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Preface

This volume constitutes the proceedings of the Emerging Trends track of the 
17th International Conference on Theorem Proving in Higher Order Logics 
(TPHOLs 2004) held September 14-17, 2004 in Park City, Utah, USA. The 
TPHOLs conference covers all aspects of theorem proving in higher order logics 
as well as related topics in theorem proving and verification.

There were 42 papers submitted to TPHOLs 2004 in the full research cate
gory, each of which was refereed by at least 3 reviewers selected by the program 
committee. Of these submissions, 21 were accepted for presentation at the con
ference and publication in volume 3223 of Springer’s Lecture Notes in Computer 
Science series.

In keeping with longstanding tradition, TPHOLs 2004 also offered a venue 
for the presentation of work in progress, where researchers invite discussion 
by means of a brief introductory talk and then discuss their work at a poster 
session. The work-in-progress papers are held in this volume, which is published 
as a 2004 technical report of the School of Computing at the University of Utah.

August 2004 Konrad Slind
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Som e M athem atical Case Studies in  
Proof Power-HOL

R.D. Artlian

Lemma 1 Ltd.
2nd Floor, 31A Chain Street, 

Reading UK RG1 2IIX 
rda01emma-one. com

A b s tr a c t .  This paper gives an overview of three case studies in develop
ing pure m athem atical theory using ProofPower-HOL. The case studies, 
which currently cover a selection of basic m aterial from the theories of 
real analysis, group theory and topology, expose some interesting issues 
for formalising m athem atics.

1 Introduction

Apart from basic mathematical structures such as sets, functions, lists and num
bers, applying an automated theorem-proving system to hardware and software 
engineering problems tends to involve mathematical theories of a rather dif
ferent nature from the traditional subject matter of pure mathematics. Many 
researchers feel that engineering applications are the most important for auto
mated theorem-proving. However, it is natural to try to formalise pure mathe
matical theories. Research into this goes back to the earliest days of electronic 
computation.

In a recent survey, Carlos Simpson [12] has identified numerous reasons why 
computer-assisted formalised mathematics should be of benefit to the mathemat
ical community. Simpson gives many references to earlier work in this area as 
does John Harrison in his thesis [7] and his paper [6]. The Flyspeck project [5] is 
applying computer-assisted theorem proving to increase confidence in Thomas 
Hales’ proof of the Kepler sphere-packing conjecture, a difficult proof involv
ing a considerable element of computation which has caused problems for the 
traditional peer review process.

In 2001, the opportunity arose to develop, for use in program verification, a 
theory of real arithmetic for the Proof Power specification and proof system. It 
was a natural experiment to use this as the basis of a theory of real analysis 
and I spent some time late in 2001 working on that. In 2003, since the Jor
dan curve theorem1 was felt to be a good challenge problem in some automated 
theorem-proving circles, I used ProofPower-HOL to prove what Henle [8] calls the

1 Apparently, much progress has been m ade on the Jordan curve theorem  using the 
Mizar system, bu t I not able to  assess w hether the proof of the general case in two 
dimensions is complete (see h t tp : / /m iz a r .u w b .e d u .p l / ).

http://mizar.uwb.edu.pl/


fundamental lemma in one of the classical proofs of this results. In retrospect, 
I view this as a highly instructive mistake: Henle’s book is a very accessible ac
count of elementary algebraic topology for beginning students. His fundamental 
lemma is essentially a calculation of the mod 2 homology groups of the plane. 
I formulated it as a combinatorial result about discrete gratings and proved it, 
the proof being fairly easy.

Unfortunately, connecting the fundamental lemma expressed as a combina
torial fact with the geometry involves several topological results, most notably 
what Henle calls Alexander’s lemma. I quickly realised that I was going to have 
to cover quite a bit of geometry and topology to prove them. Now Henle’s proofs 
are very carefully designed for the beginner; they appeal to geometric intuitions 
as much as to formal reasoning. Henle sets up topology as the topology of subsets 
of the plane and to follow his proofs as they stand would involve doing special 
cases of general results whose proofs are no harder formally than the special 
cases.

Moral 1: if you ask someone “have you proved the XYZ theorem?’' and 
receive the reply that they have proved the “fundamental lemma” or the “main 
result” or similar, it is wise to scrutinise their formal account closely to find out 
what they have actually proved2.

Moral 2: theorem-provers don’t need spoon-feeding; it makes sense to prove 
things at the “right” level of generality and that will often be more general than 
in an account intended for beginners.

Moral 3: while there is no royal road to proving theorems, there are short
cuts; however, you have to choose your shortcuts very carefully to make sure you 
don’t get lost.

I subsequently began some case studies in pure mathematics, trying to cover 
the material along the lines that it might be covered in a typical undergraduate 
or beginning graduate course. Carried far enough, this programme would have 
the Jordan curve theorem drop out as the two dimensional case of the Jordan- 
Brouwer separation theorem proved via the calculation of the homology groups 
of spheres, but that is a long way off. To date this work has covered the following 
topics.

— A more complete treatment of real analysis including the definitions and 
basic properties of the exponential and trigonometric functions and of tt.

— Some group theory including the definitions and elementary properties up 
to the three isomorphism theorems and the Cayley representation theorem

— Enough abstract and metric space topology to define the notions of homotopy 
and the fundamental groupoid (and to prove that it is a groupoid).

2 As a simpler example, I have still not seen a proof of the m utilated chess-board 
theorem  as a theorem  about dominoes and chess-board as geometrical objects, which 
is w hat they surely are. Ju st as in my problem with the  Jordan curve theorem, the 
combinatorics is fairly easy, bu t the  geometric realisation requires more work.
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My objectives in this enterprise were somewhat vague: essentially, I just 
wanted to see how this material turns out and to compare notes3 with other 
systems (Mizar, PVS, HOL Light, etc.). I was also specifically interested in 
developing the theory to the points where the main mathematical subjects of 
algebra, analysis, geometry and topology begin to interact and inform one an
other, e.g., in algebraic topology and differential geometry. During the course of 
the work, some definite themes have emerged:

— I have tried to provide natural and readable specifications of the mathemati
cal concepts formalised. For example, I use differential equations rather than 
power series as the definitions of the trigonometric functions, since I consider 
that approach to have a more intuitive, geometrical appeal.

