223 research outputs found

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    Workshop on Database Programming Languages

    Get PDF
    These are the revised proceedings of the Workshop on Database Programming Languages held at Roscoff, Finistère, France in September of 1987. The last few years have seen an enormous activity in the development of new programming languages and new programming environments for databases. The purpose of the workshop was to bring together researchers from both databases and programming languages to discuss recent developments in the two areas in the hope of overcoming some of the obstacles that appear to prevent the construction of a uniform database programming environment. The workshop, which follows a previous workshop held in Appin, Scotland in 1985, was extremely successful. The organizers were delighted with both the quality and volume of the submissions for this meeting, and it was regrettable that more papers could not be accepted. Both the stimulating discussions and the excellent food and scenery of the Brittany coast made the meeting thoroughly enjoyable. There were three main foci for this workshop: the type systems suitable for databases (especially object-oriented and complex-object databases,) the representation and manipulation of persistent structures, and extensions to deductive databases that allow for more general and flexible programming. Many of the papers describe recent results, or work in progress, and are indicative of the latest research trends in database programming languages. The organizers are extremely grateful for the financial support given by CRAI (Italy), Altaïr (France) and AT&T (USA). We would also like to acknowledge the organizational help provided by Florence Deshors, Hélène Gans and Pauline Turcaud of Altaïr, and by Karen Carter of the University of Pennsylvania

    Shared-Environment Call-by-Need

    Get PDF
    Call-by-need semantics formalize the wisdom that work should be done at most once. It frees programmers to focus more on the correctness of their code, and less on the operational details. Because of this property, programmers of lazy functional languages rely heavily on their compiler to both preserve correctness and generate high-performance code for high level abstractions. In this dissertation I present a novel technique for compiling call-by-need semantics by using shared environments to share results of computation. I show how the approach enables a compiler that generates high-performance code, while staying simple enough to lend itself to formal reasoning. The dissertation is divided into three main contributions. First, I present an abstract machine, the \ce machine, which formalizes the approach. Second, I show that it can be implemented as a native code compiler with encouraging performance results. Finally, I present a verified compiler, implemented in the Coq proof assistant, demonstrating how the simplicity of the approach enables formal verification

    On the Manifold: Representing Geometry in C++ for State Estimation

    Get PDF
    Manipulating geometric objects is central to state estimation problems in robotics. Typical algorithms must optimize over non-Euclidean states, such as rigid transformations on the SE(3) manifold, and handle measurements expressed in multiple coordinate frames. Researchers typically rely on C++ libraries for geometric tasks. Commonly used libraries range from linear algebra software such as Eigen to robotics-targeted optimization frameworks such as GTSAM, which provides manifold operations and automatic differentiation of arbitrary expressions. This thesis examines how geometric operations in existing software can be improved, both in runtime performance and in the expression of geometric semantics, to support rapid and error-free development of robotics algorithms. This thesis presents wave_geometry, a C++ manifold geometry library providing representations of objects in affine, Euclidean, and projective spaces, and the Lie groups SO(3) and SE(3). It encompasses the main contributions of this work: an expression template-based automatic differentiation system and compile-time checking of coordinate frame semantics. The library can evaluate Jacobians of geometric expressions in forward and reverse mode with little runtime overhead compared to hand-coded derivatives, and exceeds the performance of existing libraries. While high performance is achieved by taking advantage of compile-time knowledge, the library also provides dynamic expressions which can be composed at runtime. Coordinate frame conversions are a common source of mistakes in calculations. However, the validity of operations can automatically be checked by tracking the coordinate frames associated with each object. A system of rules for propagating coordinate frame semantics though geometric operations, including manifold operations, is developed. A template-based method for checking coordinate frame semantics at compile time, with no runtime overhead, is presented. Finally, this thesis demonstrates an application to state estimation, presenting a framework for formulating nonlinear least squares optimization problems as factor graphs. The framework combines wave_geometry expressions with the widely used Ceres Solver software, and shows the utility of automatically differentiated geometric expressions

    HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler

    Get PDF
    It is difficult to write programs which are both correct and fast. A promising approach, functional programming, is based on the idea of using pure, mathematical functions to construct programs. With effort, it is possible to establish a connection between a specification written in a functional language, which has been proven correct, and a fast implementation, via program transformation. When practiced in the functional programming community, this style of reasoning is still typically performed by hand, by either modifying the source code or using pen-and-paper. Unfortunately, performing such semi-formal reasoning by directly modifying the source code often obfuscates the program, and pen-and-paper reasoning becomes outdated as the program changes over time. Even so, this semi-formal reasoning prevails because formal reasoning is time-consuming, and requires considerable expertise. Formal reasoning tools often only work for a subset of the target language, or require programs to be implemented in a custom language for reasoning. This dissertation investigates a solution, called HERMIT, which mechanizes reasoning during compilation. HERMIT can be used to prove properties about programs written in the Haskell functional programming language, or transform them to improve their performance. Reasoning in HERMIT proceeds in a style familiar to practitioners of pen-and-paper reasoning, and mechanization allows these techniques to be applied to real-world programs with greater confidence. HERMIT can also re-check recorded reasoning steps on subsequent compilations, enforcing a connection with the program as the program is developed. HERMIT is the first system capable of directly reasoning about the full Haskell language. The design and implementation of HERMIT, motivated both by typical reasoning tasks and HERMIT's place in the Haskell ecosystem, is presented in detail. Three case studies investigate HERMIT's capability to reason in practice. These case studies demonstrate that semi-formal reasoning with HERMIT lowers the barrier to writing programs which are both correct and fast

    Emerging trends proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics: TPHOLs 2004

    Get PDF
    technical reportThis volume constitutes the proceedings of the Emerging Trends track of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The TPHOLs conference covers all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification. There were 42 papers submitted to TPHOLs 2004 in the full research cate- gory, each of which was refereed by at least 3 reviewers selected by the program committee. Of these submissions, 21 were accepted for presentation at the con- ference and publication in volume 3223 of Springer?s Lecture Notes in Computer Science series. In keeping with longstanding tradition, TPHOLs 2004 also offered a venue for the presentation of work in progress, where researchers invite discussion by means of a brief introductory talk and then discuss their work at a poster session. The work-in-progress papers are held in this volume, which is published as a 2004 technical report of the School of Computing at the University of Utah

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore