
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1988

Workshop on Database Programming Languages Workshop on Database Programming Languages

François Bancilhon
Altaïr

Peter Buneman
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
François Bancilhon and Peter Buneman, "Workshop on Database Programming Languages", . November
1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-93.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/601
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/601
mailto:repository@pobox.upenn.edu

Workshop on Database Programming Languages Workshop on Database Programming Languages

Abstract Abstract
These are the revised proceedings of the Workshop on Database Programming Languages held at
Roscoff, Finistère, France in September of 1987. The last few years have seen an enormous activity in the
development of new programming languages and new programming environments for databases. The
purpose of the workshop was to bring together researchers from both databases and programming
languages to discuss recent developments in the two areas in the hope of overcoming some of the
obstacles that appear to prevent the construction of a uniform database programming environment. The
workshop, which follows a previous workshop held in Appin, Scotland in 1985, was extremely successful.
The organizers were delighted with both the quality and volume of the submissions for this meeting, and
it was regrettable that more papers could not be accepted. Both the stimulating discussions and the
excellent food and scenery of the Brittany coast made the meeting thoroughly enjoyable.

There were three main foci for this workshop: the type systems suitable for databases (especially object-
oriented and complex-object databases,) the representation and manipulation of persistent structures,
and extensions to deductive databases that allow for more general and flexible programming. Many of
the papers describe recent results, or work in progress, and are indicative of the latest research trends in
database programming languages.

The organizers are extremely grateful for the financial support given by CRAI (Italy), Altaïr (France) and
AT&T (USA). We would also like to acknowledge the organizational help provided by Florence Deshors,
Hélène Gans and Pauline Turcaud of Altaïr, and by Karen Carter of the University of Pennsylvania.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-93.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/601

https://repository.upenn.edu/cis_reports/601

WORKSHOP ON DATABASE
PROGRAMMING LANGUAGES

Organizers:
Peter Bunernan, University of Pennsylvania

Francois Bancilhon, Altair

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04

November 1988

WORKSHOP ON DATABASE

PROGRAMMING LANGUAGES

Organizers: Franqois Bancilhon (Alt air)
Peter Buneman (University of Pennsylvania)

aided by: Serge A bi t eboul (INRIA)
Rishiyur Nikhil (MIT)
Atsushi Ohori (University of Pennsylvania)
Domenico Sac& (CRAI)
Michel Scholl (INRIA)

Sponsors: Alt aYr
CRAI

Copies of these proceedings are available from

Technical Report Center
University of Pennsylvania
Department of Computer and Information Science
200 South 33rd Street
Philadelphia, PA 191046389
USA

(cost $26.00, postage inc., within USA) and from
A1 tair
BP 105 - Roquencourt
78153 Le Chesnay ckdex
France

FOREWORD

These are the revised proceedings of the Workshop on Database Programming Languages
held at Roscoff, Finistkre, France in September of 1987. The last few years have seen an
enormous activity in the development of new programming languages and new program-
ming environments for databases. The purpose of the workshop was to bring together
researchers from both databases and programming languages to discuss recent develop-
ments in the two areas in the hope of overcoming some of the obstacles that appear to
prevent the construction of a uniform database programming environment. The workshop,
which follows a previous workshop held in Appin, Scotand in 1985, was extremely success-
ful. The organizers were delighted with both the quality and volume of the submissions
for this meeting, and it was regrettable that more papers could not be accepted. Both the
stimulating discussions and the excellent food and scenery of the Brittany coast made the
meeting thoroughly enjoyable.

There were three main foci for this workshop: the type systems suitable for databases
(especially object-oriented and complex-object databases,) the representation and manip-
ulation of persistent structures, and extensions to deductive databases that allow for more
general and flexible programming. Many of the papers describe recent results, or work
in progress, and are indicative of the latest research trends in database programming lan-
guages.

The organizers are extremely grateful for the financial support given by CRAI (Italy),
AltaYr (France) and AT&T (USA). We would also like to acknowledge the organizational
help provided by Florence Deshors, Hhlkne Gans and Pauline Turcaud of Alta'ir, and by
Karen Carter of the University of Pennsylvania.

Franqois Bancilhon and Peter Buneman

SESSION IV: OBJECT ORIENTED SYSTEMS AND PERSISTENCE

................... Sharing, Persistence and Object Orientation: a Database Perspective 181
Setrag Khoshafian and Patrick Valduriez (MCC)

... Polymorphic Names and Iterations 206
Malcolm Atkinson (University of Glasgow)
Ron Morrison (University of St. Andrews)

.. 02, An Object-Oriented Data Model 224
Christopher Le'cluse, Philippe Richard, Fernando Velez (GIP Altair)

...................................... Can objects change type? Can type objects change? 241
Stanley Zdonik (Brown University)

...................................... Semantics for Transactions in Shared Object Worlds 248
J. Eliot and B. Moss (University of Massachusetts)

A Practical Language to provide Persistence and a Rich Typing System 253
Deborah Baker, David Fisher and Jonathan C. Shultis (Incremental Systems Inc.)

SESSION V: LOGIC

Database Updates in Logic Programming . 269
Shamim Naqvi, Ravi Krishnamurthy (MCC)

Control and Optimization in a Logic Based Language
for Knowledge and Data Intensive Applications ... 279

Ravi Krishnamurthy and Carlo Zaniolo (MCC)

COL: A Logic-Based Language for Complex Objects 301
Serge Abiteboul and Ste'phane Grumbach (INRIA - Itocquencourt)

SESSION VI: DATABASE PROGRAMMING LANGUAGES

Why Database Languages Are a Bad Idea .. 334
David Maier (Oregon Graduate Center)

. Data and Knowledge Model: A Proposal 345
Maurice Houstma and Peter Apers (University of Twente)

The Semantics of Update in a FDBPL . 365
Rishyur Nikhil (MIT)

Towards a Formalism for Module Interconnection
and Version Selection . 384

Richard Hull and Dean Jacobs (University of Southern California)

A DML for Complex Objects . 409
Michel Lacroix and M. Vanhoedenaghe (Philips Research Lab, Brussels)

Construction and Calculus of Types for Database
Systems

David Stemple
Tim Sheard

Department of Computer and Information Science
University of Massachusetts, Amherst, MA. 01003

October 22, 1987

Abstract

Database systems should allow the construction of types for the kinds of complex objects
used in modern applications such as design systems and artificial intelligence applications. In
addition to complex structures, the type system should incorporate encapsulation and inheri-
tance features appropriate to such applications. Furthermore, arbitrary constraint specification
should be a feature of such a type system in order to bind the systems to the semantics of the
occasion. Incorporating these features in a database system specification language must be done
very carefully in order to produce a facility that

I . can be used effectively by database system designers

2. can be implemented efficiently

3. supports the kind of mechanical reasoning required to satisfy 1. and 2.

The ADABTPL system under development at the University of Massachusetts represents an
attempt to provide the features and meet the requirements listed above. The ADABTPL type
system is a crucial part of this effort and contains the following features:

A type construction approach with embedded constraints

Parametric polymorphic types = user-defined type constructor functions

Encapsulated abstract data types

Multiple inheritance

Constraints specifiable on function input and checked at compile time (verified) on all calls

Type conditions on type parameters

In this paper we present the ADABTPL type features and concentrate on the motivations
for choosing these features and for limiting certain capabilities such as recursive types and
inheritance.

1 Introduction

Database systems should allow the construction of types for the kinds of complex objects used
in modern applications such as design systems and artificial intelligence applications. In addition
to complex structures, the type system should incorporate encapsulation and inheritance features
appropriate to such applications. Furthermore, arbitrary constraint specification should be a feature
of such a type system in order to bind the systems to the semantics of the occasion. Incorporating
these features in a database system specification language must be done very carefully in order to
produce a facility that

1. can be used effectively by database system designers

2. can be implemented efficiently

3. supports the kind of mechanical reasoning required to satisfy 1. and 2.

The ADABTPL system under development at the University of Massachusetts represents an attempt
to provide the features and meet the requirements listed above. The following aspects of ADABTPL
are designed to make the system usable by database designers:

1. Schema and transaction program model of system specification

2. Database in the name space of transaction programs (no I/O)

3. Relational model a subset of the data model

4. Robust feedback on design of transactions in the presence of constraints

5. Rapid prototype capability

The mechanical reasoning required to verify that transactions obey all integrity constraints and to
provide robust feedback to designers is facilitated by

1. basing the formal semantics of the schema structures on a few abstract data types - tuples,
lists, finite sets, and natural numbers - that are predefined axiomatically

2. using computational logic along with the recursive function semantics of the the ADABTPL
language to build a usable theory of constraints and updates of complex objects

3. using higher order theory and polymorphic types to make theorem proving more efficient.

The ADABTPL type system is an essential element in the support of both mechanical reasoning
and usability, and contains the following features:

r A type construction approach with embedded constraints

Parametric polymorphic types = user-defined type constructor functions

Encapsulated abstract data types

Multiple inheritance

Constraints specifiable on function input and checked at compile time (verified) on all calls

r Type conditions specifiable on type parameters

In this paper we present features of the ADABTPL type specification language and discuss the
criteria used to choose and form those features. We will take care to motivate the limitations we
have placed on certain sophisticated features such as recursive types and inheritance.

A database system is specified in ADABTPL by defining the type of the database object
and writing transactions to define the operations allowable on the database object. Transactions
are written in the ADABTPL procedural language which is a high level set-oriented language whose
name space comprises the components of the database object and the transaction input variables.
The database type is specified in the ADABTPL schema language which is a type definition language
that includes a predicate language for defining constraints on any type, including the types of
all constituents of the database as well as the database type itself. Both procedural and schema
languages include a function definition language for defining predicate and object functions. In the
rest of the paper we will describe the salient features of the type definition.

2 Construction of structural types

The basic type constructors of ADABTPL can used to specify types for "simple" objects such as
tuples, finite sets and lists. The &st two of these constructors allow the specification of &st normal
form relation types. For example, the following defines a simple employee relation.

EmpTuple = [EmpNo: In teger , EmpName: S t r ing , EmpDept: In teger] ;

EmpRel = Set (EmpTuple)

The definition of EmpTuple uses the brackets to form a tuple type and then that type is used as
input to the finite set type constructor written as a prefix function. Of course, the tuple type could
have been left anonymous as in

EmpRel = Set([EmpNo: In teger , EmpName: S t r ing , EmpDept: Integer])

A tuple type may not contain a component that is either of the tuple type itself or depend in any
way on it, except in the recursive union type described below.

Constraints are specified in where clauses of type defining equations. They may be specified
in any definition. For example, to constrain a range for employee numbers (EmpNo) and to constrain
the employee relation to be keyed on EmpNo, we write

EmpTuple = [EmpNo: In teger , EmpName: S t r ing , EmpDept: Integer]
where EmpNo < 10000;

EmpRel = Set (EmpTuple) where Key(EmpRe1, EmpNo)

These definitions illustrate two features of constraints. The first is that component names in tuple
types can be used as variables in where clauses, for example, in the EmpTuple definition. Our
semantic capture of component names is as axiomatized functions on the elements of the tuple
type. A tuple type definition also creates an axiomatized constructor function for elements of the
type. This function can have its name supplied by the user, but has been left as the default,
MakeEmpTuple, in the example. The main axioms specifying the behavior of the constructor and
selector functions are similar to the following for MakeEmpTuple and EmpNo.

EmpNo(MakeEmpTuple(e, n, d)) = n

where el n and d are variables universally quantified over their appropriate types. Thus, the con-
straint on the EmpTuple type corresponds to the axiom

for t universally quantified over the EmpTuple type.
The Key constraint on EmpRel uses another naming convention that allows the type name

to stand for an element of the type in a where clause. Key is a predicate function that takes a set of
tuples and a list of component names (selector functions) and returns true if the component names
determine unique values over the set. Other functions, including user-defined functions, may be used
in where clauses. Thus, the constraint language is open-ended. (It must be noted that the ability
to reason effectively about constraints, though open, is at any time limited by the theory that has
been developed by that time. The system reasons from lemmas that are kept in its knowledge base
and is limited by this extendable resource (see [4]).

In order to specify interrelational constraints in a relational database, a where clause is
added to the database type definition that must end any ADABTPL schema. For example, to define
referential integrity for the department number in EmpRel, the following would be written.

EmpTuple = [EmpNo: In teger , EmpName: S t r i n g , EmpDept: ~ n t e g e r]
where EmpNo < 10000;

EmpRel = Set(EmpTup1e) where Key(EmpRe1, EmpNo)

DeptRel = Set ([DeptNum: In teger , DeptName : St r ing , NumberOfEmps : Integer]) ;

Database EmployeeDB: [Emps: EmpRel, Depts: DeptRel]
where Contains(Depts.DeptNum, Emps.EmpDept) and

For a l l d i n Depts:
d.Number0fEmps = Count(Al1 e i n Ernps

where e . EhpDept = d . Dept Num)

The second constraint requires the NumberOfEmps component of all Depts tuples to be the count
of Emps tuples matching in the department number components. In this we see an example of
the ADABTPL predicate language including universal quantification over a set (For all), projection
(denoted by the dot folowing a variable that ranges over a relation), and selection (denoted by the All
phrase). Note that EmployeeDB constitutes the only identifier that plays the role of a programming
language variable. In the transaction specifications that complete the database system definition,
the component names of the database tuple are used as variables much as in the where clauses of
tuple type definitions.

The discussion so far has given a brief view of how a simple database schema can be written
in ADABTPL. The folldwing should be observed. Declaring a tuple type does not declare a type
for a collection of tuple instances. Even a declaration of a relation type does not declare that one
relation of that type will be maintained in the database. The constitution of the database is declared

in the database declaration that completes a schema. It is only at this point that relations and their
tuples are declared to be maintained as instances. There are a number of reasons for this. The
main two are a desire to maintain independence of particular semantic data models (ADABTPL is
a generic data model in that it can model a large number of different semantic data models) and the
desire to keep everything explicit and directly translatable into axiomatic, functional semantics. One
result of this is that non-first normal form relations as well as non-relational database components
are simple to specify. The following example demonstrates the ease with which non-first normal
form relations and non-relational data is accommodated.

Task = [RequestDate: date, RequestTime: time, Requester: String,
TaskDescr : String]

TaskQueue = Set ([Priority: Integer, TaskList : List (Task)])
where Key(Taskqueue, Priority) and

not (TaskList = NIL)

EmpTuple = [EmpNo : Integer, EmpName : String, EmpDept : Integer, Tasks : Taskqueue]
where EmpNo < 10000;

EmpRel = Set (EmpTuple) where Key(EmpRe1, EmpNo)

Database EmpTaskDB : [Emps : EmpsRel , TotalTasks : Integer]

Note that Emps is no longer a first normal form relation and that TotalTasks is not even
a relation. TaskQueue defines the structure for a priority queue object containing non-empty lists
of task descriptions paired with unique priorities. The design could be refined further to constrain
operations on ~ a s k ~ u e u e objects to obey queue protocol a n d to guarantee that the TotalTasks
component of the database always reflects the total number of tasks queued for all employees(see
151). These examples, though limited, give the essential flavor of the basic ADABTPL features for
specifying the structure of databases along with integrity constraints. Advanced features of the
language include refined, parametric, union, recursive and encapsulated types, most of which are
used to achieve and control inheritance. We now turn to the ADABTPL means of dealing with
inheritance.

3 Inheritance

Inheritance is one type's acquisition of a property by virtue of its being a subtype of another type.
The fundamental property involved in inheritance is the eligibility of instances of types to be passed
as arguments to functions. Other uses of inheritance are extant, e.g., as an implementation aid
(allowing reusable generic. code) and as part of a logic programming computational paradigm [I].
The subtype relationship among types can be based on the inclusion relationship among the types'
value sets or among the operations allowed by the types. Each of these bases for subtyping has its
use, and both are supplied by ADABTPL type constructors.

The simplest subtyping in ADABTPL is based on subsets of value sets and is accomplished
by using the where constructor. For example,

Person = [Name: String; Age: Number; Gender: (male, female)];

OldPerson = Person where Age > 80;

creates a subtype relationship making OldPerson a subtype of Person.
Subranges create the same kind of subtype relationship that the where clause does. For

example,

SmallNumber = 1 . . 9

makes SmallNumber a subtype of Number. Note that any SmallNumber can be used as input to
any function requiring a Number, but the closure properties of functions may not be preserved. For
example, although SmallNumbers can be added, the results may not be SmallNumbers.

While value set subsetting is a convenient and useful method of subtyping, it is not sufficient
for building robust well controlled systems. For this we need to control inheritance in ways that
speak more to the behavior of types than to the set of legitimate instances. In order to illustrate the
means for controlling inheritance in ADABTPL, we now turn to a lattice capture of the subtyping
achievable in ADABTPL and enumerate the type constructors and their effects on the type lattice.

4 The type lattice and its construction

It is useful to place types in a lattice based on the subtype relation, where the LUB of the structure
is called UNIVERSE (the type on which almost no functions operate, but which when thought of
as a set, contains all objects); and where the GLB of the structure is called EMPTY, (the type on
which all functions operate, but when thought of as a set contains no objects). If x is a subtype of y
then x is "lowern in the structure than y. For example, the OldPerson and Person types as defined
above yield the following lattice.

UNIVERSE
*
*

Person
*
*

OldPerson
*
*

EMPTY

Thus, in general, as one moves down the structure the types have more and more functions defined
on them, but the sets defined by the types have fewer and fewer elements.

Equivalent types appear as types with horizontal arcs in the lattice. For example,

Age = Number

causes

UNIVERSE
* *
* *
* *

Number *** Age
* *
* *
* *

EMPTY

We will now go through the type defining constructs of ADABTPL and show their effects on the
type lattice.

4.1 With
The With clause explicitly creates subtypes by adding new components to preexisting types. Thus
the value set of a subtype created by a With has no overlap with its supertype. (Though the obvious
projection on the subtype value set is equal to the supertype.) However, the semantics of the With
construct is to allow all functions defined on the base type to be defined on the new type in addition
to the new component names (which are selector functions). As an example of a subtype created
using With, a Student type can be constucted from Person as follows:

Person = [Name : String; Age: Number; Gender: (male, female)] ;

Student = Person With [GPA: Number] ;

The type following the With keyword must be a tuple type. In this example it specifies a new
function, GPA from Student to Number. It also declares that Student is a subtype of Person. The
following type, though structurally equivalent to Student, is not considered a subtype of Person in
ADABTPL.

Student2 = [Name : String; Age : Number ; Gender: (male, female) ; GPA: Number] ;

We reason that if the user wants two tuple types with nested component structure to be related by
the subtype relation he will use the With clause, otherwise two similar types are not subtypes.

*
*

*
Person

*
*
*

Student
*

*

UNIVERSE
* * *

* * *
* *
* *

*
. . . Student2

*
* *
* *
* *
* *
* *
* *

* * *
* * *
EMPTY

4.2 Parametric types

A parametric type is a new type constructor which takes types as input and returns a new type.
A parametric type is to types, what functions are to objects (3) . In ADABTPL, parametric types
are defined using a parenthesized parameter notation. We can identify a parametric type with the
union of all types that can be produced by all substitutions for the type parameters, and place
the parametric type above any type produced by supplying a concrete type for any of the type
parameters. For example,

WeightedObj e c t (Alpha) = [Object : Alpha; Weight : Number]

defines a parametric type with parameter Alpha. Alpha is a type variable and stands for any type.
When it is instantiated then the expression stands for a concrete type. For example,

WeightedBoolean = WeightedObject(Boo1ean)

stands for

WeightedBoolean = [Object: Boolean; Weight: Number]

In addition to user-defined parametric types there are some system defined parametric types as well.
The List, Set and Array types are in this class. The List and Set types take the element type as
input, while the Array type takes two types as input, an index type, and an element type. List and
Set types were illustrated in the section on structural types above. Array types are unremarkable
in ADABTPL and are declared as in

P e r c e n t i l e = Array [O. .99] of Number;

In the type lattice an instantiated type is a subtype of its parametric parent. For example,

UNIVERSE
* *

* *
* *

* *
WeightedObj e c t (Alpha) Array [O. 991 OF Alpha

* *
* *
* *

WeightedBoolean Array [O . .99] OF Number
* *

* *
* *

* *
EMPTY

4.3 Union

The discriminated union constructor is a case of disjunctive aggregation and creates a new super-
type. AH the components of the union become subtypes of the newly created type. In ADABTPL
the union type is written much like the Tuple type, except that the colon is replaced with a right
arrow. The colon stands for conjunctive aggregation, and the right arrow for disjunctive aggregation.

Atom = Union [n -> Number; s -> S t r i n g ; b -> Boolean 1 ;

UNIVERSE
*
*

Atom
* * *

* * *
* * *

* * *
Number S t r i n g Boolean

* * *
* * *

* * *
* * *
EMPTY -

Of course, any subtype of Number is also a subtype of Atom. The labels n, s and b may only appear
in case expressions where they are used to determine the type of an instance of a union type. For

example, the following expression evaluates to a character string reflecting the base type of variable
x of type Atom.

Case x of
n -> "x i s a number";
s -> "X i s a s t r ing";
b -> Itx i s a booleantt

end ;

4.4 Inherits
The Inherits type forms a conjunctive aggregation with inheritance (unlike tuple types which don't
support inheritance). An Inherits type is the same as a tuple type except that it is also a subtype
of its components's types. This means that an Inherits tuple can be used to stand for one of its
components whenever that is unambiguous. As in tupling we use the colon (:) syntax to indicate
conjunction.

GradStudent = Inheri ts [t : Teacher; s: Student];

GradS tudent now inherits all the functionality of both teachers and students. GradStudent also
becomes a subtype of both Teacher and Student.

UNIVERSE
* *

* *
* *

* *
Teacher Student

* *
* *

* *
* *

GradStudent
*
*

EMPTY

The component labels can be used to disambiguate expressions. Suppose both Teacher and Student
types have a function called F, and that X is of type GradStudent. The compiler could not disam-
biguate the expression "F(x)". By adding '.tn to x we cause the compiler to use the F which is
defined on teachers. That is, "F(x.t)" uses the Teacher function I?, and "F(x.s)" uses the Student
function F.

4.5 Abstract Type

More active control of inheritance can be gained with the Abstract Type construct with its trans-
parent (and implicit opaque) clause along with the type condition option.

When a type is defined it automatically inherits all of the operations of its defining type.
Sometimes we would like the new type not to have these operations defined (for reasons such as we
don't want the users of the type to see its implementation, or we would like to construct our own
operations on the type, or rename the inherited ones.) For example, we may implement a queue
type as a list with newly defined operations Add and Remove. We would not want the users of the
type to be able to Cons elements onto a queue since that is not a queue operation.

Queue (Alpha) = Abstract Type

Structure Li s t (Alpha) ;

Function Add (a : Alpha ; s : Queue (Alpha)) : queue (Alpha) ;
Function Remove (s : Queue (Alpha)) : Queue (Alpha) ;

Export Add, Remove;
end ;

When the Abstract Type constructor is used the structure of the type is "opaque" and cannot be
seen by the user. Only the functions defined in the body and functions renamed or exported can be
used. Thus in the type lattice Queue(A1pha) and List(A1pha) defined as above would appear as two
mutually separate types, neither being a subtype of the other even though they are share the same
structure.

UNIVERSE
* *

* *
* *

* *
queue (Alpha) L i s t (Alpha)

* *
* *

* *
* *
EMPTY

4.6 Transparent

If the user wishes the structure of an abstract type to be seen he may use the Transparent Structure
clause. This causes the.new type to inherit the functions of its basic structure. Of course, new
operations can be defined as well. One might consider defining an ordered list as a list with some
new operations such as Sort. For example,

OrderedList (Alpha) = Abstract Type

Transparent Structure L i s t (Alpha) ;

Function Sort (s :List (Alpha)) : OrderedList (Alpha) ;

end ;

Here all the operations on lists are available on OrderedLists as well. In addition the new function,
Sort, sorts an ordinary list into an ordered one. When the transparent structure is used then the
new type becomes a subtype of the old type.

UNIVERSE
*
*
*

L i s t (Alpha)
*
*
*

OrderedList (Alpha)
*
*
*

EMPTY

4.7 Type conditions

Of course, the above type definition for OrderedLists assumes that the element type in the list,
Alpha, can be ordered, which may not be the case. Thus, we must modify the type definition
somewhat to restrict OrderedLists to only those element types which can be ordered. We restrict a
type by using a type condition.

Type Condition Orderable (Alpha; before : function(Alpha, Alpha) :Boolean) ;

Universal x,y:Alpha;
not before (x , x) ;
before (x , y) and before (y , z) => before (x , z) ;
before (x , y) => not before (y , x)
end ;

A type condition is a predicate on types, the conjunct of the statement predicates after Universal
in the example. Type Eonditions are used in the definition of abstract types. When used, any
instantiations of the abstract type must have arguments that pass the type condition to be accepted
by the compiler. If the following parametric Abstract Type declaration is present,

OrderableList (Alpha, less : f unction(A1pha ,Alpha) -> Boolean) =
Abstract Type

Type Condition Orderable(Alpha,less)

Transparent Structure List (Alpha) ;

Function Sort (s :List (Alpha)) : OrderedList (Alpha) ;

Export Sort ;
end ;

then declaring

causes the compiler to check several things. First that the (infix) less than function has the correct
type, i.e., is a function from Number X Number to Boolean. And second that it meets the three
conditions of the type condition, namely that it is areflexive, transitive, and antisymmetric. Type
conditions are similar in effect and use to Goguen's theories 121.

4.8 Abstract Type and the Inherits type
The Structure clause in an Abstract Type declaration can be an Inherits type. It is the means by
which we can gain some control over multiple inheritance. Inside the Abstract Type body the type
defined is a type which has all the functions of all its parent types defined on it. These functions can
then be exported or renamed to make a new type with only those functions the user wants being
visible. For example, consider a graphics terminal system. One of the types might be a box which
is drawn on the screen. The second may be some sort of sequential file. One might define a Window
as a type which has both the properties of a SequentialFile(character) and a box. That is, one could
read or write from or to it as well as move it about on the screen.

Window = Abstract Type
Structure Inherits [b: Box; f: SequentialFile(Character)]

Exports close. f as CloseVJindow , . . .
end ;

The functions defined on Windows must be exported since the Inherits clause is opaque. If both
Window and SequentialFile have a function with the same name, we disambiguate the function by

using the labels in Inherits clause. Thus c1ose.f means the "close" function on files, while c1ose.w is
the Window "close" function.

If the Structure clause is Transparent then all functions of both types are seen by the system
as valid functions on the new type. Sometimes we wish to combine several types and add a few new
features as well. This can be done by using an Inherits type and a With clause.

Window1 = Abstract Type
Transparent Structure Inherits [b: Box; f: SequentialFile(character)]

With [visible : Boolean] ;

Exports f.close as CloseWindow, w.close as Erasewindow;
end;

In this example, Window1 is both a box and a SequentialFile. All the operations are available, as
well as a new function called "visible". The two functions named Close are renamed so as to remove
all ambiguity.

In Abstract Types only the Transparent clause creates subtypes. In the case of the first
Window type above only those functions specifically exported are available.

UNIVERSE
* * *

* * *
* * *

* * *
File Box Window

* * *
* * *

* * *
* * *

Window1 *
* *

* *
EMPTY

4.9 Recursive Union

Theoretically there is no problem with a type definition referencing the type being defined. Properly
constructed recursive types have well defined semantics and are useful in specifying types which
have as substructures elements of the same type as themselves. Lists and sets are examples of non-
problematic recursive types. From a practical point of view, recursive definitions which reference
themselves through a long chain of mutually recursive types can be hard to type check and reason
about. For this reason ADABTPL allows only one kind of recursive type, the recursive union. The
recursive union is a disjunctive aggregation with recursion. Its syntax is similar to the normal union
type, except the types of the discriminants can involve expressions involving the type being defined
or the type Bottom, i.e., the type consisting of constants and the equality relation (used especially for

the unconstructable elements of types, such as nil and empty set). In ADABTPL if the discriminant
has type Bottom, than the discriminant also names a nullary (constant) function which returns the
(unique) element of the union with the bottom discriminant. A recursive union defines a new type
that is not a subtype of any other type other than UNIVERSE. The classical example is the list
which could be defined structurally by

List(A1pha) = Recursive Union [n i l -> Bottom;
dtpr -> Cons [Car :Alpha;

Cdr : L i s t (Alpha)]] ;

This uses the named tuple constructor option, for Cons, mentioned in the earlier discussion of tuple
types. Typing a discriminant with Bottom is a shorthand for typing it as a componentless tuple
with the discriminant as the constructor function. For example, nil could be defined by

n i l -> n i l [I

using the same way of introducing the constructor function as was used for Cons, i.e., preceding the
left bracket. Note that this defines "nil" as a nullary function (constant) and we can write "x = nil"
rather than the more cumbersome

Case x of n i l - > true ; dtpr-> f a l s e end

to test if one has reached the "bottomn of a recursive structure.

5 Subtle points about function and array types

ADABTPL subtyping has two subtle points which are not obvious to the casual observer. They
involve types created with the Array constructor and function types. Consider the two (false)
subtype assertions where it is known that Gamma and Delta are subrange types and Gamma is a
subtype of Delta.

F = Function(Gamma) -> Beta i s a subtype of G = Function(De1ta) -> Beta

Array[Garnma] of Alpha i s a subtype of Array[Delta] of Alpha

These two subtype expressions are false because types they compare don't meet the semantics of
subtyping. Roughly speaking if A is a subtype of B, then anywhere in a program an object of type

.

B is expected, an object of type A could be used without causing an error. In the example above
we should be able to use a function of type F wherever we can use a function of type G, if F was a
subtype of G. But since the domain type of F (as a set of objects) has fewer objects than G, there
may be some objects in t'he domain type of G not on which F is not defined. Thus for two functions
to be subtypes of each other, the normal subtyping order of the domain types is reversed (while it
remains the same for the range type.)

Function(De1ta) -> Alpha i s a subtype of Function(Gamma) -> Beta

if and only if

Gamma is a subtype of Delta and Alpha is a subtype of Beta

If F is a Subtype of G, Then F must be defined everywhere G is (and possibly more places), but
return only a subset (perhaps the same set) of objects G does.

A similar thing happens with the index parameter type of w a y s . The index parameter
(which has to be a number or enumerated type or a subrange of one of these) does not participate
in the normal subtyping order either. In other words,

Array[Delta] of Alpha i s a subtype of Array[~amma] of Beta

if and only if

Gamma i s a subtype of Delta and Alpha i s a subtype of Beta

For example,

Array [I. .lo01 of Alpha i s a subtype of Array 120. .SO] of Alpha

This is because the array access function for the array with indexes from 1..100 is defined everywhere
over the array with indexes from 20..50. Thus an access to the smaller array (in terms of the range
of the index) can be used anywhere an access to the larger array can be used.

UNIVERSE
** * *

* * * *
Funct ion(Gamma) Delta Beta Array [20. .50] OF Alpha
->Beta * * * *

* * * *
* * * Array [I . .100] OF Alpha
* Gamma Alpha *
* * * *

Function(De1ta) * * Array [I. .100] OF Boolean
-> Alpha * * * *

* * * *

* ** *
EMPTY

6 The subtyping algorithm
We now give a very rough outline of our subtype algorithm. In this version Subtype is a predicate
of x and y that returns either true or false, True if x is a subtype of y and False otherwise. This
algorithm is for the simple case where all parameterized types are fullly instantiated. If x and y
are allowed to contain type variables, then the algorithm must return a unifier binding the type
variables to concrete types. It cannot be a simple predicate.

Function Subtype (x, y :types) :Boolean;
begin

-- The Primitive Cases If (y=top) or (x=bottom)
then true
else if (x=top) or (y=bottom)

then false
else if HasTheSameStructure(x, y) -- Both have the same STRUCTURE

then case x.structure
Function: Subtype (y . inputType ,x. inputType) and

Subtype (x. outputType, y . outputType) ;

Numericsubrange: (x.low >= y.low) and (x.high <= y.high);

Enumerat edsubrange : sameEnumerat ion (x , y) and
(x . low >= y . low) and (x. high <= y . high) ;

array: Subtype(y.indexType, x.indexType) and
Subtype(x.elementType, y.elementType);

tuple: match(x.names,y.narnes) and
for each t in x. types

Subtype (t , coresponding (y . types)) ;

union: subset(x.labels,y.labels) and
for each t in x.types

Subtype (t , coresponding(y . types)) ;

inherits: subset (y . labels ,x. labels) and
for each t in y.types

Subtype (t , coresponding (x. types)) ;

with: Subtype (x. baseType , y . baseType) and
Subtype (x. extensionType , y . extensionType) ;

where: Subtype(x.baseType, y.baseType) and
(x. v~hereClause) => (y . whereclause)
end ;

-- The RECURSIVE CASES

else if x. type-where then Subtype (x. baseType , y)
else if y . typexwhere then Subtype (x, y . baseType)
else if x. type-with then Subtype (x. baseType , y)
else if y. typezunion then for some t in y . types Subtype (x, t)
else if x.type=inherits then for some t in x. types Subtype(t ,y)
else if x.type=NumericSubrange then Subtype(Number,y)
else if x. type=EnumeratedSubrange then Subtype (enumeration(x) , y)

else if (x. type=userDef ined) and (x. visiblity=transparent)
-- IF USER DEFINED, USE DEFINITION IF TRANSPARENT
then Subtype (expand(x1, y)

else if (y. typeuserDef ined) and (y . visiblity=transparent)
then Subtype (x , expand(y1)

else false
end

7 Summary

We have presented the type construction facilities of the ADABTPL system being developed at the
University of Massachusetts. We have concentrated on the effects of the type constructors on the
lattice formed by the subtype relation produced by use of the constructors. The contribution of this
work is to integrate in a usable manner sophisticated inheritance and encapsulation mechanisms with
a robust structural definition facility that is a felicitous evolution of the database schema paradigm.

Acknowledgments

This research was supported by NSF grants DCR-8503613 and IST-8606424 and by the Office of
Naval Research University Research Initiative contract number N00014-86-K-0764.

References

[I] Ait-Kaci, H., A Lattice-Theoretic Approach to Computation Based on on a Calculus of Partially
Ordered Type Structures. Ph. D. Thesis, University of Pennsylvania, 1984.

[Z] Burstall, R. M. and Goguen, J. A., Putting Theories together to Make Specifications. Fifth
International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts, August,
1977, pps. 1045-1058.

[3] Cardelli, L. and Wegner, P., On Understanding Types, Data Abstraction, and Polymorphism.
ACM Computing Surveys, Vol. 17, No. 4, December, 1985, pps. 471-572.

[4] Sheard, T. and Stemple, D., Automatic Verification of Database Trasaction Safety. University
of Massachusetts Computer and Information Science Technical Report 86-30. (submitted for
publication)

[5] Stemple, D., Sheard, T. and Bunker, B., Abstract Data Types in Databases: Specification,
Manipulation and Access, Proceedings of the IEEE Second International Conference on Data
Engineering, Los Angeles, California, February 1986, pps. 590-597.

On a Distinction between Congruence Closure and
Unification*

Paris Kanellakis
and

Peter Revesz

Department of Computer Science
Brown University

Providence, R.I. 02912

Abstract : In this note we show that single pair congruence closure on dags is in NC2. This
is the problem of computing the congruence closure of an equivalence relation C on the nodes of a
directed acyclic graph, where llCll = 1. We say that llCll = n when C is the reflexive, symmetric and
transitive closure of n pairs of distinct vertices and n is minimum. Our observation distinguishes
congruence closure from unification closure (its directional dual) since single pair unification closure
on dags is log-space complete for P T I M E . In addition, we show that computing the congruence
closure on dags is log-space complete for P T I M E when l[Cll = 3.

1 Introduction

Congruence closure and unification are fundamental operations for symbolic computation. They form
the basis of interpreters for logic programming languages and many object-oriented programming
languages. The two operations exhibit a certain directional duality, namely, congruence closure
is defined in a bottom-up and unification in a top-down fashion. In this note we will highlight a
distinction between them.

Let G = (V, A) be a directed graph such that each vertex v E V has 0 or 2 ordered
children. Let C be any equivalence relation on V. The congruence closure C* of C is the
finest equivalence relation on V that contains C such that for all vertices v and w with
corresponding children vl, wl and v2, w2 we have:

(211, ~ l) , (~ 2 , w2) E C* =j (v, w) E C*

Congruence closure is common in decision procedures for formal theories, where it is necessary to
determine equivalent expressions. An important use is in solving the following expression equivalence
problem, which is called the uniform word problem forfinitely presented algebras: determine whether
an equality t l = t2 logically follows from a set of equalities S = {tll = t12, t21 = t22, . - . , tkl = tk2),

*This research was supported by NSF grant IRI-8617344. The work of the first author was also supported by an
Alfred P. Sloan Foundation Fellowship.

where the t's are terms constructed from uninterpreted constant and function symbols. For this
application the directed graph G is acyclic.

A special case of the uniform word problem for finitely presented algebras occurs in compiling; it
is the well-known common subexpression elimination problem where the S above is empty. Downey
and Sethi [2] have considered another version of this problem that arises in verifying a restricted
class of array assignment programs and is relevant to our exposition. In their application, the S
above contains only a single equality.

Kozen has shown that computing the congruence closure of a relation is log-space complete for
P T I M E [7]. Several authors have suggested algorithms for congruence closure. Downey, Sethi and
Tarjan [3] have the fastest known sequential algorithms. Their algorithm for the general case requires
O(n1ogn) time in the worst case, where n is the number of vertices of G. As defined above G has
O(n) arcs. They also give linear time (and therefore optimal sequential) algorithms for some special
cases. One such case is the problem that is of interest to us here; namely, single pair congruence
closure on dags, where G is acyclic and C contains at most one pair of distinct vertices.

The congruence closure problem could also be defined for directed graphs in which vertices have
other than 0 or 2 children. This more general congruence closure reduces to the special definition
used here. Moreover, our choice of definition allows a clean comparison between congruence closure
and its directional dual, unification closure1, which is defined as follows.

Let G = (V,A) be a directed graph such that each vertex v E V has 0 or 2 ordered
children. Let C be any equivalence relation on V. The unification closure C+ of C is the
finest equivalence relation on V that contains C such that for all vertices v and w with
corresponding children vl, w1 and v2, w2 we have:

(211, ~ l) , (~ 2 , w2) E C+ t-- (v, w) E C+

Unification arises in several important problems such as testing equivalence of finite automata
and resolution theorem proving [I], [9], [l 11 .

Computing unification closure is shown to be log-space complete for P T I M E in [4]. This is
true even when the terms to be unified are linear, that is no variable appears more than once per
term [5]. However, unification closure when one of the terms is linear and the two terms share no
variables is in NC2.

The class N C [lo] contains the problems that are solvable on a PRAM (161) in polylogarith-
mic parallel time with a polynomial number of processors. NC2 is the subclass of N C restricted
to O(log2n) parallel time. A problem is log-space complete for P T I M E when every problem in
P T I M E is log-space reducible to it. By the parallel computation thesis, which was proven for
PRAM'S [6], any log-space reduction must be in NC. Hence, unless P T I M E N C , which would
be an unlikely result of complexity theory, problems log-space complete for P T I M E do not have
N C algorithms (i.e., parallel algorithms with significant speed-ups).

The goal of this paper is to identify important special cases of congruence closure that are in NC.
We show that single pair congruence closure on dags is in NC2. Since single pair unification closure
on dags is log-space complete for P T I M E [4], [5], this provides a nontrivial distincion between the
two closures. Section 2 contains the formal definitions used. In Section 3 we show that when C is
the trivial equivalence relation, that is each distinct vertex is an equivalence class, then congruence
closure is in NC2 (Theorem 1). The tricky issue here is the existence of cycles in directed graph
G. The acyclic case was already known to be in NC2 via common subexpression elimination for

'The most general unifiers of two terms[ll] can be computed easily from their unification closures.

directed acyclic graphs. In Section 4 we show that when C has at most one pair of distinct vertices
and G is acyclic the congruence closure is in N C ~ . This is the main result of our note (Theorem
2). Finally, in Section 5 we show (by a simple modification of Kozen's proof in [7]) that congruence
closure is log-space complete for P T I M E when C has two pairs of distinct vertices (Theorem 3). If
we require that G be acyclic, then we need three pairs of distinct vertices in C.

2 Definitions
An ordered directed graph is a directed graph G in which each node's children are ordered. In many
applications, e.g. when terms are represented by ordered directed graphs, we get ordered directed
acyclic graphs. We now define congruence closure and unification closure.

Definition CC Let G = (V, A) be an ordered directed graph. Let C be any equivalence relation
on V . The congruence closure C* of C is the finest equivalence relation on V that contains C such
that for all vertices v and w with children v l , v2, - a , vk and wl, wa, . . - , wl, respectively, if k = I > 1,
then:

(vilwi) E C * f o r l 5 i 5 k , e (v ,w) E C*

Definition UC Let G = (V,A) be an ordered directed graph. Let C be any equivalence relation
on V. The unification closure C+ of C is the finest equivalence relation on V that contains C such
that for all vertices v and w with children vl, Val . -vk and wl, wz, - - . wl, respectively, i f k = I > 1,
then:

(v i , wi) E @ f o r 1 5 i 5 k, + (v , W) E C +

We refer to the problem of finding the congruence closure for an ordered directed acyclic graph
as dag-CC and for an ordered graph where each node has exactly 0 or 2 ordered children as C C 2 .
Similarly we have dag-UC and U C 2 . Let C be the input equivalence relation. We use JIC(I = n when
n is the smallest natural number, such that, C is the reflexive, symmetric and transitive closure of
n pairs of distinct vertices. In general C will have many pairs of equal vertices, one for each node of
G.

We now state some propositions from the literature that relate the various cases of C C and U C
described. We use the standard notion of log-space reduction, 5.

Proposition 1 (dug-)CC when JICI(= n 5 (dug-)CC2 .when IlCll = n.

This follows from Downey, Sethi, and Tarjan's reduction method 131, which preserves IlCll and
works for dags as well as in general. It is also known (see [9]) that,

Proposition 2 (dug-)UC when IlCll = n 5 (dug-)uC2 when IlCll = 1.

Note that (dug-)UC2 when IlCll = 1 is known to be log-space complete for P T I M E [4], [5].
Let u and v be vertices of an ordered directed graph. We write u E v, when u and v are the

same. Similarly, we write u = v and read u and v are congruent, when (u, v) E C * . We will now
inductively define a symmetric relation E on pairs of vertices of G. This relation is represented by

undirected edges added to G, i.e. we will write uEv when u and v are connected by an undirected
edge.

Definition E Let u and v be vertices of G. Then add uEv

1. If (u,v) i s a pair in C.

2. If u and v have children ul , u2,. a * , uk and vl, vz, . . . , vl, respectively, with k = I > 1 , and
uiEvi holds for all i , 1 5 i 5 k . In this ,case, when u and v are distinct adding an undirected
edge between u and v i s called a propagation step and is denoted by uPv.

9. If there i s a vertex w in G such that uEw and wEv hold. In this case, when u, v , and w are
distinct adding an undirected edge between u and v i s called a transitivity s tep and i s denoted
by UTW.

A proof of x x y is a (possibly empty) sequence of propagation and transitivity steps using the
equalities in C that makes xEy true.

Proposition 3 x x y i f f it has a proof.

Proof: See Kozen [7].

3 Congruence Closure when llCll = 0

In this section, we show the following theorem.

Theorem 1 When llCll = 0 congruence closure is in NC2.

Proof: Our proof of this theorem is based on the following two observations. First, when
JICJI = 0, then any one pair of vertices in C* can be proven congruent by using propagation steps
only. Second, sequences of propagation steps can be done in NC2. By Proposition 2, it is enough
to look at CC2. The difficulty is that the directed graph used may have cycles.

To show that the first observation is true, suppose that the following congruences are counterex-
amples, that is all their proofs use some transitivity steps:

Let xi x yi be the congruence with a minimum length shortest proof, and let k be that length (i.e,
the number of propagation and transitivity steps). Now look at the transitivity steps in that proof
of xi x yyi. There are two cases.

1. The last step is a transitivity step.

2. The last step is a propagation step. Then there must be other steps that are transitivity steps
sl , s2 . . . sr with 1 5 I < k . Notice that the minimality used above implies that each of the
results of these transitivity steps have proofs of length less than k. Hence these have proofs
using only propagation steps. Therefore in this case xi x yi is impossible, since it implies that
it has a propagation only proof.

In fact, reasoning as in the second case above, xi x yi has a proof such that the last step is a
transitivity step while the rest of the steps are replaced by propagation steps only. Now we will
show the following claim.

Claim: When C is empty, if v m w has a proof with only one transitivity step at the end, then
it has a proof that uses propagation steps only.

We show that the claim holds by induction on the length of proofs. This claim will imply that
the xi m Yj above has a proof of only propagation steps. This contradiction demonstrates that
propagation steps suffice.

Base: For proofs of length 1, the claim must hold, because transitivity can not be the first step.

Induction hypothesis: If v x w has a proof of length j 2 1, with only one transitivity at the end,
then it has a propagation proof.

Suppose v m w has a proof of length j + 1 with only one transitivity at the end. W.1.g. the
sequence must look as follows:

PI, VPU, P2,uPw, P3, vTw

where PI, P2 and P3 are (possibly empty) sequences of propagation steps.
Since v x u and u x w were proven by propagation, all of v, u, w must have exactly two children.

This is because llCll = 0. Let their children be vl , v2, ul , u2, and w1, w2, respectively. In addition, if
vl f ul , then vlPul must precede vPu, and if v2 f ug, then V Z P U ~ must precede vPu. Similarly, if
ul f wl, then ulPwl must precede uPw, and if u2 $ w2, then u2Pw2 must precede uPw. Therefore,
if vl f wl we can replace the end of the original sequence to get

Similarly, if v2 $ w2 we can also replace the end of the original sequence to get

Pi, VPU, P2, vzTw2

Both of these sequences are proofs. Since both proofs have length less than j + 1 with only one
transitivity a t the end, by the induction hypothesis both vl x wl and v2 e w2 have propagation
proofs. Therefore v x w also has a propagation proof. Hence the claim must hold.

The correctness of our second observation follows from the fact that transitive closure is in NC2,
and from the following reduction from CC2 with IlCll = 0 and G = (V, A) to transitive closure of
the directed graph G' = (V', A'), where V' = {(v, w) : v , w E V) U { t) , and A' is as follows:

1. For all v E V let (v, v) have child t in G'.

2. For all v, w E V with children vl, v2 and wl, w2, respectively, let (v, w) have children (vl, wl)
and (v2, w2) in GI.

Then for all v, w E V, v x w if and only if the following conditions both hold:

1. Each successor of (v, w) has t as a successor (except for t itself).

2. The successors of (v, w) form an acyclic graph.

The correctness of this reduction can be easily proven by induction on the length of propagation
sequences. 0

4 Congruence Closure when llCll = 1
The single pair congruence closure problem seems harder than congruence closure with I(CIJ = 0.
Given a directed acyclic graph like that in Figure 1, we need transitivity steps, to show for example
that x = r1. Moreover, to show that x = ri, we need i alternations in propagation and transitivity
steps. However, since x does not have any children, in this case we could merge it with y and then
perform propagation and transitivity steps. In this way the problem reduces to the llCll = 0 case,
and only propagation steps are needed. The next theorem shows that this can be done in general.

Theorem 2 When llCll = 1 dag congruence closure is in N C ~

Proof: Let G = (V, A) be any directed acyclic graph, x and y two distinct vertices in V and C
the reflexive, symmetric and transitive closure of (x , y). By Theorem 1, we can "eliminate common
subexpressions", and transform G = (V, A) into G' = (V', A'), where no two vertices have proofs
under the equivalence relation {(r, z) : r E V). Now we will compute the congruence closure of C on
G'. If x and y are still distinct vertices, then w.1.g. x and y are incomparable or x is a descendant
of y. In either case we can pick an arbitrary ordering of the vertices N(x). We can assume that
N(y) > N(x), and the following claim can be proven.

Claim: When G' is acyclic and N(y) > N(x), if u = v holds, then N(u), N(v) > N(x).
The claim is shown by induction on the length of the proof for u x v.

Base: Suppose u = v has a proof of length 1. Then it must be a propagation proof. Let ul and
uz be the children of u, and vl and vz be the children of v. Since u gC! v when llCll = 0, the proof
must depend on x w y. Then w.1.g (ul ,vl) = (x, y). Therefore, N(u), N(v) > N(x), and the lemma
holds for proofs of length 1.

Induction hypothesis: If u x v has a proof of length k > 1, then N(u), N(v) > N(x).

Then suppose u w v has a proof of length k + 1. There are two cases:

1. The last step was transitivity of the form: uEw, wEv uTv. Then u = w and w = v
have proofs shorter than k + 1, hence by the induction hypothesis, N(u), N(v), N(w) > N(x).
Hence N (u) , N (v) > N(x) .

2. The last step was propagation. Then u1 = v l , and u2 = v2 have proofs shorter than k + 1,
hence by the induction hypothesis, N(ul), N (u ~) , N(vl), N(v2) 2 N(x). Since the graph is
acyclic, N(u), N(v) > N(x) also holds.

In both cases the claim holds for k + 1, hence by induction it must hold for proofs of any size.
Since nodes that are greater than x cannot use the children of x , by the above claim, we can

make the children of x be the same as the children of y. This modification of G' will not change the
computation of the congruence closure but will allow us to merge vertex x and y and still get an
ordered directed graph. Then the problem reduces to congruence closure with JICJI = 0, which by
Theorem 1 is in NC2. This completes the proof of Theorem 2. 0

5 Congruence Closure when IlCll 2 2

Theorem 3 C C when llCll = k and dug-CC when IlCll = k + 1 for arbitrary fixed k > 2 i s logspace
complete for P T I M E .

Proof: The proof is by a reduction from the circuit value problem (CVP) which was proven
logspace complete for P T I M E by Ladner [a]. The circuit value problem is a sequence gl, gz, . . . , gn,
where each gi is either (i) a Boolean variable, which is assigned true or false, or (ii) N O R (j , k) ,
with j, k < i. The circuit value problem operation is: for a given circuit and an assignment to the
variables find the output of the circuit.

To do the reduction, we introduce two special vertices 1 and 0. Every boolean variable gi that
is assigned true is assigned to 1, and every boolean variable gi that is assigned false is assigned to
0. In addition, for each gi that is not a variable we create a vertex with first child gj and second
child gk. We can encode into the congruence closure problem the function of a NOR gate by adding
three congruences in Figure 2. Out of these the congruence 0 R z can be eliminated by merging the
vertices 0 and t. (see Figure 3).

Now it is easy to prove by induction that the CVP is true if and only if the node gn will be
congruent to 1. Hence the CVP problem can be reduced to dag congruence closure with)JCII = 3
and to congruence closure with IlCll = 2. The cases for k > 2 are also immediately implied.

6 Open Problems
An open problem is to decide the status of dag-congruence closure when IJCJI = 2. This log-space
reduces to congruence closure with IJCI(= 1, which is also open.

References
[I] Clocksin, W.F., Mellish, C.S., Programming in Prolog, Springer-Verlag, 1981

[2] Downey, P.J., Sethi, R., Assignment Commands with Array References, J. ACM 25, 4 (1978),
pp. 652-666.

[3] Downey, P. J., Sethi, R., and Tarjan, R. E., Variations on the Common Subexpression Problem,
J. ACM 27, 6 (1980), pp. 758-771.

[4] Dwork, C., Kanellakis, P., Mitchell, J . , On the Sequential Nature of Unification, Journal of
Logic Programming 1 (I), pp. 35-50.

[5] Dwork, C., Kanellakis, P., Stockmeyer, L., Parallel Algorithms for Term Matching, IBM Re-
search Report, RJ 5328, (to appear in SIAM Journal of computing).

[6] Fortune, S., Wyllie, J., Parallelism in Random Access Machines, Proc. loth ACM STOC, (1978)
pp. 114-118.

[7] Kozen, D., Complexity of Finitely Presented Algebras, Proc. gth ACM STOC, (1977) pp. 1 6 4
177.

[8] Ladner, R., The Circuit Value Problem is Log Space Complete for P, SIGACT News 7, 1, (1975)
pp. 18-20.

[9] Paterson, M. S. and Wegman, M. N., Linear Unification, JCSS 16, (1978) pp. 158-167.

[lo] Pippenger, N., On Simultaneous Resource Bounds, in Proc. 2oth IEEE FOCS, (1979) pp. 307-
311.

[Ill Robinson, J. A., A Machine Oriented Logic Based on the Resolution Principle, J. ACM 12,l
(1965) pp. 23-41.