— I have tried to follow the development of pure mathematics both in fitting 
abstract notions to more concrete ones after the event and in using abstract 
notions that have not yet been formalised to inform more concrete work. For 
example, you don’t need to develop abstract group theory to define the real 
numbers and show that they are a group under addition. You can even use 
group-theoretical thinking while you’re developing the theory. However, once 
you have some abstract group theory, you should be able to apply that to 
the real numbers and other specific constructions you may make with them 
(e.g., real vector spaces4).

— I have tried to develop each theory at the “right’' level of generality or ab
straction: this often involves a compromise between making the task at hand 
feasible and making the results general enough to be useful. On the other 
hand, being more abstract is sometimes both more powerful in applications 
and easier! E.g., the fundamental groupoid of a topological space is techni
cally often easier to work with than the fundamental group.

There is no new mathematics of any significance in any of this: just as there 
is no significant new mathematics in an undergraduate textbook. However, in
teresting details arise en passant and you do learn something as you go (for 
example, that integration is not needed to develop enough of the the theory of 
power series to introduce the exponential and transcendental functions).

This paper gives an overview of what has been done at the time of writing 
(May-July 2004) and discusses some of the issues for formalising mathematics 
that have been highlighted. Full details are given in the papers [1-3]. The struc
ture of the sequel is as follows: section 2 introduces the ProofPower-HOL logic 
and system by means of a simple example which also illustrates, in microcosm, 
some of the formalisation issues encountered (a theory listing for this example 
is given as an appendix); section 3 gives an outline on what has been done in 
the three case studies; section 4 discusses how the approach of the case studies

3 The present paper is not intended as a detailed presentation of comparisons between 
different systems, bu t I will air my personal viewss on some points of principle.

4 Roger Jones and I have an embryonic theory of normed real vector spaces based on 
the group theory case study and including a coordinate-free definition of the Frechet 
derivative.
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might scale to more complex problem domains; section 5 gives some concluding 
remarks.

2 A n Exam ple

ProofPower is a system supporting specification and proof in HOL and Z. It is 
founded on an LCF-style implementation in Standard ML5 of the same polymor
phic simple type theory as the other systems in the HOL family. ProofPower-HOL 
supports a syntax for specification adapted from the Z notation [13] intended 
to encourage well-documented formal specifications using familiar logical and 
mathematical notations. This document is written in that syntax, Its source 
form is a mixture of M ’gX and input for the ProofPower-HOL parser. The input 
for the parser is displayed using a special font and a (mostly) single-character 
mark-up for the mathematical symbols, so that, for example, when you see ‘V: 
in this paper, what I typed and then saw on my screen was an upside-down ‘A: 
too.

To illustrate the style of specification adopted in the case studies, let us 
develop a simple algebraic theory. If G is a group, a G-action on a set X  is a 
correspondence between elements of G and mappings of X  to itself such that 
multiplication in the group corresponds to composition of the mappings and the 
unit of the group corresponds to the identity mapping. A set X  equipped with 
a G-act ion is called a G-set. G-sets arise, for example, by considering groups of 
symmetries of geometrical objects. To give a concrete example of a group action 
before defining the concept of a group, let us consider the particular case when 
G is Z, the group of integers under addition.

So a Z-set will comprise a pair comprising a set (called the carrier set of the 
Z-set) together with an assignment to each integer of a function from the set to 
itself. To represent this abstract concept in HOL, let us consider the polymorphic 
class of all pairs comprising a set of elements of some type 'a together with a 
function mapping integers to total functions from 'a to itself. We can capture 
this in the following type abbreviation6
S M L

\declare-type-abbrev("Z,-SET", ["'a"], r:'a S E T  x  (Z —> 'a —> 'a'p);

The type 'a here is a polymorphic type parameter. It can be instantiated to 
any type we please, for example, an element of the type7 R Z-SE T  is the type 
that includes all Z-act ions on sets of real numbers. We will think of the above

° ML stands for “m etalanguage” . S tandard  ML is a functional programming language 
which serves as bo th  the implem entation language and the interactive command 
language for ProofPower.

8 Here the “specification” comprises an ML com mand to  achieve the desired effect, 
since the ProofPower-HOL parser does not provide a concrete syntax for this form 
of definition.

' 1IOL type constructors are generally postfix operators, for example ‘Z LIST’ denotes 
the type of lists of integers.
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type as providing a signature for a class of structures which are candidates to 
be Z-sets. If X  is such a structure (i.e., a member of an instance of the above 
type), we will write Car X  for the carrier set and (x * * i')X for the action 
of an integer i on an element x. Note that the action operation is ternary not 
binary: in informal mathematics, it is normal to let the reader infer from the 
context which mathematical structures are being deployed, but formally we must 
be explicit about this.

To achieve the above syntax, we first declare the string ‘**’ to act as an infix 
symbol with the same numerical precedence (310) as arithmetic exponentiation.
S M L

|declare-infix(310. "**");

We now give a constant specification to introduce the new constants ‘C ar  
and A constant specification in ProofPower-HOL comprises two parts: the 
part above the line gives type ascriptions for the new constant or constants and 
the part below the line gives a predicate which is to be their defining property. 
In this case the defining property comprises two universally quantified equations 
defining the values of applications of the functions ‘C ar  and ‘**’ Parsing the 
constant specification maps onto a call of the primitive definitional principle 
const-spec. This principle requires an existence proof for the constants being 
introduced. The ProofPower-HOL infrastructure includes a range of procedures 
for discharging the existence proofs and these will automatically discharge the 
proof obligations for all of the definitions in this example.
H O L  C o n s ta n t

C a r  : 'a Z S E T  -» 'a  SET;
$** : 'a -> Z -> 'a Z .S E T  -> 'a

V (set, action)•
Car (set. action) = set 

A (Vx i* (x ** i) (set, action) = action i x)

The above definition serves to provide a convenient syntax for the operations 
on the structures of interest. We can see this in the following definition which 
captures the laws that a candidate Z-set must satisfy to be worthy of the name. 
The laws specify that: (i), the carrier set is closed under the Z-action; (ii), 
addition of integers corresponds to composition of the corresponding actions; 
and, (in), 0 corresponds to the identity function.
H O L  C o n s ta n t

Z .S e t  ; 'a Z -SE T  SET

V X .
X G Z-Set 

<̂ -(Vx i* x € Car X  =4- (x ** i) X  € Car X)



| A (Vx i j »  x € Car X  (x ** (i +  j ) )  X  =  ((x ** i) X  ** j )  X )
| A (\/x» x € Car X  =4- (x ** NZ 0) X  =  x)

In addition to the specifications, the source of this document also contains the 
statements and proofs of a small selection of theorems about Z-sets. ML proof 
scripts are not particularly informative even to the expert eye, except when they 
are brought alive by replaying them interactively, so they have been suppressed 
from the printed form of this document. There is a listing of the theory in the 
appendix. The reader is invited to refer to the appendix for the statements of 
the following two theorems which are both elementary consequences of the above 
definition. The first theorem says that acting by i and then by —i results in the 
identity function on the carrier set and the second gives a cancellation law.

Z -set- minus _ thm h -set- cancel _ thm

We complete the example by defining the orbit of an element a; of a Z-set X . 
The orbit comprises the set of all elements y that can be reached from x under 
the Z-action.
H O L  C o n s ta n t

O rbit : 'a Z S E T  -> 'a - -» 'a SET

V X  x» Orbit X  x = { y y =  (x ** i) X }

The reader may again consult the appendix for the statements of the following 
two theorems. The first says that any element of a Z-set belongs to its own orbit 
and the second says that any two orbits are either equal or disjoint. In other 
words, the orbits are the equivalence classes of an equivalence relation: “co
orbital” .

orbit-refl-thm orbit- disjoint-thm

In this example, we have formalised a very elementary mathematical theory 
and developed some very elementary theorems about it. The proofs would serve 
almost as they stand to prove the same facts about G-sets for arbitrary groups 
G given the theory of groups developed in [2]. This could then provide the basis 
of some much more interesting mathematics. For present purposes, the example 
serves to illustrate ProofPower in action and to introduce the style of presentation 
of analysis, topology and group theory in [1-3].

3 The Case Studies

3.1 Basic Analysis
The case study on analysis is presented in [1], It builds on the ProofPower-HOL 
theory that introduces the real numbers as a complete ordered field and covers 
the following ground.
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— polynomial functions on the real numbers
— limits of sequences of real numbers
— continuity of functions
— differentiation
— limits of function values
— uniform convergence of limits of functions
— series and power series
— special functions: exponential function, natural logarithm, sine and cosine.

Broadly similar subject matter has been formalised before in HOL Light by 
John Harrison [7] and by Hanne Gottliebsen [4] in PVS. There are also devel
opments of analysis in Mizar and Coq and several other systems. In addition to 
proofs of theorems, the ProofPower treatment includes automated proof proce
dures for continuity-checking and calculating derivatives (as do the treatments 
of Harrison and Gottliebsen).

While I make no claim for novelty in the material covered, I would claim that 
the specifications are readable and natural and that the material that is covered 
is done comprehensively. For example, here are the definitions of the sin and cos 
functions and of Archimedes’ constant, n, defined here as the positive generator 
of the additive group of roots of the sin function.

Sin Cos : R —> R

Sin (NR 0) =  NR 0 A Cos(NR 0) =  NR 1 
A (Vx» (Sin Deriv Cos x) x) A (Vx» ( Cos Deriv ~(S m  x )) x)

ArchimedesConstant : R

NR 0 < ArchimedesConstant 
A Sin( ArchimedesConstant) =  NR 0
A (Vs* Sin x = NR 0

=> (3m,• x =  NR m * ArchimedesConstant)
V (3m* x =  ~(N R  m * ArchimedesConstant)))

| declare - alias (" tt ", r ArchimedesConstant^);

Here the notation ( /  Deriv c) x means that function /  has derivative e at
x and the function NR is the injection of the natural numbers into the reals. 
The alias declaration introduces the traditional name “tt1' as an alternative to 
“ArchimedesConstant''.

The specifications of the trigonometric functions and of n clearly require non
trivial consistency proofs. This involves a development of the theory of power 
series, including the general result on differentiating power series term-by-term
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(which avoids the need for introducing integration at this stage). The elementary 
properties of the exponential, logarithmic and trigonometric functions and 7r are 
then developed “axiomatically” from the differential equations.

As observed in [7], several notions of limit arise and it is desirable to have 
common ways of dealing with them. Harrison’s approach is via the general no
tion of convergence nets. I use the more homely device of reducing the notions 
in question to sequential convergence. For example, it is an easy consequence 
of the standard definition of continuity that a function /  is continuous at x  iff. 
/  maps any sequence converging to x  to a sequence converging to f (x ) .  Using 
this fact, statements about continuity reduce to statements about sequential 
convergence, and, by and large, this turns the V3V quantifier structure of the 
usual e-5 arguments into simple universally quantified statements about sequen
tial convergence. Proponents of non-standard analysis both in education and in 
theorem-proving sometimes advocate the simple quantifier structure of the def
inition of continuity in non-standard analysis as an advantage. Using sequential 
convergence achieves much the same effect in standard analysis. The text books 
tend not to stress this method of working if they mention it at all, probably 
because it fails to generalise to arbitrary topological spaces.

Moral 4: when you are using a theorem-prover, you do not need to adopt 
methods for their pedagogical value: unlike a student, the prover cannot develop 
bad habits, so you can freely use any method that works.

3.2 Group Theory

The case study on analysis deals with a single specific HOL type: the type R of 
real numbers. The case study [2] on group theory puts the polymorphism in HOL 
to work along much the same lines as the Z-set example presented in section 2 
above.

