1,193 research outputs found

    MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

    Get PDF
    The indirect vector controlled inductor motor (IM) drive involves decoupling of the stator current into torque and flux producing components. This paper proposes the implementation of fuzzy logic control scheme applied to a two d-q current components model of an induction motor. A Fuzzy logic Controller is developed with the help of knowledge rule base for efficient and robust control. The performance of Fuzzy Logic Controller is compared with that of the PI controller with rotor flux observer in terms of the settling time and dynamic response to sudden load changes. The harmonic pattern of the output current is evaluated for both fixed gain proportional integral controller and the Fuzzy Logic based controller. The performance of the IM drive has been analyzed under steady state and transient conditions. Simulation results of both the controllers are presented for comparison

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Speed Control of Parallel Connected DSIM Fed by Six Phase Inverter with IFOC Strategy Using ANFIS

    Get PDF
    This paper describe the presentation of an IM for high load and high-power applications, this kind of applications the motor have a complex coupling between the field and torque. This can be achieve with assist of Indirect Field Oriented Control (IFOC) and parallel connection of two motors. The benefit is that parallel connection can provide the decoupled control of flux and torque for each motor and their concert in different operating environments. The Speed control of two Double Star Induction Motors working in parallel configuration with IFOC using a Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference (ANFIS) controller is investigate in different operating environments. The two motors are connected in parallel at the output of a single six-phase PWM based inverter fed from a DC source. Performance of the projected method under load disturbances is studied through simulation using a MATLAB and evaluation of speed response of two controllers is analyzed. &nbsp

    Improvements the direct torque control performance for an induction machine using fuzzy logic controller

    Get PDF
    This article examines a solution to the major problems of induction machine control in order to achieve superior dynamic performance. Conventional direct torque control and indirect control with flux orientation have some drawbacks, such as current harmonics, torque ripples, flux ripples, and rise time. In this article, we propose a comparative analysis between previous approaches and the one using fuzzy logic. Results from the simulation show that the direct torque control method using fuzzy logic is more effective in providing a precise and fast response without overshooting, and it eliminates torque and flux fluctuations at low switching frequencies. The demonstrated improvements in dynamic performance contribute to increased operational efficiency and reliability in industrial applications

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Efficiency Boosting for PV Systems- MPPT Intelligent Control Based

    Get PDF

    Artificial neural network based unity power factor corrector for single phase DC-DC converters

    Get PDF
    Due to the negative effects of the non-linear semiconductor devices and the passive electrical components (inductor and capacitor) in the converter circuits, and that are deteriorating the power factor (PF) and total harmonics distortion (THD) of grid current, this study proposes a novel unity PF correction controller based on a new algorithm of neural network to improve the performance of a single phase boost DC-DC converter with respect to the mentioned concerns. The controller guarantees stable load voltage. The PF corrector, firstly measures the phase shift between grid voltage and grid current waveforms, then through a new artificial neural network (ANN) algorithm, a suitable duty cycle is predicted to guide and control the converter to reduce the phase shift between grid voltage and grid current as possible to have maximum PF which is unity PF, and to improve the THD level of grid current. The proposed system is simulated and evaluated via Simulink of MATLAB, the simulation results are collected at constant duty cycle and at controlled duty cycle through the proposed PF controller using different loads. The presented PF controller guarantees the unity power factor, and enhances the grid alternating current THD

    Speed Control of Induction Motor using Fuzzy Logic approach

    Get PDF
    This thesis presents a methodology for implementation of a rule-based fuzzy logic controller applied to a closed loop Volts/Hz induction motor speed control. The Induction motor is modeled using a dq axis theory. The designed Fuzzy Logic Controller’s performance is weighed against with that of a PI controller. The pros of the Fuzzy Logic Controllers (FLCs) over the conventional controllers are: (i) they are economically advantageous to develop, (ii) a wider range of operating conditions can be covered using FLCs, and (iii) they are easier to adapt in terms of natural language. Another advantage is that, an initial approximate set of fuzzy rules can be impulsively refined by a self-organizing fuzzy controller. For V/f speed control of the induction motor, a reference speed has been used and the control architecture includes some rules. These rules portray a nonchalant relationship between two inputs and an output, all of which are nothing but normalized voltages. These are: The input speed error denoted by Error (e). The input derivative of speed error denoted by Change of error (∆e), and The output frequency denoted by Change of Control (ω_sl). The errors are evaluated according to the rules in accordance to the defined member functions. The member functions and the rules have been defined using the FIS editor given in MATLAB. Based on the rules the surface view of the control has been recorded. The system has been simulated in MATLAB/SIMULINK® and the results have been attached. The results obtained by using a conventional PI controller and the designed Fuzzy Logic Controller has been studied and compared. The controller has then been tuned by trial and error method and simulations have been run using the tuned controller. Keywords : V/f induction motor speed control, dq axis theory, Fuzzy Logic controller, Mamdani Architecture

    Fuzzy logic based online adaptation of current and speed controllers for improved performance of IPMSM drive

    Get PDF
    Precise torque and speed control of electric motors is a key issue in industries for variable speed drives (VSD). Over the years the induction motors have been widely utilized in industries for VSD applications. However, induction motor has some significant drawbacks like low efficiency, lagging power factor, asynchronous speed, low torque density etc. Nowadays the interior permanent magnet synchronous motor (IPMSM) is becoming popular for high performance variable speed drive (HPVSD) due to its high torque-current ratio, large power-weight ratio, high efficiency, high power factor, low noise and robustness as compared to conventional induction and other ac motors. Smooth torque response, fast and precise speed response, quick recovery of torque and speed from any disturbance and parameter insensitivity, robustness in variable speed domain and maintenance free operations are the main concerns for HPVSD. This work proposes a closed loop vector control of an IPMSM drive incorporating two separate fuzzy logic controllers (FLCs). Among them one FLC is designed. to minimize the developed torque ripple by varying online the hysteresis band of the PWM current controller. Another Sugeno type FLC is used to tune the gains of a proportional-integral (PI) controller where the PI controller actually serves as the primary speed controller. Thus, the limitations of traditional PI controllers will be avoided and the performance of the drive system can be improved. A flux controller is also incorporated in such a way that both torque and flux of the motor can be controlled while maintaining current and voltage constraints. The flux controller is designed based on maximum-torque- per-ampere (MTPA) operation below the rated speed and flux weakening operation above the rated speed. Thus, the proposed drive extends the operating speed limits for the motor and enables the effective use of the reluctance torque. In order to verify the performance of the proposed IPMSM drive, first a simulation model is developed using Matlab/Simulink. Then the complete IPMSM drive has been implemented in real-time using digital signal processor (DSP) controller board DS1104 for a laboratory 5 HP motor. The effectiveness of the proposed drive is verified both in simulation and experiment at different operating conditions. In this regard, a performance comparison of the proposed FLC based tuned PI and adapted hysteresis controllers based drive with the conventional PI and fixed bandwidth hysteresis controllers based drive is provided. These comparison results demonstrate the better dynamic response in torque and speed for the proposed IPMSM drive over a wide speed range
    corecore