Figure 1

Example of dag-CC instance when llCll = 1

Figure 2

Example of dag-CC instance when llCll = 3

Figure 3

Example of CC instance when llCll = 2

Class Hierarchies and Their Complexity

Mawizio Lenzerini

Dipartimento di Infornlatica e Sistemistica
Universit5 degli Studi di Roma "La Sapienza"

via Buonarroti 12,I-00185 Roma, Italy

Abstract

Object oriented systems allow various kinds of relationships to be established among
objects. In this paper we are concerned with membership and interdependency
relationships. Meinbership is the relationship holding between an object and a class it
belongs to. Interdependency relationships are used to assert that a certain set relation
holds among the extensions of a collection of classes. Our main goal is to present a
taxonomy of membership and interdependency relationships, and to sudy the
computational complexity of reasoning about them. To this end, we introduce the concept
of class hierarchy scheme, which is intended to represent a set of membership and
interdependency relationships, and we study the inference problem for class hierarchy
schemes, which is the problem of checking if a given relationship logically follows from
a set of membership and interdependency relationships. We also study a subclass of class
hierarchy schemes, presenting efficient algorithms for the inference problem in such a
subclass.

1. Introduction

A fundamental feature of an object oriented database system is to provide modeling
primitives for establishing relationships among objects. One of them is classification,
which aIlow objects to be grouped into classes. A class represents a set of objects with
common properties, called its instances. The set of instances of a class is referred to as its
extension. Membership relationship is the relationship holding between an object a and
any class whose extension includes a.

Various kinds of relationships can be established among classes. An important role is
played by the so-called interdependency relatiolzships ([Israel 84]), which allow to assert
that a certain set reIation holds among the extensions of a collection of classes. For
example, disjointness is the interdependency rekitionship holding between two or more
classes having no common instances.

In object oriented systems, a class is also defined in terms of behavioral properties,
as well as aggregations with other classes; however, these aspects are not dealt with in
this DaDer.

I I

Database languages and models include many types of interdependency relationships,
such as the is-a relationship (see [Buneman 861 and [Albano 85]), which is used to
specify inclusion between the extensions of two classes. Several recent works (see
[Atzeni 861, [Atzeni 871, [Lenzerini 871, [Arisawa 861, and [McAllester 861) have

considered more complex interdependencies; with the main goal of devising sound and
complete rules for their inference.

In [Atzeni 861 a set of inference rules, with correponding algorithms, is presented for
is-a and binary disjointness relationships between classes. The work is extended in
[Atzeni 871, where negative statements, assserting that a given binary interdependency
relationship does not hold, and class complementation, allowing the definition of a class
as the complement of another class, are taken into account.

In [Lenzerini 871, covering relationships among classes, holding when a class is a
subset of the union of other classes, are considered, and an algorithm for covering
relationship inference is provided. Also, the interaction with disjointness relationships is
analysed.

In [Arisawa 861, two interdependency relationships, called intersection extended
generalization and union extended generalization, are introduced. The first one allows to
define is-a relationships in which intersections of classes are involved. The second one
allows union of classes to explicitely referenced in the is-a relationships. For both of
these classes, a set of sound and complete inference rules are presented. In the same
paper a further type of constraint, expressing that a given disjointness constraint does not
hold, is considered, and its interaction with both intersection and union extended
generalization is studied.

In [McAllester 861 the usual notion of class is extended to take into account classes
which are Boolean combinations of other classes. Interdependency relationships can be
expressed in the form (C implies B), where C is a primitive class, and B is a Boolean
class expression. Such a relationship specifies that every instance of C is also an instance
of B. Membership relationships between objects and primitive classes are also
considered. A primitive class C is said to inherit from a class expression E under a set of
interdependency relationships S, if (C implies E) is a logical consequences of S. The
major goal of the paper is to propose a method for conlputing inheritance.

In this paper we present a classification of class interdependencies, together with a
complexity analysis of reasoning (i.e. performing inferences) about them. To this end,
we define the concept of class hierarchy scheme (CHS), which is intended to represent a
set of membership and interdependency relationships in an object oriented system. Tipical
inferences which are performed on a CHS T include:

a) Membership inference: Is the object a an instance of the class C in T ?
b) Interdependency inference : Does the interdependency C hold in T ?

In Section 2 we present the syntax and the semantics of a general language for class
hierarchy scheme specification. Similarly to the work described in [McAllester 861, the
language allows to use not only primitive classes, but also expressions denoting classes
which are obtained from other classes by means of set operations. It is important to note
that such a language allows to specify both that a given relationship (membership or
interdependency) holds and that a given relationship does not hold in a class hierarchy
scheme. As mentioned above, the same approach is taken in [Atzeni 871, for the case of
is-a and disjointness relationships. In the same section we show how a class hierarchy
scheme can be expressed in first order logic. In particular, it is shown that there is a
strong correspondence between class hierarchy schemes and monadic first order theories
(i.e. logical theories whose predicates have a single argument).

Using this correspondence, we present in Section 3 a classification of class
interdependencies, based on the syntactic form of the logical formulas that can be
expressed in monadic theories. Also, we provide a complexity analysis of the inference
problem for different types of class hierarchy schemes.

Finally, in Section 4 we consider a subclass of CHSs, namely the Horn CHSs,
presenting efficient algorithms for membership and interdependency inference in such a
subclass.

2. A Language for Class Hierarchy Specification

In this section we present a general language, called LCH, for specifying class
hierarchy schemes. Such a language allows to denote not only primitive classes, but also
classes whose extensions are obtained as intersection, union, or complement of the
extensions of other classes. Class expressions are then used in the specification of
interdependency and membership relationships holding among classes.

The description of the syntax of LCH follows.

< c l a s s l i t e r a l > ::= < c l a s s symbol> I l l ~ ~ l < c l a s s symbol> I
Everything I Nothing

In the following, we call positive (negative) assertion any interdependency or
membership assertion that does not include (includes) the symbol not. A class literal, or
simply a literal, is called negative if it has the form (m <class symbol>), positive
otherwise. If C is a positive literal, then (non C) is called its complement. Conversely, C
is the complement of the negative literal C).

A class hierarchy scheme is a finite set of assertions expressed in LCH.
Turning our attention to the semantics of LCH, we define an interpretation for a class

hierarchy scheme T as a triple <D,O,P>, where D is a finite set of objects, 0 is a mapping
associating to each object symbol of T an element of D, and P is a mapping associating to
each class symbol of T a subset of D, with the constraints: P(Everything)=D, and
P(Nothing)=O.

Example 1

Let a be an object symbol, and let A, B, C, D, C and F be class symbols. Then, the
following is a class hierarchy scheme expressed in LCH:

T = { F d B & Nothing
A & BOJC
not (D and C b rn F a E) -
a is-instance-of A & non B }

The triple J=<{a,b], 0 , P>, where O(a)=a, P(A)={a] , P(B)=0, P(C)= { a,b] ,
P@)=(b), P(E)={a), P(F)=(b], is an interpretation for T.

If I is an interpretation and C is a class expression, then the extension of C with
respect to I, denoted by EXT(C,I), is detem.lined by the following rules:
- if C is a positive class literal L, then EXT(C,I) = P(L);
- if C is negative class literal (non L), then EXT(C,I) = D - EXT(L,I);
- if C is an And-class (L1 and ... Ln), then EXT(C,I) = n i EXT(Li,I);

- if C is an Or-class (L1 or ... or Ln), then EXT(C,I) = Ui EXT(Li I);

An interpretation I satisj7es the positive interdependency assertion
S b D

if and only if the extension of S with respect to I is a subset of the extension of D with
respect to I. Moreover, I satisfies the positive membership assertion

a is-instance-of D
if and only if O(a) is an element of the extension of D with respect to I. An interpretation I
satisfies the negative assertion

not C -
just in case it does not satisfy the positive assertion Z;.

A model for T is an interpretation that satisfies every assertion in T. A class hierarchy
specification T is satisfiable if there exists at least one model for T, unsatisfiable
otherwise. Class hierarchy satisfiability (unsatisfiability) is the problem of checking if a
class hierarchy specifcation is satisfiable (unsatisfiable).

An assertion C logically follows from T (or, alternatively, T logically implies C) if

every model of T satisfies C. In this case we write
T I= Z;.

It can be easily verified that, if C is a positive assertion, then T I = C if and only if T
u (not (Z)]. Conversely, if C has the form not (Z), then T I = Z if and only T u {C} is
unsatisfiable.

If T is a set of assertions, then T' logically follows from T (written T I = T') if, for
each element t' of T', it holds that:

T I = t'.
Two sets of assertions T and T' are equivalerzt if T I = T' and T' I = T.

Let T be a CHS, and let o be an assertion; o is said to be consistent (inconsistent)
with T if T u (o] is satisfiable (unsatisfiable).

A class hierarchy specification T is said to be in norlnal form if the following
conditions hold:
I) Every positive interdependency assertion of T is of the form:

S h D
where S is either a positive literal or an and-class composed by positive literals, and D
is either a positive literal or an or-class composed by positive literals.

2) Every membership assertion is of the form:
a is-instance-of D

where D is a class expression in which neither Everything nor Nothing appears.
3) No and-class or or-class in T contains Everything or Nothing; moreover, no assertion

contains Nothing in the left hand side or Everyhing in the right hand side.

Every class hierarchy scheme T can be transformed into an equivalent scheme T'
which is in normal form. The following algorithm can be used to perform such a
transformation.

Algoritl~nl NORMAL FORM TRANSFORMATION
Input Class Hierarchy Scheme T
Output Class Hierarchy Scheme in normal form T' equivalent to T
begin

1. Replace every assertion of the form
A1 =...=An .. D (with n > 1)

with the following n assertions:

Ai & D (i~ { l,...,n]).
2. Replace every assertion of the form

S b A1 and...& An (wi thn>l)
with the following n assertions:

S b Ai (i~ (1, ..., n}).
3. For each assertion of the form

S & D
delete any negative literal from S (from D), and add its complement to the or-class D
(to the and-class S). After all such deletions, replace the empty left hand side (right
hand side) of any assertion with Everything (Nothing).

4. Replace every membership assertion of the form:
not a is-instance-of D -

with the assertion:
a is-instance-of D'

where D' is determined as follows: if D is a literal, then D' is the corresponding
complement; if D is an or-class (and-class), then D' is the and-class (or-class)
constitued by the complements of the literals of D.

5. For each assertion Z, remove Nothing (Everything) from any or-class (and-class)
appearing in Z, and replace any and-class (or-class) that includes Nothing
(Everything), with Nothing (Everything).

end

In the rest of this section we concentrate our attention on the relationship between
class hierarchies and first order logic. In particular, we show how a class hierarchy
scheme can be expressed in terms of a first order monadic theory, i.e. a first order theory
whose predicate symbols are unary. To this end, we describe a mapping MON, which
allow to transform any class hierarchy scheme T in normal form into a monadic theory
MON(T), such that the set of models of MON(T) is in one-to-one correspondence with
the set of models of T.

Let T be a class hierarchy specification T in normal form. MON(T) is defined as
follows:
- the constant symbols of MON(T) are in one-to-one correspondence with the object

symbols of T; the predicate symbols of MON(T) are in one-to-one correspondence
with the class symbols of T; moreover, MON(T) contains two distinguished predicate
symbols, namely Everything and Nothing, corresponding to the symbol Everything
and Nothing of T; finally, MON(T) includes one variable symbol x;

- the axioms of MON(T) are established by the following rules:
- MON(T) includes the two axioms: (Vx Everything(x)) and (Vx -rNothing(x));
- for each positive interdependency assertion

S1& ...& Sn& D1=. . .o rDm
of T, MON(T) includes an axiom of the form

Vx (~ S ~ (X) V ... v 1Sn(x) vDl (x) v ... vDm(x));
- for each negative interdependency assertion

not S D
of T, M O N O includes an axiomTf the f o m ~

3x (MON-TRANSF(S,x) A TMON-TRANSF(D,x))),
where MON-TRANSF(E,z) denotes the logical formula obtained from the class
expression E by transforming respectively into 1 , into A, into v , and
every class syrr~bol C of E into the atomic formula C(z).

- for each membership assertion
a is-instance-of D

of T, MON(T) includes an axiom of the form MON-TRANSF(D,a).

Example 2

If T is the class hierarchy scheme shown in Example I, then MON(T) is the monadic
theory with constant symbol a , variable symbol x, predicate symbols A, B, C, D, C and
F, and the following axioms:

Vx Everything(x)

Vx lNothing(x)
Vx (lF(x) v -1B(x) v Nothing(x))
Vx (lA(x) v B(x) v C(x))
3x (D(x) A C(x) A F(x) A lE (x))
A(a) A lB (a)

It is easy to verify that the set of models MON(T) is in one-to-one correspondence
with the models of T. In particular, given a model I=<D,O,P> for T, we can construct a
model I'=<D1,O',P'> for MON(T) as follows:
- D' is the same as D;
- for each constant symbol c of MON(T), Ot(c)=O(a), where a is the object symbol of T
corresponding to c;

- for each predicate symbol U of MON(T), P1(U)=P(C), where C is the class symbol of
T corresponding to U.

An analogous method can be used to construct a model of T from a model for
MON(T).

Notice that the axioms of a monadic theory obtained from a class hierarchy scheme
by the mapping MON, are "single-argument formulas", i.e. formulas in which all the
predicates have the same argument (either a variable or a constant).

It is well known that any monadic theory M can be transformed into a set of clauses
(i.e. disjunctions of literals) which is satisfiable if and only if M is satisfiable. It follows
that, for any class hierarchy scheme T, one can construct a set of clauses (denoted by
CLAUSES(T)), which is satisifiable if and only if T is satisfiable. Notice that
CLAUSE(T) may include additional constant symbols (usually called Skolem constant
symbols, as opposed to ordinary constant symbols) with respect to MON(T), due to the
elimination of the existential quantifiers.

Example 3

We have shown in Example 2 the monadic theory MON(T) corresponding to the
class hierarchy specification T of Example 1. From MON(T) one can easily obtain the
following set of clauses CLAUSE(T):

Everything(x)
lNothing(x)
lF(x) v lB(x) v Nothing(x)
lA(x) v B (x) v C(x)

D(z), C(z), F(z), 1E(z), Ma) , 1B(a)

Notice that "2" is a Skolem constant symbol, whereas a is an ordinary constant symbol.

3. Complexity Analysis of Class Hierarchies

In the fnst part of this section we present a classification of the basic membership and
interdependency relationships expressible in a class hierarchy scheme. We have shown in
Section 2 that for any class hierarchy scheme, we can construct a set of clauses that is
satisfiable if and only if the original class hierarchy scheme is satisfiable. Starting from
this observation, we base our classification on the syntactic form of the possible clauses
expressible in monadic first order logic. In Figure 1 we show such a classification in the
form of a diagram.

membership and interdependency
assertion

disjunctive positive complex is-a assertion disjunctive negative
assertion (negative and positive literals) assertion
(no negative literals) (no positive literals)

disjunctive is-a assertion conjunctive is-a assertion
(1 negative) (1 positive)

defiiite positive is-a assertion definite negative
assertion (1 literal) (1 positive and 1 negative) assertion (1 literal)

Figure 1

34

The formula:
Vx (A(x) v B(x) v C(x))

is an example of disjunctive positive assertion; it specifies that every object is an instance
of at least one of the classes A,B and C. This corresponds to the interdependency
assertion:

Everything & A or B or C
in the language LCw When applied to a particular object, these assertions specify that an
object is an instance of at least one of set of classes. For example, the fact that c is an
instance of A or B can be represented by the disjunctive positive assertion:

l A (c) v l B (c)
which corresponds to the negative membership assertion:

not c is-instance-of A pcJ B -
in LCH.

The formula:
A(c)

is an example of definite positive assertion, which states that c is an instance of A. In
LCH, it corresponds to:

c is-instance-of A
Complex is-a assertions allow to state that the extension of an and-class is contained

in the extension of an or-class. The formula:
Vx (lA(x) v lB(x) v C(x) v D(x))

is an example of this kind of assertions, corresponding to:
A & B & C o r D

in LCH. Complex is-a assertions with a single positive literal on the left hand side are
called disjunctive is-a assertions, whereas complex is-a assertions with a single positive
literal on the right hand side are called conjunctive is-a assertions.

Disjunctive negative assertions allow to state that a set of classes are mutually
disjoint. For example, the formula:

Vx (lA(x) v 4 3 (x))
which corresponds to:

A and B .J Nothing
expresses disjointness between A and B. When applied to a particular object, these
assertions specify that an object is not an instance of a set of classes simultaneously. For
example, the fact that c is not an instance of both A and B can be represented by the
assertion:

l A (c) v 7B(c)
which corresponds to the negative membership assertion:

not c is-instance-of A B
in LC= Finally, a definite negative assertion specifies either the fact that a class has no

instances (VX lA(x)), or the fact that an object is not an instance of a class (lA(c)).

It is easy to verify that in [Atzeni 871, the membership and interdependency
relationships taken into account are is-a assertions, disjunctive negative assertions
involving at most two literals, and positive and negative definite assertions. In [Lenzerini
871, disjunctive is-a assertions together with binary disjunctive negative assertions are
considered. The intersection (union) extended generalizations introduced in [Arisawa 861
are simply sets of conjunctive (disjunctive) is-a assertions. Finally, the context in which
inheritance is studied in [McAllester 861, is the one of a language including complex is-a
assertions and definite positive membership assertions.

The above taxonomy provides the basiS of our investigation on the computational
complexity of the inference problem for class hierarchy schemes. In particular, we now
consider in turn different subclasses of class hierarchy schemes, characterized by
different types of assertions.

We shall start from the observation that the problem of checking a class hierarchy
scheme for satisfiability is in general NP-complete. In fact, the following proposition can
be easily verified by considering the relationship between propositional satisfiability and
class hierarchy satisfiability (see, for example, [Lenzerini 871).

Proposition 1 Class hierarchy satisfiability is NP-complete.

The first subclass of CHSs that we consider, includes conjunctive is-a assertions and
binary disjunctive positive assertions (i.e. disjunctive positive assertions with two
literals). The following result shows that the membership inference problem in such a
subclass is at least as complex as propositional satisfiability. It is easy to see that the same
problem is hard also for the "dual" subclass, i.e. the subclass consisting of disjunctive is-
a assertions and binary disjunctive negative assertions.

Proposition 2 Let T be a CHS with conjunctive is-a assertions and binary disjunctive
positive assertions. Let A be a class symbol of T. Then determining if (T I = a is-instance-
of A) is NP-Hard. -

Proof Let PROP be a propositional formula in conjunctive normal form with variables
vl,...,vp. Define a class hierarchy scheme O(PR0P) such that:

- for each variable vi in PROP, there are two class symbols in @(PROP), Vi and Vi';

moreover, @(PROP) includes a distinguished class symbol R;
- for each variable vi in PROP, @(PROP) includes an axiom of the form

(Everything Vi Vi')
- for each clause

7 V1 V ... V l V n V V n + l V ... V Vn+m

in PROP, @(PROP) includes an axiom of the form:
(Vll ... and Vnt and Vn+l ... and Vn+rn R)

Notice that @(PROP) includes only conjunctive ISA assertions and binary disjunctive
positive assertions.

We claim that PROP is unsatisfiable if and only if (O(PR0P) I = a is-instance-of
R). Assume that (O(PR0P) I = a is-instance-of R), and suppose that J is a model for
PROP. Define an interpretation I=c(a) ,C,P> for @(PROP) such that:
- if J(vi)=O, then P(Vil)=O and P(Vi)=(a};

- if J(vi)=l, then P(Vi)=(a and P(Vil)=(a};

- P(R)=0.
It is easy to see that I is a model for @(PROP)u(not a is-instance-of R}, which
contradicts the hypothesis that (@(PROP) I = a is-instance-of R).

On the other hand, assume that O(PR0P) u (a a is-instance-of R} is satisfiable
and let I=c{a},C,P> be one of its models. Define an interpretation J for PROP such that:
- if it is not the case that a€ P(Vi'), then J(vi)=O;

- if it is not the case that UE P(Vi), then J(vi)=l;

- if a€ P(Vi') and a€ P(Vi), then J(vi)=l.

It is easy to see that I is a model for PROP.
Q.E.D.

We now consider the class hierarchy schemes in which only complex is-a assertions
and definite positive assertions can be expressed, and show that membership inference is
NP-hard also for this type of class hierarchy schemes.

Proposition 3 Let T be a CHS with complex is-a assertions and definite positive
membership assertions. Let A be a class symbol of T. Then, detemlining if (T I = a is-
instance-of A) is NP-Hard.

Proof Let PROP be a propositional formula in conjunctive nornlal form with variables
v l , ..., vp. Define a class hierarchy scheme O(PR0P) such that:

- for each variable vi in PROP, there is a class symbol Vi in @(PROP); moreover,

@(PROP) includes two distinguished class symbols, Y and N;
- @(PROP) includes the axiom (a is-instance-of Y);
- for each clause

1 ~1 v ... v l V n v V n + l v ... v Vn+rn (with n>O and m>O)

in PROP, @(PROP) includes an axiom of the form:
(V1' and ... Vn' Vn+l PT. ... QI Vn+rn)

- for each clause
V1 V ... V Vn

in PROP, @(PROP) includes an axiom of the form:
Y k v 1 or... vn

- for each clause

1 V1 V ... V l V n

in PROP, @(PROP) includes an axiom of the form:
(V1 and ... and Vn k N)

Notice that @(PROP) includes only complex is-a assertions and definite positive
assertions.

We claim that PROP is unsatisfiable if and only if (@(PROP) I = a is-in stance-of N).
Assume that (@(PROP) I = a is-instance-of N), and suppose that J is a model for
PROP. Define an interpretation I=<(a},C,P> for @(PROP) such that P(Y)=(a),
P(N)=0; moreover, if J(vi)=l, then P(Vi)= {a}, else P(Vi)=0.

It is easy to see that I is a model for < P (P R O P) u { m a is-instance-of N), which
contradicts the hypothesis that (<P(PROP) I= a is-instance-of R).

On the other hand, assume that @(PROP) u {a a is-instance-of R) is satisfiable
and let I=c{a},C,P> be one of its models. Define an interpretation J for PROP such that
if a€ P(Vi), then J(vi)=l, else J(vi)=O. It is easy to see that I is a model for PROP.

Q.E.D.
3 7

Finally, we analyse the membership inference problem for class hierarchy schemes
with disjunctive positive assertions and disjunctive negative assertions.

Proposition 4 Let T be a CHS with disjunctive positive assertions and disjunctive
negative assertions. Let A be a class symbol of T. Then, determining if (T I = a
instance-of A) is NP-Hard.

Proof Let PROP be a propositional formula in conjunctive normal form with variables
vl,...,vp. Define a class hierarchy scheme @(PROP) such that:

- for each variable vi in PROP, there are two class symbols in @(PROP), Vi and Vi';

moreover, @(PROP) includes a distinguished class symbol R;
- for each variable vi in PROP, @(PROP) includes an axiom of the form

(Vi and Vi' & Nothing)
- for each clause

1 V1 V ... V l V n V Vn+l V ... V Vn+rn

in PROP, @(PROP) includes an axiom of the form:
(Everything & V1' ... or Vn' or Vn+l or ... Vn+rn R)

Notice that @(PROP) includes only disjunctive positive assertions and disjunctive
negative assertions.

We claim that PROP is unsatisfiable if and only if (@(PROP) I = a is-instance-of
R). Assume that (@(PROP) I = a is-instance-of R), and suppose that J is a model for
PROP. Define an interpretation I=< (a] ,C,P> for @(PROP) such that:
- if J(vi)=O, then P(Vi)=0 and P(V,')={a};

- if J(vi)=l, then P(Vil)=O and P(V;)= (a};

- P(R)=0.
It is easy to see that I is a model for Q (P R 0 P) u (a a is-instance-of R) , which
contradicts the hypothesis that (@(PROP) I = a is-instance-of R).

On the other hand, assume that @(PROP) u {not a is-instance-of R} is satisfiable
and let I=<{a),C,P> be one of its models. Define an interpretation J for PROP such that:
- if a€ P(Vi), then J(vi)=l;

- if a€ P(Vit), then J(vi)=O.

It is easy to see that I is a model for PROP.
Q.E.D.

Keeping the assumption of classifying hierarchies on the basis on the syntactic form
of the expressible membership and interdependency assertions, there are basically three
classes that have not been shown to be intractable by the above analysis, namely:

- Class hierarchy schemes including conjunctive is-a assertions, disjunctive negative
assertions, and definite positive assertions;

- Class hierarchy schemes including disjunctive is-a assertions, disjunctive positive
assertions, and definite negative assertions;

- Class hierarchy schemes including is-d assertions, and binary disjunctive assertions
(both positive and negative).

The next section is devoted to the first of these classes.

4. Horn Class Hierarchy Schemes

In. this section we describe a method for performing inferences in a subclass of
CHSs, namely the Horn CHSs.

A Horn CHS (HCHS) is a class hierarchy scheme such that its normal form satisfies
the following conditions:

1. Every positive assertion has a class literal on the right hand side;
2. For each negative interdependency assertion

not S & D
if S is an or-class, then it c o n t a i n s ~ m o s t one positive literal; if D is an and-class,
then it contains at most one negative literal;

3. For each memebership assertion
a is-instance-of D

if D is an or-class, then it contains at most one positive literal.

It is easy to see that HCHSs are precisely those class hierarchy schemes whose
corresponding sets of clauses are Horn sets.

Our method for performing inferences in HCHSs requires a HCHS to be represented
by means of a graph.

Let T be a HCHS. The associated graph GT is a directed graph <V,R>, where:
- V is the set of nodes, which is partitioned into sets, the P-nodes and the A-nodes.
There is one P-node for each class symbol of T, and there is one A-node for each
clause of CLAUSE(T) containing two or more negative literals. Moreover, the set of
P-nodes includes two distinguished nodes, namely E and N. In the following we
denote a P-node of GT by the name of the associated predicate.

- R is the set of arcs, labeled with the constant and variable symbols of CLAUSE(T).
For each clause of the form:

Q(w>
in CLAUSE(T), where Q is different from Everything, there is an arc <E,Q> labeled
with w in R. For each clause of the form:

1Q(w)
in CLAUSE(T), where Q is different from Nothing, there is an arc <Q,N> labeled
with w in R. For each clause of the form:

-Q(w>vP(w>
in CLAUSE(T), there is an arc <Q,P> labeled with w in R. For each clause of the
form:

TQl(w) v ... v lQ,(w) v P(w)
in CLAUSE(T) associated with the A-node A, there are the arcs
<Q1,A>, ..., <Q,,A>,<A,P> labeled with w in R. For each clause of the fom~:

l Q 1 (w) v v lQn(w)
in CLAUSE(T) associated with the A-node A, there are the arcs
<Q1,A> ,..., <Q,,A>,<A,N> labeled with w in R.

In the following, we call a H-graplz any graph associated with a HCHS. If T is a
HCHS, and GT is the associated graph, we say that GT is also the graph associated with
CLAUSE(T).

Example 4

The following is a HCHS:

T = [F anJ B & Nothing
M & B
m (D & C n g ~ F u L)
C & L & G
a is-instance-of M and non B
p is-instance-of non G
p is-instance-of non M or L)

whose corresponding set of clauses is:

The H-graph GT associated with T is shown in Figure 2. The A-nodes A1 and A2
are associated with the third and fifth clause above, respectively.

Figure 2

Let G be a H-graph, and let Q1, ...,Qn, P be P-nodes of G. A subgraph G' of G is ac-
hyperpath of G from {Q1, ...,Qn] to P if one of the following conditions holds:

1. P E {Q1,...,Qnl, or
2. there is an A-node A and arcs <P1,A>, ..., <P,,A>,<A,P> labeled with c or x in G'
such that:

- P1, ..., P, are all the predecessors of A in G;

- for each i E { 1 ,..., m], there is a c-hyperpath of G from {Ql ,..., Q,) to Pi in G';
3. there is a P-node P1 and an arc <P1,P> labeled with c or x in G', and there is a c-
hyperpath of G from {Q1, ...,Qn) to P1 in G'.

Proposition 5 A HCHS T is unsatisfiable if and only if there is a c-hyperpath from
{E) to N in GT, for some constant or variable symbol c of CLAUSE(T).

Proof (sketch) The proof is based on the fact that unit resolution is a sound and
complete inference rule for Horn clauses. It is shown that there is c-hyperpath from (El
to N in GT, for some constant or variable symbol c of CLAUSE(T), if and only if there is
a unit refutation of CLAUSE(T).

Q.E.D.

We now present an algorithm for checking for the existence of a w-hyperpath in a H-
graph. The algorithm makes use of a boolean value mark(P) associated with each node P
of the graph.

Algorithm HYPERPATH(G,w, Q)
Input H-graph G, label w, node Q of G, boolean value mark(P) for each node P of G
Output boolean value mark(N), which is true if only if there is a w-hyperpath from

{Q,Ql ,..., Qm) to N, where Q1 ,..., Q, are the nodes of G such that the initial
value of mark(Qi) is true

begin
if not mark(Q)
then if Q is a P-node

then set mark(Q) to true;
if Q=N then return;
for each outgoing arc <Q,M> of Q labeled either with w or x
do HYPERPATH(G,w, M) enddo

else if for each predecessor M of Q, mark(M)=true
then set mark(Q) to true;

HYPERPATH(G,w, P)
endif

endif
endif

end

It is easy to see that there is a c-hyperpath from {Ql, ...,Q,,} to N in G if and only if
after the execution of:

for each node P of G do set mark(P) to false enddo;
for each i E (1, ..., m) do HYPERPATH(G~,c,Q~) enddo

the value of mark(N) is true. Therefore, the algorithm HYPERPATH can be used for
checking a HCHS T for unsatisfiability as follows:

Algorithm UNSATISFIABLE(T)
Input HCHS T
Output true, if T is satisfiable, false otherwise
begin

for each constant symbol c (either ordinary or Skolem) of CLAUSE(T)
do for each node P of GT do set mark(P) to false enddo;

HYPERPATH(GT,C,E);
if mark(N)=true then return(true)

enddo;
return(fa1se)

end

If n is the number of constant symbols of CLAUSE(T), which corresponds to the
number of objects and negative interdependency assertions of T, and m is the size of
CLAUSE(T), then the above method can be implemented in O(nm) time. Notice that a
method similar to the one used in the algorithm HYPERPATH has been presented in
[Dowling 841 for the simpler case of propositional satisfiability.

When T is built incrementally, the efficiency of the method can be improved.
Suppose we want to construct a HCHS in such a way that new assertions are accepted if
and only if the resulting class hierarchy scheme is satisfiable.

Let T be a satisfiable HCHS, and let mark(P)=false for each node P of GT. . We
want to add an assertion A to T, obtaining a new HCHS which logically implies A and is
satisfiable.Three cases have to be taken into account, depending on the type of assertion
to be added to T.
1. If we want to add an interdependency assertion C to T, we perform the following

operations: first, we check if S=Tu{C) is a HCHS; if so, we execute:
HYPERPATH(G~,X,E)

It can be easily verified that S is satisfiable if and only if, after such an exec.ution,
mark(N)=false. In this case, S is the resulting HCHS.

2. Analogously, when we add a membership assertion o of the form:
a is-instance-of D

to T, we check if S=Tu{oJ is a HCHS and, if so, we execute:
HYPERPATH(GS,~,E)

S is satisfiable if and only if, after such an execution, the value of mark(N) is false.
3. Finally, when we add a negative interdependency assertion C' of the form:

not C -
to T, we first check if S=Tu{C) is a HCHS and, if so, we execute:

HYPERPATH(G~,Z,E)
where z is the Skolem constant symbol of CLAUSE(S) which is associated with C ' .
The resulting CHS S is satisfiable if and only if, after such an execution,
mark(N)=false.

where z is the Skolem constant symbol df CLAUSE(S) which is associated with C'.
The resulting CHS S is satisfiable if and only if, after such an execution,
mark(N)=false.

These considerations show that the cost of adding an assertion to T isO(m), where m
is the size of the resulting HCHS S.

Using the above framework, we can efficiently solve the inference problem in
HCHSs. In the following, T denotes a HCHS.

Suppose we want to check if a positive interdependency assertion C logically follows
from T. Let {ol, ..., on) be the set of assertions obtained by mansforming C into normal

form. Since (T I = Z) if and only if, for each i, (T I = oi), we can reduce the problem of

checking if (T I = C) to the problem of checking each (T u {not oil) for unsatisfiability.

Notice that each (T u {m oil) is a HCHS and, therefore, we can proceed as in case 3
above.

With regard to the membership assertions, notice, first of all, that a negative
membership assertion can be transfomed into an equivalent positive one. Hence, we deal
only with positive assertions in the following. In particular,we distinguish between two
cases. If the membership assertion o has the form:

a is-instance-of L1 and ... and Lp

then (TI= o) if and only if, for each i, (T I = a is-instance-of Li), i.e. if and only if for

each i (T u {a is-instance-of L;)) is unsatisfiable, where L; is the complement of Li.

Notice that (T u (a is-instance-of L;}) is a HCHS (see case 2 above). On the other

hand, if o has the form:
a is-instance-of L1 =...or Lp

then (T I = o) if and only if S=Tu{a is-instance-of L1' and ... and Lp') is unsatisfiable.

Since S is a HCHS, the problem of checking if (T I = a) can be solved by executing:

HY PERPATH(GS,~,E)
and checking if, after such an execution, the value of mark(N) is true.

Finally, with regard to negative interdependency assertions, notice that (T I = not S
D) if and ony if there exists a constant symbol cx (either ordinary or Skolem constant
symbol) of CLAUSE(T) such that (T I = a is-instance-of S) and (T I = not a is-instance-of
D). Therefore, we can reduced our original problem to the one of checking if two
membership assertions are logically implied by T, for each constant symbol of
CLAUSE(T).

An interesting application of membership inference allows us to avoid adding
membership assertions which are logically implied by the original class hierarchy
scheme. In fact, when we add a membership assertion o to T, we can not only check if
(Tu(o}) is satisfiable, as specified by case 2 above, but also check if (T I = o); o will be
added to T if and only if it is consistent with T (i.e. T u {a] is satisfiable) and it is not
logically implied by T (i.e. T I = a does not hold).

In order to illustrate how this can be accon~plished, let us consider the case in which
we want to add a membership assertion a of the form:

a is-instance-of Q

to T, where Q is a class literal. The following procedure specifies a method for efficiently
deal with this case:

for each node P of GT do set mark(P) to false enddo;
HYPERPATH(GT,~,E);
if mark(Q)=true
then return("o is logically implied by T")

else let S be T u (o]
in HYPERPATH(GS,~,P)

if mark(N)=true
then return("o is inconsistent with T")
else return("S is the resulting CHS")
endif

endif

It can be shown that with the above procedure o is added to T if and only if it is
consistent with T and it is not logically implied by T. Notice that this method is
particularly important for CHSs with a large number of membership assertions, as in
database applications.

5. Conclusions

Many recent works in object oriented databases and languages deal with the problem
of performing inference on membership and interdependency relationships. In order to
provide a common framework for these work, we have presented a taxonomy of such
relationships, based on a correspondence between class hierarchy schemes and first order
monadic theories. Also, we have studied the computational complexity of the inference
problem for class hierarchy schemes. Finally, we have considered a subclass of CHSs,
namely the Horn class hierarchy schemes, and we have presented efficient methods for
performing inference in such a subclass.

In the future, we aim at extending our method to more expressive class hierarchy
schemes. For example, one may wander if there is any method to deal with complex is-a
assertions in HCHSs, without falling into the intractability cliff. We believe that one
possibility for meeting this requirement is to treat complex is-a assertions differently from
the other assertions, namely as inte,gity constraints. Let T be a CHS in normal form
constituted by two disjoint parts: a Horn CHS TH, and a set TI of (non-binary) complex

is-a assertions. Say that T is concrete if, for each object a of T, and for each complex is-a
assertion of the form:

S b D l p r . . . ~ D , (withp>l)

in TI, (TH I = a is-instance-of S) implies that there is at least one Di such that (TH I = a
is-instance-of Di). It turns out that in concrete CHSs, membership inference can be

efficiently performed. In fact, it can be shown that if T is a concrete CHS, and o is a
membership assertion of the form (a is-instance-of C), where C is a class symbol, then
(T I = o) if and only if (TH I = o). Obviously, a sound and efficient method is needed for
incrementally building a CHS in such a way that the resulting scheme be concrete. We
shall deal with this and other aspects in future works.

References

[Albano 851 Albano A., Cardelli L., and Orsini R., "Galileo: A Strongly Typed
Interactive Conceptual Language", ACM Transactions on Database Systems,
Vol.10, No.2, March 1985.

[Arisawa 861 Arisawa H., and Miura T., "On the Properties of Extended Inclusion
Dependencies", Proc. of the TwelvthVLDB Conference, Kyoto, 1986.

[Atzeni 861 Atzeni P., and Stott Parker D., "Formal Properties of Net-based Knowledge
Representation Schemes", Proc. of the 2nd IEEE International Conference orz Data
Engineering, Los Angeles, Ca, February 1986.

[Atzeni 871 Atzeni P., and Stott Parker D., "Set Containment Inference", Proc. of tlze
International Conference on Database Theory, Lectures Notes in Computer Science,
N.243, Springer-Verlag New York Inc., 1987.

[Buneman 861 Buneman P., and Atkinson M., "Inheritance and Persistency in Database
Progranxning Languages", Proc. of ACM SIGMOD, Washington D.C., 1986.

[Dowling 841 Dowling W.P., and Gallier, J.H., "Linear-Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae", Journal of Logic Programmirzg,
Vol.1, No.3, 1984.

[Israel 841 Israel D.J., and Brachman R.J., "Some Remarks on the Semantics of
Representation Languages", in Broadie M.L. et. al. (eds.), On Conceptual
Modelling, Springer-Verlag New York Lnc., 1984.

[Lenzerini 871 Lenzerini M., "Covering and Disjointness Constraints in Type
Networks", Proc. of the 3rd IEEE International Conference on Data Engineering,
Los Angeles, Ca, February 1987.

[McAllester 861 McAllester D., and Zabih R., "Boolean Classes", Proc, of ACM
OOPSLA Conference, 1986.

Static and Dynamic Type-Checking

David C.J. Matthews

Abstract

The purpose of a type checker is to prevent an incorrect operation from being per-

formed. A static type checker does this by stopping the compiler From generating a

program with type errors, a dynamic type checker halts the program as it is about

to make a type error. It is clearly useless to have a dynamic type checking system

for a program which is to be produced, distributed and used by anyone other than

the original authors since any type errors that occur would be meaningless to the

user of the program.

On the other hand, where a user is guiding a program through some data, a

dynamic type-checking system is reasonable. Examples are browsing through a

database or structure-editing. Here type-errors have meaning to the user.

The ideal language would be basically statically type-checked but would allow

dynamic type-checking when necessary. While this is possible with certain type

systems there are others for cv hich it is difficult. The implementation of dynamic

type checking in various type systems is considered.

Type-Checking

Type checking is an effective way of reducing programming errors. Its function is

to identify those values to which an operation can be .'sensiblyx applied. The defi-

nition of "sensible" depends on the type system but usually operations like adding

together two functions are not regarded as sensible while adding two numbers is.

1.1 Static and Dynamic Checking

One way of doing the type checking is to tag each value with a few bits which

describe its type. Each operation checks the tag bits and gives some sort of failure

if the values have the wrong type. Dynamic type checking will prevent some of the

more obscure errors but has the disadvantage that the faiIure is only generated

when the program is run.

A better method involves placing some restrictions on the programs that can

be written so that the compiler can decide s t ~ t i c a l l y whether a program could

possibly generate type failures when it is run. If the program can be shown to be

type-correct there is no need for the tags and we know before the program is ever

run that type errors will not occur.

1.2 Binding

Related to this is the question of binding. Declarations bind names to values and

so have types. When a n identifier is looked up the value with its type is returned.

If there are several identifiers with the same name there must be rules for deciding

which one is meant in a particular context.

One of the restrictions for static type checking to be possible is that the com-

piler must know the type of all the identifiers in the program. This requires static

binding to identifiers, that is the identifiers are matched up with their declarations

when the program is compiled and does not depend on the execution paths.

It is possible to have dynamic binding where an identifier is looked up when the

program is run, but static type checking is possible only if all the identifiers with

the same name have the same type. General dynamic binding requires dynamic

type checking.

2 Static Type-Checking

Testing a program to try and find errors is difficult, and can never guarantee

correctness. The ideal programming language would be one which imposed no

restrictions but where the compiler could decide whether the program was correct.

Unfortunately that is impossible and so we must accept some restrictions and

even then we only have a limited form of correctness. However type-correctness is

sufficiently useful that paying the penalty in terms of accepting sonie restrictions

is reasonable. Recent developments in the design of type systems, particularly

polymorphisrn[3], have extended the range of static type checking into areas where

traditionally dynamic type checking was thought necessary.

2.1 Type Equivalence

At the lowest level a type must describe the structure of its values in terms of type

constructors such as records and unions and the primitive types of the language,

in order that the primitive operations can be type checked. In one form of type

checking, if a type can be given a name it is treated as an abbreviation for the

structure and two values are treated as the same type if they describe the same

structure. This is structural type equivalence used for example in Algol 68,9[.

An alternative is to define that two values have the same type only if they have

the same type name. If the type names are different the types are incompatible

even if the structures of the types are the same. Xame equi,calen,ce does not mean

that the structure of the type is not visible, ouly that it is not used for type equiv-

alence. Abstract types are a variation of name equivalence where the association

between a type name, the abstraction and its structure, the implementat ion is only

visible within the abstract type definition[41. Outside that it has no structure and

name equivalence is used. When types can be returned as a result of functions

name equivalence or a variation of it is needed to ensure that type checking is

decidable[2] 161.

Dynamic Binding and Type-Checking

Static type checking is useful when a program is being produced which is to be

executed later. If the program is to be executed immediately, and particularly if

it just consists of a single command, there is really very little difference between

static and dynamic type checking. Command line interpreters, or "shells" are an

example. The command

e d i t af i l e

typed to a command interpreter would probably involve a search for the files e d i t

and a f i l e and checks that e d i t was an executable file and afile was a text

file. The search and type checking for af i l e might well be done from within the

e d i t program. There is no advantage in treating type checking separately from

execution.

However, if several commands are put together in a command script it starts

to look more like a writing a program. Because the individual commands are dy-

namically bound and type checked it is not possible to statically type check the

completed script even though it resembles a programming language procedure.

Apart from command interpreters the Mentor programming environment[7] is an-

other example where structure editing commands in the hlentol language can be

put together into procedures.

Apart from the fact that there is no advantage in statically checking a command

which is to be executed immediately, there are other reasons why dynamic type

checking is used. Programs often create file names, for instance by appending

standard suffixes onto a name to make a set of related file names. Since the files

are dynamically bound they must be dy-narnically type checked.

Dynamic binding may not only be by name but by other mechanisms as well.

In a structure editor a user may select an item by pointing to it with a mouse.

Different parts of the structure will have different types so that changes to the

structure are constrained, but the function that returns a selected value must be

able to return a value of any type. Dynamic type checking must be used if this

4 9

value is to be copied somewhere else in the structure.

4 Combining the Two

Static type checking is needed for programs which are to be executed in the future,

buf dynamic type checking is needed for interactive operations. If we have a system

where both of these activities can occur we really need both mechanisms.

The obvious way to do this is to take a static type system and add some

additional syntax and a new type dynamic.

dynamic z

constructs a value of type dynamic by packaging up the value with information

describing its type. The inverse operation

coerce d to t

checks that d is a dynamic value with the type information appropriate to the

type t and returns the original or raises an exception. The syntax is taken from

Amber[l]. Dynamic binding can be done by returning values of dynamic type and

then coercing them to the appropriate type.

A dynamic value contains a value and a representation of the type. The type

representation must contain enough information for the coerce operation to do the

same kind of checking at run-time as the compiler would do at compile-tirne. We

do not want the dynamic type mechanism to subvert the static type system. This

may be more complicated than it appears. The rules for static type equivalence

which are applied at compile-time may not be reproducible a t run-tinie. To see

how the static type system influences the dynamic typing some static type systems

will be examined, both from languages which have dynamic types and those that

do not.

4.1 Structural Equivalence

The simplest type systems for this purpose are those such as Amber tha t have a

fixed number of primitive types and use structural equality between types. Each

primitive type can be assigned a unique identifier and data structures used to de-

scribe the structured types. Because names for types are just synonyms for the

structure we can always use a representation of the structure for the type represen-

tation. Although the name may be declared locally the structure representation

is valid anywhere so dynamic type checking is safe. Type inheritance in Amber

does not have any serious effect on this.

4.2 Polymorphism

If the language allows polymorphic operations, as in hlL, dynamic type checking

has to be arranged more carefully. Consider the following two functions.

fun get-dynamic d = coerce d to a;

fun make-dynamic 1: = dynamic z;

get-dynamic takes a dynamic value and coerces it to the type variable a. If the

dynamic type matching rules follow the static type rules these should match for

any type since unification of a type variable with any type would succeed. Clearly

this would allow the type sq-stem to be broken because we co~lld rnake a dynamic

value out of, say, an integer value, pass it, into get-dynamic and treat the result as

a string.

make-dynamic will take any value and make a dynamic value from it. This

again could break the type system. A solution to both of these problems is simply

to forbid polymorphic types in coerce or dynamic operations.

4.3 Abstract Types

If the static type system allows the user to create abstract types we have to produce

a unique identifier for each abstract type and use those in bype representations.

5 1

References

[I] Cardelli L. Amber AT&T Bell Labs Technical Report 1984.

[2] Demers A. and Donahue J. Revised Report on Russell TR79-389, Departnlent

of Computer Science, Cornell University, 1979.

[3] Gordon M. et al. A ibfetaianguage for lnteractive Proof in LCF Fifth -4nnual

Symposium on Principles of Programming Languages, Tucson 1978.

[4] Liskov B. et al. CL U Reference Manual Springer-Verlag, Berlin 198 1

(51 MacQueen D.B. Modules for Standard M L AT&T Bell Labs Technical Report

1985.

[6] Matthews D.C.J. Poly lLIanual S I G P L X N Notices. Vo1.20 No.9 Sept. 1985.

[7] h/ldll?se B. et al. The Mentor- V5 Documentation Technical Report 43, INRIA

1985.

[8] Milner R. A Proposal for Standard h1L in "Proceedings of the 1984 ACM

Symposiuni on Lisp and Functional Programming", Austin, Texas 1984.

[9] van Wijngaarden A. et al. Revised Report on the Algorithmic Language *41-

gol68. Springer-Verlag, Berlin 1976.

4.5 Types as Values

In languages such as Russell and Poly types can be treated as first class values.

X type and operations associated with it are packaged together and treated as

a run-time value. To ensure decidability name equivalence has to be used. An

expression such as

let a t y p e == if ... then t y p e l else t y p e 2 ;

declares a t y p e to be a type which is not the same as either t y p e l or t y p e 2 , since it

is in general not decidable which is actually being returned.

This causes problems if we try to use the dynamic type scheme suggested

above for ML. Suppose t y p e l and t y p e 2 are different implementations of trees as

in the ML example. They both have m o v e functions which return dynamically

typed values. If we make a tree of type t y p e l tve expect the dynanlically typed

values to be coercible to t y p e l but not to t y p e 2 or to a t y p e . Similarly values

from a t y p e should not be compatible with either t y p e l or t ype2. Unfortunately

if the type representation is put into the dynamic values inside the abstract type

declaration the dynamic values returned from a t y p e trees will be either t y p e l or

t y p e 2 depending on the actual type returned by the if. There seems to be no

way to avoid the dynamic type checking behaving differently to the static type

checking.

Conclusions

Certain applications require dynamic type checking in an otherwise statically typed

language. For some type syst.ems this is relatively easy to arrange, but others

require considerable thought if the security of the static type system is not to be

undermined.

which would allow the type system to be broken, so clearly this cannot be allowed

as it stands. In any case it is difficult to see how it would achieve what is wanted,

which is for leaves of int trees to be returned as dynamic values coercible to values

of type int.

IIowever if we treat the parameterised type more like a function so that the

parameterised type is always used in its parameterised form we can safely allow

dynamically typed values to be created and probably get the required behaviour.

In Standard ML this could be done using a parameterised module, called in h1L a

functor [5] .

functor Tree(Elem: sig t ype t end) =

struct

da ta type tree = Leaf o f Eien.t j Tree o f tree .r tree;

fun move = ... (* As before -)

end

The type tree is only available when the functor Tree has been applied to a module,

in ML a structure, containing a type. Other rules in ML ensure that this is a

monotype.

structure fnt Tree = Tree(struct type t = int end) ;

This creates a tree whose leaves are integers. In order to get the effect we want

the type representation for int must have been passed into the fiinclor so that the

dynamically typed values returned from leaves are recognisably integers. The tree

type 1ntTree.tree itself is a new atomic type so the representation for t.he type can

be created dynamically when the functor is applied.

In CLU, which has parameterised clusters and dynamic types, this is rather

more difficult. A cluster parameterised by the same parameter values denotes

the same type wherever it appears in a program. Since the type may appear in

different segments the CLU linker must examine all the types, construct unique

identifiers for each different type, and then pass the identifier to be used for the

result of each parameterised type into the type as an additional argument.

5 4

Intensional Concepts

in a

Database Programming Language

David Beech

Hew left-Packard La borator2es
1501, Page Mill Road

Palo Alto
CA 94304

One way in which database systems need to be given increased semantic power is in the
use of intensional concepts and more general inferential ability. A framework for achieving
this will be described in terms of extensions to an object data model.

Predicator and Generator types are introduced to define collections of objects, or relations
between objects, by formulae which test an object or n-tuple of objects for membership
in the Predicator case, or generate them in the Generator case. Operations are defined
on these types, such as Assert which provides the hook for dealing with view update by
specialized actions where necessary.

Examples are given in a higher-level language syntax to supplement the description of the
underlying primitives .

A dynamic value created from the abstract type will contain different type infor-

mation to a dynamic vaiue created from the representation. This may be difficult

if the dynamic value is created inside the abstract type package since there the

distinction between the values of the abstract type and the i~rlplementation type

is blurred.

4.4 Parameterised Types

Parameterised abstract types create another problem. If we have a type which can

be parameterised by other types or values we need to ensure that any dynamic

values created from values of the result type or the argument types have the correct

type representation. If the parameterisation simply involves macro-expansion this

is relatively easy but if it is done at run-time the type representations will have to

be passed as run-time values. The type identifier for the resultant type may have

to be created dynamically when the parameterisation is done.

For example, we may define a type tree which is a binary tree parameterised

by the type of the leaves. Inside the type definition we write an operation to walk

over the tree in response to commands from the user and return either a leaf or a

piece of tree as a dynamic type.

abstype cr tree = Leaf of cr 1 Tree of a tree i: cr tree

with

fun m o v e "value" (Lea f 1) = d y n a m i c 1 (6 Return the leaf k)

I m o u e "value" (T r c e t) - d y n a m i c t (. Return the t ree .)

I m o v e "left" (T r e e (I , -)) =

m o v e (n e s t c o m m a n d ()) 6 (r Move left r)

I m o u e "right" (Tree (_, r)) =

m o u e (n r , r t c o r n m a n , d ()) r (4 Move right k)

I m o v e - _ = raise bar l_command (i Anything else r)

end

In this example Standard ML:81 has been used with the addition of the operation

to create dynamic types. The dynamic operations have been applied to polytypes

Contents

. . 1 Introduction 1

. 1.1 Motivation 1
. 2 . Object Model 3

2.1Types . 3
. 2.2 Actions - 4

. 2.3 Extensional Collections 4
. 3 . Intensional Concepts 5

. 3.1 Types or Actions? 5
. 3.2 Predicators 7
. 3.3 Generators 10

. 4 . Conclusion 11

n arguments (usually called relations in logic when n > 1, although we shall abstain from
using the word "relation" to avoid confusion with database parlance).

When we say that a concept has been given an extensional definition, we shall mean that
its exemplification is solely determined by a succession of explicit assertions that individual
objects (or tuples of objects) are or are not examples of the concept. We will show in italics
a f i s t approximation to how this might be expressed:

Create concept Person (Object o);

Assert Person(ol), Person(o3), Person(o4);

Retract Person(o1);

Assert Person(o9);

Create concept FatherOf (Person f, Person c);

Assert FatherOf(o3, 04);

An intensional definition of a concept employs some formula or algorithm or rule which
enables its exemplification to be determined from other information without requiring
direct assert ions about this concept. For example:

Create concept Father (Person p) as

Exists Person c such that FatherOf(p, c);

Create concept Grandfatherof (Person gf, Person gc) as

Exists Person p such that FatherOf(gf, p) and ParentOf(p, gc);

(Note that the extensional/intensional distinction refers to a particular definition of a
concept, not to the concept itself. There may be many ways of defining an interrelated
set of concepts with different choices as to what is to be extensional or intensional. In
a way, the choice of something as extensionally defined is a confession of arbitrariness or
disinterest or ignorance-we may have to be told explicitly who someone's parents are
because we were not present at the birth, or lack other sound evidence.)

