Optical Networks for Future Internet Design

'Trends in Communications'
CN2S - A.A. 2010-2011
Prof. Carla Raffaelli
Prof. Walter Cerroni
DEIS - University of Bologna
UNIVRSTI DI Bologna
DEISNET

Foreword

What is a Network of Excellence?

From report on EC IST projects:
"Networks of Excellence should be designed as an instrument to cover different forms of collaboration and different sizes of partnerships"
e-Photon/ONe and BONE aimed at and succeded in "integrating and focusing the rich know-how available in Europe on optical communication and networks, both in universities and in research centres of major telecom manufacturers and operators" using the following structure:
o strong integration of a core membership
o active involvement of all partners in the NoE
o involvement of external institutions ("Collaborating Institutions") outside Europe

- sample outcomes:
- Joint publications
- Researcher mobility action
- Master curriculum definition on Optical Networking
- Rodamap on optical transport network technology public deliverable available at http://www.e-photon-one.org
UNVIRSTA DI Rologna
DEISNET Bologna, 19/11/2010

Follow up: NoE BONE Consortium (2008-2010)

Lecture outline

Part I:

- Introduction to optical networks
- Motivations
- Basics

Part II:

- Optical switching architectures
- Hardware and software building blocks of a network node

Part III

- Towards new network concepts: programmable router and experimental activities
Discussion

Introduction to Optical Networks

Service drivers

- High bandwidth video-based services
-HD TV, Video conferencing, cinema services
- Massive narrowband services diffusion like VOIP, messaging and email
- Increasing demand of bandwidth in access networks

Network providers' drivers

- More efficient use of network resources
- Enhanced configuration and management capabilities
- Enhanced quality networks
- Enhanced automation in the service provisioning processes
- Costumer control and re-configuration capability
- Enhanced monitoring capability and resiliency

Networks of the future

- New technology approaches are being developed for access and core networks
- Access networks
- advanced passive optical network solutions: bandwidth delivery over long distance
- Interworking with radio access: to reach people on the move
- Core networks
- SDH and NG-SDH based solutions
- Enhanced Ethernet to support packet services in the metro area
- Need for higher capacity systems increases
- Flexible control of DWDM capacity
- Need for switching in the optical layer of the network
UNIVRITADI Bologna
DEISNET

A picture of optical network

Focus on network access

A layered view of optical network

High speed transmission

- Current networks employs amplified DWDM (Dense Wavelength Division Multiplexed) systems
- Channel bit rates up to $40 \mathrm{~Gb} / \mathrm{s}$
- Connect main switching centres
- Line rates and router interface rates follow a predictable increase driven by
- Capacity demand
- Technology economics
- Further increase driven by
- Research on feasible technology
- Specific network goals

Capacity evolution

Advances in WDM Networking

- Transmission (long haul)
$-80 \lambda \mathrm{~s}$ (1530 nm to 1565 nm) now, and additional $80 \lambda \mathrm{~s}(1570 \mathrm{~nm}$ to 1610 nm$)$ soon
- OC-48 (2.5 Gbps) per λ (separated by 0.4 nm) and OC-192 (10 Gbps) (separated by 0.8 nm)
-40 Gbps per λ also on the way (>1 Tbps per fiber)
- Cross-connecting and Switching
- Up to 1000×1000 optical cross-connects (MEMS)
-64×64 packet switches (switching time < 1 ns)

Principle of WDM multiplexing

- Wavelength Division Multiplexing consists of transmitting several signals over one fibre using optical carriers at different wavelengths.
- Hence it is just optical FDM.

Switching in a WDM system

- To transports different client traffics over the same fibre using different optical channels at different wavelengths :
- From terminal node to terminal node
- From terminal node to line site
- From line site to line site

Example: IST TOPRATE

IST TOPRATE: Achievements/ Results

$=$ optimist

- Optical Time Division Multiplexing (OTDM) technology
\Rightarrow to the next bitrate hierarchy of $160 \mathrm{Gbit} / \mathrm{s}$ and beyond
\Rightarrow full use of 40 Gbit/s ETDM technology
- Dense Wavelength Division Multiplexing (DWDM) \Rightarrow Nx160 Gbit/s DWDM / use of AWG demultiplexers
- Fibre transmission
\Rightarrow Dispersion management optimization
$\Rightarrow 160 \mathrm{Gbit} / \mathrm{s}$ single channel transmission over $2 \times 100 \mathrm{~km}$
$\Rightarrow 4 \times 160$ Gbit/s DWDM transmission over $3 \times 80 \mathrm{~km}$
- Many novel techniques investigated / used for
\Rightarrow PMD compensation: tunable planar devices (PLC)
\Rightarrow electronic 40Gbit/s eye-monitoring
\Rightarrow optical demultiplexing: novel photonic crystal fibre
\Rightarrow optical clock recovery: $\mathbf{4 0} \mathbf{~ G H z}$ optical clock operated in 160 Gbit/s receiver
IST- OPTIMIST
UNIVERSITA DI BOLOGNA
DEISNET

Example: IST FASHION

- Transmission of $160 \mathrm{~Gb} / \mathrm{s}$ OTDM data ($16 \times 10 \mathrm{~Gb} / \mathrm{s}$ and $4 \times 40 \mathrm{~Gb} / \mathrm{s}$) over 500 km of fiber to demonstrate the usability in ultra high speed core networks
- Adding to and dropping $10 \mathrm{~Gb} / \mathrm{s}$ and $40 \mathrm{~Gb} / \mathrm{s}$ data from a 160 Gb/s OTDM data stream to demonstrate the flexibility of OTDM technology for usage in flexible optical networks
- $160 \mathrm{~Gb} / \mathrm{s}$ OTDM field trial over installed fibers to study the influence of environmental conditions
IST- OPTIMIST http://www.ist-optimist.org

Ethernet evolution

- $10 \mathrm{Gbit} / \mathrm{s}$ Ethernet is widely deployed to interconnect IP routers and Ethernet switches
- Proliferation of $10 \mathrm{Gbit} / \mathrm{s}$ services calls for the next factor of 10: 100 Gbit/s Ethernet
- 100 Gbit s Ethernet standard is under development by the IEEE
- The IEEE 802.3 Higher Speed Study Group (HSSG) has adopted several objectives
- 100 GbE Optical fiber Ethernet Standards at least 100 meters and 10 Km
- Full duplex operation
- Current frame format and size standards

How to switch in next generation networks

- High speed switching can be implemented using either electronic cross-connect switches or optical cross-connect switches
- Cross connect switching in SDH infrastructures is performed in the electronic domain
- It represents a reference benchmark
- Optical cross connect based on MEMS technology and operating at millisecond switching speeds are now available and suitable for slow switch reconfiguration time

