
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19830026325 2020-03-21T01:00:50+00:00Z

Final Report for NAG-1-174:

Chip Level Simulation of Fault Tolerant Computers

Performance Period
June 1,1981 - May 31,1983

J. R. Armstrong

Electrical Engineering Department
Virginia Tech

Blacksburg,Va. 24061

t

t

INTRODUCTION

The purpose of this report is to give the results of
research carried out under Grant NAG-1-174, "Chip Level Sim-
ulation of Fault Tolerant Computers". The grant performance
period was June 1,1981 through May 31,1983. This particular
document summarizes the work that has been performed during
this period. The work is described in detail in various
papers and reports, copies of which have been transmitted to
NASA along with this document.

BACKGROUND

The advent of LSI and VLSI circuits has led to increased use
of functional level modeling and simulation. This is due to
the tremendous complexity of these devices which causes
great problems of scale for traditional gate level modeling
and simulation techniques. LSI devices contain thousands of
gates and gate level simulation of systems containing such
devices can be prohibitively expensive. Moreover, the gate
level models of these devices are usually known only to the
manufacturer and he is generally unwilling to release this
proprietary information. And finally, as we envision the
digital systems of the future as being composed of many LSI
devices interconnected in complex ways, it is important that
levels of representation are developed that are accurate but
still involve a manageable amount of detail.

During the past four years at the Electrical Engineering
Department of VPI, we have developed a form of functional
simulation which we refer to as "chip level" simulation
[1,2]. Modeling at the chip level involves modeling the
internal device micro-operations as well as detailed inter-
face timing without employing a gate level description of
the device. This approach to modeling and simulation has
been implemented in a system called GSP (General Simulatior.
Program). GSP has been employed for device modeling researc:n
sponsored by the Naval Surface Weapons Center [3], the Rome
Air Development Center [4], and the NASA Langley Research
Center under NASA Grant NAG 1-174 and has been shown to be
an effective system for the modeling and simulation of I,SI
devices.

In addition to the work outlined above, GSP will also be
used to develop functional fault modeling techniques and a
definition of functional fault coverage under a grant from
IBM.

t

z

SUMMARY OF WORK CARRIED OUT UNDER NAG 1-174

During the performance period of NAG 1-174 our efforts have
been divided into four major areas: (1) development of chip
level modeling techniques. (2) modeling of a fault tolerant
computer (SIFT). (3) development of an efficient approach to
functional fault simulation. (4) simulation software devel-
opment. (5) development of a high level Language version of
GSP possessing increased simulation efficiency. (6) devel-
opment of a parallel architecture for functional simulation.

CHIP LEVEL MODELING TECHNIQUES

Our experience in modeling on a previous Air Force sponsored
contract [4] and that gained during the present work has
resulted in the development of various techniques for model-
ing LSI devices. In order to preserve this information for
others wishing to engage in chip level modeling, during the
first year of NAG 1-174, we prepared a document entitled
"Chip Level Modeling Techniques" [6]. This document illus-
trates basic techniques for the modeling of the sequential
and combinational logic aspects of LSI logic circuits. In
addition, methods are presented for the accurate modeling of
device interface timing, i.e. methods are given for modeling
such input timing specifications as set up time,hold time
and minimum pulse width. These basic techniques are then
used to illustrate the modeling of devices peculiar to
micLoprocessor systems. The document represents our attempt
to define for the unsophisticated device modeler techniques
that he can use to model devices effectively. The original
document was submitted to NASA as part of the first annual
report for NAG 1-174 on May 31, 1982, but we have continued
to make corrections and additions to it since then. A copy
of the revised version accompanies this report.

In addition to the above report, a journal article was pre-
pared covering material in the some area. The article, enti-
tled "Chip Level Modeling and Simulation", will appear this
coming October in the journal Simulation.

t
r
r

I

2

t

During the second year of NAG 1-174, we attempted to define
the generic nature of a good functional model. In doing so,
we developed a two layered approach to functional modeling.
Figure 1 shows the two layered model structure. The top lay-
er, the functional layer, reproduces the input/output behav-
ior of the LSI device. This layer consists of a network of
computational nodes which are interconnected in such a man-
ner as to simulate the major signal paths in the modeled
device. If one is interested in producing the behavior of
the good device only, as is the case where the simulation is
to be used for design verification or an automatic tester
application, then this is the only layer that is necessary.
However, if fault modeling is desired, then an additional
layer is required to perform the mapping of physical fault,
onto the functional layer.

The concept of the fault mapping layer is built on the idea
that in a chip level model of an LSI device, the
micro-operations that comprise the model are themselves com-
posed of micro-operations of smaller blocks of logic. To add
the fault mapping layer, one codes the micro-operations of
these blocks of logic in subroutine form. These subrou-
tines are then called by the functional layer to implement
the micro-operations of the chip level model. The fault
injection process is thus simplified in that one need only
determine the effect that fault has on the individual sub-
routines. 7 n implementing our models in this fashion, we
have found that it is better to represent these functional
logic blocks, e.g. an ALU, as a group of subroutines as
opposed to one large subroutine in order to alleviate the
problem of passing a large number of parameters. The use of
the fault mapping layer alleviates the problem of
"micro-operation scatter" which troubled us in some of our
early fault modeling efforts. This approach was used to mod-
el the BDX-930 processor. In this case, a group of
subroutines was used to represent each LSI or MSI chip in
the design. For the VLSI devices now being built, generic
logic structures on these devices, such as PLAs, gate
arrays, and programmable logic cells will be represented as
subroutines.

This modeling structure is fully described in a paper enti-
tled "Chip Level Modeling of LSI Devices" which was submit-
ted to the IEEE Transactions on Computer Aided Design of
Integrated Circuits and is currently in the review process.

Other systematic approaches to modeling are given in "Func-
tional Level Modeling of Digital Devices", a masters thesis
written by Venugopal Puthenpurayil, one of the graduate
research assistants during the first year of the project. He
developed the CPU/Timing model for the BDX-930 processor
which is described in the next section.

4

L--- _

OUTPUTS

B) Modeling the Sift Computer

As SIFT consists of a number of BDX-930rocessors modeling9
of the BDX-930 formed the first phase of the modeling proce-
dure. Originally we broke the BDX-930 , which is a bit slice
processor built	 from MSI	 and LSI	 devices, down into four
functional models:	 processor, timing	 and control, memory,
and broadcast and recieve logic. However as the models were
completed and tested together, it became apparent that hav-
ing the timing and control circuit model separate created a
great deal of time queue activity which 	 was unnecessary in
terms of the goals of the	 simulation and which also greatly
effected the efficiency of the	 simulation. Because of this,
we merged the timing and control circuit with the CPU model.
The effect of this and other improvements to 	 the CPU model
was to effectively double the efficiency of 	 the model.	 In
addition	 to this,	 the VA.	 Tech	 Computer Center	 recantly
installed an IBM 3081 dual processor	 sytem which is a 5 MIP
machine. The overall effect of this was to make the CPU mod-
el run	 at an efficiency of	 100 processor clock	 pulses per
host CPU second.

The	 present status	 of	 the SIFT	 modeling	 effort	 is	 as
follows: All models have	 been coded	 and checked	 out. The
CPU/Timing and Control	 model and the Broadcast 	 and Receive
Logic model,	 in	 particular, were subjected to	 three months
of intensive testing.

In doing	 the modeling	 described above,	 a great	 amount of
effort had	 to be	 expended in	 defining the	 timing of	 the
interface signals.	 Most of this timing information was com-
piled from	 the timing	 specifications of	 individual chips.
The timing	 information for the	 CPU and timing	 and control
logic is	 given in the	 report "Modeling the	 BDX-930" which
was previously submitted to	 NASA.	 Additonal information is
also contained in Venugopal"s thesis 	 (described in the pre-
vious section).

tThroughout the	 modeling process, particular 	 importance was
given to modeling so that 	 fault injection was straight for-
ward. This was especially so in the case of the CPU, where a
carefully	 constructed two	 layer model	 was developed	 (see
previous discussion).