The case study begins with a treatment of equivalence relations, equivalence 
classes and the construction of quotient sets along the lines proposed by Larry 
Paulson [10]. This material comprises a lemma library which provides templates 
for working with equivalence relations, in particular, for defining functions on 
quotient sets. This supports the proof of the first isomorphism theorem in group 
theory, which is all about defining homomorphisms on quotient groups. It would 
serve a similar purpose in any of the common algebraic concrete categories (rings, 
modules over a ring, vector spaces over a field etc.) and in dealing with quotient 
spaces in topology.

The group theory itself begins with a definition of the signature of a group 
along similar lines to the signature for Z-sets in the example above. The poly
morphic notion of a group is then defined to be the set of all structures with this 
signature that satisfy the group laws.

Substructures and quotient structures in algebra are very important, so it 
is vital to deal smoothly with subgroups and quotient groups. Taken verbatim, 
the traditional explication of these concepts in set theory leads to significant 
notational and semantic difficulties. The problem is this: in doing the general 
theory, an expression like x.y denoting the product of two elements of a group
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G actually contains three variables: the group elements ‘x ’ , ‘y\ and the multi
plication operator Syntactic tricks allow one to preserve something like the 
traditional infix notation for such expressions. But there is a semantic problem 
when one needs to deal with subgroups: according to the traditional account, 
the in x.y  will denote a different set-theoretic function in a subgroup H  from 
what it does in the containing group G. Coercing operations from subgroup to 
containing group or from one subgroup to another becomes an excessive burden.

My solution to this problem is to formulate all definitions relative to some 
carrier set of interest in such a way that the behaviour of operators or properties 
outside the carrier set is irrelevant. I advocate this approach in general for dealing 
with algebraic structures. The apparent extra complication actually achieves an 
economy, because when one is working with substructures, the operators and 
properties can all be those of the containing structure: you have no need to 
restrict them to the substructures or to worry about coercing the operations of 
one substructure into the operations of another.

As an example, I take the operations on a group G to be total functions on 
the universe of the type of its elements whose behaviour outside the carrier set of 
G is immaterial. The operations on a subgroup H  of G must be represented by 
the same total functions. This involves no loss of generality and removes a much 
complexity in specifications and proofs. It may be objected that this approach 
gives the wrong notion of equality for groups (since the same group can be 
represented using two different ways of totalising the operations). However, in 
normal algebraic practice, one almost never needs to assert equality (as opposed 
to isomorphism) between two groups that are not known to be subgroups of 
some other group, and in that case equality has the usual meaning.

Using this approach, the three isomorphism theorems and the Cayley repre
sentation theorem are very easy to prove once one has derived the usual laws 
of equational reasoning in a group from the defining properties (and developed 
proof procedures to automate the application of these laws). Once the formali
sation details were settled, it was routine and quick to prove these results.

In fact, I feel that the treatment in this case study demonstrates that poly
morphic simple type theory is actually more natural than set theory for carrying 
out much of mathematics. For example, one can give the following very conve
nient definition of the symmetric group on a set X  (i.e., the group comprising 
all permutations of the set).

S ym G rou p  : 'a  SET -► ('a  -► 'a) GROUP

V I »  SymGroup X  =  (

{ /  | OneOne f  A Onto f  A -<y € X  => /  y =  y}. (* Carrier set *) 
(A/ g»Xx»f{g x)).  (* multiplication *)
(Xx» x), (* unit element *)
Inverse (* inverse *)

)

9



Here the quadruple giving the structure has components as indicated by the 
comments and Inverse is the function that maps a 1-1 onto function to its inverse 
function. This definition has numerous advantages over the untyped set-theoretic 
version. In particular, if X  is a subset of Y , then the symmetric group on X  is 
a subgroup of the symmetric group of Y  as it stands, whereas this is only true 
“up to an isomorphism” in the standard set-theoretic account. Moreover, we can 
think of SymGroup {x  \ x =  a;} as denoting the group of all permutations of 
the universe, sitting naturally inside the monoid of all self-mappings of the uni
verse. This works very pleasantly: as the Cayley representation theorem states, 
any group is isomorphic to a group of permutations and so composition of 1-1 
onto functions provides a universal prototype for the multiplication in a group, 
a fact which cannot even be stated properly in first-order set theory.

Moral 5: Pace Quine [11. article on “Mathematosis” ]. in a typed theory it 
is counter-productive to define the concept of a group so that the carrier set can 
be recovered from the set that represents the multiplication.

3.3 Topology

The case study in topology is perhaps the most advanced of the three in edu
cational terms, but it still really only prvoides the beginnings of the subjects it 
deals with. The subjects covered are:

— abstract topology: topologies; construction of new topologies from old as 
(binary) product spaces or subspaces; continuity. Hausdorff spaces; connect
edness; compactness.

— metric spaces: the definitions of metrics and product metrics and the re
sult that product metrics induce product topologies; existence of Lebesgue 
numbers for open coverings of compact metric spaces.

— topology of the line and the plane: characterisation of connected subspaces of 
the line; continuity of addition and multiplication as functions on the plane.

— elementary homotopy theory: definitions of path-connectedness. the homo- 
topy relation and the fundamental groupoid; proof that the homotopy re
lation is an equivalence relation and that the fundamental groupoid is a 
groupoid8

The definition of a topology is the usual one: a topology is a family of sets 
(referred to as open sets) that is dosed under arbitrary unions and binary inter
sections.

8 In fact, at the time of writing, all the theorems needed to justify the construction 
of the fundamental groupoid as a quotient of the path space have been proved, but 
these have not yet been brought in line with the theory of equivalence relations in 
[2],
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Topology : 'a SET SET SET

Topology =
{ r  | (V V *  F C r ^ U ^ ^ ) A ( V i  BmA G r  A B G r  A n B G r ) }

Since the carrier set of a topological space can readily be recovered as the 
union of all its open sets, the complications with signatures that arise in algebra 
do not arise. The signature has but one component and the thinking we decried 
for algebraic structures in Moral 3 now turns out to be very convenient.