Electronic vs Optical Switching

- Data transmission is carried out in the optical domain today in WANs (Wide Area Networks) and MANs (Metropolitan Area Networks)
- switching is mostly done in the electronic domain
- Electronic switching uses electronic switching fabrics
- Converts data from optical to electronic for switching purposes, and then from electronic back to optical for transmission.
- Optical switching uses optical switching fabrics
- Payload stays in the optical domain
- Control plane is in the electronic domain

Caveats of OEO Switching

- Internet traffic doubles every 6 months (1997-2008)
- Semiconductor performance doubles every 18 months which is known as the Moore's Law
- The first time in history that improvements have been required faster than the improvement rate for semiconductors, Moore's Law.
- Complex operations are needed at a OEO router's line card e. g. processing the packet header, longest prefix match, packet buffering, etc.
- The cost of OEO at OC-48 (2.5Gbps) and at OC-192 (10 Gbps) is relatively high

Optical switching alternatives

- Optical Circuit Switching (OCS)
- Optical Packet Switching (OPS)
- Optical Burst Switching (OBS)

Optical Circuit Switching

- Two-way process with request and acknowledge
- Round Trip Time $=$ tens of $m s$ therefore long setup delays
- Suitable for smooth traffic and QoS guarantees due to fixed bandwidth allocation
- Bandwidth inefficient for bursty (data) traffic
- Wasted bandwidth during off/low-traffic periods
- Overhead due to frequent set-up/release

Wavelength Routing

- Setting up a circuit means setting up a lightpath (or λ path)
- A wavelength, or a concatenation of wavelengths, is allocated for the connection from source to destination
- λ-path specific pros and cons:
+ Mature OXC technology (msec switching time)
- Very coarse granularity (OC-48 and above)
- Limited \# of wavelengths (thus \# of lightpaths)
- No aggregation (merge of $\lambda \mathrm{s}$) inside the core
- traffic grooming at the edge can be complex/inflexible
- Current state of the art

Optical Packet Switching

- A packet contains a header (e.g., addresses) and a payload (variable or fixed length)
- Can be sent without circuit set-up delay
- Statistic sharing of link bandwidth among packets with different source/destination
- Store-and-forward at each node
- Buffers a packet, processes its header, and sends it to the next hop
- Packet header is today processed in the electronic domain or alloptically in the future at each node and switched to the next hop
- One-way process

 DEISNET

In band header

- Optical header at pre-defined bit rate
- Header signal spilled at switch input and converted to electronics
- Guard band between header and payload to cope with optical devices switching speed
- Header and payload bit rates may be different

Optical Packet Switching

+ Statistical multiplexing of data
+ Suitable for bursty traffic
- Requires fast switching speeds (nanoseconds)
- Stringent synchronization requirements
- Queuing requirement inside the switch
- Still viewed as a long term solution

Motivations for OBS

- New traffic profiles
- P2P file downloading
- multimedia streaming
- grid networking
- Problems in wavelength routed networks
- low network utilization and flexibility
- Problems in optical packet switched networks
- lack of optical buffering
- need for fast packet switching and header processing
- Need of graceful migration from wavelength routing networks

Optical Burst Switching

- Main design objectives
- decreasing complexity of OPS with still employed statistical multiplexing in optical domain
- building a buffer-less network
- user data travels transparently as an optical signal and cuts through the switches at very high rates
- Solution
- sending a header to temporarily reserve a wavelength path
- Sending then an optical burst (a block of IP packets) through the network
- OBS (one-way reservation) can be viewed as lying between OPS (no reservation) and WS networks (two-way reservation)

OBS Network Architecture

- Control and data information travel separately on different channels
- Data coming from legacy networks are aggregated into a burst unit in edge node
- The control packet is sent first in order to reserve the resources in intermediate nodes
- The burst follows the control packet with some offset time, and it crosses the nodes remaining in the optical domain

OBS Principles

- Variable-length packets, named bursts
- Asynchronous node operation
- Strong separation between the control and data planes
- Control burst (with control information) transmitted on dedicated control channel and processed electronically
- Data burst transmitted and switched all-optical way

Channel Scheduling

- Problem of assigning a burst to a channel when it gets information about when it will arrive.
- Ideally bursts are assigned to channels that become free just before the bursts arrive.
- To minimize idle time (voids) and to help for scheduling later by maintaining maximum flexibility for later bursts.

Burst assembly at edge node

- Legacy network interfacing
- Burst classification (address, QoS, ...)
- Burst assembly (per flow, mixed flow...)
- Burst transmissionon optical

[^0]
Per-flow aggregation at network edge

- Aggregation is needed both in OPS and OBS data planes
- Ingress per-flow queuing
- Optical packet assembled with segments of the same flow
- An assembly time-out for each active flow is needed

[^1]
Mixed-flow aggregation

- TCP segments from different flows and with the same optical destination address aggregated in the same optical burst
- Only one assembly time-out is needed
- Lower complexity of the assembly mechanism

Part II: Switch architectures

Outline

- Contention Resolution in Optical Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

Outline

- Contention Resolution in Optical Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

Contention Related Issues

- Contention arises when information transfers contend for the same resources
- It happens at different time scales for OCS, OBS and OPS
- In OPS/OBS statistical multiplexing is applied
- In optics no RAMs available
- Queuing approach based on Fiber Delay Lines or Slow Light
- Alternative solutions
- Exploitation of different domains jointly considered
- Time
- Space
- wavelength

Contention Resolution in Time Domain

- Time domain: contending packets delayed by fiber delay lines (FDLs)
- FDL introduces propagation delay
- with FDLs, a packet can be delayed of fixed propagation delay, typically multiple of a fixed quantity $\mathrm{D}: \mathrm{D}, 2 \mathrm{D}, \ldots, \mathrm{ND}$
- D is the granularity
- Time to transmit must be "pre-planned" before packet payload arrival time

> Packet is lost if the wavelength is busy when the maximum delay is reached

FDL optical buffer

- Realized with B Fiber Delay Lines (FDL):
- packets are delayed until the output wavelength is available
- available delays are typically consecutive multiples of the delay unit D (different choices are also possible)
- packets are lost when the buffer is full, i.e. the required delay is larger than the maximum delay achievable $D_{M}=(B-1) D$

Choosing the Buffer Delay Unit

- D is directly related to
- time resolution of the delay buffer
- maximum delay achievable (buffer size)
- For a given number of delay lines (B):
- decreasing D
+ the time resolution improves and the average void size decreases
- the buffering capacity decreases
- increasing D
+ the buffering capacity increases
- the time resolution decreases and the void size increases

Choosing the Buffer Delay Unit

- D is directly related to
- time resolution of the delay buffer
- maximum delay achievable (buffer size)

FDL reference architectures

- In the feed-forward method, packets are fed into fiber delay lines of different lengths and when they come out, they have to be switched out.
- In the feedback scheme, a packet may re-circulate as long as there is a bandwidth shortage at the output ports.

