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A Data-Driven Appearance Model for Human Fatigue

Abstract

Humans become visibly tired during physical activity. After a set of squats, jumping jacks or walking up a flight
of stairs, individuals start to pant, sweat, loose their balance, and flush. Simulating these physiological changes
due to exertion and exhaustion on an animated character greatly enhances a motion’s realism. These fatigue
factors depend on the mechanical, physical, and biochemical function states of the human body. The difficulty
of simulating fatigue for character animation is due in part to the complex anatomy of the human body. We
present a multi-modal capturing technique for acquiring synchronized biosignal data and motion capture data
to enhance character animation. The fatigue model utilizes an anatomically derived model of the human body
that includes a torso, organs, face, and rigged body. This model is then driven by biosignal output. Our
animations show the wide range of exhaustion behaviors synthesized from real biological data output. We
demonstrate the fatigue model by augmenting standard motion capture with exhaustion effects to produce
more realistic appearance changes during three exercise examples. We compare the fatigue model with both
simple procedural methods and a dense marker set data capture of exercise motions.
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A Data-driven Appearance Model for Human Fatigue

Joseph T. Kider Jr., Kaitlin Pollock, and Alla Safonova

University of Pennsylvania

Abstract

Humans become visibly tired during physical activity. After a set of squats, jumping jacks or walking up a flight
of stairs, individuals start to pant, sweat, loose their balance, and flush. Simulating these physiological changes
due to exertion and exhaustion on an animated character greatly enhances a motion’s realism. These fatigue
factors depend on the mechanical, physical, and biochemical function states of the human body. The difficulty of
simulating fatigue for character animation is due in part to the complex anatomy of the human body. We present a
multi-modal capturing technique for acquiring synchronized biosignal data and motion capture data to enhance
character animation. The fatigue model utilizes an anatomically derived model of the human body that includes a
torso, organs, face, and rigged body. This model is then driven by biosignal output. Our animations show the wide
range of exhaustion behaviors synthesized from real biological data output. We demonstrate the fatigue model by
augmenting standard motion capture with exhaustion effects to produce more realistic appearance changes during
three exercise examples. We compare the fatigue model with both simple procedural methods and a dense marker

set data capture of exercise motions.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Computer Animation

1. Introduction

Currently in animated films and video games, the visualiza-
tion of human exhaustion is either artistically stylized or ig-
nored completely. Every human sweats, pants, flushes, and
loses balance as they perform physical activity (Figure 1).
No one has the fitness level of an animated character. Run-
ning up a hill or climbing stairs has a physiological effect
on the body. Therefore the physiological effects of fatigue
cannot be ignored when producing realistic animations. Tra-
ditionally, artists tediously paint textures and meticulously
layer subtle motions to produce dynamic exhaustion effects.
This process is ad hoc, tedious and time-consuming for an-
imators to tune the visual effect. We present a novel data-
driven approach to automatically simulate exhaustion effects
on virtual characters so they appear more tired the longer
they perform motions. This work enhances animation by tak-
ing advantage of biomedical research and exercise physiol-
ogy to apply captured data on anatomically inspired model.

Traditional motion capture techniques produce believable
character animation. However, traditional 30-60 data marker
sets only approximate change in human motion. As virtual
characters become more realistic, it is important to simulate
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physiological appearance changes in addition to motion cap-
ture to simulate the body’s response to physical activity. Ex-
haustion effects are particularly challenging since they are
non-periodic and complex, involving both motions and ap-
pearance changes.

Figure 1: This figure shows the first frame and the last frame
of a jumping jack exercise. On the right, the character ap-
pears red, sweaty, and moves his head back since he feels
fatigued from jumping for 2 minutes.

