33 research outputs found

    Event-driven observer-based smart-sensors for output feedback control of linear systems

    Get PDF
    This paper deals with a recent design of event-driven observer-based smart sensors for output feedback control of linear systems. We re-design the triggering mechanism proposed in a previously reported system with the implementation of self-sampling data smart sensors; as a result, we improve its performance. Our approach is theoretically supported by using Lyapunov theory and numerically evidenced by controlling the inverted pendulum on the cart mechanism.Postprint (published version

    Resilient Control under Denial-of-Service Attacks

    Get PDF
    Cyber-physical systems (CPSs) have attracted much attention due to the advances in automation. By integrating communication and computation technologies, CPSs have a broad spectrum of applications ranging from the control of small local systems to the control of large-scale systems, some of which are safety-critical. This raises the issue of reliability of CPSs to a considerably important level. Among a variety of aspects in reliability problems, the security of CPSs becomes a challenge from both practical and theoretical points of view. This thesis investigates the stabilization problem of networked control systems under Denial-of-Service (DoS) attacks. Intuitively, implementing predictor-based controllers can compensate for the data loss due to DoS attacks by estimating the lost signals, and hence the resilience of control systems can be improved. Following this idea, we have developed the resilient controllers by exploiting the recent results in finite-time observers. It is interesting to see that the resilience of the networked control systems depends on the prediction accuracy and horizon. Besides this, the thesis also investigates the stabilization problem of distributed systems under DoS attacks

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Holistic Control for Cyber-Physical Systems

    Get PDF
    The Industrial Internet of Things (IIoT) are transforming industries through emerging technologies such as wireless networks, edge computing, and machine learning. However, IIoT technologies are not ready for control systems for industrial automation that demands control performance of physical processes, resiliency to both cyber and physical disturbances, and energy efficiency. To meet the challenges of IIoT-driven control, we propose holistic control as a cyber-physical system (CPS) approach to next-generation industrial automation systems. In contrast to traditional industrial automation systems where computing, communication, and control are managed in isolation, holistic control orchestrates the management of cyber platforms (networks and computing platforms) and physical plant control at run-time in an integrated architecture. Specifically, this dissertation research comprises the following primary components. Holistic wireless control: The core of holistic wireless control is a holistic controller comprising a plant controller and a network controller cooperating with each other. At run-time the holistic controller generates (1) control commands to the physical plant and (2) network reconfiguration commands to wireless networks based on both physical and network states. This part of dissertation research focused on the design and evaluation of holistic controllers exploiting a range of network reconfiguration strategies: (1) adapting transmission redundancy, (2) adapting sampling rates, (3) self-triggered control, and (4) dynamic transmission scheduling. Furthermore, we develop novel network reconfiguration protocols (NRP) as actuators to control network configurations in holistic control. Holistic edge control: This part of dissertation research explores edge computing as a multitier computing platform for holistic control. The proposed switching multi-tier control (SMC) dynamically switches controllers located on different computation platforms, thereby exploiting the trade-off between computation and communication in a multi-tier computing platform. We also design the stability switch between local and edge controllers under information loss from another perspective, based on co-design of edge and local controllers that are designed via a joint Lyapunov function. Real-time wireless cyber-physical simulators: To evaluate holistic control, we extend the Wireless Cyber-Physical Simulator (WCPS) to integrate simulated physical plants (in Simulink) with real wireless networks (WCPS-RT) and edge computing platforms (WCPS-EC). The real-time WCPS provides a holistic environment for CPS simulations that incorporate wireless dynamics that are challenging to simulate accurately, explore the impacts and trade-off of computation and communication of multi-tier platforms, and leverage simulation support for controllers and plants

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio
    corecore