The central notion of continuity takes the following form (defining an op
erator Continuous which is written postfix). Here a and r  are intended to be 
topologies (and will be in the statements of all theorems that use this definition). 
As in the group theory case study, we work throughout with ordinary HOL to
tal functions, taking care to make the definitions of concepts such as continuity 
ignore the behaviour of the functions outside some carrier set of interest, in 
this case the Space of the topologies, defined as the union of their open sets as 
discussed above.

$Continuous : (fa SET SET x rb SET SET) -> ('o  -> rb) SET

V<r r»  ( a ,  t )  Continuous =
{ /
| (Vx» x  G Space a => /  x G Space r)
A (Vj4* A g  t  => { x  | x  G Space a A f  x € A }  G u)}

Again, as in the group theory, this approach has the merit of localising com
plexity in the definitions which would otherwise spread to other definitions and 
to the statements and proofs of theorems. If you try to mimic the representation 
of functions in set theory, functions have constantly to be restricted to subspaces, 
whereas this is unnecessary with the total function approach.

Space does not allow an extended discussion of the methods of proof in 
this case study. However, there is one open problem that is worth mentioning. 
There is a constant need in topological reasoning to prove that functions are 
continuous. In algebraic topology, functions are often constructed by patching 
together functions defined on subspaces of the domain. For example, in proving 
that addition of paths in the fundamental groupoid is associative, the following 
result is needed, where Openr denotes the usual topology on the real line.

|Vfc* (yt» k t =
j if t < 1/4 then NR 2*t
| else if t < 1 /2  then t +  1 /4
| else ( l/2)*t  +  1/2)

=> k G ( OpenR, Openu) Continuous
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The proofs of such facts are very mechanical and are reminiscent of what 
the automated proof procedures for continuity of algebraic combinations of con
tinuous functions in the analysis case study do. However, there are two slight 
complications: (i), you need to apply a simple “patching” lemma to justify the 
continuity of a function defined by cases and (ii), in the general case some small 
amount of intelligence is needed to pick the right topologies on intermediate 
sets. For example, to show that a composite f o g  is continuous with respect to a 
topology o  on the domain of g and a topology r  on the range of / ,  you need to 
pick some topology on the range of g that makes both /  and g continuous. An 
algorithm to automate these proofs would be a great boon, but I do not yet have 
one. Joe Hurd’s work on predicate subtyping [9] looks like a promising source of 
ideas.

Moral 6: There are a lot of new and challenging problems for proof automa
tion in pure mathematics.

4 Will it scale?

An important question to ask of any case study in applying formal methods and 
theorem-proving in engineering applications is “will the proposed technique scale 
to real-life applications?” . I believe the same applies to mathematical applica
tions as well. Simpson [12] identifies what is probably one of the most important 
problems for more advanced pure mathematics: much use is made of structure 
which share a combination of algebraic, topological or geometrical properties. 
For example, the rich and important theory of Lie groups is an abstraction of 
the algebraic and geometric theory of groups of real or complex matrices. A 
Lie group is simultaneously a group and a smooth manifold, a smooth manifold 
being something that has a particular topological structure combined with a 
differential structure allowing analytic methods to be used. The issue then is, 
how to deal formally with the kind of reasoning that is endemic in mathematics 
where one just says something like ’’ let G be a Lie group” and then freely appeals 
to the notations and theory of whichever of the underlying structures provides 
the facts one needs.

I believe the approach to modelling mathematical structures exemplified by 
the case study on groups and also by the Z-set example in section 2 above will 
scale, subject to some slight modifications to the details, ideally supported by 
some extensions to the syntax offered by the parser (see [2] for more details on 
the latter).

The main change to the approach addresses the issue highlighted by Simpson 
in his example of Lie groups. To get things to scale, I would propose using 
labelled products rather than unlabelled products for the signatures of algebraic 
structures. To see how this would work, consider the notion of a field: Given

12



our treatment of groups, a field can conveniently be thought of as two group 
structures on elements of the same type obeying certain laws9.

Using labelled products, the signature for groups would be given by the 
following ProofPower-HOL labelled product type definition which defines a new 
polymorphic labelled product type ’a GROUP with four components with the 
indicated labels and types. The component labels become the names of the 
functions that project the product type onto its component types.

Now we can define the signature for a field as a labelled product. Note that 
in both these labelled product definitions, in the interests of scalability to com
plex situations, we are decorating the component labels with subscripts to avoid 
clashes with other algebraic structures, e.g., rings would also have an additive 
group.

Multiplicative Group f '■ 'a GROUP

This captures the desired semantics, but creates some syntactic problems. 
For example, the expression 1 +  x.y in a field K  would have to be written.

| Times g (Additive Groupf K)
| (UnitG(MultiplicativeGroupF K ) )
| (Timesg(Mu,ItiplicativeGroupF K) x y)

This syntactic problem can be overcome either by explicitly defining accessor 
functions as we did for Z-sets and groups, or by extending the parser and type- 
checker to allow aliases for non-constant expressions, or perhaps, specifically for 
composite functions, so one could define +  and . to be aliases allowing something 
like 1 +  K x.K y  to be written for the above term.

Simpson proposes a solution in dependent type theory to this problem in 
which mathematical structures are represented by functions from strings to com
ponent structures. This is not available to us in HOL, but I can think of no 
examples in mathematics where the statically typed approach sketched above 
would be semantically insufficient.

9 This does not work in the traditional set-theoretic account, since the multiplicative 
structure of a field does not comprise a group unless it is restricted to the non-zero

H O L  L a b e lle d  P r o d u c t

.GROUP_____________________
Carg • 'a SET;
TimesQ '■ ' a —► ' a —► 'a;
Unite ■ 'a;
Inverseg ■ 'a —► ' a

H O L  L a b e lle r ! P r o d u c t

AdditiveGroupf ■ 'a GROUP;

elements.
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5 Summary

I have given an overview of three case studies in the use of the ProofPower-HOL 
theorem-prover on pure mathematical problem domains. This has highlighted 
some problems in giving a smooth formalisation. Solutions or partial solutions 
to these problems have been proposed. In particular, I have outlined a method for 
scaling the approach to the compound mathematical structures that predominate 
in modern century mathematics.

I have extracted some “morals” from the work done to date, and there is much 
more that could be said about good ways to go about capturing a useful and 
evolving body of pure mathematics in an automated theorem-proving system. 
However, agonising about the technical approach will be less productive than 
actually trying to do some mathematics and to learn from the attempt.
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A THE THEORY Z_set

A .l  Parents

Z

A. 2 Constants

I** ’ a -► Z -► ’ a SET x (Z -► 'a  -► 'a) -► 'a
C o r  'a SET x (Z -► 'a -► 'a) -► 'a SET
Z S e t  ('a SET x (Z -► 'a -► 'a)) SET
O rbit 'a SET x (Z -► 'a  -► 'a) -► 'a -► 'a SET

A .3 Type Abbreviations

' a Z S E T  'a SET x (Z -► 'a  -► 'a)

A .4 Fixity

/n/ix 5i0: **

A .5 Definitions

Car

Z-Set

Orbit

15

h V (set, action)
• Car (set, action) =  set

A (V x i* (x ** i) (set, action) =  action i x) 
h V I

• X  € Z -Set
■» (V i  t* i  £ Car X  =>■ (x ** i) X  € Car X )

A (y x i j
• x € Car X

=>■ (x ** (i +  j ) )  X  =  ((x ** i) X  ** j )  X ) 
A (V ii  i  £ Car X  => (x ** NZ 0) X  =  x) 

h V X w  Orbit X  x =  {y|3 i» y =  (x ** i) X }



A .6 Theorems

h -set-in in u s-th m
h V I

• X  € 7,-Set
=> (V x *• x € Car X  => ((x ** i) X  ** <-

.*«••/ cancel lit in
h V X l } !

• X  € Z_5et A x € Car X A y € Car X
=> ((x ** i) X  =  (y ** i) X  x =  y)

o rb it-refl-th m
h V X* X  € I,-Set => (V x» x € Car X  => 2; € 

orbit-d isjoint-thm
h V X

• X  € Z.Sei:
(V 1 j

• x € Car X  A y € Car X
=> Orbit X  x fl Orfcrt X i /  =  { }

V Orfcii: X  a; =  Orfcii: X  y)

i) X  =  1)

Orfcii; X  1)

16



A Framework for Interactive Sharing and 
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Abstract. Peer-to-peer technology implemented in systems like Nap
ster allowed sharing of digitized music across the web in an incredibly 
easy to use system. This paper describes a prototype peer-to-peer system 
for networking distributed and heterogeneous databases of formalized 
mathematics. We also propose a general framework for deductive search 
in heterogeneous libraries of formal content. As participants in this con
ference well know, a significant body of mathematics has been formalized 
in theorem provers. We believe that a truly distributed mechanism for 
sharing formal content will multiply efforts of individual users of theo
rem proving systems, will invigorate ongoing formalization efforts, and 
will spur new research in deductive search and content-based addressing. 
Interactive sharing has the potential to be a significant new methodology 
for theorem proving. A basic tenet of our approach is that users of the 
system must be able to account for results and methods for accountabil
ity are incorporated into the proposed methods.

1 Introduction

We imagine a future in which the web plays an integral role in theorem proving 
efforts. Where theorems and proofs of diverse systems are interactively searched 
by developers across the web and where sharing is used to discharge significant 
numbers of proof obligations.

There is a diverse array of theorem proving systems representing many hun
dreds of man-years of effort, they range from those that completely automate 
the proof search to interactive proof checkers. A list of these systems would in
cludes ACL2, Coq, Elf, HOL, Isabelle, MetaPrl, Mizar, Nuprl, PVS and others. 
The number of extant theorems that have been proved in these systems is as
tounding. (The reader is invited to make his own estimate). Currently, the costs

* The first authors work was partially supported by NSF grant CCR-9985239.
** This work was performed at the University of Wyoming and was supported by a DoD 

Multidisciplinary University Research Initiative (MURI) program administered by 
the Office of Naval Research under grant N00014-01-1-0765.



of sharing formal material are so high that little sharing takes place, sometimes 
even within communities of users of the same tool. Much of the sharing that 
does take place requires personal communication between the parties involved.

In this paper we describe a vision of the future and argue that it need 
not merely be a fantasy. Toward this end we describe the implementation of 
a prototype peer-to-peer framework for connecting distributed libraries of math
ematics [17]. The prototype implementation also supports a query language for 
content and name based searching. We go further in proposing a general frame
work for deductive search methods in a collection of logically heterogeneous 
databases3. Our approach is guided by our experiences in the Formal Digital 
Libraries project [8], a joint project between Cornell, Caltech and Wyoming.

1.1 Vision

We imagine a system in which proof obligations may be discharged by existing 
results, that have perhaps been verified in different logics, and recorded in a 
distributed and heterogeneous database. Consider the following scenario.

A user, sitting in Laramie Wyoming on a blustery winter evening, 
is constructing a proof in the Nuprl system4. At various points in the 
process, suspecting that surely someone else has already proved the re
sult required to complete her proof, she initiates an interactive query. 
Moments before the Wyoming user issued her query, an early rising 
HOL user in the warm summer morning of Canberra Australia has just 
proved a lemma having the required semantic import. Upon completing 
his proof it was automatically committed to his local online database.
Our Wyoming users query returns the HOL result together with a proce
dure for translating HOL terms into Nuprl terms and includes evidence 
that the proof actually was completed in HOL. This information is in
corporated into her local database and used to complete her proof. Once 
completed, her new result is recorded into her data-base thereby making 
it immediately available to other proof efforts distributed across the web.

