays, it

is suggested to be a fundamental technology in autonomous vehicles by the man-
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Figure 2.6. Three sensors combined to form IMU [61].

ufacturers [61][62]. The vehicle can visualize its surroundings using the camera

[61].

Compared to lidar and radar, the camera is more affordable; also, the camera is

efficient at classifying objects. Using a camera requires high processing abilities as

it provides up to multi-megabytes of data in real time [53]. The camera utilization

provides exceptional benefits in self driving cars [63][64][65] [66][67].

• Light Detection and Ranging (Lidar)

This sensor determines the distance between itself and detected objects using an

infrared laser beam. It has a focused laser beam, therefore, its resolution is higher

than the radar, and it is not affected by lighting conditions as the camera [68]. How-

ever, The weather and dirt on the sensors can affect the its performance [69]. Some

types of of this sensor are spinning lidar which covers 360 degrees of the surround-

ing environment , the line scanning lidar that sense the objects in one plane and

flash lidar that sense objects in a single direction [70][71]. In spinning lidar, A spin-

ning swivel scans the laser beam across the detection area using laser pulses and

senses the reflected pulses from the objects. It calculates the distance to detected

objects according to the time between the emitting and the detection of the reflected

laser light, then obtains the point cloud that is useful for 3D mapping [72]. The lidar

can be used to measure the detected object’s speed [73].

• Radio Detection and Ranging (Radar)

The radar sensor is added to the vehicle to perform several functions such as colli-

sion avoidance, collision warning and adaptive cruise control [74][75]. The radar lo-

cates the objects by transmitting microwaves and receiving the reflections at light’s

speed [76] and can calculate the objects speed using Doppler effect, so that it

provides the velocity as independent parameter from the position, unlike the other

sensors that uses the difference in position with time to calculate the speed [53].

• Rotary encoder
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Because of their ease of integration into digital circuits and usefulness as position

and speed detectors, these sensors are frequently used to measure the rotational

speeds in the control systems that use digital controllers. Rotary encoders could be

optical or magnetic encoders. Magnetic rotary encoders are smaller and respond

faster than optical encoders.[77], [78]
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3. ROBOT OPERATING SYSTEM (ROS)

ROS is an open-source middleware for implementing complex robotic systems and ap-

plications. It is not a real operating system; in fact, it is a framework, which needs to

be installed on operating system (commonly Ubuntu) to work [79]. From another point

of view, it can be considered as a communication system that allows different programs

on the same hardware or even on different hardware to communicate with each other’s

using the ROS messages [80]. In addition, it provides many different communication fea-

tures (For example, Messages, Topics, Services, and Actions) and the ability to customize

these features according to the developer’s needs.

The start of ROS was in 2006 when Eric Berger and Keenan Wyrobek created a program

named Stanford Personal Robotics Program. They aimed to implement a framework that

allowed programs to communicate with each other. They intended to use it with the First

Personal Robot (PR1) [81].

Implementing the framework was driven by the need to solve two problems at that time.

The first is the required long time to re-implementing complex programs and algorithms

for the robots’ infrastructures (basically, the drivers to the sensors and the communica-

tion between the different programs on the same robot) that are already implemented by

others. The second problem was the short time dedicated to implementing the intelligent

robotics programs, which are based on the mentioned infrastructure. Fig 3.1 gives an

example of the time spent reinventing exited technology by many organizations.

Based on the Stanford Personal Robotics Program idea, ROS development started at

Willow Garage in 2008, and the first distribution of it was released in 2009, called ROS

Mango Tango, also called ROS 0.4. then, it evolved to ROS1, which was released in 2010

[83], and in 2011 the developers released the first robot called Turtlebot. The robot was

a simple and cheap, and allowed anyone using it to learn the basics of robotics using

the robot operating system. Therefore the community of that platform increased. Later in

2018, ROS2 version was released.[82]

Other than the primary goal of ROS (codes re-usability), there are multiple goals [84] such

as:

1. Thin: ROS is designed to integrate easily with other frameworks such as Open-

RAVE, Orocos, and Player.
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Figure 3.1. Most of the time spent in robotics was reinventing the wheel.[82]

2. Language independent: it can be implemented in any modern language, for exam-

ple, python, c++, Java, Lua, and Lips.

3. Easy testing: because it has rostest, a built-in unit/integration test framework, it is

simple to set up and take down test fixtures.

3.1 ROS1 and ROS2

ROS1 was developed to be a quality and performant system, and commercially it was

raised due to the flagship projects that provided control, simulation, visualization, au-

tonomous navigation, and other services [85][86][87]. It contains many useful libraries

for making different types of robots [79]. This platform allows a small team to develop

complex robotic software because it has a large ecosystem that covers a variety of sen-

sors, controls, and algorithmic packages that community contributors share. Regardless,

ROS1 developers did not prioritize the uptime, network topology, and security which are

essential parts of the industry development [79]. Therefore, the platform sufferers from

some limitations, such as data delivering instability when using lossy links (for example,

wifi), it has a single point of failure, and it does not contain security mechanisms. The

limitations had to be solved to integrate this platform into the industry, especially when

many companies started to involve ROS1 for creating reliable applications [88].
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ROS2 is the successor of ROS1, and it was redesigned from the ground to address its

predecessor’s limitations while benefiting from its community-provided capabilities [27].

ROS2 design was guided by some principles [88] such as:

• Distribution: In complex field such as robotics, it is favorable to reduce the complex-

ity using distributed systems approached [89].

• Abstraction: The data messages must be specified to govern the communication

and define the semantics of the data exchanged; also, balancing between exposing

the details of a component and the over-fitting cost is favorable.

• Asynchrony: ROS2 messages are exchanged asynchronously between the nodes,

which creates an event-based system [90]. This principle allows the applications to

work across multiple time domains, which result from different frequencies of the

hardware and software components in the system.

• Modularity: It is applied at different levels, such as library APIs, message definitions,

and the platform ecosystem.

Based on the design principles, ROS2 aims to fulfill specific requirements and the needs

of robotics developers, such as security, embedded systems support, multiple network

connectivity, real-time computing capability, and safety. It is reliable and high-quality

robotics framework that supports a diverse set of applications. The developers added

many features and spent much effort to improve this platform, and the different features

of ROS2 compared to ROS1 are demonstrated in Fig 3.2. [88]

Figure 3.2. ROS2 features compared with ROS1 [88].
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3.2 ROS Concepts Levels

Three concepts levels defines ROS [91]:

• Filesystem: This level concerns ROS resources and it define how the software is

structured and saved such as packages, metapackages, package manifests, ser-

vice, and messages.