Contention Resolution in Space Domain

- Route-based approach
- When a packet cannot be forwarded on the first-choice path (output fiber congested), alternative routing paths can be considered

UNvigstia di kol.
DEISNET

Contention Resolution in Space Domain

- Multi-fiber approach
- Multiple fibers per input/output interface
- Next hop-based routing
- all fibers and wavelengths on the same output interface are equivalent for routing purposes
- Wavelength re-use on the same interface
- Contending packets transmitted on different fibers

Packets dropped when all channels are busy

Contention Resolution in Wavelength Domain

- Packets competing for the same output wavelength
- One sent directly
- The others converted to different wavelengths

Packets dropped when:
all wavelengths are busy or
no internal devices for wavelength shifting are available

Wavelength Conversion

- DWDM technology provides parallel planes
- packets on different wavelengths do not collide
- WCs allow to shift from one plane to another one
- packets can be wavelength converted to solve contentions
- Equivalent to multi-plane solution in electronic domain
- space equivalent of optical switches
- Scheduling procedure needed to decide
- when conversion is needed
- the wavelength (plane) to convert to

Wavelength Converters

- Key components for contention resolution directly in the optical domain (avoiding O/E conversion - processing - E/O conversion)
- Very difficult to be implemented, with any kind of technology (most of them exploit non-linear effects of optical devices)
- complex and costly devices
- Due to the complexity and cost of these devices, schemes allowing to share them have been defined
- trade-off between the number of WCs and other optical devices and performance
- Different kind of WCs, according to the required functionality and technology
- tunable-input/tunable-output (TWCs): convert any wavelength to any other
- fixed-input/tunable-output (FTWCs): fixed wavelength on input converted to any other
- tunable-input/fixed-output (FWCs): any wavelength converted to a fixed wavelength
- limited range (LWCs): able to convert a sub-set of the wavelength range
- FWCs are the easiest to be implemented, but they are less flexible

Optical switching: enabling technologies

- AWG - Arrayed Waveguide Gratings
- Generalization of the Mach-Zehnder Interferometer
- Two multiport couplers interconnected by an array of waveguides
- Several copies of the same signal shifted in phase
- The output port is selected depending on the wavelength used
- MEMS - Micro-Electro-Mechanical Systems
- Miniature movable mirrors made in silicon
- Mirrors are deflected from one position to another using a variety of electronic actuation techniques
- Depending on the mirror position, the optical signal is transmitted or deflected (switching time: ca. $100 \mu \mathrm{~s}$)
- SOA - Semiconductor Optical Amplifier
- Based on the principle of stimulated emission (same as LASER)
- It may be used as an ON/OFF switch (switching time: ca. 1 ns)

General view of node elements

Outline

- Contention Resolution in Optical Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

Buffer-less architectures

- They are employed with OCS and OPS
- Cross-connect principle
- Interconnection of N fibers with M channels
- Channel switching
- Contention resolution in wavelength domain
- Wavelength shift is achieved by wavelength conversion
- Optical switches with Wavelength converters sharing schemes proposed to limit switch cost

Wavelength Converters Sharing Schemes

- Shared-Per-Link (SPL)
- WCs shared among the packets directed to the same output link
- Shared-Per-Node (SPN)
- WCs shared among all the arriving packets
- Shared-Per-Input-Wavelength (SPIW)
- WCs shared among the packets arriving on the input channels related to the same wavelength
- Shared-Per-Output-Wavelength (SPOW)
- WCs shared among the packets forwarded to the output channels related to the same wavelength

Different sharing schemes require different kinds of WCs

Contention in optical switch with shared wc

- Channel blocking
- it is a consequence of overload on a wavelength channel on output link
- more than one packet require the same output channel
- it can be resolved by finding a different channel on the same fiber
- it requires wavelength conversion
- Internal blocking
- it is a consequence of resource limitation inside the switch
- mostly related to WC unavailability or limited range of WCs
- it leads to packet loss (no buffer)
- Output blocking
- it is a consequence of overload on output link
- exceeding packets require the same output link
- it leads to packet loss (no buffer)

Shared-Per-Link (SPL) Scheme

- Optical switch with \mathbf{N} input/output fibers carrying a WDM signal with M wavelengths
- Each output link is equipped with a dedicated pool of \boldsymbol{R} WCs
- $\boldsymbol{R}<\mathrm{M}$ partially equipped
- $\boldsymbol{R}=\mathrm{M}$ fully equipped
- Input packets firstly forwarded on the same wavelength they come from (without wavelength conversion)
- In case of channel contention, wavelength conversion is performed

Packet Loss: Case 1

G: number of different wavelengths sending at least 1 packet to output interface j

Case 1: $\mathrm{G}>\mathrm{M}-\mathrm{R}$

- M - R packets are transmitted to the output channels without WC
- All channels without WC are exploited
- R packets are transmitted to the output channels with WC
- Total packets transmitted: M, remaining packets are lost
- Number of transmitted packets is the same as in the full conversion case DEISNET

Example:
$\mathrm{M}=6$
$\mathrm{R}=3$
$G=4>M-R$

Packet Loss: Case 2

Case 2: $\mathrm{G}<\mathrm{M}-\mathrm{R}$

- G packets are transmitted to the output channels without WC

Example:
$M=6$

- R packets are transmitted to the output channels with WC
- Total packets transmitted: $G+R<M$, remaining packets are lost
- Not all channels without WC can be exploited to transmit packets
- loss is higher than in the full wavelength conversion case

Shared-Per-Node (SPN) Scheme

- Optical switch with N input/output fibers with M wavelength channels
- \boldsymbol{R} (< NM) TWCs shared by all input channels
- Only the packets requiring conversion are sent to the WC pool
- Further optical switching stage required to reach the target output link

UNVERITA DI Bologna
DEISNET

Case 1: Packet Loss Due To Output Blocking

- $\mathrm{N}=2$ input/output fibers
- $\mathrm{M}=4$ wavelengths per fiber
- R=2 TWCs

- 5 packet arrivals directed to output fiber 1 in a time slot
- One packet from each different wavelength is firstly sent without conversion
- Further packets are sent after wavelength conversion
- If destination output fiber is congested, packet is lost
- If destination output fiber is congested, packet is not sent to TWC pool

Case 2: Packet Loss Due To Lack of WCs

- $\mathrm{N}=2$ input/output fibers
- $\mathrm{M}=4$ wavelengths per fiber
- $R_{N}=1$ TWC

UNVERSTIAD DOLOGNA
DEISNET

- 4 packet arrivals directed to output fiber 1 in a time slot
- First, one packet from each different wavelength is sent without conversion
- Then, other packets are sent exploiting wavelength conversion
- If no TWC is available, packet is lost even if there are available wavelengths on the output fiber