In this paper we argue that this scenario is both theoretically feasible and 
practically realizable with existing technologies (circa 2004). We present evidence 
for this argument by describing a prototype implementation of a peer-to-peer 
network for interconnecting databases of formal mathematical content. We con
tinue by outlining a general theoretical framework for deductive searching in 
distributed networks libraries of heterogeneous formalized mathematics.

We reckon that the following are the necessary components for such a system.

3 Throughout the paper, the words “library” and “database” should be considered 
synonymous, though perhaps the word “database” emphasizes implementation.

4 By inclination, our hypothetical user is interested in extracting programs from proofs 
but has no philosophical objections to incorporating classical results into her proofs 
if it does not impinge on the constructive content. For a discussion of just such a 
methodology for incorporating classical results into constructive proofs see [5].



i.) Individual databases of formalized mathematics.
ii.) A framework for connecting individual databases into a distributed network 

including methods for finding databases of formal material and a protocol 
for communicating between them.

iii.) Methods of translating between logical theories.
iv.) Methods of searching across the distributed network.

There are independent research efforts underway on all these topics. What does 
not currently exist is an effort to pull these technologies together into an unified 
approach. In this paper we address items (ii), (iii) and (iv). We do not propose to 
constrain (i) other than to require that databases participating in the network 
implement the protocol described as part of (ii). We believe that a successful 
implementation of items (i), (ii) and (iv) will create a market that will further 
stimulate the development of translations (iii).

We remark that, perhaps surprisingly, scientific communities other than com
puter science seem to be better at sharing results in a significant way; by which 
we mean that information is shared so that it can be used directly in establish
ing new results, not simply in a secondary form. For example, the databases of 
genetic structures are remotely accessible and remote access forms a crucial part 
of the methodology used by researchers working in that field. On the homepage 
for the National Center for Biotechnology Information [22] it says: “Most jour
nals now expect that DNA and amino acid sequences that appear in articles will 
be submitted to a sequence database before publication.” As a community, we 
could take a lesson here.

1.2 Relating theories

The ability to soundly combine theorems proved in different logics within the 
same framework is a deep mathematical problem. Institutions [10,11] provide 
a category theoretic framework in which the formal relations between differ
ent theories can be established. Although institutions provide a mathematical 
framework within which relations between logics can be understood, they have 
been little used in practice. The hard part of relating theories is establishing the 
semantic map. Howe [15,14] has provided the semantic foundations for a map 
between HOL and a classical variant of Nuprl. An implementation of the trans
lation is described in [21]. Naumov [20] has related Isabelle and classical Nuprl 
and a semantic justification for translating PVS results into classical Nuprl has 
recently been completed [19]. Staples has related ACL2 and HOL [25] providing 
a mechanism to incorporate results of ACL2 into HOL proofs. Applications for 
sharing results (even the use of classical results from PVS in constructive Nuprl 
proofs) are discussed in [5]. In each case, a semantically justified translation from 
the language of one logic into the language of another is required.

Applying an economic model, we note that translations between theories are 
implemented by individuals who value the incorporation of results from one the
ory into their own highly enough to do the required work. Part of the calculation 
of the worth of such an effort is based on the amount of and type of material that



will be made accessible by a translation and the ease with which it will be used 
by the developer and others. The framework proposed here lessens the effort 
required to apply such translations, i.e. it provides a market for such tools. By 
providing a such a market, we believe that a framework such as the one described 
here for integrating multiple provers will motivate further developments.

1.3 Accountability

A guiding principle of our framework and of the Formal Digital Library [8] (FDL) 
is one of accountability. Consumers of theorems and other formal objects have a 
right to know what assumptions, facts and methods an object depends on; this 
problem has seen previous study [12]. Only with this knowledge can users make 
epistemic judgments whether to accept results and to incorporate them into their 
own work. As part of the FDL effort, Allen [2] has designed a novel mechanism 
to certify facts about objects in a database of terms. These certifications carry 
epistemic weight in that: users may create new certificate kinds, they may request 
than an existing kind of certification be run on a particular object, or they may 
examine existing certificates. Users may not create certification objects, only the 
system can do so by evaluating the computational part of a certificate kind. Users 
can determine exactly what has been certified by examining the code used to 
create a certificate. In the scheme of the FDL, there are a plethora of certificates 
generated by many users; some may be as simple as a claim that some individual 
created the certified object, others may certify that a proof has been accepted by 
some formal tool or that some object originated from a particular database. This 
certification mechanism can be used to build sets of dependencies and properties 
of objects and to track them. Users can inspect certificates and, by evaluating 
the methods used to generate a particular certificate kind, can determine the 
epistemic weight they accord to the certified object.

Accounting for the correctness of a formal object (let’s say a proof) depends 
on a complex set of facts that at least include which tools (and version) were 
used to produce the proof; the lemmas, tactics, and methods of proof the the
orem itself depends on; global settings in the environment when the proof was 
done; and perhaps other facts. This list must be open-ended since the evidence 
required for an individual to accept a result ultimately depends on that indi
viduals personal criteria. The criteria for believing something can vary from 
individual to individual and thus, the threshold of evidence may be higher or 
lower, depending on the individual. In an extreme case, users may accept results 
based on authority e.g. ‘Caldwell said “Constable said <f> is a theorem. ’ But 
even this form of evidence5 may carry epistemic weight with users and our goal 
is to include even this kind of evidence. Every kind of formal object potentially 
requires some form of evidence (formal or informal) to justify its use in certain 
contexts.

5 Evidence like this may actually be easy to account for using certificates based on 
digital signatures.



1.4 Searching

We intend to search in heterogeneous databases, i.e. databases containing results 
from a number of logical systems. The effectiveness of existing search technologies 
would seem to be the principal technical obstacle to true integration of these 
ideas into proof engines.

There are two aspects to the search problem. The first is to find the available 
databases of formal content on the web that are open to pubic search; the sec
ond is to search those databases for formal content (definitions, theorems, proofs, 
translations, tactics, etc.) in a semantically robust way. The first problem is ad
dressed (and solved) by our prototype peer-to-peer network. The second problem 
is theoretically challenging and open ended in that we expect new search meth
ods will constantly be developed. Below we describe a framework for deductive 
search within which we believe new methods can be couched.