' The modeling process was completed with approximately 5
months remaining on the grant period. The decision was made
to apply the remaining resources to the development of the
high level version of GSP	 and the parallel architecture for'
functional simulation(described below). As a result no sys-
tem	 level fault	 simulations	 were	 performed. However the

' models are
effort we

available	 and should NASA lesire 	 to resume
could do so.

this

r

1

1

EFFICIENT APPROACH TO FUNCTIONAL FAULT SIMULATION

While we 'feel that the use of functional simulation is a
necessity for LSI systems, it is tine that the simulation of
faults at the functional level is not as straight forward as
the gate level fault simulation process. In gate level fault
simulation one merely causes a gate input or output to be
stuck at one or stuck at zero and then simulates the fault.
In using functional simulation, the fault insertion process
is more complex in that if one is going to insert the fault
internal to the chip, one must modify the functional model
of the chip. The two layer model discussed in the previous
section should ease this process. However there is an add-

tional problem that must be addressed. The variety of fault
types, e.g. micro-operation faults, register stuck at
faults, control faults, timing faults etc., dictates a
sophisticated approach to the insertion process. This brings
in to question the basic time efficiency of the functional
fault insertion process, i.e. how many .`aults per unit time
can be inserted and fault runs made. It is true that in gen-
eral a functional fault will cover a fairly large number of
gate faults but one must still be concerned with making the
funtional fault insertion process as efficient as possible.

In response to these problems we've devoted considerable
effort during the performance period to development of func-
tional fault insertion techniques and also to the develop-
ment of	 system level	 approaches to allow efficient
functional fault simulation. This work was carried out by
Shirish Sathe, one of the graduate research assistants on
the project. The results of this work are given in his mas-
ter's thesis, "Functional Fault Simulaton for LSI Devices",
which we have previously submitted to NASA. The thesis
describes fault insertion techniques for the following types
of faults: faulty micro-operations,timing faults, stuck at
faults in internal device memory, interconnect faults (both
stuck ats and shorts between lines), and transient faults.
In addiion to these fundamental techniques, the thesis
describes a method for structuring the model to make the
fault insertion process easier and to also allow a closer
tie between real chip defects and functional faults. (The
fault mapping layer described above.) Also presented are
methods for imbedding faults in models of good devices which
can be invoked by means of external control signals to occur
any time during a simulation run.

In order to perform the actual fault simulations
efficiently, we have developed a software system which
totally decouples the fault insertion process from the actu-
al simulation process. The user prepares faulty models in
one environment and then can submitt a whole series of fault
runs as a single entity. The complete series of fault runs
will run to completion without operator intervention with
specified simulation data being recorded for each run.

Several other features have also been developed to aid in
the fault insertion process. In the GSP simulation system,
the interconnect between simulated chips is contained in a
command file. An efficient method of inserting interconnect
faults is to modify the good command file to create one mod-
eling the faulty interconnect. An automatic technique has
been devloped for the preparation of these files. The user
need only specify the module in the system at whose inter-
face he wishes to insert faults. A program will
automatically create an interconnect file for each stuck at
fault for the specified chip ,thus releaving the user of an
error prone editing task, and saving considerable time.

Another feature has been added to facilitate the modeling of
timing problems. Timing faults can of course be inserted by
modification of the delay control parameters in the individ-
ual models as part of the fault insertion process described
above. In addition to this however, a timing jitter option
has been added which can be invoked during the actual simu-
lation. With this feature, a pseudoramdom bias of a
specified range, e.g. 20%, is added to each scheduled signal
event, thus allowing the testing of system timing margins.

All of the features discussed above are described in detail
in Mr. Sathe's thesis. The sum total of this work provides
tools for carrying out a meaningful and efficient functional
fault simulation process.

-1
SIMULATION SOFTWARE DEVELOPMENT

During the grant period, a number of important software
development tasks have been carried out as an adjunct to our
basic research activities. First, the GSP simulation system
was installed on the Cyber 173 computer at NASA- Langley and
a VAX 11-780 at Va. Tech. This is of course in addition to
its normal operation on the IBM system at Va. Tech.
Secondly, we have made modifications to the human interface
of the system in order to make it easier to use. In partic-
ular,	 better mnemonics were chcsen	 for existing modeling
language instructions and several new instructions were add-
ded	 to	 account	 for some	 newly	 discovered modeling
situations. These changes
GSP user's	 guide which has

have been reflected in	 a updated
been previously	 transmitted to

NASA.

' During the second year of NAG-1-174, we converted the
BDX-930 cross-assembler and linking loader to allow it to
run on the VAX 11-780.

iThe conversion activities relating to the VAX 11-780 were
considered important in light of the proposed AIRLAB envi-
ronment.

_ _yam

I^

a

I

A recent activitiy, actually begun after th,a termination of
the grant period, involves the conversion of the present
version of GSP to run on a personal computer with a rela-
tively large memory space. It is expected that this conver-
sion process will be completed this fall.

