
Emerging Trends
Proceedings of the 17th International Conference

on Theorem Proving in Higher Order Logics:
TPHOLs 2004

Preface

This volume constitutes the proceedings of the Emerging Trends track of the
17th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The
TPHOLs conference covers all aspects of theorem proving in higher order logics
as well as related topics in theorem proving and verification.

There were 42 papers submitted to TPHOLs 2004 in the full research cate
gory, each of which was refereed by at least 3 reviewers selected by the program
committee. Of these submissions, 21 were accepted for presentation at the con
ference and publication in volume 3223 of Springer’s Lecture Notes in Computer
Science series.

In keeping with longstanding tradition, TPHOLs 2004 also offered a venue
for the presentation of work in progress, where researchers invite discussion
by means of a brief introductory talk and then discuss their work at a poster
session. The work-in-progress papers are held in this volume, which is published
as a 2004 technical report of the School of Computing at the University of Utah.

August 2004 Konrad Slind

Contents

Some Mathematical Case Studies in ProofPower-HOL......................... 1
R. D. Arthan

A Framework for Interactive Sharing and
Deductive Searching in Distributed Heterogeneous
Collections of Formalized M athem atics... 17

James L. Caldwell and Christoph Jechlitschek

Mechanical Verification of Automatic Synthesis of
Failsafe Fault-Tolerance.. 35

Sandeep S. Kulkami, Bor zoo Bonakdarpour, and Ali Ebnenasir

ARM6 Formal Verification:
Experience with a Commercial Microprocessor 47

Anthony Fox

Building Extensible Compilers in a Formal Framework:
A Formal Framework User’s Perspective.. 57

Nathaniel Gray. Jason Hickey, Aleksey Nogin, and Cristian T(WU§

Compiling HOL4 to Native C o d e .. 71
Joe Hurd

Higher-Level Hardware Synthesis in H O L ... 79
Juliano lyoda and Michael J.C. Gordon

An Experiment in Automated Theorem Proving in Type Theory . . . 95
Marcin Benke and FYedrik Lindblad

Cooperating Theorem Provers:
A Case Study Combining HOL Light and CVS Light

Sean McLaughlin and Clark Barrett
109

Embedding Multiway Decision Graphs in H O L 121
Tarek Mhamdi and Sofiene Tahar

Formalizing the AMBA High Performance B u s 137
Malcolm C, Newey

Implementing the Calculus of Inductive Constructions in the
MetaPRL Framework ... 153

Natalia Novak and Yegor Bryukhov

Towards Verified Virtual Memory in L 4 ..165
Gerwin Klein and Harvey Tuch

XPath Formal Semantics and Beyond: a Coq based ap p ro ach 181
Pierre Geneves and Jean-Yves Vion-Dury

The Axiomatization of Group Theory:
An Experiment in Constructive Set Theory

Xin Yu and Jason Hickey
199

Som e M athem atical Case Studies in
Proof Power-HOL

R.D. Artlian

Lemma 1 Ltd.
2nd Floor, 31A Chain Street,

Reading UK RG1 2IIX
rda01emma-one. com

A b s tr a c t . This paper gives an overview of three case studies in develop
ing pure m athem atical theory using ProofPower-HOL. The case studies,
which currently cover a selection of basic m aterial from the theories of
real analysis, group theory and topology, expose some interesting issues
for formalising m athem atics.

1 Introduction

Apart from basic mathematical structures such as sets, functions, lists and num
bers, applying an automated theorem-proving system to hardware and software
engineering problems tends to involve mathematical theories of a rather dif
ferent nature from the traditional subject matter of pure mathematics. Many
researchers feel that engineering applications are the most important for auto
mated theorem-proving. However, it is natural to try to formalise pure mathe
matical theories. Research into this goes back to the earliest days of electronic
computation.

In a recent survey, Carlos Simpson [12] has identified numerous reasons why
computer-assisted formalised mathematics should be of benefit to the mathemat
ical community. Simpson gives many references to earlier work in this area as
does John Harrison in his thesis [7] and his paper [6]. The Flyspeck project [5] is
applying computer-assisted theorem proving to increase confidence in Thomas
Hales’ proof of the Kepler sphere-packing conjecture, a difficult proof involv
ing a considerable element of computation which has caused problems for the
traditional peer review process.

In 2001, the opportunity arose to develop, for use in program verification, a
theory of real arithmetic for the Proof Power specification and proof system. It
was a natural experiment to use this as the basis of a theory of real analysis
and I spent some time late in 2001 working on that. In 2003, since the Jor
dan curve theorem1 was felt to be a good challenge problem in some automated
theorem-proving circles, I used ProofPower-HOL to prove what Henle [8] calls the

1 Apparently, much progress has been m ade on the Jordan curve theorem using the
Mizar system, bu t I not able to assess w hether the proof of the general case in two
dimensions is complete (see h t tp : / /m iz a r .u w b .e d u .p l /).

http://mizar.uwb.edu.pl/

fundamental lemma in one of the classical proofs of this results. In retrospect,
I view this as a highly instructive mistake: Henle’s book is a very accessible ac
count of elementary algebraic topology for beginning students. His fundamental
lemma is essentially a calculation of the mod 2 homology groups of the plane.
I formulated it as a combinatorial result about discrete gratings and proved it,
the proof being fairly easy.

Unfortunately, connecting the fundamental lemma expressed as a combina
torial fact with the geometry involves several topological results, most notably
what Henle calls Alexander’s lemma. I quickly realised that I was going to have
to cover quite a bit of geometry and topology to prove them. Now Henle’s proofs
are very carefully designed for the beginner; they appeal to geometric intuitions
as much as to formal reasoning. Henle sets up topology as the topology of subsets
of the plane and to follow his proofs as they stand would involve doing special
cases of general results whose proofs are no harder formally than the special
cases.

Moral 1: if you ask someone “have you proved the XYZ theorem?’' and
receive the reply that they have proved the “fundamental lemma” or the “main
result” or similar, it is wise to scrutinise their formal account closely to find out
what they have actually proved2.

Moral 2: theorem-provers don’t need spoon-feeding; it makes sense to prove
things at the “right” level of generality and that will often be more general than
in an account intended for beginners.

Moral 3: while there is no royal road to proving theorems, there are short
cuts; however, you have to choose your shortcuts very carefully to make sure you
don’t get lost.

I subsequently began some case studies in pure mathematics, trying to cover
the material along the lines that it might be covered in a typical undergraduate
or beginning graduate course. Carried far enough, this programme would have
the Jordan curve theorem drop out as the two dimensional case of the Jordan-
Brouwer separation theorem proved via the calculation of the homology groups
of spheres, but that is a long way off. To date this work has covered the following
topics.

— A more complete treatment of real analysis including the definitions and
basic properties of the exponential and trigonometric functions and of tt.

— Some group theory including the definitions and elementary properties up
to the three isomorphism theorems and the Cayley representation theorem

— Enough abstract and metric space topology to define the notions of homotopy
and the fundamental groupoid (and to prove that it is a groupoid).

2 As a simpler example, I have still not seen a proof of the m utilated chess-board
theorem as a theorem about dominoes and chess-board as geometrical objects, which
is w hat they surely are. Ju st as in my problem with the Jordan curve theorem, the
combinatorics is fairly easy, bu t the geometric realisation requires more work.

2

My objectives in this enterprise were somewhat vague: essentially, I just
wanted to see how this material turns out and to compare notes3 with other
systems (Mizar, PVS, HOL Light, etc.). I was also specifically interested in
developing the theory to the points where the main mathematical subjects of
algebra, analysis, geometry and topology begin to interact and inform one an
other, e.g., in algebraic topology and differential geometry. During the course of
the work, some definite themes have emerged:

— I have tried to provide natural and readable specifications of the mathemati
cal concepts formalised. For example, I use differential equations rather than
power series as the definitions of the trigonometric functions, since I consider
that approach to have a more intuitive, geometrical appeal.

— I have tried to follow the development of pure mathematics both in fitting
abstract notions to more concrete ones after the event and in using abstract
notions that have not yet been formalised to inform more concrete work. For
example, you don’t need to develop abstract group theory to define the real
numbers and show that they are a group under addition. You can even use
group-theoretical thinking while you’re developing the theory. However, once
you have some abstract group theory, you should be able to apply that to
the real numbers and other specific constructions you may make with them
(e.g., real vector spaces4).

— I have tried to develop each theory at the “right’' level of generality or ab
straction: this often involves a compromise between making the task at hand
feasible and making the results general enough to be useful. On the other
hand, being more abstract is sometimes both more powerful in applications
and easier! E.g., the fundamental groupoid of a topological space is techni
cally often easier to work with than the fundamental group.

There is no new mathematics of any significance in any of this: just as there
is no significant new mathematics in an undergraduate textbook. However, in
teresting details arise en passant and you do learn something as you go (for
example, that integration is not needed to develop enough of the the theory of
power series to introduce the exponential and transcendental functions).

This paper gives an overview of what has been done at the time of writing
(May-July 2004) and discusses some of the issues for formalising mathematics
that have been highlighted. Full details are given in the papers [1-3]. The struc
ture of the sequel is as follows: section 2 introduces the ProofPower-HOL logic
and system by means of a simple example which also illustrates, in microcosm,
some of the formalisation issues encountered (a theory listing for this example
is given as an appendix); section 3 gives an outline on what has been done in
the three case studies; section 4 discusses how the approach of the case studies

3 The present paper is not intended as a detailed presentation of comparisons between
different systems, bu t I will air my personal viewss on some points of principle.

4 Roger Jones and I have an embryonic theory of normed real vector spaces based on
the group theory case study and including a coordinate-free definition of the Frechet
derivative.

3

might scale to more complex problem domains; section 5 gives some concluding
remarks.

2 A n Exam ple

ProofPower is a system supporting specification and proof in HOL and Z. It is
founded on an LCF-style implementation in Standard ML5 of the same polymor
phic simple type theory as the other systems in the HOL family. ProofPower-HOL
supports a syntax for specification adapted from the Z notation [13] intended
to encourage well-documented formal specifications using familiar logical and
mathematical notations. This document is written in that syntax, Its source
form is a mixture of M ’gX and input for the ProofPower-HOL parser. The input
for the parser is displayed using a special font and a (mostly) single-character
mark-up for the mathematical symbols, so that, for example, when you see ‘V:
in this paper, what I typed and then saw on my screen was an upside-down ‘A:
too.

To illustrate the style of specification adopted in the case studies, let us
develop a simple algebraic theory. If G is a group, a G-action on a set X is a
correspondence between elements of G and mappings of X to itself such that
multiplication in the group corresponds to composition of the mappings and the
unit of the group corresponds to the identity mapping. A set X equipped with
a G-act ion is called a G-set. G-sets arise, for example, by considering groups of
symmetries of geometrical objects. To give a concrete example of a group action
before defining the concept of a group, let us consider the particular case when
G is Z, the group of integers under addition.

So a Z-set will comprise a pair comprising a set (called the carrier set of the
Z-set) together with an assignment to each integer of a function from the set to
itself. To represent this abstract concept in HOL, let us consider the polymorphic
class of all pairs comprising a set of elements of some type 'a together with a
function mapping integers to total functions from 'a to itself. We can capture
this in the following type abbreviation6
S M L

\declare-type-abbrev("Z,-SET", ["'a"], r:'a S E T x (Z —> 'a —> 'a'p);

The type 'a here is a polymorphic type parameter. It can be instantiated to
any type we please, for example, an element of the type7 R Z-SE T is the type
that includes all Z-act ions on sets of real numbers. We will think of the above

° ML stands for “m etalanguage” . S tandard ML is a functional programming language
which serves as bo th the implem entation language and the interactive command
language for ProofPower.

8 Here the “specification” comprises an ML com mand to achieve the desired effect,
since the ProofPower-HOL parser does not provide a concrete syntax for this form
of definition.

' 1IOL type constructors are generally postfix operators, for example ‘Z LIST’ denotes
the type of lists of integers.

4

type as providing a signature for a class of structures which are candidates to
be Z-sets. If X is such a structure (i.e., a member of an instance of the above
type), we will write Car X for the carrier set and (x * * i')X for the action
of an integer i on an element x. Note that the action operation is ternary not
binary: in informal mathematics, it is normal to let the reader infer from the
context which mathematical structures are being deployed, but formally we must
be explicit about this.

To achieve the above syntax, we first declare the string ‘**’ to act as an infix
symbol with the same numerical precedence (310) as arithmetic exponentiation.
S M L

|declare-infix(310. "**");

We now give a constant specification to introduce the new constants ‘C ar
and A constant specification in ProofPower-HOL comprises two parts: the
part above the line gives type ascriptions for the new constant or constants and
the part below the line gives a predicate which is to be their defining property.
In this case the defining property comprises two universally quantified equations
defining the values of applications of the functions ‘C ar and ‘**’ Parsing the
constant specification maps onto a call of the primitive definitional principle
const-spec. This principle requires an existence proof for the constants being
introduced. The ProofPower-HOL infrastructure includes a range of procedures
for discharging the existence proofs and these will automatically discharge the
proof obligations for all of the definitions in this example.
H O L C o n s ta n t

C a r : 'a Z S E T -» 'a SET;
$** : 'a -> Z -> 'a Z .S E T -> 'a

V (set, action)•
Car (set. action) = set

A (Vx i* (x ** i) (set, action) = action i x)

The above definition serves to provide a convenient syntax for the operations
on the structures of interest. We can see this in the following definition which
captures the laws that a candidate Z-set must satisfy to be worthy of the name.
The laws specify that: (i), the carrier set is closed under the Z-action; (ii),
addition of integers corresponds to composition of the corresponding actions;
and, (in), 0 corresponds to the identity function.
H O L C o n s ta n t

Z .S e t ; 'a Z -SE T SET

V X .
X G Z-Set

<̂ -(Vx i* x € Car X =4- (x ** i) X € Car X)

| A (Vx i j » x € Car X (x ** (i + j)) X = ((x ** i) X ** j) X)
| A (\/x» x € Car X =4- (x ** NZ 0) X = x)

In addition to the specifications, the source of this document also contains the
statements and proofs of a small selection of theorems about Z-sets. ML proof
scripts are not particularly informative even to the expert eye, except when they
are brought alive by replaying them interactively, so they have been suppressed
from the printed form of this document. There is a listing of the theory in the
appendix. The reader is invited to refer to the appendix for the statements of
the following two theorems which are both elementary consequences of the above
definition. The first theorem says that acting by i and then by —i results in the
identity function on the carrier set and the second gives a cancellation law.

Z -set- minus _ thm h -set- cancel _ thm

We complete the example by defining the orbit of an element a; of a Z-set X .
The orbit comprises the set of all elements y that can be reached from x under
the Z-action.
H O L C o n s ta n t

O rbit : 'a Z S E T -> 'a - -» 'a SET

V X x» Orbit X x = { y y = (x ** i) X }

The reader may again consult the appendix for the statements of the following
two theorems. The first says that any element of a Z-set belongs to its own orbit
and the second says that any two orbits are either equal or disjoint. In other
words, the orbits are the equivalence classes of an equivalence relation: “co
orbital” .

orbit-refl-thm orbit- disjoint-thm

In this example, we have formalised a very elementary mathematical theory
and developed some very elementary theorems about it. The proofs would serve
almost as they stand to prove the same facts about G-sets for arbitrary groups
G given the theory of groups developed in [2]. This could then provide the basis
of some much more interesting mathematics. For present purposes, the example
serves to illustrate ProofPower in action and to introduce the style of presentation
of analysis, topology and group theory in [1-3].

3 The Case Studies

3.1 Basic Analysis
The case study on analysis is presented in [1], It builds on the ProofPower-HOL
theory that introduces the real numbers as a complete ordered field and covers
the following ground.

6

— polynomial functions on the real numbers
— limits of sequences of real numbers
— continuity of functions
— differentiation
— limits of function values
— uniform convergence of limits of functions
— series and power series
— special functions: exponential function, natural logarithm, sine and cosine.

Broadly similar subject matter has been formalised before in HOL Light by
John Harrison [7] and by Hanne Gottliebsen [4] in PVS. There are also devel
opments of analysis in Mizar and Coq and several other systems. In addition to
proofs of theorems, the ProofPower treatment includes automated proof proce
dures for continuity-checking and calculating derivatives (as do the treatments
of Harrison and Gottliebsen).

While I make no claim for novelty in the material covered, I would claim that
the specifications are readable and natural and that the material that is covered
is done comprehensively. For example, here are the definitions of the sin and cos
functions and of Archimedes’ constant, n, defined here as the positive generator
of the additive group of roots of the sin function.

Sin Cos : R —> R

Sin (NR 0) = NR 0 A Cos(NR 0) = NR 1
A (Vx» (Sin Deriv Cos x) x) A (Vx» (Cos Deriv ~(S m x)) x)

ArchimedesConstant : R

NR 0 < ArchimedesConstant
A Sin(ArchimedesConstant) = NR 0
A (Vs* Sin x = NR 0

=> (3m,• x = NR m * ArchimedesConstant)
V (3m* x = ~(N R m * ArchimedesConstant)))

| declare - alias (" tt ", r ArchimedesConstant^);

Here the notation (/ Deriv c) x means that function / has derivative e at
x and the function NR is the injection of the natural numbers into the reals.
The alias declaration introduces the traditional name “tt1' as an alternative to
“ArchimedesConstant''.

The specifications of the trigonometric functions and of n clearly require non
trivial consistency proofs. This involves a development of the theory of power
series, including the general result on differentiating power series term-by-term

7

(which avoids the need for introducing integration at this stage). The elementary
properties of the exponential, logarithmic and trigonometric functions and 7r are
then developed “axiomatically” from the differential equations.

As observed in [7], several notions of limit arise and it is desirable to have
common ways of dealing with them. Harrison’s approach is via the general no
tion of convergence nets. I use the more homely device of reducing the notions
in question to sequential convergence. For example, it is an easy consequence
of the standard definition of continuity that a function / is continuous at x iff.
/ maps any sequence converging to x to a sequence converging to f (x) . Using
this fact, statements about continuity reduce to statements about sequential
convergence, and, by and large, this turns the V3V quantifier structure of the
usual e-5 arguments into simple universally quantified statements about sequen
tial convergence. Proponents of non-standard analysis both in education and in
theorem-proving sometimes advocate the simple quantifier structure of the def
inition of continuity in non-standard analysis as an advantage. Using sequential
convergence achieves much the same effect in standard analysis. The text books
tend not to stress this method of working if they mention it at all, probably
because it fails to generalise to arbitrary topological spaces.

Moral 4: when you are using a theorem-prover, you do not need to adopt
methods for their pedagogical value: unlike a student, the prover cannot develop
bad habits, so you can freely use any method that works.

3.2 Group Theory

The case study on analysis deals with a single specific HOL type: the type R of
real numbers. The case study [2] on group theory puts the polymorphism in HOL
to work along much the same lines as the Z-set example presented in section 2
above.

The case study begins with a treatment of equivalence relations, equivalence
classes and the construction of quotient sets along the lines proposed by Larry
Paulson [10]. This material comprises a lemma library which provides templates
for working with equivalence relations, in particular, for defining functions on
quotient sets. This supports the proof of the first isomorphism theorem in group
theory, which is all about defining homomorphisms on quotient groups. It would
serve a similar purpose in any of the common algebraic concrete categories (rings,
modules over a ring, vector spaces over a field etc.) and in dealing with quotient
spaces in topology.

The group theory itself begins with a definition of the signature of a group
along similar lines to the signature for Z-sets in the example above. The poly
morphic notion of a group is then defined to be the set of all structures with this
signature that satisfy the group laws.

Substructures and quotient structures in algebra are very important, so it
is vital to deal smoothly with subgroups and quotient groups. Taken verbatim,
the traditional explication of these concepts in set theory leads to significant
notational and semantic difficulties. The problem is this: in doing the general
theory, an expression like x.y denoting the product of two elements of a group

8

G actually contains three variables: the group elements ‘x ’ , ‘y\ and the multi
plication operator Syntactic tricks allow one to preserve something like the
traditional infix notation for such expressions. But there is a semantic problem
when one needs to deal with subgroups: according to the traditional account,
the in x.y will denote a different set-theoretic function in a subgroup H from
what it does in the containing group G. Coercing operations from subgroup to
containing group or from one subgroup to another becomes an excessive burden.

My solution to this problem is to formulate all definitions relative to some
carrier set of interest in such a way that the behaviour of operators or properties
outside the carrier set is irrelevant. I advocate this approach in general for dealing
with algebraic structures. The apparent extra complication actually achieves an
economy, because when one is working with substructures, the operators and
properties can all be those of the containing structure: you have no need to
restrict them to the substructures or to worry about coercing the operations of
one substructure into the operations of another.

As an example, I take the operations on a group G to be total functions on
the universe of the type of its elements whose behaviour outside the carrier set of
G is immaterial. The operations on a subgroup H of G must be represented by
the same total functions. This involves no loss of generality and removes a much
complexity in specifications and proofs. It may be objected that this approach
gives the wrong notion of equality for groups (since the same group can be
represented using two different ways of totalising the operations). However, in
normal algebraic practice, one almost never needs to assert equality (as opposed
to isomorphism) between two groups that are not known to be subgroups of
some other group, and in that case equality has the usual meaning.

Using this approach, the three isomorphism theorems and the Cayley repre
sentation theorem are very easy to prove once one has derived the usual laws
of equational reasoning in a group from the defining properties (and developed
proof procedures to automate the application of these laws). Once the formali
sation details were settled, it was routine and quick to prove these results.

In fact, I feel that the treatment in this case study demonstrates that poly
morphic simple type theory is actually more natural than set theory for carrying
out much of mathematics. For example, one can give the following very conve
nient definition of the symmetric group on a set X (i.e., the group comprising
all permutations of the set).

S ym G rou p : 'a SET -► ('a -► 'a) GROUP

V I » SymGroup X = (

{ / | OneOne f A Onto f A -<y € X => / y = y}. (* Carrier set *)
(A/ g»Xx»f{g x)). (* multiplication *)
(Xx» x), (* unit element *)
Inverse (* inverse *)

)

9

Here the quadruple giving the structure has components as indicated by the
comments and Inverse is the function that maps a 1-1 onto function to its inverse
function. This definition has numerous advantages over the untyped set-theoretic
version. In particular, if X is a subset of Y , then the symmetric group on X is
a subgroup of the symmetric group of Y as it stands, whereas this is only true
“up to an isomorphism” in the standard set-theoretic account. Moreover, we can
think of SymGroup {x \ x = a;} as denoting the group of all permutations of
the universe, sitting naturally inside the monoid of all self-mappings of the uni
verse. This works very pleasantly: as the Cayley representation theorem states,
any group is isomorphic to a group of permutations and so composition of 1-1
onto functions provides a universal prototype for the multiplication in a group,
a fact which cannot even be stated properly in first-order set theory.

Moral 5: Pace Quine [11. article on “Mathematosis”]. in a typed theory it
is counter-productive to define the concept of a group so that the carrier set can
be recovered from the set that represents the multiplication.

3.3 Topology

The case study in topology is perhaps the most advanced of the three in edu
cational terms, but it still really only prvoides the beginnings of the subjects it
deals with. The subjects covered are:

— abstract topology: topologies; construction of new topologies from old as
(binary) product spaces or subspaces; continuity. Hausdorff spaces; connect
edness; compactness.

— metric spaces: the definitions of metrics and product metrics and the re
sult that product metrics induce product topologies; existence of Lebesgue
numbers for open coverings of compact metric spaces.

— topology of the line and the plane: characterisation of connected subspaces of
the line; continuity of addition and multiplication as functions on the plane.

— elementary homotopy theory: definitions of path-connectedness. the homo-
topy relation and the fundamental groupoid; proof that the homotopy re
lation is an equivalence relation and that the fundamental groupoid is a
groupoid8

The definition of a topology is the usual one: a topology is a family of sets
(referred to as open sets) that is dosed under arbitrary unions and binary inter
sections.

8 In fact, at the time of writing, all the theorems needed to justify the construction
of the fundamental groupoid as a quotient of the path space have been proved, but
these have not yet been brought in line with the theory of equivalence relations in
[2],

10

Topology : 'a SET SET SET

Topology =
{ r | (V V * F C r ^ U ^ ^) A (V i BmA G r A B G r A n B G r) }

Since the carrier set of a topological space can readily be recovered as the
union of all its open sets, the complications with signatures that arise in algebra
do not arise. The signature has but one component and the thinking we decried
for algebraic structures in Moral 3 now turns out to be very convenient.

The central notion of continuity takes the following form (defining an op
erator Continuous which is written postfix). Here a and r are intended to be
topologies (and will be in the statements of all theorems that use this definition).
As in the group theory case study, we work throughout with ordinary HOL to
tal functions, taking care to make the definitions of concepts such as continuity
ignore the behaviour of the functions outside some carrier set of interest, in
this case the Space of the topologies, defined as the union of their open sets as
discussed above.

$Continuous : (fa SET SET x rb SET SET) -> ('o -> rb) SET

V<r r» (a , t) Continuous =
{ /
| (Vx» x G Space a => / x G Space r)
A (Vj4* A g t => { x | x G Space a A f x € A } G u)}

Again, as in the group theory, this approach has the merit of localising com
plexity in the definitions which would otherwise spread to other definitions and
to the statements and proofs of theorems. If you try to mimic the representation
of functions in set theory, functions have constantly to be restricted to subspaces,
whereas this is unnecessary with the total function approach.

Space does not allow an extended discussion of the methods of proof in
this case study. However, there is one open problem that is worth mentioning.
There is a constant need in topological reasoning to prove that functions are
continuous. In algebraic topology, functions are often constructed by patching
together functions defined on subspaces of the domain. For example, in proving
that addition of paths in the fundamental groupoid is associative, the following
result is needed, where Openr denotes the usual topology on the real line.

|Vfc* (yt» k t =
j if t < 1/4 then NR 2*t
| else if t < 1 /2 then t + 1 /4
| else (l/2)*t + 1/2)

=> k G (OpenR, Openu) Continuous

11

The proofs of such facts are very mechanical and are reminiscent of what
the automated proof procedures for continuity of algebraic combinations of con
tinuous functions in the analysis case study do. However, there are two slight
complications: (i), you need to apply a simple “patching” lemma to justify the
continuity of a function defined by cases and (ii), in the general case some small
amount of intelligence is needed to pick the right topologies on intermediate
sets. For example, to show that a composite f o g is continuous with respect to a
topology o on the domain of g and a topology r on the range of / , you need to
pick some topology on the range of g that makes both / and g continuous. An
algorithm to automate these proofs would be a great boon, but I do not yet have
one. Joe Hurd’s work on predicate subtyping [9] looks like a promising source of
ideas.

Moral 6: There are a lot of new and challenging problems for proof automa
tion in pure mathematics.

4 Will it scale?

An important question to ask of any case study in applying formal methods and
theorem-proving in engineering applications is “will the proposed technique scale
to real-life applications?” . I believe the same applies to mathematical applica
tions as well. Simpson [12] identifies what is probably one of the most important
problems for more advanced pure mathematics: much use is made of structure
which share a combination of algebraic, topological or geometrical properties.
For example, the rich and important theory of Lie groups is an abstraction of
the algebraic and geometric theory of groups of real or complex matrices. A
Lie group is simultaneously a group and a smooth manifold, a smooth manifold
being something that has a particular topological structure combined with a
differential structure allowing analytic methods to be used. The issue then is,
how to deal formally with the kind of reasoning that is endemic in mathematics
where one just says something like ’’ let G be a Lie group” and then freely appeals
to the notations and theory of whichever of the underlying structures provides
the facts one needs.

I believe the approach to modelling mathematical structures exemplified by
the case study on groups and also by the Z-set example in section 2 above will
scale, subject to some slight modifications to the details, ideally supported by
some extensions to the syntax offered by the parser (see [2] for more details on
the latter).

The main change to the approach addresses the issue highlighted by Simpson
in his example of Lie groups. To get things to scale, I would propose using
labelled products rather than unlabelled products for the signatures of algebraic
structures. To see how this would work, consider the notion of a field: Given

12

our treatment of groups, a field can conveniently be thought of as two group
structures on elements of the same type obeying certain laws9.

Using labelled products, the signature for groups would be given by the
following ProofPower-HOL labelled product type definition which defines a new
polymorphic labelled product type ’a GROUP with four components with the
indicated labels and types. The component labels become the names of the
functions that project the product type onto its component types.

Now we can define the signature for a field as a labelled product. Note that
in both these labelled product definitions, in the interests of scalability to com
plex situations, we are decorating the component labels with subscripts to avoid
clashes with other algebraic structures, e.g., rings would also have an additive
group.

Multiplicative Group f '■ 'a GROUP

This captures the desired semantics, but creates some syntactic problems.
For example, the expression 1 + x.y in a field K would have to be written.

| Times g (Additive Groupf K)
| (UnitG(MultiplicativeGroupF K))
| (Timesg(Mu,ItiplicativeGroupF K) x y)

This syntactic problem can be overcome either by explicitly defining accessor
functions as we did for Z-sets and groups, or by extending the parser and type-
checker to allow aliases for non-constant expressions, or perhaps, specifically for
composite functions, so one could define + and . to be aliases allowing something
like 1 + K x.K y to be written for the above term.

Simpson proposes a solution in dependent type theory to this problem in
which mathematical structures are represented by functions from strings to com
ponent structures. This is not available to us in HOL, but I can think of no
examples in mathematics where the statically typed approach sketched above
would be semantically insufficient.

9 This does not work in the traditional set-theoretic account, since the multiplicative
structure of a field does not comprise a group unless it is restricted to the non-zero

H O L L a b e lle d P r o d u c t

.GROUP_____________________
Carg • 'a SET;
TimesQ '■ ' a —► ' a —► 'a;
Unite ■ 'a;
Inverseg ■ 'a —► ' a

H O L L a b e lle r ! P r o d u c t

AdditiveGroupf ■ 'a GROUP;

elements.

13

5 Summary

I have given an overview of three case studies in the use of the ProofPower-HOL
theorem-prover on pure mathematical problem domains. This has highlighted
some problems in giving a smooth formalisation. Solutions or partial solutions
to these problems have been proposed. In particular, I have outlined a method for
scaling the approach to the compound mathematical structures that predominate
in modern century mathematics.

I have extracted some “morals” from the work done to date, and there is much
more that could be said about good ways to go about capturing a useful and
evolving body of pure mathematics in an automated theorem-proving system.
However, agonising about the technical approach will be less productive than
actually trying to do some mathematics and to learn from the attempt.

Acknowledgments
My thanks are due to Matthew Franks, Hanne Gottliebsen, John Harrison, Roger
Jones and Larry Paulson for their very helpful correspondence during the devel
opment of these case studies.

References
1. R.D. Arthan. Mathematical case studies: Basic analysis.

http://www.lemma-one. com/ProofPower/examples/examples.html, 2004.
2. R.D. Arthan. Mathematical case studies: Some group theory.

http://www.lemma-one. com/ProofPower/examples/examples.html, 2004.
3. R.D. Arthan. Mathematical case studies: Some topology.

http://www.lemma-one. com/ProofPower/examples/examples.html, 2004.
4. Hanne Gottliebsen. Automated Theorem Proving for Mathematics: Real Analysis

in PVS. PhD thesis, University of St. Andrews, 2001.
5. T. Hales. The Flyspeck Project Fact Sheet. Technical report,

http://www.m ath.pitt.edu/~thales/flyspeck/index.htm l, 2003.
6 . John Harrison. Formalized Mathematics. Technical report,

http : / / www.c l . cam.ac.uk/users/j rh/papers/, 1996.
7. John Harrison. Theorem Proving with the Real Numbers. Technical report,

University of Cambridge Computer Laboratory, 1996.
8 . Michael Henle. A Combinatorial Introduction to Topology. Dover Publications,

Inc., 1979.
9. Joe Hurd. Predicate Subtyping with Predicate Sets. In Richard J.Boulton and

Paul B. Jackson, editors, Proceedings of TPIIOLs 2001, LNCS 2152.
Springer-Verlag, 2001.

10. L. Paulson. Defining functions on equivalence classes. Preprint: available at
http://w w w .cl. cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf,
2004.

11. W.V. Quine. Quiddities. Harvard University Press, 1987.
12. Carlos Simpson. Computer Theorem Proving in Math. arXiv:math.IIO/0311260

v2, 20 February 2004.
13. J.M. Spivey. The Z Notation: A Reference Manual, Second Edition.

Prentice-IIall, 1992.

14

http://www.lemma-one.com/ProofPower/examples/examples.html
http://www.lemma-one.com/ProofPower/examples/examples.html
http://www.lemma-one.com/ProofPower/examples/examples.html
http://www.math.pitt.edu/~thales/flyspeck/index.html
http://www.cl.cam.ac.uk/users/j
http://www.cl.cam.ac.uk/users/lcp/papers/Reports/equivclasses.pdf

A THE THEORY Z_set

A .l Parents

Z

A. 2 Constants

I** ’ a -► Z -► ’ a SET x (Z -► 'a -► 'a) -► 'a
C o r 'a SET x (Z -► 'a -► 'a) -► 'a SET
Z S e t ('a SET x (Z -► 'a -► 'a)) SET
O rbit 'a SET x (Z -► 'a -► 'a) -► 'a -► 'a SET

A .3 Type Abbreviations

' a Z S E T 'a SET x (Z -► 'a -► 'a)

A .4 Fixity

/n/ix 5i0: **

A .5 Definitions

Car

Z-Set

Orbit

15

h V (set, action)
• Car (set, action) = set

A (V x i* (x ** i) (set, action) = action i x)
h V I

• X € Z -Set
■» (V i t* i £ Car X =>■ (x ** i) X € Car X)

A (y x i j
• x € Car X

=>■ (x ** (i + j)) X = ((x ** i) X ** j) X)
A (V ii i £ Car X => (x ** NZ 0) X = x)

h V X w Orbit X x = {y|3 i» y = (x ** i) X }

A .6 Theorems

h -set-in in u s-th m
h V I

• X € 7,-Set
=> (V x *• x € Car X => ((x ** i) X ** <-

.*«••/ cancel lit in
h V X l } !

• X € Z_5et A x € Car X A y € Car X
=> ((x ** i) X = (y ** i) X x = y)

o rb it-refl-th m
h V X* X € I,-Set => (V x» x € Car X => 2; €

orbit-d isjoint-thm
h V X

• X € Z.Sei:
(V 1 j

• x € Car X A y € Car X
=> Orbit X x fl Orfcrt X i / = { }

V Orfcii: X a; = Orfcii: X y)

i) X = 1)

Orfcii; X 1)

16

A Framework for Interactive Sharing and
Deductive Searching in Distributed

Heterogeneous Collections of Formalized
Mathematics

James L. Caldwell1 * and Christoph Jechlitschek2 **

1 Department of Computer Science, University of Wyoming, Laramie, WY
2 Department of Computer Science, Washington University, St. Louis, MO.

Abstract. Peer-to-peer technology implemented in systems like Nap
ster allowed sharing of digitized music across the web in an incredibly
easy to use system. This paper describes a prototype peer-to-peer system
for networking distributed and heterogeneous databases of formalized
mathematics. We also propose a general framework for deductive search
in heterogeneous libraries of formal content. As participants in this con
ference well know, a significant body of mathematics has been formalized
in theorem provers. We believe that a truly distributed mechanism for
sharing formal content will multiply efforts of individual users of theo
rem proving systems, will invigorate ongoing formalization efforts, and
will spur new research in deductive search and content-based addressing.
Interactive sharing has the potential to be a significant new methodology
for theorem proving. A basic tenet of our approach is that users of the
system must be able to account for results and methods for accountabil
ity are incorporated into the proposed methods.

1 Introduction

We imagine a future in which the web plays an integral role in theorem proving
efforts. Where theorems and proofs of diverse systems are interactively searched
by developers across the web and where sharing is used to discharge significant
numbers of proof obligations.

There is a diverse array of theorem proving systems representing many hun
dreds of man-years of effort, they range from those that completely automate
the proof search to interactive proof checkers. A list of these systems would in
cludes ACL2, Coq, Elf, HOL, Isabelle, MetaPrl, Mizar, Nuprl, PVS and others.
The number of extant theorems that have been proved in these systems is as
tounding. (The reader is invited to make his own estimate). Currently, the costs

* The first authors work was partially supported by NSF grant CCR-9985239.
** This work was performed at the University of Wyoming and was supported by a DoD

Multidisciplinary University Research Initiative (MURI) program administered by
the Office of Naval Research under grant N00014-01-1-0765.

of sharing formal material are so high that little sharing takes place, sometimes
even within communities of users of the same tool. Much of the sharing that
does take place requires personal communication between the parties involved.

In this paper we describe a vision of the future and argue that it need
not merely be a fantasy. Toward this end we describe the implementation of
a prototype peer-to-peer framework for connecting distributed libraries of math
ematics [17]. The prototype implementation also supports a query language for
content and name based searching. We go further in proposing a general frame
work for deductive search methods in a collection of logically heterogeneous
databases3. Our approach is guided by our experiences in the Formal Digital
Libraries project [8], a joint project between Cornell, Caltech and Wyoming.

1.1 Vision

We imagine a system in which proof obligations may be discharged by existing
results, that have perhaps been verified in different logics, and recorded in a
distributed and heterogeneous database. Consider the following scenario.

A user, sitting in Laramie Wyoming on a blustery winter evening,
is constructing a proof in the Nuprl system4. At various points in the
process, suspecting that surely someone else has already proved the re
sult required to complete her proof, she initiates an interactive query.
Moments before the Wyoming user issued her query, an early rising
HOL user in the warm summer morning of Canberra Australia has just
proved a lemma having the required semantic import. Upon completing
his proof it was automatically committed to his local online database.
Our Wyoming users query returns the HOL result together with a proce
dure for translating HOL terms into Nuprl terms and includes evidence
that the proof actually was completed in HOL. This information is in
corporated into her local database and used to complete her proof. Once
completed, her new result is recorded into her data-base thereby making
it immediately available to other proof efforts distributed across the web.

In this paper we argue that this scenario is both theoretically feasible and
practically realizable with existing technologies (circa 2004). We present evidence
for this argument by describing a prototype implementation of a peer-to-peer
network for interconnecting databases of formal mathematical content. We con
tinue by outlining a general theoretical framework for deductive searching in
distributed networks libraries of heterogeneous formalized mathematics.

We reckon that the following are the necessary components for such a system.

3 Throughout the paper, the words “library” and “database” should be considered
synonymous, though perhaps the word “database” emphasizes implementation.

4 By inclination, our hypothetical user is interested in extracting programs from proofs
but has no philosophical objections to incorporating classical results into her proofs
if it does not impinge on the constructive content. For a discussion of just such a
methodology for incorporating classical results into constructive proofs see [5].

i.) Individual databases of formalized mathematics.
ii.) A framework for connecting individual databases into a distributed network

including methods for finding databases of formal material and a protocol
for communicating between them.

iii.) Methods of translating between logical theories.
iv.) Methods of searching across the distributed network.

There are independent research efforts underway on all these topics. What does
not currently exist is an effort to pull these technologies together into an unified
approach. In this paper we address items (ii), (iii) and (iv). We do not propose to
constrain (i) other than to require that databases participating in the network
implement the protocol described as part of (ii). We believe that a successful
implementation of items (i), (ii) and (iv) will create a market that will further
stimulate the development of translations (iii).

We remark that, perhaps surprisingly, scientific communities other than com
puter science seem to be better at sharing results in a significant way; by which
we mean that information is shared so that it can be used directly in establish
ing new results, not simply in a secondary form. For example, the databases of
genetic structures are remotely accessible and remote access forms a crucial part
of the methodology used by researchers working in that field. On the homepage
for the National Center for Biotechnology Information [22] it says: “Most jour
nals now expect that DNA and amino acid sequences that appear in articles will
be submitted to a sequence database before publication.” As a community, we
could take a lesson here.

1.2 Relating theories

The ability to soundly combine theorems proved in different logics within the
same framework is a deep mathematical problem. Institutions [10,11] provide
a category theoretic framework in which the formal relations between differ
ent theories can be established. Although institutions provide a mathematical
framework within which relations between logics can be understood, they have
been little used in practice. The hard part of relating theories is establishing the
semantic map. Howe [15,14] has provided the semantic foundations for a map
between HOL and a classical variant of Nuprl. An implementation of the trans
lation is described in [21]. Naumov [20] has related Isabelle and classical Nuprl
and a semantic justification for translating PVS results into classical Nuprl has
recently been completed [19]. Staples has related ACL2 and HOL [25] providing
a mechanism to incorporate results of ACL2 into HOL proofs. Applications for
sharing results (even the use of classical results from PVS in constructive Nuprl
proofs) are discussed in [5]. In each case, a semantically justified translation from
the language of one logic into the language of another is required.

Applying an economic model, we note that translations between theories are
implemented by individuals who value the incorporation of results from one the
ory into their own highly enough to do the required work. Part of the calculation
of the worth of such an effort is based on the amount of and type of material that

will be made accessible by a translation and the ease with which it will be used
by the developer and others. The framework proposed here lessens the effort
required to apply such translations, i.e. it provides a market for such tools. By
providing a such a market, we believe that a framework such as the one described
here for integrating multiple provers will motivate further developments.

1.3 Accountability

A guiding principle of our framework and of the Formal Digital Library [8] (FDL)
is one of accountability. Consumers of theorems and other formal objects have a
right to know what assumptions, facts and methods an object depends on; this
problem has seen previous study [12]. Only with this knowledge can users make
epistemic judgments whether to accept results and to incorporate them into their
own work. As part of the FDL effort, Allen [2] has designed a novel mechanism
to certify facts about objects in a database of terms. These certifications carry
epistemic weight in that: users may create new certificate kinds, they may request
than an existing kind of certification be run on a particular object, or they may
examine existing certificates. Users may not create certification objects, only the
system can do so by evaluating the computational part of a certificate kind. Users
can determine exactly what has been certified by examining the code used to
create a certificate. In the scheme of the FDL, there are a plethora of certificates
generated by many users; some may be as simple as a claim that some individual
created the certified object, others may certify that a proof has been accepted by
some formal tool or that some object originated from a particular database. This
certification mechanism can be used to build sets of dependencies and properties
of objects and to track them. Users can inspect certificates and, by evaluating
the methods used to generate a particular certificate kind, can determine the
epistemic weight they accord to the certified object.

Accounting for the correctness of a formal object (let’s say a proof) depends
on a complex set of facts that at least include which tools (and version) were
used to produce the proof; the lemmas, tactics, and methods of proof the the
orem itself depends on; global settings in the environment when the proof was
done; and perhaps other facts. This list must be open-ended since the evidence
required for an individual to accept a result ultimately depends on that indi
viduals personal criteria. The criteria for believing something can vary from
individual to individual and thus, the threshold of evidence may be higher or
lower, depending on the individual. In an extreme case, users may accept results
based on authority e.g. ‘Caldwell said “Constable said <f> is a theorem. ’ But
even this form of evidence5 may carry epistemic weight with users and our goal
is to include even this kind of evidence. Every kind of formal object potentially
requires some form of evidence (formal or informal) to justify its use in certain
contexts.

5 Evidence like this may actually be easy to account for using certificates based on
digital signatures.

1.4 Searching

We intend to search in heterogeneous databases, i.e. databases containing results
from a number of logical systems. The effectiveness of existing search technologies
would seem to be the principal technical obstacle to true integration of these
ideas into proof engines.

There are two aspects to the search problem. The first is to find the available
databases of formal content on the web that are open to pubic search; the sec
ond is to search those databases for formal content (definitions, theorems, proofs,
translations, tactics, etc.) in a semantically robust way. The first problem is ad
dressed (and solved) by our prototype peer-to-peer network. The second problem
is theoretically challenging and open ended in that we expect new search meth
ods will constantly be developed. Below we describe a framework for deductive
search within which we believe new methods can be couched.

Formalized mathematical proofs and theories are fragile objects6 and al
though the semantic import of a theorem may well match or subsume a lemma
being searched for, the shape of the theorem may not trivially match the search
pattern. Trivial syntactic differences in theorems having little or no semantic
content (e.g. 'ix.cj) A %p vs. Vj/.%/} A <f>) can make naively implemented search fail,
users would be disappointed with such failures. Also, the equivalence of formu
las in different logics differ, e.g. classically, <f> => %p and -><f) V %p are equivalent
while they are not equivalent in the constructive setting; this must be taken into
account in a heterogeneous setting by specifying the logic to use for deduction
in search.

Methods for searching formal content might be based on unification7 [7], but
other strategies are possible as well. Of course, the problem of determining if a
previously verified lemma (or collection of lemmas) subsumes a query target is
undecidable in general.

2 A Peer-to-peer framework

The second author has built a prototype peer-to-peer network for sharing infor
mation between FDL’s. The details of the architecture and of the implementation
are described in [17]. Figure 1 gives an overview of the architecture. Peer-to-peer
applications are becoming ubiquitous; they are used to share files, CPU cycles,
and other resources. A principal advantage of the technology is its inherent fault-
tolerance, there is no centralized component to fail. Peer-to-peer networks also

6 Even tyros have first hand experience of this fragility. Small changes, e.g. adding
an antecedent to the statement of a putative theorem, will often break a partial
derivation that may have already been constructed. In fact, the most experienced
users of such tools distinguish themselves from novices in that they build proofs in
such a way as to avoid failure under minor perturbations to the statement being
verified.

7 Higher-order unification is undecidable but unification based methods can still be
used since a user only needs a non-empty approximation to the complete search to
satisfy a query.

support distributed discovery mechanisms. Sun has developed an open source
peer-to-peer framework called JXTA [18] that is platform and programming
language independent. Our system is built on JXTA.

2.1 A Prototype Implementation

The prototype is implemented in Java. It consists of about 6000 lines of code
and includes a name and content based search engine for FDLs. The JXTA
framework is used to provide the peer-to-peer network functionality.

Server 1 and Server 2 advertise the existence of the libraries FDL 1 and FDL 2 to the
P2P network (stepl). An interested client discovers these libraries (step 2). The client
then queries the servers over the P2P network (step 3).

Fig. 1. P2P architecture

The FDL provides a TCP/IP based mechanism that allows clients to con
nect to the library and to issue simple search requests. The current interface
to the library is limited to a search by name request and a search by content
request. The search by name request returns a set of all theorems that contain
a given string as a substring of their names. The search by content request re
turns the set of all theorems whose statements contain operators specified in
the search. We developed a Boolean query language using the logical operations
‘and’ , ‘or’ , and ‘not’ to create more powerful expressions. While the query lan
guage is very simple it is surprisingly useful and serves to prove the mechanisms
for searching remote libraries work. Indeed we found many new theorems in the
Cornell libraries while testing our tool. Within the prototype, the search engine
is implemented modularly and can easily be replaced if extensions are required.

To share theorems between groups we not only need to be able to search
libraries but we also we need to discover the libraries themselves. In peer-to-
peer networks, servers and clients have equal rights and responsibilities and are

connected in a mesh topology. Peer-to-peer networks support mechanisms for
discovering other peers and exchanging information between them. The JXTA
framework provides a high level abstraction of these mechanisms. In our pro
totype, the libraries offering search services advertise it in the network. Clients
can use those advertisements to invoke the services. All communication between
peers is done within the peer-to-peer network having the advantage that prob
lems with firewalls can be avoided (see [17] for details.) Since databases are
not designed to participate directly in the peer-to-peer network a small server
application was developed which is deployed in front of each library. Not only
does this provide the interface for application libraries to join the peer-to-peer
network, the server could also be used to provide additional functionality like
authentication, authorization, and accounting.

3 A Framework for Deductive Search

In this section we describe the framework within which we address the problem of
searching in distributed heterogeneous databases of formalized mathematics. The
proposed framework is intended to be independent of the underlying individual
databases; although we have in mind the FDL. The proposed framework does
not make assumptions about the underlying databases but assumes that they
provide a uniform interface; we (partially) specify that interface here.

The framework consists of the following components.
i.) A term structure used to communicate information across the network, the

class of terms is denoted Term /.8
ii.) An application programmers interface (API) supported by databases in the

network.
iii.) A peer-to-peer architecture for the interconnection of the databases sup

porting functions for dynamically integrating new databases into the network
and the protocol for communication between them.

iv.) A logical framework imposed on terms for describing the methods of de
ductive search. This is based on a concept of formal languages as decidable
subclasses of terms in Term /. These languages include the languages of the
various logics together with the other extra-logical languages; e.g. repre
sentations of executable code (e.g. tactics, translations and others) together
with all the other components necessary for the representation and manipu
lation of formalized mathematics. We also intend that informal content will
be representable in the database as well.
The communication between systems is facilitated by a uniform and extensi

ble term structure. This is the same term structure used internally by the FDL
to represent formalized mathematics though we do not assume it is the internal
representation used by all databases connected in the network; simply that they
can translated their internal representations into the specified form. We also use
the term structure in the description of the framework for deductive searching.

8 The term structure described here is based on Nuprl’s term structure [1] and is the
one used internally within the FDL; we use it as an interface language.

The issues related to the representation of formalized mathematics are extraor
dinarily complex, especially as related to binding structures9. In this section
we present the term structure used in the FDL which offers some generality in
binding.

Term,i is the class of recursive tree structures of the form

3.1 Terms and Languages

where opid is the operator name, parameters is a list of value-type pairs and
bterms is a list pairs consisting of a list of variables and a term. The parameter
I is the class of abstract atomic identifiers allowing terms to refer to other terms
in Termi-

Parameters are constants or other arguments not constituent in the subterms
e.g. within the FDL representation of Nuprl and PVS terms, the number 1 is a
constant term of the form natura l{l:im m }(), the string “xyzzy” is represented
by the term string{"xyzzy" : string} () . The class of parameters is not fixed
and can be extended to accommodate new languages and logics.

The bterms are the subterms of a term, possibly containing bound variables.
A bterm consists of a list of variables (the bound variables) and a term (the
body). Occurrences of variables included in the list of bound variables are bound
in the body of the bterm. The use of bterms to encode binding operators can be
seen by considering the encoding of the lambda abstraction in this structure. The
term Ax.M is encoded as lambda{}(x.M). The opid of this term is lambda, it
has no parameters, and it has one subterm M in which occurrences of the variable
x are bound. The universal quantifier V x :T.P is encoded as all{} (T;x.P). The
operator id is all, there are no parameters, and the operator has two subterms, T
(the domain from which the bound variable x is chosen, and the bound term x . P
where P is a term possibly containing free occurrences of the variable x. The fact
that there may be multiple variables bound simultaneously in a subterm allows
for the specification of an operator like NuprPs spread operator, a generalized
destructor for pairs; it is defined as spread{}(p;x,j/.i). The computation rule
for spread makes clear how the simultaneous binding is used when the subterm
p is a pair.

opid{parameters} (bterms)

(T ermi)
(opid)
(bterm j)
(parameter)
(C)

D | (opid){(parameter)*}((btermi)*)
(C)(C)*
(vars)*. (term i)
(value) , (type)
any character

spread(<a,b>; x . y . t) —>• t[a ,b/x,y]

9 For an interesting discussion of alternative binding structures see [13] and references
therein.

i.e. if the first argument to spread is a pair of the form (a, b), spread simulta
neously substitutes the first element of the pair for x in t and the the second
element of the pair for y in t.

The index set I is not necessary for representing individual terms of a logic.
By providing a means for terms to refer to other terms, the identifiers in the
set I allow arbitrarily complex structures to be embedded within a collection
of terms. Formal libraries are such structured collections. Allen has argued in
detail elsewhere [2] that the references between terms should be abstract and
atomic, thus the identifiers in I have no discernible structure and simply serve to
refer. Indeed, within the conception of the FDL, the only significant property of
the indices in a structured collection of terms is the topology of the constituent
components induced by the references between the terms. More precisely, if I is
the set of abstract identifiers used in Term i and V is a set of abstract identi
fiers of equal or greater cardinality, then the process of uniformly replacing the
abstract identifiers in a database of terms in Term / (under any injective map
from I to I') results in a database of terms in Term// which carries the same
semantic import as the original.

This term structure has been used to represent both Nuprl, HOL and PVS
terms in the FDL [8,3].

A language is a decidable subset of terms i.e. £ is a language if C C Term /
and for every t £ Term i, we can decide if t £ C. We assume interesting languages
have names and abuse our own notion by identifying C both with the set of terms
in the language and as a name of the set of terms. If £ is a language we also
use the name C to denote the property of membership in C, thus if C occurs as
a property it denotes the property (At .t £ C). We note here that many of the
languages we are interested in will be the terms of some logic, though not all
interesting languages are logical.

3.2 Databases and Filters

In our model, libraries are collections of terms that refer to one another via the
abstract atomic identifiers together with collections of certificates making claims
about the stored terms.

Every individually stored term has an index i G I and terms may contain
indexes to other terms. There is no requirement that every subterm of a term
be indexed, though it is possible to build terms by storing subterms individually
and referring to them by their abstract identifiers.

The evidence associated with a term is carried in the certificates for the term.
We use the Greek ‘e\ possibly decorated, as meta-variables denoting evidence.
Terms retrieved from databases are packaged with the evidence associated with
them and we call such packages eterms. We denote the type of evidentiary terms
Term,is and write te to denote elements of this type. Evidence can be erased
from an evidentiary term, = t, i.e. : Term,is —>• Term i and similarly,
evidence can be garnered from an eterm ^ ej = e. No mechanism is provided for
evidentiary terms to be composed (except by the database itself) and we expect

to apply encryption mechanisms to enforce the constraint that only the database
can deliver an eterm.

Once exported from a database, every term has at least one piece of evidence
associated with it which an identifier of the database it originated in. Of par
ticular practical interest and current research is the problem of how evidence in
the form of certificates can be transferred from one database to another without
forcing the re-verification of the certificates. We expect that methods based on
digital signatures, like that described in [12], can be applied to this problem.

Within a database, term indexes (either stored as data or computed as
needed) are used to select objects satisfying some property e.g. the terms of the
PVS logic, or the Nuprl tactics. Term indexing is a tool to pair down the search
space before the computationally expensive part of the search is performed by
filtering objects that are unlikely to match. See [24] for efficient data-structures
and algorithms for term indexing of first-order terms. We imagine many such
indexing operations will be defined and provide the framework for specifying
them here.

Given a database V of terms and a property (ip : Term,ie —>■ B) of terms,
T>ltp is the set of eterms in V satisfying ip:

V lip =f { te € V \ ip[te] }

If P = {y)1; • • •, ipn] is a set of properties of eterms, we write V \.P to denote
the set of terms satisfying at least one of the properties in P i.e. {ip\, ■ ■ ■ ,y>n}
is a notation for the property (Xte. ipi[te] V • • • V ipn[ie]). Note that the fact that
properties are defined on eterms means we can filter databases by syntactic
properties of the terms and/or by the evidence the terms carry.

If D is any set of databases and if ip is any property of terms, then:

D I ip d= (J V i i p
T> £D

Individual databases may vary in their underlying implementations though
they must all support translations from their internal representations into the
term representation that serves as the medium of communication between sys
tems. A framework like the one proposed here, characterized by operations on
terms, allows for specification of search methods in terms of the interface lan
guage.

3.3 Translations

Our methodology for sharing results rests on the idea that there may be effective
translations between logics. In [26], an application similar to the one here is given
which accounts for the use of multiple logics within a single specification.

If there is a partial function / mapping terms to terms (/ : Term i Termi)
such that the domain of / is CJ and the codomain of / is C we call { / ,£ ' ,£)

a translation. Note that since the domains of translations may intersect, we ex
plicitly carry the domain and codomain with the translation10. If / is a function
from £ to C and t £ £ then f (t) evidently denotes the translation of t £ £
into a term in the language C.

We are typically interested in translations that make some kind of guaran
tee, e.g. that some property is preserved by the translation. The evidence for
guarantees are represented in certificates11 and so, a translation which generates
evidence for its own correctness must generate certificates. Only the database
can generate certificates and so evidentiary translations must carry references to
certificate kinds (a certificate generator) and make requests to the database to
execute them. A translation certificate kind (of type CK) takes an eterm te whose
term part is of type £ and returns a new eterm t'e, where e' is the new evidence
for the translated term t'. As a side effect it adds the new term (t1 = to
the database and creates new certificates for t' both preserving the old certifi
cates |iej (noting that they belonged to the untranslated term ie) and generating
a new certificate certifying that t' was indeed generated by the translation of te.
If C is a reference to a certificate kind we write C*(te) to denote the result of a
request for the database to apply certificate kind C to ie.

Thus,the type of evidentiary translations is defined to be the four-tuple:

Tr d— (Term i —̂ Termi) x (Term i Set) x (Termi Set) x CK

If r = { / , C, £ , C) is in Tr then:

r (te) d= C*(te) dom(r) d= C codom(r) d= £

We define the composition of evidentiary translations (r o f) as follows.
If r = { f ,£ ,C ,C) and f = {g ,C ,C ,C) are compatible translations (i.e. if
codom(r) = dom(f)) then:

r o f = {/ o g, £ ', C, C o C)

The notation (/ o g) denotes ordinary function composition defined
as (f o g)(x) = g (f(x)).

The identity translation on a language C is defined as Idc = (Xx.x, £ , £ , Cm),
where Cid is the certificate kind that has no side effects and Cjd(t() simply returns
the value te.

In practice the syntactic translations between the formal languages may be
straightforward, the hard part for nontrivial translations between logics is the
justification that the translation preserves intended meanings. The justification

10 This is consistent with formalizations of category theory [16, 6] in which each arrow
has a dom and codom function and so arrows in non-trivial categories are triples.
With this in mind, we see that languages are the objects of the category, translations
are the arrows and composition is defined as below.

11 Certificates justifying a translation may refer to an informal argument (a paper)or
they may refer to other formal content.

that the intended meaning is preserved by a translation may be informal or
formal. To the extent that a user believes the justification for a translation,
he will include it (or not) in the set of translations he wants considered when
calculating a set of candidates for a search.

3.4 Stratification of Languages by Translations

To consider the relationships between objects in different languages in a het
erogeneous database, we stratify terms relative to a fixed language C by their
distance from that language via some sequence of translations in a specified12
set T. For the purposes of search, we are ultimately interested terms that can be
effectively translated from one language (logic) to another. Based on this idea,
we provide the following definition of the n-closure of a translation set T relative
to a language C.

T o { 7- : Tr | r = Idc}
rjm+i d±f |r . rjif | gr / ̂ t . 3 f G T£. codom(T') = dom(f) A r = (r ' o f) }

The class T£ consists of all translations mapping terms of languages £ to the
language £ by a sequence of n translations from the set T.

We define the closure of the stratification to be the union of all the levels.

T i « |J T i
?gn

This is the set of all terms interpretable as terms in C by some sequence of
translations in T.

The languages at level k in T* can be retrieved by projecting them from the
translations in that level.

IIT2II ^ 7T2(T2)

where the projection functions are lifted to sets of tuples point-wise in the natural
way (i.e. if S C Si x • • • x Sn then Wi(S) = { Xi : 5j|{xi, • • • , X j , • • • ,x n) G S}
where 0 < i < n }).

The distance of a language £ from C under the translations set T is defined
if and only if £ G ||T*|| for some k and is the minimum k such that £ G ||T|||.

The languages included in the closure T£ determine the potential search
space (and translations to use) to satisfy a query in the language C.

The set of terms from a collection of databases D under translation set T
at distance k from C is the set D 4- ||T* ||. We call this set the k-step candidate
term,s. The full set of candidate terms are the terms in D 4- ||T̂ -1|. These sets are
sets of terms in the languages £ , that can be translated into terms in C. We are
of course not only interested in the sets of terms which can be translated into
the language C but are interested in their translations. The effective candidate

12 We specify the set of allowable translations T because it is a basic tenet of our
approach that users must be able to account for the results they receive.

terms of C from D under T is the set of terms from the languages in D 4- ||T̂ . ||
paired with their translations.

The following property states that if r is in set of translations in T£, then
every term t in dom(r) actually is mapped to a term in C by r.

V T :Tr Set. VC C Term i. Vr G T£. Vi G ofom(r). r(i) G C

The proof of this property is by induction on the level k at which r occurs in T£
and then follows directly from the definition and the properties of composition.

The fact that translations are not necessarily invertible determines how
search is done in the languages that are one or more translation steps from
C; we apply the search methods implemented for C to terms in (t, r) G T£ by
searching against the translated term r(i).

As an example of these definitions, consider the following. There are extant
translations of HOL terms to classical Nuprl terms (n), a translation of Isabelle
terms to classical Nuprl terms (7 2) and a translation of ACL2 terms into HOL
terms (7 3).

I I O 'L p r ;) ! = {N u prl}

||{ Ti,T2,T3} 1Nupril = {H O L ,Isa b elle}

\\{run}1Nuprl\ = {H O L }

\\{TuT2,n}2Nuprl\\={AC L2}

I {'Tl, Vi }pfUpr i I { }
Note that the levels as specified here are not cumulative; e.g. Nuprl G

II{ti,T3}QNuprl| but Nuprl 0 I' Thus a user interested in searching
HOL theorems but excluding theorems of Nuprl to satisfy a Nuprl proof can
specify the domain of search as \{'ri,Tz} 1Nuprl||.

Note that the translations between these different logical theories preserve
validity of theorems but do not necessarily translate proofs. Translations are
justified somehow, formally or informally. But such justifications may be based
on semantic arguments and the translation of proofs is unknown.

3.5 Deductive Searching

Based on these ideas we propose the following general framework for search in
heterogeneous databases of theorems from multiple logics. We cast our descrip
tion in terms of sequents, though it should be obvious how to recast these ideas
in non-sequent based logics.

We are interested in searching the library to complete a proof of some sequent
of the form F b-£ A. Should some AG J already be proved in C and stored in
the library, then r,<j> l-£ A can be trivially proved in C by cutting in (j) and
then invoking the axiom rule. Less directly, perhaps there is some translation
mapping a theorem of some other logic into the term (j) in the language of C.

Search will be performed using procedures that are, in most cases, incomplete.
Our framework assumes that a search procedure used to find results within the

context of some logic C can construct a “proof” in C when a search is successful
e.g. a search procedure to be used in the context of an HOL theorem will return
both the lemmas found in the database and tactic to apply them in the context
of sequent being searched for.

Let r he 4 be a sequent in the logical language C, let D be a collection
of databases {X>i,X>2, • • • ,T>n} and let S be a proof search procedure for C. We
define [r i -£ /V]d,5 as follows:

[r hc z\] D ,5 d= {(r’,p)\r’ c u d a p proves r ,r ' hc a }

where UD is the set of all terms in the databases in the set D. Thus [P b ZSJd.s
is a set of pairs consisting of lists of theorems F' from the databases in D,
paired with a method of proof p which proves the sequent F, F' he A. The proof
p (together with the theorems in F') is the information needed by the prover for
the logic C to complete the proof of the sequent F he A. We write [Z\]d,s for
[b ZV]d ,5 and [^] d , s for [b ^]D,s-

Now we discuss some consequences and applications of the definition.
Typically, the actual answer set [P b^ Z\]d,s is infinite; to see this note that

once some list of terms is enough to prove the desired result, any extension
of that list will also do13. However, note that non-empty approximations to
[f b £ Z\]d,s are usually satisfactory answers to queries i.e. any answer provides
a means to prove F he A from the contents of databases in D. Indeed, although
[f b £ is defined as a complete answer, only one answer is ever required
to discharge the proof obligation. Multiple answers may provide the requester
with options allowing them to make choices based on any number of criteria. We
can imagine that one criteria might be to choose the answer that requires the
minimum update to the local database. Others might be based on elegance.

To search a collection of databases D for an individual theorem q>, one
searches for an approximation of [^]d,s- Note that if any theorem (j) of C is
in the database, then {{<f>}, Axiom{<f>}) £ P]d ,s where Axiom,{<f\ is the axiom
rule for C i. e. the rule justifying sequents of the form

I 'i • <?■ 12 b e Ai,<j>, A 2

Thus, we have defined a framework for deductive search in a way that users
can both account for the results they receive and can apply the results in proofs.

Name and Content based Search in the Deductive Framework We
note here that name and content based searches can be fit into the framework
just described for deductive search. For name searches, we assume that there
is a function name mapping library objects to user specified names (strings of
characters) and returning the empty string if a name does not exist. We define
a logic of names CN. where the language of the logic of names is Term i (all

13 Of course we are excluding various resource-bounded and substrutural logics from
this consideration.

terms, including strings, are in the language of the logic of names). The logic
CN has one proof rule.

——---------Ax if s G string A s C nameit)
t I™CN S a

Here, s is a string and s C s' if and only if s is a substring of s'. Thus, a name
search for all objects in some collection of databases D is computed as [s]d,£JV-
To search the names of the terms of some language C for a particular string s
can be specified as [s] d 4x , £ 7v ; e.g. to search Nuprl terms having the string “lis f
as a substring of their name is specified as [“list”] (piNupri) ,cn - The result of
the search would be a set of pairs { (i i , A x) , • • •, (tn, A x)}.

We can cast content-based search in the deductive framework by similarly
defining a logic of content.

4 Apologia and Conclusion

In this paper we have described an implementation of a peer-to-peer framework
for connecting databases of formalized mathematics [17] and the term structures
used to communicating between them. We have proposed a framework for de
ductive searching in distributed collections of heterogeneous databases and have
described how name and content based searchers can be cast into the deduc
tive framework. We have emphasized that both evidence and effective methods
of translation and proof should be included as part of the results of searches.
There is obviously significant work that remains to be done, most features of
the proposed framework have not been implemented. Work on representing ev
idence using Allen’s certificate mechanism continues at Cornell and Wyoming.
We have only implemented name and content based searching and intend to
further explore more powerful deductive methods based on heuristic search.

In a number of ways this paper is unsatisfactory: some aspects of the proposed
framework for sharing and searching have been elaborated in too much detail;
while a number of aspects of the presentation are too vague. However, we believe
that the proposed approach has several advantages. We do not propose to impose
any particular logic or any absolute criteria for correctness on users. To us, any
attempt to make such impositions will result in failure, perhaps not for technical
reasons but for social ones14. Choice of logic and the criteria for correctness
are matters for individual deliberation. Instead, we have proposed a framework
within which mechanisms for translating between logics can be implemented and
where mechanisms to account for results is embedded within the framework. The
only imposition we reluctantly make is one of syntax, of term structure. And
although we can imagine that XML or some other structured notation would
work as well as the one presented here, we can not imagine how to avoid such
an imposition. In any case, matters of syntax require far less commitment than

14 One might reasonably claim that the QED project [4] ended prematurely down for
precisely this reason.

matters of semantics. We believe that something very much like the system
proposed here, if not this one, will eventually provide a practical means for
seamless sharing formal mathematics.

Acknowledgments We would like to thank Stuart Allen and Constable at
Cornell for the intellectual enjoyment gained from the time spent discussing FDL
related matters. We thank Rich Eaton also at Cornell for cheerful responses to
our unreasonable requests for his time and for his programming support. The
first author also thanks John Paul at the University of Wyoming for acting as a
sounding board for many of the ideas presented here.

References

1. Stuart Allen. Nuprl Basics. Cornell University, 2001.
http://www.es.Cornell. edu/Info/People/sfa/Nuprl/NuprlPrimitives/.

2. Stuart Allen. Abstract identifiers, intertextual reference and a compu
tational basis for recordkeeping. First Monday, 9(2), February 2004.
http: / /firstmonday. org/issues/issue9_2/alien/.

3. Stuart F. Allen, Mark Bickford, Robert Constable, Richard Eaton, and
Christoph. Kreitz. A Nuprl-PVS connection: Integrating libraries of for
mal mathematics. Technical Report TR2003-1889, Cornell University, 2003.
http: / / techreports. library. Cornell.edu:8081/Dienst/UI/l.0 /
Display/cul. cis/TR2003-1889.

4. Anonymous. QED Manifesto, http://www-unix.mcs.anl.gov/qed/.
5. James Caldwell and Judith Underwood. Classical tools for constructive proof

search. In Didier Galmiche, editor, Proceedings of the CADE-13 Workshop on
Proof search in Type-theoretic languages., Rutgers N.J., July 1996.

6. James Caldwell and Tjark Weber. A formal framework for constructive category
theory, http://www.cs.uwyo.edu/~jlc/papers, July 2003.

7. Gilles Dowek. Higher-Order Unification and Matching, chapter 16, pages 1009
1065. In Robinson and Voronov [23], 2001.

8. The Formal Digital Libraries Project (Homepage),
http: / / www.nuprl. org/html/Digital.Libraries.html.

9. D. M. Gabbay and M. de Rijke, editors. Frontiers o f Combining Systems 2
(Proceedings of the Second International Workshop, FroGoS’98, Amsterdam, The
Netherlands, October 1998), volume 7 of Studies in Logic and Computation. Re
search Studies Press Ltd., 2000.

10. Joseph Goguen and Rod Burstall. Introducing institutions. In Edward Clarke and
Dexter Kozen, editors, Proceedings, Logics of Programming Workshop, volume 164
of LNCS, pages 221-256. Springer, 1984.

11. Joseph A. Goguen and Rod Burstall. Institutions: Abstract model theory for spec
ification and programming. Journal o f the Association for Computing Machinery,
39(1):95-146, 1992.

12. Jim Grundy. Trustworthy storage and exchange of theorems. Technical Report
TUCS-TR-1, Turku, Finland, April 1996.

13. Jaakko Hintikka. The Principles o f Mathematics Revisited. Cambridge University
Press, 1996.

http://www.es.Cornell.edu/Info/People/sfa/Nuprl/NuprlPrimitives/
http://firstmonday.org/issues/issue9_2/alien/
http://techreports.library.Cornell.edu:8081/Dienst/UI/l.0/
http://www-unix.mcs.anl.gov/qed/
http://www.cs.uwyo.edu/~jlc/papers
http://www.nuprl.org/html/Digital.Libraries.html

14. Douglas Howe. Toward sharing libraries of mathematics between theorem provers.
In Gabbay and de Rijke [9], pages 161-176.

15. Douglas J. Howe. Importing mathematics from HOL into Nuprl. In J. von Wright,
J. Grundy, and J. Harrison, editors, Proceedings o f the 11th International Confer
ence on Theorem Proving in Higher Order Logics, volume 1125, of LNCS, pages
267-282. Springer-Verlag, 1996.

16. G. Huet and A. Saibi. Constructive category theory. In Gordon Plotkin, Colin Stir
ling, and Mads Tofte, editors, Proof, Language and Interaction: Essays in Honour
of Robin Milner. MIT, 1998.

17. Christoph Jechlitschek. Distributed Sharing of Formalized Mathematics: a P2P
approach. Master’s thesis, University of Wyoming, Laramie, W Y, May 2004.

18. The JXTA project homepage, http://www.jxta.org.
19. Evan Moran. Forthcoming Cornell Ph.D. Thesis, Dept, of Computer Science.
20. Pavel Naumov. Importing Isabelle formal mathematics into Nuprl. The 12th In

ternational Conference on Theorem Proving in Higher Order Logics, supplemental
proceedings, 1999. http: / / www-sop. inria.fr/croap/TPH0Ls99/ps/paper4.ps.

21. Pavel Naumov, Mark O. Stehr, and Jose Meseguer. The HOL/NuPRL proof trans
lator: A practical approach to interoperability. In Proceedings of the 14th Inter
national Conference on Theorem Proving in Higher Order Logics, volume 2152 of
LNCS, pages 329 - 345. Springer, 2001.

22. National Center for Biotechnology Information (Homepage),
http: / / www.ncbi.nlm.nih.gov/.

23. Alan Robinson and Andrei Voronov, editors. Handbook of Automated Reasoning:
Volume II. MIT, North Holland, 2001.

24. R. Sekar, I. V. Ramakishnan, and Ardrei Voronkov. Term Indexing, chapter 26,
pages 1855-1964. In Robinson and Voronov [23], 2001.

25. Mark Staples. Linking ACL2 and HOL. Technical Report 476, Cambridge Univer
sity, Computer Laboratory, 1999.
h ttp ://c ite s e e r .is t .psu.edu/staples991inking.html.

26. Andrzej Tarlecki. Towards heterogeneous specifications. In Gabbay and de Rijke
[9], pages 337-360.

http://www.jxta.org
http://www.ncbi.nlm.nih.gov/
http://citeseer.ist.psu.edu/staples991inking.html

Mechanical Verification of
Automatic Synthesis of Failsafe Fault-Tolerance1

(Extended Abstract)

Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

Department of Computer Science and Engineering,
Michigan State University,

48824 East Lansing, Michigan, USA
{sandeep, borzoo, ebnenasi}®cse.msu.edu

http://www.cse.msu.edu/"{sandeep,borzoo,ebnenasi}

Abstract. Fault-tolerance is a crucial property in many systems. Thus,
mechanical verification of algorithms associated with synthesis of fault-
tolerant programs is desirable to ensure their correctness. In this paper,
we present the mechanized verification of the algorithm that automates
the synthesis algorithm for adding failsafe fault-tolerance to a given fault-
intolerant program using the PVS theorem prover. By this verification,
not only we prove the correctness of the synthesis algorithm, but also
we guarantee that any program synthesized by this algorithm is correct
by construction. Towards this end, we formally define a framework for
formal specification and verification of fault-tolerance that consists of ab
stract definitions for programs, specifications, faults, and levels of fault-
tolerance, so that they are independent of platform and architecture. The
essence of the synthesis algorithm involves fixpoint calculations. Hence,
we also develop a reusable library for fixpoint calculations on finite sets
in PVS.

K eyw ords: Fault-tolerance, PVS, Program synthesis, Program transforma
tion, Mechanical verification, Theorem proving, Addition of fault-tolerance

1 Introduction

Fault-tolerance is a necessity in most computer systems and, hence, one needs
strong assurance of fault-tolerance properties of a given system. Mechanical veri
fication of such systems is one way to get a strong form of assurance. The related
work in the literature has focused on verification of concrete fault-tolerant pro
grams. For example, Owre et al [1] present a survey on formal verification of
1 Extended version appears in the proceedings of International Symposium on Logic-

based Program Synthesis and Transformation (LOPSTR’04) Verona, Italy.
This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant
OSURS01-C-1901, ONR Grant N00014-01-1-0744. NSF grant EIA-0130724, and a
grant from Michigan State University.

http://www.cse.msu.edu/%22%7bsandeep,borzoo,ebnenasi%7d

2 Sandeep S. Kulkarni. Borzoo Bonakdarpour, and Ali Ebnenasir

a fault-tolerant digital-flight control system. Mantel and Gartner [2] verify the
correctness of a fault-tolerant broadcast protocol. Qadeer and Shankar [3] me
chanically verify the self-stability property of Dijkstra’s mutual exclusion token
ring algorithm [4], Kulkarni, Rushby, and Shankar [5] verify the same algorithm
by exploiting the theory of detectors and correctors [6].

While the verifications performed in [1-3,5] enable us to gain confidence
in the programs being verified, it is difficult to extend these verifications to
other programs. A more general approach, therefore, is to verify algorithms that
generate fault-tolerant programs.

With this motivation, in this paper, we focus on the problem of verifying
an algorithm that synthesizes fault-tolerant programs. With such verification,
we are guaranteed that all the programs generated by the synthesis algorithm
indeed satisfy their fault-tolerance requirements. Towards this end, we verify
the transformation algorithm for adding failsafe fault-tolerance, presented by
Kulkarni and Arora [7] using the PVS theorem prover. To verify this algorithm,
first, we model a framework for fault-tolerance in PVS. This framework consists
of definitions for programs, specifications, faults, and levels of fault-tolerance.
Then, we verify that any program synthesized by the algorithm is indeed failsafe
fault-tolerant. By this verification, we ensure that any program synthesized by
this algorithm is also correct by construction and, hence, there is no need to
verify the individual synthesized programs.

We note that the algorithms in [7], are the basis for their extensions to deal
with simultaneous occurrence of multiple faults from different types [8] and for
synthesizing distributed programs [9,10]. Thus, the specification and verification
of transformation algorithms in [7] is reusable in developing specification and
verification of algorithms in [8-10]. Since fixpoint calculation is at the heart of
the synthesis algorithm for adding failsafe, we also develop a library for fixpoint
calculations on finite sets in PVS. This library is reusable for other purposes
that involve fixpoint calculations as well.

Contributions of the paper. The contributions of this paper are as follows:
(1) We verify the correctness of the synthesis algorithm for adding failsafe fault-
tolerance in [7]. Thus, not only we ensure its correctness but also we guarantee
that any program synthesized by the algorithm is also correct by construction.
(2) We provide a foundation for formal specification and verification of later
research work that are extensions of [7]. (3) We develop a reusable library in
PVS for fixpoint calculations on finite sets.

Organization of the paper. The organization of the paper is as follows:
We provide the formal definitions of programs, specifications, faults, and fault-
tolerance in Section 2. Using these definitions, we formally state the problem of
mechanical verification of synthesis of failsafe fault-tolerant programs in Section
3. In Section 4, first, we develop a theory for fixpoint calculations on finite sets.
Then, based on the definitions in Section 2 and our fixpoint calculation library,
we formally specify the synthesis algorithm for adding failsafe tolerance in PVS.
In Section 5, we present verification of the algorithm for synthesizing failsafe
fault-tolerant programs. Finally, we make concluding remarks and discuss future
work in Section 6.

Mechanical Verification of Automatic Synthesis of Failsafe Fault-Tolerance 3

2 Modeling a Fault-Tolerance Framework
In this section, we give formal definitions for programs, specifications, faults,
and fault-tolerance. The programs are specified in terms of their state space
and their transitions. The definition of specifications is adapted from Alpern
and Schneider [11], The definitions of faults and fault-tolerance are adapted
from Arora and Gouda [12] and Kulkarni [6]. We also discuss how we model
the definitions in PVS in an abstract way, so that they are independent of any
particular program.

2.1 Program

A program p is a finite set of transitions in its state space. In our framework,
the notion of state is abstract. Hence, in PVS, we model state by an UNIN
TERPRETED TYPE [13]. Likewise, a transition is modeled as an ordered pair of
states, which is also an uninterpreted type. We also assume that the number of
states and transitions are finite. The state space of p, Sp, is the set of all possible
states of p. In PVS, we model the state space by the finite fullset over states.

We model program, p, by a subset of Sp x Sp. A state predicate of p is a subset
of Sp. In PVS, we model a state predicate, StatePred, as a finite set over states.
The type Action denotes finite sets of transitions. A state predicate S is closed in
the program p if f for all transitions (s0, si) in p, if s0 € S then si € S. Hence, we
define closure as follows: dosed(S,p) = (Vs0,si | (s0,s i)€ p : (s0€ S =>■ si eS)).
A sequence of states, (s0, s i , ...), is a computation of p if f any pair of two consec
utive states is a transition in p. We formalize this by a DEPENDENT TYPE [13]
as follows: Computation(p) : T Y P E =

{ c : sequence [state] | (Vi | i > 0 : (cj,cj+1) € p)}

where sequence[state] : N —> state and p is any finite set of type Action. A com
putation prefix is a finite sequence of states, where the first j steps are transitions
in the given program:

p refix (p ,j) : T Y P E = { c : sequence [state] | (V* | i < j : (cj,cj+i) € p)}

We deliberately model computation prefixes by infinite sequences of which
only a finite part is used. This is due to the fact that using finite sequences in PVS
is not very convenient and the type checker generates several proof obligations
whenever finite sequences are used.

The projection of program p on state predicate S consists of transitions of p
that start in S and end in S, denoted as p | S. Similar to the notion of program,
we model projection of p on S by a finite set of transitions: p | S = { (s0,s i) |
(s0,s i) E p A (s0,si € S)}.

2.2 Specification

The specification consists of a safety specification and a liveness specification. The
safety specification is specified as a set of bad transitions. Thus, for program p,

4 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

its safety specification is a subset of Sp x Sp. Hence, we can model the safety
specification by a finite set of transitions, called spec. We explain the liveness
issue in Section 2.3.

Given program p, state predicate S, and specification spec, we say that p
satisfies its specification from S iff (1) S is closed in p, and (2) every computation
of p that starts in a state where S is true, does not contain a transition in spec.
If p does not satisfy its specification from S, we say p violates its specification.
If p satisfies specification from S and S ^ { } , we say that S is an invariant of p.
Since we do not deal with a specific program, in PVS, we model an invariant by
an arbitrary state predicate that is closed in p.

2.3 Faults and Fault-Toleranee

The faults that a program is subject to are systematically represented by a
finite set of transitions. A class of fault / for program p is a subset of Sp x Sp. A
computation of program p in presence of faults / is an infinite sequence of states
where either a transition of p or a transition of / occurs at every step. Hence, we
model computation of program in presence of faults as c : Computation(p U /) .

We say that a state predicate T is an /-span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S => T, and (2) T is closed in
p U / . Thus, we model fault-span in PVS as follows: FaultSpan(T, S,p U /) =
((S C T) A (closed(T,p U /))) . Observe that for all computations of p that start
at states where S is true, T is a boundary in the state space of p up to which
(but not beyond which) the state of p may be perturbed by the transitions in / .
Hence, we define the different levels of fault-tolerance based on the behavior of
the fault-tolerant program in its fault-span.

We say that p is failsafe /-to lerant (read as fault-tolerant) to its specification
from S iff two conditions hold: (1) p satisfies its specification from S, and (2) there
exists T such that T is an /-span of p from S, and no prefix of a computation
of p U / that starts in T has a transition in spec.

In [7], the liveness specification is modeled implicitly. Specifically, for fail
safe fault-tolerance, the requirement is that the fault-tolerant program does not
deadlock in the absence of faults. A program deadlocks in state s0 iff Vsi | si €
S : (s0,s i) £ p.

3 Problem Statement

In this section, we formally state the the problem of automatic synthesis of
failsafe fault-tolerance. As described in Section 2, the fault-intolerant program
p is specified in terms of its state space Sp, its transitions, p. and its invariant,
S. The specification provides a set of bad transitions (that should not occur in
program computation). The faults, / , are specified in terms of a finite set of
transitions. Likewise, the fault-tolerant program p' is specified in terms of its
state space Sp, its set of transitions, say p'. its invariant, S', its specification,
spec, and the type of fault-tolerance it provides.

The Transformation Problem
Given p, S, spec, and / such that p satisfies spec from S.
Identify p' and S' such that:

S' C S
(p'\S') C (p\S')
p' is failsafe /-tolerant to spec from S'

We now explain the reasons behind the first two conditions briefly:

- If S' contains states that are not in S then, in the absence of faults, p'
will include computations that start outside S and hence, p' contains new
behaviors in the absence of faults. Therefore, we require that S' C S.

~~ Regarding the transitions of p and p', we focus only on the transitions of
p'\S' and p\S'. If p'\S' contains a transition that is not in p\S', p' can use
this transition in a new computation in the absence of faults and hence, we
require that p'\S' C p\S' .

Soundness. An algorithm for the transformation problem is sound iff for any
given input, its output, namely p' and S', satisfies the transformation problem.

Our goal is to mechanically verify that the proposed algorithm in [7], for
adding failsafe fault-tolerance is indeed sound.

Mechanical Verification of Automatic Synthesis of Failsafe Fault-Tolerance 5

4 Description and Specification the Synthesis Algorithm

In this section, we describe the synthesis algorithm for adding failsafe fault-
tolerance proposed in [7], and explain how we formally specify it in PVS. The
essence of adding failsafe fault-tolerance to a given fault-intolerant program is re
calculation of the invariant of the fault-intolerant program which in turn involves
calculating the fixpoint of a formula. More specifically, we calculate fixpoint of a
given formula to (i) calculate the set of states from where safety may be violated
by faults alone; (ii) remove deadlock states that occur in a given set of states.

The /i—calculus theory of the PVS prelude contains general definitions of the
standard fixpoint calculation, however, it is not convenient to use that theory
in the context of our problem. This is due to the fact that this library focuses
on infinite sets and is not specialized to account for the properties of functions
used in the synthesis of fault-tolerant programs. By contrast, we find that by
customizing the theory to the properties of functions used in the synthesis of
fault-tolerant programs, we can simplify the verification of the synthesis algo
rithm. Hence, in Section 4.1, we develop a theory for fixpoint calculations on
finite sets and we verify it in Section 5.1. This theory is expected to be reusable
for other formalizations that involve fixpoint calculations on finite sets. Based
on the definitions in Section 4.1, we model the synthesis algorithm for addition
of failsafe fault-tolerance in Sections 4.2.

6 Sandeep S. lvulkarni. Borzoo Bonakdarpour, and Ali Ebnenasir

4.1 Specification of Fixpoint Calculation for Finite Sets

In this section, we describe how we formally specify fixpoint calculation for finite
sets in PVS. A fixpoint of a function / : X -»■ X is any value xq £ X such that
f (x o) = x q . In the context of finite sets, domain and range of / , X , are both finite
sets of finite sets. Throughout this section and in Section 5.1, the variables i, j, k
range over natural numbers. The variable x is any finite set of any uninterpreted
type. Variable b is any member of such finite set.

One type of functions used in synthesis of failsafe fault-tolerance is a decreas
ing function for which the largest fixpoint is calculated. Towards this end, we
start from an initial set and at each step of calculation, we remove a subset of
the initial set that has a certain property. Thus, the type DecFunc is the type
of functions g, such that g : {A : fin iteset} —> {B : fin iteset | B C A }. In
other words, for all finite sets x, g(x) C x. With such a decreasing function,
we define D ec(i,x)(g) to formalize the recursive behavior of the largest fixpoint
calculation. D ec(i,x)(g) keeps removing the elements of the initial set, x, that
the function g of type DecFunc returns at every step:

Deed x)(q) = I D e°^ 1' x^ ~ 9 (Dec(i - 1 ,x){g)) if i ± 0;
 ̂ | x if % = 0

We define the largest fixpoint as follows:
LgFix(x)(g) = {b | Vfc : b € D ec(k ,x)(g))}

Our goal is to prove the following property of largest fixpoint based on our
definitions:

g(LgFix(x)(g)) = 0
Likewise we define an increasing function, r, for which the smallest fixpoint

is calculated:

j- w > (Inc(i — l,x)(r)U r (In c (i — l,x)(r)) if i ^ 0;Inc(t,x)(r) = < • nv [x if i = 0

Finally, we define the smallest fixpoint as follows:
Sm Fix(x)(r) = {b | 3k : b € In c(k ,x)(r)}

4.2 Specification of the Synthesis of Failsafe Fault-Tolerance

The essence of adding failsafe tolerance is to remove the states from where safety
may be violated by one or more fault transitions. We reiterate the algorithm
Add-failsafe (from [7]) in Figure 1.

Throughout this section and Sections 5.2, the variables x ,s ,s 0,s i range over
states. The variables i ,j , k, m range over natural numbers. The variable X ranges
over StatePred and the variable Z ranges over Action. As defined in Section 3,
p and p' are respectively fault-intolerant and fault-tolerant programs, S and S'
are respectively invariants of fault-intolerant and fault-tolerant programs, / is
the finite set of faults, and spec is the finite set of bad transitions that represents
the safety specification.

Mechanical Verification of Automatic Synthesis of Failsafe Fault-Tolerance 7

Add_failsafe(p, / : transitions, S : state predicate, spec : specification)
{

m s := s m a l l es t f ixp o in t (X = X U {so I (3si :
(so ,si) G /) A (si (so ,«i) violates spec) };

m t : = {(sch «i) : ((s i G m s) V «i) violates spec) };
S' := Const ructInvariant(S — m s ,p — mi)\
if = declare no failsafe /-tolerant program exists;

else p' :=ConstructTransitions(p — mt, S')
}
Const ructInvariant(S : state predicate, p : transitions)
/ / Returns the largest subset of S such that computations of p

within that subset are infinite
return la r g e s t f ix p o in t (X = (X n S) — {so I (V*i : s\ £ X : (*o ,*i) ^ p) }

ConstructTransitions(p : transitions, S : set of states)
{ return p — {(so^ s i) : sq £ S A si £ S } }

Fig. 1. The synthesis algorithm for adding failsafe tolerance

In order to construct ms, the set of states from where safety can be violated
by one or more fault transitions, first, we define m slnit as the finite set of
states from where safety can be violated by a single fault transition. Note that
(so,si) € spec means violation of the safety specification. Formally,

m sln it : StatePred = {s 0 | 3 si : (s0,s i) € / A (s0,s i) € spec}

Now, we define a function, RevReachStates, that calculates a state predicate from
where states of another finite set, rs. are reachable by fault transition. Formally,

RevReachStates(rs : StatePred) : StatePred =
{s 0 | 3 si : si € rs A (s0, si) € / A s0 f rs}

We use the definition of smallest fixpoint in Section 4.1 to define the state pred
icate ms. Towards this end, we instantiate the initial set with mslnit, and the r
function with RevReachStates:

ms : StatePred = SmFix(msInit)(RevReachStates)

Then, we define the finite set of transitions, mt, that must be removed from p.
These transitions are either transitions that may lead a computation to reach a
state in ms or transitions that directly violate safety:

m t : Action = {(s0,s i) | (si € ms V (s0,s i) € spec)}

The algorithm Add-failsafe removes the set ms from the invariant of the fault-
intolerant program S. However, this removal may create deadlock states. The set
of deadlock states in ds of program Z is denoted as follows:

DeadlockStates(Z)(ds : StatePred) : StatePred =
{s0 | s0 € ds : (Vsi | si € ds : (s0,s i) ^ Z)}

We construct the invariant of the fault-tolerant program by removing the
deadlock states to ensure that computations of fault-tolerant program are infinite

8 Sandeep S. Kulkarni. Borzoo Bonakdarpour, and Ali Ebnenasir

(cf. Section 2.3). In general, we define Constructlnvariant using largest fixpoint
of a finite set X , that removes deadlock states of a given state predicate X :

ConstructInvariant(X,Z) : StatePred = LgFix(X)(DeadlockStates(Z))

The formal definition of the invariant of fault-tolerant program is as follows:
S' : StatePred = ConstructInvariant(S — m s ,p — mt)

Finally, we construct the finite set of transitions of fault-tolerant program by
removing the transitions that violate the closure of S':

p' : Action = p - m t - { (s 0, si) | ((s0,s i) € ip—mt)) A (s0 € S'Asi ^ S ')}

5 Verification of the Synthesis Algorithm

In this section, we verify the soundness of the synthesis algorithm for adding
failsafe fault-tolerance based on the formal specification in Section 4.

5.1 Verification of the Fixpoint Theory

In order to verify the soundness of the synthesis algorithm for adding failsafe
fault-tolerance, first, we prove the properties of fixpoint calculations (cf. Section
4.1) in Theorem 5.6.
Lemma 5.1: Until the fixpoint is achieved, the cardinality of D ec(j + 1, x) is
less than or equal to \x\ — j — 1. Formally,

Vj : ((g (D ec(j,x)(g)) ± 0) = » \(Dec(j + l,x)(g)\ < \x\ - j - I))
P roof. We prove this lemma by induction on j . In the base case, j = 0, after
eliminating the quantifiers and expanding the definitions, we need to show if
g(x) is nonempty then \x — g (x)| < \x\ — 1. We prove this by using two pre
defined lemmas in PVS: ^y,z : fin iteset : ((y C z) =>■ (|z — y\ = \z\ — |j/|)),
and Vj/ : fin iteset : (y ^ 0 \y\ > 0). After instantiations, using the
facts g(x) C x and g(x) ^ 0, the GRIND strategy [14] discharges the base case.
For induction step, after eliminating quantifiers, and expanding definitions, we
need to prove (g(Dec(j + 1 ,x)(g)) ^ 0 A | D ec(j + l,x)(g)\ < \x\ — j — 1) =>■
(|D ec(j + 1 + l,x)(g)\ < \x\ — (j + 1) — 1). We discharge the induction step this
in the same way we proved the base case. □

Lemma 5.2: If the fixpoint is reached by step j then in any subsequent steps,
fixpoint will be maintained. Formally,

Vj : ((g (D ec(j,x)(g)) = 0) =>■ (Vfc | k > j : g (D ec(k ,x)(g)) = 0))
Proof. After skolemization to remove the universal quantifier, we place in
duction on k. The base case, k = j = 0, is trivially true. In the induction
step, we need to prove (g(D ec(k ,x)(g)) = 0) =>■ (g(Dec(k + 1 ,x)(g)) = 0).
By expanding the definition of Dec in the deducing part, Dec(k + 1 ,x)(g) =
D ec(k ,x)(g) — g(D ec(k ,x)(g)), and considering the assuming part we infer that
g(D ec(k,x)(g)) = 0, therefore g(Dec(k + 1 ,x)(g)) = g (D ec(k ,x)(g)), which is

Mechanical Verification of Automatic Synthesis of Failsafe Fault-Tolerance 9

equal to the empty set. □

Lemma 5.3: There exists a step i such that subsequent applications of g returns
the empty set. Formally, 3* : ('in | n > i : g(Dec(n,x)(g)) = 0)
Proof. First, we instantiate i with \x\. Then, after skolemization, we need to
prove g(Dec(n,x)(g)) = 0. Using Lemma 5.1 and instantiating j with \x\, we
need to show two subgoals:
Subgoal 1: \Dec(\x\ + l,x)(g)\ > \x\ — \x\ — 1, which is trivially true.
Subgoal 2: (g(Dec(\x\,x)(g)) = 0) =>■ (g(D ec(n,x)(g)) = 0). From Lemma
5.2, we know ¥j : (g (D ec(j,x)(g)) = 0) =>■ (Vfc | k > j : g (D ec(k ,x)(g)) = 0).
After automatic instantiations, we need to prove (Vfc | A? > |ar| : g(D ec(k ,x)(g)) =
0) (9 (D ec(n,x)(g)) = 0). Manual instantiation of k with n discharges the
lemma. □

Lemma 5.4: There exists a step j where fixpoint is achieved. Formally,
3j : (Vfc | k > j : ((D ec(k,x)(g) = D ec(j,x)(g)) A (g(D ec(k,x)(g)) = 0)))

Proof. Proof of the second conjunct is exactly the same as proof of Lemma 5.3,
so we proceed with the proof of the first conjunct. From Lemma 5.3, we know
that the existence of j such that Vfc | k > j : g(Dec(k, x)(g)) = 0. Using Lemma
5.3 and after skolemization, we place induction on k. In the base case, k = j = 0,
we need to show D ec(0 ,x)(g) = D ec(j,x)(g), which is trivially true. In induction
step, we need to prove:

V* | i > j '■ ((Dec(i,x)(g) = Dec(j,x)(g) A g(D ec(i,x)(g)) = 0) ==>
(Dec(i + 1 ,x)(g) = Dec(j,x)(g)))

We prove this by applying the rule of extensionality and expanding Dec(i +
1 ,x)(g), which is equal to D ec(i,x)(g) — g(D ec(i,x)(g)). As g(D ec(i,x)(g)) = 0,
Dec(i + 1 ,x)(g) = D ec(i,x)(g) = D ec(j,x)(g) and the proof is complete. □

Lemma 5.5: For some value j , D ec(j,x) will reach a fixpoint, and at this step
value of Dec(j, x) will be the largest fixpoint. Formally,

3j : (g(D ec(j,x)(g)) = 0 A (Dec(j,x)(g) = LgFix(x)(g)))
Proof. Similar to proof of Lemma 5.4, the proof of the first conjunct is the same
as proof of Lemma 5.3. To prove the second conjunct, first, we apply the rule of
extensionality to convert the set equalities to boolean equalities. A propositional
split generates two subgoals:
Subgoal 1: ¥6 € LgFix(x)(g) : b € Dec(j,x)(g). First, we expand the definition
of LgFix = {b | Vfc : b € D ec(k ,x)(g)} in the assuming part. Then, instantiating
k with j proves the subgoal.
Subgoal 2: V(6 € D ec(j,x)(g)) : b € LgFix(x)(g).
To verify this subgoal, after expanding the definition of LgFix and eliminating
the universal quantifier by skolemization, we need to show ¥6 € Dec(j,x)(g) :
b € Dec(k,x)(g). Using Lemma 5.4, we know that

V* | i > j : (Dec(i,x)(g) = D ec(j,x)(g) A g(Dec(i,x)(g)) = 0).
We instantiate i with k and by propositional simplification through the GROUND

10 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

command [14], we prove this subgoal. □

Theorem 5.6: Application of function g on the largest fixpoint of a finite set
returns the empty set. Formally, g(LgFix(x)(g)) = 0
Proof. Using Lemma 5.5, the GRIND strategy completes the proof. □

5.2 Verification of the Synthesis of Failsafe Fault-Tolerance

In order to verify the soundness of Add-failsafe algorithm, we now prove that
the synthesized program, p', satisfies the three conditions of the transformation
problem stated in Section 3. More specifically, in Theorems 5.9 and 5.10, we
prove the correctness of the first two conditions of the transformation problem.
Then, in the remaining theorems, we show that the program synthesized by
Add-failsafe is indeed failsafe fault-tolerant.

Observation 5.8: S' fl ms = 0
Proof. After expanding the definition of S', Constructlnvariant, and LgFix,
we need to prove: ¥a? : (¥& : x € Dec(k, S — ms)(DeadlockStates(p — mt)) = >
x ^ ms). By instantiating k with 0, propositional simplification discharges the
observation. □

Theorem 5.9: S' C S
Proof. Our strategy to prove this theorem is based on the fact that S' is
made out of S by removing some states. After expanding the definition of S',
Constructlnvariant, and LgFix, we need to prove:

Vfc : (¥a? : (x E Dec(k, S — ms)(DeadlockStates(p — mt)) ==> x € S)).
Towards this end, first, we instantiate k with zero. Then, after expanding the
definitions, we need to prove ¥a? : (x € S — ms ==> x 6 S), which is trivially
true. □

Theorem 5.10: p'\S' C p\S'
Theorem 5.11: S' is closed in p'. Formally, dosed(S',p')
Lemma 5.12: V(s0, Si) : ((s0, Si) € / A Si € ms) =>■ s0 € ms
Proof. The GRIND strategy discharges this lemma and theorems 5.10 and 5.11.q

T heorem 5.13: Deadlock States(p — mt)(S') = 0
Proof. First, we expand the definitions of S' and Constructlnvariant. Then,
we need to prove: DeadlockDtates(p — m t)(LgFix(S — ms)(DeadlockStates(p —
mt))) = 0. Using Theorem 5.6, first, we instantiate x with LgFix(S — ms), and
g with DeadlockStates{p — mt) to complete the proof. Then, a sequence of ex
pansions of definitions and propositional simplifications discharge the theorem.^

Remark. Note that Theorem 5.13 is one of the instances where formalization
of the fixpoint in Section 4.1 is used. More specifically, DeadlockStates(p')(S')
denotes the deadlock states in S' using program p'. We repeatedly remove these

Mechanical Verification of Automatic Synthesis of Failsafe Fault-Tolerance

deadlock states. Hence, once the fixpoint is reached, there are no deadlock states.

Lemma 5.14: In the presence of faults, no computation prefix of failsafe toler
ant program that starts from a state in S', reaches a state in ms. Formally,

Vj : (Vc : prefix(p' U / , j) | co € S' : Vfc | k < j : c& ^ ms)
Proof. After eliminating the universal quantifier on c(p' U /) by skolemiza-
tion, we proceed by induction on k. In the base case, k = 0, we need to prove
co £ S' = > co ^ ms. The base case can be discharged using Observation 5.8. In
induction step, we need to prove (Vn | n < j : (c„, cn+i) € p' U /) =>■ (Vfc | k <
j : Ck ^ ms =>■ Ck+i ^ ms). From Lemma 5.12, we know that if the destination
of a fault transition , (s0, si), is in ms, then the source, s0, is in ms as well. This
means that if so is not in ms then si is not in ms either. We know that c* ^ ms
and, hence, based on Lemma 5.12, Ck+i ^ ms. □

Theorem 5.15: Any prefix of any computation of failsafe tolerant program in
the presence of faults that starts in S' does not violate safety. Formally,

Vj : V(c : prefix(p' U /) , j | cq € S') : Vfc|fc < j : (c*,c*+i) ^ spec
Proof. In Lemma 5.14, we proved that no computation prefix of p' U / that
starts from a state in S' reaches a state in ms. In addition, p' does not contain
any transition that is in spec. Thus, a computation prefix of p' U / that starts
from a state in S' does not contain a transition in spec. □

6 Conclusion and Future Work

In this paper, we focused on the problem of verifying transformation algorithm
for adding failsafe fault-tolerance that generate fault-tolerant programs that are
correct by construction. We would like to note that we have also verified the
algorithm for synthesizing (i) nonmasking fault-tolerant programs where the
program recovers to states from where its specification is satisfied although safety
may be violated during recovery, and (ii) masking fault-tolerant programs where
the program recovers to states from where its specification is satisfied while
preserving safety [15,16].

Since we focus on verification of a transformation algorithm, we note that our
results ensure that any program synthesized using the algorithm indeed satisfies
its required fault-tolerance properties. Thus, our approach is more general than
verifying a particular fault-tolerant program. Also, to verify the algorithm that
synthesizes failsafe fault-tolerant programs, we developed a fixpoint library for
finite sets. This library is expected to be applicable elsewhere.

In a broader context, the verification of the algorithm considered in this paper
will assist us in verifying several other transformations. For example, in [8], the
authors extend the algorithms in [7] to deal with multiple classes of faults. The
algorithms in [7] have also been used to synthesize fault-tolerant distributed
programs. As an illustration, we note that the algorithms in [9,10,17] that are
extensions of the algorithms in [7] have been used to synthesize solutions for
several fault-tolerant programs including, Byzantine agreement, consensus, token

12 Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

ring, and alternating bit protocol. Thus, the theories developed in this paper are
directly applicable to verify the transformation algorithms in [8-10,17] as well.

References

1. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2) :107- 125, February 1995.

2. Heiko Mantel and Felix C.Gartner. A case study in the mechanical verification
of fault-tolerance. Technical Report TUD-BS-1999-08, Department of Computer
Science, Darmstadt University of Technology, 1999.

3. S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm.
In David Gries and Willem-Paul de Roever, editors, IFIP International Confer
ence on Programming Concepts and Methods (PROCOMET ’98), pages 424-443,
Shelter Island, NY, June 1998. Chapman & Hall.

4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi
cations o f the ACM, 17(11), 1974.

5. S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based
mechanical verification of fault-tolerant programs. Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems Workshop on Self
Stabilization (W SS’99) Austin, Texas, USA, pages 33-40, June 1999.

6. S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis, Ohio State
University, 1999.

7. S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Formal
Techniques in Real-Time and Fault-Tolerant Systems, 2000.

8. S. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. IEEE
Conference on Dependable and Network Systems (DSN’04), 2004.

9. S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking
programs. International Conference on Distributed Computing Systems, 2003.

10. A. Ebnenasir and S. S. Kulkarni. A framework for automatic synthe
sis of fault-tolerance. http://Hww.cse.msu.edu/-sandeep/software/Code/

synthesis-framework/.
11. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,

21:181-185, 1985.
12. A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-

tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015—
1027, 1993.

13. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference, Version 2-4• Computer Science Laboratory, SRI International, Menlo
Park, CA, December 2001. URL: http://pvs.csl.sri.com/manuals.html.

14. N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide: Version 2-4• Computer Science Laboratory, SRI International, Menlo Park,
CA, November 2001. URL: http://pvs.csl.sri.com/manuals.html.

15. Borzoo Bonakdarpour. Mechanical verification of automatic synthesis of fault-
tolerant programs. Master’s thesis, Michigan State University, 2004.

16. S. S. Kulkarni, B. Bonakdarpour, and A. Ebnenasir. Mechanical verification of
automatic synthesis of fault-tolerant programs. International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR), 2004.

17. S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine
agreement. Symposium on Reliable Distributed Systems, 2001.

http://Hww.cse.msu.edu/-sandeep/software/Code/
http://pvs.csl.sri.com/manuals.html
http://pvs.csl.sri.com/manuals.html

ARM 6 Formal Verification: Experience with a
Commercial Microprocessor

Anthony Fox

University of Cambridge

Abstract. The ARM6 processor has been modelled in IIOL at the RTL
and ISA levels of abstraction; the entire instruction set has been verified.
This paper explains how the models were developed and briefly discusses
the verification of the block data transfer and multiply instructions. Ex
ceptions are in the process of being verified - the correctness model with
input streams is presented here.

1 Introduction

The ARM6 is a commercial. 32-bit. RISC processor that has been widely used in
mobile and embedded systems. Section 2 describes how this processor was mod
elled in HOL. and Section 2.4 discusses the verification of two instruction classes:
block data transfers and multiplies, which are both implemented with iterative
execute cycles. Section 2.5 presents work in progress - verifying the ARM6 excep
tions using a definition of correctness with input streams (Section 3.2). Section 3
contrasts this definition of correctness with the basic version.

1.1 Related Work

Early work on the mechanical verification of processors includes: TAM ARACK [18],
SECD [12], the partial verification of Viper [6], Hunt’s FM8501 [15], and the
generic interpreter approach of Windley [30]. Following this work. Miller and
Srivas verified some of the instructions of a simple commercial processor called
the AAMP5 [22]; this was based on Cyrluk’s approach [7].

Recent work has focused on verification techniques applied to complex (but
academic) micro-architecture designs, which have out-of-order execution (typ
ically using Tomasulo’s algorithm), speculative execution (branch prediction)
and exceptions [28. 21.29.17.25.3.14]. Most of these projects use variants of the
flushing correctness model of Burch and Dill [5], which Jones et al extended
to out-of-order designs [16]. The instruction set architectures used for academic
case studies are usually fairly simple, often based on the DLX architecture of
Hennessy and Petterson [13].

Complex commercial designs have also been specified, simulated and verified
using ACL2 [4.19]. There has also been industrial verification work on processor
sub-systems; for example. Intel and AMD have verified the IEEE compliance of
floating-point hardware [24. 23].

Many notions of correctness have been used in processor verifications and it
is not easy to make comparisons; see Aagaard et. al [1]. Much work has been
built on the flushing approach of Burch and Dill, and bespoke versions have been
used in different contexts. However, as Manolios [20] points out. there are some
technical problems with this approach.

2 Specification and Verification of the ARM6

The ARM6 specification and verification project, carried out at Leeds and Cam
bridge. has been funded by the EPSRC. Work initially started at Leeds (Gra
ham Birtwistle. Dominic Pajak and Daniel Schostak) to produce specifications
(including ML models) of the ARM architecture (Pajak) and of the ARM6 mi
croprocessor (Schostak). The two students had regular internships with the com
pany and their work was aided with technical data supplied by ARM.1 In Octo
ber 2000 work then started at Cambridge, with the aim to verify the processor
model. The first work to be carried out at Cambridge was in formalising the
correctness framework (Section 3.1) in HOL. This was motivated with a couple
of small verification examples: a micro-programmed data path, and a five stage
pipeline implementing a minimal instruction set [9.8].

2.1 The Architecture

Version 4 of the ARM architecture was modelled in HOL [10] - this model has
been refined during the course of the project. The specification was influenced
by Dominic Pajak’s ML model and the standard ARM reference manuals were
used as well [11.27]. Some features of the architecture are listed below:

— It is a 32-bit RISC architecture.
— There are six operating modes and the registers are arranged into overlapping

banks. The program counter is register fifteen.
— There is a program status register (CPSR) and five saved versions (SPSR

registers).
— All instructions are conditionally executed. The CPSR contains four condi

tion flags.
— There are seven types of exceptions: reset, undefined instruction, software

interrupt, prefetch abort, data abort, normal interrupt and fast interrupt.
— There are eight main instruction classes (Table 1) and also coprocessor in

structions.

Early on there was some experimentation as to how best to model the under
lying data type. 32-bit words, in HOL. A bespoke theory of 32-bit words (using
equivalence classes) was eventually developed; the pre-existing HOL theory of
words (a list based model developed by Wong [31]) was not really suitable. With
the new theory: a word length predicate is not needed; it enables expressions

1 Dominic and Daniel now work for ARM Ltd. full time.

Table 1. The ARM instruction classes.

Class Instructions

Branch and Branch with Link B, BL

Data Processing ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN,

AMD, ORR, EOR, MOV, MVN, BIC, TST, TEQ

Multiply and Multiply Accumulate MUL, MLA

PSR Transfer MRS, MSR

Single Data Transfer LDR, STR

Block Data Transfer LDM, STM

Single Data Swap SWP

Software Interrupt and Exceptions SWI

to be readily evaluated (using call-by-value conversion [2]); and it provides an
easy mechanism for producing sets of theorems about the logic and arithmetic
operations (e.g. addition, multiplication, shifting and bitwise logic). The theory
was later generalised for any fixed word length; this is the n_bit library, which
is included as part of the latest Kananaskis version of HOL.

2.2 The A R M 6

The ARM6 is a three stage pipelined processor with a multi-cycled execute
stage. A swap instruction, for example, is fetched, decoded and then takes four
(or six) cycles to execute. Daniel Schostak’s RTL specification [26] was used
to produce a HOL model of the ARM6. Schostak produced three specifications
of the ARM6, these were: a mathematical style presentation (a set of assign
ments tagged by instruction step and phase e.g. ts cp2 is the second phase of the
third execute cycle); an engineering style presentation (using a set of tables);
and an executable model (ML program). The specifications have three parts:
the data path specification, the data path control specification and the pipeline
control specification. The mathematical specification is organised by instruction
class, instruction step and then by signal order; this enables one to trace the
processor’s behaviour for a particular instruction type. The engineering spec
ification is organised by pipeline activity and then by signal order; the tables
allow one to see how signal behaviour varies according to instruction class and
step. Table 1 shows a fragment of the engineering specification for the pc-bus
write signal, PCWA; this controls whether the program counter register is incre
mented. Schostak’s specifications made distinctions between different types of
entities i.e. buses; combinational logic (functional units, multiplexers and static
logic); and memory elements (a latch, conditional latch or R-S latch).

The HOL specification of the ARM6 is a hybrid of Schostak’s mathematical
and engineering specifications. It is organised in accordance with the engineer
ing specification, but with each table converted into an equivalent function (the
equivalence is not strict in the case don’t care output - this simplifies some defi
nitions). Unlike Schostak’s specification, no explicit distinction is made between

PC W A
IC IS IREG CPB
* * 24 23 21 15 14 13 12 0

data.proc t3 1 0 X X X X X X (true,,n(llll,NBS[6:0]))
data.proc t3 X X X 1 1 1 1 X (false,,n(llll,NBS[6:0]))
mrs_msr t3 x x 0 1 1 1 1 X (false,,n(llll,NBS[6:0]))

Fig. 1. Daniel Schostak’s tabular specification of the ARM6 .

the different types of entities. The overall cycle level behaviour of the processor
is specified using a next state function. Schostak’s specification does not define
a next state function but the required behaviour can be deduced from the phase
and order of presentation of the signal assignments.

The initial HOL processor model left out: hardware interrupts; coprocessor
instructions; swaps; multiplies and block data transfers. The design was progres
sively extended with the inclusion of the swaps, followed by the block transfers
and then the multiplies. At each stage the design was verified with respect to
an instruction set model which only covered the instructions implemented. This
approach enabled working verifications to be completed (and archived) before
adding new features which would take some time to verify.

2.3 A bstractions

The correctness of the ARM6 is expressed using data and temporal abstraction
maps (Section 3.1). The data abstraction projects out the memory and registers
from the processor’s state space. The processor’s program counter has value
pc + 8 because it is used for instructions fetch (i.e. it is two instructions, or
eight bytes, ahead of the instruction being executed) and the data abstraction
accounts for this by subtracting eight. It is shown that the data abstraction is a
surjective map from the initial states implementation to the initial (all) states of
the specification; this proves that the implementation is not partial (or trivial).
The temporal abstraction is defined using a duration map: this gives the number
of cycles needed to complete instruction execution from a given processor state.

Store instructions require special attention when the memory address is pc+ 4
or pc + 8; instruction fetch and decode are invalidated by this localised self
modification of code. Two approaches to this were tried before settling on a third
solution. The first approach was to block writes to these addresses and the second
solution was to ‘fix’ the processor implementation by ensuring that the pipeline’s
state is correctly updated. Both of these methods have the disadvantage that
they do not reflect the actual ARM6 behaviour. The third method was to modify
the ISA model so as to reflect the pipelined behaviour; this was comparatively
simple to specify and verify. The data abstraction projects out the opcodes of
the fetched and decoded instructions.

2.4 Non-trivial Instruction Classes

B lock D a ta Transfers Block data transfer instructions load/store a set of
general purpose register values from /to main memory; the instruction format is
shown in Figure 2. These instructions are used for procedure entry and return
(saving and restoring workspace registers), and in writing memory block copy
routines.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

f Cond | 1 0 0 | P | U | S |W | L | Rn | Register list |

I--------------------------- base register
'-- load/store

'-- w rite-back (auto-index)
1-- restore P S R and force user bit

'-- up/down
-- pre-/post-index

Fig. 2. Block data transfer instruction encoding.

The five option flags (bits 20-24) give us thirty-two possible variants. For
example, the instruction LDMLSDB rlO ! , { r l , r 2 ,p c } ~ is encoded as follows:

1001 ■ 100 ■ 1 ■ 0 ■ 1 ■ 1 ■ 1 ■ 1010 ■ 1000000000000110

Bit L is set - this indicates that it is load. Bit P is set and bit U is clear: this
means that the load address (initially base register value rlO) is decremented
before each transfer. Bits S and fifteen are set: this means that the SPSR for
the current mode is copied to the CPSR. Bit W is set: this means that the base
address takes the value of the last load address (i.e. subtract twelve). The register
set is encoded in the bottom sixteen bits i.e. bits one, two and fifteen are set.
Transfers always occur in register index order.

The ARM 6 implements this instruction class using a 16-bit mask; this keeps
track of which registers have already been transfered and is used to compute
the index of the next register to be transfered. The following table shows the
value of this mask and the priority register (rp) for each execute cycle (is) of
the block load above:

is mask mask Aie ireg rp orp oorp

£4 1111111111111101 1000000000000100 1
tn 1111111111111001 1000000000000000 15 2 1
tn 0111111111111001 0000000000000000 i 15 2
tm -L -L 1 1 15

The tn instruction step is repeated until the masked value (column three) is zero,
there is then a final step tm. The state of the mask and priority register becomes
undefined (_L) but the transfers have been completed by this stage.

The ISA specification creates a list of register indices and then defines the
state of the memory (store) or registers (load) by applying an appropriate fold
operation over this list. There is, therefore, a significant difference in the way
the two models work and some tricky lemmas were needed in order to relate the
ISA (list based) and micro-architecture (masking) models.

The state of the processor during each execute cycle is established with the
use of invariants. The block data transfers and multiplies were the only classes
for which such invariants were required.

M ultiplies At the ISA level multiplies are fairly simply but the ARM6 imple
mentation is quite complex. Unlike most modern microprocessors, the ARM6’s
ALU cannot carry out multiplication directly. Instead, the instruction class is im
plemented using ALU addition/subtraction and the barrel shifter (which shifts
the value on the data path’s B bus). The processor’s control logic is used to
implement the modified Booth’s algorithm; this can take from two to seventeen
execute cycles to complete. The output of the ALU on each cycle is:

ALU6*(borrowZ, mul, alua, alub) =

{
alua, if borrow2 A (mul = 3) V -iborrowS A (mul = 0),
alua + alub, if borrowS A (mul = 0) V (mul = 1),
alua — alub, otherwise.

Here alua is the destination register, alub is the shifted multiplier, mul stores
two bits of the multiplicand and borrow2 is the borrow status.

As with the block data transfers, an invariant is needed to establish the state
of the processor during each execute cycle. The final state of the destination
register is shown to be the product of the register arguments.

2.5 Exceptions

The ARM6 verification is currently being extended to include resets, memory
aborts and interrupts (both fast and normal). These exceptions are triggered by
external signals and so the basic correctness model (Section 3.1) is no longer
adequate. A correctness model with input streams [8] has been formalised in
HOL - the definition of correctness is presented in Section 3.2.

At the time of writing, the ISA and ARM6 specifications have been extended
to model exceptions. For example, the next-state function for the ARM6 now
takes four additional values: NRESET, ABORT, NFQ and NIQ. Suitable data, stream
and temporal abstractions have also been defined. Work is in progress on veri
fying correctness.

Note that the exceptions, and the associated abstractions, are being mod
elled deterministically. Throughout the project, the aim has been to ensure that
the specifications are executable and that the abstraction mechanisms is made
explicit.

3 Correctness

Section 3.1 defines correctness for two isolated systems at different levels of
abstraction. This is then generalised in Section 3.2 to include input from the
environment, modelled with input streams. The basic model has been used to
verify the correctness of the entire ARM6 instruction set. With the inclusion of
external exceptions, the model with input is now being used.

Correctness is defined with reference to all times at the abstract system level.
For verification, it is shown that under certain circumstances it is possible to
consider just one time step i.e. from time zero to one [9].

3.1 Basic M odel

Definition 1 (Iterated map state functions). Given a state space (non
empty set) A then state : N —► A —► A is an iterated map state function with
initialisation function init : A —► A and next state function next : A —► A i f
and only if

state(0)(a) = init (a),
state (t + l)(a) = next(state(t)(a)).

Definition 2 (Immersions). A function A : A —► N —► N is an im m ersion if,
and only i f for all a € A , A(a)(0) = 0 and for all t\ < X(a)(ti) < X(a)(t2).

Definition 3 (Data abstractions). A function abs : B —► A is a data abstrac
tion for initialisation functions in itj : B —► B and inits '■ A —► A i f and only
i f fo r all b € in itr (B), abs(b) € inits (A) and fo r all a € in its (A) there exists
b € in it [(B) such that abs(b) = a ; where f (D) = Range(/) = { f (x) : x € D }.

Definition 4 (Correctness). A state function impl : l' .: • />’ • />’ is a correct
im plementation o f a state function spec : N —► A —► A with respect to an im
m ersion X : B —► N —► N and a data abstraction abs : />’ • .1 fo r im pl(0) and
spec(0) i f and only if, f o r all b € B and

spec(t)(abs(b)) = abs(im pl(X (b)(t))(b)).

Correctness holds when the following diagram commutes:
spec(t)

A A

abs abs

B --------- > B
implx (t)

where im pl^(t)(b) = im pl(X (b)(t))(b). Note that spec and impl need not neces
sarily be iterated maps.

3.2 Input Stream Model

Definition 5 (Iterated map state functions with input). Given a stream
space Sb C N —> B (Sb ^ t) then state : N - > 4 x Sb —*• A is an iterated map
state function with initialisation function init : A —> A and next state function
next : A —> B —> A if, and only if

state(0)(a,s) = init(a),
state (t + l)(o, s) = next(state(t)(a,s))(s(tj).

Definition 6 (Stream abstractions). A function srnpl : A x S'b —*• Sc is a
stream abstraction if, and only if, for all a £ A and s £ Sc there exists s' £ Sb
such that s = smpl(a, s').

Definition 7 (Correctness with input). A State function impl : N —> C x
Sd —*■ C is a correct implementation of state function spec : N —> A x —> A
with ■respect to an immersion A :C x 5 x > —> N —>N, data abstraction abs : C —> A
and stream abstraction srnpl : C x Sd —*■ Sb if, and only if, for all x £ C x Sd
and t G N

spec(t)(abs o fst(x), smpl(x)) = abs(impl(X(x)(t))(x)).

Correctness holds when the following diagram commutes:
spec(t)

A x SB --------- * A

(abs o jst.srnpl) abs

C x SD --------- ► c
irnplx (t)

where (f ,g)(x) = (f(x),g (x)).

4 Future Work

Future work will focus on producing more extensive models of ARM based sys
tems. This will include looking at the co-processor and other ARM bus interfaces,
such as AMBA. We will also aim to introduce higher levels of abstraction, so as
to reason about small programs and investigate hardware-software co-design.

ARM processors are used to implement devices like mobile phones and PDAs,
and so case studies will be developed with this in mind. In particular, modelling
system-on-chip devices in which data security is important. Here, formal reason
ing and correctness assurances are likely to add particular value. Examples may
use a framework that is loosely based on ARM’s TrustZone architecture:

A new Monitor mode within the core acts as a gatekeeper to identify
secure code and reliably switch the system between secure and non-secure
states. When the monitor switches the system to the secure state, the
processor core gains additional levels of privilege to run trusted code,
and to handle tasks such as authentication, signature manipulation and
the processing of secure transactions.

www.arm.com/products/CPUs/arch-trustzone.html

http://www.arm.com/products/CPUs/arch-trustzone.html

References

1. M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for micropro
cessor correctness statements. In CIIARME 8001, volume 2144 of LNCS, pages
433-448. Springer, 2001.

2. B. Barras. Programming and computing in 1IOL. In M. Aagaard and J. Harrison,
editors, TPIlOLs 2000, volume 1869 of LNCS, pages 17-37. Springer, 2000.

3. S. Beyer, C. Jacobi, D. Kroning, D. Leinenbach, and W. Paul. Instantiating un
interpreted functional units and memory system: Functional verification of the
VAMP. In D. Geist and T. Enrico, editors, Correct Hardware Design and Verifi
cation Methods, volume 2860 of Lecture Notes in Computer Science, pages 51-65.
Springer-Verlag, 2003.

4. B. Brock, M. Kaufmann, and J. S. Moore. ACL2 theorems about commercial
microprocessors. In M. K. Srivas and A. Camilleri, editors, FMCAD ’96, volume
1166 of LNCS, pages 275-293. Springer-Verlag, 1996.

5. J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In D. L. Dill, editor, Proceedings of the 6th International Conference,
CAV ’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer
Science, pages 68-80, Berlin, 1994. Springer-Verlag.

6 . A. Cohn. The notion of proof in hardware verification. Journal of Automated
Reasoning, 5(2):127-139, June 1989.

7. D. Cyrluk. Microprocessor verification in PVS: A methodology and simple exam
ple. Technical Report SR1-CSL-93-12, Computer Science Laboratory, SRI Inter
national, Menlo Park, 1993.

8 . A. Fox. Algebraic Models for Advanced Microprocessors. PhD thesis, University of
Wales Swansea, 1998.

9. A. Fox. An algebraic framework for modelling and verifying microprocessors using
HOL. Technical Report 512, University of Cambridge, Computer Laboratory, Apr.
2001.

10. A. Fox. A 1IOL specification of the ARM instruction set architecture. Technical
Report 545, University of Cambridge Computer Laboratory, June 2001.

11. S. Furber. ARM: system-on-chip architecture. Addison-Wesley, second edition,
2000.

12. B. T. Graham. The SECD Microprocessor, A Verification Case Study. Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Pub
lishers, 1992.

13. J. L. llennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap
proach. Morgan Kaufmann, San Francisco, 2nd edition, 1996.

14. R. llosabettu, G. Gopalakrishnan, and M. Srivas. Formal verification of a complex
pipelined processor. Formal Methods in System Design, 23(2): 171-213, 2003.

15. W. A. Hunt, Jr. FM8501: A Verified Microprocessor, volume 795 of LNCS.
Springer-Verlag, 1994.

16. R. B. Jones, J. U. Skakkebaek, and D. L. Dill. Reducing manual abstraction in for
mal verification of out-of-order execution. In G. Gopalakrishnan and P. J. Wind-
ley, editors, FMCAD 1998, volume 1522 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

17. R. B. Jones, J. U. Skakkebaek, and D. L. Dill. Formal verification of out-of-order
execution with incremental flushing. Formal Methods in System Design, 20(2): 139
158, Mar. 2002.

18. J. J. Joyce. Formal verification and implementation of a microprocessor. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 129-157. Kluwer Academic Publishers, 1988.

19. M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning:
ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

20. P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and S. D.
Johnson, editors, Formal Methods in Computer-Aided Design, FMCAD 2000, vol
ume 1954 of Lecture Notes in Computer Science, pages 161-178. Springer-Verlag,
2000.

21. K. McMillan. Verification of an implementation of Tomasulo’s algorithm by com
positional model checking. In A. J. IIu and M. Y. Vardi, editors, CAV ’98, volume
1427 of LNCS. Springer-Verlag, 1998.

22. S. P. Miller and M. K. Srivas. Applying formal verification to the AAMP5 micro
processor: A case study in the industrial use of formal methods. Formal Methods
in Systems Design, 8(2):153-188, Mar. 1996.

23. J. O’Leary, X. Zhao, R. Gerth, and C. Seger. Formally verifying IEEE compliance
of floating-point hardware. Intel Technology Journal, 3(1), 1999.

24. D. M. Russinoff. A mechanically checked proof of IEEE compliance of the floating
point multiplication, division and square root algorithms of the AMD-K7 processor.
LMS Journal of Computation and Mathematics, 1:148-200, 1998.

25. J. Sawada and W. A. Hunt, Jr. Verification of FM9801: An out-of-order model
with speculative execution, exceptions, and program-modifying capability. Formal
Methods in System Design, 20(2): 187-222, Mar. 2002.

26. D. P. Schostak. Methodology for the Formal Specification of RTL RISC Processor
Designs (With Particular Reference to the ARM6). PhD thesis, The University of
Leeds School of Computing, 2003.

27. D. Seal, editor. ARM Architectural Reference Manual. Addison-Wesley, second
edition, 2000.

28. S. Tahar and R. Kumar. A practical methodology for the formal verification of
RISC processors. Formal Methods in System Design, 13(2):159-225, Sept. 2002.

29. M. N. Velev. Formal verification of VLIW microprocessors with speculative exe
cution. In E. A. Emerson and A. P. Sistla, editors, Computer Aided Verification,
volume 1855 of Lecture Notes in Computer Science, pages 296-311, 2000.

30. P. J. Windley and M. L. Coe. A correctness model for pipelined microprocessors.
In R. Kumar and T. Kropf, editors, TPCD ’94, volume 901 of LNCS, pages 33-51.
Springer-Verlag, 1995.

31. W. Wong. Modelling bit vectors in 1IOL: The word library. In J. J. Joyce and
C.-J. II. Seger, editors, IIUG ’93, volume 780 of LNCS, pages 371-384. Springer-
Verlag, 1994.

Building Extensible Compilers in a Formal
Framework*

A Formal Framework User’s Perspective

Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

Caltech, M /C 256-80
1200 E California Blvd

Pasadena, CA 91125, USA
{nSgray,jyh.nogin,crt}@cs.caltech.edu

Abstract. We outline a new methodology for compiler design, based
on the use of a transformation logic defined within an existing general-
purpose logical framework. We discuss how this methodology can be used
to address several central issues in compiler design and implementation:
ease of implementation, extensibility, compositionality, and trust. We
show how pre-existing features of the logical framework we use help in
compiler implementation; and we also discuss which features need to be
added to the framework in order to facilitate our approach to compiler
development.

1 Introduction

We are developing a new methodology for compiler design, based on the use of
a transformation logic defined within an existing general-purpose logical frame
work. In our approach the central part of the compiler is a set of specifications
on a formal language; these specifications follow a standard textbook account of
programming language semantics almost to the letter. Most of the work required
to turn these specifications into an actual compiler is handled automatically by
the logical framework. We demonstrate how this methodology can be used to
address several central issues in compiler design and implementation: ease of
implementation, extensibility, compositionality, and trust.

We use the MetaPRL formal tool [9,11], which provides a well-defined syntax
of terms, types, and programs. We represent programs and program transfor
mations using higher-order abstract syntax (HOAS); binding, scoping, and sub
stitution are handled automatically by the framework. The HOAS also allows
mixing the object language (that contains operators like “l e t ”) with the meta
language (that contains operators like “CPS”), explicitly expressing the interme
diate states of the compilation process. In addition, the framework provides a

* This work was supported in part by the DoD Multidisciplinary University Research
Initiative (MURI) program administered by the Office of Naval Research (ONR)
under Grant N00014-01-1-0765, the Defense Advanced Research Projects Agency
(DARPA), the United States Air Force, the Lee Center, and by NSF Grant CCR
0204193.

2 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

rich tactic language for guiding proofs and transformations and for automatically
extracting such guidance information from annotated specifications. Finally, the
framework provides us with an interactive program refinement mode (initially
designed for interactive formal proof development) and together with the explicit
meta-language it proved to be an extremely powerful debugging tool.

Compositionality is a well-established principle in the construction of logical
theories. In the compiler domain, we take a similar approach to compositional
ity and extensibility. The compiler defines a core theory for System F (variables,
functions, application, and second order quantifiers) that is divided into trans
formation stages including type inference, type checking, CPS transformation,
closure conversion, and assembly code generation. Additional components for
Boolean values, arithmetic, tuples, arrays, recursive functions, etc., are defined
as independent extensions. Each extension defines its own set of formal rules
for each transformation stage and adds new strategy code to the tactic used to
control that stage. By locally ensuring that the component acts as a conserva
tive extension of the core and other components it is derived from, we get a
strong guarantee that there will be no unexpected interactions between different
compiler modules or different language features.

Another extremely important and challenging issue in compiler development
is reliability and trust. In the context of a compiler, it is useful to focus on the
code where flaws have the potential to cause the compiler to produce incorrect
output for some input program—we call such code trusted. Flaws in untrusted
code may cause the compiler to fail to produce output on some valid input
programs, but they cannot cause the compiler to produce incorrect output.

When a compiler is implemented in a general purpose language, it is often
difficult to isolate the parts of the compiler that must be trusted, and in the
worst case the entire code base must be trusted. Trust is also a central issue in
compositionality and ease of implementation. If the invariants that specify the
compiler involve complex interactions between many parts of the implementa
tion, maintaining and extending the compiler can be quite difficult.

In our approach, the compiler is built in the style of the LCF theorem
prover [4]. The program transformations are each defined in two parts: a set
of trusted transformation axioms and untrusted tactic code to direct the trans
formation strategy. The transformation axioms are defined in a formal logic
using notation similar to that in the literature, they represent only a small part
of the compiler, and they are verifiable. That is, the entire trusted code path
is small, precisely and formally defined, and it may be validated against a pro
gram semantics if desired. Note, however, that we do not consider verifiability to
be the primary concern of this work. We believe that there is substantial value
in significantly reducing the amount of trusted compiler code, even if it is not
completely eliminated.

A number of guarantees are provided by the framework itself. For example,
the HOAS implementation ensures that program transformations are never al
lowed to violate scoping or accidentally capture a variable. Even the framework
implementation does not have to be trusted— the tool is capable of retaining

Building Extensible Compilers in a Formal Framework 3

and providing a full log of the program transformations performed during the
compilation process; if an extreme level of confidence is needed, an independent
checker could be implemented.

1.1 Overview

This paper is based on a case study of a working compiler implementation for an
ML-like source language [7], compiled to assembly code for the Intel x86 machine
architecture. As mentioned, the core is based on the language of System F. There
are extensions for 1) additional base types like Boolean values and integers, 2)
aggregates like arrays and tuples, and 3) recursive functions. The backend uses
HOAS to define a scoped x86 assembly language [7,10], The compiler stages
include type inference, type checking, CPS transformation, closure conversion,
and assembly code generation. The compiler is implemented in the MetaPRL
logical framework.

This paper focuses on demonstrating how the features of the logical frame
work help to implement the compiler and improve its trustworthiness and ex
tensibility. In our implementation we were able to precisely and concisely define
each of the standard compiler stages (excluding parsing and pretty-printing of
the output assembly) formally. The precision comes from using the formal no
tation, and the brevity follows from the rich set of tools provided by the logical
framework. We begin the account with a description of terminology (Section 2)
and the overall compiler architecture (Section 3), and follow it with a description
of a few of the key stages of the compiler. As a demonstration of our approach,
we present the CPS stage of the compiler (Section 4) based on the work of
Danvy and Filinski [3] and show how the use of HOAS and derived rules in
logical framework can make our implementation simpler that Danvy and Filin-
ski’s original account. Finally, Section 5 provides a discussion of our experiences
and give some ideas for further improvements of the methodology and Section 6
discusses related work.

2 MetaPRL

All logical syntax in the MetaPRL framework is expressed in the language of
terms. The general syntax of all terms has three parts. Each term has 1) an
operator-name (like “sum”), which is a unique name identifying the kind of term;
2) a list of parameters representing constant values; and 3) a set of subterms
with possible variable bindings. We use the following syntax to describe terms:

opnarrw [pi; ■ ■ ■ ;pn] {vi.tr, ■ ■ ■ ;v m.tm}
operator name parameters subtej'ms

All the free occurrences of variables Vi in f* will be considered bound by the
operator. When n = 0, the parameter brackets are omitted; when Vi is empty,
the dot before is usually omitted.

Below are a few examples of terms that could be used in a formalization of
a simple lambda calculus.

4 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

Pretty-printed form Term
1 in te g e r [1] { }

Xx.b lambda [] { x . b }
/ («) apply□ { f ; a }
x + y sum [] { x ; y }

Numbers have an integer parameter. The lambda term contains a binding oc
currence: the variable x is bound in the subterm b.

Each operator has a fixed arity, which includes a fixed number of parameters,
a fixed number of subterms and a fixed number of bindings for each subterm.
(More specifically, if two operators have different arities, they will be considered
to be distinct even if they happen to have the same opname.)

In addition to the basic term language described above, the framework also
provides three special kinds of terms. The first one is the simple first-order
(object language) variables. These are the variables that can be bound in a
term.

Another class of special terms are second-order (meta-level) variables, which
are patterns used to define scoping and substitution [16]. A second-order variable
pattern has the form y [t 'i ;--- ;v„], which represents an arbitrary term that
may have free first-order variables v \ ,.. . ,v n. The corresponding substitution
has the form ;t„], which specifies the simultaneous, capture-avoiding
substitution of terms for v\,. . . . vn in the term matched by V . Second-
order variables are used to specify logical rules and term rewrites.

A term rewrite states that any term that matches the left-hand-side of the
rewrite (its redex) can be replaced with the corresponding value of the right-
hand-side of the rewrite (its contractum), and vice-versa, in any context. For
example, /3-reduction could be specified with the following rewrite.

(\x.vi[x\) V'2 <—[beta]—► t'i[t'2]

The V]\x) in the redex stands for an arbitrary term that may have free occur
rences of the first-order variable x. and w2 is another arbitrary term. The meta
term v\ [t]̂ in the contractum specifies the substitution of the term matched by
t'2 for x in v\.

Second-order notation can also express the lack of bound occurrences of
a certain variable. The following rewrite is valid in second-order notation and
would be provable in the presence of the /3-reduction rewrite.

(Ax.t'[]) 1 <— [const] —► (Ax.t'[]) 2

In the context Xx, the second-order variable t[] matches only those terms that
do not have £ as a free variable. No substitution is performed; the /3-reduction of
both sides of the rewrite yields t[] «— > t[], which is valid reflexively. Normally,
when a second-order variable t[] has an empty argument list [], we omit the
brackets and use the simpler notation v.

Building Extensible Compilers in a Formal Framework 5

The last class of special terms is sequents (sometime also called telescope
terms) of the form

xi : t 1; . . . ; x n : t n ha c,
where n can be 0. The term c is the conclusion of the sequent; the terms U are
its hypotheses; the variables x t introduce binding occurrences (each x t is bound
in all tj for j > i and in c). Finally, the term a is the sequent argument that
specifies what kind of sequent it is— essentially the argument plays the same role
for sequents as the operator name plays for ordinary terms. Sequent schemas [16]
may also include context meta-level variables that stand for arbitrary lists of
hypotheses. For example, the sequent schema

r ; x : T[]; A[x] hag c[x]

(where F and A are context variables and T, a and c are second-order variables)
stands for an arbitrary sequent with at least one hypothesis.

The compilation process is expressed in MetaPRL as a judgment of the form
r h ((e)), which states that the program e is compilable in the logical context P.
The exact meaning of the ((e)) judgment is defined by the target architecture. A
program e' is compilable if it can be represented by a sequence of valid assembly
instructions. The compilation task is a process of rewriting the source program
e to an equivalent assembly program e!.

MetaPRL uses OCaml [19] as its tactic construction language in the LCF
style. When an inference rule or a rewrite rule is defined in MetaPRL, the frame
work creates an OCaml expression that can be used to apply the rule. Code
to guide the application of rules and rewrites is written in OCaml, using a rich
set of primitives provided by MetaPRL. In addition, MetaPRL automates the
construction of most guidance code.

3 Compiler Overview

A compiler is defined by a sequence of transformations that take a program in a
source language and translate it to a program in a target language. In this case
study, the full source language is an ML-like source language with type inference
and higher-order functions and the target language is the x86 assembly language.

Figure 1 shows a diagram of the compiler architecture, where the core and the
extensions are represented horizontally. Extensions do not have to define code
for each of the stages; for example, closure conversion applies only to functions,
and the other extensions may ignore it. Extensions may also have dependencies
upon one another, as shown by the arrows on the left of each extension: tuples
require integers, which require general operations for arithmetic, which require
Boolean values for relations.

The compiler includes an initial informal phase that uses the Phobos exten
sible parser to convert the textual source code to the term representation used
by the logical framework [5].

The syntax for the typed intermediate language for the case study is shown
in Figure 2. The source language is similar, except it is untyped. For clarity, the

6 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapus;

recursive
functions

arrays

integers

arithmetic

Boolean values

source
program type

inference
type

checking
CPS

conversion

core: polymorphic lambda calculus

closure
conversion

code
generation

x86 target
program

F i g . 1 . The high-level compiler architecture is designed around a sequence of
transformations for a core language based on the polymorphic lambda calculus.
Each extension defines new types and values, as well as an extension to each of
the core stages. The vertical arrows indicate extensions to core stages: the code
is structured horizontally.

syntax is shown in the pretty-printed form: internally each of the expressions
and types uses native M e ta P R L notation.

The arities of functions, application, type abstractions, type applications,
and tuples are unconstrained. Internally, functions and their types use sequent
notation. For example, the sequent a?i: t i , . . . ,x„ : t„ b-h, e is used to represent
the function AK.(a?i : t i , . . . , x „ : t„).e. There are three kinds of functions and
application: Ar represents a recursive function (/ is the recursive binding): As
represents a “normal’' function: an application e (e i, . . . , e„ : t i , . . . , t „) c repre
sents a closure (the runtime passes the arguments as a tuple).

4 Example: CPS Conversion

The implementation of CPS conversion is a good illustration of our methodology.
We wish to demonstrate both that 1) the formal definition of the compiler trans
formations is natural, and 2) that the methodology is compositional. We present
a very straightforward implementation based on the ability of the framework to
combine the meta-language and the object language and we will show how the
tail recursive optimizations can be derived formally from the eta reduction.

We use a higher-order variant of Danvy and Filinski’s approach to CPS
conversion [3]. We start by adding a new term to the meta-language—
CPS{e:*: t>.c[t>]}, where the first argument e is the expression that is being con
verted, the second argument t is the type of that expression and the third argu
ment is the meta-continuation of the CPS process. In other words, e is the rest
of the program and v marks the location where the CPS of e should go.

The following rule specifies CPS for variables of the object language.

CPS{!:r; t; v.e[v]} •*— [cps_var] —► c[!:e]

Building Extensible Compilers in a Formal Framework 7

Expressions
Core language
e ::= x

I (e : t)
| let v : t = ei in 62

| XK(xi : t i , . . . , xn ’■ tn).e Functions
| e(ei,. . . , e„ : t i , . . . , tn)K, Application

Types

Variables t
Type constraint

| A (a i , . . . , an).t
| e[tl,...,tn\

Boolean values
| true | false
I i fe then e else e

Type abstraction
Type application

Constants
Conditional

(tl, . . . ,t„)

V (o i , . . . , a n).t

Variables
Empty type
All programs

t Function types

Polymorphism

Boolean type

Integers
I *
| e binop e
| e relop e

Tuples
| (ei , . . . ,e„)
j (e : t).i

Constants
Arithmetic
Relations

Tuples
Projection

Recursive functions
Ar(xi : t i , . . . , x „ : t „ , f : t).e

binop ::= + | —
relop ::= < | <

I tl * ■ ■ ■ * tn

Function kinds
« ::= s | c | r

Binary operations
Binary relations

Integer type

Product type

Pig. 2. The typed intermediate language is based on the polymorphic lambda
calculus. Extensions add Boolean values, arithmetic, tuples, arrays (not shown),
and recursive functions. The source language is a type erased version of the
intermediate language.

The notation \x is MetaPRL syntax for first-order variables that are bound out
side of the local scope of the rewrite rule. In this rule, the meta-continuation
is consumed. The rewrite puts the variable into the appropriate location and
returns the whole expression. Note that we use meta-language notation in place
of Danvy and Filinskrs “static” operators @ and A.

In the rule for let expressions, a new meta-continuation is created.

CPS {let t>i : t-L = e-i in e2[t'i];<2 ;t ’2 -c[t'2]}
<— [cps_let] —►

CPS{ei; <1 ; t>3.let v% : TyCPS{<i} = v3 in
CPS{e2[t<i];<2;t<2.c[t<2] } }

8 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

TyCPS here is a meta-term that is used to specify the CPS conversion for types
(adding an extra argument to all function types) similarly to how the CPS term
is used to specify the CPS conversion for expressions.

The rule for the CPS of applications could be specified the following way:

CPS{/(es : ts); t; v.c[v}}
<— [cps_apply] —>

CPS{ / ; ts -> t ;v f .
CPS{es; ts; ve.
let c2 : (TyCPS{t} -► ±) = Xsv : TyCPS{t}.c[u] in
vf (c2,v e : (TyCPS{t} _L), TyCPS{te})}}

where es and ts are second-order variables used to match lists of arguments and
types respectively.

In our implementation we add a meta-let operation to the meta-language.

m eta_let v = e\ in e-2 [v\ <— [metaJet] —> e-2 [e-i]

Using this operation, the cps.app ly rule is written as follows.

CPS{ f (e s : ts);t;v.c[v}}
<— [cps_apply] —>

CPS{ / ; ts -> t ;v f .
CPS{es; ts; ve.
m e ta J e t t ' = TyCPS {t } in
m eta_let I" = t' —> ± in
let c-2 : t " = Xsv : t',c[v] in
vf (c2,ve :t" ,T yC P S {te})}}

This is more efficient as the type t will only have to be converted once, not 3
times. Again, the ability to combine the object language with meta-language
yields very compact straightforward and precise formal code.

The ability to manipulate the meta-continuations also helps making the rules
for the conversion of the argument lists very concise.

CPS{e-i :: es;ti :: ts;v.c[v}}
<— [cps_args_cons]

CPS{e-i; t\; ui.CPSjes; ts; vs.c\vi :: vs]}}

CPS{(); 0 ;u .c[u]} [cps_args_nil] —> c[()]

Below is an example of a CPS rewrite from the Boolean extension, written
in the MetaPRL native syntax.

prim_rw cps_true {| cps |> :
CPS{bTrue; TyBool; v. ’ c[’v]>
<— >
’ c [bTrue]

Building Extensible Compilers in a Formal Framework 9

The above 4 lines are the only code that needs to be added to the system for it
to know how to handle the true constant in the CPS stage. The system does not
require this code to go in a specific place. The { I cps I} annotation specifies
that this rewrite should be added to the lookup table [8] used by the CPS tactic.

In addition to the basic CPS transformation, we define a tail-recursive version
as TailCPS{e; t; k} := CPS{e; t; v.k(v)}. Using this definition we formally derive
the tail call optimizations using the eta reduction rule.

5 Conclusions and Future Work

During the course of this work on the case study, we found that the implemen
tation was easier than we expected, in part because the ability to mix the object
and meta-language freely gave us more power than we anticipated. Because the
account mirrors standard semantics textbook specifications very closely and the
amount of code that must be trusted is only a few hundred lines, it is relatively
easy to believe in its correctness. The mechanisms for extensions and comp os i-
tionality provided by the logical framework generalized naturally to the compiler
design.

On the compiler structure side, there are many open avenues to explore. We
plan to investigate bounded polymorphism, which we will use for object systems
and extensible tuples. The current core language already provides preliminary,
but incomplete support. We also plan to develop a representation of mutually
recursive functions, which will require extending the support provided by the
logical framework.

One apparent challenge of our approach is that all program transformations
must be constructed from a fixed number of rewrite rules that each describe
a pattern over a fixed number of program points. In other words, global pro
gram transformations must be composed of a sequence of local transformations,
and it is not always obvious how to do this. In addition, global transformations
may require knowledge of the entire program syntax, which can be at odds with
compositionality. In our experience, however, we have found this problem to be
much easier to solve than we originally expected; all of the transformations we
have implemented so far have been easy to break into appropriately localized
pieces. On the other hand, we have not yet tried formalizing optimization tech
niques that are normally implemented using global program analysis, such as
global code motion; the problem of breaking these types of transformations into
localized rewrites could be harder.

For the most part, our work concentrated on implementing the compiler
without modifying the existing logical framework. However in the future we
are likely to try adding some additional features to the framework to facilitate
compiler implementation. There are two main limitations that we are planning to
address— recursive variable-arity binding structure and context-aware rewriting.

10 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

5.1 Recursive Binding Structure

Recursive functions are a very basic feature of ML-like languages. In general,
recursive functions have the following form.

le t rec / i x\ . . . x kl = ei
and f 2 xi . . . x k2 = e2

and / „ xi . . . x kn = e„
in e

There are two difficulties associated with the above— first, the functions have
variable arity, and second, the functions are mutually recursive and each of the
d may have free occurrences of each of the f j .

As we describe in Section 3, variable arity functions could be implemented
by using a sequent representation. Mutual recursion is more challenging. One
approach would be to pack the mutually recursive functions into a record and
then define the record recursively [10]. Defining a single variable recursively
is easy, but in this approach function variables turn into explicit record field
names and are no longer mapped to normal variables. As a result, most of the
advantages provided by HOAS are lost and the labels have to be managed (and
alpha-renamed) explicitly.

A proper HOAS solution would be to introduce a new kind of sequent to the
logical framework— a recursive sequent of the form

x,\ : ti = e-i; . . x n : tn = e„ h e

where each Xi is bound in all the subsequent tj (j > i), in all of the e* (1 < k <
n), and in e. The traditional sequent mechanism can be subsumed by recursive
sequents by making the e$ optional.

5.2 Context-Aware and Conditional Rewriting

Consider the following trivial optimization rewrite:

let v : t = e in v <— [let.opt] —> e

Depending on the exact semantics used, this rewrite could be considered
invalid since it potentially allows turning mistyped expressions into well-typed
ones and vice-versa (remember that rewrites are bidirectional). In this simple
example, the rewrite can be fixed relatively easily by adding an explicit type
constraint to the contractum as follows.

let v : t = e in v <— [let.opt] —> e : t

However, we would generally like to be able to express rewrites that are only
conditionally applicable. In particular, we would like to specify conditions of
the forms “ applicable in a context that expects the redex to have type t” and
“ applicable when subterm e is well-typed.’’’ While the MetaPRL system does pro
vide support for conditional rewriting, not all conditions that are natural in the
compiler implementation domain are easily expressible in MetaPRL.

Building Extensible Compilers in a Formal Framework 11

6 Related Work

FreshML [17] adds to the M L language support for straightforward encoding of
variable bindings and alpha-equivalence classes. Our approach differs in several
important ways. Substitution and testing for free occurrences of variables are
explicit operations in FreshML, while MetaPRL provides a convenient implicit
syntax for these operations. Binding names in FreshML are inaccessible, while
only the formal parts of MetaPRL are prohibited from accessing the names. Infor
mal portions— such as code to print debugging messages to the compiler writer,
or warning and error messages to the compiler user— can access the binding
names, which aids development and debugging. FreshML is primarily an effort
to add automation; it does not address the issue of validation directly.

Liang [13] implemented a compiler for a simple imperative language using a
higher-order abstract syntax implementation in AProlog. Liang’s approach in
cludes several of the phases we describe here, including parsing, CPS conversion,
and code generation using a instruction set defined using higher-abstract syntax
(although in Liang’s case, registers are referred to indirectly through a meta-level
store, and we represent registers directly as variables). Liang does not address
the issue of validation in this work, and the primary role of AProlog is to sim
plify the compiler implementation. In contrast to our approach, in Liang’s work
the entire compiler was implemented in AProlog, even the parts of the compiler
where implementation in a more traditional language might have been more
convenient (such as register allocation code).

Hannan and Pfenning [6] constructed a verified compiler in LF (as realized in
the Elf programming language) for the untyped lambda calculus and a variant
of the CAM [2] runtime. This work formalizes both compiler transformation
and verifications as deductive systems, and verification is against an operational
semantics.

Previous work has also focused on augmenting compilers with formal tools.
Instead of trying to split the compiler into a formal part and a heuristic part,
one can attempt to treat the whole compiler as a heuristic adding some external
code that would watch over what the compiler is doing and try to establish
the equivalence of the intermediate and final results. For example, the work
of Necula and Lee [14,15] has led to effective mechanisms for certifying the
output of compilers (e.g., with respect to type and memory-access safety), and for
verifying that intermediate transformations on the code preserve its semantics.
Pnueli, Siegel, and Singerman [18] perform verification in a similar way, not by
validating the compiler, but by validating the result of a transformation using
simulation-based reasoning.

Semantics-directed compilation [12] is aimed at allowing language designers
to generate compilers from high-level semantic specifications. Although it has
some overlap with our work, it does not address the issue of trust in the compiler.
No proof is generated to accompany the compiler, and the compiler generator
must be trusted if the generated compiler is to be trusted.

Boyle, Resler, and Winter [1], outline an approach to building trusted compil
ers that is similar to our own. Like us, they propose using rewrites to transform

12 Nathaniel Gray, Jason Hickey, Aleksey Nogin, and Cristian Tapu§

code during compilation. Winter develops this further in the HATS system [20]
with a special-purpose transformation grammar. An advantage of this approach
is that the transformation language can be tailored for the compilation process.
However, this significantly restricts the generality of the approach, and limits
re-use of existing methods and tools.

References

1. J. Boyle, R. Resler, and K. Winter. Do you trust your compiler? Applying formal
methods to constructing high-assurance compilers. In High-Assurance Systems
Engineering Workshop, Washington, DC, August 1997.

2. G. Cousineau, P.L. Curien, and M. Mauny. The categorical abstract machine. The
Science of Programming, 8(2): 173-202, 1987.

3. Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361-391, 1992.

4. Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a
mechanized logic of computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, NY, 1979.

5. Adam Granicz and Jason Hickey. Phobos: A front-end approach to extensible
compilers. In 36th Hawaii International Conference on System Sciences. IEEE,
2002.

6 . John Hannan and Frank Pfenning. Compiler verification in LF. In Proceedings of
the 7th Symposium on Logic in Computer Science. IEEE, IEEE Computer Society
Press, 1992.

7. Jason Hickey, Nathan Gray, Aleksey Nogin, and Cristian Tapus. Reliable frame
works for extensible compilers. In preparation, 2004.

8 . Jason Hickey and Aleksey Nogin. Extensible hierarchical tactic construction in a
logical framework. Accepted to the TPlIOLs 2004 conference, 2004.

9. Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay,
Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz,
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. Meta
PRL — A modular logical environment. In David Basin and Burkhart Wolff,
editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPIIOLs 2003), volume 2758 of Lecture Notes in Computer
Science, pages 287-303. Springer-Verlag, 2003.

10. Jason Hickey, Aleksey Nogin, Adam Granicz, and Brian Aydemir. Compiler im
plementation in a formal logical framework. In Proceedings of the 2003 workshop
on Mechanized reasoning about languages with variable binding, pages 1-13. ACM
Press, 2003. http://doi.acm .org/10.1145/976571.976575. Extended version of
the paper is available as Caltech Technical Report caltechCSTR:2003.002.

11. Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page, http:
//m etaprl .org/.

12. Peter Lee. Realistic compiler generation. MIT Press, 1989.
13. Chuck C. Liang. Compiler construction in higher order logic programming. In

Practical Aspects of Declarative Languages, volume 2257 of Lecture Notes in Com
puter Science, pages 47-63, 2002.

14. George C. Necula. Translation validation for an optimizing compiler. ACM SIG
PLAN Notices, 35(5):83-94, 2000.

http://doi.acm.org/10.1145/976571.976575

Building Extensible Compilers in a Formal Framework 13

15. George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLD1), pages 333-344, 1998.

16. Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Victor A.
Carreno, Cezar A. Munoz, and Sophiene Tahar, editors, Proceedings of the 15th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2002), volume 2410 of Lecture Notes in Computer Science, pages 281-297. Springer-
Verlag, 2002.

17. Andrew M. Pitts and Murdoch Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 230-255. Springer-Verlag, Heidelberg, 2000.

18. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in
Computer Science, 1384:151-166, 1998.

19. Pierre Weis and Xavier Leroy. Le langage Caml. Dunod, Paris, 2nd edition, 1999.
In French.

20. Victor L. Winter. Program transformation in hats. In Proceedings of the Software
Transformation Systems Workshop, May 1999.

Compiling HOL4 to Native Code

Joe Hurd*

Computing Laboratory
Oxford University

j oe . hurd@conilab. ox . a c . uk

Abstract. We present a framework for extracting and compiling proof
tools and theories from a higher order logic theorem prover, so that the
theorem prover can be used as a platform for supporting reasoning in
other applications. The framework is demonstrated on a small applica
tion that uses H0L4 to find proofs of arbitrary first order logic formulas.

1 Introduction

The normal mode of use of a theorem prover is for the user to enter into a
dialogue with the system, guiding the way towards the proof of one or more
key theorems. The end result is a mechanically checked theory, which might
demonstrate that a program meets its specification, say, or that a purported
mathematical proof is in fact a valid argument.

A feature of theorem provers in the LCF tradition is that they provide a full
programming language, ML, for implementing proof tools: programs that use
the infrastructure of the theorem prover to ensure sound reasoning. The most
common kind of proof tool is the ad-hoc tactic, implemented by the user to
speed up the development of a mechanically checked theory. However, there is
no reason why a proof tool should not be an arbitrary ML program that happens
to use the theorem prover as a ‘reasoning library’ . In this alternative mode of
use of the theorem prover, this program is the end-product, not a mechanically
checked theory.

Motivating this work are two recent proof tools implemented using the H0L4
theorem prover1 [3]:

— W ith the present author, Gordon [4] has built on a formalization of the
temporal logic PSL by implementing a prototype proof tool. It takes as input
a PSL formula, deduces an equivalent finite state automaton, and prints the
finite state automaton in the form of a Verilog monitor that can be simulated
with a circuit to check the property is never violated.

— Using their H0L4 specification of the TCP internet protocol, Bishop et al. [2]
have implemented a proof tool that seeks to validate a trace of packets
captured from a test network. Discrepancies between the specification of
TCP and the implementation on the test network manifest themselves as
failures to prove that a trace is legal.

* Supported by a Junior Research Fellowship at Magdalen College, Oxford.
1 HOL4 is available at h ttp ://h o l.sou rce fo rg e .n e t/.

http://hol.sourceforge.net/

2

Both the above proof tools are computationally expensive, and require no
interaction with the user after the initial invocation. As such, they are prime
candidates to optimize for speed. In this paper we describe the experience of
porting HOL4 to a modern optimizing compiler, to make proof tools like these
run as efficiently as possible. We present the general framework for compiling
the theorem prover infrastructure, and then demonstrate it on a case study with
the HOL4 first order prover.

The rest of the paper is structured as follows: section 2 describes the expe
rience of porting HOL4 to the compiler; section 3 presents the results of a small
experiment to show what efficiency gains are possible; and section 4 concludes.

2 Compiling HOL4 to Native Code

2.1 Assembling the Program Source Code

The source language for the HOL4 theorem prover is Standard ML, interpreted
using Moscow ML.2 The current distribution ships with 384 ML modules: 6 are
simple utility functions; 20 form the logical kernel of the theorem prover; and
30 comprise the parser. Of the remaining 328 modules, 247 form a collection of
proof tools (e.g., a simplifier) provided by the system, and 81 are mechanized
theories (e.g., the real numbers) providing useful types, constants and lemmas
that users might need.

The 81 mechanized theory files (xTheory.sml) contain theorem statements,
but not any proofs. Users create theory files by executing a separate ML program
called the proof script (xScript.sm l): this calls the necessary proof tools to
create all the theorems, which are then written out to the theory file. In later
sessions, when xTheory is required, only the theory file needs to be loaded, the
proofs do not need to be rechecked by the system every time. After downloading
HOL4, the initial step is to build all of the theory files from the proof script files,
after that all the theories that are part of the distribution are ready to be used.

The program that we wish to compile may both make calls to HOL4 proof
tools and refer to the contents of mechanized theories. For example, the tool
mentioned in the introduction for checking TCP traces makes use of several
theory files in which the TCP protocol is modelled using operational semantics.
Certainly we do not want all the proofs to be re-checked every time the program
is invoked, and so we drop the proof script files, including only the generated
theory files needed by the program.

The assembled program source code thus consists of:

1. simple utility functions;
2. the logical kernel;
3. the parser (needed by the generated theory files);
4. any proof tools directly called by the program;
5. any theory files used by the program;
6. and finally the program source code.

2 Moscow ML is available at http://www.dina.dk/~sestoft/mosml.html.

http://www.dina.dk/~sestoft/mosml.html

3

2.2 Porting H 0 L 4 to the MLton Compiler

Whereas Moscow ML translates ML source code into byte code which is then
interpreted, the MLton3 compiler translates ML source code directly into native
code. In addition. MLton is a whole program compiler, so that functors and poly
morphism can be eliminated to produce still more efficient code. Performance
on various benchmarks4 indicate that MLton produces the fastest running code
of the leading Standard ML compilers, making it suitable to compile computa
tionally expensive proof tools.

Although H0L4 is written in Standard ML. the source language for both
Moscow ML and MLton. there are enough differences between the platforms
to make porting non-trivial. For example, in several primitive inference rules,
a check must be performed to see whether two lambda terms are ^-equivalent.
This check can be made more efficient using a pointer equality test, but this is
not part of Standard ML. Both Moscow ML and MLton provide such a test, but
differently in the two platforms.

Also, the Standard ML basis library is evolving at present, and there are
two versions in current use: the 1997 version and the 2002 version. Moscow ML
implements the 1997 version, plus some useful modules that are not part of the
official basis library. MLton implements both versions, the user selects which
one to use with a command-line argument. This part of the port was therefore
easy: the 1997 basis was selected in MLton. and the extra modules in Moscow
ML were ported to MLton.

The hardest part of the port was the HOL4 lexer. As part of the distribution.
Moscow ML provides an efficient lexer generator called mosmllex. and this is
used to generate the HOL4 lexer. Unfortunately, despite being type safe, the
code generated by mosmllex does not pass the Standard ML type checker, and
Moscow ML casting operations are deployed in the generated code to avoid type
clashes. Creating an equivalent lexer in Standard ML required manually altering
the HOL4 lexer to use a suitable union type that included all types that caused
a clash.

Finally, and most seriously, there were problems associated with the size of
the assembled source code. The size of the program for validating TCP traces
mentioned in the introduction comes to 440.000 lines of Standard ML. This
breaks down as 170.000 lines for files in the HOL4 distribution, and 270.000 lines
for theories and tools in the trace checker itself. Most of the bulk is a result of
large HOL4 datatype declarations, which automatically generate theorems about
induction, cases and representation. Despite dense packing in the theory files by
making use of term /type sharing and abbreviations, five theory files in the trace
checker are each more than 10.000 lines long. At the time of writing. MLton
has performance problems beyond about 150.000 lines of source code, and so we
have not been able to test the TCP trace checker.5 Instead, we restrict ourselves

3 MLton is available at http://www.m lton.org/.
4 Data from http://www.mlton.org/performance.html.
° However, the MLton team are actively working on improvements that will permit

the compilation of such large programs.

http://www.mlton.org/
http://www.mlton.org/performance.html

4

to compiling applications that use a subset of H0L4, such as the following case
study.