Of course, an intensional definition may use other extensionally defined concepts. It is
also often the case in a world of incomplete information that an intensional definition may
be indecisive, and yet may be supplemented by direct extensional information about the
same concept. For example:

Assert GrandfatherOf(o1, 09);

Crea t e Employee i n s t a n c e Smith;

Add t y p e P i l o t t o Smith;

Types are themselves modelled as objects, and like other objects may be alterable and
versionable.

2.2 Actions

Actions are also objects, defined to take arguments of certain types and return a result
(possibly many-valued) of a certain type. Actions are applied to their arguments-this is
not itself an action, but a meta-action of the model. Actions may produce truth-values or
results of any other type, and may be defined by explicit update or by formulae:

Crea t e act i o n name(Person) -+ S t r i n g ;

Asse r t name(Smith) = 'Z.Y. Smi th) ;

Asse r t name(Mendoza) = 'Car los Mendoza';

C rea t e a c t i o n ManagerName (Employee e) --+ S t r i n g

as S e l e c t name(m)

f o r each Employee m

where m = manager(dept(e)) ;

Formulae in the model provide recursive computability. Actions may also be defined by
algorithms with side-effects, and they may be foreign act ions written in programming
languages provided that their argument and result interfaces are consistent with this model.

2.3 Extensional Collect ions

We treat extensional collections of objects differently from pure sets, and call them com-
binations. A combination is itself an object, and obeys the usual rules for object identity.
Objects must be inserted and removed explicitly, and it is thus possible for two combina-
tions to have the same members without being identical. This corresponds to the semantic
situation in a time-varying world where the objects being modelled are distinct, although
at a given level of abstraction and at a given time they cannot be distinguished by their
components.

C rea t e Combination C i , C2;

I n s e r t Hecht, Mendoza i n t o C 1 ;

Remove Hecht from C l ;

Create type Person;

Create Person instance Smith;

In the latter case, a corresponding predicate IsPerson may be maintained, but there is
more to it than this. A type, in our model at least, can be instantiated, whereas setting a
predicate True for given arguments does not create a new object-the semantic power of
an action to remember such information is primitive, rather than being modelled in terms
of other objects which have some other primitive powers of memory. But there is another
property of types which is very widespread in programming language and data models.
This is their use for type checking of action parameters and results. The type specified
for a parameter or result serves as a constraint, yet is clearly a very partial mechanism,
governed usually by the desire for simplicity and as much static checking as possible. Type
expressions, and more general constraint expressions, are the subject of important research,
but have not yet found their way into general practice. Perhaps we shall see type systems
evolve to become richer, or perhaps we shall see the existing limited systems survive as
a well-judged engineering trade-off between simplicity and power, to be supplemented by
more general constraint systems (not limited to argument and result checking) as these
become practicable.

Now we are ready to pose the question whether intensional concepts of one variable should
also be expressible, not only as actions, but also as types? This would certainly be possible,
but would conflict with the current tendency for types to be instantiable. It may be argued
that system types like Integer are already not explicitly instantiable, and that in systems
which support unbounded integer computation, it may be philosophically uncomfortable
to some (the author included) to postulate an infinite set of instances already instantiated.
However, this suggests a solution, that new instances of such types may be implicitly
created as required, and thereafter remain in existence just like explicitly created instances
of a type. This leads to consideration of the second conflict with current usage of types-
that the instantiation of types becomes highly dynamic and difficult to check. Worse
than this, determination of the types of objects would have to be defined very precisely
as to when and in what order it was carried out, in case any of the actions involved had
side-effects (which are hard to exclude in database systems which are largely designed to
achieve side-effects). Then much optimization might have to be excluded in case it led to
different results, not merely of the computation, but of the type checking itself.

So for the present, it looks advisable to avoid intensional types. This also helps with
the requirement to evolve from the present, without requiring a complete change to a new
language. Possible approaches such as the embedding of a data language in a programming
language (ci la SQL), and the sharing of type definitions between languages, are facilitated
by adopting a conservative treatment of types.

So we are left with a uniform treatment of the four cases considered, in which exten-
sional or intensional concepts, of one or more variables, may all be modelled by actions.
Supplementing this, there is the alternative, in the case of extensional concepts of one
variable, of being able-to define them as types and to instantiate them explicitly and to
have conventional type checking carried out.

Crea t e p r e d i c a t o r Fa ther (Person p) a s

e x i s t s (Se l ec t

each Person c

where FatherOf (p , c)) ;

Create p r e d i c a t o r GrandfatherOf(Pers0n gc) - Person gf as

S e l e c t d i s t i n c t gf

f o r each Person p

where F a t h e r ~ f (g f , p) and ~ a r e n t ~ f (p , g c) ;

Beneath this slightly higher-level language, the underlying object model makes it possible
to iterate over instances of a type, or (tuples of) objects satisfying a predicator. Query
evaluation strategies must choose between the alternatives in combining the each or f o r
each clause with the where clause. To evaluate S e l e c t Grandf a t he ro f (Smith) , it would
be possible, for example, to iterate over the Person type and simply apply the FatherOf
and Paren tof predicators to each p; or to iterate over the Parentof predicator and within
that to apply the FatherOf predicator. The Iterate primitive in the model passes an Action
to be applied to each satisfying tuple, and also an Integer which places an upper bound on
the number of iterations if non-negative. The result is a List of the results of the Action
from each iteration.

It is also possible to define Grandf a the rof as a hybrid predicator:

C rea t e p r e d i c a t o r ~ r a n d f a the rof (person gc) - Person gf

w i th combination C l

as S e l e c t d i s t i n c t gf

f o r each Person p

where FatherOf (gf , p) and Paren t Of (p , gc)) ;

The default semantics of applying such a predicator are that the Combination object C1
is searched first for an extensional assertion about the given Persons g c and g f , and only
if none is found will the intensional formula be evaluated. Other treatments of semantics,
such as checking for conflicts between the extension and the intension, can be explicitly
specified if desired.

Explicit specification of semantics becomes a much bigger issue for update of intensional
or hybrid concepts. The default for Assert or Retract is to make some minimal unique
change, if such can be found, to some other extensional information so that the effect is
achieved via the intensional part of the concept definition. To override these defaults, the
Assert and Retract actions can be defined for specific predicators:

References

[Beech 871

Beech, D. Groundwork for an Object Database Model. In: Shriver, B. and Wegner, P.
(eds.) Research Directions in Object-Oriented Languages. MIT Press, 1987.

[Clocksin & Mellish 811

Clocksin, W.F. and Mellish, C.S. Programming in Prolog. Springer-Verlag (1981).

[Codd 701

Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13:6
(1970 June), 377-387.

[Fishman et a1. 871

Fishman, D.H., Beech, D., Cate, H.P., Chow, E.C., Connors, T., Davis, J.W., Derrett, N.,
Hoch, C.G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M.A., Ryan, T.A., and Shan,
M.C. Iris: An Object-Oriented Database Management System. ACM fiansactions on
Ofice Information Systems 5:l (January 1987), 48-69.

[Goldberg & Robson 831

Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implemedation.
Addison- Wesley (1983).

[Schwartz 731

Schwartz, J.T. The SETL Language and Examples of its Use. Courant Institute, New York
University. 1973.

Generator is a subtype of Action, and thus a Generator object also has a Formula in its
Action part, which must take just an Integer parameter, and may return any Type of
result.

The basic generation of the nth element of a sequence is carried out by "applying" the
Action part of the composite ActionIGenerator object to the Integer n. The Generator
actions provide additional capabilities for handling a mixture of extensional and intensional
information, and for iterating over the elements of the sequence.

Assert and Retract are intended to accommodate updates to the extension of a Generator,
as far as possible transparently with respect to the nature of the defining Formula. If
the Formula is purely defined in terms of the Assertions part of the Generator, then
appropriate changes are made to these assertions. Otherwise, the default semantics are
that some minimal permitted extensional change is to be made elsewhere if possible, such
that evaluation of the Formula would now show the desired change in the extension, but
no other-failing this, an exception is raised.

Iterate takes an Action, which must have just one parameter of the Type returned by
the Formula and may return a result of any Type, and applies it to each member of the
sequence in turn. An upper bound may be specified on the number of iterations, or may
be Null to indicate the absence of a bound. The results of the Actions are collected by
appending them to a List which is returned when the Iterate action is complete.

IsGenerated tests whether the given Object is producible by the Generator, and may return
Unknown if it is unable prove truth or falsity.

4. Conclusion

A model of intensional concepts in an object-oriented database language has been briefly
presented at two levels-an intuitive higher level in order to illustrate its potential as
an evolutionary continuation of some existing programming languages and database lan-
guages, and a more primitive level defining the essential semantic actions beneath the
syntactic sugar.

Something very close to the foundations of this model has been implemented as part of the
Iris system [Fishman e t al. 871, although this presently does not distinguish predicators
and generators from other actions, and the view update capabilities are very restricted.

Much future work will be needed to explore how far the default semantics can be carried
by the system, how unfruitful searches will be terminated by timing out or other measures,
and what new forms of query optimization are called for. The model is intended as a suit-
able framework for addressing the problems of combining inference engines and database
systems, in the hope of cumulative progress rather than an immediate breakthrough.

Another major question which arises, as always, is the extent to which the language used
to define actions for specifying intensional concepts and their update semantics needs to
approach a full-fledged programming language. The conclusion section of a paper is no
place to begin that discussion, but we have indicated earlier that we allow for enough
language to give us computability of recursive functions, and also anticipate the use of
foreign actions writ ten.in other languages.

expect VISION can be extended in the future.

2. Modeling Complex Applications

2.1. The Application Development Process

Traditionally, information intensive applications have been developed using
systems that separate data management facilities from programming environ-
ments. Consider Figure 1. Ideally, the database management system is used to
codify the declarative semantics of the application, and the operational semantics
of the application is captured in one or more programs. In actuality, however,
this separation is not so clean. A database management system only manages the
declarative semantics of the shared, persistent data; the application programs
must define and manage transient data themselves. Although application pro-
grams support the bulk of an application's operational definition, the database's
data manipulation language provides some operational capabilities as well. In
addition, although application programs can be considered part of a shared, per-
sistent information base, they typically are not managed by the data management
system.

This seemingly arbitrary division between the database management system
and the programming language makes application development awkward at best.
Typically, only the simplest applications -- such as traditional record keeping sys-
tems -- have made good use of these divided database/programming systems. The
reason is that simple applications deal with a relatively small set of simple data
types, which can be conveniently isolated by the database system from the pro-
grams that manipulate them. As applications begin to model fine-grained, real-
world entities and systems, they generate large and complex sets of data types.
And because a significant component of a complex type's definition is operational,
it becomes increasingly difficult to separate the declarative structure of the data
from its operational semantics.

The concept of an Application Development Platform is an alternative to this
partitioned, dual implementation model. The goal of an application development

Management Environment

Figure 1. The Traditional Application Development Model

modeled at different levels of abstraction. An application might need to have
more detailed information about one aspect of a company than another: either
the information is not available, or the users of the application are more
interested in some details than others, and are willing to spend more time
developing specific parts of the overall model.

Thus investment modeling is a complex appIication which generates a large
number of objects and uses a large quantity of statistical data. Simple, tabular
structures like relations do not have the capabilities to model entities at different
levels of abstraction. An entity is not just one tuple in a relation; rather, it is
several tuples scattered across several relations, which must be related in a specific
way.

Time is another important concept that must be captured in order to model
investment applications effectively. At least two independent time dimensions
exist. A system must be able to capture the history of an object both in the
user's world and in the system's model of the world. It must also be possible to
discuss various alternative scenarios of what an entity will be like in the future.
Time interacts fundamentally with a language's mechanism of update and with a
user's view of the database. If an extensible treatment of both is to be provided,
an appropriate linguistic home must be found for time.

Dat.abase schemas are not static: an application's model of the world must be
able to evolve. It is unreasonable to expect a designer to know the complete
details of a model when it is created. Consequently, efficient addition, alteration,
and deletion of properties applicable to previously existing entities is essential. As
types are specialized, it must be possible to selectively refine existing individuals
to acquire the behavior of the specializations.

The database required by an investment management decision support sys-
tem is large. Underlying most applications are several hundred megabytes of sta-
tistical data. Iteration over collections of this information is common. Although
some iterations are associative, many iterations involve some form of general com-
putation, making them unsuited to traditional "index" based optimizations. Thus
the system architecture must be able to handle iteration in non-traditional ways.

The VISION approach is to remove the partition between database manage-
ment and programming. From the database perspective, we want to eliminate the
need for a host language. From the language perspective, we want to add the
notion of persistance and sharing. Any capability should be viewable from either
perspective. In some cases, such as encapsulating interation, it is important to
take the database perspective. And in other cases, such as encapsulating behavior
and execution environments, we want to take advantage of efficient programming
language techniques.

3. The VISION Language

In general, the operation "!y <- z specialized" creates a new collection whose pro-
totype object is y, such that y super is z. Thus, the collection hierarchy is
represented by an object tree of prototypes, with object as the root prototype.

Prototype objects are very much like other objects in collections. For exam-
ple, they have function values, and can be manipulated in VISION expressions.
The only difference is that the prototype of a collection does not show up in an
enumeration of the collection: the prototype is in a sense the "zeroth" object in a
collection.

If y is a prototype, then the expression "!z <- y new" creates a new object
that is "just like y". That is, it creates a copy of each object in y's superchain.
Note that the function values of y act as default values for the collection. This
new copy can then be given different values for its functions.

For a concrete example, the following VISION code defines part of the
scheme in Figure 3, and creates some instances.

!company <- object specialized;
!person <- object specialized;
person defineFizedProperty: 'name ' .

defineFizedProperty: 'phoneof ';
!employee <- person specialized .

defineFizedProperty: 'worksFor';
!gm <- company new;
!joe <- employee new;
joe :worksFor <- gm;

In sum, then, a user of the VISION language sees and manipulates only col-
lection instances. There is no need to worry about names of collections, or the
difference between instance-of and subcollection-of edges. Of course, the user has
to be aware of the collections, since the semantics of the operations are defined in
terms of them. But in general, the language is simplified and made more flexible.

The difference that VISION has from the prototypes of [L] is that the
VISION user, when adding a new object y similar to z, must decide whether it is z
new or z specialized. In the first case, the prototype values are copied; z and y
become equals, sharing the same protocol. In the second case, the prototype's
values are shared; changing values of the prototype z will change the specializa-
tion y. The use of prototypes is also similar to the language SELF [US]; its main
difference is that the VISION system manages collections internally, for the sake
of efficiency.

3.4. Polymorphic Functions
One way that VISION generalizes traditional database languages is in its

treatment of polymorphism. In VISION, a function can map a collection to
several collections. Such a function is called polymorphic. For example, consider

. the function phoneof from Figure 3. That function is shown as mapping person to

In general, the function z eztendTo:y clones the prototype object y and sets
the super of the new object to be z.

3.5. Object Specialization

One feature of non-homogeneous colrections is that object trees need not
correspond exactly to the collection hierarchy. This property follows from the fact
that different objects in the same collection can have different behaviors. Consider
the collection stockholder above. The object trees for this collection appear in Fig-
ure 5. Note that there are three different tree structures: the prototype tree, the
tree for person stockholders, and the tree for corporate stockholders.

Since prototypes are not much different from other objects, functions such as
new and specialized should be applicable to all objects equally. That is, objects
should be able to clone or refine themselves on an individual basis. We call such
an ability object specialization; to our knowledge, no other language has this
feature. For example, if z is an object, then the expression z new creates a copy
of z and every object in z's superchain. This feature is useful when a collection is
non-homogeneous. In the stockholder example, we can create new corporate
instances by saying "gm2 new"; new individual stockholders are created by saying
"joe2 new ". The expression "stockholder new " creates a new stockholder object,
which is neither a person nor a company.

Another useful consequence of object specialization is that an object can be
the super of several other objects. This feature is necessary in analyzing future
scenarios. Consider for example the object ford in class company. In order to
examine the effect of inflation on the expected future price of the stock, we can
create a subclass of company, having properties infiation-rate and future-price.
For each inflation rate we wish to examine, we create a new object in this class,
which is a refinement of ford. That is, we say:

Ijuture Co <- company specialized;

company

stockhold

object

person

m
Figure 5. Stockholder 0 bject Trees

ratings must be a function defined in the collection TA. The VISION model of
this application is shown in Figure 6b. That :figure models three entities, one of
which is just a student, one is just a teacher, and one is a TA. Again, object spe-
cialization allows inheritance to be performed via object superchains, without the
need for complex multiple inheritanceZmachinery.

3.6. Funct ions a s Objects

An important feature of VISION is that functions are treated as first-class
objects. In VISION, there are two types of message: extensional and intensional.
An eztensional message yields the result of evaluating the function it selects. For
example, the message "gm sales" yields 96371.63. An intensional message yields
the function itself. Intensional messages are expressed by placing a colon before
the function name. For example, the message "gm :sales" yields the function that
connects the object gm to its sales value.

Since functions are objects, they also belong to colIections, respond to mes-
sages, and are organized into subtypes. Refer to Figure 7 , which shows a portion
of the VISION hierarchy for functions. Every function responds to the message
value, so the method value is defined in the collection function. The effect of the
value message is to yield the extension of the message. Thus "gm :sales value " is
the same as "gm sales ".

Functions can be computed or enumerated. Enumerated functions get their
values explicitly; that is, they respond to the assignment message "<-". The most
common enumerated function is a property (or attribute). For example, since sales
is an enumerated function, we can say "gm :sales <- 06991.2". Computed func-
tions are either methods, which are user-defined, or primitive, which are provided
by the system.

By providing functions as firs^-class objects, VISION avoids many of the
anomalies and restrictions of other languages. The most obvious example is
assignment. In VISION, assignment is not a special operation on objects. Instead,

(function

Figure 7. The Funct.ior1 Hierarchy

system creates a new collection containing one function for each local variable. It
then extends the object that owns the block to this new collection, and executes
the body of the block in the context of this new object.

The most recent context at any time is knowi as ^current. The value of-
^current is constantly changing, as blocks are invoked. In particular, each user
session has a system-defined environment, which serves as the initial value of
'current. We have seen that the local variables of a block become functions in the
environment. Similarly, all variables created in a user session are just functions in
the initial ^ current. That is, the expression "!gm <- company new" creates a
function called gm in ^ current. Consequently, except for certain system-defined
names like ^current, names in VISION do not refer to objects; instead, all refer-
ences are to functions. Thus the expression " g r n sales" is technically not legal. It
is treated by VISION as a shorthand for the correct expression "^current gm
sales ".

It is interesting to see how the mechanism for block execution is related to
object specialization. For example, consider the following use of the function
ezt endBy:

Here, z is a specialization of gm, which is a member of a new collection having the
function pe. The effect of executing the function eztendBy is to create a new
environment; however, instead of returning the value of the block, the environ-
ment itself is passed back as the value of the expression.

4. T h e Physical Archi tecture

Physically, the VISION system is divided into two components: the language
interpreter, and the object manager. Although this division superficially resembles
the traditional division between the programming language and the database,
there is much more cooperation in the VISION system. In particular, both com-
ponents work together towards encapsulating iteration; both the virtual machine
interpreter and object manager operate on collections as their basic unit of com-
putation and structural organization.

4.1. The VISION Vir tua l Machine

Three performance bottlenecks have traditionally dominated the design of
object-oriented systems -- message dispatch, function (or method) activation, and
garbage collection. While techniques such as method caching and stack based
allocation can reduce the overhead associated with these operations, these optirni-
zations are intrinsically serial in their approach. While serial optimizations reduce
the absolute time to perform individual operations, they still interact multiplica-
tively with common types of collection iteration. Consequently, when traditional
object-oriented systems try to scale up from small collections to large ones, perfor-
mance drops dramatically.

8 3

and executes them in parallel. Second, experience has shown that most queries do
not request entire objects, but only a small portion of them; consequently, by
storing functions the object manager increases clustering and reduces the reading
of unneeded information.

The VISION object manager uses an identical representation for transient
and persistent data. This strategy allows the virtual machine to not care about
the location of an object, and whether it is persistent or transient. The common
format eliminates all conversion penalties associated with access to persistent
data. As a result, persistent data can be viewed by a process as virtual memory
resident. Object faulting is handled as a by-product of hardware load and store
instructions and standard virtual memory paging operations. Because faulting is
triggered by hardware load and store instructions, access to VISION objects does
not require mediation by a separate software buffering layer.

The VISION object manager currently uses a multiversioned optimistic con-
currency control method for persistent data. This strategy guarantees that a
read-only transaction will always be able to see a consistent view of the database,
and will never abort. Optimistic concurrency control appears to be especially
appropriate for interactive modeling applications, where a large percentage of
transactions are either read-only or affect only a user's private data.

5. T h e F u t u r e

VISION currently is in active commercial use, supporting the interactive use
of databases containing several hundred megabytes. In practice, the pipelined
parallel architecture of its interpreter has proven effective at reducing the over-
head of message dispatch, context switching, and garbage collection associated
with operations that iterate over collections. The treatment of functions as first-
class objects along with the notion of dynamically bound temporal context has
allowed time to be treated in a natural and compact manner.

Current research efforts involve extensions to the function type hierarchy to
accommodate type specific concurrency control mechanisms, type-specific query
optimization strategies, and object versioning. Additionally, we are investigating
mechanisms for extending the global context to areas other than time in order to
unify the treatment of encapsulation of objects and access control.

6. References

[C] Codd, "Extending the Database Relational Model to Capture More Mean-
ing". ACM TODS, December 1979, pp 397-434.

[CT] Clifford and Tansel, "On an Algebra for Historical Reiational Databases:
Two Views". PTOC. ACM SIGMOD Conference, 1985, pp 247-267.

[DKL] Derret, Kent, and Lynbaek, "Some Aspects of Operations in an Object-

Implementing functional databases

Guy Argo
Glagow University

John Hughes
Glasgow University

Jon Fairbairn
Glasgow University

(visiting from
Cambridge University)

John Launchbury
Glasgow University

Philip Trinder
Glasgow University

style. To implement these abstract operations we shall use an ordered
binary tree. We use the symbols <, =, > to express the ordering of the name
values.

Our binary tree can be represented by the Miranda datatype (with Greek
letters instead of asterisks)

bintree a ::= Node (bintree a) a (bintree a) I Nil

The intention is that the type a will be the cross product of two other
types: one representing names; and the other representing values.

Polymorphic versions of insert and lookup can be written as

insert new Nil = Node Nil new Nil

insert (n2,v2) (Node left (n1,vl) right)
= Node (insert (172, v2) left) (n l ,v l) right IF n2 c n l
= Node left (n1,vl) (insert (n2, v2) right) IF n l < n2
= Node left (n2,v2) right OTHERWISE

lookup key Nil = error

lookup n2 (Node left (n l ,v l) right)
= lookup key left
= lookup key right
= v l

IF n2 < n l
IF n l < n 2
OTHERWISE

Notice that insert does not modify. the existing database: i t . returns an
entirely new database in which the modification has been performed. This
may appear expensive but it involves creating only d new nodes, where d i:;
the depth of the key in the tree. The new nodes point into the original
database to share any unchanged nodes (diagram 1). ~ h u s the insert
operation has the same order of complexity as an imperative version, (but
with a larger constant factor because copying is more expensive than
updating in place).

As common nodes in the different versions of the tree are shared, we can
cheaply retain a copy of an old database by keeping a pointer to it. Old
nodes are reclaimed by the garbage collector when they are no longer
referred to. This property has several useful applications. For instance, a
large read-only transaction can be given a pointer to the database (which

unchanged. This means, for example, that an interactive shell with an undo
command (to revert the database to an earlier state) would be trivial to
implement by maintaining a stack of database pointers.

The relat ionship t o conventional databases

In our example we have modelled the database with a binary tree. But, as
conventional database implementations rely heavily on secondary storage,
B-trees are preferred to binary trees. The difference is not an important
one. We are not bound to a binary tree implementation; it merely makes the
description simpler.

In conventional databases updates are done in place. Whilst this doesn't
give the sharing advantages discussed above, it does provide an increase in
performance. If our implementation uses a reference counting garbage
collector, we can ensure all nodes with a reference count of 1 (i.e. those
nodes not shared) are updated in place. This will not alter the semantics of
our model, and in such cases will execute almost as efficiently as the
imperative version. This combines the advantages of both approaches. The
result is like shadow paging [Hecht & Gabbe], a technique used in
conventional databases to support abortable transactions. The transaction
writes to unused pages and commits by overwriting the root. If the
transaction aborts, the root remains unchanged.

2. Multiple Users

To cope with multiple requests a DBMS must be able to handle
asynchronous inputs. The issue of combining input from many sources has
already been tackled in work on functional operating systems [Henderson,
Stoye]. These use variants of Henderson's non-deterministic merge. We
assume a similarly appropriate solution is employed in our DBMS and
therefore restrict ourselves to regarding the input to the manager as a list
of requests.

Requests are funct ions

What appears in the input stream? . In other words, what sort of operations
would we want of the shared database? We must still be able to
interrogate it with general queries. A query may always be expressed as a
function from the database to a domain of answers. This function can be

available :: flight -> integer -> db -> boolean
(returns True if the flight has sufficient free seats available), and
book :: flight -> integer -> db -> db
(will book the seats on the flight - that is, the new database will have the
bookings recorded).

We could define a function if-ok-book by

if-ok-book flt n dbs
= ("Ok", book fit n dbs) IF available flt n dbs
= ("No room", dbs) OTHERWISE

This simple definition will ensure that no two attempts to book the same
seats can occur because there is no chance for the database to change
between the query and the action. Notice that this is another example of an
abortable transaction.

In practice it may turn out that certain ways of combining requests into
transactions occur particularly frequently. If so, we could take advantage
of this and define combining forms using higher order functions.

In the rest of this paper the terms request and transaction will be used
interchangeably. These differ only in the way that one might think about
them. In particular they are both functions of the same type, so no
confusion should result.

Integrity of the database

Since a transaction is just a function, there could be transactions which
do not terminate, take too long (according to some criterion), or corrupt
the data in some way. How can we defend the database against rogue
transactions? Consider long and non-terminating transactions first. In
conventional databases, transactions may be timed out and aborted if they
take too long. At first sight, it seems that timeouts cannot easily be
fitted into the semantics of functional programming. However, if we are
willing to accept non-determinism we can introduce a primitive that
decides non-deterministically whether to apply a transaction or not. On a
machine level the guiding factor would be the time taken by the function.
From the standpoint of the user, the database appears just like a
conventional daiabase, in that any transaction submitted may or may not
be performed. What we have altered here is not the semantics of the user's

depends on the new data. The second transaction cannot be allowed to read
the database until the first transaction has finished with it - the data
must be locked. The imperative solution is for a transaction to mark all
the nodes that it may change, so denying access to other transactions until
the updates are performed. In the functional approach, locking takes place
automatically, as a result of data dependency. If part of the tree is still
being evaluated by one function then no other function can read the value
until the tree (or enough of it) has been computed. In a later section we
discuss ways of minimising locking. In contrast to the conventional case,
"locking" applies to any datum - even individual fields of records.

The drawbacks

Unfortunately, some things do not work so easily. Some of the methods we
described above can severely limit concurrency. For example, an abortable
transaction effectively locks the entire database throughout its execution.
This is because neither the original nor the replacement database is
returned until the decision whether to abort has been made. Therefore, no
other transaction may use any part of the data until after this decision.
Only then will one of the roots be returned. This applies even if the first
does not affect the data required for the second.

A similar problem arises if we use balanced trees. Insertion may require
rotations anywhere along the path to the inserted item in order to
maintain the balance. Usually such rotations are performed deep in the
tree, near the point of insertion. But, occasionally, the root of the whole
tree is rotated. It is only possible to recognise whether or not this will
occur after all the other rotations have been performed. As a result, the
insertion function will lock the root throughout its execution, preventing
any concurrent operation. An alternative is to leave the tree unbalanced
after an insertion, but then rebalance the whole tree periodically. This has
problems too: rebalancing a large tree is a time consuming operation,
during which no other access to the database is possible.

Any of these problems is sufficient to drastically reduce concurrency. In
the next few sections we explore methods for solving the problems.

Friedman and Wise if

As we mentioned above, abortable transactions lock the root of the

fwif a (x:y) (x:z) = if a (x:y) (x:z) U ((x:y) fl (x:~))
= if a (x:y) (x:z) U x : (y f l Z)
= (i f a x x U x) : (i f a y z n (y f l z))
= x : fwif a y z

Diagram 2. Fwif returns common parts early

fw i f

Cons

/ \
fwi f a

Optimistic if

Often abortable transactions have the form:

if predicate db
then transform db
else db

It may be that in most cases the predicate will return True allowing the
transaction to proceed. In other, rarer, cases the predicate will return
False and the transaction will be aborted. Normally the predicate is
evaluated, and only when its value is known is one of the branches
evaluated. This is a sequential process. In order to increase the level of
concurrency, we may take advantage of the supposition that the t h e n
branch is the most likely to be chosen and start evaluating it immediately.
To do this we propose to use an "optimistic" if (optif). Optif begins t h ~

Diagram 3. Distribute functions over optimistic if

Long Transactions

If one user submits a long transaction, and then submits another which
relies on the result of the first then they must expect a delay while the
first completes. But, if two users submit interrelating transactions
simultaneously, it is not reasonable to expect the shorter transaction to
wait on the longer. Instead it would be desirable to impose the ordering
that the short transaction is to be dealt with first, and then the longer.
How do we decide which is shorter? The solution is to evaluate both
transactions concurrently. As soon as one has completed we arrest the
other and re-evaluate it on the new database. This gives us the ordering
that we require. However, the second transaction may already have been
largely evaluated on the old tree, and it may be that the new tree is not
very different from the old, which means that computation is repeated.
We claim that although some repetition of work is unavoidable, it may be
reduced with the use of lazy memo-functions [Hughes]. If the long
transaction is memoised, then any intermediate results from unchanged
parts of the database are preserved. When the transaction is re-evaluated,
these results may be used immediately. In the best case the second
transaction may be almost instantaneous.

Balancing
To guarantee good access time, we must keep the database tree balanced.
One method would be to schedule a transaction to rebalance the whole tree

operational behaviour closely mimics that of a conventional DBMS. We also
discovered unexpected bottlenecks that could restrict concurrency
severely. We overcame these by introducing unusual concurrent and
non-deterministic operators.

We conclude that functional languages are promising for database
implementations; and also that new primitives may be necessary if
functional languages are to make full use of concurrent machines.

Henderson, P.
"Purely Functional Operating Systems"
Functional Programming and its Applications
edited by Darlington, Henderson, & Turner p 177-189
CUP 1982

Hughes, R. J. M.
"Lazy Memo-Functions"
Proceedings of the Workshop on
Implementation of Functional Languages p 400-421
University of Goteborg & Chalmers University of Technology
Report 17, February 1985

Nikhil, R.
"Functional Databases, Functional Languages"
proceedings of the Persistence and Data Types Workshop,
Appin, August 1985, 209-330

Stoye, W.
"A new scheme for writing Functional Operating Systems"
Technical Report 56, 1984
University of Cambridge Computer Laboratory

RELATIONAL DATABASE CONSTRUCTS

In common with other Pascal-based database programming languages, the relation data
type in RAPP is based on the existing record data type. For example, a relation students with
attributes st# (the key atmbute), stname, status, and dateofbirth might be defined by the
following declarations:

type
s m g e = 0..9999 ;
string = packed array [1..30] of char ;
statustype = (undergrad, postgrad, research) ;
datetype = packed array [1..6] of char ;
shldentrec = record

st+? : strange ;
stname : string ;
status : stamtype ;
dateofbirth : daetype

end ;
shldentrel = relation [st#] of sncdentrec ;

w
students : studentsrel ;

A recent development in the RAPP system permits an atmbute type to be an abstract data
type. The construction of such types is described in the next section.

The operators provided by RAPP for manipulating relations are (in common with the
language PLAIN) based on the relational algebra [7]. These operators consist of selection,
projection, natural join, Cartesian product and the set operators of union, intersection and
difference. A full description of of these operators is given in reference [S] .

Relations may be indexed on any atmbute by means of an index relation. Index relations
are created by the user, but subsequently they are automatically maintained by the system
when the base relation is updated.

ABSTRACT DATA TYPES

There are many database application areas where the data structures are of such complexity
that the primitive typing facilities offered by commercial database management systems are
found to be totally inadequate. In the design of large applications, data abstraction has long
been recognised as a means to develop high-level representations of the concepts that relate
closely to the application being programmed and to hide the inessential details of such
representations at the various stages of program development. Thus many modern
programming languages such as Ada and Modula-2 offer very general algorithmic facilities
for type definition. Module or 'information-hiding' mechanisms are provided so that
arbitrary new types &an be defined by both the necessary details for representation, which are
hidden from the surrounding program, and the allowable operations to be maintained for
objects of that type. Furthermore, since these mechanisms may be applied repeatedly, types
may be mapped, step by step, from higher, user-oriented levels to lower levels, ending with
the built-in language constructs. At each level, the view of the data may be abstracted from

enables a variety of tracing, monitoring and recovery strategies at block level which few
other languages support [I]. For example, we could make the execution of block B
conditional on the successful opening of the text file by replacing the body of the envelope
with the following code:

begin
open$le ;
if o l e successfully opened}
then begin *** ;

close file
end

end ;

Abstract data types which are to be employed as attribute types in RAPP are most
effectively constructed as 'starred' type declarations within envelope modules. As a simple
example, let us consider the attribute dateofbirth which was declared to be of type packed
array [I ..6] of char in the example above. This is a rather inadequate type and we may wish
to define a more structured type for dateofbirth and provide operations on objects of that type
such as:

1. Compute the number of days between two dates;
2. Given a date d, compute the date n days later;
3. Return the day of the week corresponding to a given date.

An envelope module for the abstract data type datetype providing the above operations might
take the following form:

Envelope Module DateModrde ;
ope

*DateType = { the structure of DateType is hidden J
*DayType = (*Sunday,*Monday,*Tuesday,* Wednesday,*Thursday,

*Fr&y,*Saturday) ;

Function *NoOjDays (d l , 62 : DareType) : Integer ;
{ Computes the number of days between dates dl and ci2 J

Procedure *NmDate (d : DateType ; n : Integer ; var reslllt : DateType) ;
{ Given a date dl computes the date n days later J

Procedure *Dayofleek (d : DateType ; var day : DqTjpe) ;
{ Returns the day of the week on which a date d falls j

begin ***
end { DateModule } ;

A user of the module DateModule may declare variables and attributes of type DateType
in his program and 'apply the operations NoOjVays, NewDate, and DayOjMfeek to those
variables. He does not know, and does not need to know, how DateType is implemented.

Monitor RelationAccess ;
ope

*AccessMode = (*Read, *Write, None) ;
instance

readers, writers : Condition ;
w

CurrentAccessMode : AccessMode ;
NoOfleaders : O..Maxint ;

Procedure *Acquire (AccessRequired : AccessMode) ;
begin

case CurrentAccessMode of
None: begin

CurrentAccessMode := AccessRequired ;
if AccessRequired = Read
then NoOfleaders := 1

end;
Read: if AccessRequired = Write

then writers. wait
else ifwriterskngth = 0

then NoOfleaders := NoOfleaders + I
else readers.wait ;

Write: ifaccessRequired = Read
then rea&rs.wait
else writers.wait;

end {case] ;
end {Acquire) ;

Procedure *Release ;
w

NoCurrentReaders : Boolean ;
begin

i f CurrentAccessMode = Read
then begin

NoOjReaders := NoOjReaders - I ;
NoCurrentReaders := (NoOfleaders = 0) ;
if NoCurrentReaders
then ifwriterskngth > 0

then writers.Signul
end

eke
if readerslength > 0
then begin

while readershngth > 0 do
k i n

readers.Signal ;
NoOfleaders := NoOjReaders + I

end;
%urrentAccessMode := Read

end
else if writerskngth > O

then begin
writers.signal ;

2 Experiences in Integrating Results

When applying "off-the-shelf' technology from areas such as databases and compilers to semantic
data model implementations, our experience has shown that integration problems often arise.
Unfortunately, these are often discovered in the middle of an implementation, necessitating some
re-design work. This motivates our desire for more systematic tools.

We now discuss examples of integration problems, with some emphasis on our experiences
at the University of Toronto [Nixon, 19831 [Chung, 19841 [Nixon, 1987a,b] building a compiler
for Taxis, a language for designing large interactive information systems, using some knowledge
representation facilities [Mylopoulos, 19801 [Wong, 19811. Many of our observations apply to
semantic data models in general, while some are specific to Taxis.

We see three main components in implementing semantic data models:

1. data model features (e.g., abstraction mechanisms, data manipulation operations, program-
ming constructs).

2 . implementation techniques (e.g., management of processes and of secondary storage).

3. design goals (e.g., reliability, safety).

The problem is that one cannot add ingredients in a linear fashion; rather, one must consider
interactions between ingredients. Interaction (conflict) can occur between two aspects of one
component (e.g., two data model features), or between aspects of two or all three components.
We present several examples of the these kinds of interaction.

Data Model

Features

In the remainder of this paper, we assume that the reader has some familiarity with Entity-
Relation-based data models in general, and in particular with the Taxis data model and its im-
plementation.

programming constructs.
There are two observations. First, the incorporation of two features which are not completely

orthogonal can cause problems. Second, formalsemantic data models (e.g., [Abiteboul, 19841) may
be more amenable to logic-based techniques for detecting underlying interaction of features during
data model design. Related work from the programme verification field includes [Elliott, 19821,
which derives conditions for the absence of errors, by way of re-write rules applied to (possibly
interacting) programming language constructs. However, the problem of detecting interaction is
very difficult.

2.2 Interaction between Features and Implementation Techniques

Our experience has been that when trying to apply existing techniques, the "obvious" method is
sometimes inappropriate or inefficient. Let's give a few examples.

When storing large amounts of persistent data, a natural place to look is relational database
technology. However, inheritance hierarchies result in collections of attribute values whose ap-
pearance is more like a "staircase" than a relation-like grid.

age department secretary
Hanager
Employee
Person

Thus more effort is needed to obtain a compact, efficient representation, such as using vertical or
horizontal partitioning of attribute storage [Chan, 19821 and associating information about related
attributes or sub-classes.

When implementing "triggers" (conditions which, when satisfied, invoke actions) there are
many scheduling techniques available from systems software. However, if a condition such as
when John.salary > 25000 do . . . is translated to a monitor-like "wait" construct, the result
could be very inefficient due to repeated evaluation of the condition. It would be better to analyse
the condition at compilation, and produce code with selective checking; see [Chung, 19841 and
[Nixon, 1987bl for details. It turns out that there are tradeoffs among the different techniques.
This points out the need for a formalism to choose the best alternative.

When modelling the performance of long-term processes one may start with results from oper-
ating systems modelling. However, the length of, and variance in, the life-times of persistent
entities is much greater in an Entity-Relationship-based system than in an operating system
[Rios-Zertuche, forthcoming], making it more difficult to apply existing results. Moreover, in
an Entity-Relationship-based system, one cannot use the operating-system assumption that older
(persistent) entities are more likely to be deleted than younger ones [Butler, 19871; again, some
existing results are not quite applicable.

In some cases, existing techniques need to be extended. For example, the Taxis implemen-
tation design of semantic integrity constraints was based on techniques [Sarin, 19771 developed
for Entity-Relationship-like models; however, they were extended to handle arbitrary nesting of
factual attribute selection (e.g., a constraint could refer to the size of the desk of the manager
of a department). In addition, an implementation of temporal integrity constraints was designed
(using techniques also used for "triggers", mentioned above) [Chung, 19841. Again, there was
a feature-implementation tradeoff: Taxis restricts the form of assertions, which permits efficient
checking; in fact, [Chung, 19871 states that enforcement is linearly proportional to:

(cardinality of source class) x (length of expression)

to be made available as a data model feature. It also attains a design goal of letting the programmer
handle a violation of the referential integrity constraint (by modifying relevant attribute values
and then deleting an entity), rather than only having the system detect the violation.

A seemingly independent constraint is that every Taxis entity has a unique "minimum class" -
the unique lowest class in the IsA hierarchy which contains the entity. Assuming an implementation
gives each entity a unique internal identifier, encoding the minimum class in each entity's identifier
helps achieve the goal of increasing efficiency of run-time operations. For example, common
operations such as finding the most specialised constraint applicable to an entity, or invoking the
most specialised transaction, can be performed with reduced access to secondary storage.

A third data model constraint, in the current version of Taxis, is that the minimum class of an
entity is fixed over time. It would be very desirable to relax this constraint; for example, a person
entity could start as a child, and then become an adult, ceasing to be a child, but remaining a
person. Assuming that the minimum class would still be unique at any one time, how hard would
it be to permit an entity to dynamically change its minimum class? First we have the problem
that an entity's internal identifier occurs in many places throughout a database; each occurrence
contains the minimum class and would have to be changed. However, this otherwise-expensive
operation becomes quite feasible if inverse references have been implemented - the system simply
finds and modifies the appropriate internal identifiers. So we have quite an intricate interaction
among three data model constraints, their associated implementations, Snd our design goals and
decisions.

Static Typing

Taxis is not a statically-typed language, and requires some implementation techniques different
from other semantic data models such as Galileo [Albano, 1985al. Perhaps this can best be
explained as the cumulative result of a sequence of decisions concerning the data model and
design goals.

The Taxis data model has a structural IsA constraint which requires subclasses to inherit the
attributes of their superclasses, and to have attribute values which are the same or specialisations of
the general attribute value.4 In addition, the data model requires the most specialised constraint
to be applied to an entity. For example, it is not possible to over-ride constraints by saying
something like: "Update John's age as if he were just a Person, even though he is also a Child." A
design goal was to apply constraints uniformly to all attributes, regardless of the attribute value.

define ent i tyc lass Person with . . .
age: CI 0::120 0
friend: Person

define ent i tyc lass Child IsA Person with
age: (I 0::18 I3
friend: Child

Here Person has an integer-valued attribute and an entity-valued one, each of which is specialised
in the definition of Child. Now what are the implications for implementation of (static) type
checking? Consider a transaction fragment:

l o c a l s
x: Person

'Additional attributes may also be defined on subclasses.

instances of a metaclass, and then through the entities which are instances of those classes -
there is little type information available about the entities which are instances of instances of the
metaclass, resulting in poor type checking, conflicting with another of our implementation goals.
However, by further constraining the data model, requiring all instances of a metaclass to be
arranged in a lattice with a unique highest element - a "most general instance" - reasonable
checking can be achieved, by recognising that the most general instance can be used as a first
approximation to the type structure of all the relevant classes, thus providing some information
about their instances. Similarly, a related data model constraint on multiple inheritance of at-
tributes [Schneider, 19781 [Nixon, 1987a,b] helped achieve a goal of providing more thorough type
checking, and also simplified the implementation.

Type checking also interacted with our design goal of providing informative messages regarding
possible run-time errors. We could not simply analyse an expression with respect t o the declared
classes of variables; instead, we also had to consider their sub-classes, or face the prospect of giving
very misleading error messages. Consider a general class (say Person) which does not have a par-
ticular attribute (say advisor) defined, but has two specialisations (say Student and Politician)
which do. When checking usage of an attribute selection (say x . advisor where x is a Person), the
message Persons do not have advisors is less helpful than Uany Persons do not have an
advisor, but Students and Politicians do. We feel the extra checking and reporting is
needed even if code is not generated for the "possible error" case. If, however, code is gener-
ated, some run-time type checking will be needed. We also note that the (compile-time) type
checking mechanism is further complicated by the possibility of having to propagate more than
one value for an expression; in our example, the expression could have three values: illegal
(indicating no value at all), StudentAdvisor or PoliticalAdvisor.

3 Research Directions
Having reviewed some integration problems arising in implementing a semantic data model, we
feel that more systematic techniques will help reduce difficulties. We now consider some ongoing
and prospective research areas which should be addressed in developing a theory for semantic
data model implementation. Many of these areas have been addressed in the database literature.
However, we can foresee some interaction problems, particularly between data model features and
implementation techniques.

Physical Storage Design
An important first step towards a performance theory for semantic data models has been
made [Weddell, 19871 by applying analytical techniques first developed for databases. For
a reasonable semantic data model which permits multiple inheritance, Weddell considers
optimality problems such as aligning records to permit static determination of the location
of an attribute value. He attains specific results concerning tractability. His work is geared
towards main memory databases; of course many more problems can be considered in the
context of two-level storage.

a Query Optimisation
Clearly, there is a wealth of database results to draw upon [Jarke, 19841. However, special-
isation hierarchies can complicate the analysis, as they permit an entity to be an instance
of more than one class. In addition, powerful facilities for traversing a database and its
meta-knowledge make it harder to narrow down the range of values to which an expression
can refer, thus decreasing opportunities for optimisation.

which are shared by two classes (and need only be fetched once from the database during
constraint enforcement) [Chung, 19871 [Rios-Zertuche, forthcoming].

4 Conclusions
Could we describe an implementation theory for a semantic data model with a reasonable set of
features? While the natural starting point seems to be the application of results from databases
and other areas, our experience has been that there are many integration issues. We have reviewed
several kinds of interaction in this paper. In reviewing some directions for research, we can foresee
some interaction problems that will have to be addressed.

Two basic approaches to development of semantic data models have been identified. One is
the evolutionary approach, in which advanced features are added incremental ly to a programming
language (e.g., Galileo [Albano, 1985al) or to a relational database management system (e.g.,
POSTGRES [Stonebraker, 19861). The other is the revolutionary approach, which makes no
prior commitment to an existing data model or database (See the discussion in [Brodie, 19861).
In this approach, more than one new feature (and possible a new target architecture) may be
handled all a t once. But since both approaches require a combination of data model features and
implementation techniques, one should be concerned about interaction issues, regardless of the
approach taken.7

We feel that the development of a theory for semantic data model implementation will require
a variety of systematic techniques for measuring and comparing performance alternatives, as well
as methods for dealing with the interaction of features, in order to integrate data model features,
implementation techniques and design goals.

Acknowledgements
We would like to thank Lawrence Chung, David Lauzon, John Kambanis and other members of
the Taxis project for continued assistance in preparing this document. We also thank Raj Verma
for helpful discussions. The Taxis project has been supported by a three-year Strategic Grant
from the Natural Sciences and Engineering Research Council of Canada.

Bibliography
[Abiteboul, 19841 Serge Abiteboul and Richard Hull, IFO: A Formal Semantic Database Model. Pro-

ceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Wa-
terloo, Ontario, April 2-4, 1984, pp. 119-133.

[Ait-Kaci, 19841 Hassan Ait-Kaci, Type Subsumption a s a Model of Computation. In Larry Kerschberg
(editor), Proceedings of the First International Workshop on Ezpert Database Systems, Kiawah
Island, SC, October 24-27, 1984, pp. 124-150.

[Albano, 1985al Antonio Albano, Luca Cardelli and Renzo Orsini, Galileo: A Strongly Typed, Interac-
tive Conceptual Language. ACM TODS, Vol. 10, No. 2, Aug. 1985

[Albano, 1985bI Antonio Albano, Conceptual Languages: A Comparison of ADAPLEX, Galileo and
Taxis. Proceedings of the Workshop on Knowledge Base Management Systems, Crete, June 1985,
pp. 343-356.

7Where does Taxis fit in? On one hand, it is not simply an extension to a database system, so it is revolutionary.
On the other hand, its data model is not as relatively novel as when it was proposed in the last decade.

[Mylopoulos, 19861 John Mylopoulos, Alex Borgida, Sol Greenspan, Carlo Meghini and Brian Nixon,
Knowledge Representation in the Software Development Process: A Case Study. In H. Winter
(Ed.), Artificial Intelligence and Man-Machine Systems, Lecture Notes in Control and Information
Sciences, No. 80. Berlin: Springer-Verlag, 1986, pp. 23-44.

[Nixon, 19831 Brian Andrew Nixon, A Tazis Compiler. M.Sc. Thesis, Dept. of Computer Science,
University of Toronto, April 1983. Also CSRG Technical Note 33, May 1983.

[Nixon, 1987a] Brian Nixon, Lawrence Chung, David Lauzon, Alex Borgida, John Mylopoulos and Mar-
tin Stanley, Implementation of a Compiler for a Semantic Data Model: Experiences with Taxis. In
Umeshwar Dayal and Irv Traiger (editors), Proceedings of ACM SIGMOD 1987 Annual Conference.
San Francisco, CA, May 27-29, 1987, pp. 118-131.

[Nixon, 1987b] Brian A. Nixon, K. Lawrence Chung, David Lauzon, Alex Borgida, John Mylopoulos
and Martin Stanley, Design of a Compiler for a Semantic Data Model. Technical Note CSRI-44,
Computer Systems Research Institute, University of Toronto, May 1987.

[O'Brien, 19821 Patrick O'Brien, Tazied: A n Integrated Interactive Design Environment for Tazis, M.Sc.
Thesis, Department of Computer Science, University of Toronto, October 1982. Also CSRG Tech-
nical Note 29.

[O'Brien, 19831 Patrick D. O'Brien, An Integrated Interactive Design Environment for Taxis. Pro-
ceedings, SOFTFAIR: A Conference on Software Development Tools, Techniques, and Alternatives,
Arlington, VA, July 25-28, 1983. Silver Spring, MD: IEEE Computer Society Press, 1983, pp.
298-306.

[Rios-Zertuche, forthcoming] Daniel Rios-Zertuche, M.Sc. thesis, Dept. of Computer Science, Uni-
versi ty of Toronto, forthcoming.

[Sarin, 19771 S. K. Sarin, Automatic Synthesis of Eficient Procedures for Database Integrity Checking.
M.Sc. Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Sept. 1977.

[Schneider, 19781 Peter F. Schneider, Organization of Knowledge in a Proceduml Semantic Network
Formalism. Technical Report 115, Dept. of Computer Science, University of Toronto, February
1978.

[Smith, 19831 John M. Smith, Stephen A. Fox and Terry A. Landers, ADAPLEX: Rationale and Refer-
ence Manual. Technical Report CCA-83-08, Computer Corporation of America, Cambridge, MA,
May 1983.

[Stonebraker, 19861 Michael Stonebraker and Lawrence A. Rowe, The Design of POSTGRES. In Carlo
Zaniolo (Ed.), Proceedings of ACM SIGMOD '86 International Conference on Management of Data,
Washington, DC, May 28-30, 1986, SIGMOD Record, Vol. 15, No. 2, June 1986, pp. 340-355.

[Tsur, 19841 Shalom Tsur and Carlo Zaniolo, An Implementation of GEM - Supporting a Semantic
Data Model on a Relational Back-end. In Beatrice Yormark (editor), SIGMOD '84 Proceedings,
Boston, MA, June 18-21, 1984, SIGMOD Record, Vol. 14, No. 2, pp. 286-295.

[Weddell, 19871 Grant E. Weddell, Physical Design and Query Optimization for a Semantic Data Model
(assuming memory residence). Ph.D. Thesis, Dept. of Computer Science, University of Toronto,
1987.

[Wong, 19811 Harry K. T . Wong, Design and Verification of Interactive Information Systems Using
TAXIS. Technical Report CSRG-129, Computer Systems Research Group, University of Toronto,
April 1981. Also Ph.D. Thesis, Department of Computer Science, 1983.

[Zdonik, 19871 Stanley B. Zdonik, Can Objects Change Type? Can Type Objects Change? Proceedings
of the Workshop on Database Programming Languages, Roscoff, France, September 1987.

gl Informal Introduction

51 .l. Families of Subtypes

In this paper we develop an algebraic model of subtype based on the idea that a type
is a form of behavior and a subtype is a behaviorally compatible specialization of the
behavior. This specialization occurs in two related ways. A subtype typically describes a
more restricted set of elements than the supertype, but may also involve more
specialized information on these elements. This notion of subtype is suggested by
object-oriented inheritance, but is broad enough to capture other notions of subtype. In
particular we examine three notions of subtype known as "subset", "isomorpl~ically
embedded", and "object-oriented" subtypes. Examples of these are:

1. Subset: Int(l..lO) is a "subset" subtype of Int.
2. lsomorphically embedded: Int is an "isomorphicalIy embedded" subtype of Real.
3. Object-oriented: Student is an "object-oriented" subtype of Person.

Our objective is to characterize both the similarities and the differences between
these notions of subtype, and to focus on the algebraic characterization of
object-oriented subtypes. We begin by examining informal properties of these three
kinds of subtypes and consider the motivations that led to inclusion of these notions of
subtype in programming languages. In particular in this section we will work only with an
informal, intuitive notion of behavioral compatibility, postponing a more formal
description to section 2. These motivating remarks will lead to our definitions of "partial"
and "complete" subtypes, also in section 2.