• Community Level: This concept is a ROS asset that allow different networks to

exchange codes and information. Some OF these assets are distribution, reposito-

ries, mailing lists ROS Wiki web site.

• Computation Graph Level: There are many concepts in this level such as nodes,

topics, services, actions. This level represents ROS processes peer to peer net-

work which processes the data. All the nodes have access to this network and they

can communicate with each other using ROS messages.

3.3 ROS Node

A node is an independent running piece of code that processes computation and may

subscribe to many topics to get inputs and publish to any number of topics to send outputs

[92]. A robot control system usually has multiple nodes communicating with each other

and collaborating to perform needed tasks and the nodes can not have the same names

[93]. The nodes do not have information nor care about the existence of other nodes in

the system [94]

There are libraries in the used languages in ROS1 and ROS2 to write the nodes, such

as rospy (python library for ROS1), roscpp (C++ library for ROS1), rclpy (python library

for ROS2), and rclcpp (C++ library for ROS2). Since Nodes can be written in different

languages, the developer that uses, for example, python to implement nodes for their

control system can re-use any implemented node in C++ to communicate with imple-

mented node, which means it is not needed to implement nodes that are already existed

even if they are written in different languages [95].

3.4 ROS Topics

They are the way of communication in ROS. The topics allow the nodes to communicate

with each other using the publish and subscribe models. ROS provide a list of the avail-

able topics. The publisher is the node that sends the messages and the subscriber is the

node that receives a message. ROS provide lists of the publishers and the subscribers.

The messages are not sent directly from node to the other, instead, ROS topic is used

as a bridge to deliverer the messages from the publisher to the subscriber. One pub-

lisher can publish to multiple subscribers and one subscriber can receive messages from
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multiple publishers as shown in Fig 3.3.

Figure 3.3. Topic with multiple publishers and multiple subscribers. Adopted from [96].

3.5 Services

Services are another communication method between nodes; similar to the publish-

subscribe model; it uses topics to exchange messages between the nodes. It is work-

ing based on the request and response model, where a node (client) sends a request

message (for performing a specific task) to the topic. The topic forwards that request to

another node called the server. The server is responsible for performing the task, and

when the request is received, an acceptance message is sent back from the server to the

client on the same topic. Then, the server starts to perform the task.

This communication model does not provide any feedback or update other than accepting

messages from the server. This model is used when the client requests service; all it

needs to know is that the server accepted the task. In addition, one or more clients can

ask for the service from the same server, but only one server is allowed to provide the

specified service, as shown in Fig 3.4.

3.6 Actions

Actions are another type of communication in ROS, and it is suitable for long-running

tasks where the client requests the server to do a task that takes a long time. This type is

used when the client is required to be involved in the task from the start to the end, which

requires receiving updates regarding the task’s progress. Therefore it is designed to have
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Figure 3.4. Service diagram fore more than one clients. Adopted from [96].

three parts: a goal, feedback, and results, as shown in Fig 3.5. The goal is the message,

which contains the desired task inputs, and the feedback is the message that contains

the desired information to illustrate the current state of the task, and the result is the last

message that declares the success or failure of the task.

Figure 3.5. ROS action diagram. Adopted from [96].

The actions are built on top of the servers and have the same basic principles: request

and acknowledgment. As shown in Fig 3.5, actions provide more features where a com-

munication channel is opened between the client and the server, which allows the client

to receive the feedback and the result, and request goal cancellation or a new goal.

A client-server model is used in actions where the client sends a goal request message
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to the server that triggers a response to reject or accept it. When it is accepted, the

server will start executing the wanted task, and during working on it, the server returns a

stream of feedback to the client. The result is also returned when the task is completed.

If the task cancellation is applied during the execution, the server abandons the task and

notifies the client, furthermore, abounding a task and starting a new one is applicable by

sending a new request during an ongoing task as shown in Fig 3.6.

Figure 3.6. ROS action goal state diagram. Adopted from [97].

3.7 ROS Navigation stack and ROS2 Navigation

Navigation in robotics is the ability of the robot to localize itself in its environment accord-

ing to the reference frame, plan the path to a goal point, and then follow the path. This

concept is essential for service robots to work in the environments such as warehouses,

stores, and factories. Therefore, many navigation systems have been introduced since

the first development of the service robot [98][99].

ROS navigation stack is one of ROS’s helpful tools that control the robot’s speed by

performing close loop control to move a robot to the desired point in a 2D world. It re-

ceives odometry information (which provides the position, speed, and orientation), sensor

streams, and desired goal position, then generates control outputs for safe navigation [27]
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ROS2 navigation (Nav2) is the enhanced version of the ROS navigation stack, which

supports more robot types for more complex environments. It is a system developed for

controlling the robots to enable them to reach a goal state autonomously. This control

system generates a plan to reach the goal when it is fed with the current pose, the map,

and the goal. The output commands to drive the robot autonomously are generated to

ensure safe obstacle avoidance along the way. Unlike the first version, Nav2 is designed

to support different robots such as holonomic, differential-drive, legged, and Ackermann

robots; however, it is not supporting articulated steering robots, which are widely used in

mobile working machines. [27]

3.7.1 ROS2 Navigation Design

Nav2 is designed to be reliable, modular, safe, and secure platform for supporting re-

search, education, and industry. Furthermore, it is configurable and expansible for future

developments. The Nav2 tasks are orchestrated by the Behavior Tree Navigator, which

is the Nav2 top-layer that follows the progress of the planner, controller, and the recovery

servers, as shown in Fig 3.7. The Behavior Tree (BT) allows the navigator node to run

plugins (functions) to perform specified tasks; however, it can be modified to perform de-

sired tasks by applying the changes to its XML file. These plugins are shown in Fig 3.8.

[27]

The recovery behavior type in Fig 3.7 is responsible for reducing or eliminating the failure

effects of the navigation system failure. There is multiple recovery behavior for different

cases, such as clearing the cost map at the system perception failure or the waiting be-

havior to avoid collection when a dynamic obstacle enters the working environment. The

perception behaviour is dependent on long range and high resolution sensor technologies

that have been enhanced over its predecessor. Therefore a layered costmap approach is

used to collect the data from the sensor, then build a 2D map, and when new information

from the environment is received, it updates the map and then forwards it to planners

and controllers. A Spatio-Temporal Voxel Layer (STVL) plugin is responsible for obstacle

detection in a three-dimensional environment.[27]

The control layer plugins are implemented to perform smooth navigation in dynamic envi-

ronments. There are four controller plugins, as shown in the Fig 3.7. The Regulated Pure

Pursuit is one of the commonly used path-following controller plugins developed from a

pure pursuit algorithm (explained in 5) with added features. This plugin has many vari-

ables, such as look ahead distance and the linear and angular wanted speeds, that can

be modified to perform an accurate path-following task.
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Figure 3.7. Illustration of Nav2 design. [27].