I
DEMOPMENT OF A MORE EFFICIENT , HIGH LEVEL VERSION OF GSP

The current version of GSP runs too slowly for man gy{ applica-
tions, such as a complete simulation of the SIFT executive
software. In order to improve simulation speed, hopefully by
a factor of 100 or greater, the simulator was redesigned to
be directly executable on the DEC VAX-11. In the current
version, the hardware description language is translated
into an integer microcode language, which is interpreted at
run-time by the FORTRAN simulator program. This intermediate
translation was eliminated by compiling the module
description directly into VAX-11 object code routines exe-
cuted by the assembly-coded simulator. This should provide
a significant speedup.

The modeling language was also redesigned to be more power-
ful and support structured programming techniques. The
assembly-like language was replaced with a high-level block
structured language with constructs such as IF -THEN-ELSE,
CASE, and arithmetic expression assignment. Many boolean
functions and special functions such as RISE, FALL, SETUP,
and HOLD were provided to tailor the language to the func-
tional modeling of digital devices.

Symbolic level debugging commands were added to examine reg-
isters and pins by their source language level names, and
set breakpoints on register or pin transitions, source
statement line numbers, and subroutine entry and exit. These
commands were implemented in such a way that they do not
hinder the speed of the simulator when they are not being
used, i.e. the simulator will run in two modes: a slower
'debug' mode, and the fast 'production' (fault experiment,
system design validation, etc.) mode. Commands were also be
added to provide a concise yet useful execution trace
output. A detailed specification for the new language is
given in is given in the "User's Guide to GSP II", a copy
of which has been transmitted along with this report. A
block diagram of the new simulation system design is shown
below. The GSP simulator block is written in VAX-11 assem-
bler, assembled once, and linked into an executable image
with the object modules for all modules in a system.

At the time of the writng of this report, the programming of
GSP II is 70 % complete. It is expected that initial use of
the system will begin this fall. This version of GSP should

8

i

f
s

i
i
i

i
i

i

OF POOR QUALITY

GSP MODULE
DESCt
#1

GSP COMPILER
(PASCAL)

VAX-II MACRO
IASSEMBLER

VAX-II OBJECT

I

r+'

TIME QUEUE	 GSP
(Major Data	 SIMULATOR
structure)

CD
0 o v d--P

o4Qo/

GSP MODULE
DESC.
#n

GSP COMPILER l

VAX-1I MACRO
ASSEMBLER	 i

VAX-II OBJECT
MOD. #n

T COMMAND
FILE

SIMULATION SYSTEM BLOCK DIAGRAM

Figure 2

I
be of great value to the modeling and simulation activities
associated with AIRLAB.

I A PARALLEL ARCHITECTURE FOR FUNCTIONAL SIMULATION

The functional simulation process has two attributes which
make it a suitable candidate for parallel processing. First
the fact that LSI devices are represented by individual pro-
cedures gives a natural partitioning to the process. Second-
ly, a logic simulation process, once initiated, requires no
input/output and thus should not be bandwidth limited by I/O
rates as was ILI.IAC [10]. A major problem that must be
solved, however is.how to solve the contention problem asso-
ciated with aecesss to the common time queue by the module
proceedures and the accompanying synchronization require-
ments. A possible approacr to the solution of thesi problems
is outlined below.

' To date, two announced approaches to parallel logic simu-
lation have come from IBM and Bell Laboratories. IBM's "sim-
ulation engine" uses an array processing approach to perform
gate level simulation in parallel [8]. It can perform either
zero or unit de'_dy simulation. The Bell Lab's proposal (in
contrast to IBM's mechanization it has never been built),
envolves the use of a pipelined organization to exploit par-
allelism [9]. It can potentially perform both gate level and
functional level simulation. They propose that each stage of
the piprline use high speed logic and be micro-coded in
order to decrease stage de lay. The disadvantage of the pipe-
line approach is that the theoretical speed up is limited
by the number of stages that process can be broken down
into i.e. 5 or 6 in the case of logic simulation. Opera-
tional speed is of course reduced also by having very fast
stages.

In contrast to the above, we have begun development of an
approach that would employ a Multiple Instruction Multiple
Data Stream (MIMD) architecture to peform functional logic
simulation in parallel. We are attempting to exploit t,ro
sources of potential parallelism in the functional simu-
lation process. First, within the simulation of a given
system, be it "good" or "faulty", one can attempt to execute
the proceedures representing the LSI devices in parallel. A
second and perhaps greater source of parallelism is in the
concurrent execution of N different systems, each having a
different fault injected.