§1.1.1 Subset Subtypes

Subset subtypes restrict 'the domain of the parent type to a subset, without
necessarily considering whether operations of the type are closed over the subset. A

subtype Int(l..lO) of Int restricts the domain of integers without regard to the closure of
operations such as addition, multiplication or successor on the set {I, ..., 10). If we
restrict the domain and range of the successor function in this way, then it becomes a
partial function since successor(l0) is outside 1 ..lo. This means that the behavior of
Int(l..lO) is only partially compatible with Int because the behavior of successor on the
argument 10 for the subtype is incompatible with the behavior of successor for this
argument in the parent type. However, if we let the permitted range be 2..11 or some

125

isomorphically embedded subtypes. considerethe type Person with the following
operations:

name : Person + Character String
age : Person + Integer
add-a-year : Person + Person

Let the subtype Student have the additional operation gpa (grade-point average).
gpa : Student + Integer

Operations on the names and ages of students have the same closure properties as
for persons. The range of name and age is independent of the parent type, while the
operation add-a-year modifies a person by changing its age attribute. Thus if the domain
of add-a-year is restricted to students, its values will be students.

Note that subtypes which are defined in terms of the restriction of the range of
component operations may cause a breakdown for closure properties. For example, if
the class of minors is defined as the class of persons under 21 then functions like
"add-a-year" are no longer closed.

When operations have a range which is dependent on the supertype, closure may
again become a problem. Consider adding the following operation to Person:

parent : Person + Person

Specializing the domain and range of the parent operation to students results in closure
problems for the partial subtype. The subtype which uses the original range is needed .

for behavioral compatibility, just as in the case of subset and isomorphically embedded
subtypes, since the parent of a student need not be a student. However, object-oriented
operations whose range is restricted to traditional types, as well as those which modify
the object to which the operation is applied, are generally well behaved in the sense that
they are closed over the partial subtype formed by replacing all occurrences of sorts from
the supertype with the corresponding ones in the subtype. Thus the problem of
distinguishing between partial subtypes and complete subtypes often does not arise
since partial subty?es and complete subtypes are usually equivalent.

51.2 Algebraic Framework

Traditional algebras have just a single sort that denotes the values of the algebra
and have a collection of operation symbols that denote operations for transforming
tuples of arguments into values. For example the algebra of integers has the sort
"Integer" and operation symbols "+" and "." that denote binary operations on integers.

Programming language types are modelled by many-sorted algebras whose
operations may have arguments and values of more then one sort. For example stacks

compatibility, whereas that given for subtypes iequires (complete) behavioral
compatibility. We believe that this distribution of responsibility leads to a more flexi b[e
and inclusive modelling of subtypes. We will also define partial subtypes essentially by
modifying clause (3) to refer to "partially behaviorally compatible" operations.

Since inheritance is modelled by the presence of overloaded operators, it is quite

important to be able to resolve ambiguity introduced by overloaded operators. [Goguen
and Meseguer 19861 introduced a syntactic constraint on prograrriming languages,
called regularity, to resolve ambiguities caused by overloading and inheritance.

Intuitively, the ordering of sorts yields a derived ordering on both overloaded
operations and types. Regularity implies that terms which can be assigned a sort have a
unique least sort. We show that regularity, combined with our definition of subtype,
allows us to resolve potential ambiguities due to overloading. In particular, we prove the
following uniqueness theorem for terms of a generalized order-sorted algebra:

Theorem: Let (C, I) be a regular signature and A a generalized order-sorted algebra
for (C, I) . If M can be assigned sort s then all interpretations of M in the carrier of s are
identical.

This theorem asserts that even if there is more than one way of assigning a sort s to

the term M (due to overloading of operators), all interpretations of M in this carrier are
unique. The proof of this theorem is similar to that of the initiality theorem of [Goguen

and Meseguer 19861, but is given in a more general setting here.
In summary, the contributions of this paper include:

1. A generalization of order-sorted algebras to provide a subtler and more useful notion
of ordering on sorts.

2. Algebraic definitions of type and subtype for order-sorted algebras.
3. A classification of subtypes into complete and partial subtypes, based on preserving

complete or partial behavioral compatibility.
4. A demonstration that these notions of subtype capture both traditional and

object-oriented notions of subtype.
5. A uniqueness theorem for interpreting terms in the presence of overloading.

52 Algebraic Models of Type

Algebras can be syntactically specified by their signatures, where a signature
specifies the sorts and operations of the algebra. The signature forms the basis for the

129

Since a type in a programming language consists of both objects and operations on

the objects, we will use many-sorted algebras to model the notion of type. Because a
type may contain many carrier sets, it is not immediately apparent how to define the
notion of subtype. It will turn out, for instance, that the notion of subalgebra from
mathematics is too restrictive to capture the richness of subtype in programming
languages. In the r: 3xt section we explore generalizations of many-sorted algebras
which will enable us to also model subtype.

52.2 Generalized Order-Sorted Algebras
,.

The notions of subtype and inheritance can be modelled by first defining an ordering
relation on the sorts. [Goguen and Meseguer 19861 have introduced the notion of an
"order-sorted algebra" to model subtypes and inheritance.

Definition: An order-sorted signature is a pair <Z, I >, where Z is a many-sorted
signature and -<is a partial ordering on the sorts in Z. We extend this ordering to ordered
tuples of sorts by writing <sl, ..., sn> I <sl' ,..., sn'> if si I sil for 1 I i I n. We say that an
operation is overloaded if it appears in the signature Z with two different typings. We
will say that t is a subsort of s, if t I s.

An order-sorted algebra with signature <Z, r > is a many-sorted algebra with an
ordering relation on the carriers of its sorts, and is given by the following definition:

Definition: A is an order-sorted algebra for order-sorted signature a, I > if A is a
many-sorted algebra for Z such that:
(1) if s S t then A, c A t .
(2) If f : <w, s>, f : < wl,'s'> with <w, s> I < w', s'> then Af : & + A, and Af ': &$ + A,,

agree on & (where Af : A, + As and At ': &, + A,, are the meanings of the
overloaded f.).

Conditions (1) and (2) state respectively that the interpretation of a subsort is as
subset (although the reverse is not necessarily true), and that corresponding operations
on the subsort and supersort must be "behaviorally compatible." A first approximation at
a definition of "behavioral compatibility" could be the following: Corresponding
operations on a sort and subsort are "behaviorally compatible" if they are defined for
exactly the same elements of the subsort, and where defined, they give the same result.

13 1

weakening of the conditions results in some fairly major differences from the definition of
order-sorted algebras above. The following example illustrates these differences.

Let Zc = <{R, CJ; sqrt: <<by R>, sqrt: <<C>, C > > be a many-sorted signature and let
Comproot be the many-sorted algebra for Zc in which R and C are interpreted as the .

sets of real and complex numbers, respectively. In this algebra let sqrt: <<R>, R> be
interpreted as JR, the usual partial square root function on the reals, whose domain is
the non-negative reals. Similarly let dc be a total square root function on the complex
numbers which extends dR. It is then impossible to make Cornproot into an
order-sorted algebra corresponding to the above signature where R 5 C, since JR(- l) is
undefined, but Jc(-1) is defined (typically as i). Note that adding new functions to the
signature and algebra will not help since (2) of the definition of order-sorted algebra
requires the meanings of all versions of overloaded functions to agree if the domains are
related.

Our definition of generalized order-sorted algebra does not suffer from this defect.
Cornproot can easily be made into a generalized order-sorted algebra by adding the
coercer cRBC, where cRVC is the usual coercer from reals to complex numbers (e.g. cRPC(r)
= r + Oi). Since JR and dc agree on the non-negative reals (the domain of dR), they
satisfy (3') of the definition of generalized order-sorted algebras.

Not surprisingly, this is an example of a general phenomenon. It is quite common in
mathematics to start with an algebra with partial functions and extend to a larger algebra
in which the partial functions become total. One commonly views the extension from the
natural numbers to the integers as a way of obtaining a set which is closed under
subtraction; the extension from integers to rationals as a way of closing under non-zero
division, the extension from rationals to reals as closing under limits of Cauchy
sequences; and the extension from reals to complex numbers as closing under roots of
polynomials. We feel it would be unfortunate to bar these original partial functions from
coexisting in order-sorted algebras with the corresponding total functions on the
extensions.

On the other hand, the generalized order-sorted algebras may be criticized as failing
to preserve behavior since the corresponding function defined in the subsort may be
highly undefined relative to the function defined on the supersort when restricted to
elements of the subsort. We see this as a positive feature which reflects the flexibility of
the system. However, when we formalize the notions of complete subtype below, we will
place stronger restrictions on overloaded functions which will ensure that there is at least
one version of the overloaded function in the subtype which is completely "behaviorally
compatiblen with that in the supertype. We will also introduce a weaker notion of subtype
without this restriction that we will call "partial subtype."

and an f : <w1,s'> in Z1.

Note that the syntactic conditions (1) and (2) ensure that operators from T2 are
inherited in TI. The requirement that TI and T2 live in the same generalized
order-sorted algebra combines with these syntactic restrictions to ensure that the
inherited operations are "partially behaviorally compatible" with the operations in the
supertype. That is, if f : <<sl, ..., sn>,s> and f : <-dl ,..., tn>, t> with s 2 t and Si 2 ti for 1 I i <
n in Z, A is an order-sorted algebra for Z, q in Asi for 1 I i I n, and A, (al ,..., a,) is
defined, then cst (4 (al ,..., a,)) = ~(c,l,ll(al), ..., CsnPtn(an)), where the A, on the left
side of the equation is the interpretation of the f with signature <<sl ,..., sn>,s> and the A,'
on the right side of the equation is the interpretation of the f with signature <-dl-,...,tn>, t >.

That is, the coercers essentially behave as homomorphisms from the Asi to Ati with

respect to overlapping function definitions. Note that if Af'(cSl (al), ..., CsnVm(an)) is
defined, we do not insist that Af (al ,..., a,) be defined.

Thus partial subtypes provide "partially behaviorally compatible" inherited functions.
A complete subtype will be a partial subtype in which inherited functions are completely
"behaviorally compatible."

Definition: Let TI and T2 be types with signatures < Z1, > and < Z2, 12 >,

respectively, in the same generalized order-sorted algebra A whose signature, < Z, I >,

includes < 21, 21 > and < Z2, S2 >. Then TI is a complete subtype of T2 iff
(1) For every sort t in 22, there is a sort s in Z1 such.that s s t .
(2) For all operators f, if f : <w,s> in Z2 and w' s w for w' in Zl , then there is an s' r s

and an f : <w',sl> in Z1 (i.e. f is inherited on w') which satisfies the following property:
If A, : Aw + As and 4 ': A,,,, + A,, are the meanings of the overloaded f, then for all
a1 E AS1 ,..., an E .Asn, if either of A, (al ,... a,) or A,'(cS1 ,,,.(al) ,... ~,~,,,~(a~)) are
defined, then they both are.

Note that (2) can be simplified to read "... if Afl(cS1 ,Sle(al),... ~ , ~ , , ~ . (a ~)) is defined.
then so is A, (al ,... an)." The other implication follows from the definition of generalized
order-sorted algebra. For clarity, we leave the definition in the above form. It then
follows from the definitions of generalized order-sorted algebra and complete subtypes
that if either of A, (al ,... a,) or A,'(C,~,,~.(~~) ,.., cSn,,,.(an)) are defined then they both are.
and have corresponding values (via the coercers). Thus a complete subtype is a partial
subtype in which the inherited functions are completely, rather than partially,
behaviorally compatible.

. Several examples will be given in the next section to illustrate how this definition

135

subtypes. The interpretation of a sort (the carrier of the sort) is simply a set of objects

(with no associated operations). A type is a generalized order-sorted algebra which
consists of the carriers of one or more sorts plus operations acting on (and giving results
in) the carriers of the sorts. Thus a type has both sets of elements and operations
(consisting of interpretations of the symbols in its order-sorted signatu~a). A type T is a
subtype (either complete or partial) of a type U, if T and U are embedded in the same
generalized order-sorted sorted algebra A in such a way that every sort of U is a
supersort of a sort of T and overloaded functions are behaviorally compatible. Thus

while types are generalized order-sorted algebras, we can only determine if one type is

a subtype of another by looking at a larger generalized order-sorted algebras in which
both live. Typically this generalized order-sorted algebra will contain all of the sorts and

operations defined in the language (or at least in the particular program under
conside ration).

Unfortunately there is great confusion in programming languages about the
difference between a type and a sort. Most programming languages define types to be

what we have referred to here as sorts. This leads to discussions about the types of
terms, whereas we would instead refer to the "sortsn of terms. We are not happy with this

confusion of terminology, but have adopted the terminology used here since it is
consistent with that used by others workers modelling types by algebras. A possible
solution to this confusion might be to reserve the nanie abstract data type (or ADT) for
what we have termed types, and use type interchangeably with sort. Since our types are
not necessarily very abstract, we have resisted this temptation.

93 Subtypes and Inheritance in Programming Languages

Our formal definitions of types and subtypes in terms of generalized order-sorted
algebras were carefully constructed to describe notions of subtype that arise in real
programming languages. In particular they are intended to capture the following three
notions of subtype:

(1) Subset: Int(1 ..I 0) is a "subset" subtype of Int.

(2) Isomorphic Copy: Int is an "isomorphic embedding" subtype of Real.
(3) Object-oriented: Student is an "object-oriented" subtype of Person.

Let us examine each of these situations carefully to see how they fit into our
definitions. We begin with "subset" subtypes.

since + then could be interpreted in the subtype in such a way that behavioral
compatibility is preserved. If this new sort is added as a subsort of lnt, the result will be a
complete subtype of lnt. Other methods of creating such a complete subtype by adding
a second "+" to the subtype are suggested by the example given after the definition of
complete subtype in section 2.3.

53.2 "isomorphic Embedding" Subtypes

Historically, systems of numbers were extended in order to make partial operations
more defined. The natural numbers were extended successively to the integers,
rationals, reals, and complex numbers, in order to obtain closure under operations such
as subtraction, non-zero division, limits, and the taking of roots. In each of these cases

the previous set of numbers can be isomorphically embedded in the original. In fact fcr
most purposes we simply assume this set is contained (rather than isomorphically
embedded) in the successor. It is not surprising then, that a totally defined operation,
such as addition over the integers, will be behaviorally compatible with the
corresponding operation over one of its supersorts, such as the reals. In this case the
natural partial sl~btypes will in fact turn out to be complete subtypes. Of course, if the
operation is originally defined only in the supersort (e.g., logarithm over the reals), then
the corresponding function with domain and range restricted to the subsort (e.g., the
integers) is likely to result only in a partial subtype. In this case, to get a complete
subsort, we would typically let the range of the function in the subsort be the original
range of the function in the supersort. For example, we would let the version of logarithm
defined on the integers have as range the set of reals.

The argument for the Integers being a subtype of the reals is similar to that of
Int(1 ..lo) for lnt. In this case the coercer cMeger, Real simply maps each integer to the
corresponding real number. To make the example more interesting (although less
natural), let us take type Real with signature c{R, C} : + : CCR, C>, C> > and the type Int
with signature ~ { l n t) : + : cc Int, Int>, Int> > as above, both interpreted in the natural
generalized order-sorted algebra, B , whose signature is the union of those given and
where Int I R I C. In B , Bin, is the set of integers, BR is the set of reals, and Bc is the set
of complex numbeis. Then the natural isomorphic embeddings of the integers into the
reals, and of the reals into the complex numbers, are the coercers for this algebra. It is a

generalized order-sorted algebra since the coercers preserve the operation +. Since
Integer I Real and lnteger I Complex, (1) of the definition of complete subtype is
satisfied. Since + is total on Int and is consistent with the definition on Real, (2) is
satisfied, so Int will be a complete subtype of Real. It is worth noting here that Int, the

behavioral compatibility (or at least partial behavioral compatibility) was preserved by
the coercers mapping subsorts to supersorts. The fact that these coercers did not have
to be injective was crucial for the object-oriented case. Also in the object-oriented case
we saw by an example that the ranges of corresponding functions in subtypes may
remain .the same as in the supertype or may be relativized to the sorts of the subtype,
depending on the kind of operator. In spite of these variations, the definitions proposed
in $2 captured all of these notions of subtype.

54 Overloading, Ambiguity, and the Interpretation of Terms

So far we have discussed the modelling of types and subtypes in generalized
order-sorted algebras. We now wish to take this one step further and examine the
problem of interpreting first-order terms which represent elements of the types. In
trzditional programming languages there are few difficulties associated with this.
However in the presence of inheritance, especially multiple inheritance, problems arise
due to the presence of overloaded operators. In this section we discuss problems which
may arise in interpreting terms in generalized order-sorted algebras, and show that
under certain syntactic conditions, terms may be interpreted uniquely.

54.1 Definition and Sort-Checking of Terms

Since we are working in a strongly-typed environment, each term of the language
can be assigned a sort. In traditional languages, each term typically can be assigned to
a unique sort. In the presence of inheritance this is no longer possible. Instead each
term may be assigned many sorts. E.g. the constant "3" can be assigned the sorts
integer, real, complex, etc. The following defines both the legal terms and the possible
sorts of these terms by defining "sortw-checking rules:

Definition: Let eE, I > be an order-sorted signature with S the collection of sorts in E.
Let L,, be the collection of operations in E with signature ew, s >. We let 1 denote the
empty tuple in S*. Thus c E En,, denotes a constant of sort s. We next define a proof
system which will allow us to infer which expressions formed from symbols of C form
terms which can be assigned sorts.

(Al) c E , r > l - c : s i f c ~ q,,.

Definition: An order-sorted signature <Z, 5 >' is regular if whenever wg 5 w l and

f : <wl s1>, there is a least <w.s> such that wo 5 w and f : cw, s>.

Thus if f is applied to an element d of type wo then this minimal f may be applied.

The following theorem is from [Goguen and Meseguer 19861.

Theorem: If <Z, I > is a regular order-sorted signature and t E T, then there is a leas:

sort s such that t E Ts.

The proof is by a straightforward induction on the complexity of terms.

54.3 Interpretation of Terms

We are now ready to define the interpretation of terms in a generalized order-sorted

algebra. Since we are working with overloaded operators, we must be concerned with

ambiguities of interpretation of terms. We will show that under the condition of regularity,

if t E Ts then all possible ways of determining the meaning of that term which correspond

to it being assigned to sort s will result in the same element. More generally, we wish to

show that if a term has two comparable "sortings" then the meanings associated with

those sortings will be consistent (in the sense that the meaning corresponding to the

smaller sort can be coerced to the meaning in the greater sort). We begin by defining the

meaning of a term relative to the proof that it has a particular sort. We will then prove that
the meaning is dependent only on the target sort and not on the particular proof that the

term has that sort.

Definition: Let t E T and P be a proof that t has sort s. We define the meaning of t in

order-sorted algebra A with respect to proof P, [[t]lAPp , by induction on the length of P:

(1) Suppose the last step of the proo! P is the axiom (Al). Then t E El, and define

[[t]IAtp = $ where 4 is the interpretation of the t with signature c1.s > .
(2) S~~ppose the last step of the proof P is the rule (R1). Then <Zl I > [- t : s' for some

s1 < s, by a proof P' of length less than that of P. Then [[t]]A,p = c,,~. ([[t]]A,pl) where

c,,,~ is the coercer in A from A, to A,. .
(3) Suppose the last step of .the proof P is the rule (R2), and thus t is of the form

f(tl ,..., tn). Then <C, r > I- ti : si for 1 I i I n via proofs Pi, each of whose lengths is

less than that of P, and f E L,S . Then [[t]lAwp = A, ([[tl]]A,P1 .--.. [[tn]]n,pn) where A, is
the interpretation of the f with signature <w,s >.

have demonstrated that this ordering of carrieis based on (not necessarily injective)
coercion operators can be used to model the notions of complete and partial subtype,
especially as used in object-oriented languages. We have also proved that under the
assumption of regularity, a term constructed from over-loaded operators using
inheritance does in fact have consistently defined meanings, no matter in which legal
sort the term is interpreted. A comparison of this paper with earlier work is given below.

[Goguen 19781 introduced order-sorted algebras as a way of handling errors and
overloaded operators. In that original paper, the ordering of sorts was represented by
(injective) coercion operators, the partial ordering on sorts was a strict lower semilattice,
and if an operator f appeared in the signature with typing <w,s> where w' I w and s I s'
then f also appeared with typing <w',sl>. [Goguen and Meseguer 19861 redefine
order-sorted algebras as given in 52.2 of this paper, eliminating coercion operators.
They introduce the notion of regular signatures, which are used to show that each term
has a least type and to show that initial algebras exist. The main focus of their paper is to
show how to handle errors using subsorts and supersorts, while supporting the
inheritance of operators. A comparison of order-sorted algebras and our generalized
order-sorted algebras is given at the end of 92.2. The main differences in the
generalized Order-sorted algebras lie in requiring only partial behavioral compatibility
and allowing non-injective coercion functions rather than simply taking set inclusion as
an interpretation of subsort.

[Futatsugi, Goguen, Jouannaud, & Meseguer 19851 discuss the functional
programming language OBJ2, which is built on the theoretical foundation of order-sorted
algebras. In that paper they discuss three methods ("using", protectingn, and
"extendingn) for new modules to import existing modules, but this notion does not seem
to be directly comparable to our notion of subtype. The paper [Goguen and Meseguer
1986a1 describes the language FOOPS, which uses the notion of subsort described in
[Goguen and Meseguer 19861. In that paper I also expresses an ordering on classes
(types), with a hint that the definiticn of < on classes is similar to that on sorts (via
"reflection").

[Reynolds 19801 examines the use of implicit conversions and generic (overloaded)
operators in programming language from a category-theoretic point of view. He argues
that implicit conversions should behave as homomorphisms with respect to generic
operators. E.g., if c : Int + Real is to be an implicit coercer from integers to reals, then

c (~ + ~ , ~ y) = ~ (x) + ~ ~ ~ l ~ (y) for x and y integers. Pre-ordered categories (called
categgry-ordered algebras) are used to model types in the language as well as to

denote syntactic categories. Reynolds presents several examples to buttress the case
that "subsorts are not subsets", and chooses to model the subsort relation with coercers

powerful facilities for supporting polymorphism. In particular the formal specification of

the semantics of such languages will often highlight oversights or complexities in a
language not foreseen by the language designers.

Acknowledgements
We would like to thank Jose Meseguer and David Gries for a stimulating discussion

of our earlier paper [Bruce and Wegner 19861, which contributed to the reshaping of this
paper in terms of order-sorted algebras. We also thank Giuseppe Longo for several
interesting discussions.

Orderings and Types in Databases*

Atsushi Ohori

Department of Computer and Information Science/D2
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract

This paper investigates a method to represent database objects as typed expressions in
programming languages. A simple typed language supporting non-flat records, higher-order
relations, and natural join expressions is defined. A denotational semantics of this language is
then presented. Expressions are interpreted into a domain containing Smyth's powerdomain.
In order to give semantics to types, a new model of types, a filter model is proposed. Types are
then interpreted as filters in a domain. The type inference system of the language is shown to
be sound in this model.

1 Introduction

There are a number of attempts to generalize the relational data model beyond first-nomal-form
relations [FT83,OY85,RKS84]; there are also other data models that can be seen as generalizations
of the relational data model [AB84,BK85]. The motivation of this study is to draw out the con-
nection between these "higher-ordern relations and data types in programming languages so that
we can develop a strongly typed programming language in which these data structures are directly
available as typed expressions.

We regard database objects as descriptions of real-world objects. Such descriptions are ordered
by how well they describe real-world objects. Relations are then regarded as sets of descriptions
describing sets of real-world objects. Ln [B087], it is shown that natural join can be characterized as
the least upper bound operation in Smyth's powerdomain of descriptions. Based on this result, we
present a simple typed language that supports non-flat records, higher-order relations, and natural
join expressions. We then present a denotational semantics of this language.

Expressions of the language are interpreted in a domain containing Smyth's powerdomain. In
order to give semantics to types, we propose a filter model of types. We regard types as sets of
values having common structures. In a domain of descriptions, such sets have properties that they
are upward closed and they are closed under finite greatest lower bounds. We therefore interpret
types as filters in a semantic domain and show the semantic soundness of the type system. The
filter model is particularly suitable for types of partial objects. This model can also give precise
semantics to multiple inheritance studied by Cardelli [Card84].

The rest of this paper is organized as follows. In section 2 we introduce non-flat records to
represent database objects and define their ordering. We then introduce types of records and define
their ordering. In section 3 we extend expressions, types, and their orderings to sets to represent
higher-order relations. We then show that natural join expressions can be generalized in typed
higher-order relations. In section 4, we give a formal definition of our language. In section 5, we

'This work was supported.by grants from AT&T, the Army Research Opce, and by the National Science Foun-
dation(IR1 86-10617). The author was also supported in part by Oh Electric Industry Co., JAP.4N

and
e2 = (Emp# + 1231, Age + 21)

then
el U e2 = (Xame - ' J . Doe', Emp# + 1234, Age + 21)

However, (Name + 'J. Doe', Emp# - 1234) U (~Vame + 'K. Smith') does not exist. As we shall
see in the next section, natural join operation can be regarded as the lub operation extended to a
powerdomain. This lub operation is also known as the unification in unification-based grammatical
formalisms, where data are descriptions of linguistic entities (see [Shie85] for a survey).

Next we define types for these expressions. Since each primitive set of values corresponds to a
basic type and each label denotes certain set of values, types for expressions are defined as:

1. For each primitive set of values B; there is a constant type 7;.

2. (11 : 01,. . . , ln : an) is a type if 01,. . . ,an are types and 11,. . . , ln E L, where l l , . . . , in are all
distinct.

These types can be regarded as specifications of structures of database objects. Since database
objects are partial descriptions, these types should specify partial structures. A value is regarded
as having a type if the value has the partial structure specified by the type. This observation leads
us to define the following typing rules syntactically similar to the type system proposed by Cardelli
[Card84]:

1. b : ~ ; i f b f Bi.

3. (11 + el , . . . ,ln + en) : (11 : ~ 1 , . . . ,lm : am) if m 5 n and for all 1 5 i 2 m, ei : ai.

The following is an example of typing:

(Name + ' J . Dm', Emp# + 1234) : (Name : string, Emp# : int)

From the definitions of typing and we can show by simple structural induction that:

Theorem 1 If e : a and e E e' then e' : a.

Indeed the following typing is also valid:

(Name + 'J. Doe', Emp# - 1234, Age +: 21) : (Name : string, Emp# : int)

In our type system, types therefore correspond to upward closed sets of values. Intuitively, this
corresponds to the fact that if a database object has certain structure then any better defined
objects also have the structure. For example, if a database object has an attribute Name with the
type string, then we expect that all better defined objects also have this structure.

Now if we regard types as sets of values then the above typing rules induce an inclusion ordering
on types. We define a syntactic relation 5 on types to represent this ordering:

2. (1 , , l n U) (Il :a: ,..., lm :a;) i f m s n and for all 1s i 5 m,a, 3 a:.

Since individual expressions correspond to par'tial descriptions, sets of expressions correspond
to sets of partial descriptions and presumably describe sets of real-world objects. We therefore
want to treat these sets of descriptions as descriptions of sets of objects and to order them by their
goodness of descriptions. If our primary interest in database programming is query processing or
information retrieval from given set of data, then an appropriate ordering is:

known as Smyth's powerdomain ordering. Intuitively, this is an ordering on sets of descriptions
which "over-describe" real-world sets; a set contains enough descriptions to describe all objects in
a real-world set but may contain irrelevant descriptions. A Lo B means that B is a less ambiguous
and better defined description to a real-world set. A query processing can then be regarded as
a process which takes a set of descriptions D and return another set of descriptions A such that
D Lo A. Indeed natural join and selection, the two major operations for query processing, have the
property that they carry relations higher in this ordering. It should be noted, however, that this
ordering is not appropriate for the ordering on databases themselves. If our interests-are operations
on databases such as database merging then we need other orderings. In [B087] various properties
of orderings on database sets, including this ordering were studied.

For arbitrary sets, however, Lo is not a partial ordering; it is a pre-ordering and a partial
ordering is derived by taking equivalence classes. Define A 2 B as A Lo B and B Lo A. If
A e B then we regard A and B as having same amount of information. We use this equivalence
relation as equality between sets of descriptions and regard a set of descriptions as a representative
of the corresponding equivalence class. Then Lo becomes a partial ordering. Thus we now regard
equivalence classes of sets of expressions as descriptions of sets of objects and extend expressions
to these equivalence classes. We also extend the ordering &.on expressions to these equivalence
classes, i.e. if [A] and [B] are equivalence classes of sets of expressions A and B then [A] 5 [B] if
A Lo B.

For 2 we have [Smyt78]:
-

Theorem 4 A e A and A E B iff2 = B, where 2 = {elza E A.a L e).

If we restrict attentions to finite sets, then this theorem says that a set A is equivalent to the c e
chain of the set of minimal elements in A, where a co-chain is a set such that no member in the set is
greater than any other member in the set. Thus we can use co-chains as canonical representatives of
equivalence classes. Intuitive justification for this equivalence is that if an object x is in an answer
to a query then we know that any better defined object y such that x L y also satisfies the query.
Thus all better defined objects are redundant and can be eliminated from the answer.

We have seen that sets of expressions can be also regarded as descriptions and the approximation
ordering E on expressions can be extended to sets of expressions. We can then include sets of
expressions in our language and allow records to contain these sets as values. Since now sets are
regarded as expressions ordered by C, by applying the same argument, we can further extend our
language to allow sets of sets of expressions as expressions. Indeed we can carry this extension
process to any depth.

In the syntax of the language this extension can be done by simply adding the rule:

4. {el,. . . , ek) is an expression if el , . . . , ek are expressions.

where we allow the empty set {) as an expression, since the empty set can be regarded as a valid
response to a query. We'call these expressions as set expressions. Set expressions are regarded
as representatives of corresponding equivalence classes. The extended language not only allows

It is easy to check that this typing rule yields an'upward closed set in set expressions under our
ordering on sets and the theorem 1 also holds.

This typing rule also induces an inclusion ordering on set types regarded as sets of values (i.e.
sets of set expressions). In order to represent this ordering, we first define the following pre-ordering
on set types:

a 50 a' iff V L E 031' E a ' . ~ 5 L'

As before a partial ordering is obtained by defining equivalence relation = as a E a' iff a so a'
and d A. a. Then by the definition of typing, a 21 a' iff for any e, e : a # e : a'. Therefore this
equivalence relation exactly corresponds to the equality between types regarded as sets of values.
We therefore regard set types as representatives of equivalence classes.

Parallel to theorem 4, we can show:

Theorem 7 a = Q and a = a' iffg = QI, where a = (~ 1 3 ~ ' E U.L 5 1 ') .

Therefore set types can be also represented by co-chains.
Note that the definition of is the inverse of the definition of go and the extended ordering

5 still corresponds to the generality of specifications. If we replace a a' with a' C a then we get
the same definitions and properties for orderings on expressions and types.

We now extend the ordering relation 5 on types to set types using the partial ordering 50 on
equivalence classes of sets of types. It can then shown that theorem 2 still holds for the extended
types. We write a A d for a n a' if a, a' are set types. From the duality of C and 5 , we can see
that a A a' always exists if a, a' are set types.

The following theorem connects W and A:

Theorem 8 If A, B are set expressions with A : 0 1 , B : 02 then A M B : a1 A 0 2 .

Proof. Let a U b be any element in A w B. Since A : a1 and B : 02, there are ~1 E 01 and 12 E 62
such that a : LI and b : 1 2 . Then by theorem 3, a U b : ~1 1-112. But by definition n L Z E u1 A Q 2 .

This shows A M B : a1 A a2.0
This theorem shows that we have successfully generalized natural join in typed higher-order rela-
tions. Figure 3 is an example of a natural join of typed higher-order relations.

4 Definition of the Language

In this section we give formal definition of our language supporting records, higher-order relations,
and natural joins.

4.1 Expressions

We use I , 1 1 , . . . for elements of L. The syntax of expressions is given by the following abstract
syntax grammar:

e ::= b (b E B;) I nullB, I
(1 1 + e l , . . . ,l,, + e n) 1 (. . . , l + e, . . .).l 1
{ e l , . . . , e m } I { e l , . . . , en} {el,, . . . , e ; } .

4.2 Types

We assume that there are constant types T I , . . . , rn associated with B1,. . . , B,. Then the syntax
of types for expressions is defined by the following abstract syntax grammar:

a ::= T ; I
(I l : 01, ... , I n : an)[

{ ~ l , . . , ~ m) l

a A a' (if a, a' are of the form {a l , . . . ,an)) .

In order to define axioms of equality of types, we first define the syntactic relation 5 on the
sublanguage of types that do not contain meet types (i.e. types of the form a A a'):

a 5 a

(I 1 : 6 1 , . . . , I n : a,) 5 (11 : a;,. . . , I m : a&) if m 5 n and a; 5 a: for 1 5 i 5 m

{ a , . . , , } {a;, . . . , uL) if VU E { a l , . . . , an).3a1 E {a;, . . . ,a;) .a 5 a'

Axiom for set types is then defined as:

This equation makes 5 a partial ordering. Let fl be the greatest lower bound of this partial ordering.
The axiom for meet types is then defined as:

(~ 1 , . . . ,an) A {a;,. . . ,a;} = {ui n ail1 < i 5 n , 1 5 i 5 m,uj n a; exists) (5)

4.3 Rules For Type Inference

Not all expressions are meaningful. One goal of a type system is to identify the set of all syntacticdy
meaningful expressions as the set of well typed expressions. We write I- e : a for e is well typed with
type a. Such well typed expressions are systematically inferred by a type injerence system.

A type inference system consists of axioms for constant types and inference rules for compound
types. Axioms for our type system are:

const k b : ~ ; for all b E B;

null I- nullB, : ~j for all B;

Inference rules for our type system are:

k e : a a i a '
subtype

I - e : a 1

records
e l : 0 1 , ..., en : O n

I - (1 1 + e l , . . . , L n + e n) : (l i : ~ i , - - . , l n : an)

I - e : (..., 1 : u ,...)
dot

I- e.1 : a

where + is the separated sum domain constructor; U, = B; U {Iai) with ordering l a i x for d l
x E B;, and w is used to interpret the wrong value. For P (D) we include 0, the empty set.

A solution of the equation (6) can be found in a particular class of complete partial orders
(c.p.0.) called a bounded complete u-algebraic c.p.o., or simply domain.

A c.p.0. is a partial order (D, C) satisfying:

1. D has the minimal element ID.

2. each directed subset X 5 D has a least upper bound U X where a subset X is directed iff
Vz,y E X3z E X.3: C z,y E z .

An isolated (finite) element of a c.p.0. (D, g) is an element e E D such that for any directed subset
X 5 D if e E u X then there is x E X such that e C z. We write Do for the set of isolated
elements of D. A c.p.0. is said to be w-algebraic iff Do is countable and for all z E D we have
x = ~ { e (e E DO,e z) . A c.p.0. is said to be bounded complete (consistently complete) if any
bounded subset of D has a least upper bound, where a subset X is bounded if it has an upper
bound in D.

Construction of a recursive domain without containing powerdomain can be found in many
places such as [MPS86,Bare84,Schm86]. In [Smyt78] Smyth showed that domains are closed under
the powerdomain construction based on the pre-ordering 'Lo and that a domain equation like (6)
can be solved. In what follows we use D for a domain satisfying (6). We also use injections of
component domains B1,. . . , P(D) into D implicitly and treat them as if they were actual inclusions.

We use the following notations to represent elements in D.

1. (Il H dl, . . . ,l, H dn) for the function f E (L + D) defined as f(1) = if 1 = I;, 1 5 i 5 n
then d; else I D , where we assume that d; # ID.

2. [dl,. . . ,dn] for the element d E P (D) such that {dl,. . . , d,) E d, i.e. the equivalence class
containing {dl, . . . , dn).

It should be noted that the domain D is equipped with the ordering E. This ordering was
originally introduced to model computation. However, if we regard values in D as descriptions then
this ordering corresponds to the approximation ordering on descriptions we discussed in section 2.
We therefore believe that the domain D is an appropriate model of our language.

5.2 Semantics of Expressions

Let E z p t be the set of expressions. We define a semantics of expressions by the semantic function:

as follows:

C[b] = b for all b E B;

C[nuIlg,] = I n i
(1 + 1 - 9 n + e n) = (11 I+ f[el], . ., In f[en])

Cte.11 = i fC[e]=(..., I - d ,...) thendelse w

1 , - . , e m } = [f[el], - . C[em]]
C[e w e'] = if C[e] u C[ef] exists then C[e] U C[ef] else w

From this definition, we can easily show, by induction on the structures of expressions, the soundness
of the ordering relation on expressions:

If filter has a minimal element d them it is a principal filter and written as d t. Let 3(D) denote
the set of all filters in D that do not contain w. 3(V) is ordered by set inclusion. Lub and glb are
defined as:

1. F u F' = {dl3 f E F3 f' E F'. f fl f' 5 d).

Note that F fl F' dose not necessarily exist.
In order to interpret types in 3(V), we define filter constructors corresponding to type con-

structors.

1. Records.
Let Fl,. . . ,Fn be filters in V. Define (Il =+ Fl,. . .,I, =+ F,) = {(Il I+ fly.. . , lm I+ f,)ln 5
m, f; E F;,l sisn).

Prop. 11 (Il * Fl,. . . ,I, * F,) is a filter in (L -+ V).

Proof. It is clear that (Il * Fl, . . . ,I, * F,) is upward closed. To see that this set is closed
under pairwise glb, we note that glb in (L -+ V) is p0intwise.D
From the definition, we have:

Prop. 12

2. Sets.
Let Fl, . . . , Fm be filters in 27. Define [Fl,. . . , Fm] = {[fl, . . . , fk]lVf E { fl, . . . , fk)3F E
{Fl,---,Fm).f E F)

Prop. 13 IFl,. . . , Fm] is a filter in P(V).

Proof. It is clear that [Fl,. . . , Fm] is upward closed. Let [fl, . . . , fk], [fi, . . . , f;] E [Fl,. . . , Fm].
Since[fl,---,fk]~[fi,...,ffl = [fl,...,fk,fi,...,ffland[fl,-..,fk,fi,...,f/] E [Fl,..-,Fm],
[Fl , . . . , Fm] is closed under pairwise g1b.O
From the definition, we have:

Prop. 14 (a) [Fl,. . . ,Fn] 5 [Fi,. . . , F&] ifVF E IFl,. . . , Fn)3Ff E {Fi,. . . ,F&).F 5 F'.
(b) [f'l,F~,f'3,...,f'n] = [f'1,F3,-..7Fn] ifF2 G FI.
(c) [Fl,. . . , F,] rl [Fi,. . . , Fk] = [fi I 1 F'll 5 i < n,l 5 j 5 m,F; fl Fj exists] where we

define 1 = {D).

We now give semantics to types by the semantic function 7 : Tezp -+ 3(V) where Tezp is the
set of types defined in the previous section:

7[r,] = 0;

7[(11 : 01,. . - 9 ln : an)] = (II + T[al], . . . , ln =+ 71an])
[{ I 7 m)I = [7[01],. ., 7[7rn]I

T[a A a'] = 7[a] f l T[a']l

Acknowledgements

This work is a continuation of [B086,B087]. I would like to thank Peter Buneman for discussions
and suggestions.

References

[AB84] S. Abiteboul and N. Bidoit. Non First Normal Form Relations to Represent Hierarchically
Organized Data. In Proc. 3nt ACM PODS, Waterloo, Ontario, Canada, 1984.

[Bare841 H.P. Barendregt. The Lambda Caluculus. Volume 103 of Studies in Logic and the Foun-
dations of Mathematics, North-Holland, 1984. revised edition.

[BK85] F. Bancilhon and S. Khoshafian. Calculus for Complex Objects. Technical Report, MCC,
Austin, Texas, October 1985.

[B086] P. Buneman and A. Ohori. A Domain Theoretic Approach to Higher-order Relations.
In International Confenerce on Database Theory, Lecture Notes in Coputer Science 243,
Springer-Verlag, 1986.

[B087] P. Buneman and A. Ohori. Using Powerdomains to Generalize Relational Databases.
1987. Submitted to Theoretical Computer Science.

[Card841 L. Cardelli. A Semantics of Multiple Inheritance. In Semantics of Data Types, Lecture
Notes in Computer Science 173, Springer-Verlag, 1984.

[FT83] P.C. Fischer and S.J. Thomas. Operators for Non-First-Normal-Form Relations. In Proc.
IEEE COMPSAC, 1983.

[MPS86] D.B. MacQueen, G.D. Plotkin, and Sethi. An ideal model for recursive polymorphic
types. Information and Control, 71(1/2):95-130, 1986.

[Ohor861 A. Ohori. Denotational Semantics of Relational Databases. blaster's thesis, Department
of Computer and Information Science, University of Pennsylvania, 1986.

[OY85] 2. Ozsoyoglu and L. Yuan. A Normal Form for Nested Relations. In Proceedings of the
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 251-260,
Portland, March 1985.

[RKS84] A.M. Roth, H.F. Korth, and A. Silberschatz. Extended Algebra and Calculus for 71NF
Relational Databases. Technical Report TR-8436, Department of Computer Sciences,
The University of Texas at Austin, 1984. revised 1985.

[Schm86] D.A. Schmidt. Denotational Semantics, A methodology for Language Development. Allyn
and Bacon, 1986.

[Shie85] S.M. Shieber. An Introduction to Unification-Based Approaches to Grammar. In Proc.
23rd Annual Meeting of the Association for Computational Linguistics, 1985.

[Smyt78] M.B. Smyth. Power Domains. Journal of Computer and System Sciences, 16(1):23-36,
1978.

[Zani84] C. Zaniolo. Database Relation with Null Values. Journal of Computer and System
Sciences, 28(1):142-166, 1984.

1 Introduction

Recently, a number of papers have been published concerning formal studies of set-

theoretic properties of type hierarchies, in the context of databases and knowledge

bases. These include work of Atzeni and Parker [7,8,9] on containment, disjointness,

and intersection constraints, of Lenzerini [lo] on covering and disjointness constraints,

of Arisawa and Miura [4] on variations of containment constraints. Other related work

was published by Schubert et al. [13,14,15], Attardi and Simi [6], Spyratos and Lecluse

1161.

We show how some of these results can be incorporated into a system capable of

handling queries of constraints between types. We consider a system that allows the

representation of types (i.e., sets of elements of a given universe), and binary contain-

ment (isa) constraints.' An important point is that negation is allowed, as in 181, in two

ways:

1. It is possible to represent complements of types; for example, we can express

the fact that the set of the students is a subset of the complement of the set of

professors. (As an aside, this is equivalent to saying that the sets students and

professors are disjoint).

2. It is possible to express negative statements; for example, we can state that it is

not the case that the instructors are a subset of the professors.

Essentially, we have positive constraints, which express containment between types

or their negations, and negative constraints, which negate containment, and therefore

specify nonempty intersection: if the set instructors is not a subset of the set professors,

then the set instructors intersects the complement of the set professors.

'Obviously, any knowledge representation system would provide more general kinds of relationships

among types, than just containment and its negation. Here, we consider only the implementation of

the subsystem dealing with type containment inference.

In other words, with an interpretation, the type term non(X) denotes the comple-

ment under U of the set denoted by X.

From condition 2 above, it follows that for every type term X,

I (X) = I (n o n (n o n (X))) = I (non (non(non (non (X))))) = . . .

Therefore, it is possible to introduce the notion of type descriptor of the type scheme

T / U , as an equivalence class of type terms,

{X, non(non(X)) , n o n (n o n (n o n (n o n (X)))), . . .),

where X is a type term of the form S or n o n (S) , and S is a type symbol in U; a type

descriptor is designated by any element of the class, but usually by X. Therefore, the

type scheme T / U = {C, TI , . . . , Tn) has the type descriptors U , n o n (U) , Tl, n o n (T l) ,

. . . , Tn, non(T,,) .

The interpretation I is trivial if I (U) = 0, and so I(X) = 0, for each type term X .

A positive (binary) constraint p has the form p : X isa Y, where X and Y are type

descriptors. The constraint p is satisfied by the interpretation I if I(X) 2 I (Y) . A

negative constraint has the form n o t (p) , where p is a positive constraint. It is satisfied

if p is not.

Note that the positive constraint p is satisfied by I if and only if I (n o n (X)) d I (Y) =

I (U) , or, equivalently, if and only if I(non(X)) n I (Y) = 0. Therefore, the negative

constraint not (p) is satisfied if and only if I (X) r I (n o n (Y)) # 0. In other words,

positive constraints make assertions about inclusions between types, while negative

constraints make assertions about intersections between types. Therefore, in order to

improve expressiveness, we will write X int n o n (Y) , instead of n o t (X isa Y) .

inference problem is to tell whether C implies c. Algorithms for the solution of the

inference problem (called inference algorithms) have correctness proofs that are usually

based on sound and complete sets of inference rules. An inference rule C I- c is a

rule asserting that the constraint c holds whenever the set of constraints C holds. For

example, the rule

X isa Y , Y isa Z t X isa Z

asserts that the inclusion predicate isa is transitive.

Relative to a specific set of inference rules, we write C I- c if c can be derived from

C using applications of the rules.

The basic requirement for each inference rule is to be sound, i.e., that it derive from

C only constraints c such that C t= c. Moreover, it is important to have sets of inference

rules that are complete, i.e., that allow the derivation of all the constraints c such that

C c. Thus, a set of rules is sound and complete when t is equivalent to k.
Recently, we have shown that the following set of inference rules is sound and com-

plete for containment constraints [8,9]. (X, Y, Z represent arbitrary type descriptors).

INTO. X ant Y I- X i n t X

INTI. X int Y I- Y ant X

INT2. X ant Y , Y isa Z t X ant Z

INCO. X ant non(X) t Y isa Z

INC 1. X int non(X) I- Y int Z

ISAO. I- X isa U

ISA1. I- X isa X

ISA2. X isa Y , Y isa Z I- X isa Z

IS AS. X isa Y I- non(Y) isa non(X)

TRIVO. X isa non(X) t X isa Y

number of properties follow from the construction of the graph. An immediate fact is

that the black graph is reflexive and the blue graph is symmetric. As a consequence,

we can consider undirected blue edges, corresponding to each pair of directed edges: the

edges (X, Y) and (Y, X) will be replaced by the edge {X,Y}.

T h e o r e m 1 Let S be a satisfiable, nontrivial containment scheme. If the type X is

not trivial, then C implies X isa Y if and only if there is a black path from the node

(corresponding to the type) X to the node Y.

Proof. Follows directly from Fact 1 and the definition of the graph: the presence of the

"dual" edge for each isa in C is the counterpart to the double possibility ((Z i - l i s a Z i) E C

or (Zi isa Z i - l) E C) provided by Fact 1.

Theorem 2 Let S be a satisfiable, nontrivial containment scheme. The type X is trivial

if and only if there is a black path from the node X to the n d e non(X)

Sketch of the proof, It can be easily shown that X is trivial if and only if X isa non(X)

can be derived by means of the inference rules. Therefore it suffices to show that

,Y isa n o n (X) can be derived if and only if there is a black path from X to non(X) .

The if part is easy, so we concentrate on the only i f part. If X i sanon(X) can be derived

without making use of rule TRIVO, then we can reason as in the proof of the previous

theorem. Otherwise, proceeding by induction, we can show that the derivation always

involve a constraint Y isa non(Y) (with a shorter derivation; so the path from Y to

n o n (Y) is in the graph) such that X isa Y can be derived without making use of TRIVO.

Therefore, by the previous theorem, the graph contains a path from X to Y and (due

to the duality in the construction of the graph) a path from non(Y) to non (X) , and

so the graph contains a path from X to n o n (X) . 3

bit-parallel machines. This approach was followed by Ait-Kaci et al. [2,3] for positive

binary containment.

In database theory, these models are called Armstrong models [S]. Most of the classes

of constraints considered in database theory admit an Armstrong model for any set of

constraints. The situation is different here, since negation of constraints is allowed, as

opposed to what happens in database theory.

Fac t 3 The ezistence of Armstrong models is not guaranteed for containment schemes.

Proof. Let S be a containment scheme and c a constraint such that neither c nor its

negation not(c) are implied by S . Then an Armstrong model should violate both, and

this is clearly impossible. 0

However, it is still possible to follow the idea, by using two models (or even just

interpretations), one for the positive constraints and one for the negative ones. To be

more precise, let us consider a satisfiable, nontrivial containment scheme S = (T / U , C),

such that C = P u 1V. where P is a set of positive constraints and N is a set of negative

constraints; also, let C' be the set of containment constraints implied by C (the closure

of C) , and P', N' be the positive and negative constraints, respectively, in C'. Then,

our goal is to have two interpretations, I p r and IN#, such that the positive constraints

satisfied by I p t are exactly those in P' and the negative constraints satisfied by IN! are

exactly those in N'.

Note that I p r and IN# need not be models: I p ~ (IN!) could satisfy all the isa (int) and

violate some of the intersection (isa) constraints. In fact, it follows from the inference

rules in Section 3 that the intersection constraints do not influence the positive con-

straints: for any consistent scheme with constraints C = P L IV, the positive constraints

in C+ are exactly those implied by P . Therefore, an interpretation satisfying exactly

the positive constraints in P would be a perfectly suitable I p .

In order to explain gradually how Ipl can be built, let us first consider a simpler

Figure 1:

Figure 2:

175

Figure 3:

Figure 5:

Sharing, Persistence, and Object Orientation:
a database perspective

Setrag Khoshafian
Patrick Valduriez

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759-6509

Abstract

This paper defines the notions of sharing and persistence, in an object-oriented frame-
work from a database perspective. It illustrates the concurrent and referential aspects
of sharing, and demonstrates the variations in the degree of persistence. Guided by the
lessons learned from the design and ongoing implementation of a structurally and op-
erationally object-oriented database management system (DBMS), the paper also
shows the representation and propagation of persistence and sharing in the different
modules of a DBMS.

1. Introduction

In this paper we clarify different aspects of persistence and sharing in an object-ori-

ented framework from a database perspective. These terms (including object orientation)

mean different things' to different people. The AJ, database, object-oriented and program-

ming languages communities have been using these concepts in a conflicting and some-

times contradictory manner.

Sharing

In a database framework "sharing" relates to synchronizing concurrent accesses to

objects to ensure the consistency of information stored in the database. The database is

accessed and updated through transactions, where a transaction is a program which is

either executed entirely or not executed at all (i.e. transactions are atomic). Serializability

of transactions is required [Eswaran et al. 1976, Papadimitriou 19791, and is typically

achieved through locking. Shared locks on an object allow multiple "readers" to access it,

whereas an exclusive lock grants access to only one user ("writer"). Objects which are

accessed concurrently by multiple users (transactions) will henceforth be called concur-

rently shared objects. .

(ii) System Failures: usualIy caused by software errors in the operating system or the

DBMS or by hardware failure othe; than the disk media.

(iii) Media Failures: usually caused by hard disk crashes.

There exists a fundamental relationship between sharing and persistence in data-

bases. Transaction updates of the database must persist. But since the persistent database

is concurrently accessed (i.e., it is shared), we must serialize the execution of the transac-

tions. Recovery techniques typically require the use of logs [Gray 19781. These logs re-

cord before and after images of updated objects. If a transaction must be aborted due to

conflicts, its effects are undone using the log. The log is also used for system and media

recovery. Another technique to achieve high resilience is through data replication as in the

Tandem transaction processing systems [Borr 19811. Some attempts have been made to

extend programming languages such as PS-Algol, to provide support of concurrent trans-

actions and deal with transaction failures [Krablin 19851.

Most commercially available DBMS's attempt to deal with all three types of failures.

In fact, the recovery manager and the exception handler represent a substantial part of

the DBMS code. For this reason the programming language perspective on "persistence"

in terms of the data being maintained on secondary storage after a program terminates,

appears as rather naive from a database perspective.

Object-Orientation

Even the notion of object orientation has different connotations and meaning for the

different communities.

From a database perspective, object orientation is a rather novel concept being incor-

porated in recent database data models. Dittrich [I9861 has identified three levels of

object orientation for DBMS's:

(a) Structurally object-oriented: implies the capability of representing arbitrarily struc-

tured complex objects.

(b) Operationally object-oriented: implies the ability to operate on complex objects in
their entirety, through generic complex object operators.