Shared-Per-Input-Wavelength (SPIW) Scheme

- Optical switch with N input/output fibers with M wavelength channels
- WCs partitioned among the input wavelengths
- M groups of WCs
- $\boldsymbol{R}(<\mathrm{N})$ WCs shared among the same input wavelength
- MR in total
- FTWCs can be used, given that each WC has a fixed input wavelength
- Same switching fabrics as in the SPN,
 whose size depends on the number of WCs

Shared-Per-Onput-Wavelength (SPOW) Scheme

- Optical switch with N input/output fibers with M wavelength channels
- WCs partitioned among the output wavelengths
- M pools of WCs
- $\boldsymbol{R}(<\mathrm{N})$ WCs shared among the packets forwarded to the same wavelength
- MRWCs in total
- FWCs can be used, given that each WC has a fixed output wavelength
- Same switching fabrics as in the SPN, their size depends on the number of WCs

Outline

- Contention Resolution in Optical Switches
- Buffer-less architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

A Simple Analytical Model of SPN Ioss

- Hypothesis:
- Synchronous environment, packet length equal to time slot duration
- Bernoulli independent arrivals on input wavelengths, with load \boldsymbol{p}
- Packet arrivals uniformly addressed to the N output fibers (probability $1 / \mathrm{N}$)
- Variables:
- \boldsymbol{p} : arrival probability on an input channel in a time slot
- \boldsymbol{P}_{u} : probability that the output fiber is congested and packet discarded (output blocking)
- \boldsymbol{P}_{b} : probability that the packet is blocked on its wavelength (wavelength blocking)
- $\boldsymbol{A}_{\text {wc }}$: traffic offered to WC pool from each wavelength
- $\boldsymbol{P}_{\text {bwc }}$: probability that packet lost due to WC unavailability (internal blocking)
- $\boldsymbol{P}_{\text {loss: }}$: overall packet loss probability

UNIIRSIT DI BOLOGNA
DEISNET
Bologna, 19/11/2010

Expression of Packet Loss Probability

$$
P_{l o s s}=P_{u}+P_{b}
$$

- Probability that a packet requires conversion, joint probability of:

Probability that a packet requires conversion

- Pb , wavelength blocking
- 1-Pu/Pb, packet not blocked on the output fiber given that it is blocked on its wavelength

Considerations on Pu and Pb

- Pu: probability that the output fiber is congested and packet discarded (output blocking)
- Pb : probability that the packet is blocked on its wavelength (wavelength blocking)

$$
\begin{aligned}
& \text { UNVERTIA D BTIOGMA } \\
& \text { DEISNE }
\end{aligned}
$$

$$
\begin{aligned}
& P_{U} \subset P_{b} \quad P(U, b)=P_{U} \\
& P(U, b)=P(U \mid b) P_{b}=P(b \mid U) P_{U} \\
& P(b \mid U)=1 \\
& P(U \mid b)=\frac{P_{U}}{P_{b}}
\end{aligned}
$$

Expression of P_{u}

- P_{u} is evaluated on destination output fiber
- P_{u} is calculated assuming full wavelength conversion capability
- Up to MN packet arrivals directed to that output fiber, only M are sent
- Packet loss occurs when there are $h>M$ arrivals, and the tagged packet is one of those discarded

$$
P_{u}=\sum_{h=M+1}^{N \cdot M}\left(1-\frac{M}{h}\right)\binom{N \cdot M-1}{h-1}\left(\frac{p}{N}\right)^{h-1}\left(1-\frac{p}{N}\right)^{N \cdot M-h}
$$

- Probability of h arrivals is evaluated as the probability of $h-1$ arrivals on MN-1 input wavelengths other than the tagged
- Simple combinatorial formula gives accurate expression of packet loss

Expression of P_{b}

- P_{b} is evaluated considering a wavelength " k " on target output fiber
- Up to N packet arrivals carried by wavelength " k " and directed to the target output fiber
- Packet blocked on wavelength " k " when there are $h>1$ arrivals and the tagged packet is not the one forwarded without conversion

$$
P_{b}=\sum_{h=2}^{N}\left(1-\frac{1}{h}\right)\binom{N-1}{h-1}\left(\frac{p}{N}\right)^{h-1}\left(1-\frac{p}{N}\right)^{N-h}
$$

- Probability of h arrivals evaluated as probability of $h-1$ arrivals on wavelength " k " in the $N-1$ input fibers other than the tagged

Traffic on WC Pool Awc

- It is necessary to evaluate the traffic offered to the WC pool from each wavelength channel
- Probability that a packet is sent to WC pool: $P_{b} \cdot\left(1-\frac{P_{u}}{P_{b}}\right)$
- Load per input wavelength: $\quad p$
- Traffic on WC pool: $A_{w c}=p \cdot P_{b} \cdot\left(1-\frac{P_{u}}{P_{b}}\right)$

Expression of $\mathrm{P}_{\text {bwc }}$

- Assuming Bernoulli independent arrivals on input of WC pool, there are up to MN possible arrivals, each one with probability $A_{w c}$
- There are $\mathrm{R}<\mathrm{MN}$ WCs in the bank
- Packet loss occurs when there are $h>R$ arrivals and the tagged packet is one of those discarded
$P_{b w c}=\sum_{h=R+1}^{N \cdot M}\left(1-\frac{R}{h}\right)\binom{N \cdot M-1}{h-1}\left(A_{w c}\right)^{h-1}\left(1-A_{w c}\right)^{N \cdot M-h}$
- Probability of h arrivals is evaluated as probability of $h-1$ arrivals on $\mathrm{MN}-$ 1 output wavelengths other than the tagged
- Hypothesis of independent arrivals leads to overestimation of the packet loss
- correlation among the number of packets forwarded in different fibers is neglected
- packets already forwarded in a fiber, means less packets forwarded to other fibers, this is not considered
- anyway, the approximation obtained is good when NM is high

> DEISNET

Packet Loss Probability: Special Cases

- Full wavelength conversion ($\mathrm{R}=\mathrm{MN}$):
- no packet loss on TWC bank

$$
P_{b w c}=0 \quad P_{\text {loss }}=P_{u}
$$

- No wavelength conversion ($\mathrm{R}=0$):
- packets requiring conversion are lost

$$
\mathrm{P}_{\mathrm{bwc}}=1 \quad \square \quad \mathrm{P}_{\text {loss }}=\mathrm{P}_{\mathrm{u}}+\mathrm{P}_{\mathrm{b}}\left(1-\mathrm{P}_{\mathrm{u}} / \mathrm{P}_{\mathrm{b}}\right) \mathrm{P}_{\mathrm{bwc}}=\mathrm{P}_{\mathrm{b}}
$$