We have approached the problem by first developing a theore-
tical, process level model of the &ystem. Next performance
evaluation techniques have been applied to determine the
theoretical through-put of the proposed system.

10

I

I

t

One the major problems with any parallel. approach to simu-
lation is the manner in which the time queue entries are
handled. We have spent some time considering several
approaches to this problem and we describe one promising
approach here.

In functional simulation, the internal micro-operations and
signal timing of the device are simulated. This simulation
can be performed using activity orients.', event oriented, or
process oriented time advancement mec'nanisme [7]. Process
oriented simulation seems to offer the most promise of the
three methods since it allows the designer to model each
component module in isolation.The events internal to each
module are kept isolated from the events occuring in other
modules.

During the simulation, a time queue is associated with each
module, containing the events t,Aat are '-o be executed by the
module in tis,a sequence.A master queue -ontains the inter-
module communication events also in ti ►ae order. A represen-
tation of these queues is shown in fig. ^.

The events to b
which represent
events occuring
arbitrary order,
ship as long as
represented.

e execute3 in
a complete
in different
irrespective
the order o

a module are grouped in tasks
activity of the module. The
modules are simulated in an

of the actual timing relat• on-
f interface events is properly

During the executon of a task in a module, an interface
signal may affect the completion of the task. However, for
those signals that affect a task, one can predetermine the
time frame during which they may appear [6]. Therefore the
simulation sequence can be implemented as follows:

1. Estimate the time at which an interface communication
sigi %al can occur. Let it be Ta.

2. Simulate all events in the time queue of this module up
to time Ta.

3. Suspend execution of the module and flag the exact point
of suspension. Enter the task completion time in the
master time queue.

4. If the expected interface signal has not occured until
the task completion time, resume module simulation from
the suspended point to the end of the task.

S. If the expect .l interface signal has occured in that
time fame, enter that signal in the module time queue
and resume execution again.

A block diagram of the previous simulation sequence is shown
in Fig . 4. The master queue execution and task sheduling pro-

11

EVENT 11

EVENT 12

EVENT 13

POSSIBLE
i

INTEBRUPT^l

EVENT 14

END OF

TASK 1

EVENT 21

+ COMMUNICATION

I

r	

EVENT 1

i COHMUNICAIION

EVENT 2	
i

COMPLETION

i	 TI"!E

OF MODULE 1

COMMUNICATION i

EVENT 3

12

MODULE n

EVENT QUEUE
	

7AST"-R QUEUE

13

i	 •1

`EVENTS	 NO] MASTE3 QUEUE EXECUTIUN
' ON QUEUE i? - -	 AND TASK SHEBULING

YES

SET TIhE TO THE FIRST	
0RIGRAIIA.

FIRST EVENT ON QUEUE i,	
OF FOR QUALITY

i

1

IS IT
A POSSIPLE	 YES

INTERRUPTION
TIME

1 NO

I
I

EXECUTE EVENT.

i

LAST
N0,- /EVENT OF ^^, Y E S

TASK?

f

R

f

INPUT COMPLETIUN
TIME IN MASTER 2U--UE

i
i
i
I

i

i

Simulation loop for module i

Figure 4

I
gram keeps track of the interface signals and propagates

'	 them to the corresponding modules. It also initiates task
execution simulation sequences for the modules.

'	 The proposed simulation scheme has the advantage of reducing
alternate module execution at each time step, since only the
intermodule communication signals affect the event execution

'	 at each module.

The details of this work are contained in a separate report:
"A Parallel Approach to Functional, Process Oriented Simu-
lation" which is in preparation at his time. A copy will be
forwarded to NASA when it is completed.

t

t

t
14

t

and	 V.

15

I
PUBLICATIONS

During the performance period the following publications
were prepared. The papers listed below were either pre-
sented at conferences or submitted to appropriate journals.

PAPERS

1. "GSP:J.R. Armstrong	 and D.E. Devlin,A	 Logic Simulator
for	 LSI", Proceedings	 of the	 Eighteenth Design	 Auto-
mation Conference, pp 518-524.

2. V. Puthenpurayil	 and J.R. Armstrong,	 "Functional Level
Modeling of LSI Devices",	 Proceedings of the Fourteenth
Southeastern Symposium on System Theory, pp 290-293.