(c) Behaviorally object-oriented: implies typing in the object-oriented programming
sense (classes), with the specification of the types and operations (messages)

An interesting arena where these differences show up quite clearly is the special

purpose machine architectures, microcode implementations, as well as software algo-

rithms and technologies developed for the different paradigms. For AI, the special pur-

pose architectures as well as the software algorithms and technologies tend to be lan-

guage-oriented. Thus, LISP machines attempt to support symbolic list processing through

tagged architectures [Moon 19851. Other features provided by these LISP machines in-

clude runtime type checking, large virtual address spaces and efficient garbage collection

[Creeger 198 3, Hayashi et al. 19831. For object-oriented languages, the microcoded im-

plementation of Smalltalk-80 on the Dorado provides interpretation of the language with

good performance [Deutsch 19831. Special purpose architectures for Smalltalk-80 such as

Swamp [Lewis et al. 19861, which, among other features, supports Smalltalk contexts

directly in hardware, have demonstrated even better performance. These architectures

and technologies demonstrate that the main problems being dealt with are primarily proc-

essing (CPU) but sometimes primary storage (RAM) bottlenecks.

In contrast the main bottleneck of DBMS's is the I/O [Boral and DeWitt 19831 (i.e.,

the secondary storage accesses). It should be noted that DBMS applications usually deal

with much larger disk-resident persistent databases. An (extreme) case in point is the

United Airlines Apollo reservation system based on IBM's Transaction Processing Facil-

ity, which uses 135 IBM 3380 disk drives and services 55,000 terminals [Krause 1985]!

Hence, many of the proposed Database Machine architectures attempt to alleviate the I/O

bottleneck through increasing the YO bandwidth. Similar to the commercially available

Teradata machine architecture [Neches 19851, the de-facto architecture of these ma-

chines is a collection of processing units which "share nothing" [Stonebraker 19861 and

each of which has its own disk (or I/O subsystem). The persistent data itself is horizon-

tally partitioned (declustered) [Livny et al. 19871 across the disks of the processing units.

A fast interconnection network provides the inter-processing unit communication. Exam-

ples of shared nothing database machine architectures currently investigated by research-

ers are GAMMA [DeWitt et al. 19861, GRACE [Fushimi et al. 19861 and MBDS [Demur-

jian et al. 19861. It is important to emphasize that unlike many A1 and object-oriented

architectures, the processing elements of these database machines are not special pur-

[Khoshafian and Copeland 19861. FAD is structurally and operationally object-oriented.

In FAD, objects are defined as follows:

Assume we are given a set of attribute names A, a set of identifiers I, and a collection

of base atomic types.

An object o is a triple (ident@er, type, value) where: the identifier is in I, the type is in

{atom, set, tuple) the value is one of the following:

if the object is of type atom then the value is an element of a user defined domain

of atoms.

if the object is of type set then the value is a set of distinct identifiers from I.

if the object is of type tuple then the value is of the form [al:i l , a2:i2, ..., an:in]

where the ai's are distinct attribute names, and the ij's are identifiers. ij is the

value taken by the object on attribute aj. It is denoted o.aj

An Object System is a set of objects. An object system is consistent iff (i) no two

distinct objects have the same identifiers (unique identifier assumption) and (ii) for each

identifier present in the system there is an object with this identifier (no dangling identifi-

er assumption).

The notion of persistence is also built in FAD through a database root (where "data-

base" is a reserved key word of'FAD). Every object "reachable" from database is persis-

tent. More specifically, objects reachable from database are defined recursively as fol-

lows:

(i) database is reachable from itself.

(ii) if 0 is a set object reachable from database, then so is every o in 0.

(iii) if 0 is a tuple object reachable from database, then so is 0 . a for all a.

Objects which are not reachable from database are called transient. In order to avoid

confusion with other sorts of persistent objects, the conceptual FAD objects which are

reachable from the database root will be called recoverable objects.

Note that since FAD supports object identity, referential sharing of objects is possible.

In fact, objects can be shared in either the persistent conceptual object space or the tran-

sient object space. -

This graphical representation clearly illustrates referential sharing of objects. Note

that both persistent and transient objects can have referential object sharing. Needless to

say, object identity is the feature which enables this type of object sharing.

Mapping to the Internal Model

In our implementation, transactions expressed in FAD are compiled into the language

of the internal layer. Programs in this language manipulate stored physical objects which

correspond to and are determined by the conceptual objects of FAD. The recoverable

objects of the conceptual layer are actually stored as recoverable files, tuples, sets etc. in

the internal layer. An important feature of the internal model is the fact that it is "value

based". This means objects are identified through "key" attributes, such as the

EmployeeNumber in an Employees relation, or DepartmentName in a Departments rela-

tion. Furthermore, the internal layer supports the direct representation and storage of

complex objects (similar to some implementations of non-first normal form relational

models [Deppisch et al. 19861). Similar to the conceptual model, the objects in the inter-

nal model are constructed through sets, tuples and atomic objects. Surrogates which are

system generated unique identifiers independent of physical addressability or content

[Khoshafian and Copeland 19861 are introduced to support the conceptual model's iden-

tity. Thus, one possible representation of the conceptual object in Figure 1 is given in

Figure 2, where S1, S2, TI, T2, T3, T4 are surrogates.

Value \

Figure 2: Internal Object Representation

and which persist for the duration of the transaction. The concurrency control/recovery

system uses a shadowing [Lorie 19771 mechanism for the persistent database. This means,

database objects updated by the transaction will be shadowed and maintained (persist) in

the workspace of the transaction since the transaction needs to see the effects of its

updates in subsequent accesses. The scheme is similar to the one used in Gemstone

[Maier et al. 19861. There are also system structures (i.e., structures generated by the

DBMS on behalf of the transaction) which only persist for the duration of the transaction.

One example is the data structure which maintains the correspondence between the

shadow and persistent pages. Another example is the list of transaction identifiers which

could potentially conflict with the currently executing transaction.

As far as persistence is concerned, the database is resilient to transaction, system,

and media failures. Transaction failures arise due to conflicting accesses to concurrently

shared objects by different transactions. A certification [Kung and Robinson 19811 based

concurrency control synchronizer aborts one of the conflicting transactions. The user in-

teracting with the system is informed of the abort and might choose to retry (re-execute)

the transaction.

Sessions
A user interacts with transaction management systems in sessions. Simply stated, a

session refers to the duration that a user is logged into the database management system.

During the session a certain environment (expressed in session variables) is established

and the user submits one or more transactions to the DBMS in this environment

Some examples of session variables are the terminal/window parameters of the user

interface, statistics on number of transactions executed and duration of each, as well as

trace options set and reset at different points of time during the sessions. These session

variables are shared by all the transactions which get executed during the session and

persist for the duration of the session.

As for running transactions within a session, three types of interaction schemes are

feasible. Below we present these schemes in increasing order of "optimism" in concurrent

accesses.

(1) Checkout-Checkin: in this scheme, after starting a session, the user submits simple
transactions which retrieve "large" objects from the database, explicitly checking out

Environment (and hence persist as long as the system is up). We already described exam-

ples of the former two. For Execution Environment data structures, perhaps the most

important is the Buffer table which contains the page identifiers of all the physical persis-

tent and concurrently shared data base pages buffered by the buffer manager. The disk

image describing the free and used pages of the disk and access tables used for determin-

ing conflicting accesses are other examples of Execution Environment persistent data

structures. These Execution Environment structures are shared by all the sessions which

get created during an activation of the Execution Environment. These activations corre-

spond to system re-starts.

4. Representation and Storage of PersistentIShared Objects

We mentioned in the previous section the transaction workspace and the session vari-

ables in the run-time execution environment. Parts of these workspaces will be allocated

to storing FAD objects in the conceptual model's format. These conceptual FAD objects

will be either transient or persistent (i.e., accessible from the database root). Another

portion of the workspaces will be storing paginated objects in the internal model's format.

These internal storage objects in the workspace of a transaction will consist of those

objects which reside in pages updated by the transaction.

The DBMS also buffers concurrently shared data pages of the indexed files which

store the internal database objects. However, these pages are shared across all currently

executing transactions and do not belong in the private workspace of any particular trans-

action (the private transaction workspace disappears once the transaction terminates).

Objects are referenced through an identifier which specifies the table (Persistent or

Transient) and a table entry corresponding to an object:

[TableSelector, Index]

Hence, TableSelector is either TRANS or PERS. Index is an index to the correspond-

ing object table.

Associated with each of the object tables we have an Object Value Table. This table

stores the actual values of objects. The values of string atomic objects are stored as

self-describing : [STRING, ValueByteString]

The value of a set or tuple is a list of the form:

([AttrName, Identifier])

if the object is a set, the AttrName field is NIL.

Small fixed size atomic objects (like integers) will be stored directly in the Object

Tables (vs object Value Tables).

Figure 4 gives a more detailed description of the conceptual transaction object space.

We should also emphasize that it is permissible to have persistent objects referenced from

the Transient Object Table or the Transient Object Value Table. However, all references

from the Persistent Object Table or the Persistent Object Value Table must be to entries

in these Persistent Tables only.

'Smith' 'John'

Persistent Objects

(derived) Transient Objects

Figure 5: Graphical Representation of the Objects

1 2 3 4

1 2 3 1 2 3

S 1
S2 'John' 'Smith'

25 S3
'Jack' 'Jill' 'Jane'

1 2 3
S3 -

S4 S5 'Mary' 'Smith'
24 EXTERNAL:

Persons. S 1. Children

Persons: Indexed on Surro ate S k

Page PI Page P2

(b)

Page P3

Schema of Persons

Figure 8: Object Representation in the Internal Layer

Surrogate
Name:Tuple

Age: .

Integer Surrogate Last:String

Chi1dren:Set
-.

First:String Surrogate String

copies of Persons with an alternative organization and clustering are also not shown in

Figure 8.

5. Summary
In this paper we have attempted to present aspects of sharing and persistence, in an

object-oriented framework. The perspective given to these concepts was database-ori-

ented and influenced from the design and implementation of one particular DBMS.

We saw an increasing degree of persistence going from a transaction workspace, to

session variables, to the execution environment, and finally to the recoverable persistent

database.

I I I I
I I 1 1 *

TX Session EE Recoverable
workspace vars vars DB

-> more persistent and
(in general) more
concurrency

As far as concurrently shared objects are concerned, we can similarly characterize

objects and data structures shared within a transaction (such as shadowed pages), within

the session of a user (such as the session variables), within an execution environment,

and finally the most important space, namely the recoverable database. Therefore, similar

to persistence, there is an increase in the degree of concurrency in going from transaction

workspace to the recoverable database.

We should note that, although in general the recoverable database and the database

shared concurrently across multiple transactions are one and the same, there are numer-

ous DBMS's which restrict user accesses to certain subsets of the recoverable database,

depending upon access grants [Fernandez et al. 19811. In other words, it is conceivable to

have portions of the recoverable database accessed by, say, only one "special" type of

transaction. The bottom line is that recoverable does not necessarily mean concurrently

shared. Of course, session and execution environment variables show that concurrent

sharing does not automatically imply recoverablity either. However, the concurrently

shared variables of these environments do persist as long as the environment is opera-

tional.

[Atkinson et al. 19831 Atkinson M., Bailey P., Cockshott W., Chisholm K., Morrison R.,
"An Approach to Persistent Programming", Computer Journal, Vol. 26, No. 4, 1983.

[Bancilhon et al. 19871 Bancilhon F., Briggs T., Khoshafian S., Valduriez P., "FAD, a
Powerjfiul and Simple Database Language", MCC report submitted to publication, 1987.

[Bancilhon and Khoshafian 19861 Bancilhon F., Khoshafian S., "A Calculus for Complex
Ojbects", Int. Symposium on PODS, March 1986.

[Batory 19851 Batory D.S., "Modeling the Storage Architectures of Commercial Database
Systems", ACM Transactions on Database Systems, Volume 10, Number 4, 1985.

[Boral and DeWitt 19831 Boral H., DeWitt D. J., "Database Machines: an Idea Whose Time
has Passed? a Critique of the Future of Database Machines", Int. Workshop on DBM,
Munich, September 1983.

[Borr 19811 Borr A.J., "Transaction Monitoring in ENCOMPASS: Reliable Distributed Trans-
action Processing", Int. Conf. on VLDB, Cannes, September 1981.

[Cardelli 19841 Cardelli L., "Amber", AT&T Bell Labs Technical Memorandum
11271-840924-IOTM, 1984.

[Cardelli and Wagner 19851 Cardelli L. and Wagner P., "On Understanding Types, Data
Abstraction, and Polymorphism", ACM Computing Surveys, Vol. 17, No. 4, December
1985.

[Chen 19761 Chen P.P., "The Entity-Relationship Model -- Toward a Unified View of DataJ',
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976.

[Creeger 19831 Creeger M., "Lisp Machines Come Out of the Lab", Computer Design,
November 198 3.

[Demurjian et al. 19861 Demurjian S., Hsiao D., Menon J., "A Multi-Backend Database
System for Perjfiormance Gains, Capacity Growth and Hardware Upgrade", Int. Conf. on Data
Engineering, Los Angeles, February 1986.

[Deppisch et al. 19861 Deppsich U., Paul, H-b., Schek H-J., "A Storage System for Com-
plex Object", in Proceedings of 1986 Intl. Workshop on Object-Oriented Database Sys-
tems, Pacifica Grove, California, September 1986.

[DeWitt et al. 19861 DeWitt D. J. et al., "GAMMA - a High Performance Dataflow Database
Machine", Int. Conf. on VLDB, Kyoto, August 1986.

[Deutsch 19831 Deutsch L.P., "The Dorado Smalltalk-80 Implementation: Hardware Archi-
tecture's Impact on Software Architecture", in Smalltalk-80: Bits of History, Words of Ad-
vice, ed. Glenn Krasner, Addison Wesley, 1983.

[Dittrich 19861 Dittrich K.R., "Object-Oriented Database Systems: 7'h.e Notion and the Is-
sues", Proceedings of the International Workshop on Object-Oriented Database Systems,
Pacific Grove, Ca., September 1986.

[Eswaran et al. 1976l'Eswaran K.P., Gray J.N., Lorie R.A., Traiger I.L., "The Notions of
Consistence and Predicate Locks in a Database System", Comm. ACM 19(11), 1976.

[Maier et al. 19861 Maier D., Stein J., Ottis A., Purdy A., "Development of an Object-Ori-
ented DBMS ", OOPSLA-86, Portland, Oregon, September 1986.

[Mattson et al. 19701 Mattson R., et al., "Evaluation Techniques for Storage Hierarchies",
IBM Systems Journal, Vol. 3, No. 2, June 1970.

[McLeod et al. 19831 McLeod D., Narayanaswamy K., Rao Bapa K., "An Approach to
Information Management for CADIVLSI Applications", ACM-SIGMOD Int. Conf., San Jose,
May 1983.

[Moon 19851 Moon D.A., "Architecture of the Symbolics 3600", Proceedings of the 12th
Annual Int. Symposium on Computer Architecture, 1985.

[Neches 19851 Neches P., "The Anatomy of a Database Computer System" COMPCON 85,
San Francisco, CA, February 1985.

[Papadimitriou 19791 Papadimitriou C.H., "Serializability of Concurrent Database Updates",
Journal of the ACM 26(4), 1979.

[Rentsch 19821 Rentsch T., "Object-Oriented Programming", SIGPLAN Notices, September
1982.

[Selinger et al. 19791 Selinger et al., "Access Path Selection in a Relational Database Man-
agement System ", ACM-SIGMOD, Boston, 1979.

[Shipman 19811 Shipman D., "The Functional Data Model and Data Language DAPLEX",
ACM Transactions on Database Systems, Vol. 6, No. 1, 1981.

[Stefik and Bobrow 19861 Stefik M., and Bobrow D.G., Object-Oriented Programming:
Themes and Variations", The A1 Magazine, 6(4), 1986.

[Stonebraker 19861 Stonebraker M., "The Case for Shared Nothing", Database Engineer-
ing, Vol. 9, No. 1, March 1986.

[Stroustrup 19861 Stroustrup B., "The C++ Programming Language", Addison Wesley Pub-
lishing Co., Reading, MA, 1986.

[Ung ar 19841 Ungar D., "Generation Salvaging: A Non-disruptive High Performance Storage
Reclamation Algorithm", ACM Software Eng. NotesISIGPLAN Notices Software Engineer-
ing Symposium on Practical Software Development Environments, Pittsburgh, PA, April
1984.

[Valduriez et al. 19861 Valduriez P., Khoshafian S., and Copeland G., "Implementation
Techniques of Complex Objects", Proceedings of Very Large Databases: 12th International
Conference, Kyoto, Japan, 1986.

Introduction

Names are used for many categories of objects within programming languages - for
example, to name constants, variables, points in the program, exceptions etc. When they name
fields of records, then it is often the case that some input and output operations could use those
names. For example, in a form filling system, or in a browser [Dearle & Brown, 871.
Diagnostic tools and program construction aids need to manipulate, input and output these
names.

In operating system command languages, editors and other user interfaces, they are
used to identify objects from different sets of categories, especially file directories and files. At
present these names may obey different rules from those in the programming language. As we
attempt to develop a single coherent system in which long and short term data (code, objects,
etc.) are treated consistently [Atkinson et al. 81, Atkinson et al. 83, Atkinson & Morrison
85b] it has been necessary to consider carefully the treatment of names.

Unfortunately, during the development described in those cited papers there were two
flaws in our treatment of names:

i) the interpretation of field names in the type checking rules implied a single universe of
names for fields - which is known to be unmanageable in large evolving systems; and

ii) program identifiers were used to name some things (e.g. procedures and structure
classes) while smngs were used to name other things (notably databases and entries in
databases).

The former problem appears in many systems as we note in various surveys [Atkinson
& Buneman 88, Buneman & Atkinson 86, Atkinson et al. 871. The latter problem manifests
itself in most languages as the use of strings for file names. It has the inconvenience of
introducing a quite different, dynamic binding rule for the interpretation of these names.
Normally, the operating system is responsible for providing this rule. The inconsistency
introduced makes programming more difficult and requires program alteration when programs
are moved between operating systems

In PS-algol and its descendents we have wished to encompass more of the semantics
that affect the execution of programs to give the programmer a consistent world for the total
computation. We have therefore sought to remove these anomolous string-names and their
inconsistent interpretation. A similar motivation has influenced other work [Buhr & Zamke
87, Richardson er al. 871. We envisage that by continuing this development most of the
functions of an operating system can be given a consistent semantics which is also consistent
with the command languages and the programming languages provided. The task of learning
to use the composition of these, and of implementing them is then much simplified.

The operations on names are:

type test,
input and output;
type consistent assignment; and
lexical ordering

Names may be used to index a struct or env object, and to construct new quadruples
to insert into an env object.

These operations are further defined below. There are also two transfer functions on
names:

let nameToString = proc[t : type] (n : name [t] + string)
and

let stringToName = proc[t : type] (s : string + name [r])

The type test has the form
<exp> is <ptype>

and type rule

where ptype is:

a) any one of the predefined types (e.g. int, real, bool);

b) any user defined type name, (i.e. an in scope occurrance of <type-name> from
typectype-name> is ...);

c) any type expression (i.e. such as may appear after is in type ... is ...);
d) any type constructor (e.g. abstype, which might have been used in type stack is

abs type ...).

Figure 1 illustrates the use of the type test,

is exactly equivalent to
nameToString (<exp 1 >) c nameToSrring (<exp2>)

We use this ordering when defining iterators.

The Universal Extensible Union Type

In PS-algol we had an extensible union type, pntr , and we grew to appreciate its
utility; indeed much of the database programming, including the interface to persistent data and
data model implementation depended on it [Atkinson et a!. 87, Cooper et al. 871.

We refer to it as a union type because it may refer to an instance of any structure
class. We refer to it as extensible as new classes declared after the use of pntr are eligible as
referends, thus the set of possible referends is increased when each structure class is declared.
It was not universal as there were types, e.g. int, which were excluded from its set.

It was valuable because it allowed a type check to be delayed, because it allowed us to
limit the traversal of the type match algorithm, and because it allowed generic code to be written
applicable to future types, possibly with the execution taking into account the actual type. It
was, however, overused, as no more specific alternative was available when referend types
were predetermined. It was also unfortunate as its pronunciation 'pointer' evoked connotations
of other languages where such things provide a loop-hole in the type system and even pointer
arithmetic. Of course, these horrors do not exist in PS-algol.

In Napier we therefore allow proper constraint of referend type where appropriate in
data structures, and we use polymorphism to implement most generic code. But we have
retained the valuable properties of pntr in a type any, but removed an irksome restriction by
making it universal.

There are few operations on values of type any (only equality, inequality and
assignment) thus it is safe. To gain access to other operations on the values it is necessary to
project out of the union, just as one projects out of a statically defined union. A delayed type
check is needed in both cases. We now make this projection explicit. (The implicit projection
from pntr was one of the causes of a single name space of field names.) Thus our any is
similar to Cardelli's dynamic [Cardelli & MacQueen, 85, Cardelli 851.

Note name [any] is the type which includes all possible names.

Polymorphic Input and Output

The output statment print in PS-algol [PPRR-121 is already polymorphic, and handles
multiple fonts, multiple destinations and its default actions may be replaced by other code. In
Napier we retain the essence of this print clause but we are revising details [PhiIbrow et a!.

Polymorphic Iterations

When a polymorphic procedure is defined this indicates that different applications of the
procedure may have parameters of different type, but that for each application the procedure
body will be executed with a consistent and constant substitution of the type variables. The
polymorphic iterator is defined correspondingly. Each traversal of the iteration may be with a
different type substitution, but within each execution of the controlled statement the type
substitution is constant and consistent.

There are iterators to perform defined sequences of operations in the language
e.g.

for i = 1 to 10 do ...

with the usual semantics and options. Note that i is a constant declared here with the scope of
this for statement.

There is a similar iteration construct, introduced by for each, which iterates over
compound objects. Each of the compound objects may be considered a map, e.g. a vector of
type *U is a stored map from int to 8. Identifiers may be provided in the iteration statement to
range over the sequence of values in the map, and for every type of map the iteration sequence
is defined. e.g.

for each k + u in vs do ...

where vs is a vector of strings would apply the controlled clause frst with k set to the lower
bound of vs and u set to the first string, and repeat for increasing index up to the upper
bound. Either control variable may be omitted, e.g.

and
for each k in v s do ...

for each -+ u in vs do ...

Similar arrangements are available for iterating over indexes, with multiple keys having
corresponding multiple control variables.

To illustrate the iterator construct more fully suppose that environments have been
chosen to represent some entity, and that now a new property is to be recorded for every
instance. The programmerldata designer has decided.that such transitions are likely, and
considered it wonh incurring the additional costs of using envs rather than static records. The
iteration in Figure 4 would then achieve ths.

. . .
print "'n is the field updateable?"
let constantField = replyAfinnative ()
print "'n What is the name of the new integer field?"
let newName = read [name[int]]
for each + anEnv in thelndexToEnvs do ! don't care about the key

begin ! once for each env
! show the user the environment

envShow (anEnv)
print "'nWhat is the initial value for ", newName, " ?"
let initialvalue = read [int]
if constantField then

insert newName = initialvalue in anEnv
else

insert newName := initialvalue in anEnv
end ! of iteration through index

i 4: h example p n o g m frag~en: to eCS :s 2 caw integer field to dl the
env~onmants in am hdex

That example has assumed the existence of a procedure, envShow, capable of printing
any environment. A simple implementation, utilising polymorphic iteration, is shown in
Figure 5.

Figure 6 shows a procedure to copy one element of an environment, then Figure 7
shows how that and polymorphic iteration can be used to construct a back-up copy of any
environment.

Figure 8 shows how two environments may be combined using the same facilities, and
figure 9 shows how a user controlled directory (environment) editor might be built.

let mergeEnvs = proc (envl, env2 : env)
begin !adds to envl all the bindings in env2
let duplicates = emptyEnv ()
for each [t : type] n : name [t] in env2 do

if n in envl then
copyOneEntry [r] (env2, duplicates, n)

e l s e
copyOneEntry [t] (env2, envl, n)

if size duplicates # o do raise nameClashes (duplicates)
end

Figure 8: A procedure to add &t cxtenss of one environment to mother

let userControlledCopy=proc(e:env +env)
begin
let res = emptyEnv ()
for each [t : type] n : name [t] in e do

begin
print "'n include", n, "?"
if replyAffirmative () do

copyOneEntry [t] (e, res, n)
end

res
end

Figure 9: Procedure that zi!!cws the user to control the pans of zz
environment copied

TM
Finally a program to emulate the 1s shell command (a simple version) as in UNIX is shown
as figure 10. Note that nameToString is used explicitly because otherwise the name would be
printed like a name literal expression, e.g.

since a language must be able to read its own handwriting.

let ZisrEnv = proc (e : env)
for each [r :type] n :name [r] in e do

print nameToSrring (n)

Figwe 10: Procedure to list t::e conzmmts of a name $?ace c.f. 1s in
UNITXTM

let allln = proc [type t] (rel: *env; names: *names [t])
for each + n in names do

if not (n in rel(1)) do
raise wrongColumn

Figure 12: check dl the eo8mms names a m in the fmu ewvkomene

let match = proc [type t] (t l , t2: env; cols: *name [t] + boor)
begin
let equal:= true
for each + n in cols do

equal: = equal and tl (n) = t2(n)
equal
end

Figure 13: test two tuples for equality

Let merge = proc (t l , t2: env + env)
begin
let newTuple = empryEnv ()
mergeEnvs (newTuple, t l) ! all columns from re11 - see fig 8
for each [t: type] n: name [t] in t2 do

if not (n in t l) do
copyOneEnzry [t] (t2, newTuple, n) ! see fig 6

newTuple
end

Figure 14: generate the new tuple f ro3 the two tha2 matched!

Subproblem (i) is solved using this type system. We consider below whether the
solution is adequate. The check (subproblem (ii)) has been programmed - figure 12 - verifying
that all the columns appear in each relation. The dynamic specification of this condition is
acceptable since the check is inherently dynamic; the relevant properties of the parameters may
not be determined until the code which calls equijoin is executed. The result type (iii) is
statically specified and consequently the third subproblem is avoided.

For the moment we remain unable to define an adequate type system for generic
applications, and we overcome the problem by synthesising a specific procedure for each
type parameterisation of join when it is needed, and then using the callable compiler to build
the operation before applying it. Persistence and the universal extensible union type allow
us to memoise this operator construction [Cooper er a1.871. It is not clear whether a type
system which does better than this is achievable.

Conclusions

The sequence of examples show that scanning directories is now possible, and that
other data dependent generic algorithms can be written. The constructs introduced to achieve
this - polymorphic name types, type constrained name values, environments and polymorphic
iterators - are individually simple to understand and use, they combine well, and they do not
result in a loss of type control or incomprehensible computations.

Use of these constructs to build replacement operating system structures will eliminate
strings as names. We need to start the bootstrap as a program binds to its environment, and
do this by introducing one standard variable PS (Persistent Space).

These structures need to be updated to reflect changes in the environment, e.g. addition
of new network addresses, new discs etc. It does not appear possible to include that within
the language. However we extend the scope of the language there will always be external
agents affecting the computation, and consequently a closed universe is impossible, i.e. delis

ex machina will occur. If we wish to use the same naming system for everything, then we
need to expand the type system to contain everything we wish to name. Examples might be
machines, devices etc. if they may be explicitly manipulated or selected by the
user/programmer. But this makes it difficult to adhere to the principle of data type
completeness.

The section on the implementation of a join procedure is included to show that type
systems are still not adequate for all we would wish to do. We pose the question: "Can we do
better than synthesis of code followed by calling the compiler?" for these remaining generic
tasks. The advantage of that approach is that more than type checking may be 'statically'
determined, i.e. factored out of the operator's iterations.

Acknowledgements

This work was done at the Universities of Glasgow and St. Andrews with support from the
British SERC, from the Alvey programme, and from the SETC and URC sections of STC Ltd.
The authors also acknowledge the peace and stimulation of walking on Blackford Hill during
their many discussions.

Buneman 85 Buneman, O.P. Data types for Database programming in proceedings of the
1st International Workshop on Persistent Object Systems: Date Types and Persistence,
Appin, Scotland (Aug. 1985) PPRR-16-85 285 - 98.

Buneman & Atkinson 86 Buneman, O.P. and Atkinson, M.P. - "Inheritance and
Persistence in Database Programming Languages", in Proceedings of ACM
SIGMOD COW. '86, Washington, USA, (May 1986).

Cardelli 84 Cardelli, L, "Amber", Technical Report, AT&T, Bell Laboratories,
Murray Hill, N.J. USA, 1984.

Cooper & Atkinson 87 Cooper, R.L. and Atkinson, M.P. - "Requirements
Modelling in a Persistent Object Store", in Proceedings of the 2nd International
Workshop on Persistent Object Systems: their Design, Implementation and
Use, Appin, Scotland (Aug. 1987) PPRR-44-87*.

Cooper et a1 86 Cooper, R.L., Atkinson, M.P. and Blott, S.M. - "Using a
Persistent Environment to Maintain a Bibliographic Database", PPRR-24-86*.

Cooper et a2 87 Cooper, R.L., Atkinson, M.P., Dearle, A. and Abderrahmane
D. - "Constructing Database Systems in a Persistent Environment", in
Proceedings of the 13th International Conference on Very Large Data Bases,
Brighton, England (Sept 1987), 117-125.

Dearle & Brown 87 Dearle, A. and Brown, A.L. - "Safe Browsing in a Strongly
Typed Persistent Environment", PPRR-33-87*.

Philbrow et al 87 Philbrow, P., Amour, I., Atkinson, M.P. and, Livingstone J. -
"A Device-independent Output Statement", to be submitted to ACM SIGPLAN
Notices.

PPRR12 "The PS-algol Reference Manual: Fourth Edition", PPRR- 12 - 87*.

Richardson et a1 87 Richardson, J.E., Carey, M.J., DeWitt, D.J. and Schuh,
D.T. - "Persistence in Exodus", in Proceedings of the 2nd International
Workshop on Persistent Object Systems : their Design, Implementation and
Use, Appin Scotland (Aug. 1987) PPRR-44- 87 *.

*Persistent Programming Research Reports (PPRRs) are available from the Computing
Science Departments at the Universities of GIasgow and St. Andrews, Scotland.

2 2 3

Our approach strongly differs from standard object-oriented ones .Goldberg Sr. Robson 831,
[Bobrow B a1 8Gj. [Cox 861 , [Stmustrup 8Gj in that we do not only dca.1 with typed da t a but also
with highly structured ones. We use the set and tuple constructors to define arbitrarily complex
objects. These objects are grouped into types which define a minimal common structure (like
Cardelli's approach [Cardelli 8-13) and conlrnon bellaviour. \Ye want our type system to be as safe
as possible without. loosing the advantages of late binding. \Ye think it is necessary in the scope of
data base applications to have a strongly typed system.
This paper gives a formal set-theoretic semantics for types In our system. I t is the basis on which
we shall implement the o2 object oriented data base system [Barbedette S: a1 871. Our model
differs from that of [Bruce 5: wegner 861 in that methods are not objects and tha t the type system
is more permissive. O n the other hand, the counterpart is that our type system is not totally safe
(well-typed expressions can give run-time errors). However, our set theoretic semantics for type
structures (resp methods) corresponds to the classical database interpretation a s sets of objects
(resp sets of functions). The subtyping relationship is interpreted as inclusion of interpretations.
Furthermore, our model allows the definition of cyclic types, such as:

Person= <name:String,children:{Person) >
This paper is organized as follows.
Section 2 gives an informal overview of our approach and esposes i t through examples. Section 3
gives a definition of objects. Section 4 gives the semantics of types and inheritance relationship.
Finally, the notion of database is introduced in Section 5 . Section G contains some concluding
remarks and open problems.

2. I n f o r m a l Ove rv i ew

The o2 system which is currently in~plen~ented in the Altbir Group, puts together object-
oriented features Iike inheritance and late binding (i.e . the actual code of a function is deter-
mined a t run-time) with da ta base requirements such as complex objects manipulation, efficient
retrieval and updates and persistence of data . Some of these goals do not mix well. Associative
search using late binding, for example, is more espensive than a procedure call. A way to solve
these requirements is to design systermwhich perform as much static type checking as possi-
ble and accepts late binding when needed. In the same way, opposed t o languages such as
SmallTalk 80 [Goldberg & Robson 831, a database programming language must allow the user to
specify access paths to his/her data. This implies the possibility to describe the structure of the
data and specify keys. Our system will thus deal with objects (our data) and types (their struc-
tural and behavioural description). A well-known problem is the correlation between object-
oriented inheritance and the notion of subtyping [Schaffert S: a1 86!, :Sandberg 861, [Bruce 871.
One way t o describe subtyping is to say that objects of a subtype can be used in the same way as
objects of the super types but are distinct. Tha t is, they accept behavioural properties described
in their supertypes without being instances of these supertypes. This is the approach of SmallTalk
80. .;\n other approach associates iilclusion of extensions to sub-typing. Tha t is, objects of a sub-
type also belongs to its supertypes. This approach has the advantage of being natural : an
employee is also a person and 3 mammal. In order to have a well founded system, we need to
associate to our object and type definitions a semantics which characterizes the subtyping rela-
tionship in terms of inclusion of interpretations (of types). This is the goal of the formal datamo-
del described in the sequel of the paper.
Let us introduce some of the notions of this model, using examples. Objects are representing our
(computer) world. They are made up of an object identifier (a name for the object) and a value.
Values can be atomic values (string, integers, reals, ...) tuples values and set values.

(ob,, "this is a string")
(0b2, 3.14159265359)
(0bg, 1243)
(ob4, <name; "Smith". age: 32>)
(ob5, <name: "Doe", age: 20, salary: 9700)
(ob6, (13, 13, "john"))

Futhermorc, we want to be able to model cyclic objects. tha t is, objects which are components of
themselves. Such objects may seem a little bit strange bu t are, actually, used very often in prac-
tice.

\Ye suppose given: . A finite set of doiuains D l , ..., D,, n> 1 (for esample, the set Z of all integers is one such
domain). W e note D the union of all domains D l, D,. We suppose tha t the domains are
pairwise disjoint.

A countably infinite set A of symbols called attributes. Intuitively, the elements of -4 are
names for structure fields as we shall see later.

A countably infinite set ID of synibols called idenli 'ers. T h e elements of ID will be used as
identifiers for objects.

Let us now define the notion of value.

Definition 1 :

(i) T h e special symbol nil is a value, called a basic value.

(ii) Every element v of D is a value, called a basic value.

(iii) Every finite subset of ID is a value, called a set-value. Set-values are denoted in the usual
way using brackets.

(iv) Every finite partial function from A into ID is a value, called a tuple-value. We denote by
<al : i , , ..., a, : ip> the partial function t defined o n {a, , ..., ap) such tha t t(ak)=ik for all
k.

\Ye denote by V the set of all values. 0

\\'e can now define the notion of object.

Definition 2 :

(i) .b object is a pair o = (i, v), where i is an element of ID (an identifier) and v is a value.

(i i) 0 is the set of all objects, that is 0 = ID x V.

(iii) W e define, in an obvious way, the notion of basic objects, set-structured objects and tuple-
structured objects.

(iv) If o=(i,v) is a n object then ident(o) denotes the identifier i and value(o) denotes the value v .

) ref is a function from 0 in ?D defined as follows :
ref(o) = 0 for all basic objects.
ref(o) = value(o) for all set-structured object s .
ref(o) = {i lJ ..., in) for all tuple-structured object o such tha t value(o) =
< a , : i l , ..., a, : i n > . El

Intuitively, refio) is the set of all identifiers that are referenced in the value of o.
This "tuple-and-setJ' const.ruction of objects (generally called "complex objects") is similar to tha t
of [Bancilhon and Iihoshafian 871, [Bancilhon & a1 871, [Abiteboul Sc Beeri 871 and specially t o
tha t of [Iiuper and Vardi 811 where identifiers (called addresses) are also introduced. \Ve can use
a graphical representation for objects as fol1on.s :

Definition 3 :

Lf 8 is a se t of objects, then the graph graph(@) is defined as follows:

Def in i t ion 5 :

(i) 0-equal i t y : two objects o and o' are 0-equal (or ident ical) iff o=o' (in the sense of
n~atllematical pair equality),

(ii) 1-eqt ial i ty : two objects o and o' are 1-equal (or simply equal) iff value(o) = value(o'),

(iii) w-equal i t y : two objects o and o' are w-equal (or value-equal) iff span-tree(o) = span-tree(o')
where span-tree(o) is the tree obtained from o by recursively replacing an identifier i (in a
value) by the value of the object identified by i.

Equality implies value-equality, but the converse is not true since many distinct objects may have
the same span tree.
Let us put these definitions t o work with a few examples :
oI=(il, <a:i3, b:i,>)
a2=(ia, <a:i3, b:i4>)
03=(i3, "Fred")
0,=(i4, "hilsry")
oj=(i5, "Fred")
06=(i6, "klary")
*=(i7, <":is, b:i6>)
\\'e have ol equal 02 because va lue(o ,)=va lue(~) but not ol equal o; because the values differ.
However, if we replace the identifiers by the value they identify in ol and 07: we obtain :
for ol : <a:"FredW , b:"hlary" >
for 07 : < a:"Fred" , b:"hIary" >

and so, ol and 07 are value-equal .
1i.e must notice tha t the span-tree build from an object may be infinite (in the case of cyclic
objects). So, this construction cannot be used (directly) as a decision procedure for testing value-
equality. For space reasons, we do not detail in this paper the algorithm which will be used in the
inlplementation of our system.

4. Types

A type is an abstraction that allows the user to encapsulate in the same structure data and
operations. In our model, the static component of a type is called a type structure. -A type struc-
ture is a way of classifying objects with respect to their structure. The operations will be called
methods.

.As we have basic objects, set-structured objects and tuple-structured objects, we define basic
typea, set-structured types and tuple-s tructured t ypes . %lore formally, a type name is defined a s
follows:

Bnatne is a set of names for basic types containing :

(i) the special symbols A n y and .Iril.

(ii) a symbol di for each domain Di. \Ve shall note Di=dom(di),

(iii) a syn~bol 'x for every value x of D.

C n a ~ n e is a set of names for constructed types which is countably infinite and disjoint with
Bname .
Tnalne is the union of Bna~iae and C t ~ a m e and it is the set of all names for types.

In order to define types, we assume that there is a set .If whose elements are called methods and
which shall play the role of operations on our data structures. For the moment, we can think of
tile elements of i\f as uninterpreted symbols. \Ve shall define them in section 3.2 .

Def in i t ion 7 :

.I\ set h of constructed type structures is con.sistent (or is a schelna) iff

(i) 4 is a finite set ,

(i i) name is injective on A (only one type structure for a given name).

(i i i) \T s t E A, refedst) n Cnames natnes(A) (i.e. there is no dangling identifiers). O

S o t a Bene :
In 3 schema, we can identify a type name of n a m e (h) with the corresponding type structure in 4,
and we shall use this convention in the sequel of the paper.
I\-e illustrate the notion of a schema with two examples :
Let A be the set consisting of the following type structures :

age = integer,
person = <name : string, age : age >
persons = {person)

A is 3 schema. If we take off the type structure "age" from A . i t is no longer a schema.
O n the other hand, the following se t of type st,ructures is also a schema :

person = human
human = person

This set of type structures may be not useful bu t it is well defined and has an interpretation as we
shall see in the nest section.

4.1.2. Interpretation

This section deals with the definition of the semantics of the type structure system
presented above. It will be given by a particular function which associates subsets of a consistent
se t of objects to type structure names.

Definition 10

Le t A be a schema and 8 be a consistent subset of the universe of objects 0. An interpretation I
of A in 8 is a function from Tnames in 2ident(e), satisfying the following properties:
Basic Type Names
1) I(Ni1) C {i E ident(0) / (i, Nil) E 8)
2) I(di) C { id E ident(8) ,I @(id) E Di) u I(Ni1)
3j I('x) 5 { id E ident(8) / @(id) = x) u I(Ni1)
C'onstrueted Type Natnes
4) if s = <al : sl , ... , a, : s,> is in A then

I(s) { id E ident(8) / @(id) is a tuple structured value defined (a t least) on a , , ..., a, and
8 (i d) (ak) E I(sk) for all k} u I(Ni1)

5) if s = { s') is in A then
I(s) C { id E ident(8) / @(id) C I(s7) } u I(Ni1)

6) if s = t is in A then

I(s) C I(t)
C-n defined Type Names
7) if s is neither a name of basic type nor 3 name of the schema A , then

I(s) C I(Ni1)

.An interpretation I is smaller than a n interpretation I' iff
\I s E Tname , I(s) C I'(s) U

Recall tha t ident(8) denotes the set or the identifiers or all objects of 9 and that 8 (i d) denotes the (only)
v a : . ? ~ v such that (id, v) is in 8 .

Let. s and s' be t\rro type structures of 3 schema A . We say that s is 3 ~ubstructure of S' (denoted
by s < ,, s') iff M(s) bl(s') for all co~isistent set €9.

For example, if A consists of the following type structures

sl = <a:integer> ,
s2 = <a:Integer, b:Integer> ,
S3 = < c : s l > ,
s4 = <c:s2>,

S5 = { ~ l) ,
se = (~ 2)
s7 = < a : ' l >

then the following relationships holds among these structures :
S:! L st S1 S.4 L s t S3

S7 < st S1 s6 5 JI S5
The first relationship (% I,, s l) comes from the interpretation of tuple type structures. Let us
establish the second one (s4 s3). Let id be (the identifier) of an object belonging to I(s4). \Ire
know from the definition tha t B(id)(c) belongs t o I(%) and so to I(s,) because we have s2 <,, s l .
\Ye conclude t h a t id belongs t o I(s3) and so I(s,) C I(s3) The inequality ss < s t ss can be esba-
blished in the same manner and the relation s7 SI is obviously true.

Definition 12 gives a sema.ntic definition for the subtyping relationship < ,,. The following theorem
gives a syntactic characterizat,ion of it.

Let s and s' be two type structures of a schema 4. s is a substructure of s' (s < ,, s') iff

(i) either:
s and s' are tuple structures names, s = t , s ' = t ' such tha t t is more defined than t' and
for every attribute "a" such tha t t ' is defined, we have t(a) L,, t '(a).

(ii) or:
s and s' are set structures names, s = { s I) , s' = {s' and s , 5 ,, s' ,.

(iii) or:
s = 'x, s ' is s basic type structure and s is in doni(s'). CI

Proof :
T h e validity of this characterization can be easily established by induction. T h e completeness
can be established with a case study, inspecting successively tuple structured types, set structured
types and basic types.

This theorem can lead to a syntactical check of testing t,ype structure inequality

4.2. Methods

In Section 3.1 , we have presented the syntax and semantics of type structures. In this sub-
sect,ion, we define, in the same way, the syntax and semantics of operations, which we call
methods in this contest. These operations will consist of (first order) functions.

4.2.1. Definition

We assume tha t we have a countable set hfiiames of sy~llbols that will be used as names for
methods.

Definition 19 :

The model of the signature u is the set of all partial functio~ls from

{io, is, ie) X {io, i l , in, is, id) in {io, i l l , i15, ils)

Intuitively, the model of the signature a , is the set of functions assigning a boolean object t,o
some pairs (i.j) where i is (the identifier of) a set of persons object and j is (the identifier of) a per-
m n object.
I\-e shall use this interpretation of signatures in the following subsection which introduces an ord-
ering among signatures.

4.2.3. Partial order among signatures.

Definition 16 :
Let A be a schema and f and g two signatures over A. We say tha t f is smaller than g (or that f
refines g) iff M(f) C M(g) for all consistent set A . This ordering will be denoted by < ,. 0

Looking a t the schema of the previous example , we can see tha t the following inequalities hold:
a 2 < m u l a " d u 4 S m a 3

Indeed, let 8 be any consistent set of objects and f be a partial function in M(u 2) . f is a (partial)
function from M(emp1oyees) X M(emp1oyee) in hil(Boo1ean). IVe have seen in subsection 3.1.3 that
employees persons and employee <,, person, and hence, hl(emp1oyees) C M(persons) and
ll(emp1oyee) 2 M(person). So f is also a partial function from hl(persons) x M(person) in
li(boolean), so f is in h l (a
.I similar proof can be constructed for the inequality a , <, a 3.

Intuitively, a 5, a' means that we can use a method of signature u' "in place of ' a method of
signature a . In the example above, we can apply a method of signature
a , = persons x person + boolean
to a set of employees and an en~ployee because, employees are persons. This partial order models
inheritance of methods, just as the ordering I,, models inheritance of data structures. In the
following section, we put da ta structures and methods together to define type systems and we use
the ordering 2 ,, and 5, to define inheritance of types. The following theorem gives an easy syn-
tactical equivalence to the definition of the partial order 5 , among signatures.

Theorem 2
Let f and g be two signatures over a schema A . Then, f 5, g iff :

f = s 1 X ... X S n - + S

and g = s ' x ... x s ' , + s '
and sk 5 ,, s' 1, for k=l ,2 , . . . ,n
and s < ,, s'.

Proof :
In order to clarify the proof, we assume, witl~out loss of generality, that t.he methods signatures
are of the form:

a = s1 -+ S, and a' = s' -4 s'.

Suppose that a 5 , a'. Every partial function from hI(sl) to hI(s) is then a partial function from
l l (s ' I) to hI(sl). So, we necessarily have bl(sl) C M(s' I) and hi(s) C ht(s').
Conve~sely, if these two inclusions hold, then every partial function from l l (s l) to M(s) is clearly
also a partial function from M(sl ,) to M(s7).

D e f i n i t i o n 19 :

.b o b j e c t o is a triple (i , v , m) where i and v are as in Definition 2 and rn is a se t of methods. The
fin& component of the signature of every metliod of rn is a type structure whose interpretation
contains o.

This notion is classical in object-oriented approaches. An object is characterized by the methods
\r.hich can be applied t o i t . W e do not need to be aware of its structure t o use it. The set of
nlethods of an object can be empty (in this case, i t will be manipulated through the methods of
the type i t possesses). This is a very useful tool to handle exceptions. For example, let us assume
tha t we define a n "employee" type which contains a generic method to compute the salary of an
employee. Suppose t h a t one of these employees is the CEO and tha t his salary has to be com-
puted in different way than for regular employees. One could create a specific subtype of
enlployee in order to override the "increase salary" method of type employee. This would be
heavy and i t is more natural t o define a specific method for the CEO object.

5. Databases
In this section, we introduce the notion of database. Informally, a database is a type system

together with a consistent set of objects representing the instances of the types a t a given
moment.

Defini t ion 20 :

A database is a tuple (n, 8, < d b , e s t , impl) where

(i) ll is a type system, and A is the associated schema,

(ii) €3 is a consistent se t of objects,

(iii) < d b is a strict partial order among 17,

(iv) ext is an interpretation of A in 8.

(v) impl is a function assigning a function to every method m of a type t .

l ioreover, we impose tha t the following properties hold:

(1) t <db t ' implies t 5 t'.

(2) If t <db t' and t < d b t" then t ' and t" are comparable.

(3) €3 = U,,,$xt(t).

(4) ext(t) n ext(t7) = (3 if t and t' are not con~parable.

(5) If t is a type of n and m a method of t having signature t X ... x s, --+ s, then impl(m) is a
function defined a t least from est(t) x ... x ext(s,) in ext(s).

This definition deserves some comments. The extension of a type is an interpretation but may
not be a model. Indeed, all the possible objects of the type may not be present in the data base.
The ordering of definition 18 (5) models the notion of subtyping. T h a t is two types t and t ' are
comparable using 5 if one cart be a subtype of the other. The ordering < d b is the actual inheri-
tance types hierarchy, as defined by the user. This ordering must satisfy property (I) , that is, the
u-ser can declare tha t t is a subtype of t ' (t < d b t l) only if i t is allowed by the model (t 5 t'). For
esample, the type system may contain the types:

Age = (Integer, {+,-)) and
Weight = (Integer, {+,-))

u i t h corresponding signatures for tlie methods + and -. We have the inequalities (Age < Weight)
and (Weight < Age) but the user does not intend to consider an age as a weight nor a weight as
an age, and Age and Weight will be incomparable for <db.

Property (3) says tha t we 'do not allow multiple inheritance. This a constraint we introduced for
the 0? system because i t is still an open problem to decide whether multiple inheritance is a use-
ful modelization tool. In any case, our semantics would still be valid in the context of multiple

notion.

(iv) Higher Order hlethods: in this model, we made the simplifying assumption that the methods
are not objects of the model. So methods can be model as first order functions. It should be
interestring to extend the model to treat methods as objects and to allow higher order
methods.

Acknowledgements

Most of the ideas presented here were generated with F. Bancilhon. This paper also benefits
from the careful reading of S. Abiteboul and our colleagues from Altair, in particular D. Excofier.
Thanks also go to P. Buneman, A. Borgida and D. DeWitt for the fruitful discussions we had on
this model.

7. References

[Abiteboul & Beeri 871
"On the power of languages for the manipulation of complex objects", S. Abiteboul, C. Beeri, in
Int. Workshop on theory and applications of nested relations and cotnplez objects, Darmstadt, 87

[Albano & a1 851
"GALILEO: A strongly typed, interactive conceptual language", A. Albano, L. Cardelli and R.
Orsini, ACAI TODS, 'Vol 10 No. 2, 1!\1arch 85.

[Bancilhon and Ichoshafian 861
"A Calculus for Complex Objects", F. Bancilhon, S. Iihoshafian, ACAW Conference on Principles
of Database Systems, 86

[Bancilhon Sc a1 871
"FAD, a Powerful and Simple Database Language", F. Bancilhon, T. Briggs, S . Khoshafian and
P. Valduriez, 13th Conference on Very Large Data Bases, Brighton, England, 87.

[Barbedette & a1 871
"The O2 Programming Environment", G . Barbedette. C. LCcluse, P. Richard, F. Velez. lta'ir
internal report, Sept, 87.

[Bobrow & a1 861
"CommonLoops:Merging Lisp and ObjecbOriented Programming", D. G . Bobrow et al.
OOPSLA 86, Portland, Oregon, Sept 86.

[Bruce & Wegner 861
"An Algebraic Model of Subtypes in Object-Oriented Languages", I<., B. Bruce, P. \Vegner. SIG-
PLAN notices V21 #do, October 86.

!Bruce 871
"An Algebraic Model of Subtype and Inheritance", I<. Bruce, Proc. of the workshop on Database
Prograiraming Languages, Roscofi Sept 87.

[Cardelli 841
"A Semantics of hlultiple Inheritance", L. Cardelli, in Semantics of Data Types, Lecture notes in
Cotnputer Science, Vol 173 pp. 51-67, Springer Verlag, 84

[Cox 861
"Object-Oriented Programming, An Evolutionary Approach", B. J. Cox, Addison IVesley 10399.

Can Objects Change Type? Can Type Objects Change?
(Extended Abstract)

Stanley B. Zdonik
Brown University

Department of Computer Science

Abstract

Types provide a powerful system structuring capability that has been shown to
be useful in large-scale software development. They also introduce a set of
definitions that can be difficult to change as the system evolves. This is
particularly true for persistent object systems in which an object has a very
long lifetime. The need to support evolution at the level of types seems to be
required for many new application classes, for example those that address the
process of design (e.g., software engineering environments).

This paper looks at two aspects of change with respect to types. It first
considers the problem of how to allow a particular object to change its type
over its lifetime, and then it considers the problem of allowing the type
hierarchy itself to shift. For the first problem, we look at rules for how
changes to an object's type can occur and how we might solve some of the
potential problems introduced by aliasing and type checking. For the second
problem we outline what we would like to achieve and sketch two possible
solutions.

1 Introduction

One of the major challenges in the engineering of large-scale software systems is to
provide mechanisms that allow for evolution and change. This change can take many
forms. Some aspects of this problem have been addressed by modern programming
languages and environments. For example, data abstraction makes it easier to change the
implementation of a module without having to make changes to the modules that use it.

Database systems represent an environment in which these problems are particularly
severe. After all, databases are concerned with data that will survive for a very long
time. This data may have been created with one set of assumptions, and as the system
develops, those assumptions will shift. How can the database system provide support for
this inevitable process?

Some proposals [ti861 have advocated the use of prototypes. In these schemes, there is
no notion of type. Therefore, it appears that these systems are more able to change. We
feel that the flexibility offered by the prototype approach has one very serious drawback
for use in database systems. That is, that database systems need to rely on the
uniformity that is imposed by a typed universe in order to achieve high performance.
For example, the fact that all employees have an employee number (defined by the type
Employee) that allows us'to compute an index on this attribute.

We are, therefore, interested in trying to balance these two views. We wish to retain a
notion of typing while,at the same time, allowing for more flexibility in system

(except in fairy tales). In order to capture this kind of knowledge, we need a simple
mechanism for expressing these constraints at the type level.

A simple observation can help to explain this phenomenon. Some types cannot be lost. If
an object is created as an instance of type Student, that instance might change to type
Professor, but both Student and Professor share a common supertype, type Person. Any
instance that has type Person as a supertype, can never loose that type. We say that type
Person is an essential type . That is it defines the essence of its subtypes and must
always be present in the list of types of an individual that was created as an instance of
i t .

