42 research outputs found

    Structural Optimization of Adaptive Soft Fin Ray Fingers with Variable Stiffening Capability

    Get PDF
    Soft and adaptable grippers are desired for their ability to operate effectively in unstructured or dynamically changing environments, especially when interacting with delicate or deformable targets. However, utilizing soft bodies often comes at the expense of reduced carrying payload and limited performance in high-force applications. Hence, methods for achieving variable stiffness soft actuators are being investigated to broaden the applications of soft grippers. This paper investigates the structural optimization of adaptive soft fingers based on the Fin RayÂź effect (Soft Fin Ray), featuring a passive stiffening mechanism that is enabled via layer jamming between deforming flexible ribs. A finite element model of the proposed Soft Fin Ray structure is developed and experimentally validated, with the aim of enhancing the layer jamming behavior for better grasping performance. The results showed that through structural optimization, initial contact forces before jamming can be minimized and final contact forces after jamming can be significantly enhanced, without downgrading the desired passive adaptation to objects. Thus, applications for Soft Fin Ray fingers can range from adaptive delicate grasping to high-force manipulation tasks

    A Modular Bio-inspired Robotic Hand with High Sensitivity

    Full text link
    While parallel grippers and multi-fingered robotic hands are well developed and commonly used in structured settings, it remains a challenge in robotics to design a highly articulated robotic hand that can be comparable to human hands to handle various daily manipulation and grasping tasks. Dexterity usually requires more actuators but also leads to a more sophisticated mechanism design and is more expensive to fabricate and maintain. Soft materials are able to provide compliance and safety when interacting with the physical world but are hard to model. This work presents a hybrid bio-inspired robotic hand that combines soft matters and rigid elements. Sensing is integrated into the rigid bodies resulting in a simple way for pose estimation with high sensitivity. The proposed hand is in a modular structure allowing for rapid fabrication and programming. The fabrication process is carefully designed so that a full hand can be made with low-cost materials and assembled in an efficient manner. We demonstrate the dexterity of the hand by successfully performing human grasp types.Comment: 7 pages, 13 figures, IEEE RoboSoft 202

    Learning Haptic-based Object Pose Estimation for In-hand Manipulation Control with Underactuated Robotic Hands

    Full text link
    Unlike traditional robotic hands, underactuated compliant hands are challenging to model due to inherent uncertainties. Consequently, pose estimation of a grasped object is usually performed based on visual perception. However, visual perception of the hand and object can be limited in occluded or partly-occluded environments. In this paper, we aim to explore the use of haptics, i.e., kinesthetic and tactile sensing, for pose estimation and in-hand manipulation with underactuated hands. Such haptic approach would mitigate occluded environments where line-of-sight is not always available. We put an emphasis on identifying the feature state representation of the system that does not include vision and can be obtained with simple and low-cost hardware. For tactile sensing, therefore, we propose a low-cost and flexible sensor that is mostly 3D printed along with the finger-tip and can provide implicit contact information. Taking a two-finger underactuated hand as a test-case, we analyze the contribution of kinesthetic and tactile features along with various regression models to the accuracy of the predictions. Furthermore, we propose a Model Predictive Control (MPC) approach which utilizes the pose estimation to manipulate objects to desired states solely based on haptics. We have conducted a series of experiments that validate the ability to estimate poses of various objects with different geometry, stiffness and texture, and show manipulation to goals in the workspace with relatively high accuracy

    Automated Configuration of Gripper Fingers from a Construction Kit for Robotic Applications

    Get PDF
    Gripper finger design is a complex process that requires a lot of experience, time, and effort. For this reason, automating this design process is an important area of research that has the potential to improve the efficiency and effectiveness of robotic systems. The current approaches are aimed at the automated design of monolithic gripper fingers, which have to be manufactured additively or by machining. This paper describes a novel approach for the automated design of gripper fingers. The motivation for this work stems from the increasing demand for flexible, adaptable handling systems in various industries in response to the increasing individualization of products as well as the increasing volatility in the markets. Based on the CAD data of the handling objects, the most suitable configuration of gripper fingers can be determined from the existing modules of a construction kit for the respective handling object, which can significantly reduce the provisioning time for new gripper fingers. It can be shown that gripper fingers can be effectively configured for a variety of objects and two different grippers, increasing flexibility in industrial handling processes

    Progettazione e Controllo di Mani Robotiche

    Get PDF
    The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Design of a 3D-printed soft robotic hand with distributed tactile sensing for multi-grasp object identification

    Get PDF
    Tactile object identification is essential in environments where vision is occluded or when intrinsic object properties such as weight or stiffness need to be discriminated between. The robotic approach to this task has traditionally been to use rigid-bodied robots equipped with complex control schemes to explore different objects. However, whilst varying degrees of success have been demonstrated, these approaches are limited in their generalisability due to the complexity of the control schemes required to facilitate safe interactions with diverse objects. In this regard, Soft Robotics has garnered increased attention in the past decade due to the ability to exploit Morphological Computation through the agent's body to simplify the task by conforming naturally to the geometry of objects being explored. This exists as a paradigm shift in the design of robots since Soft Robotics seeks to take inspiration from biological solutions and embody adaptability in order to interact with the environment rather than relying on centralised computation. In this thesis, we formulate, simplify, and solve an object identification task using Soft Robotic principles. We design an anthropomorphic hand that has human-like range of motion and compliance in the actuation and sensing. The range of motion is validated through the Feix GRASP taxonomy and the Kapandji Thumb Opposition test. The hand is monolithically fabricated using multi-material 3D printing to enable the exploitation of different material properties within the same body and limit variability between samples. The hand's compliance facilitates adaptable grasping of a wide range of objects and features integrated distributed tactile sensing. We emulate the human approach of integrating information from multiple contacts and grasps of objects to discriminate between them. Two bespoke neural networks are designed to extract patterns from both the tactile data and the relationships between grasps to facilitate high classification accuracy

