820,616 research outputs found

    Modeling Human-Robot Interaction in Three Dimensions

    Get PDF
    This dissertation answers the question: Can a small autonomous UAV change a person's movements by emulating animal behaviors? Human-robot interaction (HRI) has generally been limited to engagements with ground robots at human height or shorter, essentially working on the same two dimensional plane, but this ignores potential interactions where the robot may be above the human such as small un- manned aerial vehicles (sUAVs) for crowd control and evacuation or for underwater or space vehicles acting as assistants for divers or astronauts. The dissertation combines two approaches {behavioral robotics and HRI {to create a model of \Comfortable Distance" containing the information about human-human and human-ground robot interactions and extends it to three dimensions. Behavioral robotics guides the ex- amination and transfer of relevant behaviors from animals, most notably mammals, birds, and ying insects, into a computational model that can be programmed in simulation and on a sUAV. The validated model of proxemics in three dimensions makes a fundamental contribution to human-robot interaction. The results also have significant benefit to the public safety community, leading to more effective evacuation and crowd control, and possibly saving lives. Three findings from this experiment were important in regards to sUAVs for evacuation: i) expressions focusing on the person, rather than the area, are good for decreasing time (by 7.5 seconds, p <.0001) and preference (by 17.4 %, p <.0001), ii) personal defense behaviors are best for decreasing time of interaction (by about 4 seconds, p <.004), while site defense behaviors are best for increasing distance of interaction (by about .5 m, p <.003), and iii) Hediger's animal zones may be more applicable than Hall's human social zones when considering interactions with animal behaviors in sUAVs

    On modeling the variability of bedform dimensions

    Get PDF
    ABSTRACT: Bedforms are irregular features that cannot easily be described by mean values. The variations in the geometric dimensions affect the bed roughness, and they are important in the modeling of vertical sorting and in modeling the thickness of cross-strata sets. The authors analyze the variability of bedform dimensions for three sets of flume experiments, considering PDFs of bedform height, trough elevation and crest elevation divided by its mean value. It appears that the dimensionless standard deviation of the bedform height is within a narrow range for nearly all experiments. This appears to be valid for the trough elevation and crest elevation, as well. For some modeling purposes, it seems sufficient to assume that the standard deviation is a constant, so that the variation in bedform dimension can be modeled by only predicting the mean bedform dimension.

    On a drift-diffusion system for semiconductor devices

    Full text link
    In this note we study a fractional Poisson-Nernst-Planck equation modeling a semiconductor device. We prove several decay estimates for the Lebesgue and Sobolev norms in one, two and three dimensions. We also provide the first term of the asymptotic expansion as t→∞t\rightarrow\infty.Comment: to appear in Annales Henri Poincar\'

    Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    Full text link
    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces

    Investigating the dimensions of modeling competence among preservice science teachers: Meta-modeling knowledge, modeling practice, and modeling product

    Get PDF
    Worldwide, teachers are expected to engage their students in authentic practices, like scientific modeling. Research suggests that teachers experience challenges when integrating modeling in their classroom instruction, with one explanation that teachers themselves lack the necessary modeling competence. Currently, theoretical conceptualizations structure the modeling competence into three dimensions: meta-modeling knowledge, modeling practice, and modeling products. While each of these dimensions is well researched on its own and the three dimensions are commonly expected to be highly positively related, studies investigating their specific relationships are widely lacking. Aiming to fill this gap, the present study investigated the meta-modeling knowledge, modeling practice, and modeling products of 35 secondary preservice biology teachers engaging in a black box modeling task. Data were collected with an established pen-and-paper questionnaire consisting of five constructed response items assessing meta-modeling knowledge and by videotaping the participants engaging in the black box modeling task. Herein, the three dimensions of modeling competence were operationalized as five variables including decontextualized and contextualized meta-modeling knowledge, complexity, and homogeneity of the modeling processes and a modeling product score. In contrast to our expectations and common assumptions in the literature, significant relationships between the five variables were widely lacking. Only the complexity of the modeling processes correlated significantly with the quality of the modeling products. To investigate this relationship further, a qualitative in-depth analysis of two cases is presented. Implications for biology teacher education are discussed

    Djehuty: A Code for Modeling Whole Stars in Three Dimensions

    Get PDF
    The DJEHUTY project is an intensive effort at the Lawrence Livermore National Laboratory (LLNL) to produce a general purpose 3-D stellar structure and evolution code to study dynamic processes in whole stars.Comment: 2 pages, IAU coll. 18

    Hydrogeological modeling of Northern Ireland drumlins in three dimensions

    Get PDF
    The need to renew and expand civil infrastructure, combined with an increased acknowledgement of a changing climate, has highlighted the need to incorporate the influence of climatic factors into the design of infrastructure. In geotechnical engineering, this includes understanding how climate influences the performance of slopes associated with engineered cuttings in pre- existing natural landforms. This understanding extends to both hydrological and hydrogeological conditions, both of which are often analyzed using numerical modeling of surface water and groundwater. Climate change predictions for Northern Ireland indicate that the amount and intensity of rainfall and extreme weather events will increase. This has raised concerns regarding the stability of existing engineered cut-slopes and the design of future highway and railway infrastructure. Recent studies have indicated that there is a link between pore pressure cycles and softening of slope structures, especially in clay rich materials typical of glacial till drumlins in Northern Ireland. These pore pressure fluctuations are caused by seasonal changes in the rate of recharge which then propagate through the deeper hydrogeologic system. As a consequence, the design of these cuttings requires that the hydrogeological response of these landforms to seasonal climate variations be incorporated into geotechnical designs. Two dimensional hydrogeological simulations are typically used in engineering practice. The main objective of this study was to evaluate the sensitivity of these simulations to dimensionality (two- and three-dimensions). The primary focus was on steady state groundwater flow within two drumlins with large slope cuts. Two- and three-dimensional groundwater models were developed using available information for a highway and a railway study site. The performance of each of these models was then compared to field monitoring from each site. A series of sensitivity studies were undertaken to evaluate the influence of key material properties and boundary conditions. Estimated recharge rates were found to range from 21 to 31 mm year-1 for both the railway (Craigmore) and highway (Loughbrickland) study sites. The hydraulic head distribution at the Craigmore site was similar for both dimensional simulations with a “best-fit” recharge rate of 50 to 60 mm year-1. At the Loughbrickland site, similar hydraulic head distributions with the “best-fit” recharge rate of 80 mm year-1 were reached in both dimensions. Overall, the research completed here emphasized the importance of gathering appropriate data prior to conducting development of hydrogeological models. As more data is made available, the overall complexity of the system can be better understood. As the complexity of the problem increases, the requirements for understanding the hydrogeological system in all three-dimensions becomes more important

    Application of three-dimensional Bezier patches in grid generation

    Get PDF
    Bezier and B-spline patches are popular tools in surface modeling. With these methods, a surface is represented by the tensor product of univariate approximations. The extension of this concept to three dimensions is obvious and can be applied to the problem of grid generation. This report will demonstrate how three dimensional patches can be used in solid modeling and in the generation of grids. Examples will be given demonstrating the ability to generate three dimensional grids directly from a wire frame without having to first set up the boundary surfaces. Many geometric grid properties can be imposed by the proper choice of the control net
    • 

    corecore