Figure 3.8. Some of Nav2 plugins [27].

3.8 Rviz and Gazebo

Rviz stands for ROS visualization; it is 3D visualization software created by ROS develop-

ers as a tool for robots. This tool enables the user to see the perception of the robot world

and visualize the robot’s states. Rviz accurately depicts the robot’s world using sensor

data. Rviz has some plugins to enable the user to monitor the robot’s state and sensor
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data.

Gazebo is a 3D robot simulator that simulates a robot and shows the user the realistic

behavior of the robot similar, to a real-world environment. There is some confusion be-

tween Gazebo and Rviz because both show a 3d model of the robot, and both are used

with ROS. Morgan Quigley, who is one of the Original ROS developers, stated that: "Rviz

shows you what the robot thinks is happening, while Gazebo shows you what is really

happening." [100].
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4. PATH FOLLOWING STRATEGIES

Autonomous Vehicles (AVs) that are categorized in level three and above in the autonomy

definition are known to be able to move on a specific path from one place to another. This

process is a fundamental concept in AVs called path following or path tracking. Therefore,

researchers tackled it for many years [101], and many control strategies were proposed

to enable the AVs to follow a given path.

In this chapter we focuses on explaining the path following concept and some of its strate-

gies. Also, some researchers’ work related to this thesis topic are explained and at the

end of the chapter, we state the difference between this thesis and the discussed re-

search, then illustrate our contribution to this topic.

4.1 Path Following Strategies

In the path following, a control system is responsible for changing the vehicle’s linear and

angular velocities while moving to minimize the error in position and orientation between

the vehicle and a desired point on the given path [102].

During the this process, the data is collected from the sensors such as speed encoders,

IMUs and GNSS. Then it is used to form a closed-loop control scheme, when the control

strategy is responsible for minimizing the errors.

In other words, given a reference path which is formed by nth number of points each

has position and orientation xref , the path following aims to design control law such that

limt→∞ ∥x− xref∥ = 0, where x is the vehicle state (position and orientation). When the

vehicle model is represented by the differential equation ẋ = F (x, u) and ẋ represents

the vehicle state time derivative (linear and angular velocities).

To implement path following for AVs, There are many control strategies (for example,

Pure Pursuit Control (PPC) [103], Stanley controller [104], Feedback Linearisation (FL)

[105], Lyapunov’s Direct Method (LDM), Linear Quadratic Regulator (LQR) [106], Model

Predictive Control MPC [107], etc.). The mentioned strategies are popular due to the high

performance they provided in many studies. In the path following, the complexity of the

vehicle model, as well as the precision and robustness of the control strategy, are factors

that affect the performance [102].
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4.1.1 Pure Pursuit Control (PPC)

Pure pursuit is an algorithm determining the curve that brings a vehicle from its present

location to the desired position. The algorithm aims to select a goal point at a specified

distance ahead of the vehicle on the path. The name of this algorithm is derived from the

intended behavior of its process.

PPC was originally developed for guiding missiles toward moving targets [108] and then

used to ensure the vehicle follows a desired point on the path. While the point moves on

the path, the vehicle keeps pursuing that moving point. The distance between the desired

point and the vehicle along the vehicle’s longitudinal axis is called look-ahead distance

[109].

The method of achieving the pure pursuit is finding the curve that will drive the vehicle

to a predetermined path point, known as the goal point. The pure pursuit algorithm has

straightforward outlines as follows [110]:

• Determining the vehicle’s position which is the rear axle center point.

• Finding the closest point on the path to the vehicle.

• Transforming the closest point’s position to vehicle coordinates.

• Calculating the curve that connect the vehicle and the point.

• Changing the steering so that the vehicle movement matches the curve.

The pure pursuit control geometry of a bicycle model is shown in Fig 4.1. In that figure ld
is the look ahead distance and R is the curve radius. PPC aims to find the needed front

tire steering angle δ to follow the curve and reach the goal point as shown in the following

equation [110]:

δ = tan−1(
2L sin(α)

ld
) (4.1)

Where L is the distance between the front and rear tire axle. α is the angle between the

forward vector of the vehicle and the vector that connects the goal point and the rear axle

of the vehicle and can be calculated as follows [110]: Where le is the lateral error that

represent the distance between the goal point and the vehicle’s rear axle.

4.1.2 Stanley Controller

Stanley controller is a geometry-based path following introduced in 2005 [111], also

known as "Hoffman Controller." Unlike the PPC, this controller depends on the vehicle’s

front axle center as a reference point. The controller determines the errors in heading
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Figure 4.1. The pure pursuit control geometry of a bicycle model [54]
.

and orientation with the closest point on the path, then corrects the errors and saturates

the steering signal according to the limits. The stanley controller geometry of a bicycle

model is shown in Fig 4.2.

In that figure, el is the distance between the vehicle’s front axle center pc and the desired

point on the path pd and θ is the angle between the vehicle’s heading and the tangent

vector at the pc. At the forward speed of the vehicle v, the required steering angle ψ to

follow the path is calculated as [112]:

ψ = θ(t) + tan−1

(︃
k el(t)

v(t)

)︃
(4.2)

where k is a tunable gain and the steering angle can not exceed the physical limitations

of the steering system so that in the controller, if ψ exceeds the limits, it is set to the

maximum value ψmax to the turning direction as follows [112]:
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Figure 4.2. The stanley controller geometry of a bicycle model. Adopted from [54]
.

ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ(t) + tan−1

(︂
k el(t)
v(t)

)︂
if

⃓⃓⃓
θ(t) + tan−1

(︂
k el(t)
v(t)

)︂⃓⃓⃓
< ψmax

ψmax if
(︂
θ(t) + tan−1

(︂
k el(t)
v(t)

)︂)︂
⩾ ψmax

−ψmax if
(︂
θ(t) + tan−1

(︂
k el(t)
v(t)

)︂)︂
⩽ ψmax

(4.3)

4.1.3 Model Predictive Control (MPC)

MPC predicts the state of the system in some finite horizon in the future at each time step

using the dynamic of the system. Based on the predicted state, the aim of the controller

is to determine the optimal sequence of the control inputs. According to the MPC a cost

function 4.4 needs to be minimized when the constrains 4.5 are satisfied [113].

min
xi|k , ui|k

J(ui|k , ud(k)) (4.4)
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x0|k = x(k) (4.5a)

xi+1|k = f(xi|k , ui|k) (4.5b)

xi|k ∈ x (4.5c)

ui|k ∈ u (4.5d)

where xi|k is the state predicted i time steps ahead, at time k. The constrains are as

follows:

• (4.11a) is the initial state.