3 Case Study: First Order Proof

Provided with the H0L4 theorem prover is a proof tactic called METIS-TAC that
uses ordered resolution to search for a first order refutation on the input goal,
and if successful translates the proof to higher order logic [5]. This tactic has
evolved somewhat since its initial deployment, and amongst other improvements
now converts formulas to clauses using definitional CNF, where new variables are
introduced successively (in a greedy fashion) to minimize the number of clauses.

In this experiment, we create a H0L4 proof tool that reads in a first order
formula in T P T P 6 syntax and sets it as a proof goal, and then tries to prove
it by invoking the METIS-TAC tactic. The advantage of such an experiment is
that it gives us two points of comparison: firstly the MLton compiled version
of the proof tool can be compared to the Moscow ML interpreted version; and
secondly both can be compared to the results of other first order provers on the
same problems.

This experiment made use of a RedHat 9 Linux box with a Pentium 4 3GHz
processor and 4Gb of main memory (essential for compiling large programs with
MLton), Moscow ML version 2.00, and MLton version 20040227. The problems
all come from version 2.6.0 of the TP TP library.

Assembling the source code for the proof tool results in 60,000 lines of
Standard ML, which includes three theory files used by the first order prover:
booleans, combinatory logic and normal forms (such as CNF).7 Compiling us
ing MLton results in a 14Mb standalone executable, whereas doing the same in
Moscow ML (using the —standalone compiler flag) results in a relatively small
0.5Mb executable.

We first look at problem SYN007+1 in the TP TP library, which has the form

Pi <=> (P2 <=> (••• (Pn <=> (Pi <=> (P2 <=> (••• Pn)) - - -)

where n is a problem parameter. When n is set to 14, the compiled version of
METIS_TAC proves the goal in 4.5s. This makes use of HOL4 stripping tactics
that reduce a goal of the form P <=> Q to the two subgoals P => Q and
Q => P. Also, for each of the subgoals generated, the definitional CNF engine
kicks in, and for the most extreme subgoal reduces the number of final clauses
from 67,000,000 to a mere 100. Running the Moscow ML version of exactly the
same program takes 63.5s.

We next run both versions of the prover on the same 70 first order formulas
that were used in the 2003 CADE Automatic Theorem Prover System Compe
tition8. To aid comparison with other provers’ results in the competition, we set

8 The TPTP problem library is available at http://w w w .tptp.org/.
' The largest version of HOL4 that was successfully compiled was a 120,000 line

METIS_TAC self-test that used 26 theories.
8 The CASC 2003 homepage is at http://www.cs.miami.edu/~tptp/CASC/19/.

http://www.tptp.org/
http://www.cs.miami.edu/~tptp/CASC/19/

5

the same time limit of 600s per problem, although it should be noted that we
are running on a much faster machine with more memory than those used in the
competition.

The MLton version of the prover solves 28 problems out of 70, which puts it
between the 4th prover (DCTP 10.2p, at 42 problems) and the 5th prover (Otter
3.2, at 14 problems) out of the 6 that entered the first order formula division.
For comparison, the top prover in this division was Vampire 5.0, which solved
57 out of 70 problems. The Moscow ML version of the prover solves 25 problems
out of 70, missing 3 of the harder problems, which puts it at the same place in
the results table. A graph showing the times that each version found proofs is
shown in Fig. 1.

To calculate the average speed-up, we look at the 25 problems that both
provers succeeded with, and calculate the geometric mean of the ratio between
the times. This gives a speed-up factor of 10.3, which correlates with the present
author’s experiences porting other programs from Moscow ML to MLton.

4 Conclusions and Related Work

In this paper we have presented a framework for extracting theories and proof
tools from a higher order logic theorem prover, and compiling them to native
code using a modern optimizing compiler. This is a useful step along the road
of embedding theorem proving inside other applications, such as compilers or
question answering systems.

Although it is not yet possible to compile the proof tools that directly mo
tivate this work, we are confident that further work on both the compiler and
theorem prover sides will soon allow this to take place, bestowing a factor of 10
speed-up to the users with no change in functionality.

We have also seen that a simple wrapper allows HOL4 to compete with the
first order provers in the CASC competition. No tuning of parameters took place
before running the experiment: exactly the same proof tactic was used that is
available to users during interactive proof.

The Twelf theorem prover9 [6] has been ported to MLton, and provides an
interface via a Twelf Standard ML module. Our work shares a similar approach
of theorem prover as platform: in the case of Twelf a major application is proof-
carrying code; we aim to support reasoning applications (such as those mentioned
in the introduction) where higher order logic is a more convenient modelling
language.

The Coq theorem prover10 [1] has also been compiled to native code using
the OCaml compiler, though the objective seems to be more speeding up the
type checking of theories rather than providing a theorem prover platform.

9 Twelf is available at http://www-2 .cs.cm u.edu/~tw elf/.
10 Coq is available at h t t p :/ /c o q . in r ia .f r / .

http://www-2.cs.cmu.edu/~twelf/
http://coq.inria.fr/

6

Number of proofs found

Fig. 1. The times a t which the provers discovered proofs.

7

References

1. Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Ilerbelin, Gerard Iluet, Cesar A. Munoz, Chetan
Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saibi, and Ben
jamin Werner. The Coq proof assistant reference manual: Version 6.1. Technical
Report RT-0203, INRIA (Institut National de Recherche en Informatique et en Au-
tomatique), France, 1997.

2. Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, and Keith Wans-
brough. The TCP specification: A quick introduction. Available from Peter Sewell’s
web site, March 2004.

3. M. J. C. Gordon and T. F. Melham, editors. Introduction to IIOL (A theorem-
proving environment for higher order logic). Cambridge University Press, 1993.

4. Mike Gordon, Joe Hurd, and Konrad Slind. Executing the formal semantics of
the Accellera Property Specification Language by mechanised theorem proving. In
Daniel Geist and Enrico Tronci, editors. Correct Hardware Design and Verifica
tion Methods, volume 2860 of Lecture Notes in Computer Science, pages 200-215.
Springer, October 2003.

5. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla
Archer, Ben Di Vito, and Cesar Munoz, editors. Design and Application of Strate
gies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA
Technical Reports, pages 56-68, September 2003.

6 . F. Pfenning and C. Schiirmann. System description: Twelf— A meta-logical frame
work for deductive systems. In II. Ganzinger, editor. Proceedings of the 16th Inter
national Conference on Automated Deduction (CADE-16), volume 1632 of Lecture
Notes in Artificial Intelligence, Trento, Italy, July 1999. Springer.

Higher-Level Hardware Synthesis in HOL
Juliano Iyoda and Michael J. C. Gordon

University of Cambridge Computer Laboratory
William Gates Building, 15 JJ Thomson Avenue, Cambridge CB3 OFD, U.K.

{ Juliano. lyoda.Mike. Gordon} @cl. cam.ac. uk

A bstract. A simple functional language embedded in higher order logic
is used as a hardware description language. Our approach uses proof
scripts to synthesise circuits directly from logical specifications. As well
as synthesising implementations, we also generate theorems exhibiting
their correctness. Our goal is to experiment with synthesis by proof
along a spectrum of automation ranging from push-button compilation
to user guided refinement. This paper describes formal compilation to
synchronous implementations with a handshaking interface.

1 Introduction

We describe an approach to hardware synthesis by mechanised proof. A compiler,
implemented as a proof rule, transforms specifications expressed in a simple
functional language embedded in higher order logic into hardware devices that
interact via a handshaking protocol. This approach allows the designer to focus
solely on the high level behaviour of the system without having to reason about
the correctness of the circuit at the gate level.

Our compilation method is partly inspired by SAFL [10], especially ideas
in Richard Sharp’s PhD [12]. Our long term goal is to develop correct-by-
construction SAFL-like formal synthesis by proof. The current paper is only
a very first proof-of-concept step.

Higher order logic (HOL) [6] has already been successfully applied to specify
and verify hardware [4,5,9], and functional programming languages have been
used as hardware description languages [2,11,12]. Formal synthesis by proof has
previously been investigated by, among others, Johnson and Bose [8], Hanna [7],
Fourman [3] and a researchers at Karlsruhe on high-level synthesis using the
Gropius language [1,13].

The novelty of our work is (i) the details of the device interface, (ii) the
implementation of synthesis by deduction (rather than by the application of
pre-verified transformations) and (iii) the way synthesis results are encoded as
composable theorems certifying the correctness of the synthesised implementa
tions.

Section 2 introduces the simple functional language used as source code.
Section 3 defines the specification of generic handshaking devices to be used
during the compilation.

The implementation and the verification of handshaking devices are pre
sented in Section 4. The synthesis-by-proof algorithm is described in Section 5
and is illustrated by a case study in Section 6. Finally, conclusions and future
work are outlined in Section 7.

2 A Simple Language

In collaboration with Konrad Slind of the University of Utah, we eventually plan
to compile from an ML-like subset of higher order logic, but in this paper we
start from an intermediate language consisting of expressions built using a set
of simple operators. These are quite expressive, and the construction of a front
end to parse into the intermediate language is orthogonal to the work described
here.

We implement functions of type <ji x • • • x a m —> Tt x • • • x rn where
<7i,. . . , a m, t i , . . . , rn are types of values that can be carried on busses. In real
applications, these types will often be words of different widths, but in this pa
per we will use booleans (T and F are the only values of type bool) and natural
numbers (0,1, . . . etc. of type nurri). Let / , / i , f 2, . . . range over such functions.
The constructs of our language are expressions e given in BNF by:

e ::= Atm / | Lib / | Seq e\ e2 | Par e\ e2 | Ite e\ e.2 e.3 | Rec 6% e.2 e.3

Both Atm / and Lib / implement function / . The difference is that Atm / is
constructed from a combinational circuit (see definition of ATM in Section 4 be
low) and Lib / assumes / is in a library (initially assumed empty) of previously
designed components (see Section 6.2 for an example). We make a shallow em
bedding of expressions in higher order logic by defining functions with the same
names as the expression constructors by:

Seq / 1 f 2 = Ax. / 2(/ i x)
Par f i ,f2 = Ax. (/ 1 x, f 2 x)
Ite fi f2 fs = Ax. i f fi x then f2 x e ls e fs x
Rec h f 2 h = ef. f = Ax. i f h x then f 2 x e ls e , f (/3 x)

Rec /1 f 2 fs uses Hilbert’s e-operator, and so means “choose a function f such
that / satisfies the equation / = Ax. i f f% x then f 2 x e ls e f (f s x) ” . In practise,
fi-. f ‘i and fs will be such that / is uniquely determined. For example, taking:

uniquely defines the function

/ = A(n,occ). i f (n = 0) then (n, occ) e ls e f (n — 1, n xocc)

A program p is a list of declarations (c\ = e\ . . . cn = en), where for
1 < i < n, Ci is a new name and e.j is an expression built out of library functions
and c i , . . . , Cj_i.

Lib /
Atm /

/
/

f i = A(n,occ). n = 0
f 2 = A(n,occ). (n,occ)
fs = \(n,acc). (n— 1, nxocc)

3 Handshaking Devices

Our compiler takes a pair ({ci = e\ . . . c„ = e„), e), consisting of a program
(ci = ei . . . c„ = e„) and expression e. It generates a clocked device that com
putes e via a simple handshaking protocol. This section describes the protocol
and its definition in HOL.

Figure 1 shows a sequence of events that illustrates a transaction in which
a handshaking device performs a single computation starting at a time t and
ending at a later time t' (where time counts cycles). The variables inp and out
represent the usual input and output data, respectively. The wires load and done
control the access to the device. If done is asserted, it means that the device is
idle and ready to compute a request. Once a positive edge on load is detected, the
device samples the input and starts to compute the result (see when (time = t)
and (time = t + 1) at Figure 1). During the computation, done remains low and
every call is ignored. Eventually, the device outputs the result and indicates its
completion by asserting done.

time = t time = t+ 1

Fig. 1. A handshake protocol.

Suppose the device computes a function / . At the start of a transaction
(time t) the device must be outputting T on done (to indicate it is ready) and
the environment must be asserting F on load (i.e. in a state such that a positive
edge on load can be generated). A transaction is initiated by asserting (at time
t+1) the value T on load (i.e. load has a positive edge at time <+l), and this
causes the device to read the value, v say, being input on inp (at time t + 1) and
to de-assert done. The device then becomes insensitive to inputs until T is next
asserted on done, at which time (say time t' > t + 1) the value / (v) computed
will be output on out.

The behaviour of hardware is modelled in HOL as a boolean-valued term
whose free variables represent the external (observable) wires of the circuit. This
term evaluates to true if the values observed at the external wires could occur in
the circuit. The variables are functions from natural numbers (representing time)
to values. For a signal, the low value zero and the high value one are represented
by false (F) and true (T), respectively.

Before specifying the behaviour of a handshaking device, the auxiliary pred
icates Posedge and HoldF are defined.

A positive edge of a signal is defined as the transition of its value from low
to high or. in our case, from F to T. Posedge is specified by:

h Posedge s t = i f t=0 then F e lse (—■ —1) A s t)

Note that if the time is zero, it is assumed that no positive edge lias occurred.
The term HoldF (t j , tg) s says that a signal s holds a low value F during a

half-open interval starting at t% to just before tg.

h HoldF (t i, 2̂) s — Vt. ti < t < t2 =4- ^(s t)

The behaviour of the handshaking device computing a function / is described
by the term Dev f (load, inp, done, out) where:

h Dev f (load, inp, done, out) =
(Vt. done t A Posedge load (t+ l)

31'. t' > t+ l A HoldF (t+ l ,tr) done A
done t' A (out t' = f(inp (t+l))))

A
(it. done t A ->(Posedge load (t+ l)) =4- done (t+ l))

The first conjunct in the right-hand side describes the context presented in Fig
ure 1. If the device is available and a positive edge occurs on load, there exists a
time t' in future when done signals its termination and the output is produced.
The value of the output at time t' is the result of applying / to the value of the
input at time t+ l. The signal done holds the value F during the computation.
The second conjunct specifies the situation where no call is made on load and
the device simply remains idle.

4 Implementing Handshaking Devices

This section describes how we implement our language. Our convention is to
use fully capitalised named for primitive circuits and circuit constructors. First,
we describe a circuit constructor ATM that builds a handshaking device from a
combinational circuit. Next we describe circuit constructors SEQ. PAR. ITE and
REC that compose handshaking devices corresponding to Seq e\ e-2 , Par e\ e-2 ,
Ite e-i e-2 e-3 and Rec e\ e-2 e-3 . respectively. The key property of these constructors
that ensures they are correct are the following theorems (the notation g o f
denotes the function composition Xx. g (f x)):

h ATM / (load, inp, done, out)
Dev / (load, inp, done, out)

h SEQ (Dev fi) (Dev / 2) (load, inp, done, out)
Dev (f‘2 o fi) (load, inp, done, out)

b PAR (Dev / i) (Dev / 2) (load, inp, done, out)
=> Dev (Xx. (/ i x ,f -2 x)) (load, inp, done, out)

b ITE (Dev / i) (Dev / 2) (Dev fs) (load, inp, done, out)
=> Dev (Xx. i f / i x then / 2 x e lse fs x) (load, inp, done, out)

b Total(/i, / 2, f-3) A REC (Dev f\) (Dev / 2) (Dev / 3) (load, inp, done, out)
=> Dev (Rec fi / 2 fs) (load, inp, done, out)

where Total(/i, / 2, fe) is a predicate ensuring that there is a unique function
satisfying / = Xx. i f fi x then / 2 x e lse f(fs x) and is defined by:

To ta l(/ i,/2,/s) = Svariant. \fx. - i(/i x) =4- variant(fs x) < variant x

The constructors ATM. SEQ, PAR. ITE and REC use some primitive com
binational hardware components AND. OR. NOT and MUX. and two primitive
sequential components DEL and DFF. The behaviour of a combinational AND-
gate is specified as a relation that constrains the value of the output to the
conjunction of the inputs.

b AND (ini, in2, out) = Vt. out t = (in\ t A m2 t)

A combinational OR-gate with inputs ini and m2 and output out is defined in
a similar way.

b OR (ini, in'i, out) = Vt. out t = (ini t V m2 t)

An inverter simply outputs the negation of the input.

b NOT (inp, out) = \/t. out t = ->(inp t)

A multiplexer connects the input in i to the output out if the selector sel has
the value T. Otherwise, it outputs the value of m2.

b MUX (sel, ini, out) = Vt. out t = i f sel t then ini t e lse m2 t

In general, a combinational component computing a function / is specified by:

b COMB / (inp, out) = V I out t = f(inp t)

At any given time, this generic combinational device outputs / applied to the
current value of the input.

A delay outputs the value of the input at the previous time.

b DEL (inp, out) = (out 0 = inp 0) A (V I out(t+1) = inp t)

At time zero, the delay behaves as a wire. A D-type flip-flop DFF outputs the
value of the input d on the positive edge of the signal elk. If no positive edge
occurs, the output q remains unchanged.

b DFF(d, elk, q) = V£. q(t+l) = i f Posedge elk (t+1) then d(t+1) e lse q t

The connection between two components is modelled by the conjunction of
their specifications. The physical connection is represented by the identically-
labelled wires of the subcomponents. Moreover, the existential quantifier hides
the internal wires of the composite device.

For example. POSEDGE(mp. out) specifies a composite device that asserts T
on its output out if and only if a positive edge has occurred on the input inp.
Our implementation is:

b POSEDGE(mp. out) = 3co c%. DEL (inp. Co) A N O T (co , c i) A AND(ci, inp. out)

This component connects a DEL. NOT and AND by the internal wires Co and c\.
The wire Co has the value of the input at the previous time. The circuit outputs
T if Co has the value F and the current input is T — which is exactly what
characterises a positive edge. It is easy to show that POSEDGE has the following
property.

b POSEDGE(mp. out) =4» (\ft. out t = Posedge inp t)

The circuit ATM implements an atomic device.

b ATM f (load, inp, done, out) =
3co c i. POSEDGE(load, Co) A NOT(co, done) A

COMB / (inp, ci) A DEL(ci, out)

This device takes one time unit to compute (see Figure 2(a)). Although a com
binational circuit is clearly more efficient than an atomic device, this device is
suitable for composing with other handshaking devices.

The constructor SEQ specifies a circuit which combines two devices to com
pute in sequence.

b SEQ f g (load, inp, done, out) =
3co Ci C'2 C3 data.

NOT(c2! c3) A OR(cs,load,c0) A f(co, inp, a , data) A
g(a , data, c-2 , out) A AND(ci, c2, done)

The subcomponents / and g have the same interface of a handshaking device.
The output of the component / is the input of the component g (see the variables
Ci and data in Figure 2(b)). This composite device signals its completion when
both / and g terminate.

The constructor PAR combines two devices in parallel.

b PAR / g (load, inp, done, out) =
3co Ci start done 1 done-2 data% data2 out% out2.

POSEDGE(load,Co) A DEL(<ione. ci) A AND(co, ci, start) A
f (start, inp, done 1 , datai) A g(start, inp, done2, data2) A
DFF(datai, donei, outi) A DFF(data2, done2, out2) A
AND(donei, done2, done) A (out = Xt. (out 1 t,out2 t))

(a) ATM / (b) SEQ f g (c) PAR f g

F ig . 2. Implementation of composite devices.

The devices / and g are triggered simultaneously by start and return data%
and data2 , respectively (see Figure 2(c)). As / and g may terminate at different
times, their outputs are stored by DFFs and made available by out\ and out2 -
The components POSEDGE and DEL prevent calls to either / or g during their
computation.

The conditional constructor ITE implements an if-then-else circuit from three
subcomponents.

b ITE e f g (load, inp, done, out) =
3cq Ci c>2 start start' done.e data.e q not.e data.f data_g sel

donej done-g start-f start.g.
POSEDGE(/oad. Cq) A DEL(done.ci) A AND(cq, c\, start) A
e,(start, inp, done_e. data.e) A POSEDGE(done.e, start') A
DFF(data-e, done-e, sel) A DFF(inp, start, q) A
AND (start1, data.e, start J) A NOT (data .e, not .e) A
AND (start', not-e, start _g) A f (start _/ ,q, done _/. dataj) A
g(start-g, q, done-g, data.g) A MUX(seZ, data.f, data.g, out) A
AND(done.e, done.f,c2) A AND(c2, done-g, done)

The device e implements a boolean test, while / and g implement the conditional
branches. The output of e triggers either / or g (see the variable data.e in
Figure 3). A multiplexer selects the right output based on the (stored) value of
data.e. The variable done is asserted if all subcomponents have terminated.

A function is tail-recursive if its recursive calls are the very last executed
statements in the function. Tail-recursion is interesting for hardware compilation
because it does not require the compiler to allocate storage for every function
call.

load

done

Fig. 3. The conditional constructor: ITE e f g.

The language introduced in Section 2 has an operator Rec for specifying
tail-recursive functions f of the form

T x = H e x then / x e lse J-(g x)

Such a function T is specified by Rec e / g as defined above. A handshaking
circuit that implements T (if it is well-defined) is constructed using the REC
constructor, where:

b REC e / g (load, inp, done, out) =
3done.g data-g start-e q done.e data-e startj start-g inp-e donej

Co Ci C'2 cs C4 start sel start' not-e.
POSEDGE(toad, cq) A DEL(done.ci) A AND(cq, c\, start) A
OR (start, sel, start.e) A POSEDGE(done_g, sel) A
M UX(sel, data.g, inp, inp.e) A D FF (m p _ e , start-e, q) A
e(start-e, inp-e, done-e, data-e) A POSEDGE(done_e, start') A
AND (start', data-e, start J) A NOT (data-e, not-e) A
AND (not-e, start', start-g) A f (start-f,q, done-f, out) A
g(start-g,q, done-g, data-g) A DEL(done-g, C3) A
AND(done_0 , C3 , C4) A AND(done_/, done.e, c2) A AND(c2, C4 , done)

The recursive constructor is similar to the conditional one (see Figure 4). The
main difference is the connection between the “else” branch and the circuit itself
— characterising a recursive call. A multiplexer selects the input from either
the external environment or from the recursive call. The circuit terminates if
every subcomponent terminates (see the variables done-e, donej and done.g in
Figure 4). Furthermore, the component g must have terminated at least one time
unit before. This is necessary to distinguish a recursive call from the complete
termination of the computation.

done

Fig. 4. The recursive constructor: REC e f g.

5 Compiling by Proof

The prototype compiler we have implemented takes a program and an expression
((c-i = e-i . . . cn = en). e). where the expression e is built out of library functions

and c i , , cn. It generates a circuit C(load, inp, done, out), represented as a term
in higher order logic, and returns a theorem:

h yioad inp done out. C(load, inp, done, out) => Dev e (load, inp, done, out)

The compilation procedure is a straightforward recursive application of the fol
lowing theorems (which are proved from the key properties given in Section 4
and the semantics of the expression and circuit constructors):

ATM_INTR0
h Ve s. ATM c s =4> Dev c s

SEQ_INTR0
h yPi p2 h / 2.

(Vs. P\ .s => Dev / i s) A (Vs. P2 s => Dev f 2 .s)

Vs. SEQ Pi P2 s => Dev (Seq fi f 2) s

PAR_INTR0
t- ypi p2 h f 2.

(Vs. Pi s => Dev fi s) A (Vs. P2 s => Dev f 2 s)

Vs. PAR Pi P2 s =» Dev (Par fi f 2) s

ITE_INTR0
h VPi P2 PA fi f 2 f 3.

(Vs. Pi s => Dev fi s) A
(Vs. P2 s => Dev f 2 s) A
(Vs. / ;; S => Dev /;; s)

Vs. ITE Pi P2 P3 s => Dev (Ite fi f 2 f 3) s

REC-INTRO
t- V /j f 2 f 3 Pi P2 P3.

Total(h , f 2, f3)

(Vs. Pi .s => Dev fi s) A
(Vs. P2 s => Dev f 2 s) A
(Vs. / ;; S => Dev /;; s)

Vs. REC Pi P2 PA s => Dev (Rec fi f 2 f 3) s

The theorem REC-INTRO is an implication whose antecedent is Total(/i, f 2, fs).
We will outline how our compiler works using an ML-style pseudo-code to

describe the inferences that deductively transform a specification to an imple
mentation. Theorems in the HOL system logic have the form F h t where F is
a set of assumptions and t is a conclusions that follows from the assumptions.

The ML pseudo-code SPEC [ti t„] (F h Va;i . . . x n. P (x i x n)) eval
uates to r h P (t\ ,. . . , t n). UNDISCH(F h t\ => t2) evaluates to F U {t 1} h t2.
MATCH_MP (Fi h t) (i~2 h ti => 2̂) matches ti with t and then instantiates the
theorem (F2 H ti => £2) to (F2 h t => t') (where t' is the instance of t2 corre
sponding to the match) and returns I"i U F2 b t', the result of applying Modus
Ponens. (I"i h t i) AND (F2 h 2̂) evaluates to (I"i U I 2 H ti A 2̂)- Evaluating
LibraryLookup l i b / searches the library l i b for a theorem of the form:

h Mload inp done out. C(load, inp, done, out) => Dev / (load, inp, done, out)

and uses the first one it finds (or raises an exception if no matching theorem
found in l ib) .

To compile (p, e), first rewrite e with the definitions in p to obtain an
expanded expression e ’ that only contains atomic or library functions, and then
recursively apply the rules below to evaluate Compile e ’ .

Compile l i b (Atm f) =
SPEC f ATM_INTR0

Compile l i b (L ib f) =
LibraryLookup l i b f

Compile l i b (Seq e l e2) =
MATCH_MP SEQ_INTR0 (Compile l i b e l AND Compile l i b e2)

Compile l i b (Par e l e2) =
MATCH_MP PAR_INTRO (Compile l i b e l AND Compile l i b e2)

Compile l i b (I t e e l e2 e3) =
MATCH_MP

PAR_INTRO
(Compile l i b e l AND Compile l i b e2 AND Compile l i b e3)

Compile l i b (Rec e l e2 e3) =
MATCH_MP

(UNDISCH(SPEC [e l , e 2 , e 3] REC_INTRO))
(Compile l i b e l AND Compile l i b e2 AND Compile l i b e3)

Note that evaluating Compile l i b (Rec e l e2 e3) will generate a theorem
with an assumption Total(el. e2. e3).

6 The Factorial Case Study

The tail-recursive function Factlter defined below can be used to compute the
factorial function.

h Factlter(n,acc) = i f (n = 0) then (n,acc) e ls e Factlter(n—1. nxacc)

The variable acc accumulates the result of the computation. Evaluating Factlter(n. 1)
returns (0. nl), where nl is the factorial of n.

6.1 Implementation with an atomic (combinational) multiplier

The following program in our language computes nl.

FactProg (TestO = Atm A n . n = 0,
Ident = Atm A (n.acc). (n.acc),
Dec = Atm A n . n — 1,
Mult = Atm A (n.acc). nxacc,
Fst = Atm A (n , acc). n,
Snd = Atm A (n,acc). acc,
PairOne = Atm A n . (n , 1),
Factlter = Rec (Seq Fst TestO) Ident (Par (
Fact = Seq PairOne (Seq Factlter Snd))

The expressions TestO, Ident, Dec, Mult, Fst, Snd and PairOne are assumed atomic
(i.e. implementable by combinational circuits). This is unrealistic for Mult; see
Section 6.2 for a (slightly) more realistic version.

If we invoke the compiler on the program (FactProg, Fact) the result is:

[TOTAL (Seq (A(n,acc). n) (An. n = 0), (A(n,acc). (a.acc)),
Par (Seq (A(n,acc). n) (An. n-1)) (A(n,acc). nxacc))]

I - Vload inp done out.
SEQ (ATM (An. (n,l)))

(SEQ
(REC (SEQ (ATM (A(n.acc). n)) (ATM (An. n = 0)))

(ATM (A(n,acc). (n.acc)))
(PAR

(SEQ (ATM (A(n,acc). n))
(ATM (An. n-1)))

(ATM (A(n,acc). nxacc))))
(ATM (A(n,acc). acc))) (load,inp,done,out)

=>
Dev Fact (load,inp,done,out)

The outcome is a theorem of the form F h t where f is a singleton set
consisting of an assumption expressing the totality of Factlter. Simplifying the
assumption with the definitions of Seq and Par yields:

Total((A (n ,acc). n = 0),(A (n.acc). (n,acc)),(X(n,acc). (n —1,nxacc)))

which is easily proved (with the function (A(x,y). x) as the variant). Once the
totality assumption has been proved it can be eliminated. Furthermore, it is easy
to prove by elementary arithmetic from the definitions of the components of
FactProg and the meanings of Atm, Seq, Par, Ite and Rec, that b Fact = An. nl.
The output of the compiler thus simplifies to:

I- Vload inp done out.
SEQ (ATM (An. (n,l)))

(SEQ
(REC (SEQ (ATM (A(n,acc). n)) (ATM (An. n = 0)))

(ATM (A(n,acc). (n,acc)))
(PAR

(SEQ (ATM (A(n,acc) . n))
(ATM (An. n-1)))

(ATM (A(n,acc) . nxacc))))
(ATM (A(n,acc). acc))) (load,inp,done,out)

=>
Dev (An., nl) (load,inp,done,out)

6.2 Implementation with a pre-verified multiplier

The example above used Mult = Atm A(n,acc). nxacc. Such a combinational
multiplier is unrealistic (except for small words). However, we can easily imple
ment a (naive) sequential multiplier that works by repeated addition and so,
more realistically, only assumes combinational addition (and decrementing):

MultProg
(TestO = Atm Am. rn = o,
Ident = Atm A (rn n. acc). (rn, n,
Dec = Atm Am. rn- 1 ,
AddAcc = Atm A (m n. acc). n+acc
Fst = Atm A (m n. acc). rn,
Snd = Atm A (m n. acc). n,
Thd = Atm A (m n. acc). acc.
PairZero = Atm A (m n) ■ (m >n, 0),
Multlter = Rec (Seq Fst TestO) Ident (Par (Seq Fst Dec) (Par Snd AddAcc)),
Mult = Seq PairZero (Seq Multlter Thd))
Note that we have used the same names in FactProg and MultProg for differ

ent (though semantically related) expressions (e.g. Fst). This is not a problem
as names are local to the program they occur in.

Compiling (MultProg, Mult), simplifying and discharging the totality proof
obligation (in a way very similar to the factorial example) results in:

I- Vload inp done out.
SEQ (ATM_IMP (A(m,n). (m,n,0)))

(SEQ
(REC (SEQ (ATM_IMP (A(m,n,acc). m)) (ATM_IMP (Am. m = 0)))

(ATM_IMP (A(m,n,acc). (m,n,acc)))
(PAR (SEQ (ATM_IMP (A(m,n,acc). m)) (ATM_IMP (Am. m - 1)))

(PAR (ATM.IMP (A(m,n,acc). n))
(ATM_IMP (A(m,n,acc). n + acc)))))

(ATM_IMP (A(m,n,acc). acc))) (load,inp,done,out) =>■
Dev (A(m,n). m x n) (load,inp,done,out)

After adding this theorem to the library, we can replace the combinational mul
tiplier in the factorial example by Mult = Lib A(n,acc). nxacc.

If we recompile the factorial program after this change, the implementation
of the multiplier is ‘inlinecP and we get:

I- Vload inp done out.
SEQ (ATM_IMP (An. (n,l)))

(SEQ
(REC (SEQ (ATM_IMP (A(n,acc). n)) (ATM_IMP (An. n = 0)))

(ATM_IMP (A(n,acc). (n,acc)))
(PAR (SEQ (ATM_IMP (A(n,acc). n)) (ATM_IMP (An. n - 1)))

(SEQ (ATM_IMP (A(m,n). (m,n,0)))
(SEQ

(REC
(SEQ (ATM_IMP (A(m,n,acc). m))

(ATM_IMP (Am. m = 0)))
(ATM_IMP (A(m,n,acc). (m,n,acc)))
(PAR

(SEQ (ATM_IMP (A(m,n,acc). m))
(ATM_IMP (Am. m - 1)))

(PAR (ATM_IMP (A(m,n,acc). n))
(ATM_IMP (A(m,n,acc). n + acc)))))

(ATM_IMP (A(m,n,acc) . acc))))))
(ATM_IMP (A(n,acc). acc))) (load,inp,done,out) =>

Dev (Xn. nl) (load,inp,done,out)

This is an implementation of the factorial with an ‘inner-loop: for each mul
tiplication. Not an efficient circuit, but it illustrates hierarchical development.

7 Future Work
The handshaking protocol for devices is preliminary and we plan to refine and
extend it. For example. Dev / (load, inp, done, out) holds if F is continuously
asserted on done. We need to prove some liveness results saying that if there is
no posedge on load then eventually done will go to T. This property looks clearly
true of ATM and should be compositional with respect to Seq. Par. Ite and Rec
(assuming totality). The compiler should also be able to generate handshaking
devices that are shared by several callers. An arbiter would control the concurrent
calls and preserve the handshaking behaviour. This may require us to extend the
handshaking protocol to support more than one request (load) and acknowledge
(done) line per device.

In the future we plan to explore formally validated optimisations to the
compiler, perhaps using ideas from SAFL compilation [12].

Finally, the compiler could provide the choice to generate either machine code
or pure hardware. This feature would allow the user to partition the system into
software and hardware parts and explore different designs.

8 Acknowledgements
Konrad Slind provided encouragement and motivation and also helped us with
the use of TFL and the formulation and proof of RECLINTRO.

References

1. Christian Blumenroehr and Dirk Eisenbiegler. Performing High-Level Synthesis
via Program Transformations within a Theorem Prover. In Proceedings of the Dig
ital System Design Workshop at the Euromiero 98 Conference, Vasteras, Sweden,
pages 34-37, Universitat Karlsruhe, Institut fiir Rechnerentwurf und Fehlertoler-
anz, 1998. Online at:
http://www.ubka.uni-karlsruhe.de/cgi-bin/psgunzip/1998/informatik/37/37.pdf.

2. Koen Claessen and Gordon Pace. An embedded language framework for hardware
compilation. In Designing Correct Circuits 2002 (DCC 2002), Grenoble, France,
2002.

3. S. Finn, M. Fourman, M. Francis, and R. Harris. Formal system design—interactive
synthesis based on computer-assisted formal reasoning. In Luc Claesen, editor,
IMEC-IFIP International Workshop on Applied Formal Methods for Correct VLSI
Design, Volume 1, pages 97-110, Ilouthalen, Belgium, November 1989. Elsevier
Science Publishers, B.V. North-IIolland, Amsterdam.

4. Anthony C. J. Fox. An algebraic framework for modelling and verifying micropro
cessors using IIOL. Technical Report 512, The Computer Laboratory, University
of Cambridge, England, March 2001.

5. Michael J. C. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. In G. J. Milne and P.A. Subrahmanyam, editors, Formal
Aspects of VLSI Design, pages 153-177. North-IIolland, 1986.

6 . Michael J. C. Gordon and Thomas F. Melham. Introduction to IIOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

7. F. K. Hanna, N. Daeche, and W. G. J. Howells. Implementation of the Veritas
Design Logic. In Proc. Theorem Provers in Circuit Design, pages 77-94. North
Holland, 1992.

8 . Steven D. Johnson and Bhaskar Bose. DDD - A System for Mechanized Digital
Design Derivation. Technical Report TR323, Indiana University, IU Computer
Science Department, 1990. Available on the Internet at:
http://www.es.Indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR323.

9. Thomas F. Melham. Higher Order Logic and Hardware Verification. Cambridge
University Press, Cambridge, England, 1993. Cambridge Tracts in Theoretical
Computer Science 31.

10. Alan Mycroft and Richard Sharp. Hardware/software co-design using functional
languages. In Proceedings of Tools and Algorithms for the Construction and Anal
ysis of Systems (TACAS’01j, pages 236-251, Genova, Italy, April 2001. Springer-
Verlag. LNCS Vol. 2031.

11. John O’Donnell. Hardware description with recursion equations. In Proceed
ings of the IFIP 8th International Symposium on Computer Hardware Descrip
tion Languages and their Applications, pages 363-382, Amsterdam, April 1987.
North-IIolland.

12. Richard Sharp. Higher-Level Hardware Synthesis. PhD thesis, University of Cam
bridge, the Computer Laboratory, Cambridge, England, 2002.

13. C. Blumenrohr V. Sabelfeld and K. Kapp. Semantics and Transformations in For
mal Synthesis at System Level. In Dines Bjorner, Manfred Broy, and Alexandre Za-
mulin, editors, Perspectives of System Informatics, 4th International Andrei Ershov
Memorial Conference, Novosibirsk, Russia, LNCS 2244, pages 149-156, Universitat
Karlsruhe, Institut fiir Rechnerentwurf und Fehlertoleranz, 2001. Springer-Verlag.
http://link.springer.de/link/service/series/0558/bibs/2244/22440149.htm.

http://www.ubka.uni-karlsruhe.de/cgi-bin/psgunzip/1998/informatik/37/37.pdf
http://www.es.Indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR323
http://link.springer.de/link/service/series/0558/bibs/2244/22440149.htm

An Experiment in Automated Theorem Proving
in Type Theory

Marcin Benke and Fredrik Lindblad

Department of Computing Science
Chalmers University of Technology

412 96 Goteborg, Sweden

A bstract We present some experiments in and tools for automated the
orem proving in Martin-Lof’s type theory. The main purpose of the tool
is to facilitate interactive proving by filling out the tedious, yet rela
tively simple details of a proof. One particular application, where such
automation is extremely handy, is verification of functional programs.
The main contribution of this work is the use of induction and general
ization in automated proofs, which is superior to automation available
so far in proofs assistants based on higher-order logic, such as the Auto
tactic in Coq.

1 Introduction

In this paper, we present some experiments in automated theorem proving
in Alfa [HROO], an interactive proof system based on Martin-Lof type theory
[CC99,ML84]. It can also be viewed as a small purely functional programming
language with a type system that provides dependent types, thus allowing spec
ification and verification of program properties within its type system. As such,
Alfa supports algebraic datatypes, pattern matching and general recursive def
initions. To preserve logical consistency, all proofs are subject to termination
check as well as typechecking.

Alfa is a term-based proof editor. This means that the proof is presented and
recorded as a term, rather than as a tactic expression as in tactic-based proof
editors such as Coq.

Our tool, given a proposition (type), tries to find its proof (inhabitant).
If a solution is found, it is presented as a proof term, which can be verified
by the type-checker. The main purpose of the tool is to facilitate interactive
proving by filling out the tedious, yet relatively simple details of a proof. One
particular application, where such automation is extremely handy, is verification
of functional programs.

The main contribution of this work is the use of induction and generalization
in automated proofs, which is superior to automation available so far in proof
assistants based on higher-order logic, such as the Auto tactic in Coq.

To ensure termination, we rely on structural induction. However, the tool can
construct proofs with nested induction and induction appearing in subproofs as

well as generalize (strengthen) the induction hypothesis when needed. Proofs
containing case analysis on compound expressions can sometimes be found. This
is needed to prove e.g. that the functions map and filter commute in a certain
way.

A notion of quasi normal forms has been investigated. One advantage of this
approach is to avoid higher-order unification which is otherwise imposed in type
theory. It can also reduce the amount of computation in the search. Although we
can miss some equalities this way, tests have indicated that for most problems
the fidelity of our notion of equality is sufficient. It also gives useful information
as to when case analysis on compound expressions should be performed.

1.1 Related Work

A system for automatic theorem proving in Martin-Lof type theory has been
developed by Tammet and Smith[TS98]. The implementation, called Gandalf,
was designed to work with ALF, the predecessor of Agda. In Gandalf, problems
are not solved directly. The authors mention the presence of higher-order unifica
tion as an obstacle of a direct approach. Instead, a theoretical basis for encoding
ALF types into first-order intuitionistic logic is developed. Problems are encoded
and then solved using various existing techniques for first-order logic. When a
problem has been solved, the corresponding ALF term is constructed. Gandalf
can produce inductive proofs. The encoding of such problems however seems to
result in a rather time consuming search.

The Coq system for formalization and proof-checking is also based on an
implementation of type theory. Proof search in Coq works with tactics. There
are tactics for doing induction and generalization manually. There are also auto
tactics which use elementary tactics in automatic proof search. These do however
not make use of the tactics for induction and generalization, so such proofs
cannot be found automatically.

2 The Language

The tool that has been developed is based on the Agda language[Coq98]. This
subsection gives a brief description of the language and the notation. Only a
fragment of Agda is used.

There are three type classes; function types, signatures and data types. The
output type of a function may depend on the input value. The following notation
is used for function types:

(x : X) -¥ Y

A signature consists of zero or more components with names. The type of a
component may depend on the value of any previous component.

sig {(*i : Xi); . . . ; (xn : X n)}

2

Data types consist of zero or more constructors, each taking any fixed number of
arguments. An argument’s type may depend on the values of previous arguments.

data ci (* 1 , 1 :Xi,i) . . . (*i>m : X 1>ni)

I cm (r̂a, 1 ■ ^ra,l) ■ ■ ■ (^m5nm ■

The symbols ‘S ’ and ‘X>’ will designate the generic signature and data type as
presented above. We let all type expressions themselves be of type *.

Functions are constructed with A-abstractions:

A(x : X) ^ Y : (x : X) -> Y

The elements of signatures are structures:

struct { * 1 = Mi; . . . ; xn = M n} : S

Elements of a data type are introduced by using any of its constructors.

cj Mi . . . M nj : V

The rule is valid for any j G [1 ,m].
Elimination is done by application, projection and case-expression respec

tively.

M N M.Xk case M {ci y —> N i ; . . . ; cm y —> N m}

When type-checking a case-expression where the scrutinee is a parameter and
not a compound expression, the parameter is substituted by its assumed value
for each branch.

Reduction works in the expected way. Apart from these basic components,
also the term construction let . . . in . . . will appear. It introduces local definitions
and is used in the proof search for defining recursive functions. All occurrences
will have the following form:

let f (x : X) : T = M
in f N

Note that termination issues lie outside the typechecker. Termination check is
performed as an extra step.

3 The Basic Concepts of the Proof Search

Proof search is performed mainly by backward reasoning. The basic concepts
of the proof search are target type, problem, meta variable and refinement. The
target type is the formulation of a proposition as a type. A problem is completely
represented by a target type together with a variable environment in which an

3

element of the type is to be found. If such an element is found, it is a term proving
the proposition. During the search, meta variables are used as place holders for
subexpressions which are not yet known. These are denoted by question-marks.
If we have an environment F and a target type T, then the initial problem of
the search can be depicted like this:

f h ? : T

The task is to find an expression not containing meta variables which can re
place ?. This is done by successively replacing a meta variable by an expres
sion containing new meta variables. The new meta variables correspond to the
subproblems. The collection of partially given proof terms together with their
associated subproblems are called the refinements of the problem.

The formulation of the initial problem must be extended to encompass all
subproblems. The information of each new meta variable will be stored in a meta
environment. For each meta variable, the meta environment gives the variable
environment and the type associated to the meta variable. The letter A will be
used for meta environments.

One more entity may appear in a problem. The way we handle data type
elimination, solutions to subproblems are tagged with a set of value constraints.
These are statements which specify which form a data type term must have in
order to make the solution valid. In the end, no such constraints may of course
remain for the solution of the main problem. Solutions with value constraints
are combined in a case expression to generate a solution with less constraints.
This is further explained in subsection 4.2. The value constraints have the form

M = cj xjt i . . . Xj>nj

A set of value constraints will be denoted by a.
We can now write the general form of a problem. First, there is a meta

environment, then a variable context, P, which is associated to the meta variable
of the subproblem. After this there may be a set of value constraints, which refer
to variables in F. In this environment, a proof term should be found which has
the same type as the current meta variable.

A,r,<r h ? : T

There are a number of different rules used by the tool to generate refinements,
but they are all expressed in a uniform way to allow them to be processed equally.
A refinement consists of a proof term. If the proof term is not complete, i.e. it
contains new meta variables, the meta environment must be extended accord
ingly. New value constraints may also emerge and thus extend a. In addition, the
refinement can induce meta variable constraints. These have the form ? = M .
A meta variable constraint says that the refinement is valid only if the meta
variable is bound to the specified term. Collections of meta variable constraints
will be denoted by p.

4

The refinement rules will have this general form:
A, r, a H ? : T < side conditions >

A'.fi. I'.a' b ? M : T

Refinements are recursively generated as long as new subproblems arise. When
a refinement with no subproblems is encountered, it is a solution to the cur
rent problem. A refinement that does have subproblems is combined with the
solutions of the subproblems, if such were found, to form a solution. Any solu
tion that reach the top of the search potentially solves the given problem and
contains all the necessary meta variable assignments to compile the proof term.
Apart from the proof term information, solutions also inherit the meta variable
and value constraints of the constituting refinements.

All new meta variables are classified as either proofs or parameters. Parame
ters are those which appear in other objects’ types, i.e. those upon which other
objects depend. The rest are considered to be proofs. Note that a parameter
can depend on another parameter. The classification is used to determine which
new meta variables should be treated as subproblems. Only proofs should be
searched for. Searching for parameters is trivial and the result is arbitrary. The
parameters’ values should instead be settled as a side effect when searching for
solutions to the proof objects.

Section 4 describes the collection of rules that are used to generate refine
ments.

3.1 Expression Reduction and Comparison

A notion of quasi normal forms for types has been used in the experiments.
It is here called simplification of a type. When simplifying a type, computa
tion is carried on until the next reduction step would introduce a non-reducible
A-abstraction, case-expression, data-expression or signature. This means that
simplified types normally consist of applications where the terms are either iden
tifiers, projections or A-abstractions deriving from the type that was stated by
the user. When a type is simplified, reduction is not only performed on the head
of the expression. Also the subexpressions are reduced in the same way. This is
necessary since there are refinement rules that do not just look at the head of
the target type.

Using simplified types to do comparison entails the risk that two expressions
that actually represent the same type, i.e. are convertible, are judged to be
unequal. The simplification is designed to make most equal types syntactically
equal modulo a-conversion. But in some situations this is not the case. To avoid
this, a few technical things can be kept in mind when stating the problem. We
also think that the simplification could be improved to achieve higher fidelity to
actual equality.

One effect of type dependencies is that meta variables will occur in types.
A meta variable represents an arbitrary value. This means that comparing two
types involves assigning meta variables to values. Comparison is therefore re
placed by unification. In type theory, higher-order unification is required. This

5

means that you have to take conversion equality into account when unifying.
Higher-order unification is undecidable. Confer for instance [DowOl]. This prob
lem is avoided here since syntactical equality is used and thus no reduction is
allowed when unifying.

If the unification succeeds, the list of meta variable bindings is returned. The
bindings are then used as constraints of the resulting refinement. Unification will
be denoted as in the following example. Assume that two types, Ta and T&, are
unified in the meta environment A and variable environment P.

_L (? i = M i. ? 2 = M 2), I ' I- T„ = Ti,

In the example, the unification induces the binding of two meta variables.
Types are however not only compared to each other. In some refinement

rules ordinary head normalization is needed, denoted by the symbol When
normalization is used, the conclusion is always either of the following:

T ‘t. (x : X) 1' T ^ S T -1 V

4 Refinement Rules

This section presents most of the refinement rules which are implemented in the
tool. There are rules for introduction, one for each type class, and one universal
rule for elimination. Case analysis and induction are combined in one rule. Fi
nally, one rule is devoted to generalization. Meta variables that are introduced
in the rules are given various subscripts. It is however implicitly assumed that
they all represent fresh meta variables.

4.1 Introduction Rules

The introduction rules construct a member of the target type according to the
introduction typing rules of the language. There is one rule for each type class.
First we have introduction of A-abstractions:

Z\,F, <rb? : T T - » (x : X) Y / abstraction\
A(T(x : X) b ?v : Y),T ,a b ? (X(x : X) ->?y) : T V refinement J

The side condition states that the target type normalizes to a function type.
If target type instead normalizes to a signature, the corresponding structure

is a refinement.

_________ A, T, a b ? : T______ T - » S_________ /signature constrA
A ',T ,a b ? struct {x^ —? i ; xn = ? „ } : T \ refinement)

The symbol ‘<S’ again refers to the generic signature. The new meta environ
ment, A', is A extended with one new meta variable for each constituent of the
structure.

A' = A ir b ?1 : X I , . . . , / ’ b ?„ : X'„)

6

The target types of the subproblems, X'k, are equal to unless there are type
dependencies between the signature elements. In that case the appropriate meta
variables must be substituted into the types. Generally, the following substitu
tions are carried out.

X'k = Xk[?k-l/Xk-l] ■ ■ ■ [?2/*2][?l/*l]
The refinement rule for construction of data type elements is similar and is
therefore left out.

In case there are type dependencies, meta variables will enter the target types.
Later on they may also appear in the variable environment, as a consequence of
further A-abstractions. This is why unification of types is required and also why
refinements and sub solutions are tagged with meta variable constraints.

4.2 Elimination Rules

In the case of introduction rules, the search is well guided by the target type. For
elimination rules the situation is different. If you would simply use the elimina
tion rules of the language, they would be valid for any target type. This would
lead to a highly blind search of infinite depth. To avoid this, we demand that
there is an appropriate hypothesis in the environment before producing an elim
ination refinement. But a type can be compound on more than one level, so in
order to find e.g. C in A —> (B A C) V D, the hypotheses must be completely
taken apart within the same refinement. We do not have to do this for every
subproblem. When a hypothesis is added to the environment, all possible de
compositions can be computed. These decompositions will be called elimination
judgements.

The elimination judgements have the following general form:

A .I'.a b M : U

It means that given the meta environment A, the variable environment F and
value constraints a, the term M is of type U.

Elimination judgements are generated from a number of elimination inference
rules corresponding to the typing rules of the language.

First we have the initial and trivial rule that every variable can be used as
it is.

X ' ^ Y (reference)
ZA j A I X •

The occurrence of x below the line should be interpreted as the term referring
to x. This rule is used as the starting point for every elimination judgement.
All the other elimination inference rules presuppose a prior elimination judge
ment. Chains of judgements are thus constructed to iteratively decompose the
hypotheses.

Now follow the inference rules containing actual elimination, one for each
type class. First, we have application:

A .l'.a b M : U U -1 {x : X) 1' , ,
A {r ^ x : X) , r , ^ (M ?x) : Y P x / l]

7

The side condition is that U normalizes to a function type. Function invoking
extends A with a meta variable corresponding to the argument of the application.
For type dependent functions, the new meta variable will appear in the type of
the elimination.

Next, if the type of the current elimination judgement normalizes to a signa
ture, projection can be used to generate a new judgement for each element.

where k is between 1 and n. The types of the new judgements must be modified
so that all references to other elements are correctly qualified.

We must also be able to do data type elimination using case-expressions. Data
type elimination introduces a new problem, since there is no direct connection
between the decomposed types and the target type. As a consequence, it is
difficult to know at which point the elimination involving a certain data type

is to search the parts of every construction for a data type just as if they are
all accessible. If a match is encountered, a refinement with a value constraint is
generated. The idea is that solutions with complementary value constraints will
later on be combined to form one solution with no constraints.

The data type elimination inference rule looks like this:

—--------y—j ------------- :-------------------------------—— (data type elimination)
A ,r ,a (M = Cj xjti . . . Xj>nj)\- xjk : X jk

where j £ [l,m] and k £ [1 ,nj]. There are J2jnj possible elimination judge
ments, one for each component of the data type. For each judgement, the set
of constraints is extended with the constraint that M has the form of a certain
construction. Note that the term of the new judgement refers to a variable that
only appears in the value constraints. The constraints thus in a sense serve as
an extra variable environment.

We now formulate the general elimination refinement rule:

There are four side conditions. The two at the top demand that A' is an extension
of A and a' an extension of a. This is guaranteed due to the constitution of the
elimination inference rules. The third side condition is the elimination judgement
saying that M is of type U. The last one assures that the target type can be

A,r,<j\- M : U U S
A ,F ,a b M.Xk : X'k

(projection)

X'k = Xk[s.Xk-ilxk-i]...[s.x2lxQ\[s.xilxi\

object should appear and if it should take place at all. The approach chosen here

A .I'.a b M : U U V

A C A', a C a'
A'.l' .a' b M : U

A.I ' .a h ? : T J ' . / n / ’ b T = U
A'.fi. I'.a' b ? M : T

8

unified with U. An elimination judgement can include extension of both the
meta environment, A, and the set of value constraints, a. The extensions are
reflected in the resulting refinement. The unification may produce meta variable
constraints, p, which are also added to the refinement.

There is one situation which is not covered by the main elimination refine
ment rule. When there is a member of the empty type, i.e. absurdity, in the
environment, it can be used to prove anything. A special elimination refinement
rule is required. The empty type is in Agda represented by a data type with
no constructors. In accordance with the typing rules, a case expression with
no branches matches any type. Instead of comparing the type of the elimina
tion judgement to the target type, the refinement rule for absurdity elimination
demands that it normalizes to the empty type.

When the target type is an equality, the implementation of the elimination
refinement rule behaves differently. Some knowledge about refiexivity, symmetry,
transitivity and substitutivity has been hard-coded in the program. Equalities
are proved and rewritten using these properties.