Designating a type as an essential type is an activity that would be done by the type
designer. It adds some extra semantics about the potential behavior of instances of that
type. It builds a simple constraint into the information provided by the type definitions.
It is similar to constraints related to object uniqueness (i.e., keys) and referential
integrity.

It is possible to have more than one essential type. If our type system allows for
multiple inheritance, we might have several essential types contributed by different
paths in the lattice. For example, type Car might be a subtype of both Movable-Object
and Sellable-Object. Moreover, both of these types might be essential. That is, it might
be possible to make a car into a truck by modifying the body, but it must always remain
movable and sellable.

2 . 1 . 2 Exclusionary types

In a similar way, we might also designate a type T as exclusionary if an object can only
acquire T at the time of its creation. T is called exclusionary because in moving an
object x from some type R to some other type S, it is illegal to move through a type that
would have T as a supertype. We are therefore excluded from it as a new type.

Notice that essential types are not exclusionary. It is possible to add a type that is
essential to an object. Of course, once it has been added, it cannot be lost. Moreover, an
exclusionary type is not essential because it can be removed. Of course, the definition of
an exclusionary type requires that once it has been removed, it can never be regained.

Often an object must change types in some predefined sequence. For example, a person
starts out as a child, becomes a student, graduates and becomes a professor, and then
retires. It is possible to use exclusionary types to simulate this requirement. Suppose
that the hierarchy in the following figure is used to model this situation.

This is similar to a common problem that comes up in database programming languages.
The problem concerns the ability to explicitly delete objects. In database systems it is
common to have an explicit command that deletes an object (e.g., removes a tuple from a
relation). We will call this view the explicit deletion view. In some languages, there is
no facility for explicitly deleting objects. Instead, the system reclaims storage for an
object (i.e., garbage collection) when there is no longer any reference to that object. We
will call this the garbage collection view.

These two views are hard to reconcile in a database programming language. In databases,
and in some languages (e.g., Galileo [All through its class mechanism) there is always
some way to refer to an object. The object can be named through its container (e.g., its
class object). In the case of relations, one can always get at a tuple through the relation
that contains it. In models like this, since the relation provides a reference that cannot
be broken by other means (i.e., reassignment) there is a need for an explicit delete.

In languages for which there is a uniform referencing mechanism, all references can be
broken. When there are no more references left, the object is effectively deleted. The
garbage collector performs a space optimization by actually reclaiming the inaccessible
storage. It has been argued that this kind of approach simplifies programming because
programmers do not have to keep track of when an object is referenced by other objects.
It is impossible with this approach to get dangling references.

In the explicit delete case, one can place a "tombstone object" in place of the deleted
object. This eliminates the problem of dangling pointers because a pointer can never be
dereferenced to another real object. It will always produce the original object or that
object's tombstone. The remaining problem with the tombstone solution is that all
programs that do pointer dereferencing would have to able to handle the case in which the
expected object has been deleted out from under a given reference. This complicates
application code since expressions as simple as x.p (which should return the object
referred to by the p field of x) has to be prepared to handle an exception generated by the
object's not being there (i.e., a tombstone is there instead).

As we saw in a previous section, a similar problem can occur when we delete a type T
from an object x. There might still be other objects that are referring to x with the
expectation of its having type T.

2 . 4 The reference-bundle approach

In an object-oriented language, objects can have many types. For a given object, there
is a piece of state that represents each of its types. This corresponds to the instance
variables defined by each type. We will call each of these fragments of state a type piece

We can think of references as being somewhat more complicated than a single pointer.
Since objects are polymorphic, we can think of a reference to an object as consisting of a
bundle of pointers, one to each type piece. We will call this kind of reference a
reference bundle . A reference to a Toyota, then, would consist of a set of references, one
to the Vehicle piece, one to the Car piece, and one to the Toyota piece.

Removing a type would correspond to deleting a component of the reference bundle. If we
perform the following operation on c, a variable of type Car that holds an instance of the
type Toyota:

TI is the the part of the object defined by the first version of type T. It has a
representation which is used to store its state. It also has three operations that are used
to access this state. T2 is the part of the object that is defined by the second version of T.
It adds some additional state to support its new operations. One of the new operations
uses the operation op2 from TI. Op4 might do nothing more than invoke operation op2.
In this way, we have op4 = op2 thereby indicating that there is no change in this
operation. Opl and op3 are not available in the T2 version of T.

Whenever a type change occurs, all old instances are, at least conceptually converted to
this form. Note, that the actual conversion of storage may be deferred until the object is
actually referenced.

When a program uses an object of a particular type it is able to use the appropriate
interface in a consistent way. If a program, is expecting an object of type T2, it will use
the T2 interface, even if the object was created as an instance of T I . In this approach an
object is not an instance of a single type version as in [SZ].

4 Summary

We have suggested a couple of ways in which our notion of type might be relaxed to
increase the flexibility of our type systems. We have also looked at a couple of problems
that these more flexible models introduce and have sketched some preliminary solutions
to these problems. It is clear that there is a need for this kind of capability in many
application areas. The challenge is to stretch our notions of type as far as we can in
these directions without decreasing our understanding or eliminating the advantages of
current type systems.

We need to gain more experience with these models and investigate the feasibility of
implementing them in the context of a real object-oriented database programming
language. The theoretical ramifications of these proposals deserve further study.

5 References .

[ABBHS] M. Ahlsen, A. Bjonerstedt, S. Britts, C. Hulten, L. Soderlund, "Making Type
Changes Transparent", University of Stockholm, SYSLAB Report No. 22,
February, 1984.

which is unique over all time (at least as far as we can tell). Once an object is created, it

persists until it can no longer be accessed from any world.

The details of the possible kinds of states of objects are probably not that impor-

tant, but I suggest one possibility for concreteness. An object can consist of either an

array of bytes, or an array of slots. Every slot contains the id of an object. Thus, the

object correspond roughly to objects in a language such as Smalltalk, except that I am

ignoring classes and subclass relationships. Even this simple object world presents enough

interesting features, however.

Though an object is thought of as changing state over time, I consider an object to be

a set of versions, where each version represents the state of the object at some point in

time (in some world). In the normal course of affairs we get a linear sequence of versions,

with the most recent one being of primary interest.

A world is, on the one hand, a set of objects, and, on the other hand, a mapping from

ids to versions. If we are operating 'L~ i th in" a given world, and we modify some object x,

then we are really just changing the binding between x's id and its version for this world

only. Thus, typical computation causes a world to evolve, presumably towards some state

that is more useful than its current state.

If every object had a unique world, then worlds would simply partition the objects.

However, I believe that it is quite useful to allow objects to reside in multiple worlds,

simultaneously. In this state of affairs, when we change an object we need to know which

worlds should be affected, of the many worlds that might contain the object. Suppose

that at any point in time there is established a list of worlds, and when a given object is

modifed, we modify it in the first world on the list in which the object appears. This is

similar to a search path in a file system. An interesting question is how should this list be

maintained during computation, and whether there are reasonable schemes other than a

simple list for organizing the worlds.

New worlds are created by copying old ones. When such a copy is made, the copy and

the original can and will evolve separately. This might be implemented by copying the

object table of the original world, and copying the objects only when they are actually

modified (a kind of per-object copy-on-write facility).

Subworlds and Versions of Worlds

The model as described so far supports diverging worlds only. This could be very useful

for "what-if" computations, but is of limited utility unless we can install results from a

separate computation back into the main stream. To allow merging, I introduce the notion

clearly need some sort of concurrency control. Further, a transaction might modify a

number of worlds, and desire to commit only if all of the versions can be installed. Thus

we need an atomicity mechanism in support of transaction commit. At this point it would

appear that we have something similar to optimistic concurrency control.

Cooperation and Sharing

Even though subworld versioning allows tentative computations to be kept separate and

then merged in later, we still have not dealt effectively with cooperation. Frankly, what I

have to offer is still along the lines of mechanism rather than a real model, but perhaps it

will be of some help. I propose two extensions to the mechanism as it stands.

First, when a subworld is installed, we have the option of not installing some of its

subworlds. In particular, if someone else has modified a piece of the subworld, we may

accept their changes. This would seem reasonable (in many cases) provided none of their

changes overlap ours. However, it would definitely help to add some notion of semantics

and integrity contraints. This leads to the second extension. We can support recording

the operations performed on or within a (sub)world. This information could be used to

determine if subworld installation is all right.

It seems that a subworld (or perhaps a world in general) might best be used to contain

the pieces of an abstract object, and that the subworld gives a good way to localize and

control the state of that object, even when it is spread over a number of the simple storage

objects first discussed. Note that subworld installation now makes a little more sense - it

represents the atomic application of some operations to a single abstract object. However,

since we added the logs, we can do more then before: we can actually attempt to merge

the operations, either by merging changed data (when that is possible), or by executing

appropriate operations to form the logical merge state.

At the workshop it was suggested that it is not so much the notion of serializability

that is wrong, but our concept of exactly what forms a transaction. I am inclined to agree,

but it is difficult to make this notion precise; the difficulty is determining what collections

of actions are (should be) meaningful transactions and defining consistency in a suitable

way. One suggestions was that if there are multiple participants in a transaction they must

(a) each have read all the others' writes, and (b) all request commit of the transaction.

This captures agreement or acceptance of all changes by all parties operationally. Perhaps

we can find a way to capture it more axiomatically, which would make we rather more

comfortable (how does a party to a transaction decide if another party's update is all

right?). Even the operational statement may not be quite right. Perhaps part (a) should

A Practical Language To Provide Persistence and a Rich Typing System
Deborah A. Baker, David A. Fisher and Jonathan C. Shultis

Incremental Systems Corporation
319 S. Craig Street

Pittsburgh, PA 1521 3
U.S.A.

I knew an old woman
Who swallowed a fly.
I don't know why
She swallowed the fly.
Perhaps she'll die!

- Traditional

Abstract
There is a pressing need for practical languages that support production of reliable,
efficient and reusable software over a wide range of applications and act as
cooperative elements of an integrated software development environment. Such a
programming language must have a rich type system to formalize the software
development concepts and mechanisms for managing "objects" of those types.
Current databases do not provide an adequate type system. Current programming
languages do not adequately address persistence of objects.

We are designing a language, tentatively called prism, which merges database
and programming language concepts by expanding the range of types from a small
fixed set of types typical of modern database systems to encompass all types
definable within a programming language, and simultaneously expanding the
extent rules of typical programming languages to encompass universal extent.

Manifesto
The woeful inadequacy of current software engineering practice is widely

recognized, and there is no need to belabor the problems here. However, what
is not so widely recognized, is that we cannot make significant progress
without radically altering the way we design and build software systems.

Programming languages, operating systems, and databases, as long as
they remain separate entities, create insurmountable obstacles t o effective
software design and maintenance. In particular, their separateness prohibits
the specification and exploitation of global information about entire
applications. Consequently, it is impossible t o ensure the global integrity of
applications, t o maintain integrity over time, or t o obtain efficient
implementations. -

information. In particular, the abstract properties of the global, persistent
state of an application have to be made explicit and formal. Only by doing so
can the global integrity of the application be maintained automatically. Only by
doing so can requirements, specifications, designs, code, tests, versions, and so
forth be composed, checked, derived, and otherwise manipulated
automatically. Only by doing so can this information be used t o generate
efficient code specifically for each application, instead of interpreting general-
purpose command languages. (Note that command language expression
(query) optimization is only a halfway measure; the optimized expression is
still interpreted.)

We are designing and implementing an experimental language, called
pr ism, which seeks t o encompass the full spectrum of concerns in a software
development environment. The success of such an enterprise requires keeping
tight control over the number and complexity of the language features, for fear
of engendering an unwieldy monster. Our basic thesis is that there are
relatively few fundamental concepts underlying all aspects of software
development, and that most of the complexity and lack of integration of
software development environments today results from the proliferation of
incompatible special cases of these general concepts. Efficient implementation
of the particular combinations of these concepts appearing in an application
depends upon the availability of information about the properties of those
combinations, i.e. type information.

Our goal here is t o sketch in general terms the features of p r i sm, with
particular attention t o the issues of "database programming languages".
Specifically, we address the issues of persistent data, evolving applications,
types, and error handling. We close with a few remarks about the ingredients
in our design, but without discussing details of syntax and semantics, which
would be premature.

Persistence
If we look for an explanation of why the semantics of applications has

become spread out over so many different system components, it seems that the
sharp separation of the internal state of a program from its external
environment is a t fault.

During the execution of a program, it is the responsibility of the compiler to
ensure that the programmer's intentions are carried out correctly and
consistently. The programming language is the means by which the
programmer expresses those intentions. By relegating the results of programs
to files outside the scope of the language, the designers of our early languages
implied that once a program is done processing some data, the programmer
has no intentions to express, i.e., is no longer interested in those data.

differently.

The mistake in this thinking is that it confuses the abstraction with its
implementation. There is nothing at all wrong with choosing one
implementation (e.g. fixed offsets) for program data, and another (e.g.
directories with modifiable location bindings) for persistent data. The compiler
should be free t o choose any representation that correctly represents the
intentions of the programmer. In practice, we would expect t o use many
different representations for any given abstraction.

The only thing required t o bring persistent data into the realm of
programming is the notion of universal extent. Conceptually, there is a single
routine, the universe, in which all things exist and take place. The entities in
the universe can be counted (over time), and hence can be uniquely identified,
by binding each one t o a universal name. The universal name of an entity
contains no information about that entity; that is, universal names are an
unbounded, unordered, discrete type. Note that in order to support things like
removable media and network growth, the name space has t o be shared among
all systems, everywhere, over all time.

The abstraction of universal names is a trivial generalization of the notion
of access types (pointers). The representation of a universal name may vary
considerably, depending on such things as storage device characteristics and
extent. Moreover, the language implementation is free t o convert between
representations as it sees fit. How and when such conversions are carried out
will depend upon details of the application, and the intelligence of the
"compiler".

Of course, it must be possible to attach a name to a value of any type in the
language. That is, data of any type can be persistent. And, the scope rules of
the language will dictate some obvious constraints on the relationships between
persistent objects; for instance, no object can outlive its type, so types must also
be capable of being persistent data. And so forth. Some examples, illustrating
how universal names are used to solve persistent data problems, are given in a
companion paper [BFS87].

Evolution
The distinguishing feature of large, long-lived applications is that they

evolve over time. Evolution occurs through the continuing interaction of
independently activated, concurrent, and distributed processes. Some
applications eventually become extinct (i.e. terminate), while others are
expected to continue until the universe (the real main program) ends.

From these remarks we see that, like routines, applications can be initiated

programmer be prevented from specifying information that is deemed useful,
whether intended for the compiler, an analysis tool, a human reader, o r for
any other purpose. Information useful t o the compiler, for instance, might
include bounds on the length of a sequence, which could help the compiler to
choose among alternative representations of sequences or to transform the
program into a more efficient form.

Type theory has focussed recently on the Curry-Howard isomorphism
between types and propositions, viewing type systems as logico-deductive
mechanisms. The idea is that the type of a program (expression) asserts
something about the outcome (conclusion, result) of the program. The problem
is that this does not apply neatly to applications which, as we pointed out in the
preceding section, do not generally conclude. Moreover, when they do
conclude, we have no interest in the outcome. On the contrary, we are only
interested in the intermediate stages of applications.

Another aspect of applications which does not fit neatly into most of the
recent work on types is that they involve concurrency. To our knowledge, the
only serious attempt t o treat concurrency in a logical framework is linear logic
[Gir86]. Even there, however, there is a serious problem associated with
attaching a meaning t o nonterrninating deductions.

The time dependence of applications immediately suggests some kind of
modal logic, if we want to adopt the idea of applications as proofs. It seems
more natural t o us, however, t o consider applications not as proofs but as
theories. The computation of an intermediate result is therefore treated as a
deduction within that theory. Sound applications evolve internally by adding
and deleting nonlogical axioms that are independent of both the theory and one
another.

The principle formal concept underlying prism is therefore not
proposition, but theory. Theories, in turn, are simply bodies of information
which are required t o be internally consistent. The criteria for consistency of

compiler, the more it should be able to infer. Moreover, the kind of information from
which it infers the implementation is allowed to vary, so that any program specification
paradigm can be accomodated. For this reason, there is no required syntactic form for
anything in the language, though there is a set of predefined forms which the programmer
is always free to use. The basic concepts of the language can be extended by defining new
semantic abstractions, including the relations between abstractions needed by the
compiler. Example of such relations are the consistency relation between Ada package
specifications and bodies, the realizability relation which enables computational terms to
be derived from proofs, and the resolution algorithm which enables sets of ground terms
satisfying a proposition to be inferred from a set of nonlogical axioms within an
appropriate framework such as Horn logic. From these remarks i t should be clear that the
intelligence of the compiler is not fixed, but can continually accumulate programming
knowledge to the benefit of all users.

language of propositions, where as usual we interpret such things as "integer"
to be propositional constants, "record", "function", etc. as propositional
connectives, and various kinds of constraints as special predicates. The
theorems of this theory consist of the closure of the declarations under the
composition rules of Ada, where the type checking rules serve as inference
rules.5

A package body, on the other hand, declares a different kind of information;
formally, it defines a representation morphism yielding a model of the theory
given by the specification. As such, it is an example of a specific deductive
mechanism which is consistent with the specified theory.

Packages illustrate the two basic kinds of information in prism alluded t o
earlier. The package specification is an example of declarative (syntactic,
specification) information, and the body is an example of deductive (semantic,
composition) information. The example at hand illustrates mechanisms for
declaring and deducing (computing) with a certain class of theories. As
indicated earlier, however, prism allows arbitrary new types of information of
both classes to be defined.

To achieve the required level of generality, the fundamental notions of
declaration and composition in prism have a categorial flavor. Specifications
are analogous to objects and deductions are categorial constructions. To some
extent, therefore, we share inspiration with CAML [Cur83]. However, CAML
restricts itself to a very special category, of sets and functions, in order to fix an
interpretation of composition. By making composition and its specification
abstract, however, prism programmers are free to attach any interpretation t o
composition that yields a model. This is perhaps the most important purpose
for which multiple representations can be attached to an abstraction! That is,
the crucial feature of prism which makes it different from all other data
abstraction languages is its lack of rules about how the programmer is to give
meaning to specifications, and the nature of that meaning. It follows directly
from this that things can share a set of formal properties but differ
considerably in the details of their meaning.6

5 ~ o t e that package specifications can use a number of mechanisms for synthesizing
theories, including extension and inheritance (with clauses). The particular set of theory
synthesis mechanisms in Ada is, however, rather ad-hoc. A clearer and more complete set
of mechanisms is apparent in the Larch shared language [GHW851.

6 ~ n retrospect, it is somewhat surprising, in light of the demonstrated capacity of category
theory to unify so much of mathematics through abstraction, that this kind of separation of
syntax and semantics has not been incorporated in programming languages before. Put
another way, category theory has infinitely more polymorphism than any programming
language because of its decoupling of models and theories, and we propose to follow its
example.

transfer of control from probes back t o the system, when this is meaningful
(recovery).

Here are some illustrations of how the language issues of visibility,
binding, and resource allocation arise in the context of instrumentation. The
environment in which a probe executes determines what user-defined types
and data it can access (if any), or whether certain run-time system information
is visible. Binding time determines such things as whether breakpoints can be
installed interactively, or have t o be "compiled in". In performance
instrumentation, resources must be apportioned among the observed system,
data collection, data reduction and analysis, and presentation and user
interaction (if any) so as to minimize intrusiveness.

Currently, the prism core includes mechanisms for raising and handling
exceptions which are. similar to those in Ada. On a more fundamental level,
these mechanisms depend on synchronous and asynchronous control transfer.
However, we are acutely aware that this is only a start.

The most difficult problem here is in the area of abstraction. Ideally, one
would like t o say "measure the X of system Y , and have any necessary probes,
data reduction facilities, etc., generated, installed, and run automatically. Or,
better yet, "determine how well system Y's behavior matches hypothesis Q",
thereby tying testing back to design specifications. The realization of these
ideals requires mechanisms for defining and manipulating abstract properties
of systems. Unfortunately, we don't yet understand the logicalltype theoretic
aspects of error detection and handling well enough to know how to support the
necessary abstractions.

Design
Naturally, good language design practice is required in the design of any

language Wei71, Hoa73, Iron761. What constitutes good design depends in
part on how, by whom, and for what purposes the language will be used. Some
guidelines that we have adopted in the design of prism are the following.

Because the applications are varied and many, it is necessary t o provide a
small number of highly composable mechanisms, instead of a large number of
mechanisms specialized t o an arbitrarily chosen set of anticipated
applications. To retain simplicity in the language each primitive mechanism
must isolate some unique functionality in a form that is easily composed with
the other primitives. Every effort should be applied to avoid language features
that will lead t o psychological ambiguities in programs. The design should
emphasize readability over ease of writing programs. It should emphasize the
semantic integrity and completeness of the language. I t should provide
redundancy without duplication. I t should avoid default mechanisms that

like Ada, on the other hand, provides efficient mechanisms which can be
combined to obtain an efficient implementation, but at the loss of the general
solution.

The problem is that the common Lisp programmer can't convey enough
information about the application to the compiler for it to obtain an efficient
implementation, while an Ada programmer cannot avoid conveying so much
information about the details of his particular solution that the compiler is
unable t o abstract the general solution. In a full spectrum language, the
programmer should be able t o communicate to the compiler, as part of the
program, any information it needs t o derive an efficient implementation of a
specialized solution.

Typed functional languages enable more efficient implementations by
including type information in programs. Types constrain the application,
promote checking and representation decisions to an earlier point in the
computation, and enable a wide class of optimization transformations.

The more intricate a type system is, the more information can be
expressed. For instance, dependent types can be used to inform the compiler to .
represent a list as an array if the length of the list is known to depend on a
numeric parameter. In the extreme, virtually any logical property that has
constructive significance can be embodied in type information (at which point
we say we are doing "logic programming").

The information a compiler needs isn't restricted to functionality, however.
To cite a few examples, the criteria to be used in optimization, expected
statistical characteristics of input data, and complexity measures of
components can all be used to guide the compiler's selection of algorithms and
data structures.

As language implementors, we know how to make compiler components
that are driven by user-supplied information and are hence open-ended. What
is less clear is what high-level syntactic mechanisms should be supplied to
enable the application designer to express information and convey it t o the
portions of the compiler that need it. This is the most difficult syntax design
challenge we face. Although we have worked out some prototype models of the
language, we are not yet sufficiently satisfied with any of them to expose their
details. We do expect, however, t o have a preliminary design available for
review in about one year.

Object-oriented languages, operating systems, and databases are currently
experiencing the greatest experimental activity in the areas of inheritance
mechanisms and persistent data issues, and so we look to them to supply
perspectives and mechanisms in these areas. In particular, these languages
contribute a third baseline of features, in addition to those found in Ada and

VII, January 1985.
[Cur831 Curien, P.L., "Combinateurs CatBgoriques, Algorithmes SBquentiels et Programmation

Applicative", Thbse de Doctorat d'Etat, UniversitB Paris VII, December 1983.
[Fais31 Fairbairn, J., "Ponder and Its Type System", Polymorphism, Vol. I , No. 2, The

MULCF/Hope Newsletter, April 1983.
[FS791 Fisher, D.A. and Standish, T.A., "Initial Thoughts on the Pebbleman Process", Institute

for Defense Analyses (IDA) Paper P-1392, June 1979.
[FW861 Fisher, D.A. and Weatherly, R.M., "Issues in the Design of a Distributed Operating

System for Ada", IEEE Computer, Vol. 19, No. 5, May 1986, pp. 38-47.
[Gar1861 Ganziner, H. and Jones, N.D., editors, "Programs a s Data Objects", Workshop

Proceedings), LNCS 21 7, Springer-Verlag, April 1986.
[GHW85] Guttag, J.V., Homing, J.J. and Wing, J.M., "Larch in Five Easy Pieces", Report #5,

Digital System Research Center Reports, July 1985.
[Gir861 Girard, J.Y., "Linear Logic", Universite Paris, October 1986.
[GMW79] Gordon, M.J., Milner, A.J. and Wadsworth, C.P., "Edinburgh LCF", Lecture Notes in

Computer Science, No. 78, Springer-Verlag, Berlin, 1979.
[Go1861 Goldberg, A.T., "Knowledge-Based Programming: A Survey of Program Design and

Construction Techniquest', IEEE Transactions on Software Engienering, SE-12 (7), July
1986, pp. 752-768.

[Go1851 Goldsack, S.J., editor, Ada for Specification: Possibilities and Limitations, Cambridge
University Press, 1985.

[GR83] Goldberg, A and D. Robson, Smalltalk-80 : The Language and its Implementation,
Addison Wesley, 1983.

[Hai86] Hailpern, B., "Multiparadigm Languages and Environments", IEEE Software, 3(1),
January 1986.

[Hoa731 Hoare, C.A.R., "Hints on Programming Language Design", SIGACTISIGPLAN
Symposium on Principles of Programming Languages, October 1973.

[How801 Howard, W.A., "The Formulse-As-Types Notion of Construction", Unpublished
manuscript 1969. Reprinted in H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, Seldin, J.P. and Hindley, J.R. editors, Academic Press, 1980.

[Hue871 Huet, G., "A Uniform Approach to Type Theory", INRIA, 1987.
[Iron761 "Ironman", Department of Defense Requirements for High Order Computer

Programming Languages, HOLWG Report, June 1976.
[KC861 Khoshafian, S.N., and Copeland, G.P., "Object Identity", Object-Oriented Programming

Systems, Languages a n d Applications Conference Proceedings, October 1986, (also
SIGPLAN Notices, November 1986), pp. 406-416.

[Kin851 King, R.M., "Knowledge-Based Transformational Synthesis of Efficient Structures for
Concurrent Computation", Ph.D. Thesis, Rutgers University, Kestrel Institute Report,
KES.U.85.5, April 1985.

[Lee871 Lee, P., "The Automatic Generation of Realistic Compilers from High-level Semantic
Descriptions", Ph.D. Thesis, University of Michigan, 1987.

[Lei831 Leivant, D., "Reasoning About Functional Programs and Complexity Classes Associated
with Type Disciplines", Twenty-fourth Annual Symposium on Foundations of Computer
Science, Tucson, Akizona, 1983, pp. 460-496.

[LS831 Lampson, B.W. and Schmidt, E.E., "Organizing Software in a Distributed Environment",

Database Updates in Logic Programming

Shamim Naqvi
Ravi Krishnamurthy

MCC
P. 0. Box 200195
Austin, TX 78720

I Preamble

The idea that the meaning of a logic program is the minimal model associated with that program

has attracted wide acceptance since Kowalski [8] introduced the essential ideas of logic programming

thirteen years ago. Since then, notions such as layering and stratification [1,11,5], and the introduction

of set terms [4,9] have implicitly introduced a certain amount of ordering, i.e., procedurality, without

sacrificing the model-theoretic semantics of logic programs.

We feel that the time has come to ezplicitly add some procedural notions to logic programs. Our

feeling derives in part from the implicit ordering imposed by stratified programs containing negation

and set terms, and from some of our recent work on adding updates to a logic database language.

Update transactions are inherently procedural; one could attempt to hide this procedurality by writing

the rules in some complicated manner so that the required order within operations is maintained. There

is no guarantee that such re-writing is always possible. Even in those cases when it is, the disadvantage

of such an approach is that the resulting programs would be opaque to the human reader as well as to

any optimization strategy. An obvious case in point is the well-known and simple if-then-else construct

which when written in logic programs requires a number of distinct rules, making programs hard to

read and optimize.

These and other such considerations have lead us to believe that one should, to use a colIoquia1

expression, bite the bullet and make the procedurality, along with its concommitant notion of state,

explicit in the language. What we would then have is a logic programming language with procedural

constructs and what one should strive for is a declarative semantics for programs in such a language.

It is not possible here for us, given the brevity of an extended abstract, to consider this problem

in all its generality. Hence, in this paper we decided to concentrate on one subproblem of the general

problem outlined above and present a solution for it. Our intention is to impart the essence of our

approach through this solution.

Database Updates

The syntax of a query is: + B l , . . ., B,,. where (V1 5 i 5 n)Bi E Qo.

A query Q1 is equivalent to a query Q2, Q1 = 92 , if the following holds for some a, /3 E ?Po:

Q l : + . . . , a , j 3 ,..., and Q2 :+- . . . , j3, a,. . .

i.e., Q1 and Q2 differ exactly in two comma-separated adjacent positions; or there exists a query 9 3

such that Q 1 = 9 3 and 9 3 92. Intuitively, Q1 and Q2 result in the same final state of the database,

from the same starting state. We shall formally define this semantic notion of equivalence later.

A well-ordering of a given query is the left-to-right predicate occurrences of an equivalent query.

A variable in a predicate is said to be covered if it occurs in some predicate occurrence preceding it

in a well-ordering. A well-formed query is a query in which all variables (if any) in update predicates

are covered. For example, the query [c +P(X), q(X) 1, is well-formed since q(X),+p(X) is an

equivalent query in which the variable "Xn is covered.

For convenience of writing short programs, we allow two additional compound update predicates:

For P E @-=, and a , p E Oo,

[P?a] = (*(P?a), -P?) (this stands for "while P do a*).

{P, a, j3) E ((P?a) , (-P?@)) (this stands for "if P then do a else do pn).

3 Examples of Programs

Before giving formal semantics of UDatalog programs, we present examples of programs in this section.

Insert a tuple (john,db,20K) in the relation eds.

+ +eds(john, db, 20K).

Delete a tuple (peter,db,SOK) from the relation eds.

+ -eds(peter,db,JOK).

Give every database employee a 10% salary increase.

+ eds(X,D,S) , Sl=S*l.l, [-eds[X,D,S) ; +eds(X,D,Sl)).

Notice that the query predicates provide bindings for the variables in the update predicates.

Continue increasing salaries by 10 percent while Francois' salary exceeds 300K.

Fire all employees who make more than their managers:

Database Updates

given by a binary relation, p, on states, inchding the pair (s,t) in p iff the predicate in question is true

in some state "t", and there exists a state "sn such that the predicate maps 'sn to 'tn. The meaning

of a formula Q is to be the subset of W consisting precisely of those states which satisfy i tn.

We shall now provide the details of the mapping p. p : a0 --+ 2 W X W assigns to each formula, say a,

some binary relation on states with the intended meaning (3, t) E ~ (a) iff execution of a in state 3 can

lead to the state t.

Let P be a ground predicate.

P(P) = ((3,s) I P E 3). P(+P) = ((3, t) I t = 3 U {PI)
P(+) = ((31 3) I P $3)- p(-P) = ((3 , t) I t = 3 - {PI)

Thus '+" and "-" respectively add and delete a ground fact from the given database leaving all

other facts unchanged, and query predicates may be considered as updates which do not change the

state of the program. Thus, the states s and t above are minimally different from each other. The

following proposition shows that the '+* and "-" are deterministic, i.e., there is a unique final state

for each basic update predicate.

Proposition 1: For a E i.e., a is a basic update predicate, if (3, t) E p(a) and (s , t t) E p(a)

then t = t'.

Proof: Omitted. w

We now turn our attention to compound predicates. Let a and @ E Qo be arbitrary predicates and

P E be a query predicate, or a conjunction of query predicates.

p((a)) = p(a)
p(*a) = ((8, t) 1 3k380,. . . , sk(so = 3 and 8k = t) and ((V 1 6 i < k) (s i - l , si) E p(a))

and Vs' # t(3k, 3') # ~ (a))

p((P?a)) = ((31 t) I (31 3) E P(P), (SI t, E ~ (a)) {(SI 3, I (~ 9 S)

~ ((a ; 8)) = ((3, t) I 343, U) E ~ (a) , (u, t) E P(P)).
p(a, 8) = p(a; 8) = p(P; a)

P (P + a) = P(P), p(a) or p(=)

Proposition 2: Let a be a compound update predicate. Then if (3, t) E p(a) and (3, t') E p(a) then

t = t'.

Proof: Omitted.

Note that the meaning of the (a ;@) construct in this report places the responsibility of the order

of execution upon the user. The semantics of the language make no use and no claim that a executed

Database Updates

6'(P) = de f (P)

6(a) = (~ (t l , . . . , t,) I pis a predicate symbol of arity n, p E 6'(a), and (V l 5 i 5 n)ti E U)

We use this notion of reference sets to state the syntactic condition to guarantee satisfaction of CRP

of the update predicate a, p.

Theorem [CRP]: a, /3 satisfies CRP if 6(a) n 6(@) = 4.
Proof: Omitted.

We now define truth-values of formulae. Recall that W is a subset of the powerset of the Herbrand

Base of a program. The elements of W are called states. It is convenient to define a mapping T : Qo -t zW
as follows. Let A E Qo. Then r(A) = {t 1 349, t) E p(A)).

Given a structure M = (W, p), if A E Go is a ground atomic formula then A i s said to be true in

state s (or that s satisfies A), written as M, s i= A, if s E r(A). We write M A and say that A is

true, or more precisely M-true, if M, s + A for all s E W.

Let M = (W, p) be a structure, and L=(RJSJQ) be a UDatalog program. Note that S is an element

of W. Let R(S) denote the fixpoint of applying the rules R to the set of facts S. The notion of a model

of a program L=(RJSJ Q) is defined as follows. M = (W, p) is a model of L iff for every s E W,

1. (M, s) + Q, i.e., Q is M-true.

2. every rule in R is satisfied by R(s).

Informally, M is a model of a program L iff every state of M satisfies the query Q of the program,

and the fixpoint of every state satisfies every rule of the program.

We now define the notion of minimal models of an extended program. M = (W, p) is a minimal

model of L iff

it is a model of L,

(Vs E W)R(s) is a minimal model of the rules in R, and

there is no M' = (W', p') different from M such that

(a) M' is a model of L and

(b) For every base predicate p, pt(p) S p(p),

In other words, M is a minimal model of L iff it is a model, and every state in the model is as "smalln

as possible, and the cardinality of p is as "small" as possible. It is possible to propose a constructed

model as it was done in the definition of logic programs, and subsequently show that the constructed

model and the above declarative model are the same model. However, for the sake of brevity, we avoid

this exercise in this extended abstract.

Database Updates

Note that this program has a unique minimal model for any given database, i.e., any given directed

graph. Further this program is non-stratified. The following is the UDatalog program that constructs

the unique minimal model of the problem above:

3(Y) + 3(X), g(X, Y), 7us1(Y).
us(Z) + g(W, Z), -s1(W).

t *(s(Y), us(Z), sl(Y1), us'(Z1); -sl(Y1), +sl(Y), -ust(Z1), +usl(Z))

Note that s' and us' are base predicates in the above program with an empty set of tuples initially. We

claim that this program generates the unique minimal model of the graph problem above.

The above two cases exemplify the generality of the approach to adding procedurlity to logic pro-

grams while still retaining declarative semantics.

6 Future Research Directions

As was alluded to in the introduction of this paper, we consider the major contribution of this work to

lie in the formal basis that has been established to look at adding procedurality to logic programs. We

have not discussed the ability to state procedural constructs in the rules of a program. This requires a

modification to our model semantics and the bottom-up model construction. Further, the uniqueness

and minimality of models needs to be re-established.

Implementation considerations lead to limitations on allowable predicates. For example, consider a

rule whose body contains the conjunct +ul; q; +u2 where "uln and "u2" are updates and "qn a query.

Now, after doing "uln if "qn faila then we have to backtrack and "un-do" the effects of "uln. In order

to inhibit such behaviors we may require that "u2" be written as an "always truen predicate, say as

"true?u2". Similarly, one may limit the predicates occurring within a "*" for efficiency reasons. These

and other such topics are the subject of a fuller presentation.

We thank Shalom Tsur and Oded Shmueli for helpful suggestions and Carlo Zaniolo, Haran Boral

and Patrick Valduriez for a careful review of the manuscript. Carlo has recently helped us with many

implementation ideas and in particular the second example in section 5 was suggested by him. Some

update examples were taken from a private manuscript by S. Tsur and D. Maier.

Quelqu'un pourrait dire de moi
que j'ai seulement fait ici

un h a s de fleur Btranghres,
m'y ayant fourni du mien que le filet B les Iier.

-MONTAIGNE, Eeaaia (1533-1592), III.xii

queries: these are passed to an underlying ' off-the-shelf relational database system for

query optimization.

'This paper describes a fully integrated compile-time approach that ensures both safety
and optimization to guarantee the amalgamation of the database functionality with the

programming language functionality of LDL. Therefore, the LDL optimizer subsumes the

basic control strategies used in relational systems as well as those used in [MUV 861. In

particular for LDL programs that are equivalent to the usual join-project-select queries of

relational systems, the LDL optimizer behaves as the optimizer of a relational system[Sel

791.

The technical challenges posed by the LDL optimizer follow from its expressive power
extending far beyond that of relational query languages. Indeed, in addition non recursive
queries and flat relational data, Horn Clauses include recursive definitions and complex
objects, such as hierarchies, lists and heterogeneous structures. Beyond that, LDL sup-

ports additional constructs including stratified negation [BN 871, set operators and predi-
cates [TZ 86, BN 871, and updates [NK 871. Therefore, new operators are needed to
handle complex data, and constructs such as recursion, negation, sets, etc.. Moreover,
the complexities of data and operations emphasize the need for new database sta.tistics
and new estimations of cost. Finally, the presence of evaluable functions and of recursive

predicates with function symbols give the user the ability to state queries that are unsafe

(i.e., do not terminate). As unsafe executions are a limiting case of poor executions, the
optimizer must guarantee that the resulting execution is safe.

In this we limit the discussion to the problem of optimizing the pure fixpoint semantics of
Horn clause queries [Llo 841. After setting up the definitions in Section 2, the optimization

is characterized as a minimization problem based on a cost function over an execution
space in Section 3. The execution model is discussed in Section 4, using which the execu-
tion space is defined in Section 5. We outline our cost function assumptions in Section 6.

The search strategy is detailed in Section 7 by extending the traditional approach to the
nonrecursive case first; and then extended to include recursion. The problem of safety is

addressed in section 8, where we extend the optimization algorithm to ensure safety.

2. Definitions
The knowledge base consists of a rule base and a database (also known as fact

base). An example of rule base is given in Figure 2-1 . Throughout this paper, we follow

the notational convention that Pi's, Bi's, and f's are predicates, base predicates (i.e.,
predicate on a base-relation), and function symbols, respectively. The Bi's are relations
from the database and the Pi's are the derived predicates whose tuples (i.e., in the rela-

3. The Optimization Problem
We define the optimization problem as the minimization of the cost over a given execu-

tion space (i.e., the set of all allowed executions for a given query). This is forma.lly stated
below.

Logic Query Optimization Problem:
Given a query Q, an execution space E and a cost function defined over E, find an
execution pg in E that is of minimum cost; i.e.

MIN [cost of p g (~)]
PS E E

Any solution to the above optimization problem can then be described along four main

coordinates, as follows:
i) the model of an execution, pg;
ii) the definition of the execution space, E, consisting of all allowable executions;
iii) the cost functions which associate a cost estimate with each point of the execution
space; and
iv) the search strategy to determine the minimum cost execution in the given space.

The model of an execution represents the relevant aspects of the processing so that
the execution space can be defined based on the properties of the execution. The de-
signer must select the set of allowable executions over which the least cost execution is
chosen. Obviously, the main trade-off here is that a very small execution space will elimi-
nate many efficient executions, whereas a very large execution space will render the

problem of optimization intractable, for a given search algorithm. In the next sections we

describe the design of the execution model, the definition of the execution space, and the

search algorithm. The cost formulae are in most cases system dependent. Thus we will

consider the cost formulae as a black box, where the actual formulae are not discussed
except for those assumptions that impact the global architecture of the system.

4. Execution Model
LDL's target language is a relational algebra extended with additional constructs to

handle complex terms and fixpoint computations. An execution over this target language

can be is modelled as a rooted directed graph, called 'processing graph', as shown in
Figure 4-1 b for the example of of Figure 2-1. Intuitively, leaf nodes (i.e., the nodes with
non-zero in-degree) of this graph correspond to operators and the results of their prede-
cessors are the input operands. The representation in this form is similar to the predicate

connection graph [KT 811, or rule graph [UII 851, except that we give specific semantics to
the internal nodes. and use a notion of contraction for recursion as described below.

Associated with each node is a relation that is computed from the relations of its prede-
cessors, by doing the operation (e.g,, join, union) specified in the label. We use a square
node to denote materialization of relations and a triangle node to denote the pipelining of

the tuples. A pipelined execution, as the name implies, computes only those tuples for the
subtree that are relevant to the operation for which this node is an operand. In the case of
join, this computation is evaluated in a lazy fashion as follows: a tuple for a subtree is

generated using the binding from the result of the subquery to the left of that subtree. This
binding is referred to as binding implied by the pipeline. Note that we impose a left to
right order of execution. Subtrees that are rooted under a materialized node are com-

puted bottom-up, without any sideways information passing; i.e., the result of the subtree
is computed completely before the ancestor operation is started.

Each interior node in the graph is also labeled by the method used (e.g., join method,
recursion method etc.). The set of labels for these nodes are restricted only by the avail-

ability of the techniques in the system. Further, we also allow the result of computing a
subtree to be filteredlprojected through a selection/restriction/projection predicate. We ex-
tend the labeling scheme to encode all such variations due to filtering and projecting. The
label for a CC node is to specify the choices for the fixpoint operation, which are the

choices for SIPS and recursive method to be used.

The execution corresponding to a processing tree proceeds bottom-up left to right as

follows: The leftmost subtree whose children are all leaves is computed and the resulting

relation replaces the subtree in the processing tree. The computation of this subtree is
dependent on the type of the root node of the subtree -- pipelined or materialized -- as

described above. If the subtree is rooted at a contracted clique node, then the fixed point
result of the recursive clique is computed, either in a pipelined fashion or in a material-

ized fashion; the latter requires the use of techniques such as Magic Sets or Counting

[BMSU 85, SZ 861.

5. Execution Space

Note that many processing trees can be generated for any given query and a given
set of rules. These processing trees are logically equivalent to each other, since they
return the same result: however very different costs may be associated with each tree,
since each embodies critical decisions regarding the methods to be used for the opera-
tions, their ordering, and the intermediate relations to be materialized. 'The set of logically
equivalent processing trees thus defines the execution space over which the optimization

transformational rule defined above). For example, {MP, PR}, {MP, PR, PS, PP) are execu-

tion spaces.

As mentioned before, the choice of proper execution space is a critical design decision.
By limiting ourselves to the above transformations, we have excluded many other types of
optimizations like peep-hole optimizations, semantic optimizations, etc. This is a reflection
of the restrictions posed in the context of relational systems from which we have general-

ized and is not meant to imply that they are considered less important. As in the case of
relational systems, these supplementable optimizations can also be used. Even in the
realm of above transformations, we were unable to find an efficient strategy for the entire

space. Consequently, we limit our discussion in this paper to the space defined by {MP,
PS, PP, PR, PA, EL} (i.e., Flattening and Unflattening are not allowed). As discussed in
Section 8, programs can be constructed for which no safe (and therefore, no efficient)
executions exists without flattening. Our experience with rule based systems, however, has
been that these are artificial situations which the user can be expected to avoid without
any additional inconvenience.

6. Cost Model:
The cost model assigns a cost to each processing tree, thereby ordering the execu-

tions. Typically, the cost spectrum of the executions in an execution space spans many
orders of magnitude, even in the relational domain. We expect this to be magnified in the
Horn clause domain. Thus "it is more important to avoid the worst executions than to
obtain the best execution", a maxim widely assumed by the query optimizer designers.
The experience with relational system has shown that the main purpose of a cost model is
to differentiate between good and bad executions. In fact, it is known, from the relational
experience, that even an inexact cost model can achieve this goal reasonably well.

The cost includes CPU, disk I/O, communication, etc., which are combined into a
single cost that is dependent on the particular system. We assume that a list of methods
is available for each operation (join, union and.recursion), and for each method, we also

assume the ability to compute the associated cost and the resulting cardinality. For the
sake of this discussion, the cost can be viewed as some monotonically increasing function
on the size of the operands. As the cost of an unsafe execution is to be modeled by an
infinite cost, the cost function should guarantee an infinite cost if the size approaches
infinity. This is used to encode the unsafe property of the execution.

Intuitively, the cost of an execution is the sum of the cost of individual operations. This
amounts to summing up the cost for each node in the processing tree.

The results showed that the quadratic algorithm chooses the optimal permutation in most
cases and in more than 90% of the cases, it produces no worse than twice/thrice the
optimal. These results have been shown to have a statistical confidence of 95% with a 3%

error,

Another approach to searching the large search space is to use a stochastic algorithm.

~ntuitivel~, the minimum cost permutation can be found by picking, randomly, a "large"

number of permutations from the search space and choosing the minimum cost permuta-
tion. Obviously, the number of permutations that need to be chosen approaches the size of
the search space for a reasonable assurance of obtaining the minimum. This number is

claimed to be much smaller by using a technique called Simulated Annealing [IW 871. We
use this technique to the optimization of conjunctive queries as follows. For any given
permutation, define a neighbor to be any permutation that differs in exactly two places

(i.e., two positions in one permutation is interchanged to get the other). It is easy to prove
that the closure of the neighbor (equivalence) relation is indeed the set of all permutations
(i.e., the execution space for conjunctive queries). The simulated annealing can then be
viewed as a "random" walk of the execution space using this neighbor relation. If we
ignore the annealing parameters, then the neighbor relation completely characterizes the
simulated annealing process. We shall use this notion to characterize the strategy using
simulated annealing.

In short, we have summarized three generic strategies: exhaustive, quadratic and sto-
chastic. The main trade-offs amongst these strategies is between efficiency (i.e., time
complexity) and flexibility. Note that the quadratic strategy is the most efficient, whereas it

is least flexible in terms of the possible modifications to cost functions, query structure,
etc. Our goal is to present a design for the search strategy that is capable of using multiple
strategies interchangeably. The main reason for requiring the system to be flexible is that
the system is initially intended as an experimental vehicle since there is no prior experi-

ence in the design of an optimizer for a logic language and the field of logic languages is
in its infancy; thus new ideas will be forthcoming that the design should be capable of

incorporating into the system.

7.2. Nonrecursive Queries

Initially, we extend the exhaustive strategy that was used in the case of conjunctive
queries to the nonrecursive case, which is then extended to the other two strategies.
Extrapolating from the conjunctive case, selects/projects are always pushed down any
number of levels for non-recursive rules by simply migratirrg to the lower level rules the

791, we reduce the n! permutations to 2" choices. Thus the worst case complexity be-

comes O(N * 2 * 2"). Normally, the number of arguments per predicate (k) is usually

less than five and number of predicates per conjunct (n) is usually less than 10. For these

values of k and n, we conclude the feasibility of this approach based on the experience

from commercial database systems.

.

The algorithm of Figure 7-1 becomes impractical for large values of k and/or n. The

main practical concern is n since the number of arguments in recursive predicates is

either small, or reducible to a small number by the use of complex terms. We discuss

below how the algorithm in Figure 7-1 can be easily modified to take advantage of the

quadratic strategy [KBZ 861 or of simulated annealing.

NR-OPT: Compute a processing tree for a nonrecursive logic query.
Input is a processing tree rooted at a node N.
Output is an optimized processing graph.

1) Node N is an AND node, say As:
I) For each permutation of the sequence of subtrees,

Using the binding implied by the permutation do:
a) For each OR-subtree 0s of As do: Compute NR-OPT(0s).
b) Compute the cost for this permutation using the cost model.

C) Maintain the minimum cost permutation.

II) Return cost, cardinality, and the graph for the minimum cost processing graph.

2) Node N is an OR node say 0s:

1) IF this subtree, Os, has NOT already been optimized for this binding
THEN do: I
a) For each AND-subtree As of 0 s : Compute NR-OPT(As).

b) Compute the cost of the union of the children.

7
c) record the cost, cardinality, graph, etc., for Os, indexed by the binding

2) ELSE read cost, cardinality, graph, etc., for Os, based on the binding. I 7
Figure 7-1: NR-OPT algorithm for non-recursive query.

i

Note that the step 1) of the algorithm NR-OPT is responsible for the exponential behavior

w.r.t. n. This step is a generalization of the optimization search for conjunctive query.

Consequently, replacing the exhaustive strategy with the stochastic strategy is straightfor-

ward, whereas the incprporation of quadratic strategy is little more involved requiring the

generalization of the AS1 property. As this involves more detail discussion of the AS1 prop-

and for each rule that has P.a in the head, we generate an adorned version for the rule as
described below and add it to Pgm'. We then mark P.a. Note that the adorned version of a

rule may generate additional predicates that are adorned. The process terminates when
no unmarked adorned predicates are left.

The adornment for a recursive predicate in the body is assigned as follows: an argu-
ment is bound if the variable(s) in the argument occurs either in a bound argument of the
head literal or in a goal that precedes it in the chosen permutation. All other arguments of
this literal are adorned as free. Each literal P that is associated with a binding a is renamed

as 'P.a'. We present below, the adorned programs for the query forms sg.bf and sg.bb, in
which the chosen SIP for all replicated rules is self evident.

Original Rule: sg (X,Y) <- up(X,X1), sg(Y1 ,XI), dn(Y1 ,Y)

Adorned clique for the query sg.b f: ('6 f ' is the binding)

sg.bf (X,Y) <- up(X,X1), sg.fb(Y1 ,XI), dn(Y1 ,Y)
sg.fb (X,Y) C- dn(Y1 ,Y), sg.bf(Y1 ,XI), up(X,X1)

Adorned clique for the query sg.bb:

sg.bb (X,Y) <- up(X,X1), sg.fb(Yl,Xl), dn(Y1,Y)

sg.fb (X,Y) <- dn(Y1 ,Y), sg.bf(Y1 ,XI), up(X,X1)
sg.bf (X,Y) C- up(X,Xl), sg.fb(Y1 ,XI), dn(Y1 ,Y)

Note that for a given subquery and a permutation for each rule in the clique, the result-
ing adorned program is unique. Further, for a given adorned program, the transformed

program by Magic Sets or Counting is also unique, As a result, the execution (and the

associated cost) is uniquely determined, for a given cost and size estimates for all the

literals (in the rules of the clique) that are not in the clique. From this we can conclude that

the space of executions that are to be enumerated is defined by the different permutations
of the rules in the clique. In other words, if there are nc rules in the clique, then each
possible cross product of nc permutations defines a c-permutation. For each c-permuta-
tion, and a subquery there is an adorned program. Note that all of them are not distinct,
but collectively they exhaust the possible adorned programs.

We extend the algorithm presented in the previous section to include the capability to
optimize a recursive query. When a subtree rooted at a CC node is to be optimized, the
choice is in adorning the node with the proper label. We have to enumerate all the c-per-
mutations for the clique. For each such assignment of c-permutations, the rules are

tions for the rules in the clique is impractical even for small number of rules in the clique. It
is conjectured by many researchers that the mutual recursions are not common and com-

plicated ones are used even less. So if this conjecture is true then exhaustive search may
not be impractical.

Nevertheless, we are interested in being able to optimize larger class of queries. For

this we present the use of the stochastic strategy. Note that if the enumeration of the

search space consisting of all possible c-permutations of a clique (in case 3 of the algo-
rithm) is improved, then tlie algorithm can be used for a larger class of queries. Further
note that we observed that by specifying the neighbor relation for a given execution, such

that the closure of this relation defines the space to be searched, we can characterize the
simulated annealing process. We present such a neighbor relation here. Let us define a

neighbor of a c-permutation, CP1, to be another cross product of nc permutations, CP2,

such that all but one of these nc permutations in CP2 are identical to the ones in CP1 and

the one that differs, is obtainable by interchanging exactly two literals in the permutation.

Obviously, the closure of this (equivalence) relation is the space that we set out to search

by simulated annealing. Consequently, we have characterized the simulated annealing

process and the iterative loop choosing the c-permutations in the algorithm OPT can be
replaced by the simulated annealing process.

An interesting open question is the incorporation of a polynomial time algorithm by

superimposing some linearity property on the cost function for a recursive clique, as it was

done for the corrjunctive case in [KBZ 861.

8. Safety Problem:
Safety is a serious concern in implementing Horn clause queries. Any evaluable predi-

cates (e,g., comparison predicates like x>y, x=y+ynz), and recursive predicates with func-
tion symbols are examples of potentially unsafe predicates. While an evaluable predicate

will be executed by calls to built-in routines, they can be formally viewed as infinite
relations defining, e.g., all the pairs of integers satisfying the relationship x>y, or all the

triplets satisfying the relationship x=y+y*z [TZ 861. Consequently, these predicates may
result in unsafe executions in two ways: 1) the result of the query is infinite; 2) the execu-
tion requires the computation of a rule resulting in an infinite intermediate result. The for-
mer is termed the lack of finite answer and the latter the lack of effective computability or
EC. Note that the answer may be finite even if a rule is not effectively computable. In this

section we outline our. approach with the emphasis on the interaction with the optimizer.
For a more complete treatise on this topic see [KRS 871.

the optimizer is not less than this extreme value, a proper message must inform the user
that the query is unsafe.