• (4.11b) according to this dynamic the system is predicting along the horizon.

• (4.11c) and (4.11d) are the state and input constrains.

In general, linear and non-linear approaches were used to implement MPC for path fol-

lowing. The linear approach used with linear approximation of vehicle model and the non

linear used with nonlinear vehicle model.[54]

4.2 Path Following for AFS AVs in Literature

In this section we will present shortly some of the research that focus on the path following

for AFS AVs. Some of the researchers used ROS1 framework to implement the controller.

During the last few decades, numerous types of AVs with different degrees of autonomy

and different steering types have been researched. The AVs with articulated frame steer-

ing have been approached from a variety of perspectives. The path following problem

has been the focus of many research (for example, [114][115][116][117][118][119][120]

[121][122][123][124], etc), as it fulfills one of the basic requirements for AVs.

Yongming Bian and Meng Yang et al. [125], proposed path following control based on

the Lyapunov stability method for articulated drum roller where the control system was

evaluated using Matlab/Simulink then experimented in an uneven construction site. The

simulation and experimental results showed that the errors converged to 0 over time, and

the vehicle followed the path.

A simple path following control was developed by Glen Rains, and Adam G. Faircloth et al.

[126], for articulated steering vehicle using pure pursuit. The implementation was tested

using five different paths with two speeds and three control pulse signals. The results

showed successful path following at low speeds with full pulse signal on the straight and

sinusoidal paths.

Some types of articulated steering mobile working machines are used in farming, and
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autonomizing these vehicles is beneficial for reducing the workload and increasing safety

in the working area. Kadeghe Fue and Wesley Porter et al. [127], were motivated to

provide a solution for the cotton farm owners who have small lands and cannot afford

large tractors and harvesting equipment to harvest their cotton. A Multi-Purpose Rover

(MPR) with a manipulator and sensors attached, as shown in Fig 4.3, was developed as

a solution to navigate along crop rows autonomously and harvest undefoliated cotton. A

path following control based on a regulated pure pursuit strategy was implemented using

ROS1. The verification tests were performed using the MPR in an actual cotton field. The

results showed that the developed MPR and the path following controller are reliable and

can be used to harvest the cotton and by following the cotton rows in the fields .[127]

Figure 4.3. The MPR with sensors attached and the manipulator [127].

Julius K.Kolb, Gunter Nitzsche, and Sebastian Wagner [128] have developed a simple

path following control using ROS1 for an Autonomous two-axle semi-trailer truck with a

trailer. The Authors stated that, the trailer had only a minor effect on the controller and

tests results showed sufficient tracking.

M. Murillo and G. Sánchez et al. [129], presented a path following controller for a hy-

brid steering tractor. The controller-targeted scenario where the tractor is toeing a trailer.

The path following implementation is based on a predictive control strategy. The Authors

archived the trailer’s position control in addition to the tractor’s position. ROS and Gazebo

simulation environments were used to test the implemented control system. The simula-

tion test showed an accurate path following.
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To achieve safe autonomous movement for an articulated dump truck in mining environ-

ments, Bilal Hejase and Umit Ozguner et al. [130], developed testing simulation envi-

ronment, path following, and vehicle module with taking into account the two frames of

the articulated machine. The path following implementation is based on path tracking

criterion from [131]. According to the experiments and testing results, the implemented

system supported the vehicle model and showed successful path following.

4.3 Contribution

In some of the discussed research from the previous section, ROS1 was used but not

ROS2 and the researchers did not focus on implementing a modular path following sys-

tems. Therefore, implementing modular path following and motion control for articulated

mobile working machines using ROS2 is the main contribution of this thesis. The path

following and the motion control are implemented as a separated ROS2 nodes without

using Nav2. The path following node receives the sensor data and the desired path, then

produce linear and angular velocities (v) and (w) as outputs that are needed to follow

the path. The motion control node receives the generated speeds from the path follow-

ing and the sensor data to generate the needed commands for steering the AFS vehicle.

This architecture allows the path following to work with any steering vehicle by replacing

the motion control node with other suitable controller that fits the steering type needed

commands. The motion control is designed and implemented for any articulated steering

vehicle. therefore, replacing the path following node by any other implementation as long

as the outputs are v and w, is easily achievable.
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5. MODELING AND CONTROL DESIGN

For designing and implementing a control system for an autonomous vehicle to perform

a specific function, it is essential to model the vehicle, understand the kinematics, specify

the required function, choose the control strategy to perform the task, and identify the

hardware and software needed for the task.

The main focus of this chapter is implementing a path following and motion control for

autonomous articulated vehicles. In the next sections, we will explain the path following,

as a generic strategy that can be used for any type of ground vehicle. Then the motion

control is illustrated by driving the kinematics of the AFS vehicle, modeling the steering

actuator, which is essential to implement the motion control. Then we will illustrate the

motion control mathematical equations and control signals.

5.1 Path Following Implementation

The implemented path following algorithms in this thesis is developed by Reza Ghabche-

loo [2]. This method is based on the assumption that the vehicle is following an imaginary

point P moving on a given path. The position of that point on the path is determined with

respect to normalized value s ∈ [0, 1]. Where (s = 0) at the beginning of the path and

(s = 1) at the end of the path. In order to calculate the linear and angular velocities (v, w)

required by the vehicle to follow the path, the following procedure is proposed:

1. Calculating the errors in heading and position between the a point on the the vehicle

and P at specific s, as follows:⎡⎢⎢⎢⎣
xe

ye

ψe

⎤⎥⎥⎥⎦ = e =

⎡⎣T
WR 0

0 1

⎤⎦ (q − qd) (5.1)

Where q is the vehicle’s position and orientation. The position and orientation of P

at at specific s is qd. The error in the position for both axis (x,y) are (xe, ye). Since

the errors are calculated with respect to the world coordinate frame (the frame of

the given path and the vehicles position). They are translated using the rotation

matrix (TWR) to qd tangent frame, where the axis xp represent the heading at the
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point on the path at s as shown in Fig 5.1.