In this paper, we introduce a data-driven method to cap-
ture and animate physiologically apparent exhaustion ef-
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fects on a human character. We propose a multi-modal mo-
tion capture approach for capturing both human motion and
biosignal data (EKG, BVP, GSR, respiration, and skin tem-
perature) visualized in Figure 2. This novel capture process
greatly enhances the quality of the data we collect. Our ob-
jective is to apply this data onto a human character to en-
hance secondary exhaustion animation effects such as sweat-
ing, breathing, and flushing (Figure 1). We accurately recre-
ate an anatomically inspired human body to demonstrate the
exhaustion effects. The human model consists of a rigged
skeleton, lungs, ribs, spine, intestines, heart, and face. The
biosignal data controls the deformation of the human model.
This allows us to automatically generate exhaustion effects
layered on human motion. We propose a straightforward
method for producing a data-driven appearance model of hu-
man fatigue.

To validate the fatigue model, we captured exercise mo-
tions of ten subjects (five males and five females) ranging
in size and shape. The subjects all exhibited the same sig-
nificant signs of exhaustion when they performed the exer-
cise motions. We illustrate these physiological changes of
exercise by showing biosignal output plots. Physical activ-
ity produces significant change in the plots of respiration
rate, pulse, skin temperature, and galvanic skin response. We
demonstrate the fatigue output on a virtual character whose
exhaustion effects change due to the biosignal output sig-
nals for three types of exercise motions: jumping jacks, stair
stepping, and squatting. Lastly, we evaluate the results by
comparing the simulated model to a dense motion capture
marker set that covers the chest. The fatigue model produces
similar chest deformations without needing to capture 50 ex-
tra chest markers. Additionally, the fatigue model is able to
add flushing and sweating to the virtual characters, which
cannot be captured effectively with previous methods.

The main contribution of this work is presenting a biosig-
nal data capture technique that drives a human character
to augment its visual appearance. We layer various dy-
namic physiological effects such as perspiration, flushing,
and breathing on the human character. These effects change
due to the biodata output providing more realistic appear-
ance of fatigue on the character animation.

2. Related Work

To our knowledge, little work has been conducted to en-
hance virtual character animations with synchronized bio-
data output. In the movie Beowulf, Sony Picture Imageworks
combined electrooculography (EOG) with motion capture
to create realistic eye movement on characters. Some re-
searchers [SCCHO09, TLX10, MTCSO08] capture electromyo-
graphy (EMG) with motion capture to measure and record
the electrical activity produced by skeletal muscles. Unfor-
tunately, full body EMG systems are extremely expensive,
very invasive for the subject, and produce extremely noisy
data. These biodata enhancements are cheaper, non-invasive,

Figure 2: This figure shows the biodata sensor enhance-
ments to the motion capture process. The subject (a) is asked
to wear five different sensors: (b) a respiration sensor that
wraps around the chest, (c¢) an electrocardiography sensor
with three leads on the chest, (d) external skin temperature
sensor behind the ear, (e) blood volume pulse sensor and (f)
galvanic skin response sensor on the left hand. These sen-
sors are minimally invasive and only take an additionally
five minutes to place on the subject.

and produce cleaner data which can be directly applied to
enhance animations.

The simulation and visual appearance of anatomical sec-
ondary animation effects is well studied in graphics. Mon-
heit and Badler [MB91] simulated a flexible torso and
spine. Lee and Terzopoulos [LT06] introduced an animated
biomechanical model for the human neck.. Promayon et al.
[PBP97] looked at the rib cage, lungs, diaphragm, and ab-
domen during calm breathing patterns. Kaye et al. [KMP97]
modeled a basic cardiorespiratory physiology of the body
based on CT scans.

Zordan et al. [ZCCDO06] presented an anatomically in-
spired model of the human torso to simulate realistic res-
piration on human characters. Their torso simulation recon-
structed the human rib cage, spine, lungs, diaphragm mus-
cle, and lower abdomen. Characters became more alive with
simulated breathing motions. Sanders et al. [SDZB08] im-
proved the technique by placing 40 additional markers on
the human torso as input for the system. We compare the fa-
tigue model’s results to a similar dense marker set found in
this paper. DiLorenzo et al. [Dil09,DZS08] presented a tech-
nique for using sound tracks to drive the breathing model for
laughing, coughing, and sneezing. The underlying model of
the rib cage, spine and lungs follow a similar model to this
approach. We use output from the biosensors to drive the
fatigue model, rather than a dense marker set. Additionally,
our approach simulates heartbeats, flushing, mouth motions
and perspiration.

