574 research outputs found

    Optical Networks for Future Internet Design

    Get PDF

    Towards high quality and flexible future internet architectures

    Get PDF

    Congestion control mechanisms within MPLS networks

    Get PDF
    PhDAbstract not availabl

    Recent Results on the Implementation of a Burst Error and Burst Erasure Channel Emulator Using an FPGA Architecture

    Get PDF
    The behaviour of a transmission channel may be simulated using the performance abilities of current generation multiprocessing hardware, namely, a multicore Central Processing Unit (CPU), a general purpose Graphics Processing Unit (GPU), or a Field Programmable Gate Array (FPGA). These were investigated by Cullinan et al. in a recent paper (published in 2012) where these three devices capabilities were compared to determine which device would be best suited towards which specific task. In particular, it was shown that, for the application which is objective of our work (i.e., for a transmission channel simulation), the FPGA is 26.67 times faster than the GPU and 10.76 times faster than the CPU. Motivated by these results, in this paper we propose and present a direct hardware emulation. In particular, a Cyclone II FPGA architecture is implemented to simulate a burst error channel behaviour, in which errors are clustered together, and a burst erasure channel behaviour, in which the erasures are clustered together. The results presented in the paper are valid for any FPGA architecture that may be considered for this scope

    Study on the Performance of TCP over 10Gbps High Speed Networks

    Get PDF
    Internet traffic is expected to grow phenomenally over the next five to ten years. To cope with such large traffic volumes, high-speed networks are expected to scale to capacities of terabits-per-second and beyond. Increasing the role of optics for packet forwarding and transmission inside the high-speed networks seems to be the most promising way to accomplish this capacity scaling. Unfortunately, unlike electronic memory, it remains a formidable challenge to build even a few dozen packets of integrated all-optical buffers. On the other hand, many high-speed networks depend on the TCP/IP protocol for reliability which is typically implemented in software and is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay product in switches/routers to maintain nearly 100\% link utilization. Otherwise, the performance will be much downgraded. But such large buffer will challenge hardware design and power consumption, and will generate queuing delay and jitter which again cause problems. Therefore, improve TCP performance over tiny buffered high-speed networks is a top priority. This dissertation studies the TCP performance in 10Gbps high-speed networks. First, a 10Gbps reconfigurable optical networking testbed is developed as a research environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and analyzing TCP performance. New expressions for evaluating TCP loss synchronization are presented by carefully examining the congestion events of TCP. Based on observation, two basic reasons that cause performance problems are studied. We find that minimize TCP loss synchronization and reduce flow burstiness impact are critical keys to improve TCP performance in tiny buffered networks. Finally, we present a new TCP protocol called Multi-Channel TCP and a new congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementation takes advantage of a potential parallelism from the Multi-Path TCP in Linux. Over an emulated 10Gbps network ruled by routers with only a few dozen packets of buffers, our experimental results confirm that bottleneck link utilization can be much better improved by DMCTCP than by many other TCP variants. Our study is a new step towards the deployment of optical packet switching/routing networks

    Optical Switching for Scalable Data Centre Networks

    Get PDF
    This thesis explores the use of wavelength tuneable transmitters and control systems within the context of scalable, optically switched data centre networks. Modern data centres require innovative networking solutions to meet their growing power, bandwidth, and scalability requirements. Wavelength routed optical burst switching (WROBS) can meet these demands by applying agile wavelength tuneable transmitters at the edge of a passive network fabric. Through experimental investigation of an example WROBS network, the transmitter is shown to determine system performance, and must support ultra-fast switching as well as power efficient transmission. This thesis describes an intelligent optical transmitter capable of wideband sub-nanosecond wavelength switching and low-loss modulation. A regression optimiser is introduced that applies frequency-domain feedback to automatically enable fast tuneable laser reconfiguration. Through simulation and experiment, the optimised laser is shown to support 122×50 GHz channels, switching in less than 10 ns. The laser is deployed as a component within a new wavelength tuneable source (WTS) composed of two time-interleaved tuneable lasers and two semiconductor optical amplifiers. Switching over 6.05 THz is demonstrated, with stable switch times of 547 ps, a record result. The WTS scales well in terms of chip-space and bandwidth, constituting the first demonstration of scalable, sub-nanosecond optical switching. The power efficiency of the intelligent optical transmitter is further improved by introduction of a novel low-loss split-carrier modulator. The design is evaluated using 112 Gb/s/λ intensity modulated, direct-detection signals and a single-ended photodiode receiver. The split-carrier transmitter is shown to achieve hard decision forward error correction ready performance after 2 km of transmission using a laser output power of just 0 dBm; a 5.2 dB improvement over the conventional transmitter. The results achieved in the course of this research allow for ultra-fast, wideband, intelligent optical transmitters that can be applied in the design of all-optical data centres for power efficient, scalable networking

    Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey

    Full text link
    Broadband Integrated Services Digital Network (R-ISDN) provides a range of narrowband and broad-band services for voice, video, and multimedia. Asynchronous Transfer Mode (ATM) has been selected by the standards bodies as the transfer mode for implementing B-ISDN; The ability to digitize images has lead to the prospect of reducing the physical space requirements, material costs, and manual labor of traditional film handling tasks in hospitals. The system which handles the acquisition, storage, and transmission of medical images is called a Picture Archiving and Communication System (PACS). The transmission system will directly impact the speed of image transfer. Today the most common transmission means used by acquisition and display station products is Ethernet. However, when considering network media, it is important to consider what the long term needs will be. Although ATM is a new standard, it is showing signs of becoming the next logical step to meet the needs of high speed networks; This thesis is a survey on ATM, and PACS. All the concepts involved in developing a PACS are presented in an orderly manner. It presents the recent developments in ATM, its applicability to PACS and the issues to be resolved for realising an ATM-based complete PACS. This work will be useful in providing the latest information, for any future research on ATM-based networks, and PACS
    • 

    corecore