8.3 Comparison with Previous Work

The approaches to safety proposed in [Col 82, Nai 85, AN 861 is also based on
reordering the goals in a given rule; but that is done at run-time by delaying goals when
the number of instantiated arguments is insufficient to guarantee safety, This approach
suffers from run-time overhead, and cannot guarantee termination at compile time or oth-
erwise pinpoint the source of safety problems to the user -- a very desirable feature, since
unsafe programs are typically incorrect ones. Our compile-time approach overcomes
these problems and is more amenable to optimization.

The reader should, however, be aware of some of the limitations implicit in all ap-
proaches based on reordering of goals in rules. For instance a query

p(x, y, z), y= 2*x ?
on the rule

p(x, y, z) <-- x=3, z=x*y

is obviously finite since the only answer is <x=3, y=6, z=18>. However, this answer cannot

be computed under any permutation of goals in the rule. Thus both the approach given

in [Col 82, Nai 85, AN 861 and the above optimization cum safety algorithm will fail to

produce a safe execution for this query. Two other approaches, however, will succeed.

One, described in [Za 861, determines whether there is a finite domain underlying the

variables in the rules using an algorithm based on a functional dependency model. Safe

queries are then processed in a bottom up fashion with the help of "magic sets", which

make the process safe. The second solution consists in flattening, whereby the three

equalities are combined in a conjunct and properly processed in the obvious order re-

ferred to earlier.

This example clarifies the drawbacks that follow from our expedient decision of not pursu-

ing fllattening in the first version of the optimizer. Some flattening is being considered for

later versions of the optimizer. Observe that, unlike previous approaches to control where

such strategic decisions were wired-in into the system, an extension of the LDL optimizer

to support flattening only requires adding another equivalence-preserving transformation.

[BMSU85] Bancilhon, F., D, Maier, Y. Sagiv and Ullman, Magic Sets and other
Strange Ways to Implements Logic Programs, Proc. 5-th ACM SIGMOD-
SIGACT Symposium on Principles of Database Systems, pp. 1-16, 1986.

[BR 861 Bancilhon, F., and R. Ramakrishan, An Amateur's Introduction to Recursive
Query Processing Strategies, Proc. 1986 ACM-SIGMOD Intl. Conf. on Mgt. of
Data, pp. 16-52, 1986.

[BN 871 Beeri, C., S. Naqvi, R. Ramakrishnan, 0 . Shmueli, S. Tsur, Sets and Negation
in a Logic Database Language, Proc. 6-th ACM SIGMOD-SIGACT Symposium
on Principles of Database Systems, 1987.

[Col 821 Colmemauer, A. et al., Prolog II: Reference Manual and Theoretical Model,
Groupe d'htelligence artificielle, Faculte de Sciences de Lumin, 1982.

[GM 821 Grant, J. and Minker J., On Optimizing the Evaluation of a Set of Expressions,
Int. Journal of Computer and Information Science, 11, 3 (1982), 179-189.

[IW 871 Ioannidis, Y. E, Wong, E, Query Optimization by Simulated Annealing, Proc.
1987 ACM-SIGMOD Intl. Con. on Mgt. oaf Data, San Francisco, 1987.

[Kw 791 Kowalski, R.A., "Algorithm = Logic + Control", CACM, 22, 7, pp. 424-436,
(1979).

[K8Z 861 Krishnamurthy, R., Boral, H., Zaniolo, C. Optimization of Nonrecursive Que-
ries, Proc. of 12th VLDB, Kyoto, Japan, 1986.

[KRS 871 Krishnamurthy, R., R. Ramakrishnan. 0. Shmueli, "A Framework for Testing
Safety and Effective Computability", MCC Report 1987 and also submitted for
external publication.

[KT 811 Kellog, C., and Travis, L. Reasoning with data in a deductively augmented
database system, in Advances in Database Theory: Vol I, H.Gallaire, J. Minker,
and J. Nicholas eds., Plenum Press, New York, 1981, pp 261-298.

[Llo 841 Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, 1984.

[M 841 Maier, D., The Theory of Relational Databases, (pp. 553-542), Comp. Science
Press, 1984.

[m 861 K. Morris, J. D. Ullman and A. Van Gelder, Design Overview of the
Nail! System, Proc. Third Int. Symposium on Logic Programming, pp. 127-139,
1986.

[Nai 851 Naish, L., Negation and Control in Prolog, Ph. D. Thesis, Dept. of CS, Univ. of
Melbourne, Austr., 1985.

[NK 871 Naqvi Shamim and R. Krishnamurthy, Semantics of Updates in Logic Pro-
gramming, Workshop on Database and Programming Languages, Roscoff,
France 1987.

[Per 821 Pereira Luis Moniz, Logic Control with Logic, UNL Report 2/82 (1982).

[RBK 871 Ramakrishnan, R, C. Beeri, R. Krishnamurthy, Optimizing Existential Queries,
MCC Technical Report, 1987, (also submitted for external publication).

COL: A LOGIC-BASED LANGUAGE
FOR COMPLM OBJECT&

COL: un langage pour objets complexes
bas6 sur la logique

Serge Abiteboul StCphane Grumbach

I.N.R.I.A.
78153 Le Chesnay, FRANCE

Abstract: A logic-based language for manipulating complex objects constructed using set and

tuple constructors is introduced. Under some stratification restrictions, the semantics of programs

is given by a canonical minimal and causal model that can be computed using a finite sequence of

&points. Applications of the language to procedural data, semantic database models, heterogene-

ous databases integration, and Datalog queries evaluation are presented.

1. This rwarch w a supported in p& by the Projet de Recherchea Coordonn6eg BD3.

(ii) In COL, data can be viewed both in a functional and in a relational manner. As a conse-

quence, the language can be used in a heterogeneous databases context (e.g., relational view

on a functional data base; integration of a relational database with a functional one).

(iii) COL can also be used as a kernel language for semantic database models like SDM [HMl,

I F 0 [AH] or Daplex [Sh].

(iv) Some evaluation techniques for datalog queries like Magic Sets or others [B+,GM] make

extensive use of particular functions. These functions can be formalized using our model.

As mentioned above, two other approaches have been independently followed to obtain a

rule-based language for complex objects [Be+,K]. In [Be+], they do not insist on a strict typing

of objects. In [K], only one level of nesting is tolerated. However, both approaches could easily

be adapted to the data structures considered in this paper. Furthermore, in [AB], it is argued

that all these approaches yield essentially the same power (i.e., the power of the safe calcuIus of

[AB]). The points (i-iv) above clearly indicate advantages of our approach.

The paper is organized as follows. In the first section, types and typed objects are

described, and examples of COL rules given. The second section is devoted to the formal

definition of the language. The stratification is introduced in Section 3. In the fourth section, it

is shown that each stratified program has a canonical, causal and minimal model which can be

computed using a sequence of fixpoints. Advantages of the language are briefly considered in a

last section. The proof of key results of Section 4 can be found in an appendix.

I. PRELIMINARIES

In this section, types and typed objects are described, and examples of COL rules given.

The existence of some atomic types is assumed. A set of values is associated with each type

A. This set is called the domain of A, and denoted dom(A). More complex types are obtained in

the following way.

Definition: if T ,,..., T, are types (n 2 I) , then

30'3

Intuitively, the functions n, U and Difference define sets by stating explicitly what are the

elements of each set. Thus the term n(X,Y) for instance is interpreted as the set of all the ele-

ments x such that x E XI and x E Y. Using these functions, the predicates G I C, Disjoint,

Union, and Disjoint-union are now defined:

C_(X,Y) + U (X,Y) = Y,

C(X,Y) t c (X , Y) , x E Difference(Y, X),

Disjoint(X,Y) +- n(X,Y) = 4,
Union(X,Y,U (X,Y)) +,

Disjoint-union(X,Y,U (X,Y)) + Disjoint(X,Y).

The language allows the manipulation of complex objects, and also of 'nested relations'

[ABi,FT,JS, ...I which are special cases of complex objects.

Ezample 2 (nested relations):

Let N denote the set of integers. Consider the predicate R(N,N,N) and the three predicates

S(N,{IN,N])), S1(N,{[N,N])), S"(N,{[N,N])). (The first field of S, S' and S" contains an integer,

and the second a binary relation.) Let Z be a variable of type {[N,N]); and F and T C be functions

of the appropriate types.

Unnest:

Nest:

[YlY11 E F(x) + R (~ , Y , Y ') ,

S'(x,F(x)) R(xly,yl).

Transitive closure of the second field of S':

(x,z] E TC(Z) +- [x,z] E Z l

[x,zI E TC(Z) [x,yl E Z, !y,zI E TC(Z),

Sn(xlTC(Z)) + S1(x,Z).

Ezample 3 (heterogeneous sets):

Let STRING be a type. Consider the following typed symbols:

P({{N,STRING))) (i.e., P is a unary predicate, and its unique field contains a set of sets of

integers and strings).

F is a function of type {N,STRING) --+ {N);

In the remainder of the paper, the word 'function' will only refer to data functions, and not

to tuple or set functions. I t is assumed that all the functions that are considered in the following

are set-valued, i.e., an image by a data function is always a set. In the last section, this limita-

tion is discussed, and an extension of the language to remove it considered.

Note tha t ETTS is a symbol of the language. Clearly, ET.S is interpreted by the classical

membership of set theory. Indeed, when the types are understood, Ezs is simply denoted by E.

A constant of a certain type T is interpreted as an element of dom(T).

The terms of the language are now defined:

Definition: A constant or a variable is a t e r m If tl, ..., tn are terms and F is an n-aq 'da ta , tuple

or set function symbol, F(tl, ..., tn) is a term. (The obvious restrictions on types are of course

imposed.)

A c l o ~ e d term is a term with neither variables, nor data functions.

Ezample 11.1: The term [1,{2,3),{7)j is a closed term. On the other, [1,{2,3),F(2)] is not closed.

These two terms are different, but they may have the same interpretation (if F(2) = (7)).

Literals are defined by:

Definition: Let R be an n-ary predicate, and tl, ..., tn terms, for n 2 0. Then (with the obvious

typing restrictions) R(t ,,..., tJ , t, = tn, and t E t, are positive literals.

If $ is a positive literal, l?,b is a negative literal.

Arbitrary well-formed formulas are defined from literals in the usual way. We have defined

here the language of a first order logic. One can de£ine a model theory and a proof theory for this

language. This is not in the scope of the present paper. We next introduce a clausal logic based on

this first order logic. A key component of that clausal logic is the notion of 'atom'. An atom is a

literal of the form R(t ll...t$ or t l E F(t 2,..., tn). If t to are closed terms, the atom is said to be

c l o ~ e d .

Now we have:

In order to define the notion of satisfaction of a rule, and thus of a program, the concept of

valuation is introduced. Valuations play here the role of substitution in classical logic program-

ming. Note that the valuations are written on the left of the terms or atoms, for conveniences

sake.

Definition: Let 8 be a ground substitution of the variables, and I an interpretation. The

corresponding valuation is a function from the set of terms to the set of closed terms defined

by2:

(i) eI is the identity for constants, and Op = 8x for each variable,

(ii) BI[t t,] = [OItl, ..., OIt,l, dI{tlJ ..., tn) = (8,t ,,..., 8,tn), and

(iii) B,F(t ,,..., t,) = { a 1 [a E F(Brtl ,..., OItn)] E I).

The function is extended to literals by:

(iv) B1p(t ,..., t,) = P(Blt ,O1tn),

(v) el(t l=tz) = (eItl = oltJ, gI(t E t2) = (BIt , E OIt2), and

(vi) e1(-A) = - 8+.

A valuation in this context depends on the interpretation that is considered. This comes

from the need to assign values to terms built using function symbols. As we shall see, this is a

major reason for the non monotonicity of the operators that will be associated to COL programs.

Using valuations, we now define the notion of satisfaction of rules and programs:

Definition: The notion of satisfaction (denoted by b) and its negation (denoted by #) are

defined by:

For each closed positive literal, I P(bl ,..., bll) iff P(bl ,..., bn) E I; I b b, = b, iff b, = b2

is a tautology; and I bl E b2 iff b, E b, is a tautology.

For each closed negative literal 1 B, I f= 7 B iff I # B.

Let r = A + L ,,..., L, Then I r iff for each valuation dI such that for each i, I eILi,

then I e I ~ .
a The reader has to be aware of a subtlety in (iii). The symbol E in [a E ~ [8 , t , ,..., 8 , t ~] is a symbol of the

language COL, where= the other occurrence of E denotes the usual membership of set theory.

309

S(x,F(x)) R(X,Y)

The symbol F is the defined symbol of the first rule; and S that of the second. The symbols R

and F are determinants of the two rules.

To define the notion of stratification, we use the auxiliary concepts of 'total" and 'partial'

determinants of a rule. We say that an occurrence of a determinant predicate P is partial in a

rule if that occurrence arises in a positive literal. Similarly, the occurrence of a determinant func-

tion F in a positive literal t l E F(tz, ..., t,) is said to be partid. A determinant is partial (in a rule)

if all its occurrences are partial; a determinant is total otherwise.

For instance, consider the rule:

x E F(G(y)) +- Y f H(x), R(x,Y), S(Y,Z), Y E HJ(H'(x))

In that rule, F is the defined symbol. The symbols R and H are partial determinants, and the

symbols S and G total determinants. The symbol H' has one total and one partial occurrence,

and thus is a total determinant.

The distinction between total and partial determininant is quite natural. To derive a new

atom using the previous rule it suffices to know some partial information on R and H (i.e., R(x,y)

and y E H(x)). On the other hand, S has to be completely known to be able to assert S(y,z).

Similarly, H'(x) must be completely known.

Intuitively, if Y is defined by the rule, and X is a total determinant, then X must be 'com-

pletely defined' before Y. This is denoted by X < Y. If X is only a partial determinant, then X

must be defined no later than Y. This is denoted by X < Y. For each program P, a marked

graph Gp is constructed as follows:

the nodes of Gp are the predicate and function symbols of PI

there is an edge from X to Y if X 5 Y, and

there is a marked edge from X to Y if X < Y .

We are now ready to define the condition for stratification:

Definition: A program P is stratified iff the associated graph Gp has no cycle with a marked edge.

Remark: We have defined stratification of programs using both negation and data functions. As

31 1

IV. FIXPOINT SEMANTICS OF STRATlFIED PROGRXLMS

In this section, the semantics of stratified programs is defined using canonical, minimal and causal

models.

The following three well-known concepts are used:

an operator T is monotonic if I 2 J implies that T(1) C T(J);

I is a fizpoint of T, if T(1) = I; and

I is a pre-&point of T , if T(1) 2 I.

With each program P, we associate an operator T p defined as follows:

Definition: Let P be a program, and I an interpretation of P. Then a closed term A is the result

of applying the rule A' +- L1, ..., L, with a valuation dI if

I OILi for each i E [l..m], and

either A' = P(t t,) and A = P(BIt Bltn),

or A' = [tl E F(t z, . . . , t,)], and A = [B+, E F(BIt z,..., Bit,)].
The operator Tp is defined by:

Tp(I) = { A 1 A is the result of applying a rule in P with some el).

For a program P, T p is not monotonic in general. For instance, consider the program P con-

sisting of the single rule Q(F) +-. Then

T,({l E F)) = {Q({l))) {Q({1,1-1)1 = T,({1 E F, 2 E F)).

The following proposition links the notion of model of P to thar of pre-fixpoint of Tp.

Propo~i t i on IV.1: Let P be a program, and M an interpretation of ?. Then the next two state-

ments are equivalent:

M is a (minimal) model of P,

M is a (minimal) pre-fixpoint of Tp.

Proof: It is clearly sufficient to prove that M is a model of P iff M is a pre-fixpoint of Tp,

3 13

s Tpfw(I) is a minimal pre-fixpoint of Tp containing I.

Tpfw(#) is a minimal fixpoint of Tp.

This result shows that Tptw(#) can be viewed as a canonical model of the monostratum

program P since by Proposition VI.2, it is a minimal causal model of P.

To prove that result, we will use three properties of monostratum programs. But, first, we

introduce some notation which allows us to consider particular subsets of a given interpretation.

Notation: Let I be an interpretation, and X a set of predicate and da ta function symbols. We

denote by Ilx the following subset of I:

Ilx = {P(a ,,..., a,) E I (P E X) U {[al E F(a ,,..., a,)] E I 1 F E X).

To prove Theorem IV.1, we shall show that monostratum programs are "growing', "X-

finitary' and 'stable on X' for some X.

Definition: Let P be a program and X a set of symbols. Then:

(1) Tp "rowing [ABW] if for each interpretation I, J and M such that I C J C M C Tpf w(I),

then Tp(J) 2 Tp(M).

(2) Tp is X-finitary if for each sequence (In) of interpretations such that for each n (O<n), In C_

(3) Tp is stable on X if for each I, (T,(I))), 2 I/,.

The proof of Theorem W.1, can be found in the appendix. Indeed, it is shown there that for

some X, monostratum program are X-finitary and stable on X (Lemma A.2), that they are grow-

ing (Lemma A.3); and for each operator T with these three properties, and for each interpretation

1,

(a) T(TTw(1)) G T]w(I), and

(b) TTw(1) 2 T(TTw(1)) U I (PropositionA.1).

Theorem IV.l is then a consequence of these results (see Appendix).

The proof of Theorem IV.2 can also be found in the appendix.

This is the main result for COL programs. It is interesting to note that negation can be

simulated using da ta functions. Let P be a predicate. The following program gives an equivalent

form of 7 P.

t E F(t) + P(t) ,

A(tl F(t)) + ,
Q (t) + A(t I0) .

It is easy t o see tha t Q(t) is equivalent to 1 P(t) . Consider the stratification condition imposed

by the previous program. From the first rule, P 5 F; from the second, F < A, and from the

third, A 5 Q. As a consequence, P < Q which leads to the classical notion of stratification for

negation.

V. DISCUSSION

In this section, we briefly consider some applications and extensions of the language. More pre-

cisely, we illustrate the following points:

(i) procedural data;

(ii) heterogeneous databases (functional and relational);

(iii) semantic database models; and

(iv) evaluation techniques for datalog queries.

During the presentation, we encounter various extensions of the language which are left for future

research.

V.1 P r o c e d u r a l Data

One of the reasons for considering a functional database model versus a relational one is to

remove the dichotomy between da ta and queries. The removal of that dichotomy is also the

motivation for introducing procedural fields in Postgres [S]. However, if the procedural fields solu-

tion is interesting as being an extension of the popular relational model, i t certainly lacks the

elegance of the functional solution. We believe that COL presents the advantages of both

approaches by &st being a relational extension, and also by making explicit use of functions to

handle procedural-like data. The purpose of this section is to briefly investigate this issue.

Procedural da t a is introduced in IS] in order to blur the dichotomy between data and

317

where the HOB - BOSS function is defined by:

x E HOB-BOSS(y) + R(y,z,X), x E HOB(z).

The above program is also not stratified. Indeed, it is not even locally stratified according to [PI.

The complex structure of facts should also be taken into account. For instance, two objects, say

A and B, may be both intensionally defined with a subobject of each one of them depending on a

subobject of the other.

V.2 Heterogeneous databases

We show how to integrate a relational database, and a functional one into a COL database. It is

also possible to use a similar approach to define heterogeneous views when relations and functions

are considered, and to restructure a relational database into a functional one, or conversely.

The main problem encountered in this context is that functional database models like FQL

[BF] or Daplex [Sh] allow monovalued functions. A not too clean solution is to represent them

using multivalued ones and enforce a oneness constraint. A more interesting solution is to extend

the language with monovalued data functions. Rules like

x = F,[Y) + R (~ , Y) , and

x = F(Y) (-- R(x,y), Y = H(x)

have t o be considered. The Erst rule yields inconsistency if in the extension of R, the Erst attri-

bute does not functionally determine the second one. This can not be the case in the second rule.

In both rules, the derived function may be only partially defined.

We now present an example with multivalued functions only. Consider the following two

databases:

(a) A RELATIONAL DATABASE:

(b) A FUNCTIONAL DA TA BASE

CASTING: film ++ actor
LOCATED: theater -+-+ address
EXHIB: film -+-+ theater, time

schema is shown in Figure V.1. We present a corresponding COL database, and then discuss the

extensions of the language that need to be considered, and the limitations of the COL representa-

tion:

ABSTRACT TYPES are represented b y basic domains:

hull

car

person

motor

manufacturer

CONSTRUCTED TYPES are represented by base objects:

MOTORBOAT(hull,motor)

CAR-ID(string,integer)

Figure V.l: an I F 0 schema

functional equation:

'mc = 'PAR + FPAR F A N G

where "+' stands for union and ' . ' for the composition of multivalued functions.

In another proposaI for evaluating datalog queries [B+], namely the magic sets approach,

particular terms called 'grouping terms' are used. It is easy to see that these terms correspond to

particular derived data functions.

VI. CONCLUSION

The paper presents a language to manipulate complex objects based on recursive rules. The

novelty is the use of data functions. The semantics of COL programs is defined as a canonical

causal and minimal model using a sequence of h p o i n t operators. In that sense, the semantics is

constructive in nature.

We illustrated the use of the language in various database contexts: heterogeneous data-

bases, semantic modelling, procedural data, and evaluation of datalog queries. This suggested

extensions of the language: single-valued functions, explicit union of types constructor, structural

stratification. Besides these issues which were just sketched in the present paper, other important

questions are raised:

the role of inheritance in the language, and

updates for COL databases.

Last but not least remains the issue of an efficient implementation. There has been a lot of

work on nested relations and complex objects. Few of them have so far been followed by an

efficient implementation (e.g., the Verso system at Inria [V], and the Aim project at IBM Heidel-

berg [Dl). We believe that the fixpoint semantics of COL programs makes such an implementa-

tion feasible. Indeed, the operators which are described in Section 4 can all be expressed in the

algebra of complex objects of [AB].

ACKNOWLEDGMENT:

Dadam, P., History and Status of the Advanced Information Management Prototype,

Proc. International Workshop on Theory and Applications of Nested Relations and Com-

plex Objects, Darmstadt (1987)

Fischer, P., and Thomas, S., Operators for non-first-normal-form relations, Proc. 7th

COMPSAC Chicago,(l983).

Gardarin G., C. de Maindreville, Evaluation of Database Recursive Logic Programs as

Recurrent Function Series, proc. ACM SIGMOD conf. on Management of Data (1986)

Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic Pro-

grams, Proc. of Workshop on Foundations of Deductive Database and Logic Program-

ming (1986)

Hull, R., R. King, Semantic database modeling: Survey, applications, and research

issues. U.S.C. Computer Science Technical Report (1986) to appear in ACM computing

surveys

Hull, R., C.K. Yap, The format model: A theory of database organization. Journal of

the ACM 31(3) (1984)

Jacobs, B., on Database Logic, Journal of the ACM (1982).

Jaeschke, B., H.J. Schek, Remarks on the algebra of non first normal form relations,

Proc. ACM SIGACT/SIGMOD Symposium on Principle of Database Systems, Los

Angeles (1982)

Kobayashi, I. 'An overview of database management technology,' TR CS-4-1, Sanno

College, KAnagawa 259-11, Japan, (1980).

Kuper, G.M., Logic Programming with Sets, Proc. ACM SIGACT/SIGMOD Symposium

on Principle of Database Systems (1987)

Naqvi, S.A., A Logic for Negation in Database Systems, Proc. Workshop on Foundations

of Deductive Databases and Logic Programming ed. J. Minker (1986)

Przymusinski, T. C. On the Semantics of Stratified Deductive Databases and Logic Pro-

grams, to appear in Journal of Logic Programming

Schek H., and M. Scholl, the Relational Model with relation-valued attributes, in Infor-

mation Systems (1986)

Stonebraker bf., Object Management in Postgres using Procedures, in the Postgres

Papers, UCB report (1986)

Shipman, D., The Functional Data Model and the Data Language Daplex, ACM

325

APPENDIX

In this appendix, Theorems IV.l and IV.2 are proven.

T o prove Theorem IV.1, we first show that each monostratum program is growing, X-

finitary and stable on X, for some X. T o do that , we use the following technical lemma:

Lemma A . l : Let J and K be two interpretations such that JIx = KIx for a given set X of symbols,

and dJ and dK two valuations with 8 p = dKx for each variable x. If t is a term such that each

function symbol occurring in t belongs to X, then dJt = dKt.

Proof: The result is obvious if t contains no function symbols. Now consider t = F(t,, ..., t,) where

F is in X and t,, ..., tn contain no function symbol. Then

d,F(t ,,..., tJ = {X I [X E F(dJt ,,..., eJtn)] E J), by definition,

= {X 1 [X E F(dJt ,,..., BJtn)] E JIx), since F is in X,

= {x I [x E ~ (e , t , , ..., B,t,)] E KIx), since JIx = Klx

= {X 1 [X E F(dKtl,..,, eKt,)] E K(,), since tll...,tn contain no function symbol,

= {x I [x E F(BKt ,,..., BKtn)] E K) , since F is in X,

= BKF(tl, ..., t,).

By induction of the imbrication of function symbols, dJt = eKt for each term t containing only

function symbols in X. 0

We now consider X-finitarity and stability.

Lemma A.2: Let P be a monostratum program, and X the set of symbols in P which are not

defined in P. Then Tp is X-finitary and stable on X.

Proof: Consider first stability on X. For each interpretation I of P, Tp(I) contains only atoms that

are built from a defined symbol. Thus (Tp(I))lx = 4 IIx, so Tp is stable on X.

We next prove that Tp is X-finitary. Let (In) be a growing sequence of interpretations such

M

that InIx = IoJx for all n. Let J = U In, and let A E Tp(J). To conclude the proof, it suffices to
n=O

327

Proof: Let P be a monostratum program. Let I, J, M be interpretations such that I J C M 2
TTw(1). We prove that if A E Tp(J), then A E Tp(M).

Suppose that A E Tp(J). Then A is the result of applying the rule r : A' +- Ll1...,L, in P

with a valuation dJ. Let OM be a valuation such that 0 9 = eJx for all variables x.

Let X be the set of symbols that are not defined in P. Clearly, IJx C J!, C_ MI, C
(T,TW(I))~, = I(, Let t l E F(t2 ,..., t,) or P(t t,) be an atom in rule r, and let i E [l..n].

Each function symbol G appearing in ti is a total determinant, and thus is not defined since P is

monostratum. Since J1, = M,, B,t, = eJti by Lemma A.1. Thus

(+) eMti = eJti, for each atom t l E F(t2 ,... ,tn) or P(t l l ..., t,) in rule r, and each i E

[l..nl,

We prove that M eMLi for each i. Like in the previous lemma, there are four cases. We

consider here the last case only. The others are left to the reader.

(4) Let Li = 7 [tl E F(tz, ..., t ,)] Since A is the result of applying the rule with dJ, J

e+,. T ~ U S le,t, E F(eJt2 ,..., e,tn)l 4 J. T ~ U S , by (+I, Ie,t, E ~(e, t , ,..., e,t,)l = leJtl E

F(BJt ,,..., BJtn)] 4 J. Let B = pMt, E F(BMt 2,..., edllj]. Since B J, B $ JJx = MI,. Since the

literal is negative, F is a total determinant of P. Thus F is not a defined symbol of P (P is

monostratum), i.e., F E X. Hence B $ M. Therefore, [BMtl E F(8,,t ,,..., oMt,)l $ li, i.e., M

Li.

In each case, M e&,. Let A" be the result of applying rule r with Ow By (+), A" =

A. Thus A E T,(M). 0

The following proposition will be essential in the proof of Theorem IV.l.

Proposition A . l : Let T be an X-finitary, stable on X, and growing operator. Then for all I,

(a) T(TTw(1)) C TTw(I), and

(b) Ttw(1) C T(Ttw(1)) U I.

Proof: First consider (a). Since T is stable on X,

(~ T (n + l) (I)) l ~ = (TTn(I))!x = (TT O(I))ix.

Thus the sequence (TTn(1)) is growing and (TTn(I))lx = (TrO(I))(,. By the X-finitarity of T,

of a sequence of operators, and the locality property [ABWI.

Definition: Let T,, ..., T, be a sequence of operators. The iterative powers of that sequence

w.r.t. an interpretation I are defined by:

KO = I, and

Ki = TiTw(KL1) for each i E Il..mi.

The sequence of operators Tl,,..,T, is local, if for each I and J such that I 2 J K,,,

Ti(J) = Ti(J n Ki).

Let P = PI U ... U Pm be a stratified program. With the first stratum, we associate an

operator T1; with the second one, an operator TP; and so on. Then we have:

Lemma A.4: Let T,, ..., T, be the sequence of operators corresponding to a stratified program P =

P, U ... LJ Pm. This sequence is local.

Proof: First suppose that Ti(J) $ Ti(J fl Ki) for some i. Let A be in Ti(J) - Ti(J fl Ki). Then A

is the result of applying some rule r in Pi. Since J fl Ki C J, and A $ Ti(J n Ki), the application

of the rule uses a fact B not in J n Ki. Suppose that B = [bl E F(b2, ..., b,)]. (The case B =

P(bl, ..., b,) is similar). Since B is used in the application of r ,

(i) F is a determinant of r in Pi.

Since B is in Km - KiJ B is the result of the application of a rule rJ in P. for some j > i. Thus
1

(ii) F is the defined symbol of a rule r' in Pj for j > i.

Clearly, (i) and (ii) together contradict the stratification condition on PI U ... kJ Pi-l. Hence,

Ti(J) Ti (J n Ki). The reverse inclusion is proved in a similar way.

Theorem IV.2 will be a straightforward consequence of the following proposition:

Proposition A.2: Let TI, ..., T, be a local sequence of operators such that for each i E [l . .m], T i is

growing, X;finitary and stable on Xi, for some Xi. For each instance I, let (K,) be the iterative

powers of T1 ,..., T, w.r.t. I. hen^

m m

m
Then Km is a minimal fixpoint of U Ti. Thus Km is a minimal causal model of P.

i=O

m
Proof: By Proposition IV.2, it suffices to show that Km is a minimal fixpoint of U Ti. By

i=O

Lemma A.4, the sequence of operators is local. Thus, by Proposition A.2,

m
Therefore, Km is a fixpoint of U Ti. It remains to show the minimality.

i=O

m
Let J be a pre-fixpoint of U Ti. We prove by induction on k that

i= l

(*) if J Kkl then Kk C_ J.

For k = 0, KO = 4 J. Suppose (*) is true for a certain k (first induction hypothesis). We prove

by induction that :

(**I Tk+l t j(Kk) C J l

For j = 0, it is by hypothesis. Suppose it is true for a certain j (second induction

hypothesis). By (**), Kk Tk+,fj(Kk) J n Kk+l T k + l t ~ (~ k) . Since Tk+l is growing,

(+I Tk+, (Tk+,tj(Kk)) C Tk+, (J n Kk+,):

Tk+l t(j+l)(Kk) = Tk+l (Tk+lt j(Kk)) Tk+lrj(Kk)7

2 Tk+l(Tk+lfj(Kk)) U J, by second induction hypothesis,

C Tk+l(Jn Kk+l) J 2 (+I,
= Tk+l(J) U J, by locality,

C J , since J is a pre-fixpoint of Tkf1.

Thus (**) holds for all j. By induction, (*) holds for all k. In particular, for k = m, if J is a
m

pre-fixpoint of U Ti such that J 2 Km, then Km C J which concludes the proof. 0
i= l

to be placed over it .

2. What Makes a Database Computation Model Powerful?

I claim tha t the power of relational algebra as a n abstraction of disk storage comes from

its encapsulation of iteration. Seven or eight common forms of iteration over sets of records are

identified, and queries are expressed in terms of them. Since there are a small number of forms,

their interactions can be studied in detail, giving rise t o transformations tha t can be used for

optimizing queries. Effort can be directed a t efficient implementation of this handful of itera-

tion forms. Since the iteration is expressed a t a high level, multiple orders for accessing records

are allowable, and the physical ordering of records and foreknowledge of access patterns can be

used to great advantage. Further, use of auxiliary access structures can be embedded in the

evaluation methods for the algebraic operators, making applications independent of the presence

or absence of such structures, and simplifying tha t code. A query processor can delay choosing

a particular evaluation plan for an algebraic expression until the nature of the arguments is

known, allowing even more efficiencies in execution. None of these advantages is available when

database manipulations are expressed with explicit looping structures. The resulting code gives

a particular implementation of the query, from which i t is nearly impossible to infer the intent.

Thus, the range of transformations and evaluation choices is severely limited. Moreover, the

record-at-a-time nature of explicit iterations places high demands on the communication

bandwidth between the application program and the database system.

I expect the next generation of database systems to reside on a network of workstations,

with a central or distributed storage manager, shared by application programs over the net-

work. Here, the importance of being able t o express iterations and other data-intensive opera-

tions succinctly is even greater. Whatever the database programming model, it must allow com-

plex data-intensive operations to be picked out of programs for execution by the storage

manager, rather than forcing a record- or object-at-a-time interface. As mentioned in the intrc-

duction, the definition of a complex operation should be storable as a database object, so its

4. Embedded DML

I doubt many of us believe tha t an embedded da t a manipulation languages is best stra-

tegy for database programming. The problems with this approach are manifest, the most seri-

ous being impedance mismatch at the interface of the application language and the DML. The

programming paradigms of the two languages are frequently a t odds, as are the da t a structures

supported. Much information is reflected back a t the junction of the two. There is no type sys-

tem spanning the application code and the DML, so little checking can be done on type agree-

ment across the junction. The persistent programming approach does have the advantage of a

single type system. However, the type systems of most languages were not conceived with per-

sistent da t a in mind, particularly the difficulties in modifying type definitions when instances of

those types persist.

I t is interesting t o observe how 4GLs and application generators deal with this typing

problem. They generate the application code working off the type definitions of the database

(the scheme or a n extension of it), trying t o ensure agreement between the types of database

objects and their uses in the application code. The code is generated to be type correct, but

still typing across the boundary can't be checked.

5. Extending the Application Language

Another approach to capturing the high-level operators on da t a in the application

language is t o extend an imperative language with associative access constructs p+]. The

problem with this approach is t ha t the resulting language is quite complex, and probably lacks

orthogonality and transparency. The language ends up with multiple ways to do the same thing

(but with only one amenable t o optimization) and there are limitations on embedding impera-

tive statements in the declarative extension. Supporting such a n extension also means having to

modify the parser for the original language.

What I need t o know for maintaining a n index on rectangles is t ha t there is some message

pair, say "origin" and "setorigin:" t ha t have a certain specification on their interaction: two

invocations of "origin" return the same result, a s long a s there is no intervening "setorigin:"

invocation. In essence, I want to say there is a "origin" field in the Rectangle. I more or less

want t o dispense with the encapsulation and know about the structure of Rectangle objects.

Must encapsulation just go out the window?

Some da t a models get around this problem by saying t h a t certain structural aspects of the

object a r e visible externally, a s components [Sc+] or properties [Ont]. We all know t h a t a jet

has engines, so let's just admit i t in the protocol. Indexing, if allowed only on these visible

subobjects, is supportable without violating encapsulation. An interesting kink arises in

Trellis/OWL, however. The implementation of a component may be specified a s "field," mean-

ing represent the component a s a field in the object's private s ta te , and do get and set in the

obvious way. However, the get and set operations can also be implemented with arbitrary code,

in which case there a re no guarantees they will exhibit behavior necessary for index mainte-

nance.

7. Abstract Objects

1 propose here the notion of a n abstract object a s a basic building block for database pro-

gramming objects. My approach is colored by experience with object-oriented databases. In

particular, 1 assume a d a t a model with complex objects having identity, where objects can be

shared subparts of other objects. An abstract object acts much a s a term or pat tern in a logic

language, and i t can be used both for decomposing and building concrete objects, much a s a log-

ical term acts under unification. However, abstract objects a re objects, so they can be created,

stored, manipulated and viewed just a s concrete database objects. They can be composed t o

create compound queries and manipulation commands. These abstract objects a re very struc-

tural in nature, bu t they do possess a formal semantic theory built on a logic t h a t incorporates

identity and type hierarchies [Ma, Zh].

tua l approximation of the actual command object.) Abstract objects can also be used for

updates. If I wanted t o update the original Rectangle in the RectSelect, instead of making a

new one, I would write

Rectangle:R(origin -> Point:Pl,
corner --> Point:P3) <==

RectSelect:RS(rect --> Rectangle:R(
origin --> Point:Pl(x --> O),
corner --> Point:P2(y --> 1nt:N))

cursor -> Point:P3(x --> Int:M, y --> 1nt:N)).

If I wanted t o merely modify the corner point of :R, rather than replace i t , I would use

Point:P2(x --> :M) <==
Rec tSelect:RS(rect --> Rectangle:R(

origin -> Point:Pl(x --> O),
corner --> Point:P2(y --> 1nt:N))

cursor --> Point:P3(x -> Int:M, y --> 1nt:N)).

Or, I could create a new point for the corner for :R with the same coordinates a s :P3.

Rectangle:R(corner --> Point:P4(x -> :M, y--> :N)) <==
RectSelect:RS(rect --> Rectangle:R(

origin -> Point:Pl(x --> O),
corner -> Point:P2(y --> 1nt:N))

cursor --> Point:P3(x --> Int:M, y --> 1nt:N)).

I can also introduce computation into commands

Point:P2(x --> :L - :M) <==
RectSelect:RS(rect --> Rectangle:R(

origin -> Point:Pl(x --> O),
corner --> Point:P2(x --> Int:L, y --> 1nt:N))

cursor --> Point:P3(x --> Int:M, y --> 1nt:N)).

The important facet of such a command is t h a t i ts processing can be separated into structural

matching and making phases, with a n intervening computational "mapping" phase. Such sim-

ple commands can be grouped and named to create compound commands.

8. Ramifications and Extensions

Some advantages t h a t accrue from using abstract objects a s the building blocks of da ta -

base commands:

multiple ways.

2. For a command object, what are strategies for evaluating portions of i t on different proces-

sors? For example, the structural access could be done on a central storage server, and the com-

putational pa r t on a local workstation.

3. I don't think abstract objects are quite equivalent t o logical variables. (I don't see how to

unify two abstract objects.) I think objects with logical variables would be useful for expressing

and constraining partially defined objects and for representing alternative configurations or ver-

sions of a n object. Perhaps the ability to store a name from a binding environment in place of

a value would give equivalent power [AM].

9. References

[A-Kl
H. Ait-Kaci
A Lattice-Theoretic Approach to Computation Based on a Calculus of

Partially Ordered Type Structures
Ph.D. Thesis, University of Pennsylvania, 1984

[At+ I
M. P. Atkinson, P . J. Bailey, K. J. Chisholm, W. P. Cockshott, R . Morrison
An approach t o persistent programming
The Computer Journal 26:4, 1983

[AM1
M. P. Atkinson, R. Morrison
Types, bindings and parameters in a persistent environment
Proceedings of Data Types and Persistence Workshop
Appin, August 1985

[MI
M. P. Atkinson, R. Morrison, G. D. Prat ten
Persistent information architectures
Univ. of Glasgow/Univ. of St . Andrews
Persistent Programming Research Report 36, June 1987

[KKl
T. Kaehler, G. Krasner
LOOM-large object-oriented memory for Smalltalk-80 systems
In Smalltalk-80: Bits of History, Words of Advice
Addison-Wesley, 1983

[Ma1
D. Maier
A Logic for Objects
Oregon Graduate Center TR CS/E86-012, November 1986
Presented a t the Workshop on Deductive Databases and Logic Programming
Washington, DC, August 1986

Data and Knowledge Model: A Proposal

Maurice A. W. Houtsma Peter M.G. Apers

University of Twente
P.O. Box 217

7500 AE Enschede
the Netherlands

October 23, 1987

Abatract

The need to enhance databases with facilities to store and ma-
nipulate knowledge is growing. Cunently, most of the knowledge is
hardwired in the applications running on top of a database. Changing
the knowledge may require rewriting applications, possibly several be-
cause of redundancy. Obviously, there ia a need to have one repository
of knowledge, preferably represented in a declarative form. Several
papers on interfacing Prolog with a relational database have been pre-
sented. Ln this architecture, knowledge is represented in Prolog and
da ta in the database. Drawbacks are: inefficient query processing and
an artificial separation of modeled data and knowledge. Currently,
a t the University of Twente there is a research effort on integrating
knowledge and data. This proposal reports on ongoing research on
this topic.

Several knowledge representations exist, most of them lacking mod-
ularity. Therefore, for our Data and Knowledge Model (DK model) the
Entity-Relationship model is chosen as a bask, although we expect our
ideas to hold as well for other semantic data models. Below we will
discuss the main features of the DK model.

The DK model consists of entities, relationships, and ISA-links.
The latter are used to represent generabation. An entity consists of
three parts: attributes, rules, and constraints. An attribute may be an
ordinary attribute as in the ER model or it may be a virtual attribute
defined in the rule part. Queries addressing attributes will not notice
the difference. Attributes may be complex in the sense that they are
structured or they may represent sets.

Data and Knowledge Model, DRAFT

A model should capture the semantics of the world modeled at the
right abstraction level.

It should support modularity.

It should provide a good way of communication between the database
designer and the user.

It should allow for dynamic components, like virtual attributes.

Knowledge should be specified in a form that is clear to the designer
and the user of the system, eases explanation, and is easily modifiable.

The processing of queries should be handled efficiently.

In the development of our DK model we start from a database point of
view. This has the advantage of a strong theoretical background, availability
of well-founded semantic data models and the availability of large, reliable,
multi-user systems. Our model is able to treat data and knowledge in a
uniform and powerful way.

We use the Entity-Relationship model [5] as a basis for our ideas about
integrating data and knowledge in one model. The main reason is that it is a
well developed semantic data model that fulfills the first three requirements
mentioned above. However, we would like to stress that we expect our ideas
to hold for other semantic data models like e.g. [12] as well.

Besides normal attributes we allow virtual attributes in our model. These
attributes are not associated with a value, but with a rule that describes
how to compute a value for these attributes. However, queries addressing
the attributes do not notice the difference between normal attributes and
virtual attributes.

The rules that give definitions for virtual attributes are specified in the
form of Datalog-like clauses. This declarative way of specifying knowledge
rules eases the support of explanation facilities. Moreover, the optimization
of the handling of knowledge is not visible to the user but remains a separate
part of the system. By storing the knowledge rules with the associated entity
the modularity of the system is ensured. Finally, the model we have in mind
can be mapped onto the Relational Algebra extended with recursion [l, 2,
31. This will guarantee an efficient processing of queries.

Data and Knowledge Model, D R A F T

1.3 Entities

As described above entities consist of three parts; attributes, rules and con-
straints. Each will be described now.

1.3.1 Attributes

As said before, data by its nature is structured. Data are the basic facts
we know about real-world entities. Or a t least the basic facts we think
important enough to model. For instance, the data of employees could be:
employeenumber, name, address, job, department, salary. These basic facts
are represented by attributes in a data model.

Relational database systems are concentrated around structured data:
relations. With the introduction of the relational data model strategies were
developed to structure these data. The process of normalization structures
data in a way to avoid redundancy, and thereby ambiguity problems. Once
these structures are defined, they are intended to be stable over a long period
of time. The r e a n is that the Universe of Discourse, which is reflected in
the data structures, does not change very often. But the contents of the
database can change very frequently.

By the influence of new applications on database systems other demands
are made towards a data model. From CADICAM there arises a need to
have complex objects and sets as datatype, in modeling reality. Therefore
attempts are made to extend existing models with these requirements [ll],
or define new models that support them [9,10].

Besides requirements that arise through new applications, some existing
extensions have t o be dropped. Especially, because of the influence of logic
on databases, handling null values is not clearly understood. Besides that,
a t the moment there is no good semantics for null values. Of course, in e.g.
SQL there is a way of dealing with null-valued attributes, but this seems to
be rather ad hoc and there is certainly no clear semantics behind it.

Another restriction being made in present da ta models is that every
attribute of a tuple should have a fixed value. We allow -called virtual
attributes in our model. This means that instead of a value being associated
to an attribute, we also allow a rule to be associated with an attribute. This
rule has t o describe how to compute a value for the attribute. Such rules
should be given amongst the other rules associated with an entity, in the
rule part. This part will be described in the next section.

So, we have seen that the modeling of structured data is well developed
and can be captured by the notion of attributes. Recently, sets and complex

Data and Knowledge Model, DRAFT

stated that rules are Horn clauses, we will now make this more explicit. A
rule consists of a head and a body. The predicate name in the head of a rule
is the name of the virtual attribute the rule describes. The first argument
of this predicate is a variable denoting the key value of the entity under
consideration. When. the entity has a multiple key the first arguments of the
predicate will correspond with the key. The last argument of the predicate
in the head denotes the value assigned to the virtual attribute.

The body of a rule describes how to compute the value for a virtual
attribute. It consists of predicates, comparison operations and simple arith-
metic. We will now describe the mapping of the body of a rule onto other
components of our model.

Predicates in the body of a rule can map onto different types of compo-
nents. They can map onto attributes, virtual attributes and relationships.
The mapping between a predicate and an attribute is equal to the mapping
described above. The predicate name denotes the attribute involved, the
first argument(s) the key of the entity and the last argument the value of
the attribute. This is exactly the same for virtual attributes, because they
behave just like normal attributes.

A predicate maps onto a relationship if their names correspond. For
simplicity there is an order on the entities involved in a relationship. This
means the first argument (s) denotes the key of the first entity involved in the
relationship. The last argument(s) consequently denotes the second entity
involved the relationship.

Now that we have defined the matching between predicates and the other
components of the model we will describe how to form meaningful rules with
them. In other words, we will describe the semantics of rules.

The main question is what predicates are allowed in the body of a rule.
First of all an object can address its own attributes and virtual attributes
in the body of a rule, as described before. But it can also address attributes
and rules from elsewhere in the ISA-hierarchy. It will be allowed to address
components of objects higher in the hierarchy (more genera1 objects), but
also components lower in the hierarchy (more specialized objects). In this
last case it is not guaranteed that a value will be found, an object can be
specialized but this is not mandatory. Modeling will be very important: the
careful placement of rules. Attributes and rules will be placed as high in the
hierarchy as possible, at a most genera1 place.

Besides with attributes and rules from elsewhere in the ISA-hierarchy,
predicates can also match with attributes and virtual attributes from any-
where in the system. However, it is mandatory that the objects that own

Data and Knowledge Model, DRAFT

1.4 Relationships

Besides entities there appear of course also relationships in our model. The
sole reason for their existence is to connect entities, and therefore they can
be of a very simple nature. As soon as there is a need to let them have
(virtual) attributes, they should be made into entities.

We only model binary relationships, as is done by most people. To
simplify query processing we suppose an order imposed on the relationship.
This makes role names spurious. We do take into account the number of
times a particular entity can appear in a certain relationship. This models
the type of relationship (one-bone, one-t*many, many-ternany) and can
help answering some queries. As already discussed when describing the rule
part of entities, entities are represented by their key when appearing in a
relationship.

As opposed to semantic networks we do not take into account different
type of links. Relationships and ISA-links (discussed in the next section), are
the only type of links we consider. Of course, having different type of links
can sometimes supply extra information, but it can also lead to confusion.
When traversing long paths of various type of links the semantics can become
very unclear. Also, the inference process becomes more d s c u l t , having to
take into account which links can be traversed when, and what is their exact
meaning.

Although relationships are not allowed to have associated (virtual) attributes,
they are allowed to have associated constraints. The reason is that many
constraints are inherently part of relationships and are not in the right place
when put inside entities. Constraints associated with relationships are syn-
tactically exactly the same as those associated with entities.

Again, let us stress the fact that constraints are not enforced by the
system as they are specified here. They are only used to process queries,
and can in fact be looked upon as a kind of pre-deduced information about
entities involved in the relationships.

In our model, ISA-links are used to model generalization/specialization. We
believe, as many others, that it is a desirable concept. From a specification

Data and Knowledge Model, DRAFT

fie1d:STRING;
RULES

knows-of(ENR, {TOPIC)) t visits(ENR, CNAME) &
appearsin(CNAME, TOPIC) & field(TOPIC, F) A field(ENR, F).

END Researcher

The rule states that researchers know about all topics that have been
presented at a conference they visited, where the topic is inside their own
field. The curly brackets mean that all values of the variable TOPIC that
are found, are gathered in one set. When these brackets are not used, a
set of (enr, topicmame)-tuples will be presented to the user. Now, the rule
results in a set of (enr, {topicmame))-tuples.

ENTITY Associate ISA Researcher
ATTRIBUTES
date-of-hire:DATE;
duration-of-contract:{2, 4);
RULES

knows-of(ENR, TOPIC) t- manages(PR0F-ENR, ENR) A
knows-of(PR0F-ENR, <TOPIC>).

END hsociate

The rule states that an associate knows about all topics that the professor
who manages him knows about. Here the brackets around TOPIC denote
that it is a variable that denotes a set of values. Therefore, the result of this
rule will also be a set.

ENTITY Professor ISA Researcher
ATTRIBUTES

status:STRING;
RULES

knows-of(ENR, {TOPIC)) +- prog-comrn(ENR, CNAME) A

appearsin(CNAhdE, TOPIC).
CONSTRAINTS

salary > 80,000
END Professor

Data and Knowledge Model, DRAFT

BETWEEN Professor, min:3, max:20
AND Aasociate, rnin:l, max:l;
CONSTRAINTS
manages(PNR, ANR) A salary(ANR, X) A sa la ry (PN~, Y) A X < Y.

END

Here we see an example of a constraint associated with a relationship. It
states that the salary of a professor should exceed the salary of the associates
he manages.

As can be seen from the example above the use of ISA-links eases the
modeling. All (virtual) attributes from generalizations are inherited by spe-
cializations. Therefore it is e.g. not necessary to give a key to professor, this
key is already inherited from researcher. It can also be seen very clearly
that attributes and virtual attributes can be used in the body of rules inside
specializations. This can e.g. be seen in the rule part of associate, where a
virtual attribute of professor is used to compute an answer to the question
what topics an associate knows about. This example is visualized by means
of the Entity-Relationship diagram in fig. 1.

So, this example has shown some of the power of our Data and Knowledge
Model. The use of entities, relationships and ISA-links helps to model things
at the right abstraction level and it aupports modularity. Inheritance of
attributes allows to concentrate on data relevant to an object. The use of
dynamic components in the form of virtual attributes has been shown. Rules
that describe how to compute values for virtual attributes are inherited by
specializations, which are allowed to add their own definition to the rule.
This increases modeling power considerably. In section 3, the processing of
queries in our model is discussed along the lines of this aame example.

2 Recursive Views

In our model we also allow for views, in particular even recursive views.
Views represent another way of looking at the modeled entities. Therefore
they have no graphical representation in our model. In fact, they can best
be looked upon as rules describing how to look upon the data.

Views can be expressed as normal queries like: 'All associates that earn
between 20K and 30K". They can also be expressed as rules. Take as an ex-
ample the entity person and the relationship parent-of between two entities.
A recursive ancestor view can now be defined by the rule:

Data and Knowledge Model, DRAFT

anc-view(X, Y) + parent(X, Y) v
(parent(X, Z) A anc-view(& Y)) .

The variables denote the keys used in the relationship parent. They are
used to build an ancestor view that is presented to the user.

3 Queries and their Processing in the Data and
Knowledge Model

3.1 Introduction

Now that we have introduced our model in some detail and have shown
an example of its modeling power, we will concentrate on the processing of
queries. We will talk about the kind of queries that we foresee, and how we
can make optimal use of the facilities our model provides to solve queries.
An outline of a query processing algorithm will be sketched.

We will not describe a detailed query language at this moment. A query
language should be the final step in providing a complete system, but to
develop a full-fledged query language before the model has completely de-
veloped itself seems premature. Probably our query language will bear some
resemblance with e.g. [6].

3.2 Query Processing

In our system there are two main types of queries that can be posed.

One can ask the actual value of (virtual) attributes of entities. This
means that rules and constraints are used to compute values, and the
database system is searched for values.

One can ask how the answer to a query is obtained. This means that
relevant rules and constraints are shown to the user.

These two types of queries will now be handled respectively.

3.2.1 Value-oriented queries

When the user asks for the value of one or more (virtual) attributes, it is the
systems task to answer this query. It will therefore combine user supplied

Data and Knowledge Model, DRAFT

T h e n execute associated rule;
VX where ISA(E, X) D o search(X, Q);
W where ISA(Y, E) D o search(Y, Q);

Else VX where ISA(E, X) Do search(X, Q);
Fi

Fi
END

As can be seen from the algorithm sketched above, the inference pro-
cess stops as soon as a real attribute is encountered. As long as nothing
is encountered, the generalization hierarchy is traveled upwards in search
for the attribute. As soon 89 a virtual attribute is encountered the gener-
alization hierarchy is traveled upwards as well aa downwards. After all, for
the instantiations that can be specialized a value may be found in a more
specialized entity as well. Notice that the execution of rules can also lead
to a separate inference process, that uses the same search procedure.