Many researchers have simulated facial movements
[PB81,KHYS02,Wat87,SNFO05]. Sagar [Sag06] and Bradley

(© The Eurographics Association 2011.
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et al. [BHPS10] captured facial expressions, geometry, and
textures to apply to facial animations. The fatigue model
does not simulate facial muscles or utilize an expensive
performance capture technique; instead it uses data-derived
blend shapes for the facial motion from sample facial cap-
tures. This motion is guided by the respiration data to mod-
ify the blend shape of the underlying facial rigs [DCFNO6]
to simulate mouth breathing.

The appearance of human skin, specifically for the face
and neck, contribute to showing the level of fatigue. Igarashi
et al. [INNO7] survey various appearance models for skin.
Kalra and Magnenat-Thalmann [KMTO02] first proposed
modeling facial color changes based on a texturing ap-
proach. Weyrich et al. [WMP*06] looked at skin measure-
ments under various hot and sweaty conditions. Yamada
and Watanabe [YWO07] observed facial color change dur-
ing anger. Melo and Gratch [MGO09] propose a method to
layer sweating and blushing on virtual characters. They fo-
cused on interactions with other characters so the blushing
and sweating were caused by emotional stress and not ther-
moregulation.

Jimenez et al. [JSB*10] captured real subject measure-
ments of melanin and hemoglobin concentrations to dynam-
ically model the appearance of facial color. For one of the
subject tests, a person ran stairs and measurements were
taken once a minute. The facial color appearance model is
based on this approach for simulating the skin color changes
during the exercise motions. However, we use real biosignal
data to drive the appearance rig parameters.

Methods have been proposed to capture and animate the
complex skin deformations of the human body. Allen et
al. [ACPO2] calculated skeleton-driven body deformations
by utilizing range scan data. Sand et. al. [SMPO3] pre-
sented a method to acquire deformations based on silhou-
ettes. Park and Hodgins [PHO6] captured subtle movements
of skin during dynamic movements with a high dimensional
(350) marker set, with 50 of these on the chest alone. They
produced very realistic effects for breathing, jiggling, and
bulging. However, the marker setup is not only uncomfort-
able to wear, but the data is tedious to clean and label. Their
follow up work [PHOS8] utilized the capture database of skin
deformations to produce a statistical model to layer skin de-
formations on various motions.

The fatigue model differs in important ways from these
skin performance capture techniques. Foremost, the fatigue
model’s data capture is less intrusive to the subject, and
takes less time to clean and process the motion data. Though
skin performance techniques produce highly realistic results
for subtle deformations, we are primarily concerned with
breathing in this paper. The fatigue model simulates the un-
derlying anatomical model from output of the biodata to
simulate realistic chest movement. Additionally, we simu-
late a variety of fatigue effects such as sweating and flushing
which could not be captured by these techniques alone.

(© The Eurographics Association 2011.

3. Exercise Mechanics

As humans perform physical activity they put their body un-
der stress. The more intense the motion is the more intense
the body’s physiological reaction. Exercise presents one of
the highest levels of stress on the human body. Major signs
of fatigue include: changes in respiration, heart rate, perspi-
ration, temperature changes, and flushing. The system at-
tempts to model these major changes so the virtual charac-
ters appear more fatigued as they perform motions. There
are two types of motion classes we are looking at: anaerobic
(squats) where the muscles are exerted for a short period of
time, and aerobic (jumping jacks, stair stepping) performed
for a longer period of time.

