5,092 research outputs found

    A new automated workflow for 3D character creation based on 3D scanned data

    Get PDF
    In this paper we present a new workflow allowing the creation of 3D characters in an automated way that does not require the expertise of an animator. This workflow is based of the acquisition of real human data captured by 3D body scanners, which is them processed to generate firstly animatable body meshes, secondly skinned body meshes and finally textured 3D garments

    Validity and sensitivity of a human cranial finite element model: Implications for comparative studies of biting performance

    Get PDF
    Finite element analysis (FEA) is a modelling technique increasingly used in anatomical studies investigating skeletal form and function. In the case of the cranium this approach has been applied to both living and fossil taxa to (for example) investigate how form relates to function or infer diet or behaviour. However, FE models of complex musculoskeletal structures always rely on simplified representations because it is impossible completely to image and represent every detail of skeletal morphology, variations in material properties and the complexities of loading at all spatial and temporal scales. The effects of necessary simplifications merit investigation. To this end, this study focuses on one aspect, model geometry, which is particularly pertinent to fossil material where taphonomic processes often destroy the finer details of anatomy or in models built from clinical CTs where the resolution is limited and anatomical details are lost. We manipulated the details of a finite element (FE) model of an adult human male cranium and examined the impact on model performance. First, using digital speckle interferometry, we directly measured strains from the infraorbital region and frontal process of the maxilla of the physical cranium under simplified loading conditions, simulating incisor biting. These measured strains were then compared with predicted values from FE models with simplified geometries that included modifications to model resolution, and how cancellous bone and the thin bones of the circum-nasal and maxillary regions were represented. Distributions of regions of relatively high and low principal strains and principal strain vector magnitudes and directions, predicted by the most detailed FE model, are generally similar to those achieved in vitro. Representing cancellous bone as solid cortical bone lowers strain magnitudes substantially but the mode of deformation of the FE model is relatively constant. In contrast, omitting thin plates of bone in the circum-nasal region affects both mode and magnitude of deformation. Our findings provide a useful frame of reference with regard to the effects of simplifications on the performance of FE models of the cranium and call for caution in the interpretation and comparison of FEA results

    Stability and energy budget of pressure-driven collapsible channel flows

    Get PDF
    Although self-excited oscillations in collapsible channel flows have been extensively studied, our understanding of their origins and mechanisms is still far from complete. In the present paper, we focus on the stability and energy budget of collapsible channel flows using a fluid–beam model with the pressure-driven (inlet pressure specified) condition, and highlight its differences to the flow-driven (i.e. inlet flow specified) system. The numerical finite element scheme used is a spine-based arbitrary Lagrangian–Eulerian method, which is shown to satisfy the geometric conservation law exactly. We find that the stability structure for the pressure-driven system is not a cascade as in the flow-driven case, and the mode-2 instability is no longer the primary onset of the self-excited oscillations. Instead, mode-1 instability becomes the dominating unstable mode. The mode-2 neutral curve is found to be completely enclosed by the mode-1 neutral curve in the pressure drop and wall stiffness space; hence no purely mode-2 unstable solutions exist in the parameter space investigated. By analysing the energy budgets at the neutrally stable points, we can confirm that in the high-wall-tension region (on the upper branch of the mode-1 neutral curve), the stability mechanism is the same as proposed by Jensen and Heil. Namely, self-excited oscillations can grow by extracting kinetic energy from the mean flow, with exactly two-thirds of the net kinetic energy flux dissipated by the oscillations and the remainder balanced by increased dissipation in the mean flow. However, this mechanism cannot explain the energy budget for solutions along the lower branch of the mode-1 neutral curve where greater wall deformation occurs. Nor can it explain the energy budget for the mode-2 neutral oscillations, where the unsteady pressure drop is strongly influenced by the severely collapsed wall, with stronger Bernoulli effects and flow separations. It is clear that more work is required to understand the physical mechanisms operating in different regions of the parameter space, and for different boundary conditions

    A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole

    Get PDF
    In this work, we introduce a modified Holzapfel-Ogden hyperelastic constitutive model for ventricular myocardium that accounts for residual stresses, and we investigate the effects of residual stresses in diastole using a magnetic resonance imaging–derived model of the human left ventricle (LV). We adopt an invariant-based constitutive modelling approach and treat the left ventricular myocardium as a non-homogeneous, fibre-reinforced, incompressible material. Because in vivo images provide the configuration of the LV in a loaded state even in diastole, an inverse analysis is used to determine the corresponding unloaded reference configuration. The residual stress in this unloaded state is estimated by two different methods. One is based on three-dimensional strain measurements in a local region of the canine LV, and the other uses the opening angle method for a cylindrical tube. We find that including residual stress in the model changes the stress distributions across the myocardium and that whereas both methods yield qualitatively similar changes, there are quantitative differences between the two approaches. Although the effects of residual stresses are relatively small in diastole, the model can be extended to explore the full impact of residual stress on LV mechanical behaviour for the whole cardiac cycle as more experimental data become available. In addition, although not considered here, residual stresses may also play a larger role in models that account for tissue growth and remodelling

    A Data-Driven Appearance Model for Human Fatigue

    Get PDF
    Humans become visibly tired during physical activity. After a set of squats, jumping jacks or walking up a flight of stairs, individuals start to pant, sweat, loose their balance, and flush. Simulating these physiological changes due to exertion and exhaustion on an animated character greatly enhances a motion’s realism. These fatigue factors depend on the mechanical, physical, and biochemical function states of the human body. The difficulty of simulating fatigue for character animation is due in part to the complex anatomy of the human body. We present a multi-modal capturing technique for acquiring synchronized biosignal data and motion capture data to enhance character animation. The fatigue model utilizes an anatomically derived model of the human body that includes a torso, organs, face, and rigged body. This model is then driven by biosignal output. Our animations show the wide range of exhaustion behaviors synthesized from real biological data output. We demonstrate the fatigue model by augmenting standard motion capture with exhaustion effects to produce more realistic appearance changes during three exercise examples. We compare the fatigue model with both simple procedural methods and a dense marker set data capture of exercise motions

    A 3D discrete model of the diaphragm and human trunk

    Full text link
    In this paper, a 3D discrete model is presented to model the movements of the trunk during breathing. In this model, objects are represented by physical particles on their contours. A simple notion of force generated by a linear actuator allows the model to create forces on each particle by way of a geometrical attractor. Tissue elasticity and contractility are modeled by local shape memory and muscular fibers attractors. A specific dynamic MRI study was used to build a simple trunk model comprised of by three compartments: lungs, diaphragm and abdomen. This model was registered on the real geometry. Simulation results were compared qualitatively as well as quantitatively to the experimental data, in terms of volume and geometry. A good correlation was obtained between the model and the real data. Thanks to this model, pathology such as hemidiaphragm paralysis can also be simulated.Comment: published in: "Lung Modelling", France (2006

    A multiscale model for collagen alignment in wound healing

    Get PDF
    It is thought that collagen alignment plays a significant part in scar tissue formation during dermal wound healing. We present a multiscale model for collagen deposition and alignment during this process. We consider fibroblasts as discrete units moving within an extracellular matrix of collagen and fibrin modelled as continua. Our model includes flux induced alignment of collagen by fibroblasts, and contact guidance of fibroblasts by collagen fibres. We can use the model to predict the effects of certain manipulations, such as varying fibroblast speed, or placing an aligned piece of tissue in the wound. We also simulate experiments which alter the TGF-β concentrations in a healing dermal wound and use the model to offer an explanation of the observed influence of this growth factor on scarring
    corecore