13,226 research outputs found

    High-Performance Passive Macromodeling Algorithms for Parallel Computing Platforms

    Get PDF
    This paper presents a comprehensive strategy for fast generation of passive macromodels of linear devices and interconnects on parallel computing hardware. Starting from a raw characterization of the structure in terms of frequency-domain tabulated scattering responses, we perform a rational curve fitting and a postprocessing passivity enforcement. Both algorithms are parallelized and cast in a form that is suitable for deployment on shared-memory multicore platforms. Particular emphasis is placed on the passivity characterization step, which is performed using two complementary strategies. The first uses an iterative restarted and deflated rational Arnoldi process to extract the imaginary Hamiltonian eigenvalues associated with the model. The second is based on an accuracy-controlled adaptive sampling. Various parallelization strategies are discussed for both schemes, with particular care on load balancing between different computing threads and memory occupation. The resulting parallel macromodeling flow is demonstrated on a number of medium- and large-scale structures, showing good scalability up to 16 computational core

    Wavelet-Based High-Order Adaptive Modeling of Lossy Interconnects

    Get PDF
    Abstract—This paper presents a numerical-modeling strategy for simulation of fast transients in lossy electrical interconnects. The proposed algorithm makes use of wavelet representations of voltages and currents along the structure, with the aim of reducing the computational complexity of standard time-domain solvers. A special weak procedure for the implementation of possibly dynamic and nonlinear boundary conditions allows to preserve stability as well as a high approximation order, thus leading to very accurate schemes. On the other hand, the wavelet expansion allows the computation of the solution by using few significant coefficients which are automatically determined at each time step. A dynamically refinable mesh is then used to perform a sparse time-stepping. Several numerical results illustrate the high efficiency of the proposed algorithm, which has been tuned and optimized for best performance in fast digital applications typically found on modern PCB structures. Index Terms—Finite difference methods, time-domain analysis, transmission lines, wavelet transforms. I

    On the Generation of Large Passive Macromodels for Complex Interconnect Structures

    Get PDF
    This paper addresses some issues related to the passivity of interconnect macromodels computed from measured or simulated port responses. The generation of such macromodels is usually performed via suitable least squares fitting algorithms. When the number of ports and the dynamic order of the macromodel is large, the inclusion of passivity constraints in the fitting process is cumbersome and results in excessive computational and storage requirements. Therefore, we consider in this work a post-processing approach for passivity enforcement, aimed at the detection and compensation of passivity violations without compromising the model accuracy. Two complementary issues are addressed. First, we consider the enforcement of asymptotic passivity at high frequencies based on the perturbation of the direct coupling term in the transfer matrix. We show how potential problems may arise when off-band poles are present in the model. Second, the enforcement of uniform passivity throughout the entire frequency axis is performed via an iterative perturbation scheme on the purely imaginary eigenvalues of associated Hamiltonian matrices. A special formulation of this spectral perturbation using possibly large but sparse matrices allows the passivity compensation to be performed at a cost which scales only linearly with the order of the system. This formulation involves a restarted Arnoldi iteration combined with a complex frequency hopping algorithm for the selective computation of the imaginary eigenvalues to be perturbed. Some examples of interconnect models are used to illustrate the performance of the proposed technique

    Chip level simulation of fault tolerant computers

    Get PDF
    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed
    corecore