As humans begin physical activity, their respiration me-
chanics change. Breathing becomes deeper and more vig-
orous. This breathing pattern is called hyperpnea. The res-
piratory changes seen in hyperpnea match metabolic de-
mands of the body. First, ventilation increases abruptly as
exercise begins. The excitatory impulses from propriocep-
tors in the muscles and tendons activate the respiratory cen-
ters. Ventilation then declines suddenly after exercise stops
[Mar98, Min93, Wes04].
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Figure 4: These graphs show the changes in the heat flow
rates and body temperature during exercise.

To prolong motions for extended periods of time, the
heart must simultaneously supply enough blood flow to mus-
cles, ensure oxygen is distributed in the body, and move
adequate blood to the skin so heat can dissipate to meet
the body’s thermoregulatory demands [LM88]. As the heart
pumps more blood to meet the demands of oxygen in the
body tissues, it recruits more muscle fibers. This increases
the force required to perform the blood flow movement. The
heart’s contraction and expansion increases. The blood rush-
ing to the body’s tissues changes both the internal and ex-
ternal temperature. Warm blood returns to the body’s core.



Joseph T. Kider Jr., Kaitlin Pollock, & Alla Safonova / A Data-driven Appearance Model for Human Fatigue

Our Model’s Pipeline

Simulation Model Rendering
Data i
Data rocessin Anatomical Deform Deform Appearance Rendering
Capture P 9 1 Simulation . organs ——*  Skin Model [T1* Produingthe
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and 5 biosensors) cleaning 10 ;:ra?nil{g::ls)a ion diaphragm, etc) and heart movement and perspiration) mental ray

Figure 3: This figure shows an overview of the simulation pipeline. We capture the data, clean the motion capture take, apply
the biodata to the simulation parameters, deform the organs, which in turn deform the skin, change the appearance of the figure

(sweating, flushing), then render the final output.

The muscles contract causing vasoconstriction to reduce the
blood flow. This makes peripheral skin temperature decrease
due to the sympathetic nervous system during intense mo-
tions. This thermoregulation change can be seen in Figure 4
[LMSS].

The facial skin tissue has more capillary loops per area
then other parts of the body. Vasodilation (widening of
blood vessels) occurs in the face producing a blushing ef-
fect [MAP*82]. Jimenez et al. [JSB*10] related this effect
to a “texture look up” of hemoglobin and melanin values.

The sympathetic nervous system directly controls sweat
gland activity and skin pore size. Skin conductance measures
how skin can conduct current. This galvanic skin response is
directly proportional to sweat being produced [PT57].

There are many other factors that contribute to fatigue,
such as lactic acid build up, hydrogen ion accumulation and
glycogen depletion. Though these factors are important in
human fatigue, we do not consider them in the paper since
they require blood work, and other invasive measuring meth-
ods to properly measure.

4. System Overview

We introduce a data-driven method to capture and animate
fatigue effects on a human character. An overview of the fa-
tigue model is found in Figure 3. First, we capture the motion
capture data on the subject. We use a standard 40 motion
capture marker setup, augmented with 5 biosignal sensors.
‘We then clean and process the data. The next stage simulates
the underlying anatomically derived model. We use the out-
put from the biosignal sensors to drive the anatomical sim-
ulation which relates the data into parameters which can be
used to deform the organs. We use these parameters to drive
the underlying organs: heart, lungs, etc. The organ simula-
tion deforms the skin of the virtual character so it appears
alive. We then adjust the character’s outer appearance from
the biodata parameters making the character flush and sweat
as the data changes. Finally, we render the final output in the
scene.

Figure 5: The left image shows the internal anatomy of the
virtual human. The right image shows an x-ray view of the
organs inside the body.

5. Data Acquisition

For an experimental analysis we captured 10 subjects (5
males and 5 females) of various weights (48kg to 108kg)
and sizes (157cm to 195cm). The subjects ranged between
20 to 34 years of age and had a variety of fitness levels ac-
cording to their responses on a questionnaire. Each subject
performed at least 2 exercise types: jumping jacks, squats,
or stair aerobics giving us around 25 unique exercise sam-
ple motions. We have made the data publicly available at:
http://cg.cis.upenn.edu/hms/research/Exhaustion/.