4.3 Case Analysis and Induction

The previous subsection described briefly how case-expressions for hypotheses
are generated. But proofs may also contain case analysis on parameters. This is
covered by a special refinement rule.

The case refinement rule must have some source which provides it with the
collection of scrutinees to try. One place to look is in the environment. All ob
jects that are parameters, are of data type and have not earlier been analyzed
could qualify. Another way to generate scrutinees is to look at the target type
and the environment elements’ types and see which ones halt the computation,
i.e. which scrutinees cannot be reduced to a construction and thus stop the type
from being reduced any further. This seems somewhat more cunning than the
first alternative, because it actually looks at the structure of the types involved.
Another important advantage is that this method not only presents scrutinees
that are single parameters, but also compound expressions, such as function
applications where the argument is unknown. Case analysis on compound scru
tinees is sometimes necessary. There is a special version of the case refinement
rule dedicated to this. It is described further on in this subsection.

The implementation currently uses both these methods to produce candi
dates. The second does produce most relevant scrutinees, including compound
ones. But it sometimes leaves out parameters that have a passive role in the
types but still needs to be analyzed at that certain point in the proof.

For each candidate scrutinee which is a parameter, the refinement method
generates a case expression with branches for each constructor of the data type.
It also adds a locally defined function just outside the case expression. This
is intended for recursive calls from within the branches or, in other words, for
reference to the induction hypotheses of the problem. As arguments, the function
takes the parameter itself, but to be flexible enough it must also take all objects
in the environment whose type depends on the parameter. Furthermore, any

9

other parameter present in those objects’ types should also be included and so
forth.

In the subproblems of the refinement, the target type and variable environ
ment are specialized for each branch by substituting the parameter with the
correct construction and then re-simplifying the types. The locally defined func
tion is added to the environment. It is however treated in a special way since we
want to avoid bad recursive behaviour. The program currently restricts the use
of the function in a way which only allows structural recursion, which guaran
tees program termination. This limitation is imposed by indicating that when
the elimination judgements are generated for the function, it is not itself used
as the starting point. Instead, the function applied to any recursive part of the
parameter serves a starting points.

The rule for case refinement looks like this:

Z\, F, <7 b ? : T / ’ b y : Y Y .» V

f let / (j/ : Y) (z ' : Z) : T =
case y' {

ci Xiti . . . Xi>ni —>?i;
z A ',I > b

}
in f y z

(case refinement)

T

The side conditions of the rule are that y, the main parameter, is of type Y and
that it in turn normalizes to a data type. The declarations z : Z is the collec
tion of secondary parameters and dependent objects. The meta environment is
extended by one new meta variable for each branch of the case expression.

4 ' = z A (ltb ? i :T [,.. . ,P 'm h l m :T'm)

The variable environments and target types of these meta variable are the fol
lowing:

P'3 r ((f : { y ’ : Y) ^ Z ^ T) (y’ : Y) (z’ : Z ’) (xjA : X jA) . . . (x

T-3 T[cj xj,l ■■■ xj,rij/y]

Z 3 Z [c 3 ^ i . 1 ■ ■ ■ X 3>n i / y \

In case the candidate scrutinee is a compound expression, the refinement is
generated in a slightly different way. The side condition P b y : Y is replaced
by P b M : Y where M is an arbitrary term and y' serves as a new parameter
replacing M. Also, instead of substituting the variable y for the different con
structions, every occurrence of the subexpression M is replaced. There is one
more difference, namely that whenever possible, a proof of M = = y' is passed as
an argument to the locally defined function. A proof of this equality is provided
by reflexivity.

10

Experiments with a method for introducing generalizations have been done. The
method has two simple procedures for suggesting generalizations. The first looks
for several occurrences of the same subexpression. If at least two occurrences
are found, a generalization is constructed by replacing that subexpression with
a new parameter of the correct type. The second procedure looks for two or
more occurrences of the same parameter. Upon finding this, the parameter is
separated into two or more new ones and all combinations of distributing the
new parameters are tried.

The rule for generalization refinements has the following general form:

P b X : *
/ ’(.? : X) b T ' : *

r b M : X
A. I a ? : T A, p, T\- T = T' [M/x] / generalization^

(let n (r ■ X) - T' —? "1 \ refinement jlet g [x . A) . 1 . g | T

m g M J
where

A' = A{I' {x : X) b ?.; : T')

The variables x are the new parameters introduced by the generalization proce
dure and T' is the generalization of T. The rule has four side conditions. The
first presents the types of the new parameters, X. The second says that T' is a
valid type in P extended by the new parameters. The third introduces the set
of terms that will be the arguments of the function application. Finally, the last
one ensures that by replacing x by M in T' the two types become equal.

5 Examples

A few examples are presented to illustrate what kind of problems can be solved
by the tool. The examples refer to natural numbers and lists, which are defined
as follows.

Nat = data 0 | s (n : Nat)
List X = data [] | (: :) (* : X) (xs : List X)

Infix notation will be used for the constructor ‘ :: ’ .

5.1 Natural Numbers

As the first example, we look at commutativity for addition of natural numbers.

a + b = = b + a

Addition for natural numbers is assumed to be defined as follows
0 + 6 = 6

s a' + 6 = s (a' + 6)

4.4 Generalization

11

The tool solves this problem by induction on a. In the base case, induction on b
is also done. In the inductive step, the target type is s (a' + b) = = b + s a'. The
hypothesis is used to replace a' + b by b + a', yielding s (b + a') = = b + s a'.
Now, an induction on b is done. The base case of this is proved by referring to
reflexivity.

5.2 Lists

We take the following property of list reversing as an example:

rev (rev xs) = = xs

The list reversing function is defined in terms of concatenation.

rev [] = []
rev (x:: xs') = rev aw'-H- (x:: [])

[] ++ ys = ys
(x:: a;s')++ ys = x: : (xd +V ys)

The proof is by induction on xs. The ground case is trivial. The inductive step
has the target type rev (rev xs'++(x:: [])) = = x :: xs' and the hypothesis
ascertains rev (rev xs') = = xs'.

The hypothesis is used to replace xs' with rev (rev xs') in the RHS. This
renders the problem rev (rev xs'++ (x:: [])) = = x:: rev (rev xs').

Here, the subexpression rev xs' appears twice and therefore the more general
problem rev (ys+j- (x:: [])) = = x:: rev ys is attacked. The generalized problem
is solved by induction on ys.

5.3 Quicksort

We prove the correctness of the quicksort algorithm.

qsort [] = []
qsort (x:: xs) = qsort (filter (x >) xs)-H- (x:: qsort (filter (x <) xs))

The type of the elements will be denoted by X , which is any ordered set. In
order to adhere to structural recursion, we do the proof for a modification of the
algorithm, qsort!. This takes two extra arguments; a natural number, n, which
is the recursor and a proof, p, that the length of xs is at most n. The definition
of qsort! is left out.

To prove the correctness, we show that the output list is sorted and that it
is a permutation of the input list. This is established for qsort! in prop_ qsort!.
As a corollary, the result is then brought to qsort in prop_ qsort.

prop_ qsort! : Sorted (qsort! n xs p) A Perm xs (qsori! n xs p)
prop_ qsort : Sorted (qsort xs) A Perm xs (qsort xs)

12

To show this, the problem is divided into a number of lemmas. Each of them can
automatically be solved by the tool. Some of the lemmas depend on previous
ones. Apart from the ones that are listed below, a couple of trivial properties
of natural numbers and booleans have to be provided in a few cases. The main
proposition, prop_ q s o r twas then proved using several lemmas and prop_ qsort
is a trivial consequence.

Most of the lemmas are general properties for Perm, Mem,her and occs, which
counts the number of occurrences of an element in a list. In all propositions, non
proof arguments are omitted.

lemi : Mem,her x x s - ->(occs x xs = = 0)
leniQ : Perm xs ys —► (x : X) —► (Member x xs • Member x ys)
lems : occs x (xs-H- ys) = = occs x xs + occs x ys
lem,̂ : Perm (xs-H- ys) (ys+txs)
lem§ : Perm zs (xs-H- ys) —► Perm (x:: zs) (xs++ (x:: ys))
lem® : Perm xsi XS2 —► Perm ysl ys2 —► Perm (xsi ++ ysl) (xs2++ ys2)
lemj : Perm xs ys —> Perm ys zs —► Perm xs zs

The remaining two lemmas are specific to the algorithm.

lems : Perm xs (filter (x >) xs+^r filter (x <) xs)
lem® : Sorted xs Sorted ys ((x : X) Member x xs \x < a|)

—> ((x : X) —► Member x ys —̂ \a < x\) —> Sorted (a;s++ (a:: ys))

Time cost of a search is measured by the number of refinements generated
before a solution is found. The problems above typically take around 1000 refine
ments. The most difficult, lem ̂ takes around 6000 refinements. These numbers
are valid for searches where the needed lemmas are specified as hints.

6 Conclusions and Future Work

The experiments have resulted in a tool, that can construct proof terms for a
fairly wide variety of problems. Inductive proofs can be constructed automat
ically, including nested induction. The tool can find some proofs in which a
generalization is needed at some point to strengthen the induction.

The way types are compared and our approach for data type elimination
substantially improve the efficiency of the search. The response time of the tool
is in most cases satisfactory for an interactive proving system.

Among possible continuations of this work, we consider the following issues
most interesting:

— Make the generalization more general. Investigating how far generalization
can be automated is an interesting field.

— Make the induction capabilities more flexible by handling non-structural or
mutual recursion. It would also be interesting to develop the mechanism that
picks the parameter to do induction on, if possible.

13

— Further investigate the effects of using normal forms and syntactical com
parison for types in type theory.

— Use testing (cf. e.g. [Hai03])to restrict search space. As the flexibility of the
refinement methods grows, search complexity tends to increase. This should
be compensated by improving the mechanism that limits the search forking.
If e.g. generalization is improved, more candidates will be generated. Some of
these may however be too general, i.e. false. It should be possible to disqualify
some candidates by falsification. Testing could also be useful when invoking
lemmas.

References

[CC99J C. Coquand and T. Coquand. Structured type theory. In Workshop on Logical
Frameworks and Meta-languages, Paris, Prance, Sep 1999.

[Coq98j Catharina Coquand. The AGDA Proof System Homepage,
http : / / www. c s . chalmers. se/~catarina/agda/, 1998.

[DowOlJ G. Dowek. Higher-order unification and matching. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chap
ter 16, pages 1009-1062. Elsevier Science, 2001.

[Hai03j Qiao Haiyan. Testing and Proving in Dependent Type Theory. PhD thesis,
Department of Computing Science, Chalmers University of Technology, 2003.

[HalOOj Thomas Hallgren. Home Page of the Proof Editor Alfa,
http : / /w w w . c s . chalmers. se/~hallgren /A lfa /, 1996-2000.

[HR00J Thomas Hallgren and Aarne Ranta. An extensible proof text editor. In Logic
for Programming and Automated Reasoning, volume 1955 of LNCS, pages 70
84. Springer, 2000.

[ML84J P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[TS98J Tannel Tammet and Jan Smith. Optimized encodings of fragments of type

theory in first-order logic. JLC: Journal of Logic and Computation, 8 , 1998.

14

http://www.cs.chalmers.se/~catarina/agda/
http://www.cs.chalmers.se/~hallgren/Alfa/

Cooperating Theorem Provers: A Case Study
Combining HOL Light and CVC Lite

Scan McLaughlin and Clark Barrett1

Department of Computer Science, New York University
{seanmcl,barrett}0cs.nyu.edu

A bstract. HOL Light is a lightweight interactive theorem prover in the
LCF style. CVC Lite is a fast, automated first order theorem prover that
produces proofs of its deductions. This paper is a case study in combining
theorem provers. We define a derived rule in HOL Light, CVC-PROVE,
which, given a term of a theory supported by CVC Lite, calls the CVC
Lite decision procedure and translates the solution back into HOL Light.
This technique fundamentally expands the capabilities of HOL Light, in
the sense that some valid terms that are intractable in the current HOL
Light decision procedures become quickly provable. Furthermore, CVC
Lite supports decision procedures for theories that do not exist in HOL
Light. For instance, it decides unquantified statements in the theory of
arrays. We give a minimal set of array definitions in HOL Light, and
extend the translation mechanism. The result is that CVC-PROVE is able
to prove difficult theorems about arrays with an extension of the HOL
Light source of 8 lines of definitions and 6 basic proofs! After a brief
historical discussion, we give the details of the translation mechanism. We
give an example of a class of problems that were solved with CVC_PR0VE
but were unsolvable otherwise. Other less successful examples are given
for comparison. We discuss the theory of arrays, and the minimal effort
required to add an array theory to HOL Light with the help of CVC
Lite. Finally, we discuss potential applications and future work.

1 Introduction and History

There are many different ways to formalize mathematics. Similarly, there
are many kinds o f problems that need to be solved in a rigorous way.
As a result, there are a number o f theorem provers being used today, all
with differing underlying logics and all with different strengths and weak
nesses. It is unfortunate that the efforts o f the formal methods community
arc so ramified. For instance, the exciting advances made in TPS [5] arc
generally unavailable to a user o f Mizar [16] without extensive study and
programming. Users arc loathe to change systems and even having a de
sired theorem proved in another system is often unsatisfactory. What
is needed is some way to harness the power o f another theorem prover
without having to leave the environment o f one’s own system.

There are some efforts underway to address these issues. One is the
nascent Logosphere project [1]. This promises to be a database o f theo
rems in varying formats with a translation mechanism between the various
logics.

In the hope o f encouraging further progress along these lines, this pa
per describes a case study in which proofs from the automatic theorem
prover CVC Lite are translated into corresponding proofs in the interac
tive theorem prover HOL Light.

1.1 HOL Light

HOL Light [11] is an interactive theorem prover descended from the LCF
projects [8,14] and the HOL4 theorem prover [2].

All the theorems are created by a core set o f 10 primitive inference
rules such as modus ponens and reflexivity. All other rules o f inference
are conservatively derived from these rules. The core system consists of
those 10 rules and 3 logical axioms. W ith OCaml as the metalanguage,
the user may program arbitrary new rules that cannot compromise the
correctness o f the system. This is ensured by defining an abstract type
thm with no primitive constructor, and is enforced by the OCaml type
system. The core consists of just over 300 lines o f OCaml. HOL Light has
been used extensively by its author to verify hardware designs at Intel
[12]. But because o f its transparent design and minimal base of trusted
code, HOL Light was also chosen by Thomas Hales as the system in
which to formalize his proof o f the Kepler Conjecture (see Section 5.2). A
large body of mathematics has been formalized in the system, from the
construction o f the real numbers to basic results in transfinite set theory
and real and complex analysis.

1.2 CVC Lite

CVC Lite [6] is an automatic proof-producing theorem prover for deeid-
able first order theories. It is derived from the SVC and CVC projects at
Stanford University [7,15]. It is one o f the fastest theorem provers in exis
tence today, solving problems in seconds that take hours for systems like
HOL Light. The logical core differs in many ways from the HOL Light
kernel. For example, as speed is a design goal o f the system, there are
many more primitive inference rules in CVC Lite. In fact, there are over
one hundred rules alone for the theory o f real linear arithmetic. (Contrast
this number with the 10 total inference rules o f HOL Light, where the
reals are constructed from the axiom of infinity.) The trusted code base

is correspondingly larger, over 3000 lines being used to solve problems of
linear real arithmetic. A natural question is whether wc can acccss the
speed and power o f the CVC Lite engine without having to rely on its
soundness.

2 Translation

There arc numerous ways of connccting another prover like CVC Lite to
HOL Light. One would be to acccpt theorems generated by CVC Lite
as valid theorems. However, any bug in CVC Lite would compromise the
soundness o f HOL Light. A less intrusive approach is to tag theorems
proved by CVC Lite [9]. This amounts to proving a theorem under the
assumption false. While logically meaningless, this approach would allow'
the propagation o f CVC Lite proofs so that, when faced with a theorem
C V C b P , wc can say with certainty that if the output o f CVC Lite was
correct, then P holds. Fortunately, because CVC Lite can produce proofs,
there is another alternative which is true to the spirit o f HOL Light.
This is to translate the proofs produced by CVC Lite into actual HOL
Light proofs. W c implement a HOL Light derived rule for each CVC Lite
inference rule and translate the proof tree, calling the HOL Light rules as
necessary from the bottom up, constructing the proof on traversal. Thus,
a bug in CVC Lite would not compromise the HOL Light system. A false
proof generated by CVC Lite would simply fail to translate into HOL
Light.

2.1 Languages

HOL Light is written in the OCaml language [3]. CVC Lite is written in
C + + . The first challenge was getting the two languages to interact. A C
interface for CVC Lite was written, allowing one to construct arbitrary
CVC Lite formulae and to query the validity o f a formula from a C pro
gram. OCaml functions wore then written to call the C functions from the
OCaml read-eval-print loop. The communication process is complicated
by the different memory management systems o f the two languages and
imposes obvious limitations. Also, because it uses general strategies tai
lored for large proofs, even simple proofs in CVC Lite can be surprisingly
large. A naive proof o f x + y — y + x runs some 15 lines. An example
described below' produces a multi-gigabyte proof. It is easy to produce
proofs that exhaust main memory on a modern computer. W ith a bit
more work, one can find a problem whose proof docs not fit inside any

modern hard disk. A real concern for problems we arc currently investi
gating is their ability to fit in the section of the heap allocated to C + +
when the languages arc combined. This was more of a software engineer
ing feat than one o f interest to the logic community. The details and code
can be found on the Internet at [13].

2.2 Terms

After connecting OCaml to the C interface of CVC Lite, the next task
was to translate terms between HOL Light and CVC Lite. Given that
the CVC Lite logic is close to a subset o f the HOL Light logic, this
was relatively straightforward. The types o f the terms we considered had
obvious analogues. The term translation algorithm performs a depth first
search of the term, constructing a term in the other system recursively.

Though it was not difficult for the part of CVC Lite we considered, it
seems that such a translation may not always be so easy. Systematically
translating between set theory, and typed lambda calculus, for instance,
would take much deeper consideration.

2.3 Proofs

Translating proofs formed the heart of the research. As an illustration,
we demonstrate a proof o f the term !x = x ! in CVC Lite.

(iff mp true (= x x)
(proof by contradiction true

(let p ((assumpi (not true)))
(iff mp (not true) false assumpj (rewrite not true)))

(iff-symm (— x x) true (rewrite eq ref!a’))))

Some examples o f the rule semantics arc:

- (iff mp [ti] [t2] [b (h = t2)] [b h)) = > [b t2)
- (proof by contradiction [t] [not t b false]) =>• [b t]
- (rewrite not true) = > b not true = false

In order to translate these rules to HOL Light, we wrote a derived rule
for each CVC Lite rule encountered in the proof tree. Thus, to translate

proof by contradiction, wc must define1 a HOL Light derived rule
where, given a proof o f false from the term ->t, a proof o f t is produced.

l e t CCONTR =
l e t P = [P :b o o l [in
l e t pth = TAUT 1(~P ==> F) ==> P [in
fun tm th ->

t r y l e t tm’ = mk_neg tm in
MP (INST [tm ,P] p th) (DISCH tm’ th)

w ith F a ilu re _ -> f a i lw i t h "CCONTR";;

If the reader is unfamiliar with the HOL Light style, the crucial point
is that we can define the rule in terms o f previously defined rules o f in
ference (here MP, INST, TAUT, DISCH). We have a similar rule for every
inference rule in CVC Lite. We can then combine these rules in a recursive
procedure that translates the proofs in a depth first traversal o f the proof
tree. The translation o f the root proof node should yield the desired HOL
Light theorem.

Note: It is interesting to consider the relative strengths o f the infer
ence rules in the two systems. For CVC Lite.

(0 + 1 y\x\ + ly | ® 3 + H— 2 y^y3x 2x\+

2yiy2x 3xi + - 2 y4yia’4a’ i + ly fa l + 1 ^ 3 +

ly fa f + 2 y 3y 2x 3x 2 + - 2 y 3y ia 4a 2 + 1 y\x\+

l y i a’ 2 + + ly fa § +

ly?® ! + 1 + 0 + ly\x\ + 2 y^y3x 2x\+

- 2yi y 2x 3x 1 + 2y4yia4ai + ly|a| + - 2 y 3y 2x 3x 2+

2y m x i X 2 + 1 y%x3 + - 2 y 2yiX4X3 + 1 y\x\)

(0 + ly\x\ + ly\x\ + 1 y|a| + ly\x\+

ij/3*4 + + ̂ yix I + { y l x { +

1 y\x\ + \y\x\ + \y\x\ + ly2x\+
\y\x\ + \y\x\ + \y\x\ + 1//f-rf)

is a primitive inference. This corresponds to 101.359 HOL Light prim
itive inference rule applications!

1 The rule CCONTR was written by John Harrison and is a part of the IIOL-Light
system. The actual rules we defined are longer and less instructive.

3 Results

HOL Light and CVC Lite have two overlapping theories, those of real
arithmetic and boolean satisfiability. These are the realms at which wc
aimed our translation mechanism in order to determine its relative effec
tiveness.

3.1 Satisfiability

Consider the following class of problems. You arc given n — 1 sets of
n pigeon-holes, arranged in n rows o f n — 1 columns. Given that that
no column can contain more than one pigeon, find a contradiction to the
assertion that each row can contain a pigeon. For instance, this translates,
for n — 3 as

((“ 'Xi V “ 'X3) A (~'Xi V - 'X5) A

(- 1x 3 V - 1x 5) A (-nx2 V - .x 4) A

(“ 1X2 V “ 1X5) A (“1X4 V “ 1X5) A

(x i V x 2) A (x 3 V x 4) A (x 5 V x 6)) -► false

for the picture

© ©
© ©

This is a notoriously difficult class of problems for typical boolean
satisfiability methods. The following table2 gives times for CVC Lite run
ning alone (but still producing proofs), HOL Light running alone, and
HOL Light using CVC Lite and performing the translation.

2 All times are in seconds, running on a 1GII Pentium III running FreeBSD 5.2

n CVC Lite HOL Light CVC-PE0VE
2 0.10 4.5 1.75
3 0.18 13 10
4 0.90 34 43
5 2.9 * 210
6 19 * 980
7 238 * 4308

The empty entries under “HOL Light” are intractable in that system.
Even the example with n = 5 ran for over 4 hours before we killed the
process. We thus expand the power o f HOL Light using the external
system CVC Lite.

Note: The drastic slowdown between the CVC Lite program and the
translation process requires some analysis. There are many places the
inefficiency may reside. The OCaml process is running uncompiled under
an interpreter. There is overhead from the many C function calls. There
is also a great deal o f inefficiency in the translation code. The lack o f a
profiler for the OCaml top level loop makes optimizing for HOL Light
difficult. This could be overcome by packaging HOL Light and compiling
the modules and in turn running the profiler. This option, along with
other optimizations, will be explored in future research.

3.2 Real Arithmetic

The first problems we investigated with the translation process were terms
of real linear arithmetic. The HOL Light decision procedure REAL_ARITH
was unacceptably slow. This was a primary motivation for beginning the
project in the first place. For instance, the following term

(.Pi 9i s i ^ ^ 'ai v i w ‘i)

(P 22 + <?2 + r 2 + s 2 + *2 + U 2 + u2 + w l) =

{p irp2 - q m - n r 2 - s i s 2 - h t 2 - u tu 2 - v iv 2 - m w 2f +

(piQ2 + gi'P2 + n s 2 - s\r2 + tiu 2 - U\t2 - v\w2 + Wiv2f +
(p m - q is2 + r ip 2 + Siq2 + tiv 2 + Uiw2 - V\t2 - w \u2f +

(P1S2 + 91^2 - riq2 + Sip2 + h w 2 - u i v 2 + t>iu 2 - w 1t2)2+

(Pih - qiU2 - n v 2 - srw2 + h p 2 + Uiq2 + t>ir2 + u>is2)2+

(P1 U2 + Qit‘2 - r\w2 + s\v2 - tiq2 + uip2 - v\s2 + w\r 2)2+

(p\V2 + q\W2 + n t 2 - S\u2 - t ir 2 + Uis2 + Vip2 - Wiq2f +

(P1W2 - q iv2 + n u 2 + s i t2 - h s 2 - u\r2 + t>iq2 + w\p2f

took over 1900 seconds with REAL_ARITH. In contrast, CVC Lite solves
the problem in under 2 seconds. Using CVC_PR0VE, wc cut the time in half.
W c planned further optimizations until John Harrison, the author o f HOL
Light, produced a hyper-optimized version o f REAL_ARITH that solved the
problem in 21 seconds! W ith the new arithmetic procedure, CVC_PR0VE is
consistently around six times slower than REAL_ARITH.

The reasons for this are likewise numerous. The inferences made by
CVC Lite were so large that the translation mechanism was forced to call
REAL_ARITH itself just to prove the inferences were correct. Thus, wc were
forced to rely upon the very procedure we were trying to replace! We
arc currently designing a layer o f inference rules in CVC Lite that more
closely resemble the low level inference rules o f HOL Light. In time we will
see if such a translation process will be useful for pure linear arithmetic.

4 The Theory of Arrays

The experiments documented above arise from theories that exist in both
theorem provers. A more obvious application o f translation is to theories
for which decision procedures do not yet exist in one o f the provers. For
instance, CVC Lite has a well developed theory o f arrays. This theory
does not exist in the current HOL Light version. As an alternative to
implementing a decision procedure for arrays in HOL Light we extended
the current translation mechanism to handle the CVC Lite array inference

rules. This gives us all the power o f an array theory built in to HOL Light
without the otherwise obligatory implementation effort.

4.1 Theory

The theory is a simple extensional theory of arrays, as found in [4],
Roughly, an array is a polymorphic type with two type variables, one
corresponding to the indexing type, and the other corresponding to the
value type. There are two constants, read and write. There are two ax
ioms in the theory. One, the axiom of extensionality for arrays, saying
that two arrays are equal if and only if they have the same elements. The
second is a read over write axiom, giving a simple term reduction. The
following is the entire contents of the HOL Light array theory:

new_type("array",2);; (* index_type, data_type *)

new_constant("read",1:(I,D)array->I->DI) ;;

new_constant("write",1:(I,D)array->I->D->(I,D)array1);;

let read_over_write = new_axiom(1!(a:(I,D)array) (i :I) (j:I) (v:D).
((i = j) ==> (read(write a i v) j = v)) /\
(~(i = j) ==> (read(write a i v) j = (read a j)))1);;

let array_extensionality = new_axiom(1!(a:(I,D)array) (b:(I,D)array).
(!(i:I). read a i = read b i) ==> (a = b)c);;

Note: Adding axioms to the HOL Light system is generally discour
aged. A conservative extension theory o f arrays is certainly possible, but
the logic is greatly complicated. One way this could be accomplished is
by defining an (I,D)array as the set of functions from type I to type D
where a read is simply a function call and a write would be a conditional
wrapper for the function

write A c v = (\x. if x = c then v else A x)

4.2 Results

Consider the following HOL Light term:

‘((SI:(real,real)array) = S2) ==>
((write SI i (read S2 i)) = SI)‘;;

Given the axioms, the built-in HOL Light decision procedure can solve
this problem in 56 seconds. CVC_PE0VE takes .015 seconds.

Even slightly more difficult problems such as the following are in
tractable for HOL Light. By contrast, CVC-PEOVE solved it in 7.6 seconds.

‘(((write (SI:(real,real)array) i v) = (write S2 j w)) /\
(read SI i = v) /\
(read S2 j = w)) ==>

((SI = S2) /\
((i = j) ==> (v = w)) /\
(~(i = j) ==> (read SI j = w)))‘;;

5 Future Research

We briefly consider some directions for future research.

5.1 Proof Size Reduction

There is an extensive proof theoretic literature on proof compaction. None
o f this is currently applied to the CVC Lite proofs. For larger problems, it
could be necessary to translate proofs in pieces to allow the entire object
to fit in memory. For instance, if the top level inference rule is iff-m p,
one may create two separate processes to translate the separate parts of
the proof, b (ti = t-z) and b t\. Once such a subproof exists as a HOL
Light theorem, the proof can be deleted and another subproof begun. In
this way it will be possible to handle proofs o f practically limitless size.

5.2 The Flyspeck Project

The Flyspeck Project is an effort to formally verify Thomas Hales’ 1998
proof of the Kepler Conjecture [10]. The proof relies critically on a large
number of 6 and 7 dimensional real inequalities. These were proved using
interval arithmetic and recursive branching using linear approximations
and an explicit error bound given by Taylor’s theorem. The verification
o f the inequalities required a large number o f floating point arithmetic
calls, often over 107 double precision multiplications in the course o f a
proof. These calculations are extremely slow in HOL Light. While still
tractable in theory, a highly efficient implementation will be necessary to

prove them in practice. We are hoping that CVC Lite can be used as a
tool to help guide the branching process to allow HOL Light to do as
little work as possible in the proofs. In general, speed will be an issue on
such a large project. We hope that CVC can help us attain the goal of
verifying the proof in Hoi Light.

6 Conclusion

This work demonstrates several benefits that can be derived from combin
ing theorem provers. We have presented concrete examples o f a qualitative
increase in the power of HOL Light by translating proofs from CVC Lite.
In a perfect world, any prover would be able to call any other for help in
deciding terms automatically. This is a small step in that direction.

W e’d like to thank New York University, the University o f Pittsburgh,
and the National Science Foundation for partial support o f this work.

References

1. http://www.logosphere.org.
2. littp: / /hoi.sourceforge.net/.
3. http://www.ocaml.org/.
4. Clark W. Barrett Aaron Stump, David L. Dill and Jeremy Levitt. A Decision

Procedure for an Extensional Theory of Arrays. In IEEE Symposium on Logic in
Computer Science, volume 16. IEEE Computer Society, 2001.

5. Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS The
orem Proving System. In Mark E. Stickel, editor, 10th International Conference
on Automated Deduction, volume 449 of Lecture Notes in Artificial Intelligence,
pages 641-642. Springer-Verlag, 1990.

6. Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the Co
operating Validity Checker. In CAV, 2004. To appear.

7. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity Checking for
Combinations of Theories with Equality. In Mandayam Srivas and Albert Camil-
leri, editors, Formal Methods In Computer-Aided Design (FMCAD), volume 1166
of Lecture Notes in Computer Science, pages 187-201. Springer-Verlag, November
1996. Palo Alto, California.

8. M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation. In Lecture Notes in Computer Science, volume 78. Springer-
Verlag, 1979.

9. Elsa Gunter. Adding external decision procedures to IIOL90 securely. In Theorem
Proving in Higher Order Logics 11th International Conference, volume 1479 of
Lecture Notes in Computer Science, pages 143-152. Springer-Verlag, 1998.

10. Thomas Hales, http://www.math.pitt.edu/thales/kepler98.
11. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and

Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of Lec
ture Notes in Computer Science, pages 265-269. Springer-Verlag, 1996. see
lit t p: / / www .cl. cam. ac. uk/ users/j rh/hol-light.

http://www.logosphere.org
http://www.ocaml.org/
http://www.math.pitt.edu/thales/kepler98

12. John Harrison. Formal verification of floating point trigonometric functions. In
Warren A. Hunt and Steven D. Johnson, editors, Formal Methods in Computer-
Aided Design: Third International Conference FMCAD 2000, volume 1954 of Lec
ture Notes in Computer Science, pages 217-233. Springer-Verlag, 2000.

13. Sean McLaughlin, http://www.cs.nyu.edu/seanmcl/cvc_hol_translation.
14. L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. In

Cambridge Tracts in Theoretical Computer Science, volume 2. Cambridge Univer
sity Press, 1987.

15. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating Validity
Checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th International
Conference on Computer Aided Verification (CAV), volume 2404 of Lecture Notes
in Computer Science, pages 500-504. Springer-Verlag, 2002. Copenhagen, Den
mark.

16. Andrzej Trybulee. http://mizar.uwb.edu.pl/.

http://www.cs.nyu.edu/seanmcl/cvc_hol_translation
http://mizar.uwb.edu.pl/

Embedding Multiway Decision Graphs in HOL

Tarek Mhamdi and Sofiene Tahar

Concordia University
Department of Electrical and Computer Engineering

1455 de Maisonneuve West
Montreal, Quebec, H3G 1M8, Canada
{nihamdi ,tahar}®ece. concordia. ca

A bstract. In this paper, we present an embedding of Multiway Decision
Graphs (MDG) in the HOL theorem prover. We first embedded the MDG
underlying logic and then implemented a set of MDG graph manipulation
operators and algorithms. This platform allowed us to develop state-
exploration based applications inside HOL, such as MDG reachability
analysis, equivalence checking and model checking. Furthermore, we also
developed decision procedures for equivalence and tautology checking
based on the MDG tool. The proposed embedding provides a verification
framework, in which the verification problem is specified in HOL, while
the proof is derived by tightly combining the MDG based computations
and the HOL theorem prover facilities.

1 Introduction

Whenever an error creeps into a design, time and money must be spent to lo
cate the problem and correct it, and the longer a bug evades a detection, the
harder and more expensive it is to fix. As design complexity increases, simulation
times become prohibitive and coverage becomes poor, allowing numerous bugs
to slip through to later stages of the design cycle. What is needed, therefore,
is a complement to simulation for determining the correctness of a design. For
this reason, there has been a surge of research interest in formal verification
techniques [14]. In general, formal verification problem consists of mathemat
ically establishing that an implementation satisfies a specification. The imple
mentation refers to the system design that is to be verified and the specification
refers to the property with respect to which the correctness is to be determined.
Formal verification methods fall into two categories [12]: proof-based methods,
mainly theorem proving and state-exploration methods, mainly model checking
and equivalence checking. While theorem proving is a scalable technique that can
handle large designs, model checking suffers from the so-called state-explosion
problem which prevents its application to industrial systems [15]. On the other
hand, while model checking is fully automatic, deriving proofs is a user guided
technique that requires a lot of expertise and hence can be tedious and difficult.

Both techniques do not allow the automatic verification of large systems.
So, various compromises are being explored to combine the strengths of both.

They can be summarized as : (i) tools integration, (ii) adding deduction rules
to a state of the art checking tool or (iii) deeply embedding checking algorithms
inside a theorem prover. For the first approach, we start with two stand-alone
tools, a theorem prover and a checking tool, where we link the latter to the the
orem prover using scripting languages to be able to automatically verify small
sub-goals generated by the theorem prover from a large system. The starting
point of the second approach is a state-of-the-art checker to which we add prov
ing rules to hopefully extend the verification to complete systems. Finally, the
third approach, which is the one we adopted in our work, consists of embedding
algorithmic infrastructures inside a theorem prover resulting in a hybrid system
tightly combining checking algorithms and proving facilities. This approach dif
fers from the first one in the way the verification is performed. In fact, we do not
use an external checking tool, instead we develop state-exploration algorithms
inside the theorem prover.

In this work, we developed a platform of state-exploration algorithms inside
the HOL proof system [9], Our decision diagram data structure is the Multiway
Decision Graphs (MDGs) [5], which we integrate in HOL as a built-in datatype.
The logic underlying MDGs will be embedded as a theory that provides the
tools to specify the verification problem in the logic supported by the MDGs.
The specification will consist of a set of HOL formulae that can be represented
by their correspondent MDGs. Operations over these formulae will be viewed
as MDG operations over their respective graphs. An MDG package will, then,
be used to build the graph representation of HOL formulae allowing the ma
nipulation of graphs rather than HOL terms. Once available inside the theorem
prover, the MDG data structure and operators can be used to automate parts
of the verification problem or even to write state enumeration algorithms like
reachability analysis or model checking.

The organization of this paper is as follows: Section 2 reviews some related
work. Section 3 describes the embedding of the logic underlying the MDGs in
HOL. Section 4 shows how HOL is linked to the MDG package. Section 5 de
scribes the embedding of the reachability analysis procedure. Sections 6 and 7
illustrate the use of the embedding in the implementation of state-exploration
algorithms. Finally, Section 8 concludes the paper and gives some future research
directions.

2 Related Work

The quest for an efficient combination of theorem proving and model checking
has long been one of the major challenges in the field of formal verification. The
work described here has been strongly influenced by the HolBdd [6,7] system
developed by Gordon. HolBdd consists of a platform allowing the programming
of Binary Decision Diagram, (BDD) [3] based symbolic algorithms in the Hol98
proof assistant. It provides intimate combinations of deduction and algorithmic
verification. They use a small kernel of ML [10] functions to convert between

BDDs, terms and theorems. Their work was applied to perform reachability
programming in Hol98.

A pioneering work in the area is the one of Joyce and Seger [11] combin
ing HOL and the symbolic trajectory evaluation (STE) tool VOSS. HOL-VOSS
presents a mathematical link between the specification language of the VOSS
system and the specification language of HOL. A tactic, VOSS-TAC, was imple
mented as a remote function. It calls the VOSS system as a child process of the
HOL system to check whether an assertion, expressed as a term of higher-order
logic, is true. If this is the case, the assertion will be turned to a HOL theorem.
The early experiment with HOL-VOSS suggested that a lighter theorem prover
component was sufficient, since all that was needed was a way of combining re
sults obtained from STE. A system based on this idea, called VossProver was
developed. As a continuation of HOL-VOSS, Aagaard et al. [1] developed the
Voss-ThmTac system combining the ThmTac theorem prover with the VOSS
system. Its power comes from the very tight integration of the two provers, us
ing a single language, FL, as both the theorem prover’s meta-language and its
object language.

Rajan et al. [20] described an approach where a BDD based model checker
for the propositional /u-calculus has been used as a decision procedure within the
framework of the PVS [18] proof checker. They used /u-calculus as a medium for
communicating between PVS and the model checker. It was formalized by using
the higher-order logic of PVS. The temporal operators are given the customary
fixpoint definitions using the /u-calculus. These expressions were translated to
the form required by the model checker. The latter was then used to verify the
subgoals generated within PVS.

Schneider and Hoffmann [21] linked the SMV model checker [16] to HOL
using PROSPER. They embedded the linear time temporal logic (LTL) in HOL
and translated LTL formulae into equivalent u- Automata, a form that can be rea
soned about within SMV. The translation is completely implemented by means
of HOL rules. On successful model checking, the results are returned to HOL
and turned to theorems. The deep embedding of the SMV specification language
in HOL allows LTL specifications to be manipulated in HOL.

In [13], [19] and later [17] a hybrid tool and a methodology tailored to perform
hierarchical hardware verification have been developed by the Hardware Verifica
tion Group of Concordia University. They integrate the HOL theorem prover to
the MDG equivalence checker and later to the MDG model checker. The work is
done within the proof system but using the specification style of the automated
verification tool. The HOL-MDG tool is used to verify that a structural spec
ification of hardware implementation implies its behavioral specification. They
perform the equivalence checking within the MDG tool by applying a HOL tac
tic .VIDC EQ TAG. This latter mainly generates the MDG required files and
ensures the interaction with the MDG equivalence checker. If the design is large
enough to cause state explosion, and since the description model is written in a
hierarchical way, a tactic HIER_VERIF_TAC is called to break the design into
sub-blocks. The same procedure is recursively applied if necessary. At any point,

the goal proof can be done in HOL. Similarly, they provide a way to express
temporal properties inside the theorem prover and support the full properties
specification language of MDG by introducing abstract datatypes and uninter
preted functions. A HOL tactic, called MDG_MC_TAC is used to perform model
checking. It supports hierarchical verification and model reduction.

While [13,17,19] describe systems integrating two stand-alone tools, namely,
HOL and an external MDG tool, the work described here is not intended to
use an external tool to verify subgoals. Instead MDGs are a built-in datatype
of HOL and operators over MDGs are available in the proof system which al
lows us to tightly combine HOL deduction and MDG computations. Besides,
state-exploration algorithms will be written inside HOL. Thereafter, the main
difference between our approach and the HOL-MDG tool is that our embedding
provides a secure and general programming infrastructure to allow the users to
implement their own MDG-based verification algorithms inside the HOL system.

The work in [1,11,21] use the same approach as the HOL-MDG hybrid tool
in the way they integrate the model checker to the theorem prover. The work
in [20] uses the /u-calculus as a medium for communicating between the theorem
prover and the model checker. It is a shallow embedding of stand-alone tools
language while ours is a deep embedding of the decision diagram data structure
and its operators are embedded inside the theorem prover.

Obviously, the most related work to ours is that of Gordon [6,7]. Our work,
however, deals with embedding MDGs rather than BDDs. In fact, while BDDs
are widely used in state-exploration methods, they can only represent Boolean
formulae. On the other hand, MDGs represent a subset of first-order terms allow
ing the abstract representation of data and hence raising the level of abstraction.

3 Embedding The M D G Logic in HOL

3.1 Multiway Decision Graphs

A Multiway Decision Graph (MDG) is a finite directed acyclic graph G where
the leaf nodes are labeled by formulae, the internal nodes are labeled by terms,
and the edges issuing from an internal node N are labeled by terms of the same
sort as the label of N. Such a graph represents a formula defined inductively
as follows: (i) if G consists of a single node labeled by a formula P, then G
represents P ; (ii) if G has a root node labeled A with edges labeled B \,...,B n
leading to subgraphs G'1,...,G'n and if each G\ represents a formula P, then G
represents the formula Vi<;<n((A = Bi) A P;). For example, if x, u, and v are
variables of abstract sort a, f is a function symbol of type a —>• a, and G, G1,
and G " represent P , P ', and P ", respectively, then the graph

u / \ v \ f(u)
G G’ G”

represents the formula

((x = u) A P) V ((x = v) A P') V ((x = f(u)) A P "). (1)

The above is of course too general, a set of well-formedness conditions [5]
turns MDGs into canonical representations that can be manipulated by efficient
algorithms. More details on MDG are described in the sections to follow.

Multiway Decision Graphs are intended to represent Abstract State Machines
(ASM) [5], an abstract description of state machines based on a many-sorted first
order logic with a distinction between abstract and concrete sorts. More details
on MDGs are described in the subsections to follow.

3.2 M D G Sorts

Concrete sorts have enumerations, while abstract sorts do not. An enumeration
is a finite set of constants. This is embedded in HOL as follows:
— Concrete_Sort = Concrete_Sort of strings string list;

It declares a constructor called Concrete Sort, that takes as arguments a sort
name and its enumeration to define a concrete sort. For example, if state is a
concrete sort with [stop, run] as enumeration, then this is declared in HOL by:

val state = Define ‘state = Concrete_Sort ‘‘state’’ [stop; run]‘;
— Abstract_Sort = Abstract_Sort of ’a;

To define an abstract sort of type alpha (which means that the sort is actually
abstract and hence can represent any HOL type) we use the Abstract,Sort con
structor as follows:
val alpha = Define ‘alpha = Abstract-Sort “alpha”
To determine whether a sort is concrete or abstract, we use predicates over the
sorts constructors called IsConcreteSort, and IsAbstractSort, where means
“don’t care” .
(IsConcreteSort (Concrete_Sort _) = T) /\ (IsConcreteSort = F);
(IsAbstractSort (Abstract_Sort _) = T) /\ (IsAbstractSort = F);
These predicates will be used for instance to determine the sort of a variable or
a function symbol.

The vocabulary consists of concrete and generic constants, variables and
function symbols (also called operators). The distinction between abstract and
concrete sorts leads to a distinction between three kinds of function symbols.
Let / be a function symbol of type a\ x ... x a „ 4 an+i - If « n+i is an abstract
sort then / is an abstract function symbol Abstract function symbols are used to
denote data operations and are uninterpreted. If all ai...an+i are concrete, / is
a concrete function symbol Concrete function symbols, and concrete constants
as a special case, can always be entirely interpreted and thus be eliminated; for
simplicity, we assume that they are not used. Finally, if a n+i is concrete while
at least one of a\...an is abstract, then we refer to / as a cross-operator.

3.3 M D G Variables

An abstract variable can be either primary or a secondary variable. A primary
variable labels a node in the graph while a secondary variable is an abstract
variable occurring in the argument list of a function symbol. It can also be an
abstract variable labeling an edge in the graph. In our embedding, a primary
abstract variable will be declared using the Abstract-Var constructor while a
secondary variable will be declared using the Secondary- Var constructor.

— Concrete_Var = Concrete_Var of string =>• Concrete_Sort;

A variable is specified by its name and sort. A concrete variable is a variable of
concrete sort. For example, If a; is a variable of sort state, declared above, then
this is written in HOL as follows:

val x = Define ‘x = Concrete_Var “ x ” state';

— Abstract_Var = Abstract_Var of string =>• Abstract_Sort;

An abstract variable y with name “y” and sort alpha is declared using:

val y = Define ‘y = Abstract_Var ‘‘y ’’ alpha';

— Secondary_Var = Secondary_Var of string =>• Abstract_Sort;

The Secondary-Var constructor is similar to the Abstract-Var constructor. For
example:

val yl = Define ‘yl = Secondary_Var ‘ ‘ y l ’ ’ alpha'.

In this case also, we use some predicates to determine whether a variable
is concrete, abstract or secondary. They are called, respectively, IsConcreteVar,
IsAbstractVar and IsSecondary Var.

3.4 M D G Constants

A constant can be either an individual (concrete) constant or an abstract generic
constant. The latter is identified by its name and its abstract sort. The individual
constants can have multiple sorts depending on the enumeration of the sort in
which they are. In HOL they are declared as follows:

— Individual_Const = Individual_Const of string;

The enumeration of the concrete sort state is “ [stop , run]” . stop and run are
two individual constants that have state as their sort. They must be defined in
order to be able to declare the sort state.

val stop = Define ‘stop = Individual_Const ‘‘stop’’1;
val run = Define ‘run = Individual_Const ‘‘run’’‘;

— Generic_Const = Generic_Const of string =>• Abstract_Sort;

Having declared “alpha” as abstract sort, we can declare generic constants of
that sort. Say a is a generic constant of sort alpha.

val a = Define ‘a = Generic_Const “ a ” alpha';
To check whether a constant is an individual constant or an abstract generic
constant, we define two predicates, IsIndividualConstant and Is Generic Constant.

3.5 M D G Functions

MDG functions can be either concrete, abstract or cross-operators. As mentioned
before, concrete functions are not used since they can be eliminated by case
splitting. Cross-functions are those that have at least one abstract argument.
But when we focus on terms that are concretely reduced, all the sub-terms of a
compound term (abstract/cross function) have to be abstract. In addition they
are secondary variables.
— Cross_Function = Cross_Function of string =>• Secondary_Var list

=>• Concrete_Sort;
In general, a function is identified by its name, the sorts of its arguments and
its sort. In this case, we specify the variables rather than sorts because we focus
on cross-terms or abstract terms instead of the correspondent symbols. If equal
is a function that checks if two abstract variables are equal, then, equal is a
cross-function.
val bool = Define ‘bool = Concrete_Sort "bool" ["0";"1"]‘;
val yl = Define ‘yl = Secondary_Var ‘ ‘ y l ’ ’ alpha';
val y2 = Define ‘ y2 = Secondary_Var ‘‘y2’’ alpha';
val equal = Define ‘equal = Cross_Function "equal" [yl;y2] bool‘;
— Abstract_Function=Abstract_Function of string =>• Secondary_Var list

=>• Abstract_Sort;
If max is a function that takes two abstract variables as arguments and returns
the greater one, then max is an abstract function.
val max = Define ‘max = Abstract_Function ‘‘max’’ [yl;y2] alpha';
The predicates IsAbstractFunction and IsCrossFunction are used to determine
the nature of a compound term.

3.6 M D G Terms

MDG terms are either individual constants, generic constants, concrete or ab
stract variables, cross-operators or abstract function symbols. We provide a con
structor called MDG-Term that is used every time a new term is declared. The
single constructor is used so that terms will have the same type and hence can
be used in equalities. In fact if x is declared using the Concrete- Var constructor
and stop using the IndividuaLConst constructor, we will not be able to write
an equation of the form x = stop due to type mismatching. However, such an
equation is possible if both are declared using the same constructor.

Hol_datatype ‘MDG_Term =
Individual_Const of string => Concrete_Sort

of string => ’a Abstract_Sort
of string => Concrete_Sort
of string => ’a Abstract_Sort
of string=>(’a Secondary_Var)list=> Concrete_Sort

Generic_Const
Concrete_¥ar
Abstract_¥ar
Cross Function
Abstract_Function of string=>(’a Secondary_¥ar)list=>’a Abstract_Sort‘

3.7 Well-formed M D G Terms

For BDDs to be canonical, they have to be reduced and ordered. Similarly,
MDG require certain well-formedness conditions to represent canonically the
MDG terms. The set of well-formed terms that can be represented canonically
by the MDGs is called the set of Directed Formulae (DF). Given two disjoint sets
of variables U and V, a DF of type U ->• V is a formula in disjunctive normal
form (DNF) such that

1. Each disjunct is a conjunction of equations of the form:
— A = a, where A is a cross-term of concrete sort a containing no vari

ables other than elements of U, and a is an individual constant in the
enumeration of a, or

— u = a, where u £ U is a variable of concrete sort a and a is an individual
constant in the enumeration of a, or

— v = a, where v £ V is a variable of concrete sort a and a is an individual
constant in the enumeration of a, or

— v = A, where v £ V is a variable of abstract sort a and A is a term of
type a containing no variables other than elements of U ;

2. In each disjunct, the left hand sides of the equations are pairwise distinct;
and

3. In each disjunct, every variable v £ V should appear as the left hand side of
an equation v = A.

Conditions 2 and 3 must be respected by the user when specifying the verification
problem. The condition 3 is less stringent than it seems. In practice, one can
introduce an additional dependent variable u and add an equation v = u to a
disjunct where an abstract v is missing.

For example, condition 1 is embedded in HOL and checked using the func
tion WelLformedTerm that, recursively, calls WelLformedEQ to check the well-
formedness of an equation.

fun Well_formedEQ eq =
((IsConcreteVar Ihs) /\ (IsConcreteConstant rhs)) \/
((IsCrossFunction Ihs) /\ (IsConcreteConstant rhs)) \/
((IsAbstractVar Ihs) /\ (IsAbstractFunction rhs)) \/
((IsAbstractVar Ihs) /\ (IsAbstractVar rhs)) \/
((IsAbstractVar Ihs) /\ (IsGenericC rhs)) \/
(IsBool Ihs);

4 Linking HOL to The M D G Package

The MDG logic is embedded in HOL to make it possible to specify a verification
problem in HOL in terms of formulae that can be represented by canonical
MDGs. The next step would be to provide the tools to build and manipulate
the graph representations of these formulae. This platform will consist of ML
functions that call an MDG package1 as an external process. The package is
invoked using a script file, in which, the different manipulations to be done in
MDG are specified. For example, to perform the conjunction of a list of well-
formed Terms, we use the ML function Conj. This function calls an intermediate
function to write the script file corresponding to a conjunction, then calls the
specific MDG functions to perform the operation and eventually return the result
to HOL. The ML functions pass the script file to the MDG package using the
system function [10]. The latter computes the result (MDG graph) and then
writes it in a file “mdghol.ch” . Using the function ReadMdgOutput, the result is
retrieved.

4.1 C onstructing M D G s in HOL

To construct the graph representation of a HOL term we use the function
termToMdg. Well-formedness conditions are first checked using the predicate
WelLformedTerm. It either raises an exception when this is not the case or
begins gathering the information to call the package.

The first step is to determine the sorts of all the sub-terms using the func
tion ToMdgSorts. If a sub-term is of concrete sort Sort, it is declared as “con-
cretesort(Sort,Enum)” , where Enum is the enumeration of Sort. When an ab
stract sort, say alpha, is encountered, then it is declared by “abssort(alpha)” .
For example, if a term A includes a concrete variable of sort bool and an abstract
variable of sort alpha, then ToMdgSorts returns the following list:

[“concsort(bool, [0,1]) , ” abssort(alpha) . ”].

The second step is to declare all the variables, functions and generic constants
used in the term. A variable is declared by “ signal (label, sort)” . A generic con
stant is declared by “gen-const(label,sort)n. When a function is encountered,
both the secondary variables and the function symbol must be declared. The
function symbol is declared as ufunction(f,[sorts],sort)” . sorts are the sorts of
the secondary variables, arguments to the function symbol / . sort is its target
sort.

Thereafter, termToMdg writes the variables order list in the script file and
then calls the function header responsible for retrieving the list of the LHSs
and RHSs of the equations in the term which will be the parameters of the
mdg function. The latter is then called and the result is retrieved using the
readMDGOutput function. Instead of returning the whole graph structure, we
return only its ID which will be used to map the term to its MDG representation.
1 We provide a lifted version of the MDG package with which we are able to call

internal MDG functions.

4.2 Embedding M D G Basic Operators

The MDG operators are embedded, as well, to allow the manipulation of graphs
rather than terms, we show below the basic MDG operators.

- Conj : performs the conjunction of a set of graphs;
- Disj : performs the disjunction of a set of graphs;
- Help (Relational Product) : used for image computation. It takes the con

junction of a collection of MDGs, having pairwise disjoint sets of abstract
primary variables, and, exist entially quantifies with respect to a set of vari
ables, either abstract or concrete, that have primary occurrences in at least
one of the graphs. In addition, it can rename some of the remaining primary
variables according to a renaming substitution;

- PbyS (Pruning By Subsumption) : used to approximate the set difference
operation. Informally, it removes all the paths of a graph P from another
graph Q.