Considerations on the model

- Analytical model proposed for SPN architecture is very flexible
- The expression of the overall packet loss is valid in general
- The sharing scheme only influences the loss at the WC pool(s), $\mathrm{P}_{\text {bwc }}$
- The model can be used to evaluate packet loss in other sharing schemes, updating the expression of $P_{b w c}$
- Here, the analytical model is used to evaluate loss performance of SPIW scheme

DEISNET

Expression of $\mathrm{P}_{\mathrm{BWC}}$ for SPIW Scheme

- Considering SPIW, only $\mathrm{P}_{\text {bwc }}$ has to be changed according to the new sharing scheme
- In SPIW, up to N packets carried by same wavelength contend among each other for only R FTWCs
- At a given WC pool, loss occurs when there are $h>R$ arrivals and the tagged packet is one of those discarded

$$
P_{B W C}=\sum_{h=R+1}^{N}\left(1-\frac{R}{h}\right)\binom{N-1}{h-1}\left(A_{W C}\right)^{h-1}\left(1-A_{W C}\right)^{N-h}
$$

Up to N packets
contending for R
FTWCs

- In this case, the hypothesis of independent arrivals leads to less precise results, due to the lower number of channels considered (N instead of NM)
UNvisITN D ito
DEISNET

Comparison among SPN, SPL, SPIW

- Example: packet loss for SPN, SPL, SPIW as a function of the number of WCs varying load, as in the case:
- 1) $N=32, M=8$
- 2) $N=8, M=32$
- Same asymptotic value of the packet loss due to output blocking
- Relative performance between SPL and SPIW depends on switch configuration

UNVIRSTIAD Bologna

Further comparisons

- $\mathrm{N}=8, \mathrm{M}=48$

Effect of M on SPIW packet loss

- Set-up: $\mathrm{N}=16, \mathrm{M}=8,16,32$
- Packet loss probability as a function of number of WC per wavelength varying the number of wavelengths per fiber
- Packet loss greatly improves by increasing the number of wavelengths
 UNDISTH D moloosM
DEISNET

Outline

- Contention Resolution in Optical Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

Practical architectures

- The proposed sharing schemes must be realized taking available optical technology into account
- spitters/coupler, MUX/DEMUX, switching gates like Semiconductor Optical Amplifiers (SOA) switch...
- Different implementations can be proposed, based on broadcast-\&-Select (B\&S), wavelength routing (using Arrayed Waveguide Gratings, AWGs), space diversity and so on
- B\&S solutions based on optical gates (SOA or MEMS technologies as example) are presented

SPN Architecture

- \mathbf{N} input/output fibers, \mathbf{M} wavelengths
- B\&S SOA-based switching matrix
- WCs shared among all the input channels
- R TWCs
- Each WC must be reached by all the input fibers - N WSs to reach a single WC

SPIW Architecture

- \mathbf{N} input/output fibers, \mathbf{M} wavelengths
- B\&S SOA-based switching matrix
- SOA employed as ON/OFF gates
- Wavelength Selectors (WSs)
- R WCs dedicated to the same input wavelength
- Fixed-input/tunable output WCs
- Allows M WCs to be grouped $\square_{\square}, 7$ and reached by the input fibers in a simple way
unvirm NowSs to reach M WCs
DEISNET

D

SPOW architecture

- \mathbf{N} input/output fibers, \mathbf{M} wavelengths
- SOA-based switching matrix
- WCs shared among the same output wavelength
- \mathbf{R}_{w} WCs dedicated to the same output wavelength
- Tunable-input/fixed-output WCs
- simpler devices
- Each WC must be reached by all the input fibers
- N WSs to reach a single WC

UNVISTID D Doloom
DEISNET

SPL architecture

- \mathbf{N} input/output fibers, \mathbf{M} wavelengths
- SOA-based switching matrix
- WCs shared among the same output link
- $\mathbf{R}(0 \leq R \leq M) W C s$ dedicated to the same output link
- Tunable-input/tunable-output WCs
- Each WC must be reached by all the input fibers
- NWSs to reach a single WC

Multi-stage SPIW

- To improve scalability
- Same logical performance as SPIW
- B groups of wavelength converters
- $\mathrm{N}-\mathrm{B}$ direct fibers
- ($\mathrm{N}+1$) links for splitters and couplers

Scheduling Algorithms

- Sharing schemes require proper scheduling algorithms to solve contentions
- in both synchronous and asynchronous scenarios
- In asynchronous scenario, when a packet arrives the scheduling needs to assign resources to that packet
- In synchronous scenario, the scheduling algorithm must assign the resources to all incoming packets in that time slot
- must be executed in a (fraction of) time slot duration
- computational complexity as low as possible (possible parallelization over fibers/wavelengths
- OPTIMAL scheduling algorithm: able to forward the maximum number of packets
- minimum packet loss

UNURITID I tologn
DEISNET
Bologna, 19/11/2010

Heuristic Scheduling Algorithms

- Synchronous context
- 3 different phases (executed in each time slot):
- 1) packets carried by the same wavelength and directed to the same fiber are grouped in a common set
- packets in different sets are contention free, packets in the same set contend for the same output channel
- 2) packets that do not need wavelength conversion are directly sent to the output fibers
- one packet per set, randomly chosen, is sent to the related output channel
- packets exceeding the capacity of the output fibers (M channels) are discarded due to OUTPUT BLOCKING
- 3) packets that need conversion are sent to the output fibers:
- according to the WC availability, the remaining packets in the sets are sent to the proper WC pool
- packets blocked due to WC unavailability are discarded due to INTERNAL BLOCKING
- The first two phases are common to all sharing schemes, the third phase is strictly related to the WC sharing strategy

Sample scheduling in multi-stage SPIW

Complexity (Number of Optical Devices)

- Each sharing scheme requires a different organization of the optical devices
- Different architectures must be compared in terms of complex (and expensive) optical devices employed
- Here, we consider WCs and SOAs, which are active components
- Complexity in terms of WCs and SOAs employed

	total \# WCs	total \# SOAs (switching purposes)
SPN	$C_{\text {SPN }}=R$	$G_{\text {SPN }}=N\left(N M+(M+1) C_{\text {SPN }}\right)$
SPIW	$C_{\text {SPI }}=M R$	$G_{\text {SPIW }}=N\left(N M+2 C_{\text {SPIW }}\right)$
SPOW	$C_{\text {SPOW }}=M R$	$G_{\text {SPOW }}=N\left(N M+M C_{\text {SPOW }}\right)$
SPL	$C_{\text {SPL }}=N R$	$G_{\text {SPL }}=N\left(N M+M C_{\text {SPL }}\right)$

SPIW requires less SOAs when architectures equipped with the same number of
WCs
DEISNET