The difference between the vehicle’s heading angle ψh and the heading of a point

ψT on the path at s is ψe, which can be calculated as:

ψe = ψh − ψT (5.2)

Figure 5.1. Path following strategy

2. The path following error dynamics are:⎧⎪⎪⎪⎨⎪⎪⎪⎩
xė = ṡ (yeCc(s)− 1) + v cos(ψe)

yė = v sin(ψe)− ṡ xeCc(s)

ψe
̇ = w − ṡ Cc(s)

(5.3)

where Cc(s) is the curvature at a specific value of s, and (w, v) are the measured

linear and angular velocities of the vehicle

3. To determine qd on the path, s have to follow the dynamic below:

ṡ = vh cos(ψe) + kxe (5.4)

where ṡ is the derivative of s.

4. The linear velocity command (vc) is non-linear function of the heading error and the

reference velocity (vref ), as shown below:
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vc = F (vref , ψe) (5.5)

Where F (vref , ψe) is a function that insures the speed is reduced when the error

is high.

5. The angular velocity command wc is calculated as:

wc = Cc ṡ− ke(ψe − ψlos) (5.6)

where ke is a gain related to the reference speed vr, and ψlos is angle depends on

the line of sight los and it is calculated as follows:

ψlos =

⎧⎨⎩
sign(ye)π

2
|ye| > los

− sin−1( ye
los
) |ye| ≤ los

(5.7)

5.2 Motion Control

The path following controller explained earlier calculates the linear and angular speed

commands (vc, wc). These commands allow the AFS machine to achieve the path-

following task. Therefore, it is essential to control the machine’s motion according to

the speed commands. The motion control is implemented for that purpose, where the

received commands and some sensor measurements are used to calculate the control

signals that control the machine’s steering, gas, and gear.

As explained earlier, AFS vehicles consist of a front part and a rear part connected using

a free joint. The AFS vehicle has non-steerable wheels, and each vehicle part has a

single axle. The kinematics model of the used vehicle in this thesis was driven under two

assumptions. These assumptions are the vehicle is not skidding, and the vehicle’s tires

are not slipping.[132].

In this section, the kinematics models of the vehicle and the steering actuator are driven

and explained to finally explain the motion control signals.

5.2.1 Kinematics Model

It is essential to model a machine for implementing a control system that controls it accu-

rately. The modeling design is a process that includes multiple parts, such as:-

• Developing and analyzing the model to describe the behavior.

• Designing a suitable controller for the dynamic motion of the machine.

• Simulating the dynamic motion.
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• Deploying the controller.

The kinematics model is driven based on the model from [132]. Each part of the vehicle

is indexed by i, which refers to f (front) and r (rear). In Fig 5.2 the AFS vehicle has two

parts, each has a length
⃓⃓⃓−−→
OQf

⃓⃓⃓
= lf ,

⃓⃓⃓−−→
OQr

⃓⃓⃓
= lr that represent the distance between

the center of the articulation joint (O) and the center of the related part wheel’s axial (the

centers of gravity of the part denoted as Qf = (xf , yf ), and Qr = (xr, yr)). The steering

method is simply turning each part against the other in the yaw plane using the articulation

joint [132]. Generally, the AFS vehicle is designed in such a manner (lf = lr), that both

parts of the vehicle move on the same turning route, eliminating off-track error and making

path following simpler. Turning the vehicle is achieved by changing the articulated angle

β at the joint. [133]

Figure 5.2. Articulated vehicle kinematics

By looking to Fig 5.2, the AFS vehicle’s heading normally determined as the angle ψf

between the reference world frame axis ( in this figure x − axis) and the vector
−−→
OQf of

the front part. The joint angle can be calculated as

β = ψf − ψr (5.8)

By denoting vi as linear velocity and wi as angular velocity, the kinematics equation of

each part under the stated assumptions is determined by
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xi̇ = vi cos(ψi)

yi̇ = vi sin(ψi)

ψi
̇ = wi

(5.9)

where xi̇ and yi̇ are the the linear velocities of each part of the vehicle along x − axis

and y − axis respectively.

From Fig 5.2 the relationship between the front and rear coordinates is defined as follows:

xf = xr + lf cos(ψf ) + lr cos(ψr)

yf = yr + lf sin(ψf ) + lr sin(ψr)
(5.10)

By derivate 5.10 and 5.9 and using 5.8 we get

vf cos(ψf ) = vr cos(ψr)− lfwf sin(ψf )− lrwr sin(ψr)

vf sin(ψf ) = vr sin(ψr) + lfwf cos(ψf ) + lrwr cos(ψr)

β̇ = wf − wr

(5.11)

where β̇ is the articulated angle rate of change.

When the vehicle is turning, the tires on each side of the vehicle will move on different

curve. the outer tires moves on a wider circle than the inner tires, as shown in Fig 5.3.

From 5.11 and under the assumption that the vehicle has no slipping and no skidding the

following kinematics are valid.

vr = vf cos(β) + lf wf sin(β)

lr wr = −lf wf cos(β)vf sin(β)
(5.12)

lr wr = −lfwf cos(β) + vf sin(β) (5.13)

wi =
R

2d
(Wi,r −Wi,l)

vi =
R

2
(Wi,r +Wi,l)

(5.14)

where Wi,r is the rotational speed of the right tire and Wi,l is the rotational speed of the

left tire.
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Figure 5.3. AFS Machine on circular path. Both circles have the same center.

5.2.2 Steering Actuator Model

In this part a simplified model is derived to provide guideline for designing a motion control

strategies. Modeling of the steering actuator is adopted from [132]. The steering of the

articulated vehicle is driven by a hydraulic actuator (cylinder), which is shown in Fig 5.4.

In that figure, three joints, A, B, and O, are connected to form a triangle. Two sides of

the triangle OA and OB has fixed distance a and b, but the third side AB has changing

distance Γ. The actuator is responsible of changing Γ, and as a result changing the angle

γ that is related to β.

The flow to the actuator in Fig 5.4 is controlled using a proportional compensated valve,

where the valve’s flow is proportional to the control signal as shown in Fig 5.5.[132]

Since the control signal u is proportional to the flow, then it can be written as

u = k Γ̇ (5.15)
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Figure 5.4. AFS mechanism adopted from [132]

Figure 5.5. The pressure compensated proportional valve characteristic curve [132]

where (k > 0) and Γ̇ is the rate of change in the distance Γ, and u ∈ [−1, 1], as the

saturation effects [134] is noticeable from Fig 5.5.

Using simple trigonometry, the rate of change in the distance Γ can be written as

Γ̇ =
a b sin(γ)√︁

a2 + b2 − 2 a b cos(γ)
β̇ (5.16)

where γ is related to β such that γo = γ + β according to that and from 5.17 and 5.18

it is noticeable that the control signal u to β̇ is nonlinear function of β, then 5.17 can be

written as:

u = K(β) β̇ (5.17)
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5.2.3 Motion Control Signals

The motion control signals in this part are proposed for ideal articulated frame steering

machine, where 5.12,5.13, 5.14 and 5.17 are fulfilled[132].

