298 research outputs found

    Reviews of Applications for Smartphone-Connected Hearing Aids and Implications on Counseling

    Full text link
    With the recent rise of smartphone ownership, more applications have been created that connect user’s hearing aids to their smartphone. One type of application that has become popular is one that allows the user to control hearing aids using a smartphone. While these applications have many benefits for the user, there has been very little research on the experiences of individuals using these applications. In order for audiologists to best help their patients troubleshoot and prepare reasonable expectations for using smartphone-connected hearing aids, they need to understand the patient experience to create effective solutions. One technique that can be used to assess the end-user experience is to examine reviews created by consumers on the Google Play Store. The posted comments can help manufacturers better understand concerns or suggestions to improve the experience. By analyzing user experiences, counseling best-practices for hearing aid applications can be proposed. Web scraping techniques were used to review hearing aid smartphone applications using the Android operating system. The data were then coded based on themes that emerged from the analysis, which was subsequently used to determine the areas in which users were struggling. Results revealed that a majority of users reported connectivity issues, app malfunctions, general positive aspects of the applications, a lack of features, and general negative aspects of the applications. Responses were similar across applications and across the different connectivity methods for Made for Android hearing aids and Made for iPhone hearing aids

    Personalizing the Fitting of Hearing Aids by Learning Contextual Preferences From Internet of Things Data

    Get PDF
    The lack of individualized fitting of hearing aids results in many patients never getting the intended benefits, in turn causing the devices to be left unused in a drawer. However, living with an untreated hearing loss has been found to be one of the leading lifestyle related causes of dementia and cognitive decline. Taking a radically different approach to personalize the fitting process of hearing aids, by learning contextual preferences from user-generated data, we in this paper outline the results obtained through a 9-month pilot study. Empowering the user to select between several settings using Internet of things (IoT) connected hearing aids allows for modeling individual preferences and thereby identifying distinct coping strategies. These behavioral patterns indicate that users prefer to switch between highly contrasting aspects of omnidirectionality and noise reduction dependent on the context, rather than relying on the medium “one size fits all” program frequently provided by default in hearing health care. We argue that an IoT approach facilitated by the usage of smartphones may constitute a paradigm shift, enabling continuous personalization of settings dependent on the changing context. Furthermore, making the user an active part of the fitting solution based on self-tracking may increase engagement and awareness and thus improve the quality of life for hearing impaired users

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Context Awareness for Navigation Applications

    Get PDF
    This thesis examines the topic of context awareness for navigation applications and asks the question, “What are the benefits and constraints of introducing context awareness in navigation?” Context awareness can be defined as a computer’s ability to understand the situation or context in which it is operating. In particular, we are interested in how context awareness can be used to understand the navigation needs of people using mobile computers, such as smartphones, but context awareness can also benefit other types of navigation users, such as maritime navigators. There are countless other potential applications of context awareness, but this thesis focuses on applications related to navigation. For example, if a smartphone-based navigation system can understand when a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms to improve positioning performance. We argue that the primary set of tools available for generating context awareness is machine learning. Machine learning is, in fact, a collection of many different algorithms and techniques for developing “computer systems that automatically improve their performance through experience” [1]. This thesis examines systematically the ability of existing algorithms from machine learning to endow computing systems with context awareness. Specifically, we apply machine learning techniques to tackle three different tasks related to context awareness and having applications in the field of navigation: (1) to recognize the activity of a smartphone user in an indoor office environment, (2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and (3) to determine the optimal path of a ship traveling through ice-covered waters. The diversity of these tasks was chosen intentionally to demonstrate the breadth of problems encompassed by the topic of context awareness. During the course of studying context awareness, we adopted two conceptual “frameworks,” which we find useful for the purpose of solidifying the abstract concepts of context and context awareness. The first such framework is based strongly on the writings of a rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements of “circumstance”. We adopt these seven elements to describe contextual information. The second framework, which we dub the “context pyramid” describes the processing of raw sensor data into contextual information in terms of six different levels. At the top of the pyramid is “rich context”, where the information is expressed in prose, and the goal for the computer is to mimic the way that a human would describe a situation. We are still a long way off from computers being able to match a human’s ability to understand and describe context, but this thesis improves the state-of-the-art in context awareness for navigation applications. For some particular tasks, machine learning has succeeded in outperforming humans, and in the future there are likely to be tasks in navigation where computers outperform humans. One example might be the route optimization task described above. This is an example of a task where many different types of information must be fused in non-obvious ways, and it may be that computer algorithms can find better routes through ice-covered waters than even well-trained human navigators. This thesis provides only preliminary evidence of this possibility, and future work is needed to further develop the techniques outlined here. The same can be said of the other two navigation-related tasks examined in this thesis

    A Sensing Platform to Monitor Sleep Efficiency

    Get PDF
    Sleep plays a fundamental role in the human life. Sleep research is mainly focused on the understanding of the sleep patterns, stages and duration. An accurate sleep monitoring can detect early signs of sleep deprivation and insomnia consequentially implementing mechanisms for preventing and overcoming these problems. Recently, sleep monitoring has been achieved using wearable technologies, able to analyse also the body movements, but old people can encounter some difficulties in using and maintaining these devices. In this paper, we propose an unobtrusive sensing platform able to analyze body movements, infer sleep duration and awakenings occurred along the night, and evaluating the sleep efficiency index. To prove the feasibility of the suggested method we did a pilot trial in which several healthy users have been involved. The sensors were installed within the bed and, on each day, each user was administered with the Groningen Sleep Quality Scale questionnaire to evaluate the user’s perceived sleep quality. Finally, we show potential correlation between a perceived evaluation with an objective index as the sleep efficiency.</p

    Med-e-Tel 2013

    Get PDF

    Proceedings of the 1st joint workshop on Smart Connected and Wearable Things 2016

    Get PDF
    These are the Proceedings of the 1st joint workshop on Smart Connected and Wearable Things (SCWT'2016, Co-located with IUI 2016). The SCWT workshop integrates the SmartObjects and IoWT workshops. It focusses on the advanced interactions with smart objects in the context of the Internet-of-Things (IoT), and on the increasing popularity of wearables as advanced means to facilitate such interactions
    • …
    corecore