Advantages and Disadvantages of Sharing Architectures

\# WCs	Kind of WCs	\#SOAs	performance/ complexity trade-off	
SPN	lowest	TWCs (complex)	highest	fair
SPL	high (especially when N high, M low)	TWCs (complex)	near to SPN with some save	not good

Outline

- Contention Resolution in Optical Packet Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

SPIW and SPOW paths

Numerical results

- Reference parameters:
- EDFA: $\mathrm{P}_{\text {Out }, \mathrm{E}}=25 \mathrm{dBm}$
- SOA: $\mathbf{P}_{\text {out }, \mathrm{s}}=8 \mathrm{dBm}, \mathbf{S}_{\mathbf{s}}=-10 \mathrm{dBm}, \mathbf{F}_{\mathrm{s}}=7 \mathrm{~dB}, \mathrm{E}_{\mathrm{R}}=35 \mathrm{~dB}$
- WC: $\mathrm{P}_{\mathrm{out}, \mathrm{wc}}=3 \mathrm{dBm}, \mathrm{S}_{\mathrm{wc}}=0 \mathrm{dBm}$
- $\mathrm{OSNR}_{\mathrm{T}}$ at the receiver: 20 dB
- Single channel analysis
- Amplifier requirement
- input power > sensitivity
- Receiver requirement
- OSNR>OSNR ${ }_{T}$
- Interfering sources are accounted for as additional noise at the receiver input

DEISNET

Sensitivity analisys: NM=32

Power at SOA1 input decreases with the number of wc

Sensitivity analisys: NM=32

Power at SOA1 input decreases with the number of wc

-SPOW

Input power is too low

SPIW always match sensitivity constraints

Sensitivity analysis: NM=128

- Major limitations as the total number of channel increases
- Poor contention resolution capability in SPOW
OSNR analysis: path without wc

- Strong dependence on the number of wavelength converters when N is high due to interference effects

UNVIRSITA DI	
DEISNA	Bologna, 19/11/2010 109

Power consumption in SPIW and SPOW

- Considering actual power loss in passive devices, the SPOW consumes more power than SPIW (when equipped with the same number of WCs and high load)
- The dimensioning process should take not only loss but also power consumption (and scalability analysis) into account

The multi-stage architecture with input buffers

- A queuing stage based on the broadcast and select principle is added
- The behaviour of the $S-\lambda$-S sub-system is the same as before

The queueing stage

- A power coupler generates Q copies of the multi-wavelength bundle of channels
- $\mathrm{D}=\mathrm{k} \mathrm{T}, \mathrm{k}=0 . \mathrm{Q}-1$; T is the packet time
- Each FDL is followed by a wavelength selector
- Optical packets are available at the first Sstage with all possible delays D
- Input queuing scheduling can be applied

Queue scheduling

- Slot by slot operation
- Packets on the same input channel are organized in a list
- FIFO
- Lists are served on a FIFO basis
- Round robin service among lists
- Window
- Allow to overcome the HOL phenomenon
- If packets are present in the list, within a window of size W, which belong to a contention-free path, they are considered for forwarding

Scheduling of packet forwarding through the switch aims at minimizing wavelength conversion

Queue Scheduling pseudo code (FIFO)

step $1:$
for ($\mathrm{k}=0 ; \mathrm{k}<\mathrm{N} ; \mathrm{k}++$)
for ($\mathrm{j}=0 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}++$)
if (there is a packet carried by λ_{j} on input fiber k) the packet is inserted on the tail of list $\mathrm{L}_{\mathrm{k}}^{j}$;

step 2:

for ($\mathrm{k}=0 ; \mathrm{k}<\mathrm{N} ; \mathrm{k}++$)
for ($\mathrm{j}=\mathrm{O} ; \mathrm{j}<\mathrm{M}$; $\mathrm{j}++$) $\{$
in=(k+RRF) $\bmod N$
$\lambda=(j+R R W) \bmod M$;
if ($\mathrm{L}_{\text {in }}{ }^{\lambda}$!= NULL) \{
out=output fiber of the packet on the head of $L_{i n}{ }^{\lambda}$;
tx=sel_lambda(λ, out); if ($\mathrm{t} \gg 0$)
the packet is forwarded and removed from the head of $L_{i n} \lambda$; if $\left((t x==-1) \& \&\left(T-C_{i n}{ }^{\lambda}==Q-1\right)\right)$
the packet is removed from the head of $L_{i n}{ }^{\lambda}$; \}
\}
$R R F=(R R F+1) \bmod N$; if $(R R F==0) \quad R R W=(R R W+1) \bmod M$;

Step 1: lists are formed for each channel

Step 2:
a packet is extracted from the head of each list (FIFO)
RRF and RRW are counters that assure fairness
Sel_lambda is a procedure to find a path through the switch

Quality of service

- Input queuing allows also quality of service differentiation in the node
- A simple QoS algorithm is considered to manage two QoS classes
- The scheduling algorithm considers high priority packets first, if present in the list
- Low priority packets are then searched for, otherwise

Simulation set up

- Bernoulli independent arrivals on input channels
- Uniform addressing scheme
- FIFO-RR and W-RR scheduling
- Confidence interval at 95\%
- Less than or equal to the 5% of the mean

Packet loss improvement

- $\mathrm{N}=16, \mathrm{M}=16$

- FIFO-RR
- $\mathrm{p}=0.8$
- L buffer size
- Remarkable improvement when internal block is overcome (asymptotic region)

Output contention resolution in time domain

Single stage with recirculation shared buffer

- N input/output fibers
- M wavelengths per fiber
- Strictly non-blocking space switching fabric
- (NM+R+L') x (NM+R+L)
- R Full Range Tunable Wavelength Converters (TWCs) shared per node
- Queuing stage with M queues (one per wavelength), with size b
- FDLs
- Electronic buffers

DEISNET

Practical implementation of the hybrid switch

Queuing policies

- Hp: In each time slot, packets in the queues are served before packets from input fibers
- Two policies for buffer management:
- FIFO: only the Head Of Line (HOL) packets (up to M) are served
- Windowing: w packets in each queue can be
 forwarded, if directed to different output fibers
- Window size: w=b, up to $\mathrm{M}^{*} \max (\mathrm{~b}, \mathrm{~N})$ packets can be forwarded

Packet forwarding

- The packet is sent without conversion, if possible
- Otherwise the packet is sent with conversion
- If output fiber is congested or no TWC is available, the packet is stored in the queue
- The packet is lost when its queue is busy

Packet loss probability

- Ploss =f(TWC), varying buffer size b ,
- $\mathrm{N}=16, \mathrm{M}=16, \mathrm{~L}=\mathrm{L}^{\prime}=256, \mathrm{p}=0.8$
- FIFO: improvement when buffer size increases only if enough TWCs are available
- Due to the saturation of the queues
- Windowing: relevant improvement of the throughput in all regions
- Small number of TWCs can be enough to assure low packet loss