The path following strategy in 5.1 is generic controller that relate specific point in the

vehicle frame (q) to desired point on the path (qd). In our implementation (q) is the vehicle’s

front axial center point that has position (xf , yf ) in the global frame. Therefor, the angular

velocity command calculated from the path following controller in 5.1, is (wc
f ), and using

5.13 it is translated to (βċ ), then using 5.17 translated to (u). Let

β̇
c
= −vf

lr
sin(β) + ((

lf
lr
cos(β)) + 1)wc

f (5.18)

Then the control signal given by

u = K(β) β̇
c

(5.19)

Beside the control signal (u) which is the steering command, there are two other com-

mands for controlling the vehicle’s gear and speed. The gear command represent the

required movement direction of the vehicle and it is determined by vc. The gas command

is a saturated value ∈ [0, 1] that obtained by interpolating the required speed to get the

speed actuator equivalent signal. The speed command constrained using rate limiter,

which limits the acceleration and deceleration of the machine.
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6. CONTROL SYSTEM IMPLEMENTATION

The motion control and the path following implemented controllers in this thesis are in-

tended for controlling an AFS vehicle (AVANT 653 shown in Fig 6.1). That vehicle was

modified at Tampere university to be autonomous for research purposes. Therefore, a

power transmission, multiple sensors, and controllers were integrated into the machine

to control it autonomously. The only original parts that remain in the machine are the

metal frame and the hydraulic actuators. In its current state, the vehicle can perform path

following tasks autonomously and can be teleoperated using different controllers.

Figure 6.1. Modified loader for research purposes. It is based on AVANT-635.

The control system on this machine is divided into two levels, low and high as shown

in Fig 6.2. In the low-level, there are hydraulic cylinders, pumps, valves, a diesel engine,

sensors (IMUs, GNSS, Lidar, Cameras, resolver, pressure sensors, and speed encoders),

and micro-controllers. The low-level controllers are connected to the sensors, actuators

and the higher level using CANBus technology. These controllers collects the sensor data

then sends them to the high-level controller and control the actuators depending on the

received commands signals.

The high-level control system is implemented using ROS2 (chapter 3) on a computer with
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Figure 6.2. Control levels in the autonomous articulated machine at Tampere university

Linux operating system. That control system is designed and structured to have multiple

ROS2 nodes, each representing a subsystem responsible for performing specific tasks.

These nodes are named according to their functions as shown in Fig 6.3.

Figure 6.3. Control system for AFS autonomous machine using ROS2.

6.1 Structure of the High Level Control system

The high level control system is implemented using ROS2. This level is divided into

subsystems and each is implemented as ROS2 node as shown in Fig 6.3. The path

following and the motion control nodes are explained separately in other sections in detail
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as they contains the implemented controllers of this thesis. In this section the other nodes

in Fig 6.3 are demonstrated as follows:

• CAN bus node: The data such as speed, orientation, position, and center joint

angle are delivered by the CAN bus to the CAN bus node. This node represents

the bridge between the high-level control system and the CAN bus. It delivers the

sensor data to the Hardware interface node and delivers the control commands

(driving and manipulator commands) to the CAN bus.

• Hardware interface node: This node is responsible for parsing the messages that

contain the sensor data and the control commands and packing them in suitable

ROS messages, then sending them to the nodes that needs them.

• Manipulator control node: The used MWM is a loader that contains a tool (ma-

nipulator) for performing work tasks. The machine manipulator control commands

are generated by the manipulator control node.

• Path planner node: This node is providing the required path as a Bezier curve

which is represented by six control points. This node also provides movement

direction and five profile speeds which are interpolated to determine the desired

speed at every specific point on the path. The mentioned data are sent to the path

following node to perform the path following task.

6.2 Path Following Node

The path following node is designed as ROS2 action server. The purpose of implement-

ing this node as action server is to perform a path following task that requires relatively

long time to be completed and during the task progressing the server provide continuous

feedback messages. In addition, that node provides the possibility to cancel the task and

start new one according to the client request.

This node starts its task by reserving request message contains the path defined by six

Bezier control points, the reference profile speeds (which are interpolated later to deter-

mine the desired speed at every specific point on the path), and direction signal from the

path planner. This message fed to the path following node as an input to perform the path

following according to the specified movement direction. The sensor data messages are

received as additional inputs during the path following presses. The outputs of this node

are desired linear and angular velocities that are published in a single ROS2 message.

When the command message is sent to the motion control node, a feedback message is

also sent to the client, to inform about the task progress. At the end of the task the client

will receive a results message.

This node consists of some functions that are implemented to do the calculations. These

functions are shown in Fig 6.4. The direction master receives the path message, and
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according to the desired movement direction, it specifies the position and the orientation

of the leading part of the vehicle. Then, the errors of the position and orientation with

respect to the reference values, which are explained previously in 5, are calculated by the

error calculations. According to these errors and the measured speed of the vehicle, the

required speed function will calculate the desired linear and angular velocity as outputs.

Figure 6.4. The path following node structure.

6.3 Motion Control Node

The motion control node is implemented to translate the wanted speeds generated by the

path following nodes and produce control commands that can be used by the articulated

vehicle to adjust the speed and steering angle and change the gear to achieve the de-

sired movement. This node controls the vehicle acceleration and deceleration to provide

smooth transition movement, also the node assures that the vehicle’s steering angle is

not exceeding the specified maximum steering angle. The needed inputs for this node are

the desired speeds, measured joint angle, and heading speed of the vehicle. The output

of the node is a control message that contains three commands, gear, steering, and gas.

Gear Command

The gear command (ugear = ±1) is controlling the direction of the movement, where

ugear is 1 for the forward movement and −1 for the backward movement. The node is

implemented to ensure that the gear change is allowed only when the machine is stopped.

Changing the direction of the movement when the machine is moving is taken care of by

the node, where the node ensures reducing the speed to stop the vehicle, reverses the

gear, and moves the vehicle in the required direction.
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Gas Command

The gas command (ugas ∈ [0, 1]) is calculated depending on the interpolation of the

desired speed. The desired speed is effected by the acceleration limiter. The illustration

of how ugas response to the desired speed in this implementation shown in In Fig 6.5.