5.1. Motion Capture

We used a commercial 16 near infra-red camera optical mo-
tion capture system from Vicon [vicll]. The motion data
was captured at 120 frames per second in a 3m by 3m by
3m capture volume. We used a standard 40 retro-reflective
marker setup for the motions. Additionally, we placed ap-
proximately 50 markers on the chest and 16 markers on
the face so we could compare deformations, capturing, and
cleaning times. We captured, reconstructed, and cleaned the
marker data using VICON BLADE 1.6 [vicl1]. The motion
was then transferred to a skinned virtual character in Maya.

(© The Eurographics Association 2011.
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5.2. Biosignal Sensors

We captured five biosignal sensors in addition to the motion
capture data. These sensors are illustrated in Figure 2. We
used a ProComp Infiniti encoder to wirelessly capture the
data on a subject at a rate of 2040 samples per second. To
synchronize the sensors we used a 5 volt TTL signal gener-
ated when a motion capture session started. This signal was
captured as a sixth channel in the encoder and used to syn-
chronize the motion after the capture process.

Respiration: The respiration sensor is placed around the
subject’s upper chest. The sensor measures the abdomi-
nal expansion of a subject during respiration. The device
stretches and contracts as the subject breaths and records the
signal’s waveform.

Electrocardiography (EKG): An EKG signal detects and
amplifies the small electrical voltage the heart muscle fibers
generates when it contracts and expands. The EKG sensor
used 3 leads: a negative sensor on the right shoulder, the pos-
itive sensor on the lower center of the chest, and the ground
sensor on the right shoulder area.

Peripheral skin temperature: This sensor is a 0.125 inch
thermistor that detects changes in skin temperature. The skin
temperature changes as blood perfuses to the skin. We placed
the sensor on the back of the ear to measure the skin temper-
ature of the upper body.

Blood Volume Pulse (BVP): bounces infra-red light against
the skin and measures the reflected light; this sensor is also
commonly referred to as photoplethysmography in the liter-
ature. We attached this sensor to the middle finger.

Galvanic Skin Response (GSR): This sensor measures the
skin conductance of electricity. A small voltage is applied
between the two sensors placed on the index and fourth fin-
ger. Skin conductance correlates with the sweat gland and
skin pore size of the subject.

We filter the EKG signal after capturing. It is measured
in microvolts. This output gives us a waveform signal that
we further process. First, we run a low frequency filter set at
either 0.5 Hz or 1 Hz and high frequency filter set at 40 Hz.
This limits artifacts for routine cardiac rhythm monitoring.
The high-pass filter helps reduce artifacts and the low-pass
filter helps reduce 60 Hz power line noise.

6. Simulation Model

The virtual human characters have an anatomical model of
the internal organs, such as the lungs, heart, esophagus, and
lower trunk [Mar98]. We have also added a rib cage and
spine [MB91, SDZBO08]. This internal anatomy moves and
deforms based on biosignal data output. We visualize our
internal model and an x-ray view in our virtual character
in Figure 5. We derive equations inspired from the exer-
cise physiology literature [PT57, MAP*82, LM88, Wes04,

(© The Eurographics Association 2011.

Min93]. These equations map the biosignal sensor output to
our organ deformations and visual appearance changes.

R R

Qs Qs

Figure 6: The QRS complex deflections output from the EKG
signal. We measure the distance between the R peaks and
their amplitude to schedule the virtual heartbeat.