DEISNET 3

Bologna, 19/11/2010 125

Switch dimensioning

- $b=f($ TWC $)$, to obtain a target PLP
- $N=16, M=16, L=256, p=0.8$
- Different couples (b, TWC) can be chosen to obtain the same packet loss
- The percentage of packets forwarded without O/E conversion decreases as the number of TWCs decreases
- If a certain percentage of packets must be forwarded in optics, a certain number of TWCs must be employed

Outline

- Contention Resolution in Optical Switches
- Buffer-less Architectures
- Logical performance evaluation
- Practical architectures
- Physical path analysis
- Buffered architectures
- Conclusions

DEISNET

Conclusions

- Different sharing schemes lead to different technology to be employed
- different complexity
- different cost
- Difficult to find an architecture which is the best solution for all switch dimensioning
- the best architecture must be selected according to N and M and traffic context
- In general, SPIW can (in most cases) be implemented with a lower number of SOAs and provides less power consumption
- SPOW is equipped with FWCs, which are easier to be implemented
- For this reason, they represent a good alternative to the well studied SPL and SPN architectures

Open points and research opportunities

- Optical switching is feasible but
- Limitation on the number of channels
- SOAs are costly and power consuming
- Very limited storage capability
- Extremely high capacity and overall costs

Possible solutions:

- Hybrid technology optical switching
- Fast and slow optical switching subsystems
- Electrical buffers
- NEED of managing/programmable capability to match technology performance with transport techniques and quality of service
- Hardware resource sharing
- network transport technologies
- service providers
- custumers

- Node programmability is the emerging concept
- Modular node design
- Data,control,management capabilities

Events in Bologna: February 2011

- BONE Closing session
- Farnese Chapel, City hall (Palazzo d'Accursio), February $7^{\text {th }}$
- Optical network Design and Modeling (ONDM 2011)
- A peer-reviewed international conference
- Faculty of engineering, February $8^{\text {th }}-10^{\text {th }}$
- Workshops
- Workshop 1 - Building the Future Optical Network in Europe: Key final outcomes of the EU BONE project, February $8^{\text {th }}$, Faculty of engineering, 14-16 p.m
- Workshop 2 - Control plane evolution in metro and core networks, February $9^{\text {th }}$, Faculty of engineering, 16-18 p.m
- Information available at http://www.ondm2011.unibo.it/
- To participate to any of these events write an e-mail to
- carla.raffaell@unibo.it
- Registration of students of Master Degree in Telecommunications is free!

Motivations

- New transport paradigms are needed for Future Internet
- User- , service- and content-centric
- Integrating heterogeneous virtualized resources on top of a common physical infrastructure
- Current network-centric approach provide
- Technology-dependent transport
- Semi-static service provisioning
- Limited knowledge of service requirements
- Need for built-in network functionalities capable of dynamically providing on-demand virtual communication resources based on high-level service needs

Key features

- Node and Network Programmability
- Open and accessible control of switching/routing facilities and other network functions
- Infrastructure owned by a Host Operator (HO) and dynamically configured by multiple Guest Operators (GOs) to offer different on-demand connectivity services to their customers
- Scalable and cost-effective resource sharing solution
- Security and reliability issues

Network programmability background

- Original idea from the late '90s
- oriented to traditional IP networks
- IEEE Communications Magazine, Vol. 36, No. 10, October 1998
- IEEE Networks, Vol. 12, No. 3, May/June 1998
- Two approaches
- Programmable networks
- set of open and standardized programming interfaces that allowed customer applications to activate and manage services by reconfiguring low-level routing and switching resources
- Active networks
- more radical approach by allowing each packet to carry not only the traditional IP header information (needed for routing and forwarding purposes), but also code fragments to be executed on the nodes in order to customize specific networking functions
- Standardization attempts
- IEEE P1520 project (never became standard...)

Major players

- Optical Networks
- Key role in the physical infrastructure
- high bandwidth, reduced power consumption, small footprint, etc.
- Capable of multiple switching granularity based on service needs
- Circuit (OCS)
- Packet (OPS)
- Burst (OBS)
- Programmable Node Architectures
- Key role in the network infrastructure control and management planes

Network planes: control plane

- Routing information is exchanged between IP routers to build routing tables needed to perform packet forwarding
- Network equipment performs signaling and computation operations

[^2]
Network planes: management plane

- Management information is exchanged between hosts and network equipment to monitor or configure the network using different management protocols
- Network equipment performs host-like operations
DEISNET Bologna, 19/11/2010 ${ }^{139}$

Programmable hybrid optical router

- Multiple switching granularity available on demand
- Multiple Guest Operators offer different switching services tailored to the customer needs
- Co-existence of OPS, OBS, OCS within the same infrastructure

Programmable OPS/OCS hybrid network

Guest Operator A: Pure OCS network

Programmable OPS/OCS hybrid network

Guest Operator A

Guest Operator B: Partially hybrid OCS/OPS network

Programmable OPS/OCS hybrid network

Programmable OPS/OCS hybrid network

New programmable node design approach

- Key concept:

Separation of control and forwarding functions

- Based on IETF ForCES framework (RFCs 3746 and 5810)
- network boxes as multi-vendor systems where control and forwarding subsystems can be developed and can evolve independently
- Provides the required modular architecture to implement programmable node functions
- Extended with a further separation between
- High-level, logical forwarding functions
- Low-level, hardware-dependent device configuration tasks
- Resulting in a modular architecture capable of resource virtualization

Programmable hybrid router architecture

How do we test it?

- Different testing approaches to characterize the system architecture from logical and physical perspectives
- Analytical evaluation: too difficult for complex systems and often based on approximations
- Physical implementation: usually expensive and sometimes unfeasible due to technology limitations
- Simulation: typically adopts a simplified model and provides an abstracted representation of the system
- e.g. node control design: real interactions between control plane and forwarding plane are often neglected

Why software emulation?