3. S.Sathe,J.R. Armstrong, and F.G. Gray, 	 "Functional Level
Fault Simulation	 Techniques", Proceedings of	 the Four-
teenth	 Southeastern	 Symposium	 on	 System	 Theory,	 pp
285-290.

4. J.R. Armstrong,	 "Chip Level	 Modeling and	 Simulation",
accepted	 for publication	 in	 Simulation, October	 1983
issue.

5. "Chip	 ",J. R. Armstrong,	 Level Modeling of	 LSI Devices
submitted for	 publication in the "IEEE	 Transactions on
Computer Aided Design of Integrated Circuits"

6. J.R. Armstrong and F.G.Gray, 	 "Fault	 Diagnosis in a Boo-
lean n Cube Array of Microprocessors", IEEE Transactions
on Computers;	 vol. c-30, no. 8,Aug.	 1981, pp 587-590.

I THESES AND REPORTS

1. V.Puthenpurayil, "Functional Level Modeling of Digital
Devices", Masters Thesis,Department of Electrical Engi-
neering, Va. Tech., Sept. 1982.

2. Shirish Sathe, "Functional Level Fault Simulation in LSI
Devices." Masters Thesis, Department of Electrical
Engineering, Va. Tech., June 1982.

3. J.R. Armstrong, "Chip Level Modeling Techniques", Tech-
nical Report 8124, EE Dept, Va. Tech, Nov. 1981.

4. D.	 Levlin,J.	 R.	 Armstrong,S.	 Sathe,
Puthenpurayil,"GSP Users Guide", Sept. 1982.

t

5. V. Puthenpurayil, "Modeling 	 the BDX930", Technical
Report, EE Dept, Va. Tech, June 1982.

6. J. R. Armstrong and F. G. Gray, "Status Report for
NAG-1-174: Chip Level Simulation of Fault Tolerant Com-
puters,Performance Period: June 1,1981 Through May
31,1982.

7. M. Iacoponi, "User's Guide for VAX Version of GSP and
VAX BDX-930 RAM/ROM Loader"

8. J. Kerr, "GSP II User's Guide", EE Dept, Va. Tech., July
1983.

I TEXTUAL REFERENCES

1. Armstrong, J.R., Woodruff, G.W., "Chip Level Simulation
of Microprocessors", Computer, Vol. 13 ,No. 1, pp.
94-100,Jan. 1980.

2. Armstrong, J.R., Devlin D.E., "GSP-A Logic Simulator for
LSI", Proceedings of the 18th Annual Design Automation
Conference, pp. 518-524, Nashville, Tn, June 1981.

3. Armstrong, J.R., Thierbach, M. and Ellis, M.D., Final
Report for NSWC Contract No N60921-78-A025, Vol. 3:
Microprocessor Simulation.

4. Armstrong,	 J.R.	 and	 Gray F.G.,	 "Microprocessor
Self-Test",	 Final	 Report	 for	 RADC	 Contract
F30602-80-200.

5. Armstrong, J,R. and Gray F.G.," Chip Level Simulation of
Fault Tolerant Computers", Status 	 Report For NASA Grant
NAG-1-174, June 1,	 1982.

6. Armstrong, J.R.,	 "Chip Level	 Modeling Techniques",	 EE
Dept.	 Technical	 Report, May 31,1982.

7. Leinwand, Sany	 M.,	 "Process Oriented	 Logic Simulation,
Proceedings of	 the 18th	 Design Automation	 Conference.
Nashville Tenn., June 1981.

8. "TheFister,	 G.F.,	 Yorktown	 Simulation
Engine:Introduction" and	 Denneau, M. M.,	 "The Yorktown
Simulation Engine", Proceedings of the 19th Design Auto-
mation Conference, Las Vegas, Nev., June 1982.

9. M. Abromovici,	 et. all,"	 A Logic	 Simulation Machine",
Proceedings of	 the 19th	 Design Automation	 Conference,
Las Vegas, Nev., June 1982.

16

t

	GeneralDisclaimer.pdf
	0079A02.pdf
	0079A03.pdf
	0079A04.pdf
	0079A05.pdf
	0079A06.pdf
	0079A07.pdf
	0079A08.pdf
	0079A09.pdf
	0079A10.pdf
	0079A11.pdf
	0079A12.pdf
	0079A13.pdf
	0079A14.pdf
	0079B01.pdf
	0079B02.pdf
	0079B03.pdf
	0079B04.pdf
	0079B05.pdf