Heart Deformation: The EKG signal drives the deforma-
tion of the human model’s heart. The signal usually forms a
QRS complex interval (Figure 6) for the peaks and valleys
of a heart beat. The interval between two R waves is the in-
verse of the heart rate. The peaks can be easily found with
the findpeaks() function in matlab. We calculate the interbeat
interval (IBI) and heart rate (HR) as follows to pulse the hu-
man model’s heart:

1500

IBl = 1
(distance between R peaks in mm) )
HR — 60000 @
IBI

These equations are derived from human physiology and
provide heartbeat intervals that are used to deform the heart
shape. The values 1500 and 60,000 are constants to read the
EKG signal information [Mar98]. The volume of the heart
is roughly approximated 240mL (average in healthy adults).
The stroke volume (SV) for a healthy adult is 70mL. This is
the blood pumped during each beat. We scale this based on
the amplitude of the QRS complex. So as the signal rises,
the heart pumps more blood and deforms more in the chest.
This result is very subtle.

Flushing effect: The BVP and temperature sensors change
the human visual appearance to flush and sweat. Changes
in the BVP sensor represent changes in the blood volume
throughout the body. The signal has two components: pulse
and amplitude. As the amplitude of the BVP deviation in-
creases this correlates to an increase in vasoconstriction of
arterioles in the viscera and skin, which simply means blood
flow greatly increases. As this occurs, flushing levels rise.

Similar to Jimenez et al. [JSB*10], before the data cap-
ture, we derived an appearance rig shader. We added the
upper chest, however, as it also tends to change color. We
captured sample photos of one male’s and one female’s
face and chest and constructed a data derived appearance
rig. This gives a texture we can index into as the biosig-
nal channels change. Therefore, we approximate the in-
crease in flushing by linearly scaling based on flushing =
1 / temperature + BV Pypnp. We derived this metric from the
underlying anatomy [MAP*82, Mar98]; which gives us a
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perceptual metric to make the human characters flush as they
exhaust.

Sweating model: Perspiration is modeled from the GSR
biosignal. We layer sweat particles and change the specu-
larity of the skin’s subsurface scattering layers to simulate
sweating. The relationship between active sweat glands and
skin conductance is linear [PT57]. Here Gy is the total con-
ductance we measure from the sensor, N is the number of
unknown sweat glands that are currently active. Gg we rep-
resent as a constant, which represents the average conduc-
tance increment of each active gland. G is a constant. This
is the average value for an additional conducting path whose
contribution to the total conductance is not related to the
the test area. We set these values to 0.18 and 0.08 respec-
tively. These constants were derived from the empirical ex-
periments of Price et al. [PT57]. The equations to solve for
the active sweat glands are as follows.

Gi = Gu+GgN 3)

_ Gi—G,

N
Gy

“

Lung Deformation: The respiration output drives the lung
deformations. We simplified the lung model so that we
modeled both lungs as only having a single compart-
ment [Met97]. The respiration sensor measures the relative
amount of expansion. The average lung volume is 6 liters in
men, and 4.2 liters in women. The total lung capacity 7LC
is commonly calculated as the vital capacity (VC) + residual
volume (RV). The vital capacity (VC) is calculated from in-
spiratory reserve volume (/RV') + expiratory reserve volume
(ERV) + the tidal volume (V;). Contracting the diaphragm
pulls the bottom of the lung cavity down, increasing the vol-
ume and decreasing the pressure. The sensor directly maps
the change in the volume of the lungs. We get the starting
lung volume measurements (VC, ERV and V;) from spirom-
eter readings taken from every subject.

Face Deformation: The respiration output also drives the
face deformations. Using 16 facial markers, we initially cap-
tured datasets from one male and one female face. From this
motion we derived blend shapes of mouth and nostril mo-
tions for breathing. The system uses the respiration output
to determine when a breath occurs and its amplitude. We use
these two parameters to drive the facial blend shapes so the
character appears to breathe. The subjects therefore do not
have to wear facial markers for their capture.