Steering Command

The steering command (usteering ∈ [−1, 1]) calculated to control the valve that feeds the

steering hydraulic actuator as explained previously in 3. The steering command value is

proportional to the the difference between the desired joint angle and the actual measured

angle. The command can be explained as follows:

1. usteering = 0, when turning is not required and the current joint angle is at the de-

sired value.

2. usteering > 0, when a clockwise turn is required.

3. usteering > 0, when a counterclockwise turn is required.

Figure 6.5. The gas command at each speed.
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7. TEST AND RESULTS

The implemented path following and motion control are tested and validated using a sim-

ulation loader model developed at Tampere university and integrated into a real-world

physics simulator (Gazebo) used in the Robot operating system. Another test was per-

formed using the real articulated loader illustrated in the chapter 6. The evaluation is

based on the performance of the implemented controller for different paths and the vehicle

behavior during the process of following the path. A comparison was performed between

the implemented path following and the modified pure pursuit path following from Nav2,

to answer the second question raised in chapter 1 "How beneficial is using our proposed

path following in comparison to another developed and commonly used strategy in ROS2

such as RPP?".

The tests were performed using the simulation model and real machine, where it is notice-

able that their control systems have similarities and differences which will be explained

and discussed in the next sections, besides diving into the testing scenarios and dis-

cussing the effects of some parameters on the performance of the implemented con-

trollers.

7.1 Path Following Evaluation Method

We will test both controllers to evaluate the implemented controller and compare it to the

Nav2 path. The controllers will receive the same paths, then when the vehicle moves

on the path, its position and heading are recorded. The evaluation is performed by cal-

culating the lateral maximum error (Lmaxe), lateral root mean square error (Lrmse), the

orientation maximum error (ψmaxe), and the orientation root mean square error (ψrmse).

The lateral error represents the distance between the vehicle’s position and the closest

point position on the reference path, and it is used in many researches for path follow-

ing evaluation (for example it is used in [135][136][137][138]). The orientation error is

the angle difference between the vehicle’s orientation and the tangent orientation of the

closest point on the reference path. The root mean square error can be calculated as:

rootmean square error =
√︂∑︁n

i=1
1
n
(xi − x̂i)2, where (xi is the reference state and x̂i

is the real measured state [139][140][141][142][135]. That means these errors are calcu-

lated as the differences between the reference given path and the actual path generated
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by the vehicle movement. The performance of the controller depends on the mentioned

errors. Where the one that has less error with respect to the reference path is considered

to be better strategy for the articulated frame steering machines.

The tests in real world was performed before the simulator. Therefore, the parameters

Los and vr where tuned in the real wold test. This is the reason that in real world we

performed tests with different values of the mentioned parameters. In the simulation only

the tuned parameters used but with different paths.

7.2 Simulation Environment

In this part, we evaluate the performance of our implemented controller using the Gazebo

simulator as mentioned earlier. The test is performed for two different paths to evaluate

the performance of the controller in sharp and wide turns. Then, the test is repeated using

RPP controller provided by Nav2. That path following controller is used for comparison,

as it is one of the commonly used controllers in Nav2, which is a validated and tested.

The used vehicle model in simulation is designed and implemented based on AVANT-

635 articulated loader. That model is integrated to be deployed and used in the Gazebo

simulation environment and Fig 7.1 shows the model and the map in Gazebo.

Figure 7.1. Simulation environment in gazebo.

In the simulation model, the steering is performed by changing the center joint angle that

connects the vehicle’s front and rear parts. Moreover, according to the kinematics of

the articulated frame steering vehicles, the tires are controlled using a differential drive

function. Therefore, the differential functionality is determined according to the center
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joint angle and the speed to perform accurate turning movement. ROS Visualization

(Rviz) tool and Gazebo simulator are used as user interfaces to track and monitor the

vehicle behavior, but the data is recorded using ROS bags and analyzed separately.

Since the main object is focusing on the path following and the motion control nodes

without diving into other subsystems, a simplified control system diagram is demonstrated

in Fig 7.2. The gazebo simulator allows attaching various sensors to the vehicle simulation

model that can be used for collecting data about the machine and its environment and

helps to perform the path following task as the data is fed to the control nodes to achieve

their tasks.

Figure 7.2. Simplified diagram of the control systems for the simulation with: (a)the
implemented path following and motion control, (b) the Nav2 and and motion control.

7.3 Test Scenarios in Simulator

Using the simulator, two test scenarios were applied. In both scenarios a path defined

by a fifth-order bezier curve is provided. The mentioned curve determined by six control

points. The first path control points are shown in table 7.1. The path has a wide turns as

shown in Fig 7.3 (a). The initial position of the machine model in the simulator is set to be

the first control point P0.

ControlPoints P0 P1 P2 P3 P4 P5

xaxis 0 1 15 0 14 15

yaxis −5 −5 −5 5 5 5

Table 7.1. The control points of the first path for simulation test.

For the second scenario, the path control points are shown in table 7.2.

The path defined by these control points has sharp turns as in Fig 7.3(b), that require a

high steering angle that exceeds the joint angle limitation; this allows us to observe the

vehicle’s behavior when it gets out of the path due to some physical limitations. Moreover,
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ControlPoints P0 P1 P2 P3 P4 P5

xaxis 0 7.5 15 0 7.5 15

yaxis −5 −5 −5 5 5 5

Table 7.2. The control points of the second path for simulation test.

we will be able to see if it gets back to the track and the distance needed for achieving

this.

Figure 7.3. The given paths defined by six control points and the distance measured in
meters. a) Path with wide turns. b)Path with sharp turns.

7.3.1 Simulation Test and Results

For both scenarios, our implemented path following node received command message

to follow one of the Paths shown in Fig 7.3. The reference profile speed (vr = 0.5m/s)

and the desired movement direction is forward, meaning the front body of the vehicle is

the leading part. The path following sent the needed speeds to the motion control node,

which translated them to control commands and fed them to the model in the simulator.

During the path following process, we recorded the model’s position, linear speed, and

heading to analyze them. The data showed that the simulation model followed the path

with high performance. The path formed from the recorded model’s positions is plotted

with the given input path to illustrate the model’s behavior. The same test using MPP path

following from Nav2 was repeated for both scenarios. The path following tasks performed

by both controllers and can be seen in Fig 7.4 and Fig 7.5

Form the recorded data, the lateral and orientation errors is calculated from the beginning

till the end as shown in Fig7.6.

The errors shown in Fig7.6 used to calculated (Lmaxe),(Lrmse), (ψmaxe), and (ψrmse).

The results of the first scenario from the simulation can be seen from table 7.3 and Fig

7.7. The results of the second scenario are shown in table 7.4 and Fig 7.8.
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(a) The implemented controller (b) Nav2 controller

Figure 7.4. The first given path (Fig 7.3.(a)) as a reference vs the actual recorded path
from the simulator.