5 Reachability Analysis in HOL

The reachability analysis is embedded using the MDG operators interfaced to
HOL. We show here the different steps to compute the set of the reachable states
of an abstract state machine.

5.1 Computing Next States

Let I, B and R be, respectively, a set of inputs, a set of initial states of a machine
and its transition relation. The ML function ComputeNext representing the set
of next states, computed from B with respect to R , is defined by:

ComputeNext(Gi Gb G r) = RelP(Gi Gb G r Q v)-

where, G j ,G b and G r are the MDG representations for I, B and R , respectively.
Q is the set of input and state variables over which the MDG is quantified, r] is
the renaming substitution. B can be the set of initial states as well as the set of
states already reached by the machine.

5.2 Computing Outputs

The set of outputs corresponding to a set of initial states and inputs, with respect
to an output relation O, is represented by the ML function ComputeOutputs
below, where Go is the MDG representation of O.

ComputeOutputs(Gi Gb Go) = RelP(Gj Gb Go Q)

For every state of the machine, and a set of data inputs, corresponds a set of
output values. These will be used to check an invariant.

5.3 Computing Frontier Set

The frontier set is the set of newly visited states. If V represents the set of states
already visited, Vn = Com,puteNext(Gj V G r) is the set of next states reached
from V. In this case the frontier set is Vn \ V which is represented by the ML
function ComputeFrontier.

ComputeFrontier(Vn V) = PbyS(Vn V).

The frontier set is used to check if all the states reachable by the machine are
already reached. If this is the case (the frontier set is empty), then the reachabil
ity analysis terminates and the set of reachable states is returned. If the frontier
set is not empty, then new states were visited during the last iteration. In this
case, the analysis continues until reaching the fixpoint (set).

5.4 Computing Reachable States

The set of reachable states is the set of all the states of a machine, starting from
an initial state, for a certain set of inputs. For abstract state machines, the state
space can be infinite. Hence, the set of reachable states may not exist2. Using the
solutions proposed in [2], the set of reachable states is computed and represented
by the function, ComputeReachable, defined by3:

ComputeReachable Gr Gb Gr =
K = 0. 5 = G h
loop

K = K + 1
N = ComputeNext Gjk Gb G r
if ComputeFrontier N S = F then return success
Gb = ComputeFrontier N S
S = Disj N S

end loop
end;

ComputeReachable computes the set of reachable states S of a state machine
described by its transition relation, starting from an initial state and for a certain
data input. S is initialized to B (the initial state), and the sets of next-states
are computed until reaching a fixpoint characterized by an empty frontier set.

6 Invariant and Model Checking in HOL

6.1 Invariant Checking

Invariant checking is a direct application of the reachability analysis algorithm.
It consists of checking that a property or an invariant holds on the outputs
2 This is called the non-termination problem which was tackled in [2] using various

heuristics.
3 For the sake of clarity, this is just a simplified version of the algorithm

of a state machine in every reachable state. First, the invariant is checked in
the initial state. This is done by computing the outputs corresponding to that
state and then using the MDG operators to check that these outputs satisfy the
invariant. After that, next-states are computed and for every state reached, the
invariant is checked on the outputs. In a given iteration, if the outputs of the
machine satisfy the invariant, then the procedure continues for the next-state.
If, on the other hand, the invariant does not hold, the analysis terminates and
a failure is reported. A counterexample can be generated to trace the error.
The invariant checking algorithm is implemented in HOL as an ML function
InvariantChecking which takes as arguments:

— T r: the transition relation specified as a list of directed formulae;
— O r : the output relation specified by a directed formula;
— In '- the initial state specified by a directed formula;
— Inputs: the input variables list;
— States: the state variables list;
— NxStates: the next-state variables list corresponding to States.
— Inv: the invariant to be checked specified as a directed formula.

The function InvariantChecking, first, builds the graphs of the transition re
lation, output relation, the initial state and the invariant using the function
termToMdg. Then, generates the input graph. After that, the outputs are com
puted using NewOutputs and then the invariant is checked. If the invariant holds,
the next-state variables are computed using ComputeNext. Checking the frontier
set will cause the termination of the analysis or another iteration.

InvariantChecking T r O r In Inputs States NxStates Inv =
/ / builds the MDG representations
/ / generates the renaming substitution function
K = 0, S = G in , R = C i\
loop

K = K + 1
/ / generates the input graph G jk
Os = ComputeOutputs G q r R G jk
if (PbyS Os G jnv) ^ F return failure
N = ComputeNext G jk R G t r
if ComputeFroiitier N S = F then return success
R = ComputeFroiitier N S
S = Disj N S

end loop
end InvariantChecking;

6.2 M odel Checking

Similarly, MDG temporal operators can be implemented in HOL for model check
ing. In the following we present how the operator A F on a first-order property

Check_AF T r In Inputs States NxStates P =
/ / builds the MDG representations Gt r , G i n , Gp
/ / generates the renaming substitution function
K = 0, £ = F, G = Gi \
/ / £ contains sets of states not satisfying P
loop

Q = ComputeFroiitier G Gp
/ / removes states satisfying P
if Q = F then return success
if C om puteFroiitier £ Q ^ £ then return failure

-- D 1SJ

/\ = K - I
G = ComputeNext G in Q G t r

end loop
end Check AF;

7 M D G as a Decision Procedure

The multiway decision graphs are a canonical representation of the directed for
mulae. Two directed formulae are equivalent if and only if they are represented
by the same graph for a fixed order. This property can be used to prove auto
matically the equivalence of HOL terms or to check that a formula is a tautology
in case it is represented by the MDG true.

7.1 Combinational Equivalence Checking

We provide here a decision procedure that enables us to verify automatically the
equivalence of a certain subset of first-order HOL terms. This is performed using
the ML function EquivCheck.

fun EquivCheck order tl t2 =

let val si = termToMdg order tl

val s2 = termToMdg order t2

in

(s l= s2)
end;

Using EquivCheck we write an oracle that builds a theorem stating the equiva
lence between terms. The theorem is not derived from axioms and inference rules
which will endanger the security provided by the HOL reasoning style. Theo
rems created using the oracle are tagged so that an error can be traced whenever
it occurs. This kind of decision procedures are widely used to introduce some
automation to the theorem provers.

formula P [22] is embedded.

7.2 Tautology Checking

A formula is a tautology if it is represented by the MDG T. This makes the
check very easy for the subset we consider which are the directed formulae. We
use the ML function Tautology.

fun Tautology order t =

let val s = termToMdg order t

in

isTrue s

end;

8 Conclusions and Future Work

In this paper, we proposed an approach that allows certain verification prob
lems, specified in the HOL theorem prover, to be verified totally or in part using
state-exploration algorithms. Our approach consists of an infrastructure of deci
sion diagrams data structure and operators made available in HOL, which will
allow the user to develop his own state-exploration algorithms in the HOL proof
system. The data structure we considered in our work is the multiway decision
graphs (MDG). MDG is an extension to the well-known binary decision diagrams
in that it eliminates the state explosion problem introduced by the datapath.

The MDGs are embedded in HOL as a built-in datatype. Operations over
the MDGs are interfaced to HOL functions allowing the manipulation of graphs
rather then their correspondent HOL terms. Using the embedding of the logic un
derlying the multiway decision graphs in HOL, the verification problem is speci
fied as a set of well-formed directed formulae that can be represented canonically
by well-formed MDGs. This is made possible thanks to the lifted MDG package
that we provided and interfaced to HOL resulting in a platform of functions to
represent terms by their correspondent MDGs and manipulate them.

The platform, we provide, allowed us to develop state-exploration algorithms
inside HOL like the reachability analysis, model checking and the invariant check
ing procedures. The transition and output relations are written as HOL terms.
They are translated to their corresponding MDGs and then reachability analysis
is performed. The state machines we consider are the abstract state machines
which raises the level of abstraction of the problem specification. We also de
veloped decision procedures based on the multiway decision graphs allowing the
equivalence checking and tautology checking of a certain subset of HOL terms
automatically. Finally we illustrated our approach by considering the Island
Tunnel Controller example for which we verified a number of safety properties.

The embedding of the MDGs in HOL opens the way to the development of
a wide range of new verification applications combining the advantages of state-
exploration techniques and theorem proving. There are many opportunities for
further work on this embedding and its use for formal verification. For instance,
MDG canonicity can also be used in HOL for term simplification. In fact, when
built, MDGs are reduced by construction. Retrieving the term represented by

this graph gives a simplification of the original term. The Embedding can be used
for the formal proof of the soundness of the MDG algorithms. A similar work was
done in [4] to verify a SPIN model checking algorithm. Finally, the embedding
can be enhanced by using the LCF style. In this case, an MDG representation for
a HOL term cannot be constructed by using the term ToM dg function, instead, it
is derived from inference rules, corresponding to MDG operators, and the trivial
MDGs representing simple equations. This restricts the scope of soundness to
single operators which are easy to get right [8].

References

1. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A Prag
matic Implementation of Combined Model Checking and Theorem Proving. In
Theorem Proving in Higher-Order Logics, volume 1690 of LNCS, pages 323-340.
Springer-Verlag, 1999.

2. O. Ait Mohamed, X. Song, and E. Cerny. On the Non-termination o f MDG-Based
Abstract State Enumeration. Theoretical Computer Science, 300:161-179, August
2003.

3. R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318, 1992.

4. C.-T. Chou and D. Peled. Verifying a Model-checking Algorithm. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 1055 of LNCS,
pages 241-257. Springer-Verlag, 1996.

5. P. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway Decision
Graphs for Automated Hardware Verification. Formal Methods in System Design,
10(l):7-46, 1997.

6. M. Gordon. Combining Deductive Theorem Proving with Symbolic State Enumer
ation. 21 Years o f Hardware Formal Verification, December 1998. Royal Society
Workshop to mark 21 years o f BCS FACS.

7. M. Gordon. Reachability Programming in HOL98 Using BDDs. In Theorem Prov
ing and Higher Order Logics, volume 1869 of LNCS, pages 179-196. Springer-
Verlag, 2000.

8. M. Gordon. Holbddlib Version 2, Documentation. Technical report, Computer
Laboratory, Cambridge University, U.K., March 2002.

9. M. Gordon and T. F. Melham. Introduction to HOL: A theorem proving environ
ment for higher order logic. Cambridge University Press, 1993.

10. R. Harper. Introduction to Standard ML. School of Computer Science, Carnegie
Mellon University, Pittsburgh, USA, 1993.

11. J. Joyce and C. Seger. The HOL-Voss System: Model-Checking inside a Gen
eral Purpose Theorem-Prover. In Higher Order Logic Theorem Proving and Its
Applications, volume 780 of LNCS, pages 185-198. Springer-Verlag, 1994.

12. C. Kern and M. Greenstreet. Formal Verification in Hardware Design: A Survey.
ACM Transactions on Design Automation o f Electronic Systems, 4:123-193, 1999.

13. S. Kort, S. Tahar, and P. Curzon. Hierarchical Formal Verification Using a Hybrid
Tool. Software Tools for Technology Transfer, 4(3):313-322, May 2003.

14. T. Kropf. Introduction to Formal Hardware Verification. Springer Verlag, 1999.
15. R. P. Kurshan. Formal Verification in a Commercial Setting. In Proc. o f Design

Automation Conference, pages 258-262, Anaheim, California, USA, June 1997.

16. M. McMillan. Symbolic Model Checking. Kluwer, 1993.
17. R. Mizouni. Linking HOL Theorem Proving and MDG Model Checking. Master’s

thesis, Electrical and Computer Engineering Department, Concordia University,
Canada, 2002.

18. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In Automated Deduction, volume 607 of LNCS, pages 748-752. Springer-Verlag,
1992.

19. V. Pisini. Integration o f HOL and MDG for Hardware Verification. Master’s thesis,
Electrical and Computer Engineering Department, Concordia University, Canada,
2000.

20. S. Rajan, N. Shankar, and M. K. Srivas. An Integration of Model Checking with
Automated Proof Checking. In Computer Aided Verification, volume 939 of LNCS,
pages 84-97. Springer-Verlag, 1995.

21. K. Schneider and D. Hoffmann. A HOL Conversion for Translating Linear Time
Temporal Logic to w-automata. In Theorem Proving in Higher Order Logics,
volume 1690 of LNCS, pages 255-272. Springer-Verlag, 1999.

22. Y. Xu. Model Checking for a First-Order Temporal Logic Using Multiway Deci
sion Graphs. PhD thesis, Computer Science Department, University of Montreal,
Canada, 1999.

Formalizing the A M B A High Performance Bus

Malcolm C. Newey

The Australian National University, Canberra, ACT 0200, Australia
Malcolm. NeweyQanu. edu. ail

Abstract. This paper presents work in progress on a project to for
malize the AMBA High Performance Bus (AHB) in higher order logic
with a view to proving properties of the protocol, as a basis for verifying
properties of computing components that might be connected to a bus
and as a foundation for reasoning about SoCs (systems-on-a-chip).
This AMBA bus has been modeled using the specification language, Z [4,
5]. The system that is specified is one that consists of a number of masters
and slaves connected by an AHB according to the protocol described in
the document “AMBA Specification (Rev. 2 .0)” [1],
The focus of this article is to present illustrative extracts from this Z
specification[3] in order to exhibit a structure that arguably makes it a
suitable foundation for the project as a whole.

Although much work has been done on the formalization of processors, the
underlying assumption has usually been that they are directly connected to
memory. In the world of the SoC (System-on-a-Chip), multiple components such
as processors and memories on a chip communicate by means of a shared bus
according to some protocol.

Traditionally, correct interactions on a bus are characterized in natural lan
guage with the help of timing diagrams. The aim of the present project is to
describe the protocol using mathematics.

A commonly used industry standard is the Advanced High-performance Bus
(AHB) flavour of the Advanced Microcontroller Bus Architecture (AMBA), pro
duced by ARM. The standard reference for the AHB[1] is used as the principal
authority for this document but the AMBA FAQ[2] was also consulted. We treat
this FAQ as authoritatively correcting and clarifying the specification.

1 The A M B A High Performance Bus

Figure 1, which gives the standard communications view of a bus architecture,
serves to illustrate that the active components of a typical system are classified
as masters and slaves. Masters are such agents as CPUs and DMA devices; the
typical slave is a memory, which may be on-chip or external.

In such a view, one master will acquire ownership of the bus while a transfer
is completed over (at least)two clock cycles - one for adress and control signals
to be sent and one for data. The AHB protocol overlaps these activities enabling
the fast transmission of much larger blocks of data than can be sent in one atomic

Fig. 1. Typical Bus Architecture User View

transfer. Such pipelining behaviour enables successive transfers to complete in
consecutive clock cycles.

Figure 2, showing a typical trace of bus activity, shows the way that a master
and slave interact to achieve this efficiency.

Fig. 2. Typical Timing Diagram Showing Data Transfer

Signals are carried on a significant number of separate bus lines; those shown
in this timing diagram are the ones directly related to I /O and show three
complete data transfers over five clock cycles. The first of these transfers consists
of the signals with the subscript A, some of which are in the first clock cycle
shown (the address phase) while the others are in the second cycle (the data
phase).

Note that, for any given signal, the value that matters is the stable one at
the end of any clock cycle; signals are sampled on each rising clock pulse.

— The signal value Addr a is the address of data for a transfer being initiated by
the master that owns part of the bus including signal HADDR. This address
is used to identify the slave whose responses will appear on another part of
the bus in the next cycle.

— The signal ControlA is a collection of more basic signals that describe the
transfer here being initiated. For example. HSIZE gives the number of bits
in parallel and HWRITE says whether a read or a write is intended.

— The signal HREADY originates in the slave that was addressed in the most
recent transfer. In the case of the second cycle shown, it indicates that the
slave addressed by Addra has either consumed the signal WDatdA or pro
duced the signal RDatdA, as appropriate.
In the case of the first clock period shown, the origin of the high HREADY
signal is not apparent, but it is a necessary condition for us to interpret this
cycle as the start of a transfer.

— The bus signal RDatdA originates in the slave addressed by Addr a , not the
slave that corresponds to Addr a- Similarly. WDatdA flows from the master
that owned the bus when the transfer commenced.

In the third clock cycle shown in Figure 2 the HREADY signal being low
indicates that the slave addressed by Addrs is pleading for more time to complete
the transfer. This prevents the master given the bus in cycle three from starting
its intended transfer straight away. In the case that the transfer started in cycle
two was a write, that master is obligated to hold the signal W D atas for an extra
cycle.

It is possible, if unlikely, that each of the transfers in Figure 2 was initiated
by a different master. It should be clear that there is multiplexing of the signals
from the various masters and slaves according to some scheme. The simplest,
the multiplexing of address and control signals from a master while a transfer is
getting under way. is shown in Figure 3.

Fig. 3. Multiplexing Address and Control Signals from Masters to the Bus

The A rbiter controls the ownership of the bus allocating it to masters on the
basis of requests, priorities and past history. The diagram shows how the Arbiter
exerts control via the address/control multiplexer. The Arbiter also contributes

several signals to the bus, including one called HMASTER, which identifies, in
any clock cycle, the master owning the bus .

An important concept in the design of the AHB is that of a burst, where a
master gets control of the bus for the duration of a transaction where a larger
block of memory than can be transmitted in one transfer is sent in consecutive
transfers (typically 4, 8 or 16).

When a slave which is part way through a burst decides that it has more
pressing business, it is able to pause the transaction and resume it when ready.
This is referred to as a split and several signals on the bus relate to the splitting
and resumption of bursts.

2 Modeling Basic Types

Since this paper relies on selected extracts from a full Z specification, it will
be incomplete and so the reader should not expect that every item mentioned
will be defined. In particular, the full specification[3] should be consulted for
explanations of the various signals.

2.1 Masters and Slaves

Two sets of objects that are fundamental to the construction and operation of a
system based around an AMBA bus are the sets of masters and slaves,. Of the
16 possible masters one is called Dummy. It is natural to model each of these
sets as arbitrary subsets of {0..15}.

2.2 Basic Signal Values

All physical lines that are in a ‘settled’ state have values that are either HIGH or
L O W . These values are synonyms for 1 and 0, respectively, in both our treatment
and the specification from ARM.

Bit = = { 0,1 }
HIGH = = 1
LOW = = 0

2.3 Numbers vs Bit Sequences

In this specification, many of the objects are coded as sequences of Bits with
the convention that the last element of the sequence holds the least significant
bit of a binary representation of a number. So, for example, the Z sequence
< 1,0,1,1,1 > will be interpreted as the number 23.

The function bits2N maps bit-sequences to their numeric value.

bits2N : seq Bit —> N

bits2N () = 0
V b : Bit; s : seq Bit • bits2N(s (b)) = (2 * bits2N(s) + b)

2.4 The Decode Function

For any particular A MBA bus, the Decoder is a combinatorial circuit that selects
a slave on the basis of the address lines. A crucial feature of the mapping is that
every address in any 1024-byte block must map to the same slave.

decode : Address —► Slave

V a1} a2 : Address • ((bits2N %) div 1024) = ((bits2N a2) div 1024)
=> decode(ai) = decode(a2)

2.5 The Type of Data in Transfers

For any particular AHB bus, the width of each data path is a constant. Its value,
width, must be one of the powers of two between 8 and 1024 bits, inclusive.

The size, in bits, of any transfer is bounded by width and must also be one
of these numbers. It is convenient to have a global constant which is the set of
permissible sizes for single transfers:

width : N
permittedSizes : P N

width e {8,16,32,64,128,256,512,1024}
permittedSizes = [n : {8,16,32,64,128,256,512,1024} | n < width}

2.6 Signals and Signal Groups

The bus is composed of 18 groups of lines (apart from the clock), where each
line carries one bit of information. Their names are the following (except for
HLOCK and HBUSREQ).

Name ::= HRESETn | HADDR | HTRANS | H WRITE
| HSIZE | HBURST \ HP ROT \ II W I)M A
| HSELx | HR D M A \ HREADY \ HRESP
| HBUSREQx | HBUSREQ \ HLOCKx \ HLOCK
j HGRANTx | HMASTER, \ HMASTLOCK \ HSPLITx

The names of signals originating from each master are as follows. The signals
HBUSREQ and HLOCK from each master contribute one bit to the bus signals
HBUSREQx and HLOCKx.

MSNames = = { HADDR, HWDATA, HTRANS, HWRITE,
HSIZE, HBURST, HPROT, HBUSREQ, HLOCK }

Similarly, each slave has signals that carry data that is particular to that
slave. They are multiplexed onto the bus when appropriate.

SSNames = = { HRDATA, HREADY, HRESP, HSPLITx }

One fundamental characteristic of each of these named groups of lines is the
number of bits of the bus, a master or a slave that it occupies. The function
grp Width gives the number of bits associated with any given signal name.

grp Width : Name —► N

grpWidth = { (HRESETn ^ 1), (HADDR ^ 32), (HTRANS ^ 2),
(HWRITE ^ 1), (11 SIZE ^ 3), (HBURST ^ 3),
(HPROT ^ 4), (HWDATA ^ -width), (HSELx ^ # Slave),
(HRDATA ^ width), (HREADY ^ 1), (HRESP ^ 2),
(HBUSREQx h-y ff Master), (HBUSREQ ^ 1),
(.HLOCKx h-y # Master), (HLOCK ^ 1),
(HGRANTx h-y ^Master), (HMASTER ^ 4),
(HMASTLOCK ^ 1), (HSPLITx ^ 16)}

2.7 Signal Maps

Each signal is a bunch of bits and so we model each of them as an object of type
‘sequence of bits’. Consequently, the state of the bus, each master and each slave
is modeled as a mapping from names to such bit sequences.

SignalMap : P(Name -++ seq Bit)

Vs : SignalMap • Vn : dom s • # (s n) = grpWidth(n)

Each of the types MapM, MapS and Bus is a specialization of SignalMap as
appropriate for masters, slaves and the bus itself.

Data W idth The signal HSIZE indicates the number of lines of the data bus
that will be used in the current transfer. The 3-bit value of HSIZE can be decoded
using the following function:

decodeSize : (0 .. 7) —► N

decodeSize = {(0 ^ 8), (1 ^ 16), (2 ^ 32), (3 ^ 64),
(4 ^ 128), (5 ^ 256), (6 ^ 512), (7 ^ 1024)}

3 State-Related Types

3.1 The Cycle Abstraction

In the following schema, the state of all signals at any instant is captured. The
structure of the abstraction reflects the separation of signals between the various
parts of the system. The predicate part expresses the following properties:

1. Arbitration results in exactly one master being granted the bus;
2. Exactly one bit of HSELx will be high;
3. Address and control signals for current master are multiplexed on the bus;

4. Data buses and the HREADY and HRESP signals are multiplexed;
5. The HSPLIT signals are properly multiplexed;
6. Certain signals from the dummy master can be relied on.

__Cycle___
bus : Bus
stateMx : Master —► MapM
stateSx : Slave —► MapS

to : Master . (bus H GRANTx)(16 - to) = HIGH
Vs : Slave • (bus HSELx)(16 - s) = HIGH

<=> (bus(HADDR) i—► s) € decode
let map = = stateMx(bits2N (bus HMASTER)) •

((V nam : {HADDR, HTRANS, HWRITE, HSIZE,
HBURST, HPROT} • (bus nam) = (map nam)) A

(let mast = = bits2N(bus(HMASTER)) •
((bus HLOCKx)(16 - mast) = (map HLOCK)(1) A
(bus HBUSREQx)(16 - mast) = (map HBUSREQ)(1))))

3 m : Master . bus(HWDATA) = stateMx(m)(HWDATA)
V nam : {HRDATA, HREADY, HRESP} •

3 s : Slave • bus(nam) = stateSx(s)(nam)
Vto : Master • (((bus HSPLITx)(16 - to) = HIGH)

(3 s : Slave • stateSx(s)(HSPLITx)(16 - to) = HIGH))
(bus HBUSREQx) (16 - Dummy) = LOW
(bus H LOCKx)(16 - Dummy) = LOW
stateMx(Dummy)(HTRANS) = IDLE

For each component of the system, history is important for constraining
future behaviour. However, that dependence does not involve the relative timing
of the possibly numerous events within the current or past clock cycles. So when
the Cycle abstraction is used as a unit of history it will a snapshot of all signals
at the rising clock pulse.

3.2 The Transfer Abstraction

Transfers consist of two or more consecutive cycles. The first cycle is the one
where a master owns the bus and completes the address phase of the transfer.
The last cycle is where the transfer of data is complete. All the intermediate
cycles in the transfer are wait cycles that arise because the slave delays by
forcing HREADY low.

The predicate part of the schema for the type Transfer, which follows, asserts
consistency of all cycles making up the transfer, not just the first and last.

__Transfer__
cycles : seq Cycle
time : N

if cycles > 1
let trans = = ((cycles l).bus)(HTRANS);

addr = = Uts2N(((cycles l).bus)(HADDR));
size = = decodeSize(bits2N(((cycles l).bus)(HSIZE))) •

(trans € { NON SEQ, SEQ }
A addr mod (size div 8) = 0
A addr div 1024 = (addr + (size div 8) — 1) div 1024
A (Vj : (2 .. if cycles) • ((cycles j).bus)(HRESP) = OKAY)
A ((last cycles).bus)(HREADY) = (HIGH)
A (Vj : (2. . (ifcycles - 1)) •

((cycles j).bus)(HREADY) = (LOW))
A (((cycles l).bus)(HWRITE) = (HIGH)) =>

(V i : (2 .. if cycles) •
((aycles(j)).bus)(HWDATA) = ((cycles 2).bus)(HWDATA)))

3.3 A M B A Transactions

A complete transaction consists either of a single transfer or of some number
of transfers which accomplish the transmission of one block of data in uniform
sized pieces. Details of this breakup of a transaction are given by the HBURST
signal. The first transfer will be tagged NONSEQ and subsequent ones will have
SEQ as the HTRANS signal.

The components of any Transaction object are the sequence of transfers that
belong to it with a flag to indicate completion (or otherwise). The possible values
for this flag are InProgress, Complete, Split and Interrupted.

__Transaction___
xfers : seq Transfer
completion : Completion

ifxfers > 0
let mode = = modeOf (xfers 1) •

(ifxfers = beatUB(mode) => completion = Complete A
ifxfers < beatUB(mode) => completion ^ Complete A
(mode = INCH) completion ^ Interrupted A
addressesOf (xfers) C

addrSeq(addrOf(xfers(1)), sizeOf (xfers(1)), mode))
V t : Transfer \ t € (ranxfers) • xMatches(t, (xfers 1))

Functions appearing without definition in this schema are described thus:

modeOf (t) extracts the burst mode of transfer t (its HBURST value).

— beatUB(m) is a bound on the length of a burst of mode rn.
— addrSeq(A, s, rn) gives the full sequence of transfer addresses starting with

A in a burst of mode rn and transfer width size s bits.
— Two transfers are in relation xMatches if their control signals match.

4 State Specification Schemas

The state of an AMBA bus is characterized by what progress has been made
toward finalizing the current cycle. The physical aspects of state are the values
of signals on the bus, on the masters and on the slaves, but the behaviour of
the bus depends also on the past history of the system. The latter aspects are
modeled in the schema Histories defined below.

4.1 The History Component

The following schema captures the history of the system at the levels of cycles,
transfers and transactions. Note that there is redundancy in that transactions
are all made up of transfers which are made up of cycles.

__Histories__
cycHist: seq Cycle
xferHist : seq Transfer
xactionHist : seq Transaction
partXfer : seq Cycle
partXactions : Master -+> Transaction

3 sc : seq Cycle • (sc partXfer) = cycHist
3 1 : Transfer • partXfer = front(t.cycles)
Vj ,k : dom xferHist • j < k =>

((xferHist j).time) < ((xferHist k).tirne)
V t : Transfer • t € (ran xferHist) O

(V j : (1 .. #(t . cycles)) • cycHist(t.tirne + j — 1) = (t.cycles)(j))
V t : (ran partXactions) •

t.xfers / {) A t. completion € { InProgress, Split }
V rn : dom partXactions • masterOf (((partXactions rn).xfers)(1)) = rn
({ t : ran partXactions | t. completion = InProgress}) < 1
V t : ran xactionHist • t. completion € { Complete, Interrupted}
ran xactionHist fl ran partXactions = 0
ran xactionHist = ran xactionHist U ran partXactions

In the above schema the predicates assert that

The partial transfer, if any, is the tail of the cycle history.
An appropriate next cycle can legally complete partXfer.
The transfer history, xferHist, is properly ordered.

— xferHist is complete and consistent, relative to the cycle history.
— partXactions is well formed.
— Each transaction in xactionHist is either Complete or Interrupted.
— Each transfer in xferHist is in either in xactionHist or in a partXaction.

4.2 The State in General

The schema AMBAState captures system state to extent of its current snapshot
and a complete record of past cycle activity. Since this state schema contains
both aspects, its predicate part adds constraints on possible values of current
signals to that given in the Cycle abstraction. In particular,

— The HWDATA signal is multiplexed from the master that owns the data bus
at that point, not necessarily the current master.

— Several signals that originate in slaves are multiplexed from the slave that
was addressed in the last transfer.

__AM BAState__
Cycle
Histories

partXfer / {) =>
(let lastMast = = bits2N(((partXfer l).bus)(HMASTER));

lastSlav = = decode (((partXfer 1) .bus)(HADDR)) •
(bus(HWDATA) = stateMx(lastMast)(HWDATA) A
bus(HRDATA) = stateSx (lastSlav) (HRDATA) A
bus(HREADY) = stateSx (lastSlav) (HREADY) A
bus(HRESP) = stateSx(lastSlav)(HRESP)))

5 Intracycle Operations

Most atomic events that occur in the system are actions initiated by masters
and slaves updating one or more of the signals for which they are the source.
The more unusual event is initiated asynchronously by the reset controller. An
action by any one of these agents will cause changes to the state of the bus as
specified in the BasicOperation schema given subsequently.

5.1 The O peration A bstraction

Each primitive operation is characterized by identifying the agent (a master,
a slave or the reset controller) and a map which indicates the updates to that
agent’s signals. Primitive operations are identified by their structure as given in
the type OpType below.

The possible values that the agent identifier variable (agld) can take depends
on the sort of that agent. These agent types are distinguished with the type

AgentType ::= Mast | Slav \ Bus

__Op Type___
agTy : AgentType
agld : N
updates : SignalMap

agTy = Mast =4- (agld € Master) A (3 m : MapM • updates C rn)
agTy = Slav => (agld € Slave) A (3 m : MapS • updates C m)
agTy = =4- agld = 0 A updates = { HRESETn i-> (LOW) }

5.2 A pplication o f Basic Operations

Each basic operation, other than a reset, is effected by a master or a slave altering
its own signal map while leaving those of all others the same. Multiplexing and
decoding cause signals from some agents to make it onto the bus thus:

— The Cycle schema (imported through AmbaJstate) takes care of the the
relationship between old and new multiplexed address and control signals
(HADDR, HTRANS, HWRITE, HSIZE, HBURST and HPROT).
It also captures the derivability of HSELx, HSPLITx, HBUSREQx and
HLOCKx from a variety of other signals.

— The invariant of schema AMBA_State specifies how multiplexing of signals
HWDATA, HRDATA, HREADY and HRESP happens.

— The remaining bus signals are specified directly.

__BasicOperation___
AAMBA-State
E Histories
op ? : Op Type

op?.agTy = Mast =4-
(stateSx' = stateSx A bus' (HRESETn) = bus(HRESETn) A
state Mx' = stateMx®

{ op?.agld i—> (stateMx(op?.agld) ® op?.updates) })
op?. agTy = Slav =>

(stateMx' = stateMx A bus' (HRESETn) = bus(HRESETn) A
stateSx' = stateSx®

{ op?.agld i—> (stateSx(op?.agld) ® op?.updates) })
op?.agTy = Bus (bus'(HRESETn) = (LOW) A

stateMx' = stateMx A stateSx' = stateSx)
V nam : { HGRANTx, HMASTER, HMASTLOCK } •

bus'(nam) = bus(nam)

6 End of Cycle Operations

The end of each clock cycle is marked by the rising edge of a clock pulse. All
signals will be steady at that time and for some minimum hold time after the
rising edge. Although no operations that change signals should take place at
that time, our interpretation of the state changes because we deem transfers to
start and/or complete at cycle’s end. Thus we define an operation History Update
which registers in the Histories component of state just what has cumulatively
been accomplished in the system.

There are three matters for History Update to address:

— Transfers that may have completed or been extended;
— Transactions that may be more advanced or may be completed, interrupted

or split.
— Transfers that may have just commenced with their control/address phase.

It makes sense to separate these concerns into three sub-operations which are
carried out sequentially and so we define History Update in terms of three new
schemas which will be defined in subsequent sub-sections:

History Update = = Ac tiveTransfer Update g X act ion Activity g New Transfer

This sequential decomposition requires a minimum of information discovered
in one phase to be transmitted to later phases (apart from that naturally con
tained in the variables of global state). The variable xferlnProgress is an output
of ActiveTransferUpdate and an input to XactionActivity.

6.1 Transfer Continuation and Completion

If there was an incomplete transfer cycle after the last clock pulse then this
transfer may be complete, incomplete are may have been aborted. So there are
four cases for ActiveTransferUpdate to consider; the four cases, handled by four
sub-operation schemas, and combined thus:

ActiveTransferUpdate = = Transfer Continuation V Transfer Completion V
TransferAborted V NoCurrentTransfer

Without considering violations of the AMBA protocol, the following table
gives the precise preconditions for the various cases.

Partial transfer HREADY HRESP Relevant Schema
No Don’t care Don’t care No CurrentTransfer
Yes low Don’t care Transfer Continuation
Yes high OKAY Transfer Completion
Yes high not OKAY TransferAborted

Each of the schemas given in the classify the partial transfer, if any. and give
an output value which is of type XferStatus which is as follows:

XferStatus ::= None | Extending \ Finished | Aborted

A Representative Example - Transfer Continuation

At the end of a cycle a transfer is deemed to be continuing if the slave involved
in the transfer is pleading not ready. This usually indicates an extension of the
transfer by the slave but it also includes the situation where the slave is indicating
first cycle of a two-cycle READY, ERROR or SPLIT response.

__TransferContinuation__
AAMBAState
S Cycle
xferlnProgressl : XferStatus

partXfer ^ {)
bus(HREADY) = [LOW)
^partXfer > 1 A bus(HRESP) ^ OKAY =*

((last partXfer).bus)(HRESP) = OKAY
cycHist' = c y c H i s t (9Cycle)
xferHist' = xferHist
partXfer' = partXfer (0 Cycle)
xactionHist' = xactionHist A partXactions' = partXactions
xferlnProgressl = Extending

6.2 Transaction Continuation and C om pletion

When it comes to updating history to reflect progress (or otherwise) in transac
tion activity there are three broad possibilities - a transaction may be completed
(successfully or not), a transfer may grow larger but still be partial, or there may
be no change to any transaction. In writing the schemas however, it is convenient
to specify X action Activity in terms of ten separate cases, as follows.

In the first table each row starts with the value of the variable xferlnProgress.
The columns labeled HTRANS and HBURST give the values of those signals in
the partial transfer, if any, rather than in the current state,

Xfer Status HTRANS HBURST HRESP Relevant Schema
Extending

None
Finished
Finished
Aborted
Aborted
Aborted

Don’t care
N /A

NONSEQ
NONSEQ

SEQ
Don’t care
Don’t care

Don’t care
N /A

SINGLE
not SINGLE
not SINGLE
Don’t care
Don’t care

OKAY
OKAY
OKAY
OKAY
SPLIT

RETRY
ERROR

MidTransfer
Busldle

SingleShot
First Of Burst

SplitBurst
InterruptedBurst
InterruptedBurst

The following table distinguishes between the various remaining cases; in
each of them the variable partXfer contains a completed transfer . The first row
corresponds to the case that the burst is continuing while other rows are for the
several ways in which that completed transfer could be the last in a burst.

HTRANS Last type This type New master Relevant Schema
SEQ, BUSY
Don’t care

NONSEQ, IDLE
NONSEQ, IDLE

Don’t care

not SINGLE
INCR
INCR

not INCR
not INCR

not SINGLE
Don’t care
Don’t care
Don’t care
Don’t care

No
Yes
No

Don’t care
Yes

Burst Continues
IncrBurstDone
IncrBurstDone
BurstComplete
Free mp tedBurst

A n Exam ple - The schema MidTransfer

In this case, the variable xferlnProgress would have been set to Extending
by the previous history update operation Transfer Continuation and so there is
nothing to do.

__Mid Transfer__
E A MBAState
xferlnProgress? : XferStatus

xferlnProgress? = Extending

A Bigger Exam ple - The Schema SingleShot

In the case that a transfer just completed was of burst mode SINGLE, this
constitutes a complete transaction consisting of that one transfer. It is not pos
sible that there is a partial transfer for the same master, since it would have
been completed or aborted on a previous cycle.

__SingleShot__
AAMBA-State
E Cycle
xferlnProgress? : XferStatus
to : Master-
new : Transaction

xferlnProgress? = Finished A bus(HRESP) = OKAY
to = bits2N(((partXfer l).bus){HMASTER))
m qL dom partXactions
((partXfer l).bus)(HTRANS) = NONSEQ
((partXfer 1).bus)(HBURST) = SINGLE
new.xfers = {partXfer)
new .completion = Complete
cycHist' = cycHist A xferHist' = xferHist
partXfer' = {)
xactionHist' = xactionHist(new)
partXactions' = partXactions

6.3 Transfer Initiation

The schema New Transfer updates history according to whether the control sig
nals indicate that a new transfer was started in the cycle just completed (or not).
Each of these two possibilities is captured by a schema and so New Transfer is
defined thus:

NewTransfer = = Transferlnitiation V NoNew Transfer

The following table shows necessary conditions for each of the following two
schemas to be applicable.

HREADY HTRANS partXfer Relevant Schema
LOW
HIGH
HIGH
HIGH
HIGH

Don’t care
SEQ, NONSEQ
SEQ, NONSEQ

BUSY, IDLE
BUSY, IDLE

Don’t care
empty

nonempty
empty

nonempty

NoNew Transfer
Trans fe riniti at ion
NoNew Transfer
NoNew Transfer
Impossible

When a new transfer is initiated, the signal HTRANS having value SEQ
occurs exactly when the new transfer will augment an existing partial transaction
for the current master. In such a case the control and address signals must be
consistent with this partial transaction.

__Transferlnitiation___
AAMBA-State
S Cycle
rn : Master
trans : { SEQ. NONSEQ }
new : Transfer

trans = bus(HTRANS)
rn = bus(HMASTER)
partXfer = ()
bus(HREADY) = HIGH
trans = SEQ rn € (dom partXactions)
partXfer' = {9 Cycle)
(new.cycles) = partXfer'
trans = SEQ => xMatches(new, (partXactions m)(l))
cycHist' = cycHist
xferHist' = xferHist
xactionHist' = xactionHist
partXactions' = partXactions

1 The Composite Cycle Operation

Given above are schemas for all aspects of what can happen within one cycle.
The following schema. CornpleteCycle specifies what happens, over a full clock
cycle when a sequence of basic operations occurs.

CompleteCyle = = Arbitration § Operationsequence^ History Update
V ResetCycle

Space limitations in the present paper preclude a discussion of the operation
of the arbiter or what happens in a clock cycle where a reset occurs.

8 Acknowledgements

The author is grateful for the support of the Computer Lab at Cambridge Univer
sity where this work was started and wishes to thank Mike Gordon for discussions
that gave rise to this work.

9 Conclusion

Although the approach of modeling an AMBA bus using Z was taken to get
the project of the ground quickly, it has proved to be a fortunate decision. The
obvious alternative was to formalize AHB directly in higher order logic using
HOL since theorem proving in that system was definitely on the agenda. There
are two reasons for satisfaction with postponing HOL activity.

— The AMBA buses turn out to be quite complicated to understand in detail.
The Z spec, is 30 pages of which fully half is mathematics. Because of the
complexity, the development process saw the document go through seven
versions as various ways of looking at the problem were tried. Had the same
development been done in HOL (or any similar system) lots of time would
surely have been wasted proving theorems associated with the dead ends.

— Having a formal specification in Z makes the audience of possible readers
much wider than if it was presented as a proof script for a theorem prover.
Of course, having parallel definitions in two formal systems begs the question
of verifying consistency. However, this question has been asked before and
so we need to search for possible answers for the present situation.

References

1. ARM Limited: AMBA Specification (Rev. 2.0). ARM Limited, IIII-0011A, May
1999. h t tp : / / www . arm. com/armtech/AMBA_Spec?OpenDocument.

2. ARM Limited: AMBA FAQ. ARM Limited, Last updated 23 Jan. 2001.
h ttp : / / www . arm. com/support/amba?OpenDocument.

3. M. C. Newey: A Z Specification of the AMBA High Performance Bus. Draft version,
June 2004. http://cs.anu.edu.au/Malcolm.Kewey/AMBA/AHB.v7.pdf

4. J. Woodcock and J. Davies: Using Z. (ISBN 0-13-948472-8). Prentice Hall Interna
tional Series, 1996.
Also h ttp : / / www. u sin gz . com /.

5. J.M. Spivey: The Z Notation - A Reference Manual. Prentice Hall International
Series, 2nd edition, 1992.
Also h ttp : / / sp iv ey . o r i e l . o x . a c . uk /~m ike/zrm /.

http://www.arm.com/armtech/AMBA_Spec?OpenDocument
http://www.arm.com/support/amba?OpenDocument
http://cs.anu.edu.au/Malcolm.Kewey/AMBA/AHB.v7.pdf

Implementing the Calculus o f Inductive
Constructions in the MetaPRL framework

Natalia Novak and Yegor Bryukliov

Graduate Center, City University of New York
365 Fifth Avenue, New York, NY 10016

nnovakSgc. cuny. edu
ybryukhovQgc. cuny. edu

Abstract. The Calculus of Inductive Constructions is an underlying
logic of the Coq proof assistant - a widely used mature proof assistant.
In this paper we present our work on implementing the Calculus of Induc
tive Constructions in the MetaPRL logical framework. Rules from the Coq
reference manual have quite unrestricted format so we have to make cer
tain design decisions in order to express those rules in the plain Gentzen
style supported by MetaPRL. The most complicated case-analysis and
fixpoint rules have yet to be implemented. There is a working implemen
tation with rudimentary proof automation; the toy example of inductive
definition (parameterized lists) is type-checked.

1 Introduction

MetaPRL [5,7] is a relatively young logical framework from the PRL family [2]
originated at Cornell University

Among logical theories already defined in MetaPRL there are

— NuPRL-like Computational Type Theory CTT (based on Martin-Lof’s Intu-
itionistic Type Theory);

— the constructive set theory CZF, based on Aczel’s axiomatization;
— the First Order Logic.

MetaPRL was designed to address scalability and efficiency issues of NuPRL;
as a result of these efforts CTT in MetaPRL is two decimal orders of magnitude
faster than in NuPRL [6].

The Coq proof assistant [8] is a widely used mature logical system. Its
underlying logic is the Calculus of Inductive Constructions (CIC) [8,3,4,10,1],
CIC is a rather sophisticated and powerful system. Implementing CIC in Meta
PRL is the natural next step in developing the latter. It would be a good test
for MetaPRL’s universality and a challenge for a fast MetaPRL proof engine. It
could help MetaPRL to import Coq’s vast formal libraries.

In this paper we discuss our pilot implementation of CIC in the MetaPRL
logical framework. We have a working code (rules, rewrites and tactics) that im
plements lambda calculus and inductive definitions. Implementation of inductive

2 Natalia Novak and Yegor Bryukhov

definitions is not complete. We implemented rule about correctness of an induc
tive definition, typechecking of inductive types and constructors. Case-analysis
and fixpoint are not supported yet.

2 MetaPRL meta-language

A brief syntax description of MetaPRL will give a better understanding of im
plementation problems and their solutions further in the article. Terms have the
following syntax:

term ::= operator { bterms }

where the operator represents the name of a term and bterms are possibly bound
terms.

Bound terms have the following syntax:

bterm ::= term | vars.term

For bound term v\,. . . , vn.t variables v i , , vn are bound in t. Such binding is
the part of signature (arity) of the outer operator. For example, \/x : T.P(x) can
be expressed as forall{T;a;.F[a;]}, where forall has arity (0,1) - no bindings in the
first subterm and one binding in the second subterm.

Variables are special terms treated specifically by the system. There are two
types of variables: first-order variables represent variables of the object theory.,
second-order variables (meta-level variables) represent terms with substitutions.

A theory is defined by its inference rules and computational equivalences
between terms. The syntax of an inference rule is

rule name [params] : inference

where name is the name of the rule, params are extra parameters passed to the
inference rule (optional) and inference is a valid inference in the defined logic.
Inference is declared in the following form:

inference ::= term | term —> inference

Inference rules can be derived from previous rules or they can be defined as a
primitive axioms of the theory.

Rewrites can be used to establish computational and/or definitial equality
between certain terms. Rewrites are declared as follows:

rewrite name [params] : [conditions] redex contractum

where name is a name, params are extra variables and terms needed in rewrite
and if the rewrite is conditional then the condition is stated in conditions. Rewrite
replaces redex with contractum in any context. Just like rules rewrites can be
primitive or derived. Rewrites and inference rules are logical inferences of Meta
PRL.

Title Suppressed Due to Excessive Length 3

Sequent schema language [9] is used for specifying new inference rules in a
theory. The extension of the theory with sequents is conservative and derived
rules can be used as primitive axioms [9]. The sequent syntax is:

sequent [name] {H i ; . . . ; / /„ h C}

where name is a name of a sequent (optional), which can be used to assign dif
ferent semantics to differently named sequents. Each of Hi; . . . ; H n is either a
variable declaration (hypothesis) or a sequent context, and C is a conclusion.
Contexts are meta-variables that are used as placeholders for sequences of hy
potheses (again variable declarations and contexts). A variable declaration x : T
introduces a variable x bound in the rest of the sequent.

One can think of sequents as a special kind of terms with flexible arity, where
name is an analogue of operator and “sequent’' indicates that this is a special
kind of term (with flexible arity). It is more convenient to look at sequents in
this perspective for the rest of the article.

There is a discipline of specifying permitted dependencies of a context or a
second-order variable on all contexts and declarations from the left of it. We say
that a context F (a second order variable A) can depend on variable declaration
x : T if x is allowed to occur in F (in A). We indicate it by F[x] and A[x\. If
variable declared before F (before A) is not listed in brackets it is interpreted
as prohibition of free occur

We say that a context A (a second order variable A) can depend on a context
r if it is allowed for variables potentially declared in F to occur freely in A (in
A). We indicate it by and T{p}- If a context F declared before A (before
A) and F is not listed in curly brackets after A (after A) it is interpreted as
prohibition of occur potentially declared in F to occur freely in A (in A). If curly
brackets are not used at all it is interpreted as a dependency on all preceding
contexts.

Sequents are legitimate terms and can be used wherever regular terms can be
used. In particular nested sequents (when conclusion is again a sequent) allows
to separate different kinds of contexts from each other so they won’t mix:

sequent{.Ta h sequent { I); ~ £ ‘}}

can be thought as Fa \Fb C where “|” is a marker used to enforce some
structure in antecedent pattern (to separate Fa and Fb)-

3 A brief description of CIC

CIC is based on a typed lambda calculus. Without inductive definitions it ’s a sys
tem AP uj (or AC) from Barendergt’s cube. There is no syntactical differentiation
between types and objects, they are just terms. Terms are built from variables,
global names, constructors, abstraction, application, product and “let-in” ex
pressions. Each term should have a type, types of types are constants called
sorts. There are two basic sorts Set and Prop and a cumulative hierarchy of

4 Natalia Novak and Yegor Bryukhov

higher sorts Type(O), T y p e(l),. . . all containing the basic sorts. Intuitively Prop
is a type of all propositions and Set is a type of specifications (of programs) and
usual types (integers, booleans, lists, etc).

We based our work on the system of rules presented in the chapter 4 “Calculus
of Inductive Constructions” of The Coq Proof Assistant Reference Manual [8].
Although CIC is formulated in Gentzen style, it’s not a usual plain Gentzen
style system. Each CIC rule is explicitly parameterized with environment and
can explicitly change it. Environment contains declarations of global constants
and global assumptions. Such a non standard format is chosen because of in
ductive definitions - once inductive definition is verified to be correct, all types
and constructors it defines are (automatically) added to the environment. Al
ternatively one can carry the whole inductive definition all over the proof as a
term. The latter approach is in original papers [4,10] about inductive definitions
for the Calculus of Constructions; it is (at least) easier to express in the plain
Gentzen style. For this reason we use the latter approach.

4 Implementation problems and their solutions

Coq’s implementation of CIC operates with the notion of environment (or to be
more precise global environment). It is an ordered list of declarations of global
names, such as names of new operators and types. Of course MetaPRL maintains
something similar internally but it is not available for the direct control of the
user. It also seems that explicit global environment was introduced primarily for
efficiency reason - to mention inductive definitions only once and later only refer
to them. We prefer the global environment. So we modified all rules not to use
the global environment explicitly.

There is also a notion of context (or more precisely local context) where the
names of variables are declared. Contexts are native entities of the MetaPRL
meta-language so we are fine here.

There are two official kinds of judgments in CIC:

- E[E) b t : T means that the term t is well-typed and has type T in the
environment E and context E

- WJr(E)[E] means that the environment E is well-formed and the context E
is a valid context in this environment

But in the actual rules we find one more kind of judgement:

- D € E

where D is either inductive definition lnd(.T) [/>] { / / := Ec} or constant dec
laration c : T and E is an environment. It means that E is well-formed and
contains D (or if D € E is the conclusion of the rule, I) is added to E).

Title Suppressed Due to Excessive Length 5

4.1 W J- - j virigemei it

More traditional formulation of calculus of constructions [1] does not use WJ--
judgement:

h Prop : Type(i) h Set : Type(i) h Type(i) : Type(j) axioms, i < j

F h A : s , F - A : I! F h C : s . ,
start, x £ I ------ - ------ — — ------------ weakening, x £ I

F ; x : A h x : A ' ̂ F ; x : C h A : B

The problem is that if you want to pull some declaration from the middle of an
antecedent to the succedent F; x : A; A h x : A you need to type-check A and
whole A using the weakening rule. This is not practical and not desirable if you
want to prove something like F; x : A; A h x : A about arbitrary A.

Coq has the rule

WT(E) [F ; x : T;A[x} }
E\r ; x : T: A\x\ } h x : T

(Var)

but then you can hardly prove something like E[F\ h t : T for t and T not
depending on F without assuming WJ-(E)[F}. So this kind of assumption would
precede any theorem.

We decided to use the following set of rules:

r h Prop : Type(i) F h Set : Type(i) F h Type(i) : Type(j) (axioms, i < j)

F - A h T - . s
F; x : T; A h x : T

F - A h A - . B F - A h C - . s
r - x : C; A h A : B

(Var)

(Weak)

So unlike rules in [1] we allow to insert new declarations in the middle of
hypotheses list. We also allow nonsense in hypotheses (because of our choice of
axioms) but it seems alright - falsum derives anything.

4.2 Lam bda Calculus

Implementation of the lambda part of CIC is pretty straightforward, after we
settled with treating of WJ- and don’t tell anything about environment E.

We didn’t implement “let-in” construction and definition x := t : T because
first of all they seem redundant. Secondly, the majority of the rules do not
distinguish definition x := t : T and variable declaration x : T , so for now we
decided not to complicate our implementation with such a polymorphism.

6 Natalia Novak and Yegor Bryukhov

4.3 In d u ctive D efin ition s

Inductive definitions allow us to introduce new types and constructors of these
types. ln d (P)[Ip](I/ := Fc) is a formal representation of an inductive definition
valid in context F with parameters Fp, a context of definitions Fj and a context
of constructors F c . Fj actually contains types defined by the inductive definition.

E xam ple Parameterized lists is defined as follows:

lnd()[A: Set](List : Set := nil : List, cons : A —> List —> List)

List is a new inductive type, nil (an empty list) and cons (a concatenation of
an element and a list) are the constructors of type List; A is a parameter of
type Set. List A is a type of lists with elements of type A.

Since Ind has contexts as parameters it has to have flexible arity. As it was
mentioned, in MetaPRL the only construct with flexible arity is sequent term.
But we should not simply write F ; Fp; Fj; Fc b •, because there is no way to tell
later which hypotheses are from context F, which hypotheses are from context
Fp, etc. Of course we can reserve special terms to separate those contexts but
MetaPRL allows nested sequents so we can write:

sequent} F b sequ en t} Fr b sequent} Ft b sequent} F(b A } } } }

because we use nested sequents all over the place we label all sequents generously:

s e q u e n t {r b
sequent [IndParams]{ I p b

seq u en t[IndTypes]{J/ b
sequ en t[IndConstrs]{Fc b A } } } }

We do not label the outermost sequent because F really plays role of hy
potheses so outermost sequent is really logical, whereas all other sequents here
are merely placeholders with an arbitrary arity. Using display forms we can easily
give it a “traditional’' format

l n d (r) [/>](/> := FC)A
or

ln d (r)[/>](/> := Fc) b A
or

r b Ind[/>](/> := FC)A

which we will use for the rest of the paper. Here A is the actual meaning of
the term lnd [Ip](I/ := Fc)A but A can refer to the inductive definition it is
wrapped in. Note that due to the nesting, variables declared in an outer sequent’s
antecedent are bound in all inner sequents but that’s exactly what we want.