Now let us take some example queries and show how they are solved. As
a first query we take the following: "What is the salary of professor Persa?".
The inference process atarts in the entity type Professor, and because the
answer cannot be found there it is moved to the entity type Researcher.
Here it is noticed that salary is an attribute of Researcher, and the database
can be searched for the value of the attribute salary that is inherited by
professor Persa. The inference process is stopped now.

Another example is the query 'What topics does researcher Smith know
about". It is noticed that knows-of is a virtual attribute of Researcher and
therefore the corresponding rule has to be executed. This means looking a t
the conferences Smith has visited and selecting all the topics presented there
that are associated with his field. These are then gathered into one set and
give part of the solution. If Smith happens to be a professor as well, the
rule that provides answers to knows-of for professors will also be executed.
The answers are then combbed and presented to the user.

Our 1-t example will show even more clearly the power of the model
and the use of inheritance of rules. Let us consider the question "What
topics does associate Wesson know aboutn. The inference process starts by
executing the rule for knows-of associated with Associate. This rule leads to
two different inference processes: the knows-of rule for Professor is executed,
and the knows-of rule for Researcher is executed for the specific professor
who manages Wesson. These answers are combined and form part the total

Data and Knowledge Model, DRAFT

able to explain the reason for deductions to the user. However, there still is
some more research to be done on this subject. We hope we can profit from
Expert System developments here.

4 Mapping from the Data and Knowledge Model
onto the Database System

Although our Data and Knowledge Model provides considerable modeling
power and query processing facilities it is of a conceptually simple nature.
Therefore the mapping of our Data and Knowledge Model to an underlying
relational database system is rather straightforward. The entities, with their
attributes, and relationships can be mapped onto relations. Keys should be
propagated downto specializations. Queries can then be translated into
normal relational algebra operations like joins [14]. Rules can be mapped
onto Relational Algebra plus recursion. Our work on this subject [I, 2, 31
can be very helpful in this respect.

Although an architecture for a system to support our Data and Knowl-
edge model still has to be investigated, we have developed some ideas. Es-
pecially the use of parallel systems like in [S] seems to be very promising.

5 Conclusion

In this paper we have presented a Data and Knowledge Model that inte-
grates the representation of data and knowledge. A declarative way of spec-
ifying knowledge, in the form of Horn clauses, is chosen. The main concepts
of the DK model are modularity of modeling, generalization/specialization
hierarchies, dynamic components in the form of virtual attributes and in-
heritance of attributes and knowledge rules. Queries that are value-oriented
and queries that ask for deductive steps performed are supported. Because
of the straightforward way of mapping the DK model onto Relational Alge-
bra plus recursion, efficient query processing is possible.

[I] P.M.G. Apers, M.A. W. Houtsma & F. Brandse, "Extending a Relational
Interface with Recursion," Technical Report, Twente University of Tech-
nology, Enschede, The Netherlands, 1986.

The Semantics of Update
in a

Functional Database Programming Language
R.S.Nikhi1

MIT Labor at ory for Computer Science

545 Tecllnology Square,
Cambridge MA 02139, USA

Arpanet: nikhil@xx.lcs.mit.edu

Databases that can store complex, nested objects may suffer performance penal-
ties for their generality. Parallelism may be a solution. However, we need
database languages that can express parallelism, and implement at ions that can
exploit it. Functional languages and and their dataflow implementations are one
approach, at least for queries. However, it has not been easy to express database
updates in functional languages. In this paper we present a model for databases
and updates in a functional language, with an intended dataflow implement a-
tion. The update language is declarative, parallel, and determinate, and can be
extended to model historical data.

1 Introduction

The dichotomy between databases and programming languages is one of expedience. Ide-
ally, it should be possible for arbitrary objects created and manipulated by programs to be
persistent. But today, we know how to implement persistence efficiently only by restricting
the structure of persistent objects and the operations that can be done on them.

For example, in current relational database systems, persistent objects must be flat,
rectangular tables containing scalar values, and they must be manipulated only by a given
set of relational operations. It is generally not easy to change the structure of the tables
or to write arbitrary programs to manipulate them. Because of these restrictions, the
database implementor can pre-~lan disk layouts for the tables, can create indexes that
use knowledge of these layouts, and compile queries so that they exploit this information
thoroughly.

'This research was done a t the MIT Laboratory for Computer Science. Funding for this project was
provided in part by the ~ d v a h c e d Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-84-I<-0099.

When the user enters an express ion , it is evaluated in the current environment, and
an answer is printed. Viewing the environment as a database, this is a database
q u e r y .

We model a database on exactly this idea. A database is an environment of bindings;
update transactions specify new environments in terms of old; and queries are simply
expressions evaluated in the latest environment. Thus, the operation of a single-user
database system can be specified as a function from a list of transactions to a list of
responses:2

Def dbsystem db (cons xac t x a c t s) =
(r e s p , nev-db = eva l db xac t

I n
cons r e s p (dbsystem new-db x a c t s)) ;

dbsys t em empty-db xac t s

The phrase (cons x a c t x a c t s) is a pattern that matches the input list, binding the name
xac t to the first transaction and x a c t s to the rest of the list of transactions. Xact is eval-
uated in the database environment to produce a response and a new database environment
(of course, for query transactions, the new database will be the same as the old). Finally,
we construct and return the list of responses, beginning with this response and followed
by the remaining list of responses obtained by running the remaining transactions against
the new database.

A database shared among multiple users needs a little more packaging: we need a
m a n a g e r that non-deterministically receives transactions from individual users and merges
them into a single list of transactions as input to dbsystem. The responses from dbsystem
must then be despatched to the appropriate users. The details are outside the scope of
this paper; the interested reader is referred to [9] or [3] for suggested solutions.

Each binding in the database associates a name to a database type or to a value of
arbitrary type. The type structure is:

Primitive types: V (void), N (numbers), B (booleans), S (strings), SYM (symbols) ...

w e use Id notation here. As in most modern functinal languages, application of a function f to argument
a is written by juxtaposition: f a. Blocks (analogous to l e t or where expressions) are written

{ statement ;
. ..
s t a t ernent

In
expression)

The left-hand sides of statements can be patterns that match the structure of the values returned by the
right-hand-sides.

Course : TYPE
CName : Course <=> S
CUnit s : Course => N
CPrereq : Course *<I>* Course

Course is another database type. CPrereq maps a Course into a set of Courses that
are its prerequisites. "' CPrereq" maps a Course into a set of Courses for which it is a
prerequisite.

The (type of the) rest of the database:

Enrollment : TYPE
EGrade : Enrollment => S

S-Enroll : Student <=>* Enrollment
C-Enroll : Course <=>* Enrollment

S-Enroll maps a Student into the set of his Enrollments, while "- S - ~ n r o l l " maps an
Enrollment into the corresponding Student.

The database type Enrollment (with associated functions) was introduced to model
the event of a student enrolling in a course, which allows associating various data with
that event, such as grade, date of enrollment, name of supervisor who approved it, etc. An
alternative strategy would be to define the following functions directly on Students and
Courses:

Takes-Courses: Student *<=>* Course
Grade : (Student ,Course) -> S

In conventional database terminology, our database types correspond to distinct record
types. "=>" corresponds to an ordinary record field, whereas "<=>" corresponds to a record
field that is also a key. The other indexed types correspond to one-to-many and many-to-
many relationships, usually obtained by set owner/member links in CODASY L databases,
and by joins in relational databases.

2.1 Queries

Queries are arbitrary applicative expressions evaluated in the database environment. A
very powerful notation for expressions on collections is the "set comprehension" notation
invented by Turner [14,13]. This notation can be regarded as a significant generalization
of relational calculus languages like SQL.

For example, here is a query to find the names of all special-status students taking
15-unit courses:

< e-15,special e = (CUnits (- C-Enroll e) == 15)
and (SStatus (- S-Enroll e) == " spec i a l ")

I n
map (compose SName (- S-Enrol l))

(f i l t e r e-15,special
(a l l Enrol lment)) 1

e-15,special is a predicate that decides if the course related to enrollment e has 15 units
and the student related to e has special status. Using it, we filter all enrollments, and
map the composition of SName and S-Enroll over the remaining enrollments to produce
the desired set. This operator-based view of functional query languages and methods to
implement them are explored at length in [12].

Because of our parallel model of computation, the enumeration of enrollments, the
filtering and the final mapping are all overlapped in a pipelined manner (see [Ill).

The function STotalUni ts whose type was shown in the database environment is an
ordinary function. Here is a possible definition for it:

Def STotalUnit s s =
f o l d (+) 0

C CUnits (- C-Enroll e) 1 e <- S-Enroll s 1

i. e., when applied to a Student , it computes that student's total units using other database
functions. This is sometimes called a "derived function7' in the database literature.

Here is a recursive query that checks if the course "6 . O O 1 l l is directly or indirectly a
prerequisite for the course "6.004":

< q c l c2 = i f (c1 == c2) t hen t r u e
e l s e f o l d (o r) f a l s e (map (q c1) (CPrereqs c2)) ;

In
q (- CName "6.001") (- CName "6.004"))

Note that one mixes indexed and ordinary functions freely. Definitions for ordinary
functions may use recursion, conditionals, etc. In short, the query language is a complete,
high-level programming language.

3 Operations on Indexed Functions

Indexed functions differ from ordinary functions in that they are defined incrementally
with many statements, rather than in a single statement. An indexed function is first
created using the "empty" construct, at which point it has an empty domain (undefined
everywhere). It has zero information content, and is said to be "open". As the transaction

f [el] = undef

specifies that (f v) is always undefined. Any other attempt to define f at v is an error.

The treatment of <=> is similar. For an indexed function f : t 1 <=> t 2 and expressions
e l : t 1 and e2 : t 2 that evaluate to v and w respectively, the statement:

defines (f v) to be w and (^ f w) to be v. It will succeed only if f was previously
undefined at v and if (^ f) was previously undefined at w.

For an indexed function f : t 1 <=> t 2 and an expression e l : t 1 that evaluate to v,
the statement :

f [e l] = undef

specifies that (f v) is always undefined. Any other attempt to define f at v is an error.

3.2 Multiple-Valued Index Functions: =>*, <=>* and *<=>*

Multiple-valued indexed functions initially map all arguments to l , , t , the undefined set.
As incremental definitions at some argument v are executed, the mapping improves to
(i n s e r t w 1 l Se t) , (i n s e r t w i (i n s e r t w2 l,,t)), and so on. If, at the end of the
transaction, (f v) is

(i n s e r t w l (. . . (i n s e r t wn lSet)))

then it becomes closed with those values, i. e., (f v) is

(i n s e r t w i (. . . (i n s e r t wn ~ m p t y s e t)))

for subsequent transactions.

For an indexed function f : t 1 =>* t 2 and expressions e l : t i and e2 : t 2 that evaluate
to v and w respectively, the statement:

f [ell += e2

extends the definition of f so that (f v) includes w.

Again, as we shall see later, in update transactions a new f : t 1 =>* t 2 automatically
inherits mappings from an old version unless specified otherwise. To inhibit this, for
expressions e l : t 1 and e2 : t 2 that evaluate to v and w respectively, the statement:

f [e l] -= e 2

database environment itself, which, for uniformity, can be regarded as an indexed function
of type SYM => o b j e c t . The special symbol "db" in the database environment evaluates
to the database environment object itself.

An update transaction is a program that specifies the new graph in terms of the old.
At the beginning of the transaction, every node in the graph has a new "shadow" version.
Nodes corresponding to indexed functions are open and empty, i. e., with no outgoing edges
in the graph. If e is an expression that refers to an object in the old graph, then "new e"
refers to its new version (thus "new db" refers to the new database environment itself).
The update transaction contains incremental definitions for the new versions of objects.
At the end of the transaction, i. e., when the program has terminated, the new version of
each object inherits any old contents that were not incrementally redefined, after which it
becomes closed.

The new extension of a type, e.g., (new (a l l S t u d e n t)) is Lset until the end of the
transaction, when it becomes closed, containing all objects of that type that are present
in the new version of the database.

4.1 Examples

An update to increase the number of units for the course 6.006 by 3 units:

(new CUni ts) [(^ CName "6.006") 1 = (CUnits c) + 3

The update consists of a single statement that specifies an incremental definition of the
new version of the indexed function bound to CUnits. The new version differs from the
old in that the course referred to by "^ CName "6.006"" is now mapped to a number 3
units greater than before.

An update to change the name of student John Xiao to John Zhao:

(new ~ ~ a m e) [^ SName "John ~ i a o "] = "John Zhao"

An update to increase the units of all courses by 3:

(f c = ((new CUnits) [cl = (CUnits c) + 3 1 ;

mapdo f (a l l Course))

The first statement defines a temporary function f that increases the units of a course by
3. The second statement applies this to all courses (mapdo is like map in that it applies f
to each course, but is different in that there are no results to be returned). In our parallel
model of computation, all the applications of f can be performed in parallel.

An update to remove a grade erroneously recorded for John Zhao in the course 6.001:

record-grades Cn SnGs =
f (Sn,G) = e = theEnrollmentFor Sn Cn;

(new EGrade) [el = G) ;
mapdo f SnGs) ;

(new db) ['record-grades] = record-grades 1 ;

The first statement defines the function value itself, and the second statement records it
in the new database.

Another update introducing a function that can be used in subsequent transactions:
given a student name and a course name, it adds that enrollment:

(add sn cn = s = a SName sn ;
c = a CName cn ;
e = make Enrollment () ;
(new S-Enroll) [s] += e;
(new C-Enroll) [c] += e) ;

(new db) [' add] = add 3

Again, the first statement defines the function value itself, and the second statement records
it in the new database.

An update introducing a function that, given a student name and a course name, deletes
that enrollment:

(drop sn cn = (s = ^ SNme sn ;
c = ^ CNme cn ;
e = theEnrollmentFor sn cn ;
(new S-Enroll) [sl -= e ;
(new C-Enroll) [c] -= e ;
(new EGrade) [el = undef) ;

(new db) ['drop] = drop)

Note that the way to remove an object from the database is to ensure that there is no
function dehed on it. The object then disappears from the database.

5 Discussion

5.1 Parallelism

The major issues in designing a database programming language with parallelism are:

3 7 7

by name of creator, assuming that dbsystem records the name of the creator of each
database environment.

by arbitrary property, i.e., the most recent database environment in which a given
boolean expression evaluates true.

Once we can specify particular environments, the phrase:

with environment-expression
expressaon

can be used to evaluate an expression within that environment. Thus, we can write queries
and updates that depend on any or all previous states of the database.

5.3 Concurrency Between Transactions

The parallelism that we have focused on so far is all within a single transaction. Re-
ferring to the database system model of Section 2, the parallelism is within the phrase:
(eval db xact) . Within dbsystem, the result database from one transaction is used as
the environment in which to evaluate the next transaction.

This is not to imply that there cannot be any parallelism between transactions. First,
since a closed database environment is never subsequently modified, a read-only transac-
tion (query) can continue using an old database as long as necessary, without holding up
subsequent update transactions. Second, even update transactions can be overlapped: the
lenient semantics of our language allows (eval db xact) to return a value (the response
and the new database) immediately, before the transaction has completed (this behavior
is also exhibited by languages with lazy evaluation). This permits dbsystem to begin
evaluating the next transaction immediately.

A problem arises due to aborted transactions, which can cascade through all subsequent
transactions that have already begun executing. To avoid this, one will have to employ
the usual solutions: either prevent multiple transact ions from overlapping (pessimistic), or
allow them to overlap, keeping track of which parts of the database they actually see, so
that an abort does not cascade through non-interfering transact ions (opt imisit ic).

5.4 Comparison With Other Approaches

The top-level definition of the database system (dbsystem) that we presented in Section
2 is almost identical to other "functional" views ([9], [2]). The differences arise in the
meaning of the phrase (eval db xact)- what is a database, what is a transaction, and
what is the e v a l function?

Future Directions

The work described here is a preliminary attempt to design a declarative update language
within the framework of a functional database system. There are many details to be
completed, many issues still to be investigated. As a vehicle for this research, we are
constructing a prototype of the system. This is initially implemented in Lisp to take
advantage of Lisp's rich programming environment; later we expect to incorporate it into
Id and to run it on our dataflow multiprocessor (emulated for now, a real one later). Until
we have more experience with writing applications in our prototype, we cannot make a
convincing judgment as to whether it is easy or difficult to express updates in this model.

Despite the title of this paper, what we have presented is by no means a formal seman-
tics, and until that event, we cannot possibly be precise in our claims about parallelism,
determinacy, etc. Once the language has reached a reasonably stable point, we expect to
extend the formal semantics of Id, expressed as rewrite rules [ll] to cover this database
model.

There is a disturbing lack of type-orthogonality in the indexed types- currently, the
domain and range of an index type can only be database or primitive types. We are taking
this position currently for pragmatic reasons- it is not clear what it means to index on
tuples, sets, nested structures, etc.

In our model, currently an object is deleted automatically from the database when it
no longer participates in any mappings (no query can be asked of it). The reason for this
choice, rather than a command to delete an object directly, was that it is not clear what
happens to the mappings in which the object participates. However, removing it from all
mappings can be quite tedious to specify. This issue requires more investigation. A more
difficult question: when can a type be deleted from the database, i.e., what happens to
existing objects of that type, mappings on those objects, etc.?

The transaction language, like Id with I-structures, is not a purely functional language
any more, though it does retain the parallelism and determinacy (and, we claim, declar-
ative nature) of functional languages. The loss of referential transparency is not without
cost: it can inhibit certain optimizations that are possible in functional languages. In
Id, we have developed a programming methodology whereby we use I-structures only to
deiine new, efficient functional array abstractions, after which the bulk of the program is
written functionally [4]. Can such a methodology be extended to deal with our database
extensions?

In a related project, we are looking at architectural and low-level programming issues
in implementing arbitrary object persistence in the Tagged-Token Dataflow architecture,
assuming explicit commands to store and retrieve objects. The gap between that imple-
mentation and the database model presented here is yet to be bridged.

[14] D. A. Turner. The semantic elegance of applicative languages. In Proc. A CM Confer-
ence on Functional Programming Languages and Computer Architecture, Portsmouth,
New Hampshire, pages 85-92, ACM, October 1981.

1 Introduction

The use of modularization and information hiding is widely accepted as being central to

managing the complexity of large software systems. The past decade has witnessed the

development of several programming languages which provide features for modularization

and separate compilation, e.g., A d a [USDD83] and Modula2 [Wirt82]. However, the capa-

bilities of these languages are no t sufficient to support the evolution of large and complex

systems where many versions exist. Research has lead to the development of a variety of

tools which suppor t version control, software reuse, and system evolution, e.g., [Tich85],

[Notk85] , [Estu85] , [Prie86], [Bern87], [Nara87], [Leb187] and. [Wink87] .

This report introduces a simple yet formal model of module interconnection and ver-

sion selection which incorporates and extends many current ideas in the area. T h e model

provides a conceptual basis for the construction of modules from submodules , and for the

selection of versions. Our current focus is to present an abstract model which is suitable for

theoretical investigation. Ultimately the model is intended to provide a basis for program

development tools, although the concepts may then be formulated in a different manner .

Also, in this report we do not address the important issue of "manufacturing" o r "deriv-

ing" software objects, in the sense of M A K E [Feld79] and the models presented in [Bori86]

and [Pola86]. We believe that o u r model can be integrated with one such as [Bori86] to

provide a comprehensive framework for configuration management.

T h e primary innovation of this report is a new formalism for specifying the structure of

a system called a module interconnection grammar (M I G) . A M I G is essentially a contexbfree

grammar where the symbols are the names of module families, and tlie productions

represent ways of constructing modules from submodules. A M I G tree, corresponding to a

derivation tree, represents one possible way of constructing a system. A system instance

tion 4 we show how M I G trees can be reduced to a minimal form which concisely describes

the flow of resources .between module instances. In section 5 we introduce the notion of

equivalence be tween M I G s and equivalence-preserving transform ations o n MIGs . Finally,

in section 6 we briefly discuss attributes and constraints.

2 Overview of the Model

I t is generally accepted that large software systems should be decomposed into modules

which share resources, such as procedures, functions, types, and variables, among them-

selves. While a variety of different module interconnection schemes have been proposed,

no consensus among them has emerged. We adopt a scheme, based primarily o n the

module interconnection language NuMIL[NaraS5], which is particularly suitable for pro-

gramming in the large. There are two kinds of modules in this scheme; atomic modules and

compound modules. Atomic modules are indivisible units in which resources originate and

are used. Compound modules, which are composed of submodules, provide structure to

the system. Every module m u s t explicitly state which resources it imports and exports. A

compound module provides a scope o r name space in which the imports and exports of its

submodules can be matched.

I t is instructive to compare this approach with the one taken in programming languages

such as Ada . Consider the following skeleton of an A d a program unit.

where the symbols are the names of module families and the productions represent ways of

constructing modules from submodules. The above example describes a M I G with two pro-

ductions. In general, there may be many ways of constructing a module, for example,

M A I N -+ A P
M A I N * A Q
P -+ P-DRIVER 3
Q - Q-DRIVER C

provides two ways of constructing MAIN.

A M I G is always interpreted with respect to a signature which describes the modules

which appear in the system. In particular, a signature names the imports and exports of

each module. For convenience, we often write the imports and exports of a module directly

above and below its occurrence in a production. F o r example,

doit f oo doit
MAIN* A P
helper helper f oo

do it doit hoo
P -+ P-DRIVER B

f o o hoo f o o

states that M A I N exports a resource doit, which originates in P-DRIVER, and imports a

resource helper, which is used in A . There are various consistency conditions o n produc-

tions which ensure that resources are introduced appropriately. For example, the production

M A I N * A P is consistent because the export of M A I N and the imports of A and P are

uniquely provided. I t is possible to specify that resources be renamed within a scope, for

example, M A I N -+ A [f oo /goo] P specifies that the resource f oo in A is to be called goo

within the scope.

A M I G tree, loosely analogous to a derivation tree, represents one possible way of con-

structing a system. F o r example, the following MIG tree represents one possible way of

constructing MAIN.

node root is included to represent the imports and exports of the system as a whole, as

described by conditions 5 and 4 respectively. The following is easily verified.

Proposition:
F o r a M I G tree T , the graph red(T) defined above is a R F G .

Note that red(T) cannot be constructed by matching imports and exports of the leaves

of T directly, since the same resource name may be used several times in different contexts.

Moreover , if resource name changes are incorporated, then renaming might occur a t each

edge of a witness path z I , . . . , 4, .

T o simplify compilation in the programming language Ada, cycles are n o t permitted in

the import/export relationships between modules. This motivates us to study those M I G

trees T for which red(T) is acyclic. W e now give a sufficient condition f o r acyclicity

Definition:
A production A-B1 - - . B, is acyclic if the import/export relationships between

B1 . . B, are acyclic.

Proposition:
If all productions used in constructing T are acyclic then red(T) is acyclic.
Proof Essence:
If red(T) is cyclic then the production used at the least common ancestor in T of all modules
participating in the cycle m u s t be cyclic.

T h e converse of this proposition is n o t true: it is possible to construct a T using a cyclic

production for which red(T) is acyclic, as the following example shows.

If the members of a module family have little in common, then such constraints cannot be

imposed. In this case, integrity checking m u s t be performed after particular module

instances have been selected.

4 Reducing MIG trees

Suppose that T is a M I G tree, and I is an instance of it. Intuitively, T describes the

manner in which resources are interchanged among module instances given by I. In this

section we introduce an abstraction called "resource flow graphs" for representing this link-

age information directly, and describe how a MIG tree T can be "reduced" to a resource

flow graph r e d (T) . Intuitively, T and r e d (T) specify the same flow of resources -- I can

also be interpreted as an instance of red(T) -- and differ only in the structural information

they provide. This formalizes the notion that the compiled version of a large software sys-

tem may contain less structural information than the representation maintained by the pro-

gramming environment.

Definition:
Le t S = < M , R , i , e > be asignature.
A resource flow graph (RFG) for S is a directed graph H = < W , F , p , p> where

< W , F > is a directed graph (duplicate edges are permitted.);

p is a mapping from W to M , i.e., a node labeling,

p is a mapping from F to R , i.e., an edge labeling,

which satisfies the following conditions:

for all edges f from z to y, p (f) ~ e (p (z)) and ~ (f) ~ i (p (~)) ; and

f o r all edges f and g Y, p (f) # p (g) .

Definition:
L e t G = < S , P , C > be a M I G over the signature S = < M , R , i , e >
A M I G tree of G is a labeled tree T=< V , E , X > where

< V , E> is a tree (i.e., a directed, rooted, strongly acyclic graph with vertices
V and edges E contained in V x V) and

X is a function from V to M , i.e., a node labeling,

which satisfies

fo r root w, X(w)=C;

if v is an internal node with children vl , ... , v,, then X(v)--+X(vl) - . - X(V,)EP; and

if v is a leaf node, then X (v) ~ a t o m (M) .

Each node of a MIG tree corresponds to a module and a node's children correspond to

submodules of that module. The same module name may occur more than once in a sys-

tem -- X need n o t be 1-1 -- and there may be distinct (non-isomorphic) subtrees below each

occurrence.

Our n e x t major s tep is to define "instances" of a M I G tree, i.e., actual pieces of code

structured according to the tree. To do this, we need the notion of a library of module

instances.

Definition:
A library is a 4-tuple L = < N , R , i , e > where

N is a se t of abstract names called module instance names;

R is a se t of resource names; and

i and e are functions from N to the powerset of R ,

which satisfies the following condition.

Module consistency: For all nc N, i(n) n e (n)= {).

Definition:
A module interconnection grammar (M I G) is a triple G= <S , P , C > where

S= <M , R , i , e > is a signature;

P is a s e t of productions (o r rules) of the form p=A+B1 - - . B, where n l l and
Aecomp(M) and B 1 , - . . , B,EM; and

C E M is called the root module,

which satisfies the following consistency conditions:

Non-recursiveness:
T h e r e is n o sequence of rules p l , - . - , p,(n>l) where fo r each j , 15 j s n , the
head of pj+l occurs in the tail of p i , and the head of p l occurs in the tail of p,.

Resource completeness:
n n

F o r each rule A+B1 - - . B,EP, U i (B k) u e (A) E W e (B k) u i (A)
k=l k = l

Resource uniqueness:
F o r each rule A+B1 . . . B,EP, the se ts i (A) , e (B1) , . - , e(B,) are pairwise disjoint.

T h e first condition rules o u t the possibility of a module appearing within itself. T h e

second condition guarantees tha t each resource required in a scope is provided. (This

resembles condit ions o n resources specified in [Tich85] .) The third condition guarantees

that every resource is uniquely provided, i.e., tha t name conflicts d o n o t occur. Note tha t

a b m i c module names are analogous to terminal symbols and compound module names are

analogous b nonterminal symbols.

A n u m b e r of generalizations of this definition are possible. F o r example, the distinc-

tion between a b m i c and compound module names could be dropped. T w o o t h e r generali-

zations are presented in the remarks below.

Remark 1

Modules which are developed independently may n o t be consistent in their naming of

shared resources and s o m e mechanism for renaming resources within a scope m u s t be pro-

vided. W e define a name change junction o n a s e t of resource n a m e s R to be a mapping

r , t 9 , f P J ~

MAIN -t A B
P 9

L

This system exhibits very poor structure; i t is hard to imagine a circumstance where the

atomic modules should be grouped in this way. In fact, a criterion of good design might be

that if red(T) is acyclic then all productions used in constructing T should be acyclic.

5 Equivalence of MIG 'I'rees and MIGs

A fundamental research issue concerns the development of a general theory of system

evolution. In this section we indicate o n e direction that can be pursued in this area. In par-

ticular, we introduce a notion of equivalence be tween MIG trees, based on the R F G s associ-

ated with them, and then extend this notion to equivalence between MIGs. This allows us

to define several local structural transformations o n M I G s which preserve equivalence. We

expect that, in the context where resource renaming is permitted, a natural extension of

these transformations can be defined which is complete in the sense that i t allows a M I G to

be transformed into any equivalent MIG.

We begin with the definition of equivalence between MIG trees.

Definition:
L e t G be a M I G and let G be a M I G which is identical to G except tha t the order
of nonterminals within s o m e production p has been permuted. T h e n G is the result
of reordering G a t p .

I t is intuitively clear that reordering preserves equivalence.

W e n o w introduce a transformation which allows a collection of modules to be encap-

sulated together into a single module.

Definition:
L e t S=<M , R , i , e > be a signature, G = < S , P , C> be a M I G and PEP
have the form A+B1 . - . BjBj+l . . . Bn. L e t G=<S , P , C> be the M I G which
is identical to G except that

1) a n e w module name X has been added to S;

2) the production p in P has been replaced by A 4 B 1 - . BjX;

3) the production X+Bj+l . . . Bn has been added to P ; and

4) ;(x)= U i (B k) - U e (B k) ; and B(M)= U e (B k)
k ~ + 1 k =j+l k++l

Then G is the result of nesting Bj+l , - . . , B,, a t p

Proposition:
Nesting preserves 'equivalence.
Proof sketch:
Show G <G and GL G. In both cases, show by construction tha t f o r any M I G tree
g e n e r a t e d b y the dominated grammar , there is an equivalent M I G tree generated
by the dominating grammar.

Note that an arbitrary collection of modules can be nested by first applying reordering.

W e n o w define "unnesting", the inverse of nesting. A general definition of unnest ing

is possible only if renaming is permitted, since the exposure of hidden n a m e s may result in

name conflicts. T h e following restricted definition, in which unnest ing is permit ted only if

there are n o name conflicts, indicates the general approach.

modules, adding new imported and exported resources to a module, and changing the

source of a resource from one module to another.

0 Attributes, Equations, and Constraints

In this section we briefly discuss adding attributes, equations, and constraints to o u r

scheme. In this more general context, instances of a module family are distinguished by

attributes which describe their characteristics. Attributes can be associated with modules

and/or particular resources in modules. Attribute values may be given by the programmer,

derived from the code, o r computed using attribute equations. Equations can be associated

with productions and, in some cases, with the resource attributes of atomic modules. If I is

a system instance, the atomic attribute values and the equations together imply attribute

values for the compound modules of I, and ultimately the root of I . I t is possible to

impose constraints o n attribute values that limit which instances are appropriate in a particu-

lar circumstance. The process of constructing a system instance entails selecting module

instances which satisfy these constraints.

We now present three examples which illustrate o u r general approach, and indicate the

kinds of research problems we hope to address. For this discussion we focus on a simple

MIG containing the one production

join
format so rt join f ormat

QUER Y-PR OC -L SORTER JOIl\iGR FORMATmR
sort

format

which we abbreviate as QP -t S J F . This corresponds to a simple relational database

query processor. We suppose further that we have a library containing module instances S1

and S 2 which implement 3; J1, J2 and J3 which implement J; and F1 and F2 which imple-

m e n t F

I n the present situation, i t is also possible to use a t o p d o w n computation to infer con-

straints o n submodules f rom constraints o n the roo t module . T o illustrate, suppose tha t we

are interested in finding all system instances I which run o n a VAX. This is expressed

using the constraint QP.tmz{VAX}. F r o m the equation we see tha t a system instance will

satisfy this if and only if the following three constraints are satisfied:

S. tm 2 {VAX}
J . tm 2 { VAX}
F. tm 2 {VAX}

Using this characterization, we easily see tha t the s e t of system instances which run o n the

VAX contains precisely <S1, Jl1F1>, <S1, J1 ,FZ>, <S2,J17F1>, and <S2, J l , F 2 > . W e

note tha t this top-down approach to finding system instances is closely related to that of

Winkler [Wink87] , although in the present context i t is more restricted. Also, i t suggests

tha t in a practical implementat ion of a system library, efficient access to module instances v ia

attribute values should be provided.

In the case of the attribute tm, satisfaction of the constraint QP.tm2{VAX) is accom-

plished by the submodu les in an essentially independent manner . In o u r n e x t example, we

present an equation which forces the attribute values to interact. Specifically, suppose tha t

an attribute mmu for main-memory-usage is defined fo r the three atomic modules , and sup-

pose tha t the equation

QP. mmu = J. mmu +max (S. mmu ,F . mmu)

is associated with the production. T h e constraint QP.mmu <lOOK now restricts attention to

system instances I such tha t I(J.mmu)+maz(I(S.mmu),I(F.mmu)) <100I(. One way to

find such instances is to use a backtracking algorithm. A fundamenta l direction for o u r

research is to explore o the r approaches to finding these instances.

a back-tracking approach.

The above discussion provides a bottom-up mechanism for checking whether con-

straints are satisfied. In some cases, a topdown approach can be used to infer constraints at

the leaves which are implied by constraints at the root. Algorithms based o n dynamic pro-

gramming can also be used. In general, the problem of efficiently inferring constraints and

selecting system instances which satisfy them is an open research problem.

References

[Bern871 Bernard, Y., M. Lacroix, P. Lavency, M. Vanhoedenaghe, Configuration manage-

m e n t in an open environment. Porc. 1st European Software Engineering Conf,, D e Stras-

bourg, France (September 1987), 37-45.

[Bori86] Borison, E. A model of software manufacture. In Proc. of the Intl. Workshop on

Advanced Programming Environments, IFIP WG 2.4, Trondheim, Norway (June 1986), 197-

220.

[Estu85] Estublier, J. A configuration manager: the Adele database of programs. Workshop

on Soft. Eng. Env. for Prog. in the Large, Cape Cod, June (1985), 140-147.

[Feld79] Feldman, S.I. M A K E - A program for maintaining computer programs. Software -

Practice and Experience 9 (1979), 255-265.

[Katz87] Katz, R., Managing change in a computer- aided design database. Proc, Intl. Conf.

on Very Large Data Bases, Brighton, England (September 1987), 455-462.

[Leb187] Leblang, D.B. a i d Chase, R.P. Jr., Parallel software configuration management in a

network computing environment. IEEE Software (1987) to appear.

407

A DML f o r Complex Objec t s *

M . Lacro ix and M. Vanhoedenaghe

P h i l i p s Research Laboratory, B rus se l s
Av. Van Bece laere , 2 , box 8

B-1170 B rus se l s , Belgium

ABSTRACT

A d a t a manipu la t ion language f o r handl ing complex o b j e c t s
t h a t a r e r ep r e sen t ed a s s t r u c t u r e d va lue s i s d i s c u s s e d . The
language i s s t r o n g l y typed and c o n t a i n s p r i m i t i v e s f o r manipu-
l a t i n g sub types and union t y p e s i n a more t r a d i t i o n a l framework
t h a n o b j e c t o r i e n t e d languages . I t s f u n c t i o n a l s t y l e f a c i l i -
t a t e s i t s i n t e g r a t i o n i n g e n e r a l purpose programming languages .

I n t r o d u c t i o n

Engineer ing a p p l i c a t i o n s r e q u i r e da t abase systems o f f e r i n g o t h e r
f a c i l i t i e s t h a n t hose a v a i l a b l e i n c u r r e n t commercial systems. A key
requirement i s t h e suppor t of complex o b j e c t s , i . e . d a t a s t r u c t u r i n g f a c i l -
i t i e s r i c h e r t h a n t h o s e o f f e r e d by f l a t d a t a models such a s t h e r e l a t i o n a l
and e n t i t y - r e l a t i o n s h i p models. The ADDL d a t a model [I] , whose DML i s
p r e sen t ed i n t h i s paper r e l i e s on c l a s s i c a l c o n s t r u c t o r s such a s s e t , l i s t ,
n- tuple , mapping, union, and r e c u r s i v e combination t h e r e o f . Although i t i s
no t a f l a t d a t a model, i t i s n e v e r t h e l e s s s i m i l a r t o t h e r e l a t i o n a l model
i n t h a t it r e p r e s e n t s eve ry th ing a s va lue s i n t h e da t abase .

Another major requirement of eng inee r i ng a p p l i c a t i o n s i s t h e a v a i l a -
b i l i t y of t h e d a t a manipu la t ion o p e r a t i o n s a t t h e a p p l i c a t i o n programming
i n t e r f a c e . Tools i n sof tware eng inee r i ng and CAD a p p l i c a t i o n s a r e t y p i c a l l y
w r i t t e n i n g e n e r a l purpose programming languages , and can implement q u i t e
s o p h i s t i c a t e d a lgo r i t hms acce s s ing and manipu la t ing complex o b j e c t s . The
a p p l i c a t i o n programming i n t e r f a c e t o da t abase systems i s g e n e r a l l y d i f f i -
c u l t due t o mismatches between t h e o p e r a t i o n s and o b j e c t s of t h e DBMS and
t h o s e of t h e h o s t programming language [21. The d a t a manipulat ion opera-
t i o n s de sc r i bed i n t h e p r e sen t paper a r e designed s o a s t o f a c i l i t a t e t h e i r
embedding i n g e n e r a l purpose l anguages . The use of a d a t a model where t h e
o b j e c t s a r e v a l u e s f a c i l i t a t e s t h e use of an a p p l i c a t i v e s t y l e f o r t h e
manipu la t ion o p e r a t i o n s . These o p e r a t i o n s can then be made a v a i l a b l e a s

* This work i s funded i n p a r t by t h e "Se rv i ce s de Programmation de l a
P o l i t i q u e S c i e n t i f i q u e " under Con t r ac t KBAR/SOFT/4.

'user-name' and a va lue of t ype ' b y t e s 1 ; t h e s e two types a r e no t
f u r t h e r r e f i n e d here , and a r e b a s i c t y p e s .

AS i n t h e r e l a t i o n a l model, eve ry th ing i s r ep re sen t ed by va lues , i . e .
t h e r e i s no n o t i o n of e n t i t y e x i s t i n g independent ly of t h e va lues of i t s
a t t r i b u t e s .

The naming f o r t h e o b j e c t s i s suppor ted by t h e mappings. As a f i r s t
approximat ion, a mapping i s s i m i l a r t o a r e l a t i o n i n t h e r e l a t i o n a l model
(wi th t h e domain of t h e mapping cor responding t o t h e primary key a t t r i -
b u t e s , and t h e range corresponding t h e non-primary key a t t r i b u t e s) . The
e s s e n t i a l d i f f e r e n c e be ing t h a t t h e t ypes of t h e domain and range of a map-
p ing a r e n o t l i m i t e d t o s c a l a r t ypes . I n p r a c t i c e , i t appears t h a t t h e form
of t h e domain of mappings can reasonably be r e s t r i c t e d t o b a s i c t ypes o r
n - t up l e s d e f i n e d on b a s i c t ypes . A s i m i l a r r e s t r i c t i o n can be found i n t h e
d a t a model d i s c u s s e d i n [31; it i s adopted i n t h e c u r r e n t p ro to type imple-
menta t ion of ADDL.

The u se of mappings i n t h e range of mappings a s i n t h e above schema,
where a ' d i r e c t o r y ' maps 'name's t o v a l u e s which can aga in be of t ype
' d i r e c t o r y ' a l l ows f o r a r e cu r s ive naming s t r u c t u r e . The mapping a l s o
n i c e l y d e s c r i b e s i n which con tex t a name of a p a r t i c u l a r t ype uniquely
i d e n t i f i e s a v a l u e . I n t h e above example a 'name' on ly uniquely i d e n t i f i e s
a va lue i n a ' d i r e c t o r y ' . This i s t o be c o n t r a s t e d w i th t h e f a c t t h a t a
'user-name' always un ique ly i d e n t i f i e s a ' d i r e c t o r y ' , s i n c e t h e r e can on ly
be one occur rence of t h i s mapping i n t h e d a t a b a s e .

Values of a union type only belong t o one o f t h e a l t e r n a t i v e t ypes
c o n s t i t u t i n g t h e union. I n t h e above schema, a va lue i n t h e range o f a
' d i r e c t o r y ' mapping i s e i t h e r of type ' d j r e c t o r y ' o r ' f i l e ' , and never of
bo th t y p e s .

3 . The Data Manipulat ion Languaqe

Engineer ing a p p l i c a t i o n s gene ra l l y i nvo lve t h e c r e a t i o n and manipula-
t i o n of a l o t of i n t e rmed ia t e va lues . The d a t a s t r u c t u r i n g and manipula-
t i o n f a c i l i t i e s t h a t a r e used f o r t h e da t abase v a l u e s a r e a l s o a v a i l a b l e
f o r t h e i n t e r m e d i a t e va lue s i n t h e program space . The on ly d i f f e r e n c e
between t h e da t abase va lue s and t h e i n t e rmed ia t e v a l u e s i s t h a t t h e da ta -
base v a l u e s a r e component values of one s p e c i a l va lue r e p r e s e n t i n g t h e
whole d a t a b a s e .

The DML o p e r a t o r s of ADDL a r e s t r o n g l y t yped . The t ype of an o p e r a t o r
must match w i th t h e t ype of i t s operands. I f two t y p e s have t h e same name
o r i f t hey have t h e same t e x t u a l d e s c r i p t i o n , t h e n they match. A s a conse-
quence, two t y p e s having t h e same s t r u c t u r e bu t u s ing d i f f e r e n t names f o r
component t ypes do no t match. This r u l e i s f u r t h e r r e f i n e d f o r union t ypes
(Sec t i on 3 . 3) ' sub types (Sec t i on 3 . 4) and g e n e r i c t y p e s (Sec t i on 3 .1) .

Example L

Suppose t h a t t h e example da tabase con t a in s t h e fo l l owing f a c t s . The
u s e r "John" has a home-directory. Th i s d i r e c t o r y c o n t a i n s a sub-
d i r e c t o r y named "sources" and t h i s sub -d i r ec to ry c o n t a i n s t h e f i l e
named " t e s t 1 . c " . For a cce s s ing t h e owner o f t h i s f i l e one has t o use
t h e fo l lowing s e l e c t i o n express ion :

s e l e c t (' owner' ,
map (map (map (r o o t (1

"John") ,
" sources" ,

" t e s t 1 . c ")

where " s e l e c t "
i s a s e l e c t i o n o p e r a t o r t h a t r e t u r n s t h e i n d i c a t e d f i e l d of
an aggrega te ;

"map"
i s a s e l e c t i o n ope ra to r t h a t g iven a mapping va lue and a
va lue of i t s domain t ype r e t u r n s t h e a s s o c i a t e d va lue of t h e
range t ype .

3 . 2 . The update ope ra to r -

The o p e r a t o r s de f i ned i n p rev ious s e c t i o n s a l low t o r e t r i e v e component
v a l u e s and t o c o n s t r u c t new complex v a l u e s . However, f o r modifying com-
ponent va lue s of complex va lue s t h e language has t o i n c l u d e an update
o p e r a t o r .

The ADDL d a t a model only makes use of v a l u e s f o r r e p r e s e n t i n g t h e
o b j e c t s . It does no t r e l y on no t i ons such a s p o i n t e r s and l o c a t i o n s which
a r e t r a d i t i o n a l l y used i n g e n e r a l purpose programming languages f o r bu i l d -
i n g complex s t r u c t u r e s . The s t y l e of update of t h o s e languages , which con-
s i s t s i n changing p o i n t e r s and t h e c o n t e n t s of l o c a t i o n s t h u s cannot be
adopted he r e .

The approach t h a t i s u s u a l l y adopted i n a p p l i c a t i v e languages f o r
"changing" a va lue i s t o c o n s t r u c t a new one, g e n e r a l l y by u s ing s e l e c t e d
p a r t s of t h e o l d one. Indeed, we might cons ide r u s i n g a s i m i l a r approach
he r e . The c o n s t r u c t i o n o p e r a t o r s de f i ned s o f a r a l low t o c o n s t r u c t new
complex va lue s us ing e x i s t i n g o r newly c r e a t e d compoEents. Because we con-
s i d e r t h e da tabase a s a complex va lue an update of t h e da t abase can be done
by r e p l a c i n g t h e whole da t abase va lue by a new one (c o n s t r u c t e d from com-
ponents of t h e o l d da t abase va lue and newly cons t ruc t ed v a l u e s) . This means
t h a t f o r updat ing a smal l p a r t of t h e da t abase , i . e . a smal l component
v a l u e of t h e huge da t abase va lue , one f i r s t has t o s e l e c t t h a t component
v a l u e and then b u i l d t h e whole da t abase va lue aga in , us ing a new va lue and
a l l t h e remaining p a r t s of t h e da tabase va lue . This r e c o n s t r u c t i o n of a new
d a t a b a s e va lue is- very i m p r a c t i c a l and it makes concur ren t upda tes v i r t u -
a l l y imposs ib le .

The update ope ra t i ons t h a t a r e o f f e r e d i n r e l a t i o n a l systems o r i n t h e

i s s imply a mechanism f o r g i v i n g a name t o a (non-evaluated) s e l e c t i o n
e x p r e s s i o n . The e x p r e s s i o n is t o be re -eva lua ted each t ime t h e name i s
r e f e r r e d . D e f i n i t i o n s can be n e s t e d .

Example 2

Suppose t h a t we have t h e same d a t a b a s e a s i n Example 1. We then can
d e f i n e MY-PATH a s t h e s e l e c t i o n exp re s s ion t h a t r e t u r n s t h e sub-
d i r e c t o r y "sources" of t h e home-directory of t h e u s e r "John" i s s u i n g
t h e fo l lowing d e f i n i t i o n :

l e t (MY-PATH, map (map (r o o t () ,
"John") ,

" s o u r c e s ")

Using t h i s d e f i n i t i o n t h e upda te o p e r a t i o n of Example 2 c an be r e w r i t -
t e n :

update (s e l e c t ('owner ' ,
map (MY -PATH,

" t e s t l . ~ ")) ,
"Beth")

3.2. Union t ypes -

Besides i t s importance f o r d e f i n i n g v a r i a n t s t r u c t u r e s f o r t h e v a l u e s ,
t y p e union i s e s s e n t i a l i n t h e d e f i n i t i o n of va lue s with a r e c u r s i v e s t r u c -
t u r e .

A union t ype matches i t s e l f and any of i t s a l t e r n a t i v e t y p e s . (I n t h e
l a t t e r c a se , t h e "d i s c r im ina t e " o p e r a t o r w i l l be used t o r e g a i n s t a t i c t y p e
checking.)

Given an exp re s s ion whose t y p e is a union of a l t e r n a t i v e t ypes , t h e
d i s c r i m i n a t e o p e r a t o r i s used f o r app ly ing on t h e exp re s s ion o p e r a t o r s t h a t
a r e d i f f e r e n t f o r each of t h e a l t e r n a t i v e t y p e s . For example, i f "expr" i s
o f t y p e ' (tl OR t 2) ' , op l i s a n o p e r a t o r de f i ned on t h e t y p e ' t l ' , and op2
i s de f i ned on t ype ' t 2 ' , one w i l l w r i t e

d i s c r i m i n a t e ("expr" ,
tl : op l ,
t 2 : op2)

3.4. Subtypes -

The subtype c o n s t r u c t o r o f f e r s t h e f a c i l i t i e s necessa ry f o r r ep r e sen t -
i n g h i e r a r c h i c a l .type s t r u c t u r e s . The g e n e r a l from of a sub type d e f i n i t i o n
i s

subtype : super type

r e p r e s e n t e d by compound t e r m s . These compound terms a r e o n l y t o be
"accessed" by t h e p r e d i c a t e s t h a t implement t h e 3.- o p e r a t i o n s .

(2) There i s no t y p e checking i n Pro log , s o t h e t y p e checking o f t h e ADDL
o p e r a t i o n s , which i s i n e s s e n c e s t a t i c , has t o be done dynamica l ly by
r e l y i n g on a t y p e i n f o r m a t i o n c o n t a i n e d i n t h e i n t e r n a l r e p r e s e n t a t i o n
of t h e compound v a l u e s . A s p e c i a l make p r e d i c a t e i s a v a i l a b l e f o r
b u i l d i n g an ADDL b a s i c v a l u e from a P r o l o g atom o r number.

(3) The o p e r a t i o n s t h a t a r e p a s s e d a s arguments t o p r e d i c a t e s such a s
d i s c r i m i n a t e a r e p r e d i c a t e names.

I n C , t h e DML o p e r a t i o n s r e p r e s e n t e d a s l i b r a r y f u n c t i o n s .

(1) The C s c a l a r v a l u e s cor respond t o a tomic ADDL b a s i c v a l u e s . The com-
pound ADDL v a l u e s a r e r e p r e s e n t e d a s p o i n t e r s . The d a t a r e f e r r e d by
t h e s e p o i n t e r s a r e on ly t o be a c c e s s e d by t h e fur .c t ions c o r r e s p o n d i n g
t o t h e DML o p e r a t i o n s . These p o i n t e r s can be passed a s p a r a m e t e r s t o
u s e r - d e f i n e d f u n c t i o n s , and can a l s o b e ass igned i n v a r i a b l e s . The
s t r u c t u r e d v a l u e s of C such a s a r r a y s and s t r u c t u r e s cou ld a s w e l l be
used a s " b i g " b a s i c ADDL v a l u e s ; t h e y a r e a tomic a s f a r a s ADDL i s
concerned, and compound i n C .

(2) The t y p e system of C i s t o o weak f o r s u p p o r t i n g t h e ADDL t y p e sys tem.
For i n s t a n c e , t h e r e i s no way t o d e f i n e t h e t y p e ~ f a f u n c t i o n such a s
head (S e c t i o n 3 . 1) s i n c e t h i s t y p e i s g e n e r i c . Dynamic t y p e check ing
of t h e o p e r a t i o n s s i m i l a r t o what i s done a t t h e Pro log i n t e r f a c e i s
t h e s i m p l e s t s o l u t i o n t o implement. Apart from performance problems,
it p r e s e n t s t h e drawback of n o t a l l o w i n g t h e t y p e check ing of t h e
use r -def ined f u n c t i o n s t o which ADDL v a l u e s a r e passed . The f e a s i b i l -
i t y of a s t a t i c t y p e checker f o r C programs embedding ADDL o p e r a t i o n s
has n o t been e x p l o r e d . S i m i l a r l y t o what i s d0r.e f o r Pro log , make
f u n c t i o n s a r e used f o r t u r n i n g C v a l u e s i n t o t h e a p p r o p r i a t e ADDL
b a s i c t y p e s .

(3) P o i n t e r t o f u n c t i o n s can be passed a s arguments t o t h e f u n c t i o n s
implementing t h e h i g h e r o r d e r ADDL o p e r a t o r s .

5 . Concluding remarks -

I n ADDL h i e r a r c h i c a l t y p e s t r u c t u r e s can be d e f i 2 e d u s i n g s u b t y p e s .
T h i s s t r u c t u r i n g c a p a b i l i t y t o g e t h e r wi th t h e automatic t y p e c o e r c i o n
o f f e r s a f a c i l i t y s i m i l a r t o t h e one o f f e r e d i n o b j e c t o r i e n t e d sys tems
where t h e methods d e f i n e d on a c l a s s a r e i n h e r i t e d by a l l i t s s u b c l a s s e s .
However, t h e modeling o f t h e i n f o r m a t i o n s p e c i f i c t o t h a t s u b c l a s s i s
e a s i e r i n o b j e c t o r i e n t e d sys tems (a d d i t i o n of i n s t a n c e v a r i a b l e s) t h a n i t
i s i n ADDL.

Our approach t o p e r s i s t e n c y i s very s i m i l a r t o PS-Algol [5] . Our p e r -
s i s t e n t v a l u e s a r e t h e components of t h e d a t a b a s e value; i n PS-Algol t h e

6. P. Buneman and M. P. Atkinson, Inheritance and Persistence in Database
Programming Languages, Proceedings of the ACM-SIGMOD International
Conference on Management of Data, Washington,D.C., June 1986, 4-15.

7. W. Lamersdorf, G. Mueller and J. W. Schmidt, Language Support for
Office Modelling, Proceedinqs of the 10th International Conference on
Very Large Data Bases, Singapore, , August 1984, 280-288.

APPENDIX A: ADDL DDL grammar

In the grammar below, the symbols <, >, I , 1 , t, *, I, and : := are metasymbols.
Symbols enclosed in double quotes denote themselves, symbols enclosed with
< and > are nos-terminal symbols, (. . .) + denotes one or more occurrences
of a syntactic element, t . . . denotes zero or more occurrences of a
syntactic element, and I separates several alternatives.

<type-definition> ::= type-name " : " <type-expr>

<type-expr> . . .= . basic-type

I type-name

I "SET" "OF" <type-expr>

I "LIST" "OF" <type-expr>

I "<rr selector ":" <type-expr>
{ ", " selector " :" <type-expr> I * ">"

I " (" <type-expr> { "OR" <type-expr>) +

	Workshop on Database Programming Languages
	Recommended Citation

	Workshop on Database Programming Languages
	Abstract
	Comments

	tmp.1190209482.pdf.79nIh