7. Experimental Results

In the submission video that accompanies this paper, results
are included for three different subjects performing three dif-
ferent motions: jumping jacks, stair stepping, and squats.
The subjects show signs of exhaustion as they perform the
motion. For rendering, the shaders are developed in Men-
tal Ray and modeled the figures in Autodesk’s Maya. The

characters are scaled to be proportional to the capture sub-
ject’s dimensions. The appearance model and character rig
can easily fit into an animation pipeline, and only adds a
small overhead to apply our exhaustion plug-in simulation
and shaders.

7.1. Analysis of Biodata

25 different motions were captured from 10 subjects. For ev-
ery experiment we asked the subjects to idle before the mo-
tion, perform the exercise, then idle to cool down afterwards.
Figure 11(a) shows the output from all the biosensors (res-
piration, galvanic skin response, electrocardiography, skin
temperature, and blood volume pulse) for one of the subjects
performing a jumping jacks exercise. On each graph, the first
red line indicates the start of the exercise and the second red
line indicates the end of the exercise. As can be readily noted
in this figure, there is a major difference in the biodata dur-
ing an exercise: after the first red line temperature starts to
dip, the respiration pattern dramatically changes, GSR rises,
and the heart rate and BVP intensify.

Figures 11(b) shows the output from the temperature sen-
sor for four different subjects. The general form of all four
curves is the same for all the subjects - after the first red line
the temperature starts to dip and it starts going back to nor-
mal after the second red line. Figures 11(c) show the output
from the respiration sensor for four different subjects. Again,
the general form of all four curves is the same across all
subjects. This result shows that the exercise experiments are
very repeatable across subjects and exercises. Due to space
limitation we could not include data for other sensors and
for all 10 subject, but the same conclusion holds for the rest
of the data.

Figure 8: The left image shows the model without any ex-
haustion effects. The right image shows the model flushing,
and perspiring after an exhausting squat exercise.

7.2. Comparison Results

We compare chest deformations for the fatigue model with
a chest deformation computed from a dense marker set (see
Figure 9 for marker setup we used). We capture 40 markers
for the body, augmented with 50 markers for the chest, and
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Figure 7: This graph shows an overlay of motion capture and biodata. (Yellow) displays the motion trajectory of the vertical
component of the head marker as an unathletic female subject performs her squats. (Blue) corresponds to respiration, (red)
skin temperature, and (green) skin conductance. Changes in biodata correlate to changes in motion capture trajectories. In the
beginning the breaths are synced with the motion, towards the end of the exercise fatigue sets in: the respiration becomes more
chaotic, temperature has changed significantly, and the subject’s motion becomes more erratic and starts to decay.

16 markers for the face. The dense marker set directly cap-
tures skin deformations and therefore can serve as ground-
truth. The fatigue model drives chest deformations indirectly
(by deforming underlying organs). Figure 10 is a side-by-
side comparison of the two methods. Please refer to the sub-
mission video for a better comparison that includes a full an-
imation. There is no noticeable difference between the two
models. Therefore, the fatigue model achieves similar chest
deformations while being an order of magnitude less intru-
sive and invasive than the dense marker set method.

The submission video also compares a simple sine wave
output to deform the chest. This method drives the lungs and
heart, and makes characters feel more alive. However, look-
ing at Figure 11 we see that respiration and heart rate signals
change dramatically over time and are non-uniform. There-
fore, the fatigue model realistically follows how humans
breathe, flush, and sweat as they perform different physical
activities. For example, the respiration changes dramatically
between idling and performing an intensive exercise.

Figure 8 shows one example frame towards the end of
a two minute squat exercise of a virtual human character.
On the left, the character is rendered with a standard subsur-
face scattering skin shader. On the right, the character show
signs of exhaustion. We demonstrate her flushing, turning
more red, starting to perspire, and deforming her chest with a
deeper respiratory pattern (please see video). The right char-
acter appears more fatigued than the left character.

7.3. Temporal Changes

In the data analysis, changes are detected in the biosignal
data correspond to changes in the motion of our captured
subjects. Figure 12 shows a male subject performing jump-
ing jacks. At the beginning of the motion he does not ap-
pear fatigued. He raises his arms high and cleanly performs
the motion. As time goes on he is unable to raise his arms

(© The Eurographics Association 2011.