Title Suppressed Due to Excessive Length 7

Types of inductive types and constructors are described by the following two
rules. For the rest of the paper we assume that Fp is [pi : Pi ; . . . ;pr : Pr), Fj is
[h : A i ; . . . ; I k : A k], and Fc is [c-i : Ct ; . . . ; cn : C'n).

lnd(r)[J>](Jj := Fc) € E . _
(Ij : (p1 : P 1) . . . (p r : P r)Aj) e E (J ~ •" j

______________ lnd(r)[J>](Jj := Fc) € E______________ ,, _ ,
(c-t : (pi : P i) . . . (p r : l ’r) (' , { ! , , (I j p i . . -_Pr)}j= 1 ...fc) e E 1 " '

here (x : S)T is a dependent product type (or dependent function type) and
it associates to the right.

Aside from giving certain types to inductive types and constructors these
rules say that if an inductive definition was given all types and constructors
from it are injected in the environment (thus becoming accessible for the later
use).

Of course we have to give some explicit meaning for all “. . in those rules and
for “massive’' simultaneous substitution Ij / (I jpi .. ,pr). Again we use sequents
to express something with flexible arity.

E xam ple We define (xi : T i) . . . (x n : Tn)S using two rewrites over sequent
term sequ en t[longProduct]{:ci : T i ; . . . ; x n : Tn b S}. For readability we
will write longProduct{:ci : Tj ; . . . ; xn : Tn b S} :

longProduct{ b S} <— ► S base case, n = 0
longProduct{r;x : T S} <— ► longProduct{r b (x : T)S} rec. step

on each iteration rightmost declaration x : T is taken from the context F
and used to form a function type (x : T)S to the result S of the previous
iteration.

For the latter rule we need to give definitions of massive application, prod
uct and substitution simultaneously because all bindings in the rule have to be
preserved correctly. It unfolds to 8 rewrites that act as one recursive function
on contexts (basically base case and recursive step for each operation which is 6
already plus some glue).

The next rule tells us if inductive definition is correct.

(E[F;Fp] b Aj : S j)j= 1 k (E[F; FP; F^ b C* :
WT{E-, Ind (r)[/>](/ j := FC))[F}

providing the following side conditions hold:

— k > 0, Tj,a are different names for j = 1 . . . k and i = 1 . . . n
— for j = 1 . . . k we have Aj is an arity of sort Sj and Ij ^ F U E
— for i = 1 . . . n we have Ci is a type of constructor of TPi which satisfies the

positivity condition for PL.. . Tk and c* ^ F U E

8 Natalia Novak and Yegor Bryukhov

As you can see this rule has a few side conditions. We need to formalize those
side conditions via rules and/or rewrites. Side conditions of this rule operate with
notions:

— Aj is an arity of sort Sj
— C'i is a type of constructor of IPi
— Ci satisfies the positivity condition for a constant X
— constant X occurs strictly positively in T

Exam ple The constant X occurs strictly positively in T in the following cases:
— X doesn’t occur in T
— T converts to (X t i .. . tn) and X does not occur in any of ti
— T converts to (x : U)V and X does not occur in type U but occurs

strictly positively in type V

actually there is a fourth case but it is too complicated for the discussion.
And the formalization of this definition in MetaPRL looks like this:

(base case)
F ;x : T ; A h strictly_pos{:c; S}

here x does not occur freely in S because according to MetaPRL syntax we would
have to say S[x] in order to allow free occur

F; x : T; A h strictly_pos{:c; appContextfZ1 h a;}} ('PP ' ' ' ' ’)

here again x does not occur freely in E because according to MetaPRL syntax
we would have to say S[x\ in order to allow free occur

r ; x : T\ A; y : U h strictly-posix; V\y\ ,
(function case)

F ;x :T ; A h strictly_pos{:c; y :U —► V[y; ;c]}
again x does not occur freely in U.

Because we do not use W.F-judgement we need some special treatment for
the conclusion of the last rule. We use another judgement

r h indWF[rF](rj := rc)
which sole purpose is to claim correctness of the inductive definition.

As it was said we do not add types and constructors from inductive definitions
to the global environment hence we carry whole inductive definitions everywhere
we use it.
E xam ple Using inductive definition of parameterized lists we say:

List := lnd[A Set (List Set :== nil List; cons A ■+ List -■+ List) List
nil := lnd[A Set (List Set :== nil List; cons A ■+ List -■+ List)nil

cons := lnd[A Set (List Set :== nil List; cons A -■+ List -■+ List)cons

To support this approach our implementation has three rewrites:

Ind[!>](!/ := Fc)t{\ t

Title Suppressed Due to Excessive Length 9

lnd [Jp](J/ := Fq ; x : T;Ac)t[x] lnd [Jp](J/ := Fq ; x : T\Aq)
<[lnd[Jp](J/ := Fq] x : T; A q)x]

Ind[/>](//; x : T ; Ai := Fc[x])t[x] <-» Ind [/>](//; x : T; Ai := Fc[x})
<[lnd[Jp](J/; x : T; A j := Fc[x])x]

The first rewrite says that if term t under inductive definition does not really
depend on it, we can get rid of inductive definition and use just t. Second and
third rewrite say that any occurrence of inductive type or constructor (under
inductive definition) can be wrapped additionally with one more layer of that
inductive definition. Having in mind that rewrites are bidirectional we can prove
such trivial facts as:

List € Set —> Set
nil € (A : Set)(ListA)

cons € (A : Set) (A —> List A —> List A)

Up to this point we were describing actually working implementation. It
includes all the necessary rules, rewrites and tactics for rudimentary proof au
tomation. The example of parameterized lists is proved correct and simple facts
given above are proved. The implementation is available for download under
GPL license from the MetaPRL CVS server
http: / / cvs.metaprl.org: 12000/cvsweb/metaprT/theories/cic/.

4.4 Implementation of Cases and Fixpoint

Besides defining inductive types, establishing their sorts and types of construc
tors one needs means for case analysis of such types and recursion over inductive
types. In CIC (Coq) there are two separate operations - case analysis and re
cursion (fixpoint) each accompanied with a certain number of rules governing
it.

Unfortunately we again face the problem of formalizing side conditions. Con
sider an inductive definition with several mutually defined types. The case anal
ysis rule has to collect all constructors for one of those types from the list of
all constructors of that inductive definition. This was the place where we’ve got
stuck. Although the above condition seems expressible as a collection of rules
we don’t know any elegant (and efficient) approach. So we decided there is no
point in formalizing case analysis and fixpoint rules if it would be too slow and
no competitor to Coq.

We do consider an alternative approach. It’s possible to wrap each rule in a
tactic and implement too complicated side conditions in the tactic. Such tactics
will check too intricate syntactical conditions and pre-compute parameters for
rules (e.g. extract all appropriate constructors for case analysis rule). Those
tactics should be considered as a part of the trusted core but we will get much
better efficiency. Such an implementation would be no less reliable than Coq

http://cvs.metaprl.org:12000/cvsweb/metaprT/theories/cic/

10 Natalia Novak and Yegor Bryukhov

because (as far as we understand) in Coq this logic is also hard-coded and not
explicitly written as a system of rules.

5 Future work

Presently we are at the crossroad of several treatments for the case-analysis and
fixpoint rules, which are:

— Find a way to represent side conditions of those rules as rules and rewrites.
This will most likely lead to a significant drop in the speed comparing with
Coq but MetaPRL trusted core won’t be extended.

— Wrap each rule in a tactic and implement too complicated side conditions
in the tactic. This would probably boost the performance. But such tactics
would actually extend MetaPRL trusted core.

— Find a formal generic notation that would allow to implement case-analysis
and fixpoint rules nicely. If successful this might be a good tradeoff between
performance and extension of the trusted core. And we would got an extra
bonus - improve the expressiveness of the MetaPRL meta-language.

After the decision is made the rest of the CIC core and basic proof automation
will be implemented. Then we will benchmark our implementation against Coq.
If successful, more steps towards compatibility with the existing Coq-libraries
will be made. The ultimate goal is to support import or direct access to Coq
library files.

References

1. Henk P. Barendregt. Handbook of Logic in Computer' Science, volume 2, chapter
Lambda Calculi with Types, pages 118-310. Oxford University Press, 1992.

2. Robert L. Constable, Stuart F. Allen, II. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knobloek, N. P. Mendler, P. Panan-
gaden, James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the
N uPRL Proof Development System. Prentice-Hall, NJ, 1986.

3. Thierry Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76:95-120, 1988.

4. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types, pre
liminary version. In COLOG ’88, International Conference on Computer Logic,
volume 417 of Lecture Notes in Computer Science, pages 50-66. Springer, Berlin,
1990.

5. Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay,
Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz,
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. Meta
PRL — A modular logical environment. In David Basin and Burkhart Wolff,
editors, Proceedings of the 16th International Conference on Theorem Proving in
Higher Order Logics (TPIIOLs 2003), volume 2758 of Lecture Notes in Computer
Science, pages 287-303. Springer-Verlag, 2003.

Title Suppressed Due to Excessive Length 11

6. Jason J. Hickey and Aleksey Nogin. Fast tactic-based theorem proving. In J. Har
rison and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th'
International Conference, TPIIOLs 2000, volume 1869 of Lecture Notes in Com
puter Science, pages 252-266. Springer-Verlag, 2000.

7. Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page, http :
/ /m etaprl. org /.

8. INRIA. The Coq Proof Assistant Reference Manual, 2003.
9. Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Victor A.

Carreno, Cezar A. Munoz, and Sophiene Tahar, editors, Proceedings of the 15th'
International Conference on Theorem Proving in Higher Order Logics (TPIIOLs
2002), volume 2410 of Lecture Notes in Computer Science, pages 281-297. Springer-
Verlag, 2002.

10. Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and prop
erties. In J. F. Groote M. Bezem, editor, Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science. Springer-Verlag, 1993.

Towards Verified Virtual Memory in L4

Gerwin Klein and Harvey Tuch

1 University of New South Wales, Sydney 2052, Australia
2 National ICT Australia*, Sydney, Australia
{gerwin. klein I harvey. tmchJ-Qnicta. com. am

Abstract. We report on the initial stage of an on-going verification
project: the formalisation and verification of the L4 p-kernel. We describe
an abstract model of the virtual memory subsystem in L4, prove safety
properties about this model, and describe refinement of the abstract
model towards the implementation of L4. All formalisations and proofs
have been carried out in the theorem prover Isabelle.

1 Introduction

L4 is a second generation microkernel based on the principles of minimality, flex
ibility, and efficiency [10]. It provides the traditional advantages of the micro
kernel approach to system structure, namely improved reliability and flexibility,
while overcoming the performance limitations of the previous generation of mi
crokernels. With implementation sizes in the order of 10,000 lines of C + + and
assembler code it is about an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux.

The operating system (OS) is clearly one of the most fundamental com
ponents of non-trivial systems. The correctness and reliability of the system
critically depends on the OS. In terms of security, the OS is part of the trusted
computing base, that is, the hardware and software necessary for the enforcement
of a system’s security policy. It has been repeatedly demonstrated that current
operating systems fail at these requirements of correctness, reliability, and secu
rity. Microkernels address this problem by applying the principles of minimality
and least privilege to operating system architecture. However, the success of this
approach is still predicated on the microkernel being designed and implemented
correctly. We can address this by formally modelling and verifying it.

L4 has a design that is not only geared towards flexibility and reliability,
but is of a size which makes formalisation and verification feasible. Compared
to other operating system kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still considered a very large and
complex system. Our methodology for solving this verification problem is shown
in Fig. 1. It is a classic refinement strategy. We start out from an abstract model
of the kernel that is phrased in terms of user concepts as they are explained in

* National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council

Fig. 1. Overview

the L4 reference manual [1], This is the level at which most of the safety and
security theorems will be shown. We then formally refine this abstract model
in multiple property preserving steps towards the implementation of L4. The
last step consists of verifying that the C + + and assembler source code of the
kernel correctly implements the most concrete refinement level. At the end of
this process, we will have shown that the kernel source code satisfies the safety
and security properties we have proved about the abstract model.

To keep complexity and time manageable, we have decided to take a thin
vertical slice out of this refinement process and to test the methodology on
one non-trivial subsystem of the kernel initially. This will not give hard safety
guarantees about the full system, but it will increase confidence in the imple
mentation and improve understanding of the target subsystem. The goal is to
move through the full process quickly and to uncover problems in the interaction
of refinement layers and the different formalisms utilised.

In this paper we report on first experiences with this project. L4 provides
three main abstractions: threads, address spaces, and inter-process communica
tion (IPC). We have chosen to start with address spaces. This is supported by
the virtual memory subsystem of the kernel and is fundamental for implementing
separation and security policies on top of L4. We have built an abstract model
of address spaces and we show a first refinement of it.

One of the central questions in any verification project is: When exactly is
the specification of the system correct? What is the system supposed to do? In
this case we have taken the L4 X.2 API description as the main reference [1] and
use the L4Ka::Pistachio [8] implementation on the ARM architecture to resolve
ambiguities and address implementation issues, in addition to discussions with
the developers on the pistachio-core mailing list.

As we are mainly trying to test the methodology, we are making some sim
plifying assumptions in the formalisation. We are also not planning to verify the
current implementation of L4Ka::Pistachio. On the contrary, it is a goal and ex
pected outcome of this project that we clarify and simplify the implementation.

If verification makes it necessary, even a complete reimplementation of the L4
X.2 API is possible.

Earlier work on operating system kernel formalisation and verification in
cludes PSOS [11] and UCLA Secure Unix [15]. The focus of this work was on
capability-based security kernels, allowing security policies such as multi-level
security to be enforced. These efforts were hampered by the lack of mechanisa
tion and appropriate tools available at the time and so while the designs were
formalised, the full verification proofs were not practical. Later work, such as
KIT [3], describes verification of properties such as process isolation to source
or object level but with kernels providing far simpler and less general abstrac
tions than modern microkernels. There exists some work in the literature on
the modelling of microkernels at the abstract level with varying degrees of com
pleteness. Bevier and Smith [4] specify legal Mach states and describe Mach
system calls using temporal logic. Shapiro and Weber [13] give an operational
semantics for EROS and prove a confinement security policy. Our work differs
in that we plan to formally relate our model to the implementation. Some case
studies [7,5,14] appear in the literature in which the IPC and scheduling sub
systems of microkernels have been described in PROMELA and verified with
the SPIN model checker. These abstractions were not necessarily sound, having
been manually constructed from the implementations, and so while useful for
discovering concurrency bugs do not provide guarantees of correctness. Finally,
the VFiasco project, working with the Fiasco implementation of L4, has pub
lished exploratory work on the issues involved in C + + verification at the source
level [9].

After introducing our notation in the following section, we first present an
abstract conceptual model of virtual memory in L4 in section 3 and refine it
towards an implementation in section 4.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types with their primitive operations.

The space of total functions is denoted by =>. Type variables are written 'a,
'b, etc. The notation t:: r means that HOL term t has HOL type r.

datatype 'a option = None | Some 'a

adjoins a new element None to a type 'a. For succinctness we write [aj instead
of Some a.

Function update is written f (x := y) where / :: 'a => 'b, x :: 'a and y :: 'b.
Partial functions are modelled as functions of type 'a => 'b option, where

None represents undefinedness and / x = [y\ means x is mapped to y. We call
such functions maps, and abbreviate f (x := [y \) to f (x >->■ y). The map Aa;. None
is written empty, and em pty(...), where . . . are updates, abbreviates to [...]. For
example, em p ty (x^ y) becomes [x >->■ y}.

Implication is denoted by =$> and [A\\ . . A„] =$■ A abbreviates A\ =$■
(. . . = > {An = > A) . ..).

Finally, how are the formulae you see related to the formal Isabelle text? Our
motto is

What you see is what we proved!

Isabelle theories can be augmented with M ^ X text which may contain ref
erences to Isabelle theorems (by name — see chapter 4 of [12]). We use this
presentation mechanism to generate the text for most of the definitions and all
of the theorems in this paper automatically.

3 Abstract Address Space Model

The virtual memory subsystem in L4 provides a flexible, hierarchical way of
manipulating the mapping from virtual to physical memory pages of address
spaces at user-level. We now present a formal model for this. Although the
granularity at which L4 maps memory is the page level and does not go down
to single addresses, we use the terms address and page interchangeably in the
following.

3.1 Address Spaces

Fig. 2 illustrates the concept of hierarchical mappings. Large boxes depict virtual
address spaces. The smaller boxes inside stand for virtual pages in the address
space. The rounded box at the bottom is the set of physical pages. The arrows
stand for direct mappings which connect pages in one address spaces to addresses
in (possibly) other address spaces. In well-behaved states, the transitive closure
of mappings always ends in physical pages. The example in Fig. 2 maps virtual
page «i in space m , as well as V2 in n2, and «4 in m to the physical page n .

Fig. 2. Address Spaces

Formally, we use the types R for the physical pages (n , r2, etc.), V for
virtual pages (vi, v2, etc.), and N for the names of address spaces (rii, n2, etc.).

A position in this picture is determined uniquely by either naming a virtual
page in a virtual address space, or by naming a physical page. We call these the
mappings M:

datatype M = Virtual N V | Real R

An address space associates with each virtual page either a mapping, or
nothing (the nil page). We implement this in Isabelle by the option datatype:

types space = V => M option

The machine state is then a map from address space names to address spaces.
Not all names need to be associated with an address space, so we use option
again:

types state = N =>■ space option

To relate these functions to the arrows in Fig. 2, we use the concept of paths.
The term s b x ~^1 y means that in state s there is a direct path from position
x to position y. There is a direct path from position Virtual n v to another
position y if in state s the address space with name n is defined and maps the
virtual page v to y. There can be no paths starting at physical pages. Formally,

s h x ~^1 y = (3 n v a. x = Virtual n v A s n = [o'] A a v = [y\)

We write _ b _ _ for the transitive and _ b _ _ for the reflexive and
transitive closure of the direct path relation.

3.2 Operations

The L4 kernel exports the following basic operations on address spaces: unmap,
flush, map, and grant The former two operations remove mappings, the latter
two create or move mappings. We explain and define them below.

Fig. 3 illustrates the unmap n v operation. It is the most fundamental of the
operations above. We say a space n unmaps v if it removes all mappings that
depend on Virtual n v, or in terms of paths if it removes all edges leading to
Virtual n v.

To implement this, we use a function clear that, given name n, page v, and
address space tr in a state s, returns a with all v' leading to Virtual n v mapped
to None.
clear :: N =t- V state space space
clear n v s a =
\v'. case a v' o f None None

| [m j => i / ' s b ra Virtual n v then None else [m j

An unmap n v in state s then produces a new state in which each address
space is cleared of all paths leading to Virtual n v.

Fig. 3. The unmap operation (before and after)

unmap :: N =>- V =>■ state =>■ state
unmap n v s = An', case s n! o f None =>■ None | [crj =>■ [clear n v s a J

For updating a space with name n at page v with a new mapping m we write
n,v 4- m, where m may be None.
n.v *— m = As. s(n := case s n o f None =>■ None | [crj =>■ [a(v := m)J)

With this, the flush operation is simply unmap followed by setting n,v to
None.

flush :: N =>■ V =>■ state =>■ state
flush n v = n.v None o unmap n v

The remaining two operations map and grant establish new mappings in the
receiving address space. To ensure a consistent new state, this new mapping
must ultimately be connected to a physical page. We call a mapping m valid in
state s (written s b m) if it is a physical page, or if it is of the form Virtual n v
and is the source of some direct path. We show later that in all reachable states
of the system, this definition is equivalent to saying that the mapping leads to
a physical page.
s b m = case m o f Virtual n v 3 x. s b m x \ Real r True

Before the kernel establishes a new value, the destination is always flushed.
This may invalidate the source. The operation only continues if the source is
still valid, otherwise it stops. We capture this behaviour in a slightly modified
update notation
n.v m = As. let so = flush n v s in (if so b m then n.v [m j else id) so

In L4, an address space n can map a page v to another space n! at page v'.
Again, the operation only goes ahead, if the mapping Virtual n v is valid:
map state state
map n v n v s = if -i s b Virtual n v then s else (n'.v' Virtual n v) s

Fig. 4 shows an example for the map operation. Address space n maps page
v to n' at v'. The destination n',v' is first flushed and then updated with the
new mapping Virtual n v.

A space n can also grant a page v to v' in n!. As illustrated in Fig. 5, granting
updates n',v' to the value of n at v and flushes the source n,v.

Fig. 5. The grant operation (before and after)

grant : : iV = ^ F = ^ i V = ^ F = ^ state =>■ state
grant n v n' v 's =
if -i s I- Virtual n v then s
else let [crj = s n; [m\ = a v in (flush n v o n'.v' m) s

This concludes the kernel operations on address spaces. We have also mod
elled the hardware memory management unit (MMU). On this abstract level, all
the MMU does is lookup: it determines which physical page needs to be accessed
for each virtual page v and address space n. We write s h n v t> r if lookup of
page v in the address space with name n in state s yields the physical page r.
As we already have the concepts of paths, this is easily described formally:
s I- n.v > [rj = s b Virtual n v Real r
s I- n.v > None = (3cr. s n = [crj A a v = None) V s n = None

The model in this section is based on an earlier pen-and-paper formalisation
of L4 address spaces by Liedtke [10]. Formalising it in Isabelle/HOL eliminated
problems like the mutual recursive definition of the update and flush functions
being not well-founded. It would be well-founded— at least on reachable kernel
states—if the model had the property that no loops can be constructed in ad
dress spaces. This is not true in the original model. The operation map n v n' v'
followed by grant n' v' n v is a counter example. We also have introduced the
formal concept of valid mappings to establish this no-loops property as well as
the fact that any page that is mapped at all is mapped to a physical address.

3.3 A n abstract data ty p e for v irtu a l m em ory

In the following we phrase the model of virtual memory and of the MMU hard
ware in terms of an abstract data type consisting of the type state and the
operations detailed above. This data type (not to be confused with Isabelle’s
keyword d ata typ e) is used implicitly by any user-level program. Even if the
program does not invoke any mapping operations directly, the CPU performs a
lookup operation with every memory access.

Putting the operations in terms of an abstract data type enables us to formu
late refinement explicitly: if the data type of the abstract address spaces model
is replaced with the data type of more concrete models (and finally the imple
mentation) the program will not have any observable differences in behaviour.

Formally we define an abstract data type as a record consisting of an initial
set of states and of a transition relation that models execution:

record ('a, 'j) DataType =
Init :: 'a set
Step :: 'j 4 ('a x ’a) set

For our virtual memory model, the operations are enumerated in the index
type VMIndex:

d ata typ e VMIndex = create N | unmap N V | flush N V | map N V N V
| grant N V N V | lookup N V (R option)

The definition of the abstract model A in terms of a data type is then:
Init A = {[(to >-> cr] |a. injp a A ran a C range Real}
Step A (lookup n v r) = { (s , s') | s = s' A s b n,v > r }
Step A (create n) = {(s , s') | s n = None A s' = s(n >-» empty)}
Step A (unmap n v) = {(« , s') \ s n ^ None A s' = unmap n v s}
Step A (flush n v) = {(s , s') \ s n ^ None A s' = flush n v s}
Step A (map n v n' v') = { (s , s') \ s n None A s n' ^ None A s' = map n v n' v ' s}
Step A (grant n v n v') =
{(s , s') \ s n ^ None A s n ^ None A s' = grant n v n v ' s}

The boot process creates an address space ao that is an injective mapping
from virtual to physical pages. The functions ran and range return the codomain
of a function, where ran works on functions 'a => 'b option and range on total
functions. Injectivity is constrained to the part of the function that returns \x\:
injp f = inj-on f { x | 3 y. f x = [y }} .

The lookup operation is special. In the context of a real system this operation
would return a value, since one of the points of the virtual memory abstraction
is to provide address translation. If a lookup yields a None result the kernel
typically raises a page fault exception. Since we do not model the larger system,
we simplify lookup instead to a subset of the identity relation on state.

Creating a new address space n is modelled by updating the state s at n
with the predefined map empty. The other mapping operations have been de
fined above. All of them require the address spaces they operate on to be valid.
This condition is ensured automatically in the current L4 implementation as the
address spaces are determined by sender and receiver of an IPC operation.

3.4 Properties

We have shown a number of safety properties about the abstract address space
model. They are formulated as invariants over the abstract datatype. A set of
states I is an invariant if it contains all initial states and if execution of any
operation in a state of I again leads to a state in I. We write V \= I when I is
an invariant of data type V.

Theorem 1. There are no loops in the address space structure.

.4 |= {s | Va;. i s h i x }

The proof is by case distinction on the operations and proceeds by observing
how each operation changes existing paths. Theorem 1 is significant for im
plementing the lookup function efficiently. It also ensures that internal kernel
functions can walk the corresponding data structures naively. Together with the
properties below it says that address spaces always have a tree structure.

Theorem 2. All valid pages translate to physical pages.

A |= {s | Vx. s h x — ► (3r. s h i Real r)}

The proof is again by case distinction on the operations. Together with the
following theorem we obtain that address lookup is a total function on data
type A.

Theorem 3. The lookup relation is a function.

[s h n,v t> r; s h n,v t> r'J =>■ r = r'

This theorem follows directly from the fact that paths are built on functions.
That address lookup is a total function may sound like merely a nice formal

property, but it is quite literally an important safety property in reality. Un
defined behaviour, possibly physical damage, may result if two conflicting TLB
entries are present for the same virtual address. The current ARM reference
manual [2, p. B3-26] explicitly warns against this scenario.

3.5 Simplifications and Assumptions

The current model makes the following simplifications and assumptions.

- The L4Ka::Pistachio API stipulates two regions per address space that are
shared between the user and kernel, the kernel interface page (KIP) and
user thread control blocks (UTCBs). These should have a valid translation
from virtual to physical memory pages, but can not be manipulated by the
mapping operations.

- The mapping operations in L4 work on regions of the address space rather
than individual pages. These regions, known as flexpages, are 2kb,k > 0
aligned and sized where b is the minimum page size on the architecture. This
introduces significant complexity in the implementation and has a number of

boundary conditions of interest, so adding this to the abstract model would
be beneficial. At the same time, it is possible to create systems using L4 that
only use the minimum flexpage size so this omission does not pose a serious
limitation to the utility of the model.
map and grant are implemented through the IPC primitives in L4 and involve
an agreement on the region to be transferred between sender and receiver.
This can be added when the IPC abstraction is modelled.
Flexpages also have associated read, write and execute access rights. At
present the model can be considered as providing an all or nothing view of
access rights.
We assume that all of the mapping operations are atomic, which is the case in
the current non-preemptable implementation, and a single processor, hence
a sequential system.

4 Model Refinement

The model in the previous section provides an abstract model of address spaces
in L4 but does not bear much resemblance to the kernel implementation. This
is not surprising since the kernel must provide an efficient realisation of the
mapping operations and the code supporting this executes under time and space
restrictions. For the purpose of source-code verification it is desirable to have a
more concrete model of the implementation. This model will be more complex
and detailed than the previous model and hence less suited to proving properties
such as the absence of loops in paths. By showing the concrete model to be a
refinement of the abstract model it is possible to retain the ability to reason and
prove properties at the abstract level. In this section we provide a motivation
and overview of the implementation in the L4Ka::Pistachio kernel of address
spaces, and then describe the refinement of the abstract address spaces model.

4.1 L4Ka::Pistachio Implementation

The implementation of address spaces is provided by the hardware and OS vir
tual memory mechanisms. The lookup relation corresponds to the virtual-to-
physical mapping function provided by the MMU on the CPU. This transla
tion is carried out on every memory access and so is critical to system perfor
mance. This is typically hidden in the pipeline by an associative cache, called the
translation-lookaside buffer (TLB), holding a subset of mappings from the page
table data structure which is located in memory. On a TLB miss the page table is
accessed to perform address translation by a hardware mechanism (on the ARM
architecture) that walks the page table data structure. The page table must sup
port fast address translation, since TLB misses are frequent enough to warrant
this, but this must be balanced with space considerations. In L4Ka::Pistachio a
multi-level hierarchical page table is implemented, of which the ARM hardware

defined page table format, a two-level page table, is an instance. The operations
that update mappings must also maintain coherence between the TLB and page
table, and also the data and instruction caches and memory on ARM since the
caches are virtually-addressed.

In addition to the virtual-to-physical mappings, an implementation of L4
address spaces requires a representation of the mappings between address spaces,
the mapping database (MDB). This is conceptually quite similar to the abstract
model, with paths reversed to give a tree rooted at each physical memory page.
The map, grant and unmap operations correspond to system calls and execute
with a small, fixed-size kernel stack. Hence it is desirable to avoid recursion.
This is achieved in L4Ka::Pistachio by implementing the mapping tree with a
linked-list representing the preorder traversal of the tree, augmented with depth
information. The list is doubly-linked and there are pointers stored between
nodes in the mapping database and nodes associated with the corresponding
page table nodes to avoid unnecessary traversals of either data structure in the
mapping operations.

4.2 Tree Address Space M odel

We first show that a model of address spaces with the mapping database as a
forest to be a refinement of the model in Section 3. This is a conceptual step. It
is the view that most people working with the kernel implementation adopt.

J 3*

Fig. 6. Forest

types MDB = (N x V) (N x V) set

A tree here is a partial function from a node to a set of child nodes (see
Fig. 6). The function is required to be partial so that nodes with no children
and nodes not present in the tree can be distinguished.

record state 1 =
N :: N set
M :: R=> MDB

The N component of the state now contains the names of the valid address
spaces and each physical memory page has an associated mapping tree (possibly
empty) in the M component of the state.

The direct path relation is defined as

s b a ~^1i b = (3 r mn. M s r a = \mn\ A b G mn)

A direct path exists between nodes a and b if b is a child of a in a tree r.
Again, we write _ I- _ ~-*+ ! _ for the transitive and _ b _ _ for the

reflexive and transitive closure of the direct path relation. A path between a
and b indicates that b is in the subtree of a.

Lookup in the tree model is written as s b n,v >1 r and is defined with:
s b n,v >1 [rj = (M s r (n, v) ^ None)
s b n,v >1 None = ((V r. M s r (n, v) = None) t \ n £ N s V n £ N s)

Lookup corresponds to tree membership for a node.
The unmapi operation then simply removes all nodes in the subtree of the

target from the tree, except the target, and all references to these nodes from
other nodes. The notation s(\M := denotes update of field M in record s with
value x.
unmapi n v s =
s(]M := Ar x. case M s r x o f None None

| [mnJ
i f s b (n, v) ~++ i x then None
else [{6 | b G mn A -i s b (n, v) ~++i 6}JD

Similarly, flush i removes all nodes in the subtree along with their correspond
ing references.
flushi n v s =
s(]M := Ar x. case M s r x o f None None

| [mnJ
i f s b (n , v) x then None
else [{6 | b € mn A -i s b (n, v) -~**i 6}JD

mapi is implemented by inserting a new node for the map destination in the
tree beneath the map source.
map i n v n v 's =
if s b n,v > i None then s
else let s' = flushi n' v 's

in i f s' b n,v > i None then s' else update-mapi n v n' v' s'

update-mapi n v n' v ' s =
s(|M := Ar. case M s r (n, v) o f None => M s r

| [mn J = > M s r((n , v) mn U { { n, v1)} , (n', v') {})D

In granti a node is inserted into the tree for the destination if the prior flush
and unmap do not result in the source being removed, and any references to the
source are replaced by references to the destination node.
granh n v n v 's =
if s b n,v > 1 None then s
else let s' = flushi n' v 's

in if s' b n,v > 1 None then s' else update-granh n v n v s'

update-granti n v n' v 's =
let s' = unmapi n v s
in s%M := Ar x . if x = (n', v') A s' b n,v > i [rj then [_{}J

else case M s' r x o f None =>■ None
| [mn J =t-

if x = (n, v) then None
else [{6 | b € mn A b ^ (n, v) V

(n, v) € mn A b = (n 1, t/)}JD

4.3 Refinem ent P ro o f

In this section we again phrase the model presented above in terms of a data
type. The tree data type M is:
Init M =
{(]iV = {cro}, M = Xr nv. if P ' nv = [rj then [{}J else NoneD |P'.
injp P ' A fst 1 dom P' C {<to}}

Step M (lookup n v r) = {(s , s') | s = s' A s b n,v > i r }
Step M (create n) = {(« , s') \ n f N s A s' = s§N := insert n (N s)D}
Step M (unmap n v) = {(s , s') \ n € N s A s' = unmapi n v s}
Step M (flush n v) = {(s , s') \ n £ N s A s' = flushi n v s}
Step M (map n v n v') = { (« , s') | n € N s A n € N s A s' = mapi n v n v ' s}
Step M (grant n v n' v') = {(s , s') \ n € N s A n' € N s A s' = granti n v n' v ' s}

We show that the tree data type is a refinement of the abstract data type.
Here refinement is taken to mean data refinement [6] and we use the proof
technique of simulation.

We begin with the abstraction relation Rx between concrete state sc and
abstract states sa:

Rj =
{ (s c, S o) | dom sa = N Sc A

(¥ n v r. sa b n,v > [rj = sc b n,v > i [r j) A
(V n v n v'. sa b Virtual n v Virtual n v' = sc b (n', v’) (n, v))}

Here it is clear that the path relation in the tree model is the inverse of the
path relation in the abstract model.

We then show that the diagrams in Fig. 7 commute, for all operations. This
is achieved by showing forward simulation:

C </.- A = 3 r. Init C C r “ Init A A (Vj. r ;; Step C j C Step A j ;; r)

I n it a

f

\ Initc
\ R

\
\

\
\

\
\

\

S te p A (j)

1
1
1
1
1
1 R
11

R

1
1
1

*1
Stepc(j)

Fig. 7. Simulation

where “ is the image of a set under a relation, and ;; the composition of two
relations.

T heorem 4. The tree data type simulates the abstract data type

A4 -4

The proof is by case distinction on the operations of the data type. It proceeds
by observing how each operation changes the state in terms of the path and
lookup relations on the concrete and abstract level. For example, the direct path
relation after flush can be shown to be:

flush n v s h x ~^1 y = (s h x ~^1 j A i s h i Virtual n v)

flushi n v s h x ~^1i y = (s h x ~^1i y A -> s h (n, v) ~^*i y)

Simulation gives that the properties proved as invariants on the abstract
data type also hold on the concrete data type, i.e. the safety properties proved
in Section 3.4 also hold on the concrete data type.

Also, since the operations are deterministic, the simulation also holds in the
other direction.
T heorem 5. The abstract data type simulates the tree data type

A M

4.4 Further Refinem ent

The next step in the refinement process is to implement the forest with a list
model. The state space for this is based on the following type:

record TreeListNode =
Next :: TreeListNodeName option
Prev :: TreeListNodeName option
PTE :: PTEName
Depth :: nat

record TreeListHeap =
Valid :: TreeListNodeName set
Heap :: TreeListNodeName =>■ TreeListNode

where TreeListNodeName and PTEName are uninterpreted types. These rep
resent pointers to list nodes and page table entries respectively.

The mapping operations in this model are closer to those in the implementa
tion. Unmap/flush iterate over the subtree unlinking nodes, map inserts a node
into the list immediately after the destination node and grant replaces the source
node with that of the destination in the list.

The following subtree relation can be used to connect the list to the tree
model.

s (- i h> j = (Next (Heap s x) = [yj A x € Valid s)

[s b m m'\ Depth (Heap s m) < Depth (Heap s m')] =>■ s b m -~*T m

[s b m -~*T m'; s b m' >-> ma; Depth (Heap s m) < Depth (Heap s raa)J
=>■ « b m 7 ma

The refinement relation then implies the equivalence of subtrees in the mod
els. We omit the page table and operations here, a complete description of this
refinement step will be published in later work.

Further refinement will proceed by independent refinement of the list heap
and page table to source level. There are a number of issues to address in this
process, including a choice of suitable language for use in the refinement steps
once we decompose operations into imperative code.

5 Conclusion

We have presented the initial stage of a refinement process to verify the virtual
memory subsystem of the L4 microkernel. We have shown an abstract model of
address spaces together with the operations on them that the kernel API offers.
We have refined it into a tree-like structure that is conceptually closer to the
data structures used in the kernel implementation.

The next step after refining the current stage into a linked list structure and a
page table implementation will be source code verification. Even though we have
not yet reached the implementation level, the process of building an abstract
model and refining it has already had a beneficial impact on the L4 kernel.
During the process of developing these models we have encountered and clarified
a number of small ambiguities and errors in the reference manual, have identified
unnecessary restrictions, and discovered small errors in the implementation.

Our activities in verifying the L4 kernel apart from the memory subsystem
include building a complete abstract model of the L4 API that is executable and
lends itself to simulation and exploration. We are also looking at how further

safety and security properties like confidentiality and information flow are best
formulated in the context of the L4 model we are building.

Acknowledgements We thank Kai Engelhardt, Kevin Elphinstone, Michael Nor-
rish. Adam Wiggins, and the developers on the pistachio-core mailing list for
advice and stimulating discussions.

References

1. L4 experimental Kernel Reference Manual Version X.2, 2004.
2. ARM Limited. ARM Architecture Reference Manual, June 2000.
3. William R. Bevier. Kit: A study in operating system verification. IEEE Transac

tions on Software Engineering, 15(11):1382-1396, 1989.
4. William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach

kernel. Technical Report 102, Computational Logic, Inc., December 1994.
5. Thierry Cattel. Modelization and verification of a multiprocessor realtime OS

kernel. In Proceedings o f FORTE ’94, Bern, Switzerland, October 1994.
6. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Number 47 in Cambridge Tracts in Theo
retical Computer Science. Cambridge University Press, 1998.

7. Gregory Duval and Jacques Julliand. Modelling and verification of the RUBIS
p-kernel with SPIN. In SPIN95 Workshop Proceedings, 1995.

8. System Architecture Group. The L4Ka::Pistachio microkernel. White paper, Uni
versity of Karlsruhe, May 2003.

9. Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report TUD-FI02-
03-Marz, TU Dresden, 2002.

10. J. Liedtke. On p-kernel construction. In 15th ACM Symposium on Operating
System Principles (SOSP), December 1995.

11. P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A prov-
ably secure operating system: The system, its applications, and proofs. Technical
Report CSL-116, Computer Science Laboratory, SRI International, 1980.

12. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283. 2002. http://www.in.tmn.de/

~nipkow/LNCS2283/.
13. J. S. Shapiro and S. Weber. Verifying operating system security. Technical Report

MS-CIS-97-26, Distributed Systems Laboratory, University of Pennsylvania, 1997.
14. P. Tullmann, J. Turner, J. McCorquodaie, J. Lepreau, A. Chitturi, and G. Back.

Formal methods: a practical tool for OS implementors. In Proceedings o f the Sixth
Workshop on Hot Topics in Operating Systems, pages 20-25, 1997.

15. Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and
verification of the UCLA Unix security kernel. Communications o f the ACM,
23(2):118-131, February 1980.

http://www.in.tmn.de/

XPath Formal Semantics and Beyond: a Coq based
approach

Pierre Geneves1 and Jean-Yves Vion-Dury12

1 WAM Project, INRIA RhOne-Alpes
2 Xerox Research Centre Europe

Abstract. XPath was introduced as the standard language for addressing parts
of XML documents, and has been widely adopted by practioners and theoreticaly
studied. We aim at building a logical framework for formal study and analysis
of XPath and have to face the combinatorial complexity of formal proofs caused
by XPath expressive power. We chose the Coq proof assistant and its powerful
inductive constructions to rigorously investigate XPath peculiarities. We focus in
this paper on a basic modeling of XPath syntax and semantics, and make two con
tributions. First, we propose a new formal semantics, which is an interpretation
of paths as first order logic propositions that turned out to greatly simplify our
formal proofs. Second, we formally prove that this new interpretation is equiv
alent to previously known XPath denotational semantics [20,18], opening per
spectives for more ambitious mathematical characterizations. We illustrate our
Coq based model through several examples and we develop a formal proof of a
simple yet significant XPath property that compare quite favorably to a former
informal proof proposed in [18].

1 Introduction

XML [4] is now becoming the de facto standard for both representing structured docu
ments and exchanging information. This success impacts major parts o f the computing
infrastructure such as the future world wide web, information systems, and databases.
XPath [6] was introduced by the W3C [16] for specifying node selection, matching con
ditions, and for computing values from an XML document. XPath is part of other XML-
related standards such as the transformation language XSLT [5], the modeling language
XML Schema [12], the linking standard XLink [8] and the forthcoming XQuery [3]
database access language, that is triggering considerable attention from big industrial
players. Because o f its fundamental role, we see XPath as a cornerstone of XML tech
nologies.

Motivation. We aim at building a rigorous framework for formal study and analysis of
XPath. This paper focuses on a basic modeling o f XPath data model, syntax and seman
tics as a first step toward a more ambitious goal, which is to axiomatize and characterize
the containment and equivalence relations over XPath expressions. The first problem to
address is the combinatorial complexity of proofs caused by XPath structure (e.g. cases
analysis, structural inductions). The second problem is to handle incremental variations
(and extensions) of the language fragment we want to deal with while maintaining the

2 -M ay 31, 2004

established properties. These two difficulties are clearly in favor of using mechanized
proofs, but require a proof assistant offering powerful data structure modeling capa
bilities and providing a specialized language for building complex and modular proof
tactics. We chose the Coq proof assistant [7] because o f (i) its powerful inductive con
structions, (ii) its type system and (iii) its tactics language. Another important point for
the authors was the availability o f module abstractions (clearly in favor of large project
developments) and also o f a very good documentation [2] that considerably eased enter
ing Coq’s arcanes. Last but not least, Coq is currently a large and active research project
offering long term perspectives as well as a good support to a growing user community.
Usually, proof assistants allow enforcing and verifying known mathematical results or
proving simple but important algorithms. The authors expect from this exploratory work
an ambitious step toward offering a common framework to theoreticians and engineers
working around XML technologies. We consider XQuery as a potential target since it
comes with a very large and complex formal semantics [11] while being probably too
complex to support mathematical treatments without the help o f a scalable and typed
proof assistant (for instance, proving a worthwhile weak type soundness for the query
language, or reasoning formally about normalization and optimization).

Contribution. As a first result, we propose a new formal semantics for the XPath lan
guage, which is basically an interpretation of XPath expressions in first-order logic. One
of the main advantages o f this semantics is that both paths and qualifiers get an unified
interpretation; thus the general complexity o f proofs involving XPath interpretation is
greatly reduced. The other expected benefit is to abstract over the usual computational
vision and to focus on the intrinsic meaning o f the language. Our second contribution is
a formal proof o f the equivalence o f semantics that enables further construction on top
of this simple logical interpretation.

Related Work. The first version of the XPath specification [6], published in 1999, de
scribes the meanings o f XPath constructs and operators in more than thirty pages of
english. A formal semantics o f XPath was given in 2000 by Wadler in [20]. This de-
notational semantics inspired works on theoretical issues around XPath: rewriting [18],
query containment [19] and algorithmic complexity [15]. However, this semantics con
veys a computational vision and has often been directly translated into poorly efficient
functional algorithms [15]. Several authors adopted simpler semantics, focusing on
boolean tests or tree patterns [13] thus missing the most innovative and core XPath
feature: node-set selection. Recent work on the forthcoming XPath 2.0 language for
mally defined static and operational semantics [10]. While being able to deal with com
plex typing issues raised by substantial evolution o f the language specification, these
semantics are probably too complex for being directly used in useful manual proofs.

Works on XPath containment and equivalence problems identified and conjectured
complexity classes for several XPath fragments (see [17] for an overview). However,
most o f these works rely on manual proofs-by-reduction that do not help for finding
sound and complete algorithms on a significant XPath subset. On the opposite, we aim
at building a logical and formal framework for studying XPath, and especially for in
vestigating XPath containment in a constructive way.

May 31, 2004 - 3

Outline We first introduce XPath and its data model in section 2. Section 3 presents the
basics of XPath semantics: query results, axes and node tests. A denotational semantics
of paths inspired from established contributions is then described in section 4, which
also highlights its drawbacks for formal proofs. Section 5 introduces our new logical
semantics and illustrates the interest o f its Coq modeling through the demonstration of
an XPath property. Before concluding, section 6 summarizes the formal proof o f the
equivalence o f both semantics, constructed using the Coq proof system.

2 XPath Syntax and Data Model

A tree document model. XPath considers an XML document as a tree with several
kinds o f nodes (root, element, text, attribute, namespace, processing instruction, and
comment). The tree is built by a successful parsing o f a well-formed XML document.
The tree contains only one root node, which has no parent, no attribute and no names
pace node, but that may have any other kind o f nodes as children. Only elements can
have children. Nodes are fully connected using the relation that maps a node to its
children, and the reflexive and transitive closure -h>* of this relation. Moreover, a total
ordering relation between any two elements reflects the depth-first traversal order of
the tree. We implemented this document model in Coq as two separate modules “XN-
odes” and “XTree” that respectively define the types “Node” and “Tree” which we refer
to in this paper.

XPath expressions. In their simplest form XPath expressions look like “directory navi
gation paths” . For example, the XPath expression

book chapter section

navigates from the root o f a document (designated by the leading slash “/”) through
the top-level “book” element to its “chapter” child elements and on to its “section”
child elements. The result of the evaluation of the entire expression is the set o f all
the “ section” elements that can be reached in this manner, returned in the order they
occurred in the document. At each step in the navigation the selected nodes for that step
can be filtered using qualifiers. A qualifier is a boolean expression between brackets
that can test path existence. So if we ask for

book chapter section[citation]

then the result is all “ section” elements that have at least one child element named “cita
tion” . The situation becomes more interesting when combined with XPath’s capability
of searching along “axes” other than the shown “children o f” axis. Indeed the above
XPath is a shorthand for

/ child::book/child::chapter/child::section[child::citation]

where it is made explicit that each path step is meant to search the “child” axis contain
ing all children o f the previous context node. If we instead asked for

/ child::book/descendant::*[child::citation]

May 31, 2004 - 5

Path p ::= p /p | p[q] | p i p | p PI p | (p) | a::Ar | X

Qualifier q :: = (/ and g | (/ or g | not <7 | p \p C p | true | false

Axis child descendant self descendant-or-self
following-sibling following parent ancestor
preceding-sibling preceding ancestor-or-self

NodeTest N ::= n | * | text() | com m ent | element()
| processing-instructionQ | node()

Fig. 2. XPath Abstract Syntax.

Our syntactic modeling in Coq is directly inspired from the abstract syntax. A cross-
inductive set definition (see figure 3) models XPath expressions: _L, a, a::N are path
atoms and true, false are qualifier atoms, whereas other operators are binary construc
tors. The definition relies on the definitions o f “Axis” and “NodeTest” which are simple
set enumerations.

Inductive XPath : Set :=
— void : XPath
— top : XPath
— union : XPath —»■ XPath —»■ XPath
— inter : XPath XPath XPath
— slash : XPath XPath XPath
— qualif : XPath —»■ XQualif —»■ XPath
— step : Axis ^ NodeTest —»■ XPath

with XQualif : Set :=
— not: XQualif —»■ XQualif
— and : XQualif —»■ XQualif —»■ XQualif
— or : XQualif —»■ XQualif —»■ XQualif
— leq : XPath —»■ XPath ^ XQualif
— _true : XQualif
— _false : XQualif.

Fig. 3. Set of all XPath expressions in Coq.

Paths inside qualifiers (as in) are modeled through a syntaxic sugar:

Definition path (p : XPath) : XQualif := not (leq p void).

At this stage, XPath expressions can be instantiated using functional notation, for ex
ample:

slash root (qualif (step child book) (path (step child chapter)))

6 -M ay 31, 2004

or even with the familiar infix notation:

book[chapter]

made possible by Coq’s notation mechanism and definitions of operators associativity.
Although some syntactic properties can already be worked out, involving results of
XPath expressions requires further modeling. We formalize and model the interpretation
of XPath expressions in the next sections.

3 XPath Semantics: Basics

Result of an expression. The evaluation o f an XPath expression returns a node-set: an
unordered collection o f nodes without duplicates. We chose to model a node-set in Coq
as a custom list type (shown on figure 4) rather than a set. This is in order to cope
with the “position()” feature in qualifiers [6] and sequences o f the forthcoming XPath
2.0 language [1]. Indeed, the “position()” feature requires an ordered representation of
selected nodes for filtering purposes. Moreover, XPath 2.0 handles node sequences (or
dered collections o f zero or more items, with possible duplicates) instead o f node-sets.
Thus, our Coq modeling o f node-sets presently uses a list together with an associated
predicate for forcing uniqueness o f nodes in the node-set.

Inductive NodeSet: Set :=
— empty : NodeSet
— item : Node —* NodeSet —* NodeSet.

Fig. 4. Coq modeling of node-sets.

Axes and node tests. The path step (a::N) is the most basic XPath construct that allows
to navigate in the tree in order to retrieve a node-set. Its semantics relies on two func
tions / and T that respectively define the semantics o f an axis a and a node test TV. The
navigational semantics of axes can be pictured using the tree document model (see fig
ure 1); and more formally defined using the parent/child relation (as usual -h>+ means

), and the irreflexive ordering relation . The function retrieves a node-set
starting from a context node :

May 31, 2004 - 7

a / (a)z
self { x j

child {y\x -e> y }
parent {y\y -e> x }

descendant {y\x y }
ancestor {y\y x }

descendant-or-self {y\x -•>* y }
ancestor-or-self (y\y -»* x }

following-sibling {y\y € sibling(a-) y }
preceding-sibling {y\y € sibling(z-) A y < x }

preceding {y\y «
following {y\x <£ y }
attribute {y\x —» y A is-attribute(j/)}

namespace {y\x —» y A is-namespace(j/)}
with sibling(a:)= {y\3z z —1> x A z —•> y }

The node test part o f a step is useful to filter the nodes according to their kind. The
function T performs the test by attempting to match a node a; with the node test N used
in the step, according to the table below. The matching depends on the axis used in the
step:

N a T(a, N, x)
n
*
*
*

textQ
comment 0

processing-instruction()
element 0

node()

attribute
namespace

other

name(a;)='n-
is-attribute(z)

is-namespace(z)
is-element(z)

is-text(z)
is-comment(z)

is-pi(z)
is-element(z)

true

The functions and are directly translated into Coq definitions that drive our
“XTree” document model. The composition o f / and T allows to define the interpreta
tion o f a path step, which is an essential aspect of path semantics.

4 Denotational Semantics of Paths and Qualifiers

A classic formal semantics o f paths finds its origins in [20], [18] and [19]. A formal
semantics function S computes the node-set selected by a path p starting from a context
node in the tree:

8 -M ay 31, 2004

1edNodIthPat —> Set(Node)
<5[Ala: — root
S{±h 0
<%1 i P2jx Slpijx U %] t
Sfp!np2jx {®1 I X \ e <S[pi]s A X \ e <S[p2]a:}
Sfp!/p2jx {x2 1 X ! e 5[pi]x a x 2 e }
<S[(p)]U <% !*
«%[<7]]U {;Ei 1 x\ e S M * a Q M *J

:: {®1 1 x\ e f (a) x A T (a, N, a?i)}

The interpretation o f a qualified path p[q] uses the dual formal semantics function
Q for qualifiers. Q returns the boolean evaluation of a qualifier q from a context node cc:

Q : Qualifier -
Q [true] x
Q [false]x
Q b i and mix
Qbi °rq.2h
QMx
Q[(«)L
Qlnot olx
Q[pi QP2jx

The implementation o f in Coq requires updatable definitions o f common set op
erations (union, intersection, inclusion) over previously defined node-sets. More inter
esting are the two XPath-specific constructs P1/P2 and p[q] that require an ordered
evaluation of subterms. Indeed, the node-set retrieval driven by and the filter per
formed by respectively operate on the results o f and . This can be captured in Coq
via two higher order functions. These functions abstract over the context node used for
the evaluation o f and :

Fixpoint product (s : NodeSet) (fs : Node —> NodeSet) {struct s} : NodeSet :=
match s with
— empty => empty
— item a s1 => union (fs a) (product s1 fs)
end.

Fixpoint filter (s : NodeSet) (fs : Node —► bool) {struct s} : NodeSet :=
match s with
— empty => empty
— item a s1 => if fs a then item a (filter s1 fs) else filter s1 fs
end.

The denotational semantics can then be modeled as a fixpoint that returns the node
set selected by a path p from a context node a; in a tree t as shown on figure 5.

Node Boolean
true
falsefalse

Qlqilx v QlqJlx
= Q[not (p C _L)]X
= QMU
= -|QMx
= 5 fo iL C Slp2Ix

May 31, 2004 - 9

Fixpoint semanS (t : Tree) (p : XPath)
(x : Node) { structp } : NodeSet :=
match p with
— void empty
— top XTree.roots t x
— slash p1 p2 => product (semanS t p1 x) (semanS t p2)
— union p1 p2 => union (semanS t p1 x) (semanS t p2 x)
— inter p1 p2 => inter (semanS t p1 x) (semanS t p2 x)
— qualif p1 q2 => filter (semanS t p1 x) (semanQ t q2)
— step a n=> filter (f a x t) (test-node t n)
end

with semanQ (t : Tree) (q : XQualif) (x : Node) struct q :
bool :=

match q with
— _ true => true
— -false => false
— not q1 if semanQ t q1 x then false else true
— and q1 q2 => if semanQ t q1 x then semanQ t q2 x else false
— or q1 q2 if semanQ t q1 x then true else semanQ t q2 x
— leq p1 p2 => incl (semanS t p1 x) (semanS t p2 x)
end.

