22,965 research outputs found

    Simulating spatial and temporal evolution of multiple wing cracks around faults in crystalline basement rocks

    Get PDF
    Fault zones are structurally highly spatially heterogeneous and hence extremely complex. Observations of fluid flow through fault zones over several scales show that this structural complexity is reflected in the hydrogeological properties of faults. Information on faults at depth is scarce, hence, it is highly valuable to understand the controls on spatial and temporal fault zone development. In this paper we increase our understanding of fault damage zone development in crystalline rocks by dynamically simulating the growth of single and multiple splay fractures produced from failure on a pre-existing fault. We present a new simulation model, MOPEDZ (Modeling Of Permeability Evolution in the Damage Zone surrounding faults), that simulates fault evolution through solution of Navier's equation with a combined Mohr-Coulomb and tensile failure criteria. Simulations suggest that location, frequency, mode of failure and orientation of splay fractures are significantly affected both by the orientation of the fault with respect to the maximum principal compressive stress and the conditions of differential stress. Model predictions compare well with published field outcrop data, confirming that this model produces realistic damage zone geometries

    A finite element framework for modeling internal frictional contact in three-dimensional fractured media using unstructured tetrahedral meshes

    Get PDF
    AbstractThis paper introduces a three-dimensional finite element (FE) formulation to accurately model the linear elastic deformation of fractured media under compressive loading. The presented method applies the classic Augmented Lagrangian(AL)-Uzawa method, to evaluate the growth of multiple interacting and intersecting discrete fractures. The volume and surfaces are discretized by unstructured quadratic triangle-tetrahedral meshes; quarter-point triangles and tetrahedra are placed around fracture tips. Frictional contact between crack faces for high contact precisions is modeled using isoparametric integration point-to-integration point contact discretization, and a gap-based augmentation procedure. Contact forces are updated by interpolating tractions over elements that are adjacent to fracture tips, and have boundaries that are excluded from the contact region. Stress intensity factors are computed numerically using the methods of displacement correlation and disk-shaped domain integral. A novel square-root singular variation of the penalty parameter near the crack front is proposed to accurately model the contact tractions near the crack front. Tractions and compressive stress intensity factors are validated against analytical solutions. Numerical examples of cubes containing one, two, twenty four and seventy interacting and intersecting fractures are presented

    Influence of Rock Heterogeneity on Fracture Pattern Formation

    Get PDF
    Imperial Users onl

    Cut Finite Elements for Convection in Fractured Domains

    Full text link
    We develop a cut finite element method (CutFEM) for the convection problem in a so called fractured domain which is a union of manifolds of different dimensions such that a dd dimensional component always resides on the boundary of a d+1d+1 dimensional component. This type of domain can for instance be used to model porous media with embedded fractures that may intersect. The convection problem can be formulated in a compact form suitable for analysis using natural abstract directional derivative and divergence operators. The cut finite element method is based on using a fixed background mesh that covers the domain and the manifolds are allowed to cut through a fixed background mesh in an arbitrary way. We consider a simple method based on continuous piecewise linear elements together with weak enforcement of the coupling conditions and stabilization. We prove a priori error estimates and present illustrating numerical examples
    • …
    corecore