    A shape memory alloy-based biomimetic robotic hand : design, modelling and experimental evaluation

    Get PDF
    Every year more the 400,000 people are subject to an upper limb amputation. Projections foresee that this number may double by the 2050. Infections, trauma, cancer, or complications that arise in blood vessels represent the main causes for amputations. The access to prosthetic care is worldwide extremely limited. This is mainly due to the high cost both of commercially available prostheses and of the rehabilitation procedure which every prostheses user has to endure. Aside from high costs, commercially available hand prostheses have faced high rejection rates, mainly due to the their heavy weight, noisy operation and also to the unnatural feel of the fingers. To overcome these limitations, new materials, such as Shape Memory Alloys (SMAs), have been considered as potential candidate actuators for these kind of devices. In order to provide a contribution in the development of performant and easily affordable hand prostheses, the development of a novel and cost-effective five-fingered hand prototype actuated by Shape Memory Alloy (SMA) wires is presented in this work. The dissertation starts with the description of a first generation of a SMA actuated finger. Structure assemblage and performances in term of force, motion and reactiveness are investigated to highlight advantages and disadvantages of the prototype. In order to improve the achievable performances, a second generation of SMA actuated finger having soft features is introduced. Its structure, a five-fingered hand prosthesis having intrinsically elastic fingers, capable to grasp several types of objects with a considerable force, and an entirely 3D printed structure is then presented. Comparing this prototype with the most important prostheses developed so far, relevant advantages especially in term of noiseless actuation, cost, weight, responsiveness and force can be highlighted. A finite element based framework is then developed, to enable additional structure optimization and further improve the SMA finger performances. On the same time, a concentrated parameters physics-based model is formulated to allow, in the future, an easier control of the device, characterized by strong nonlinearities mainly due to the Shape Memory alloy hysteretic behavior.Jedes Jahr werden weltweit bei mehr als 400.000 Menschen Amputationen der oberen Gliedmaßen durchgefĂŒhrt. Prognosen gehen davon aus, dass sich diese Zahl bis zum Jahr 2050 verdoppeln wird. Hauptursachen der Amputationen sind Infektionen, UnfĂ€lle, Krebs oder Durchblutungsstörungen. Der Zugang zu prothetischer Versorgung ist besonders in den EntwicklungslĂ€ndern stark eingeschrĂ€nkt. Dies liegt vor allem an den hohen Kosten sowohl der im Handel erhĂ€ltlichen Prothesen als auch des Rehabilitationsprozesses, den jeder ProthesentrĂ€ger durchlaufen muss. Neben den hohen Kosten haben kommerziell erhĂ€ltliche Handprothesen aufgrund ihres hohen Gewichts, des lauten Betriebes und auch des unnatĂŒrlichen GefĂŒhls hohe Ablehnungsraten. Um diese EinschrĂ€nkungen zu ĂŒberwinden, wurden neue Materialien, wie z.B. FormgedĂ€chtnislegierungen (SMAs), als potenzielle Materialien fĂŒr den Antrieb von Prothesen untersucht . Um einen Beitrag zur Entwicklung von leistungsfĂ€higen und erschwinglichen Handprothesen zu leisten, wird in dieser Arbeit die Entwicklung eines neuartigen und kostengĂŒnstigen FĂŒnf-Finger-Handprototyps vorgestellt, der durch DrĂ€hte aus FormgedĂ€chtnislegierungen aktiviert wird. Die Doktorarbeit beginnt mit der Beschreibung der ersten Generation eines SMA-aktivierten Fingers. Zuerst wird der Aufbau und das Wirkungsprinzip des SMA Fingers erlĂ€utert und die Leistungs- und BewegungsfĂ€higkeit des Systems untersucht sowie Vor- und Nachteile des Prototyps dargestellt. Anschließend, um die erreichbare LeistungsfĂ€higkeit zu verbessern, wird eine zweite Generation von SMA-gesteuerten Fingern vorgestellt, die eine vollstĂ€ndig in 3D gedruckte Struktur aufweisen. Diese FĂŒnffinger-Handprothese mit inhĂ€rent elastischen Fingern ermöglicht nicht nur das Greifen unterschiedlich geformter Objekte sondern auch das Heben und Halten schwerer GegenstĂ€nde. Dieser neuartige Prototyp wird mit den wichtigsten bisher entwickelten Prothesen verglichen und die relevanten Vorteile insbesondere in Bezug auf gerĂ€uschlose Ansteuerung, Kosten, Gewicht, Reaktionszeit und Kraft hervorgehoben. Abschließend wird ein Finite-Elemente-Modell entwickelt, mit Hilfe dessen die Fingerstruktur weiter optimiert und die LeistungsfĂ€higkeit des SMA-Fingers noch verbessert werden kann. ZusĂ€tzlich wird ein Konzentriertes-Parameter-Modell formuliert, um, in der Zukunft, eine leichtere Regelung des Systems zu ermöglichen. Dieses ist notwendig, da der SMA-Finger starke NichtlinearitĂ€ten aufweist, die auf das hysteretische Verhalten der FormgedĂ€chtnislegierung zurĂŒckzufĂŒhren sind
    corecore