Fig. 5. XPath Denotational Semantics in Coq.

At this stage, XPath interpretation can be used for studying properties involving
query results. Consider for example the containment relation, which holds between two
XPath expressions pi and P2 when the set o f nodes returned by pi is included in the set
of nodes returned by , for all trees and context nodes. The containment relation can
be formally modeled as follows:

Variable t:Tree.
Variable x:Node.

Variable Sle : XPath —► XPath —► Prop.

Conjecture Sle sound: forall (p1 p2 : XPath),
Sle p1 p2 —► incl (semanS t p1 x) (semanS t p2 x)=true.

Conjecture Sle-complete: forall (p1 p2 : XPath),
incl (semanS t p1 x) (semanS t p2 x)=true —> Sle p1 p2.

The general path equivalence relation , that holds between two paths that always
have the same interpretation, can then be defined:

Inductive Sequiv: XPath —> XPath —> Prop :=

10-M ay 31,2004

— seq: forall (p1 p2 : XPath), Sle p1 p2 —> Sle p2 p1 —> Sequiv p1 p2.

Identifying path equivalence classes is o f very first importance for simplifying gen
eral formal treatment o f XPath. The equivalence relation is particularly crucial for
XPath normalization and rewriting issues (see [18] for an application motivated by
streaming XML querying). In addition, both equivalence and containment relations are
currently o f great interest for XML researchers notably because o f their implications
for integrity constraints checking [9] and database query optimization [14]. Consider
the following basic example: if Vp : XPathp\p = s P holds then p|p can securely be
replaced by p for optimization purposes while preserving query semantics. Using the
Coq modeling, the proof o f relies on two set-theoretic lemma (idempotence
of set union and reflexivity of set inclusion):

Lemma o p t : forall (p : XPath), Sequiv (union p p) p.
Proof.
intro;constructor; apply Sle-complete; simpl;rewrite union-idem;apply incLreflexive.
Qed.

Now consider a more general XPath property, often named “qualifier flattening” ,
that was first given in [18]. This property basically states that nested qualifiers can be
seen as paths:

Path [[]] [] (1)

This property can be formulated as follows:

Lemma flatten-qualifs: forall (p p1 p2:XPath),
Sequiv (qualif p (path (qualif p1 (path p2)))) (qualif p (path (slash p1 p2))).

The Coq modeling o f the denotational semantics allows to prove this property. How
ever, using the denotational semantics in proofs means dealing with combined node-set
computation and boolean evaluation. Indeed, the denotational semantics relies on node
set construction for evaluating paths and boolean evaluation for interpreting qualifiers.
Subsequently, ad-hoc auxiliary lemma are required for characterizing these two differ
ent computational visions, together with their compositional peculiarities. As a conse
quence, a major drawback is that intrinsic complexity o f proofs becomes hidden behind
numerous operational considerations. This causes rather long and complex proof terms.
Consider for example the proof o f (1); it could begin with the following tactic applica
tions:

intros; constructor; apply Sle-complete.
simpl.

This generates two subgoals that require to deal with mixed node-set construction and
boolean evaluation (see appendix A). In the next section, we present a new simple XPath
semantics designed to eliminate this computational overload.

May 31,2004- 11

5 A Relational Semantics in First-Order Logic

We propose to translate an XPath expression p into a dyadic formula o f the first order
logic (FOL). The semantics function defines the interpretation o f paths in the first
order logic. Rp(x, y) holds for all pairs x, y o f nodes such that y is accessed from x
through the path :

Path Node Node FOL

K p M l root
K p i m false

f t p b i E v f t p M
n PlP l r\P2f x = Kp\pirx AKp\p2]»
^ p | P l/P 2 l 3z K p lp tll A R p[r]
K K pM K M l
K I p^ M K p M l ^ K M y35 a :: :

Pi y € f (a) x A T (a ,N ,y)

The dual formal semantics function R g translates qualifiers into monadic formula.
Rq (x) holds for all nodes a; such that the qualifier is true from the context node a;:

TZq : Qualifier — Node FOL

TZq [true] x true
Kq [false] x false
K g lq iand mix = H-q [<Zllx A 7Zq |̂ 2]x
fcqlqi or qilx = K q M x V K q M x
KqMx not
K q M h = K M *

[not q\x =
TlqlPl 'QP'llx

PifrPi>

This semantics abstracts over the usual computation o f node-sets. It gives an unified
interpretation o f paths and qualifiers. This enables further studying and manipulatation
of XPath with an exclusive logical vision. The Coq implementation o f this semantics,
shown on figure 6, basically translates an XPath expression into a logical proposition.
Capturing XPath semantics using Coq’s basic “Prop” sort greatly reduces the complex
ity o f proof terms. Indeed, dealing with set-handling peculiarities (such as “product”
or “ filter”) is no more required. Proofs involving query results can be accomplished
by using built-in Coq’s tactics. For example, let us model the containment relation (as
“Rle”) and the path equivalence relations = TC (as “Requiv”) on top of this new logical
interpretation:

Variable Rle : XPath —> XPath —> Prop.

Conjecture Rle sound: forall (p1 p2 : XPath),
Rle p1 p2 —> (forall y:Node, Rp t p1 x y —> Rp t p2 x y).

12-M ay 31,2004

Fixpoint Rp (t : Tree) (p : XPath) (x y : Node) {struct p} : Prop :=
match p with
— void => False
— top => s-in y (XTree.roots t x)=true
— union p1 p2 => Rp t p1 x y V Rp t p2 x y
— inter p1 p2 => Rp t p1 x y A Rp t p2 x y
— slash p1 p2 => exists z : Node, Rp t p1 x z A Rp t p2 zy
— qualif p q = > R p tp x y A R q tq y
— step an => (s-in y (f a x t))=true A (test-node t n y)=true
end

with Rq (t : Tree) (q : XQualif) (x : Node) { struct q} : Prop :=
match q with
— _ true => True
— -false => False
— not Rqt qx
— and q1 q2 Rq t q1 x Rq t q2 x
— or q1 q2 Rq t q1 x Rq t q2 x
— leq p1 p2 => forall z : Node, Rp t p1 x z —> Rp t p2 x z
end.

Fig.6. XPath Logical Semantics in Coq.

Conjecture Rle-complete: forall (p1 p2 : XPath),
(forall y:Node, R p t p 1 x R p t p 2 x y) —> Rle p1 p2.

Inductive Requiv: XPath —> XPath —> Prop :=
— req: forall (p1 p2 : XPath), Rle p1 p2 —> Rle p2 p1 —> Requiv p1 p2.

The “ flattening qualifiers” property can now be expressed as follows:

Vp,pi ,p2 ■■Path p f c t e] ^ P ^ P 2] (2)

As opposed to the lemma (1), the lemma (2) based on = R can be proved with a few
applications of Coq’s built-in tactics only:

Lemma flatten-qualifs2: forall (p p1 p2:XPath),
Requiv (qualif p (path (qualif p1 (path p2)))) (qualif p (path (slash p1 p2))).
Proof.
intros; constructor; apply Rle-complete; simpl; intros y H; elim H;
intro H0; split; try assumption; intro H2;apply H1; intros z H3; elim H3;
intros H4 H5; elim H5; intros H6H7; [elim (H2 H6); exists z — elim (H2 H4)];
split; try assumption; intro H8;apply (H8 z);assumption.
Qed.

The reader will notice that the proof of (2) is even comparable in size with the
manual proof o f (1), found in [18], that expands the denotational semantics:

May 31 ,2004- 13

<Sb[P l[P2]]l ;* = {x\\x-i.e Sfpjx A Q [p i[p2]]U }
[]

= { x i j x ! e < S [p L a ({ x 2 |x2 e < S [p i]U A (<S[p2] U # 0) } # 0) }

= {x^ X ! E S l p l e A ({ x 2\x2 E < S [p il® i A l 3 e <S[p2 l® 2 } # 0) }
= { x i j x ! e <S[pl® a (< S [p i /p 2] U # 0) }

[]

To summarize, the Coq proof system and our modeling o f XPath offer the major
advantages we are interested in:

- rigour o f a mechanized inference system in a precisely defined logic framework;
- ability to tackle combinatorial issues by using tactic composition;
- ability to achieve “ incremental proving” thanks to proof replaying and updating

facilities.

Incremental proving is convenient since it allows to handle the XPath language progres
sively and to update the semantics accordingly. Last but not least, all these advantages
come at a low cost when using our logical semantics, which greatly simplifies proof
development.

6 Equivalence of Denotational and Logical Semantics

To ensure that the formal semantics function really captures XPath semantics, we
built a formal proof with Coq that shows that denotational and logical semantics are
equivalent:

Proposition 1. Equivalence o f semantics. Mp: Path Vx,y : Node, y E <S[pJ;e 7 £ p | p]I

The proof uses the modelings presented in sections 4 and 5. Proposition 1 is formulated
as follows:

Theorem sem-equivalence:
forall (p : XPath) (x y : N ode), s-in y (semanS t p x)=true <-> Rp t p x y .

Where “ s_in” simply tests the membership o f a node in a given node-set. Since paths
are inductively defined, the proof naturally uses an induction on p. However, because
the definition o f paths is cross-inductive with the definition o f qualifiers (see figure 3),
a mutual induction scheme is used. It is required to prove property 1 for the inductive
casep[g], otherwise not possible without assuming the dual property for qualifiers. The
appropriate mutual induction scheme (XJ1) can be automatically built by Coq from the
definition o f paths:

Schem e XJ1 := Induction for XPath Sort Prop
with XJ2 := Induction for XQualif Sort Prop.

14-M ay 31,2004

The dual property for qualifiers is defined:

Definition sem-equivalence-for-qualifs (q : XQualif): Prop :=
forall x : Node, (semanQ env t q x)=true «-> Rq t q x.

The proof o f proposition 1, whose skeleton is shown on figure 7, can then begin
by applying the mutual induction scheme on p. We attempted to build the proof in
a modular way, so that when XPath constructs are changed or added, proof parts of
unchanged constructs remain valid. To this end, several tactics named “ Solve_X” are
defined with the intent to deal with a particular subgoal o f the proof. The main proof
body (see figure 7) consists in composing these tactics. Each tactic is applied in a way
that either completely solve a subgoal or does not modify it at all. This allows to con
trol which parts of the proof require an update when the underlying definitions evolve.
Each tactic first attempts to match the goal it is intended to solve and the corresponding

Theorem sem-equivalence:
forall (p : XPath) (x y : Node) , s-in y (semanS t p x)=true <-> Rp tp xy.
Proof.
intro p .
pattern p in .
apply XJ1 with sem-equivalence-for-qualifs; intros; split;intros;

try solve-void1;try solve _void2;
try solve-top1; try solve-top2;
try solve-union1; try solve-union2;
try solve-inter1; try solve-inter2;
try solve-product1; try solve-product2;
try solve-qualif1; try solve-qualif2;
try solvestep1; try solvestep2;
try solve-not1; try solve-not2;
try solve-and1; try solve _and2;
try solve_or1; try solve_or2;
try solve-leq1; try solve-leq2;
try solve [simpl;auto];
try solve [simpl;reflexivity];
try solve [simpl in H;auto;discriminate];
try solve [simpl in H;auto].

Qed.

Fig. 7. Main body of the modular proof of semantics equivalence.

hypotheses. For example, the tactic named “ Solve_product1” (see figure 8) isolates the
proof o f the first inductive case for the “product” construct, whereas the tactic named
“Solve_product2” contains the proof o f the reciprocal property. In each tactic, the vari
able names used for matching purposes (e.g. strings after the “ ?”) in the proof con
text directly correspond to the names that Coq would generate if the proof is manually
achieved step by step. Preserving compatibility o f names is convenient for updating

May 31 ,2004- 15

Ltac solve-product1:=
match goal with
— H1: s-in ?y (semanS ?t (slash ?x 7x0) ?x1) = true,

H: (forall (gx0 gy : Node)(gt: Tree),
((s-in gy (semanS gt ?x gx0) = true) <-> Rp gt ?x gx0 gy)),

H0:(forall (hx hy : Node)(ht: Tree),
((s-in hy (semanS ht ?x0 hx) = true) ^ Rp ht ?x0 hx hy))

Rp ?t (slash ?x ?x0) ?x1 ?y
simpl in ; simpl in H1;

assert (H2 := in-product1 y (semanS t xx1) (semanS tx0) H1);
elim H2;intros x2 H3; elim H3; intros H3A H3B;exists x2;
elim (H x1 x2 t); intros HE1 HE2;
elim (H0 x2 y t); intros HF1 HF2;
split; [apply HE1;assumption —apply HF1;assumption]
end.

Fig. 8. A tactic for solving a specific subgoal.

proofs, as the proof script can simply be copied and pasted to and from the proof en
gine. Tactics can use auxiliary lemma that characterize peculiarities o f the denotational

Lemma in-product1: forall (y : Node)(s : NodeSet)(f :Node—>NodeSet),
s-in y (product s f) = true —> exists z : Node, s-in z s=true A s-in y (f z) = true.
Proof.
induction s;
[intros; rewrite product-empty in H; rewrite insem1 in H; discriminate
— intros;simpl;cut ({s-in y (product s f) = true} + { s-in y (product s f) = false});

[intros HC; elim HC; intros HC1;
[elim (IHsf); intros;

[exists x; elim H0; intros; split;
[apply in_sem5; assumption — assumption] — assumption]

— exists a; split; [apply insem2
— eapply in_Lunion;[apply H; assumption — assumption]]]

—apply in_dec]].
Qed.

Fig. 9. Lemma for characterizing a peculiarity of the denotational semantics.

semantics. For example, the lemma “in_product1” , shown on figure 9 is used by the tac
tic “Solve_product1” (figure 8). “in_product1” basically states that when the result o f a
path construct is not empty then at least one result node o f is used for evaluat
ing p2. This is proved using several trivial lemmas on node-sets pictured on figure 10.
Proposition 1 allows to securely take advantage o f the logical semantics.

16-M ay 31,2004

Lemma product-empty : forall f : Node —» NodeSet, product empty f = empty.
Lemma insem1 : forall a : Node, s-in a empty = false.
Lemma insem2 : forall (a : Node) (s : NodeSet), s-in a (item a s) = true.
Lemma in-sem5 : forall (a b : Node) (s : NodeSet), s-in as = true —> s-in a (item b s) = true.
Lemma in-Lunion : forall (a : Node) (s1 s2 : NodeSet),
s-in a (union s1 s2) = true —> s-in a s2 = false —» s-in a s1 = true.
Lemma in-dec : forall (s : NodeSet) (a : Node), { s-in as = true} + {s_in a s = false}.

Fig. 10. Trivial lemma on node-sets used by proof of “in_product1”.

7 Conclusion

In this paper, we focused on a basic modeling o f XPath syntax and formal semantics
for using the Coq proof system. We introduced a new formal semantics for XPath, that
has two main advantages: first, it unifies path and qualifier interpretations. Second, it
allows to focus on the intrinsic meaning o f XPath from a pure logic point of view.
These advantages allow significant simplifications in formal proofs. In addition, we
formally proved that this new interpretation is equivalent to the previously known XPath
semantics.

Lessons learned. Modeling XPath within the Coq proof system has shown to be a good
choice for building a scalable logical framework around XPath. Indeed, Coq’s tactic
composition features are a realistic way to cope with combinatorial issues raised by
XPath expressions. Moreover, Coq provides facilities for incrementally updating proofs
when our XPath fragment evolves.

Future Directions We plan to take part o f this framework for studying longer and more
complex proofs around XPath open questions. Especially, our intent is to axiomatize the
containment relation over XPath expressions; and then to demonstrate the soundness
and possibly the completeness of the relation. This characterization will strongly rely
on the Coq modeling o f our logical semantics. After defining the relation, we plan to
demonstrate the properties “Rle_sound” and “Rle_complete” presented as conjectures
in section 5. The next step is to progressively extend the XPath fragment to support
significant real world applications.

References

1. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and
J. Simeon. XML path language (XPath) 2.0, W3C working draft, August 2003.
http://www.w3.org/TR/2003/WD-xpath20-20030822.

2. Y. Bertot and P. Casteran. Coq'Art, chapter To appear. Springer-Verlag, 2004.
3. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.

XQuery 1.0: An XML query language, W3C working draft, November 2003.
http://www.w3.org/TR/xquery/.

4. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensi
ble markup language (XML) 1.0 (third edition), W3C recommendation, February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

http://www.w3.org/TR/2003/WD-xpath20-20030822
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2004/REC-xml-20040204/

May 31 ,2004- 17

5. J. Clark. XSL transformations (XSLT) version 1.0, W3C recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

6. J. Clark and S. DeRose. XML path language (XPath) version 1.0, W3C recommendation,
November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

7. The coq proof assistant, 2003. http://coq.inria.fr.
8. S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink) version 1.0, W3C

Recommendation, June 2001. http://www.w3.org/TR/xlink/.
9. A. Deutsch and V. Tannen. Containment and integrity constraints for xpath fragments. In

Knowledge Representation Meets Databases, 2001.
10. D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys, J. Simeon, and

P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C working draft, February 2004.
http://www.w3.org/TR/xquery-semantics/.

11. D. Draper, P. Fankhauser, M. F. Fernandez, A. Malhotra, K. Rose, M. Rys, J. Simeon,
and P. Wadler. Xquery 1.0 and xpath 2.0 formal semantics, February 2004.
http://www.w3.org/TR/xquery-semantics/.

12. D. C. Fallside. XML Schema part 0: Primer, W3C recommendation, May 2001.
http://www.w3.org/TR/xmlschema-0/.

13. S. Flesca, F. Furfaro, and E. Masciari. Minimization of tree patterns queries. In Proceedings
of the 29th VLDB Conf., pages 497-508, January 2000.

14. P. Geneves and J.-Y. Vion-Dury. Logic-based XPath optimization. In First International
Workshop on High Performance XML Processing, May 2004.

15. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. In
Proc. 28th Int. Conf. on Very Large Data Bases (VLDB 2002), pages 95-106, Hong Kong,
China, 2002. Morgan Kaufmann.

16. MIT, ERCIM, and Keio. The World Wide Web Consortium (W3C), 1994.
http://www.w3.org.

17. F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs, and
variables. In Proceedings of the 9th International Conference on Database Theory, pages
315-329. Springer-Verlag, 2002.

18. D. Olteanu, H. Meuss, T. Furche, and F. Bry. Symmetry in XPath. In Proceedings ofSeminar
on Rule Markup Techniques, no. 02061, Schloss Dagstuhl, Germany (7th February 2002),
2001.

19. J.-Y. Vion-Dury and N. Laya'ida. Containment of XPath expressions: an inference and rewrit
ing based approach. In Extreme Markup Languages, August 2003.

20. P. Wadler. Two semantics for XPath. http://www.research.avayalabs.com/user/wadler/
papers/xpath-semantics/xpath-semantics.pdf, January 2000.

A Denotational interpretations of paths and qualifiers mixed in a
proof.

2 subgoals

p : XPath
pi : XPath
p2 : XPath

incl
(filter (semanS t p x)

(fun x0 : Node =>

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://coq.inria.fr
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org
http://www.research.avayalabs.com/user/wadler/

18-M ay 31,2004

if incl
(filter (semanS t pi x0)

(fun xi : Node =>
if incl (semanS t p2 x1) empty
then false
else true)) empty

then false
else true))

(filter (semanS t p x)
(fun x0 : Node =>
if incl (product (semanS env t p1 x0) (semanS env t p2))

empty
then false
else true)) = true

subgoal 2 is:
Sle (qualif p (path (slash p1 p2))) (qualif p (path (qualif p1 (path p2))))

The Axiomatization of Group Theory: An
Experiment in Constructive Set Theory

Xin Yu and Jason Hickey

Department of Computer Science, California Institute of Technology
M /C 256-80, Pasadena, CA 91125, USA

A bstract. We explore a machine-checked formalization of elementary
group theory in constructive set theory. Our formalization uses an ap
proach where we start by specifying the group axioms as a collection of
inference rules, defining a logic for groups. Then we can derive all prop
erties of groups from these inference rules as well as the axioms of the
set theory. The formalization of all other concepts in abstract algebra
is based on that of the group. The formalization we present was fully
implemented in the MetaPRL theorem prover and all properties of the
algebraic objects were formally derived in MetaPRL.

1 Introduction

The notions of abstract algebra are central to many areas of mathematics. A b
stract algebra lias also made many contributions to computer science, including
abstract datatypes and object-oriented programming. Formalizing abstract alge
bra in a formal, automated system where proofs can be mechanically generated
and verified is valuable: formalization of many areas of mathematics could be
based on such abstract algebra theory; and formalization of many computer sci
ence concepts could be modeled after it.

O f course, we are far from being the first ones to work with abstract algebra
in a formal system. For example, Gunter working with HOL [1] has proved group
isomorphism theorems and shown the integers mod n to be an implementation of
abstract groups [2]. Jackson has implemented computational abstract algebra in
the NuPRL system [3,4,5]. And in IMPS [6] there is a notion of little theories [7]
which they use for proving theorems about groups and rings. Kammiiller and
Paulson [8] have proved Sylow’s theorem in Isabelle-HOL, a large proof that
required mechanizing a great deal of group theory.

In this paper, we present a formalization of the abstract algebra concepts
in set theory by axiomatization. This is a part of larger effort to explore differ
ent approaches to formalizing basic abstract algebra concepts to find out which
approach works the best.

Currently most efforts of formalizing algebra using general purpose theorem
provers are grounded in type theory. In practice, set theory, as the standard
foundation for mathematics, may have an advantage over type theory. Since there
is no extensive tradition of presenting mathematics in a type theoretic setting,
many techniques for representing mathematical ideas in a set theoretical language

have to be reconsidered for a type theoretical language. In addition, there is
much less variation among set theories, in which the well known formulations
are defined by a small collection of axioms in the predicate calculus, and for
practical purpose, are more or less equivalent [9]. In particular, set theory can
often present a convenient framework for developing constructive mathematics
using ordinary mathematical concepts.

It is the advantage of set theory over type theory and the fact that abstract
algebra is traditionally defined in the language of set theory that motivated us to
carry out our implementation of the axiomatization idea for formalizing abstract
algebra in a set theory setting. The actual work was done in the constructive set
theory of the MetaPRL system [10,11,12].

W e first specify the group axioms as a collection of inference rules, defining
a logic for groups. Then we can tell what it means for a given set together with
a binary operation to be a group, and derive all properties of groups from these
inference rules as well as the axioms of the set theory. The formalization of other
abstract algebra concepts, such as subgroups and homomorphisms, is based on
that of the group.

W e have proved many theorems of group theory in MetaPRL. As a verification
of the method and a good illustration of constructivity, such a machine-checked
formalization plays an important role in our implementation. In the interest of
space, we only give an overview of our formalization and sketch some proofs in
this paper; more details can be found in [12,13].

Organization. Section 2 introduces our detailed formalization of group the
ory. Section 3 gives an example of a concrete group, provides a detailed discussion
of some properties of our formalization, and suggests some alternative formaliza
tion approaches. Section 4 gives conclusions.

1.1 Constructive Set T heory and the C ZF m odule in MetaPRL

Constructive set theory, initiated by John Myhill in 1975 [14], is a theory of sets
that, among several others, provides a formal framework for the development
of constructive mathematics. It is based on the standard first order language of
classical axiomatic set theory and makes no use of constructive notions or ob
jects. Therefore the set theoretical development of constructive mathematics can
employ the same ideas, conventions and practice as the set theoretical presenta
tion of classical mathematics. To explain the constructive notion of the set, Aczel
introduced Constructive Zermelo-Fraenkel set theory, CZF [15], as a variant of
MyhilFs constructive set theory and showed its constructiveness by interpreting
it in M artin-Lof’s type theory [16], which was considered a precise foundation
for the constructive approach to mathematics.

Hickey [17] formalized CZF in the MetaPRL logical framework and interactive
proof assistant [10,11]. First, he implemented in MetaPRL a constructive Martin-
Lof style type theory called IT T (which stands for intuitionistic type theory)
similar to NuPRL’s one [3]. Next, he derived the axioms of CZF from IT T . Since
Aczel’s CZF theory is described completely explicitly with a collection of axioms,

2

after sets and these axioms are encoded in MetaPRL’s CZF module, we can use
them directly without referring to the type theory.

In CZF, all non-propositional elements of the set theory are sets; the num
bers and other structures are coded in the usual manner. Sets use an extensional
equality; two sets are considered equal if they have the same elements. The fol
lowing concepts have been formalized in MetaPRL’s CZF module: extensional
set equality si = s S2 , m em bership si Es S2 , first-order logic which includes
the restricted quantifiers \/x € s s,P[x) and 3x e s s,P[x), and the unrestricted
quantifiers \fsx.P\x\ and 3sx.P[x), subset si C s2, separation {./: Es s \ P{x\},
em pty set { } , singleton set {s }, binary union si U s 2 , general union Us,
unordered pairing (s i , ^) , and infinity (the natural numbers) u>. The sub
script s in the representations of si = s S2 , etc., means this is set theoretical
compared with those type theoretic implementations in MetaPRL’s IT T module.

Our formalization of abstract algebra is built on the basis of MetaPRL’s CZF
implement at ion.

2 Formalization of Group Theory

2.1 Groups

In mathematics, a group {G, *) is defined as a set G together with a binary
operation * defined on G that satisfies the following axioms:

G l . * is associative: for any a,b,c € G, (a * b) * c = a * (b * c).
G2. There is a left identity element e e G such that for every a E G, e * a = a.
G3. For some left identity element e, there is, for every a € G, at least one left

inverse element a' such that a! * a = e.

A group must satisfy all of the group axioms; and all properties of groups are
derived from these axioms. Inspired by this mathematical definition, we use a
set theoretic axiomatization to formalize groups in CZF. That is, we first specify
the group axioms as a collection of inference rules that any group should satisfy;
then all properties of groups are derived from these inference rules as well as the
axioms of CZF.

W e use term groups to denote “g is a group” which, theoretically, should be
defined as a predicate satisfying axioms G l, G 2, and G3:

groups = f V®, y , z e g.ear.(a; g.* y) g. * z = s x g. * (yg.* z) A
Be e s g.c&r.Vx Es g.c&r.(eg. * x = s x A 3x' Es g-c&r.x1 g. * x = s e),

where g should be an ordered pair (car, *). In our current implementation though,
we consider groups as an abstract concept with the meaning of “g is a group” .
The reason for this is that MetaPRL’s CZF theory do not yet support ordered
pairing. This works fine as far as this paper goes. In the future, however, if we
need, for example, functors for groups, then we should unfold this definition of
groups .

3

In terms of g, we represent the four components of group g, carrier set, bi
nary operation, identity, and inverse operation, with terms car9, eg, *g, and '»
respectively1, which altogether conform to a collection of axioms that are stated
as inference rules in the formal system.

Gl, G2, and G3 must be included in the collection of axioms since they specify
what groups are (see 5-7 in the list below). In addition, in the CZF setting of
MetaPRL, some axioms about the well-formedness of the group terms are needed
(as number 1 describes). Furthermore, the properties of binary operation, unary
operation, etc. are usually taken for granted when working informally on paper;
in a mechanized system, they must be stated explicitly, so axioms 2 through 4
are necessary.

1. In the CZF set theory of MetaPRL, anything that is not a proposition should
be a set: car9 and eg are sets; for any sets a and b, a *g b and a'g are sets.

F b group9 F b group9 F b a is a set F b b is a set
r b car9 is a set ’ F b a *g b is a set ’

r b group9 r b group9 F b a is a set
r b eg is a set ’ F b a'» is a set

2. For *g to be a binary operation on car9, car9 has to be closed under *g, and
exactly one element is assigned to each possible ordered pair of elements of
car9 under *g, i.e., for any a,b,c € car9, if a = b, then a *g c = b *g c and
c *g a = e *g b.

F b group9 r b a is a set F b b is a set F b a, b e s car9
r \ - a * g b Es carg

F b group9 r b a is a set F b b is a set F b c is a set F b a, b, c e s car9
r b a = s b => a * g c = s b *g c

F b group9 r b a is a set F b b is a set F b c is a set F b a, b, c e s car9
r b a =s b => c * g a =s c *g b

3. Similarly, for '» to be a unary operation on car9, car9 has to be closed under
'» and exactly one element is assigned to each element of car9 under '».

r b group9 r b group9 F b a is a set F b b is a set
r b a is a set F b a €s car9 F b a €s car9 F b b €s car9

r b a!a e s car9 ’ F b a = s b => a/» = s

1 In MetaPRL, input is in ASCII format, while output is pretty-printed so that it can
be easily understood by those unfamiliar with the MetaPRL syntax. For example, we
use carf't/} for the input of the carrier set of the group in the actual system. In this
paper, we try to avoid the ASCII representations and instead use the pretty-printed
forms of terms and definitions for clarity.

4

4. eg is in car3.
F b groupg

F b eg €s car3
5. is associative.

F b group3 F b a is a set F b b is a set F b c is a set F b a,b,c € s car3
r h a *g (b *g c) =s (a *g b) *g c

6. eg is the left identity.

r h group3 r h a is a set f h a € s car3
r h eg *g a = s a

7. 'a is the left inverse operation.

r h group3 r h a is a set f h a € s car3
r h a!» *g a = s eg

The above inference rules define the axioms for groups. For any instance of a
group, we will need to verify the axioms. However, for general groups, many
properties are immediate, such as the left inverse/identity is also the right in
verse/identity, and a*b = a*c implies b = c given a, 6, c € G for any group {G, *}.
We also proved some theorems that are a little more complicated, such as the
uniqueness of the identity and the inverse operation, and the unique solutions
for linear equations a* x = b and y * a = b in the group (G, *) where a,b € G.

In MetaPRL, these properties are proved in a straightforward way. The ba
sic idea is similar to that done on paper, but since MetaPRL is an interactive
system and provides some automated reasoning, some proofs tend to be easier.
Meanwhile, since CZF in MetaPRL is not yet sufficiently automated, some extra
efforts might be needed in the proofs. For illustration, we present a proof of one
of the theorems below.

Suppose we have already proved, from the axioms of groups and CZF, that
the left inverse is also the right inverse and now we want to prove the left identity
is also the right identity. First we need to add the statement of this theorem to
the Czf_itt_group module:

r b group r b a is a set f b a € s car3
r b a *g eg = s a

Our idea for proving it is

^ * 5 9̂ =s ® *9 9 *9 ^0 =s ^ P) ^ = s *g & = s

where the second equation holds because of the associativity of and the third
holds because the left inverse is also the right inverse.

To prove it in the MetaPRL proof editor, we first need to replace eg with
a'9 *g a, which can be done by a tactic setSubstT provided by MetaPRL’s CZF

5

theory. The usage is setSubstT (si = a S2) i, which replaces all occurrences of
the term si with S2 in clause i (i = 0 implies the conclusion). So we navigate to
this rule and apply the setSubstT (eg = a u!a *g a) 0 thenT autoT tactic.2

Two subgoals are generated. The first one,

r h groups r h a is a set F h o e , cars
r h eg = a a'9 *g a ’

is trivial since we have the axiom

r h groups r h a is a set F h a e , cars
r h a '9 *g a = a eg

and = a is symmetric. With the use of the eqSetSymT tactic provided by MetaPRL,
this subgoal is proved.

As for the second subgoal,

r b groups r h a is a set F h a £s cars
r h a * g (a's *g a) = s a ’

we can utilize the associativity axiom G1 by applying the tactic setSubstT (a *g
(a,g *g a) = s (a *g a!3) *g a) 0 thenT autoT, which generates a new subgoal

r h groups r h a is a set r h a e s cars
r h (a*g a'9) *g a = s a ’

where a *g a'9 can be replaced with eg thanks to the right inverse property we
have proved. After this substitution, we get the goal of proving eg *g a = s a,
trivial by the left identity axiom G2. This completes the proof of the theorem.

For a complete list of the theorems we proved, see [12].

2.2 Abelian Groups

With the elementary group concepts formalized, we can go ahead with formalizing
the other concepts in group theory, such as the abelian group.

We define the predicate “g is an abelian group’' as

defabels = groups A Va, b e 3 carg.(a *g b = 3 b *g a).

Since abels implies groups, all the properties of groups hold for abels.

2 The autoT tactic performs “automated” proving based on repeated application of
several “basic” tactics; and the infix function thenT is a tactical used for sequencing:
the proof first applies the substitution, and then applies the autoT tactic [17].

6

2.3 Subgroups

A group can have multiple subgroups. For instance, both (Z, +) and (2Z, +) are
subgroups of (Q, +). where Z is the integer set. 2Z is the set of even integers,
and Q is the set of rational numbers. To specify a subgroup H of a group G, we
need at least two parameters, one specifying the group G and another specifying
the subgroup H. The predicate “h is a subgroup of gr' can be defined as

defsubgroup^ = groups A groups A car/j, C cars A Vo, b €s car/j,.(a */j, b = s a*g b).

The last condition ensures that *h is the induced operation on car/j, from cars.
We proved that if subgroup^ g, then 1) carh is closed under *g; 2) e,h = s eg,

and eg €s c a r 3) for all a €s carh, a!h = s a'9 and a’9 €s car

2.4 The Power O peration

Before formalizing cyclic subgroups and cyclic groups, let us study the “power”
operation which is prerequisite for defining cyclic subgroups and cyclic groups.

Suppose (G, *) is a group. For any element a € G, we define

as the power operation of the group (G, *} based on a (a is the base).
To formalize it. obviously, we need to use mathematical recursion. However.

MetaPRL’s CZF module does not yet have the integer set or arithmetic on inte
gers defined. Since the MetaPRL definition of CZF is derived from ITT. we can
borrow the integers from ITT for use as the recursion variable, and also borrow
the mathematical recursion rules from ITT. This is valid since the recursion pa
rameter is n, which means an is still a set given a is a set. In other words, under
the mathematical recursion of ITT. a0, a1, a2, and a-1 , a-2 , ... are still sets;
all set properties and set operations can be applied to them. By doing this we can
also utilize the arithmetic part in the MetaPRL type theory, which is currently
much more complete than that in the MetaPRL set theory.

Now let us define the power operation in group g as:

where n is of the integer type in ITT and the recursion is also the one in ITT.
From this definition, we can prove, by induction, that the power operation

has the following properties:

a * a * ... * a if n > 0
n
e if n = 0

a' * a' * ... * a' if n < 0
— n

7

1. Well-formedness.

r b groups F b a is a set F b n € Z
r b (an)g is a set

2. The membership is preserved.

r b group3 r b a is a set F b a €s car3 F b n € Z
r b (a n)g €s car3

3. The power operation is functional, which means it computes equal set values
for equal base arguments.

r b group r b a is a set F b b is a set
r b a €s car3 F b €s car3 f b n e Z F a = s b

r b (an)g = S (b n)g

Also, with the use of arithmetic rules in the ITT type theory, we can prove

r b groups r b a is a set F b a €s cars f b r o g Z F b n € Z
r b (a m)g * g (a n)g = s (a m + n ')g '

2.5 C yclic Subgroups

The key to formalizing a cyclic subgroup H of group G generated by a is to build
the carrier set H = {an \ n € Z} from a where aP is the power operation of group
G. Since it can also be described as the set of all elements in cars that are equal
to a n for some n € Z, we use the separation axiom of CZF to define it as

sep(a; €s car3 | 3n € Z.x = s (an)g).

Note that we are using a type theoretic existential within the construction; the
CZF implementation in MetaPRL allows this.

Now we define “h is a cyclic subgroup of g generated by a" as

defcycj5ubg/l<s<a = group/j A group3 A a € s car3 A Vo, b € s c&Th-(a *h b = s a *g b) A
carh = s sep(a; €s car3 | 3n € Z.x = s (an)g).

Of course, the cyclic subgroup H of G generated by a is a subgroup of G.
It can be easily proved here: since car ̂ = s sep(a; €s car3 | 3n € h.x = s (an)g),
any element in car ̂ is also in car3. Thus, car ̂ is a subset of car3. All the other
requirements for H to be a subgroup of G are satisfied. So, we can conclude
subgroup,^ from cycj5ubg/l s a.

Equivalently, we can also define cycj>ubg/l<s<a as

cycj5ubg/l<s<a =f subgroup/j^Ao €s csxghcsxh = s sep(a; €s car3 | 3n € Z.x = s (an)g).

8

2.6 Cyclic Groups

A group G is cyclic if there exists a £ G such that for every x € G there is an
integer n such that x = an. We define it as

cycg =f groupg A 3a Es carg.Va; Es earg.3n € h.x = , (an)g.

The existential quantifiers in the definition are constructive, so given eyegg, we
know what its generator is and each element is to what power of the generator;
on the other hand, to conclude eyegg, we need to find its generator first.

Since a cyclic group must be a cyclic subgroup of itself, when its generator is
explicitly known, we can define “g is a cyclic group generated by a" as

def ,eyes g.a = cye_subg g<g<a,

which is equivalent to (by unfolding eye_subggg(l)

cycggxi =f group g A a Es carg A carg = , sep(a; Es carg | 3n € Z.x = s (an)g).

The last condition might look strange at the first glance. What it actually means
is the carrier is such a set that any element in it is to some integer power of a.

We proved that eyegg is equivalent to 3a Es earg.eyegg_a.
A cyclic group must be abelian, which is easy to prove formally. Suppose we

want to conclude from eyegg that abelg. Since group g is cyclic, it has a generator
a and for any two elements x and y of carg, there exist rn and n in Z such that
x = s (am)g and y =,, (an)g. g is abelian requires

x * g y = s y * g x, i.e., (am)g *g (an)g = s (an)g *g (am)g.

We already have the result

r h groupg r h a is a set F a Es carg f h r o e Z f h n G Z
r h (am)g *g (an)g = 8 (am+n)g ’

so it turns out that we need to prove

(am+n)g = s (an+m%,

which is trivial by the commutativity of addition on integers.

2.7 Cosets and N orm al Subgroups

With the separation axiom, we define the left and right cosets as

lcoset/i g.a =f sep(a; Es carg | 3y Es carft.(x = s a *g y)),

rcoseth.g .a =f sep(a; Es carg | By Es car/,,.(x = s y *g a)).

We need to specify the following inference rules for them: an element x is in
lcoset .̂g.a if and only if it is in carg and there exists y Es ear/, such that x = , a*gy

9

where subgroup^ and a €s car9; same with rcoset/l:9!a except that x = s y *g a.
Both the left and right cosets are subsets of car9.

Then we define the predicate “h is a normal subgroup of g” as

defnormal_subg/l 9 = subgroup,A Va, €s car9.(lcoset/l!9!a = s rcosets,9,a).

We proved that all subgroups of abelian groups are normal.

2.8 H om om orphism s and Isom orphism s

Now let us look at the relationships between groups, which are generally exhibited
in terms of a structure-preserving mapping from one group to the other.

For / to be a mapping from H into G, it is required that: 1) f(a) is in G for
any a in H; 2) exactly one element in G is assigned as f(a) for each a in H.

So, we define “/ is a homomorphism from H into G” as

homh,g,f =f group h A group g A Va, € s car^.(/(a) is a set A f(a) €s carg) A
Va, b €s car^.(a = s b =4> /(a) = s /(&)) A
Va, b €s ca iv (/(a *h b) = s f(a) *g /(&)).

homh,gj is functional in the sense that for any two equal mappings / and / ' ,
homh,gj always implies homh,gj '-

To illustrate our formalization of the homomorphism, let us study a simple
example—the trivial homomorphism, which is a mapping f e from a group H into
a group G such that / e(a.) = cq for all a € H. Suppose H and G are represented
by h and g respectively. For any a, b € s car ,̂ f e(a) = s f e{b) = s eg, so f e{a) is a
set, / e(a.) €s car9, and a = s b => / e(a.) = s f e{b). h is a group implies a *h b is in
cai'h, so f e(a *h b) = s eg, which in turn is equal to eg *g eg = s f e(a) *g f e{b). All
the conditions for homh,gj c are satisfied; homh,gj c holds.

Homomorphisms preserve group structure. Put differently, if / is a group
homomorphism from H into G, we might know the structure of G from that of
H. For example, / maps the identity of H to that of G; it also maps the inverse
of an element a in H to the inverse of /[a] in G. And if / is onto and H is
abelian, then G must also be abelian. In addition, if H\ is a subgroup of H, then
the image f[Hi] of Hi under / is a subgroup of G; if G\ is a subgroup of G, then
the inverse image / - 1 [Gi] of G\ is a subgroup of H. We have proved all these
properties of homomorphisms in MetaPRL.

Once homomorphism is formalized, the formalization for isomorphism is triv
ial since an isomorphism is a bijective homomorphism, i.e., it is a homomorphism
that is one to one and onto. We define " / : / / • G is an isomorphism” as

isoh,g,f =f homh,gj A Va, b € s carh-(f(a) = s f(b) => a = s b) A
Va, € s carg3b €s car/,,.(a = s /(&)).

10

2.9 Kernels

Given / is a group homomorphism from H into G, the kernel of / is the subgroup
of H whose carrier set is {x € H \ f(x) = ea}- To describe the homomorphism,
three parameters are needed; we also need an extra parameter to specify the
kernel itself. We define “k is the kernel of the homomorphism / : h —► g" as

kernelfc./j.g.j =f homh.g.f A su bgrou p^ A car ̂= s sep(:c Gs car/,, | f (x) = s eg).

Noticing that
delsubgroup ,̂ h = groupfc A grouph A car ̂ C car/, A Va, b Gs carfc.(a *k b = s a */, b),

where group/, is implied in houifigj , and car ̂ C car/, is implied in car ̂ = s
sep(:c £ s car/, | f (x) = s eg), we can update the kernel formalization to be

kernelfc,/,^/ =f hom/^gj A groupfc A carfc = s sep(:c Gs car/, | f (x) = s eg) A
Va, b Gs carfc.(a b = s a */, b).

This definition implies that if kernelfc./,.s./ then subgroupfc /,.

3 Discussions

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

3.1 The Form alization o f a Specific G roup

We have successfully formalized most of the fundamental concepts in group the
ory. Now the question is: under this formalization, given a set, a binary opera
tion, an identity, and an inverse operation, how can we know whether they form
a group or not?

Recall the definition of a group. A group must sat
isfy all those axioms. So first we define car/,, */,, e/,, 'h as
the given set, binary operation, identity, and inverse oper
ation respectively. Then without making the assumption
grouph, check whether all the axioms of groups (number
1-7 in Section 2.1) are satisfied. If not, we can conclude
this composition is not a group at all. If yes, we conclude
they do form a group and thus all the proven group prop
erties apply to it. The negative case is easy to understand.
For the positive case, let us examine a concrete example,
the Klein 4-group, to illustrate this method.

The K lein 4-group contains four elements, its group table listed in Fig. 1.
Let us call the Klein 4-group M ein4 and declare k-Q, k\, k-z, k$ as its four

elements. Its carrier set, binary operation, identity, and inverse operation can be
defined as in Table 1.

With these definitions, we can verify that all of the group axioms are satisfied
for kh i n without assuming groupfciein . For example, we can prove the axiom
G2 for kh in

/ ' (I is a Set f h a e , C&Tklein*

Fig. 1. Group table
of the Klein 4-group

r &klein4 * k l e i n .i & s &

11

Hpf
carfc(e<„4 = { fco} U { f c i } U { f e } U {fc3}

def j
^ k l e i n 4 — & O

k 0 k 0
def

k 0 k l *k le in.i ^0
def

k i f e *k le in ,4 k 0
def

fe k s *k le in .4 ko
def

k s

k 0 *k le in 4 k i
def

k i k l *k le in 4

def
k 0 f e *k le in 4 k\

def
k 3 k s *k le in.4 k\

def
k 2

k 0 *k le in 4 k-2
def

k 2 k l *k le in 4 k ‘2
def

k-3 f e *k le in 4 k ‘2
def

k 0 k s *k le in 4 k ‘2
def

k i

k 0 + i;i t ; I 1 k-3
def

k-3 k l *k le in .4 k s
def

k 2 f e *k le 1 ri/i k s
def

k i k s *k le in .4 k s
def

k 0

, 'Jciein
k 0

1, def ^
' 0

j fkl
k x

e.i ti 1 def j
4 = fc] j fklc

k 2
L n.4 def

' k 2
J 'kle.il
k s

7,4 def
k s

Table 1. Definitions for the Klein 4-group

First, since caxkiein* is defined as {£0} U {hi} U {£2} U {fe }, from the properties
of union and singularity, it can be proved that if a Es caikieim-. then a must be
equal to one of ko, k\, k2, ks. Then for each of these four cases, by definition,

&kleiti4 *kleitii k-i = s k$ *kle,in,t k-i = s k-i it = 0, 1, 2, 3).

All the other group axioms can be proved similarly for the Mein4 case. Thus we
can conclude that this is a group and can make the hypothesis groupfcjei„ . As a
consequence, all the group theorems apply for klein .̂

The other specific groups can be formalized in the same way.

3.2 Construetivity

Constructivity sometimes makes things harder, especially for work done with
machines. For example, classically, there is a theorem “any subgroup of a cyclic
group is cyclic.” The proving process for the nontrivial case (i.e., the subgroup is
other than {e} where e is the identity) is assuming G is a cyclic group generated
by a and H is a subgroup of G, then supposing m is the smallest integer in Z+
such that am e H, and finally claiming and proving am generates H. One of
the problems is that in order to assume that rn is the smallest natural number
such that am e H, we need to prove such m exists. In constructive mathematics,
the validity of such an existential statement would imply being able to actually
compute m. In a straightforward formulation like the one we have implemented,
this is not generally possible (since the group membership could be undecidable).

On the other side, constructivity sometimes has advantages. For example, we
can extract computational content from the proofs, which allows us to use our
formalism for developing guaranteed correct formal abstract algebra algorithms
by extracting them from proofs of existentials. However, algorithms extracted
naively from proofs are often inefficient, as is the case for MetaPRL for now.
Although Caldwell [18] and Nogin [19] demonstrate methods to address this
problem, we have not explored this option in detail in MetaPRL.

12

3.3 Limitations and Alternatives of the Formalization

As discussed above, our formalization of the foundations of abstract algebra
— mainly the group theory — is a success: All the major group concepts are
formalized; whether a set-operation combination is a group or not can be decided;
most theorems and properties can be proved effectively.

Compared with type theory, set theory is more natural in some cases in for
malizing algebra. For example, types use intensional equality, but we often care
more about extensional properties of algebraic objects.

However, our formalization still has some limitations. For now, it is impossible
to quantify over groups and to have sets of groups. But this can be easily fixed
if we expand the definition of group9 as mentioned in Section 2.1, that is, we
define a group as being an ordered pair of a carrier and a binary operation with
axioms specifying the associativity of the operator, the existence of an identity
element, and an existence of an inverse for each group element. Anther benefit of
doing this is that we need no more to explicitly give names for the identity and
the inverse operation. Besides, if we add universal levels to the CZF set theory,
then we can also describe the category of all groups.

We tried to limit ourselves to pure CZF, although we still ended up using
a few elements of type theory when some parts of MetaPRUs CZF theory were
not yet implemented. It could be beneficial to try to clean that up and come up
with a truly pure-CZF implementation. On the other hand, we may want to try
to take advantage of the availability of the embedding of CZF into ITT in Meta-
PRL by allowing ourselves to use the type theoretic concepts more freely in our
formalization. This way we might be able to come up with some natural “hybrid”
formalization where some aspects are formalized using set theoretic concepts and
some using type theoretic concepts, picking the most natural approach in every
case.

In addition, the formalization is somewhat awkward because typing axioms
are not cleanly separated from the principal algebra axioms. We proposed another
formalization method of abstract algebra in MetaPRUs ITT theory, which is
based on the use of the dependent record type, and in which all objects are
first-class and the type information is cleanly separated [20].

4 Conclusions

This paper presents a formal, mechanically verifiable account of foundations of
abstract algebra in set theory. We use set axiomatization to formalize groups.
Every group should agree with all of the group axioms and all properties of
groups are derived from the group axioms and set axioms. We further formalize
subgroups, cyclic groups, homomorphisms, and other concepts in group theory
on the basis of the formalization of groups. Rings, fields and more advanced
abstract algebra can be formalized in constructive set theory based on the group
formalization.

Although our work is still elementary and has some limitations, overall the
idea is natural (easy to understand), the formalization is easy to use (both for

13

proving purposes and for extending purposes), and the limitations are more due
to the incompleteness of our CZF implementation in MetaPRL than due to the
inefficiency of this formalization method or the fault of the CZF theory itself.
We believe it will have wide applications in the future.

5 Acknowledgments

The authors would like to thank Aleksey Nogin and the anonymous referees
whose valuable observations have greatly improved the contents and the presen
tation of the paper. We also want to thank Alexei Kopylov for discussions on the
formalization.

References

1. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment
for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

2. Gunter, E.: Doing algebra in simple type theory. Technical Report MS-CIS-89-
38, Logic & Computation 09, Department of Computer and Information Science,
Moore School of Engineering, University of Pennsylvania (1989) Distributed with
the HOL system in the directory Training/studies/intmod/doingalgpaper.

3. Constable, R.L., Allen, S.F., Bromley, II.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the NuPRL Proof Development
System. Prentiee-IIall, NJ (1986)

4. Jackson, P.B.: Exploring abstract algebra in constructive type theory. In Bundy,
A., ed.: Automated Deduction - CADE-12; Proceedings of the 12th International
Conference on Automated Deduction. Volume 814 of Lecture Notes in Artificial
Intelligence., Springer-Verlag (1994) 590-604

5. Jackson, P.B.: Enhancing the NuPRL Proof Development System and Applying it
to Computational Abstract Algebra. PhD thesis, Cornell University, Ithaca, NY
(1995)

6. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: An interactive mathematical
proof system. Journal of Automated Reasoning 11 (1993) 213-248

7. Farmer, W.M., Joshua D. Guttman, F.J.T.: Little theories. In Kapur, D.,
ed.: Automated-Deduetion-CADE-11. Lecture Notes in Artificial Intelligence, New
York, Springer-Verlag (1992) 567-581

8. Kammuller, F., Paulson, L.C.: A formal proof of Sylow’s first theorem - an exper
iment in abstract algebra with Isabelle HOL. Journal of Automated Reasoning 23
(1999) 235-264

9. Gordon, M.J.C.: Merging HOL with set theory: preliminary experiments. Technical
Report 353, University of Cambridge Computer Laboratory (1994)

10. Hickey, J.J., Nogin, A., Kopylov, A., et al.: (MetaPRL home page) http://m etaprl.
org/.

11. Hickey, J., Nogin, A., Constable, R.L., Aydemir, B.E., Barzilay, E., Bryukhov, Y.,
Eaton, R., Granicz, A., Kopylov, A., Kreitz, C., Krupski, V.N., Lorigo, L., Schmitt,
S., Witty, C., Yu, X.: MetaPRL — A modular logical environment. In Basin,
D., Wolff, B., eds.: Proceedings of the 16*h International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2003). Volume 2758 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 287-303

14

http://metaprl

12. Hickey, J.J., Aydemir, B., Bryukhov, Y., Kopylov, A., Nogin, A., Yu, X.: (A listing
of MetaPRL theories) http://m etaprl.org/theories.pdf.

13. Yu, X.: Formalizing abstract algebra in constructive set theory. Master’s thesis,
California Institute of Technology (2002)

14. Myhill, J.: Constructive set theory. Journal of Symbolic Logic 40 (1975) 347-382
15. Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical Report 40,

Mittag-Leffler (2000/2001)
16. Martin-Lof, P.: Intuitionistic Type Theory. Number 1 in Studies in Proof Theory,

Lecture Notes. Bibliopolis, Napoli (1984)
17. Hickey, J.J.: The MetaPRL Logical Programming Environment. PhD thesis, Cornell

University, Ithaca, NY (2001)
18. Caldwell, J.: Moving proofs-as-programs into practice. In: Proceedings of the

12th IEEE International Conference on Automated Software Engineering, IEEE
Computer Society (1997)

19. Nogin, A.: Writing constructive proofs yielding efficient extracted programs.
In Galmiche, D., ed.: Proceedings of the Workshop on Type-Theoretic Lan
guages: Proof Search and Semantics. Volume 37 of Electronic Notes in Theoretical
Computer Science., Elsevier Science Publishers (2000) http://www.elsevier.nl/
g ej-n g /31 /29 /23 /6 7 /22 /show/Products/notes/index.htt#005.

20. Yu, X., Nogin, A., Kopylov, A., Hickey, J.: Formalizing abstract algebra in type
theory with dependent records. In Basin, D., Wolff, B., eds.: Wth International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2003). Emerging
Trends Proceedings, Universitat Freiburg (2003) 13-27http://nogin.org/papers/
formalaa.html.

15

http://metaprl.org/theories.pdf
http://www.elsevier.nl/
http://nogin.org/papers/