Figure 9: The left image shows the dense marker rig on a
capture subject. The right image shows the markers recon-
structed in Vicon’s software.

up, and begins to appear more fatigued. A second exam-
ple is shown in Figure 7. Here we plot the trajectory of the
head, respiration, skin temperature, and skin conductance as
a unathletic female subject performs squats. In the beginning
of the motion, the subject breathes before she begins a squat.
As the motion progresses, the breathing pattern becomes a
bit erratic, the skin temperature falls, and she starts to dip
down further in the squat, wobbling, and takes longer to get
back up. This shows there is a clear correspondence between
the biodata changes and changes in the skeletal motion. This
correspondence is one of the major signs of fatigue.

8. Conclusion and Future Work

We have demonstrated a novel approach for animating ex-
haustion and fatigue effects by synchronized biosignal and
motion capture data. The fatigue model produces virtual
characters that appear more fatigued than simply playing
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Figure 10: The left image shows the model’s breathing de-
Sformation. The right image shows the dense set marker’s de-
formation. We see that there is no visual difference between
the two chests.

back motion capture data. We simulated an anatomically in-
spired human to generate these effects without having to do
performance capture using an expensive dense marker set.
The breathing, flushing, and perspiration effects enhanced
the virtual character’s appearance. We compared our model
to simple sinusoidal breathing models, and dense marker
set captures. Our method produced more realistic effects
than the naive models without a large quality loss from the
dense marker set captures. Compared to tedious processing
of dense marker sets, the fatigue model simulation offers a
low overhead add-on to an existing animation pipeline.

The current model only focuses on certain fatigue ef-
fects. Other equally important aspects affecting human exer-
cise motion such as muscle deformation, facial expressions,
wrinkles, and eye movement are not being considered in this
paper. All of these change over the course of a intensive ex-
ercise. We hope to layer some of these effects on the model
in the future.

We plan to develop an even more robust model of the vi-
sual appearance. Some limitations of the fatigue effects lie in
that we are not considering all the complex processes of the
human body. Finding a blood oxygen sensor would greatly
enhance how we could simulate oxygenation of the skin and
body. Also, there are sensors that measure the internal body
temperature of a subject, however they are extremely inva-
sive to wear. We opted not to stick sensors inside the subject
as they performed the exercise motions. However, internal
temperature data would produce more accurate physiologi-
cal effects.

In the future, we want to compare the data across exer-
cise classes to see how they correlate with different changes
in motion. The analysis of the biosignal channel user study
data shows the results produced during the captured exer-
cises are very repeatable. We plan to parameterize the de-
formations and fatigue effect and learn these parameters to
layer the effects on motion without having to always cap-

ture synchronized data. For example, people who are more
athletic and fit tire differently than less fit individuals. The
fatigue parameters will help us apply the proper exhaustion
effects to characters of varying build and fitness.
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Figure 11: This graph shows the biodata capture of 5 different subjects from the user experiment. For each motion capture
take the subject was asked to idle, perform an exercise (area between red lines on plots), then idle to cool down. There is a
major difference in the biodata during an exercise. (a) shows Subject 1’s (Male 180lbs athletic build): respiration, galvanic
skin response, electrocardiography, skin temperature, and blood volume pulse for a jumping jack exercise, (b) and (c) show
two male and two female subjects’ biodata for squats, jumping jacks, and stair climbing exercises. (b) shows four subjects’
skin temperature signal. All four subjects have similar thermal events: warm blood moving from the skin to the body core, and
producing perspiration to cool down temperature during the exercise. Warm blood then returns to the skin immediately after
the exercise. (c) shows four subjects’ respiration signal. Again, all the subjects’ breathing patterns become deeper and more
vigorous during the exercise than when they idled. Towards the end of the exercise, as fatigue sets in the respiration signal
shows the deeper breaths people take.
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