(a) The implemented controller (b) Nav2 controller

Figure 7.5. The second given path (Fig 7.3.(b)) as a reference vs the actual recorded
path from the simulator.

CalculatedErrors Lmaxe (m) Lrmse (m) ψmaxe (rad) ψrmse (rad)

ImplementedController
at Los = 2.5

0.073 0.050 0.050 0.027

Nav2Controller 0.122 0.062 0.083 0.031

Table 7.3. The calculated errors from the first simulation scenario test.

CalculatedErrors Lmaxe (m) Lrmse (m) ψmaxe (rad) ψrmse (rad)

ImplementedController
at Los = 2.5

0.157 0.76 0.158 0.060

Nav2Controller 0.372 0.138 0.223 0.085

Table 7.4. The calculated errors from the second simulation scenario test.
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(a) Orientation error of following path (a) from
Fig7.3

(b) Orientation error of following path (b) from
Fig7.3

(c) Lateral error of following path (a) from Fig7.3
(d) Orientation error of following path (b) from
Fig7.3

Figure 7.6. The simulation tests calculated errors vs the normalized time s.

Figure 7.7. Errors from the simulation test using the first path Fig 7.3(a).
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Figure 7.8. Errors from the simulation test using the second path Fig 7.3(b).
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7.4 Test Using AFS Vehicle

In real world we tested the path following control system using the real machine explained

earlier. A path, which is a fifth order Bezier curve, that is defined by six control points as

shown in table 7.5.

ControlPoints P0 P1 P2 P3 P4 P5

xaxis 38.36 35.5 32.82 28.2 25.5 18

yaxis −13.58 −9.16 −6.3 −2.33 −15.5 −2.56

Table 7.5. The control points of the first path for the experiment in real world.

This path started from (38.36,−13.58) in the testing cite. During the test, the sensor data

was recorded and used to demonstrate the reference path vs the recorded paths for both

controllers as shown in Fig 7.9.

(a) The implemented controller (b) Nav2 controller

Figure 7.9. The given path as a reference vs the actual recorded path from the machine.

In this test, the Los of our implemented controller was set to 4.5 meters with vr = 1m/s,

which affected the results as shown in table 7.6. Therefore, a separate test was performed

for Los = 2.5meter and vr = 0.5m/s and it showed high improvement in the path

following task, where the resulted path vs the reference path can be seen in Fig 7.10 and

the error calculations in table 7.6. The lateral and the orientation errors were recorded

demonstrated vs normalized time in Fig 7.11

CalculatedErrors Lmaxe (m) Lrmse (m) ψmaxe (rad) ψrmse (rad)

ImplementedController
at Los = 2.5

0.16 0.068 0.238 0.0867

ImplementedController
at Los = 4.5

0.452 0.232 0.9 0.46

Nav2Controller 0.35 0.183 0.49 0.3

Table 7.6. The calculated errors from testing the real machine.
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Figure 7.10. Illustration of Separate test for implemented path following control using real
machine when Los = 2.5meter and vr = 0.5m/s.

(a) Orientation error (b) Lateral error

Figure 7.11. The recorded errors from the test at Los = 2.5meter and vr = 0.5m/s.

7.4.1 Comparison

From the simulator, according to the observations and the calculated errors in the first sce-

nario, it is obvious that the implemented controller is slightly better than Nav2 controller

where the difference in the maximum lateral error is around 5 cm as in table 7.7. How-

ever, in the second scenario Fig 7.8 the difference is about 25 cm. The second scenario

showed a higher error because the path had a sharp turn, which cause the machine to
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leave the path and then try to return. The experiment (the test using the real machine) at

first showed that Nav2 controller performed better than the implemented controller when

the Los = 4.5m and vr = 1m/s but in the second test at Los = 2.5m and vr = 0.5m/s

it showed that the implemented path following controller in better than the MPP Nav2 con-

troller see table 7.6. The test results from the simulator and the experiment using the real

vehicle showed that the implemented path following in this thesis is more suitable for the

articulated frame steering machine to provide smooth movement and provided better path

tracking.
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8. CONCLUSION

The path following and the motion control that is implemented in this thesis for AFS MWM

using ROS2 is a re-engineered version of Simulink implementation developed by Reza

Ghabcheloo. The motion control is introduced in [132] and the path following strategy

adopted from [2]. The ROS2 implemented version is tested using a simulation environ-

ment and a real articulated machine. According to the test results from chapter 7, both

the simulation model and the real machine followed the given paths accurately, this leads

to the conclusion that answers our first question:

"Is it possible for ROS2 to be an efficient alternative for powerful platforms like Mat-

lab/Simulink?"

The results showed that ROS2 is efficient framework with many useful tools that supports

developing autonomous vehicle control systems. This framework is used to implement

accurate path following and motion control successfully. According to that, ROS2 can be

used as an alternative to Matlab/Simulink for implementing simple controllers such as the

path following and the motion control. In addition, ROS2 can be used as a communication

system to integrate different software.

According to the test results which were explained in the previous chapter, the imple-

mented path following showed high-performance results that are better than the perfor-

mance of the modified pure pursuit controller provided by ROS2 navigation. Therefore,

the answer to the second research question:

"How beneficial is using our proposed method in comparison to other developed and

commonly used strategy in ROS2?"

The answer is that the implemented method provides a more accurate, path following

task, than the RPP from Nav2. According to that using the implemented controller is

more suitable for the articulated frame steering. The parameters Los and vr mentioned

in chapter 7 of the implemented controller can be tuned more to get better results.

Besides implementing accurate and robust path following and motion control for AFS

autonomous vehicle, the implementation is structured to be modular. That means, the

path following controller can be used separately in any autonomous vehicle regardless of

the steering system type. Moreover, the motion control is implemented to integrate any
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controller that provides linear and angular velocities to control any articulated steering

vehicle.

8.1 Limitations and Future Work

One of the limitations of this work is the safety part. The implementation did not include

any collision or obstacle avoidance which is an essential part of AVs. Therefore, a fu-

ture contribution could be adding another controller for obstacle avoidance using ROS2.

Another limitation is that the implemented path following is designed to follow a path rep-

resented by Bezier curve control points. It can be modified to work with different path

formats like b-spline points.

This control system is implemented for self driving AFS MWM which does not require

the presence of a human driver. The controller can be modified to provide shared control

between a human driver and the machine where the driver could take control of the speed

and the manipulator, while the controller is responsible for the steering.
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