- To go further than typical simulations
- Implementation of the software components of the control and forwarding planes
- Emulation of the physical components of the data plane
- Implementation of their real interacting functions
- Accounting for as many feasibility aspects as possible

Software router emulation environment

- Click Modular Router: http://read.cs.ucla.edu/click/
- Flexible, modular, fine-grained architecture for implementing software-based routing with full control of the packet flow
- Build your own IP router: a number of basic elements to perform switching and routing functions are provided
- Add your own customized features: elements can be extended and new ones can be designed
- Click emulation of programmable optical routers provides
- Cheap and fast prototyping of all the control and forwarding plane features to be implemented in the real system
- Modular flexibility to enforce node programmability
- Emulation of the physical switching operations

Software router configuration

Example of emulated switching matrix

Emulation of the physical layer

- Wavelength multiplexing and signal propagation emulated using Click's Paint functions
- Incoming data packets are marked by the OpticalSource elements according to the input wavelength they are supposed to be received on
- Signal power level and OSNR value are associated to each data packet and modified by each device traversed

UNVIRSTIA DI BIOGNA
DEISNET

Testing the physical layer emulation

Testing the logical performance

- Synchronous OPS only
- $N=4$ I/O fibers, M wavelengths/fiber
- Packet Loss Rate vs. input traffic ($\mathrm{N} \times \mathrm{M}$ Bernoulli sources)
- Comparison with well-established node simulator
- The emulator correctly schedules the packets

Testing the multi-granular switching

- Capture of control and management plane traffic during router programming operations

Not authorized No. . Time	Source	Destination	Protocol	Info
300	172.16.2.1	192.168.102.1	RSV	PATH Message. SESSION: IPv4
3510	172.16.5.1	192.168.105	RS	PATH Message. SESSION: IPv4-LSP,
451	10.50.51.2	10.50.51.1	RSV	RESV Message. SESSION: IPv4-LSP,
56	192.168.10.209	192.168.10.69	TCP	53294 > netconf-ssh [PSH, ACK] S
663	192.168.10.69	192.168.10.209	TCP	netconf-ssh > 53294 [PSH, ACK] S
763	192.168.10.209	192.168.10.69	TCP	$53294>$ netconf-ssh [ACK] Seq=34
871	172.16.2.1	192.168.102.1	RS	PATH Message. SESSION: IPv4-LSP,
9716	10.50.50.2	10.50.50.1	RS	RESV Message. SESSION: IPv4-LSP
11	192.168.10.209	192.168.10.69	TCP	$53294>$ netconf-ssh [PSH, ACK]
11120	192.168.10.69	192.168.10.209	TCP	netconf-ssh > 53294 [PSH, ACK] S
121206	192.168.10.209	192.168.10.69	TCP	53294 > netconf-ssh [ACK] Seq=68
	172.16.2.1	192.168.102.1	RSVP	PATH TEAR Message. SESSION: IPv4
41715	172.16.5.1	192.168.105.1	RSVP	Path tear Message. SESSION: IPv4
152015	172.16.1.1	192.168.101.1	RSVP	PATH Message. SESSION: IPv4-LSP,
162018	10.50.50.2	10.50.50.1	RSVP	RESV Message. SESSION: IPV4-LSP

Measuring the throughput

- OPS (Bernoulli sources) + OCS (CBR sources)
- $\mathrm{N}=2 \mathrm{I} / \mathrm{O}$ fibers, $\mathrm{M}=4$ wavelengths/fiber

Security and reliability issues

- Enforcing security is a two-fold problem

1. Issues when a GO requests the activation of a given programmable function on a HO node GO vs. HO Transactions
2. Issues when one of the customers of a trusted GO requests to use one of the programmable functions available Customer vs. GO/HO Transactions

- Major aspects to be covered
- Authentication
- Authorization
- Integrity
- Confidentiality
- Protection and Availability
- Accounting (not considered here)

Authentication

1. GO vs. HO

- The GO must authenticate itself before the HO allows it to use its network infrastructure
- The GO must be sure to talk to the desired HO
- Reciprocal authentication needed (e.g. using PKI certificates)
- A Guest Operator Service Level Agreement (GO-SLA) must be negotiated and established between each GO and the HO

2. Customer vs. $\mathrm{GO} / \mathrm{HO}$

- Customers of a trusted GO must authenticate themselves when requesting a given service to the GO/HO
- Service-specific solutions based on the signaling protocols
- e.g. GMPLS-based multi-service optical network may use standard authentication mechanisms provided by RSVP-TE
- RSVP-TE messages carry an Integrity Object including a sequence number and a SHA-1 message digest with secret keys shared between neighbors
$\begin{array}{ll}\text { UNVIRSTIA DI Bologna } \\ \text { DEISNET } & \text { Bologna, 19/11/2010 }\end{array}$

Authorization

1. GO vs. HO

- A trusted GO is allowed to activate a programmable function only if it is specified in its GO-SLA
- Possible solution: white list approach, including the trusted GOs and the list of programmable functions available in their GO-SLAs

2. Customer vs. GO/HO

- An authenticated customer is allowed to request only services complying with the GO-SLA of its GO
- In addition, different customers of the same GO may have different service profiles, e.g. allowing different numbers of instances of a given service
- Possible solution: a second-level white list, including the type of service and number of instances of each customer service profile defined in each GO-SLA

Integrity

1. GO vs. HO

- Accidental or intentional alterations of the messages exchanged between GOs and HOs must be detected
- Possible solution: to digitally sign each transaction, adopting a mechanism to be agreed upon during the authentication phase

2. Customer vs. GO/HO

- Message integrity during exchanges with authenticated customers must be kept as well
- Service-specific solutions based on the signaling protocols
- e.g. GMPLS-based multi-service optical network may use standard integrity check mechanisms provided by RSVP-TE
- The Integrity Object within a RSVP-TE message includes a keyed hash function of the entire message

```
DEISNET
```


Confidentiality

- Any critical information exchange must be encrypted using a robust method
- Control plane
- use of PKI solutions
(e.g. when distributing the shared keys to the neighbors for RSVP-TE authentication and integrity check)
- Data plane
- left to end-user applications (e.g. using SSL/TLS)
- activation of specific programmable network functions (e.g. secure tunnel based on IPsec)

Protection and Availability

- The services offered by the HO must be available 24-7
- The HO must enforce protection mechanisms to minimize the impact of any accidental service interruption
- e.g. equipment failures, cable cuts, natural disasters
- redundancy and backup resource allocation should be planned, e.g. using GMPLS protection and restoration techniques
- Malicious denial-of-service attacks may also compromise service availability
- intrusion detection/prevention solutions should be enforced
-

Enforcing security in the node control plane

CE finite state machine w.r.t a given GO

Before the GO activates the OCS programmable function 1, toFE(PH)

CE finite state machine w.r.t a given GO

After the GO has activated the OCS programmable function

Conclusion and further developments

- Programmable optical router architecture as a key solution for future flexible network service provisioning
- Security and reliability issues to be tackled
- Software-router emulation as a flexible, inexpensive and fully-functional test platform
- Preliminary tests show promising results
- Further work currently under development
- Extensive performance assessment of the programmable multiservice architecture
- Implementation of standard ForCES protocol
- Implementation of the OBS control plane
- Improvement of optical signal propagation emulation
- Further benchmarking of kernel-level processing speed

[^0]: UNVERITA DI BLOGMA
 DEISNET

[^1]: DEISNET

[^2]: UNIVRRITA DI Blogna
 DEISNET