Formalized mathematical proofs and theories are fragile objects6 and al
though the semantic import of a theorem may well match or subsume a lemma 
being searched for, the shape of the theorem may not trivially match the search 
pattern. Trivial syntactic differences in theorems having little or no semantic 
content (e.g. 'ix.cj) A %p vs. Vj/.%/} A <f>) can make naively implemented search fail, 
users would be disappointed with such failures. Also, the equivalence of formu
las in different logics differ, e.g. classically, <f> => %p and -><f) V %p are equivalent 
while they are not equivalent in the constructive setting; this must be taken into 
account in a heterogeneous setting by specifying the logic to use for deduction 
in search.

Methods for searching formal content might be based on unification7 [7], but 
other strategies are possible as well. Of course, the problem of determining if a 
previously verified lemma (or collection of lemmas) subsumes a query target is 
undecidable in general.

2 A Peer-to-peer framework

The second author has built a prototype peer-to-peer network for sharing infor
mation between FDL’s. The details of the architecture and of the implementation 
are described in [17]. Figure 1 gives an overview of the architecture. Peer-to-peer 
applications are becoming ubiquitous; they are used to share files, CPU cycles, 
and other resources. A principal advantage of the technology is its inherent fault- 
tolerance, there is no centralized component to fail. Peer-to-peer networks also

6 Even tyros have first hand experience of this fragility. Small changes, e.g. adding 
an antecedent to the statement of a putative theorem, will often break a partial 
derivation that may have already been constructed. In fact, the most experienced 
users of such tools distinguish themselves from novices in that they build proofs in 
such a way as to avoid failure under minor perturbations to the statement being 
verified.

7 Higher-order unification is undecidable but unification based methods can still be 
used since a user only needs a non-empty approximation to the complete search to 
satisfy a query.



support distributed discovery mechanisms. Sun has developed an open source 
peer-to-peer framework called JXTA [18] that is platform and programming 
language independent. Our system is built on JXTA.

2.1 A  Prototype Implementation

The prototype is implemented in Java. It consists of about 6000 lines of code 
and includes a name and content based search engine for FDLs. The JXTA 
framework is used to provide the peer-to-peer network functionality.

Server 1 and Server 2 advertise the existence of the libraries FDL 1 and FDL 2 to the 
P2P network (stepl). An interested client discovers these libraries (step 2). The client 
then queries the servers over the P2P network (step 3).

Fig. 1. P2P architecture

The FDL provides a TCP/IP based mechanism that allows clients to con
nect to the library and to issue simple search requests. The current interface 
to the library is limited to a search by name request and a search by content 
request. The search by name request returns a set of all theorems that contain 
a given string as a substring of their names. The search by content request re
turns the set of all theorems whose statements contain operators specified in 
the search. We developed a Boolean query language using the logical operations 
‘and’ , ‘or’ , and ‘not’ to create more powerful expressions. While the query lan
guage is very simple it is surprisingly useful and serves to prove the mechanisms 
for searching remote libraries work. Indeed we found many new theorems in the 
Cornell libraries while testing our tool. Within the prototype, the search engine 
is implemented modularly and can easily be replaced if extensions are required.

To share theorems between groups we not only need to be able to search 
libraries but we also we need to discover the libraries themselves. In peer-to- 
peer networks, servers and clients have equal rights and responsibilities and are



connected in a mesh topology. Peer-to-peer networks support mechanisms for 
discovering other peers and exchanging information between them. The JXTA 
framework provides a high level abstraction of these mechanisms. In our pro
totype, the libraries offering search services advertise it in the network. Clients 
can use those advertisements to invoke the services. All communication between 
peers is done within the peer-to-peer network having the advantage that prob
lems with firewalls can be avoided (see [17] for details.) Since databases are 
not designed to participate directly in the peer-to-peer network a small server 
application was developed which is deployed in front of each library. Not only 
does this provide the interface for application libraries to join the peer-to-peer 
network, the server could also be used to provide additional functionality like 
authentication, authorization, and accounting.

3 A Framework for Deductive Search

In this section we describe the framework within which we address the problem of 
searching in distributed heterogeneous databases of formalized mathematics. The 
proposed framework is intended to be independent of the underlying individual 
databases; although we have in mind the FDL. The proposed framework does 
not make assumptions about the underlying databases but assumes that they 
provide a uniform interface; we (partially) specify that interface here.

The framework consists of the following components.
i.) A term structure used to communicate information across the network, the 

class of terms is denoted Term /.8
ii.) An application programmers interface (API) supported by databases in the 

network.
iii.) A peer-to-peer architecture for the interconnection of the databases sup

porting functions for dynamically integrating new databases into the network 
and the protocol for communication between them.

iv.) A logical framework imposed on terms for describing the methods of de
ductive search. This is based on a concept of formal languages as decidable 
subclasses of terms in Term /. These languages include the languages of the 
various logics together with the other extra-logical languages; e.g. repre
sentations of executable code (e.g. tactics, translations and others) together 
with all the other components necessary for the representation and manipu
lation of formalized mathematics. We also intend that informal content will 
be representable in the database as well.
The communication between systems is facilitated by a uniform and extensi

ble term structure. This is the same term structure used internally by the FDL 
to represent formalized mathematics though we do not assume it is the internal 
representation used by all databases connected in the network; simply that they 
can translated their internal representations into the specified form. We also use 
the term structure in the description of the framework for deductive searching.

8 The term structure described here is based on Nuprl’s term structure [1] and is the 
one used internally within the FDL; we use it as an interface language.



The issues related to the representation of formalized mathematics are extraor
dinarily complex, especially as related to binding structures9. In this section 
we present the term structure used in the FDL which offers some generality in 
binding.

Term,i is the class of recursive tree structures of the form

3.1 Terms and Languages

where opid is the operator name, parameters is a list of value-type pairs and 
bterms is a list pairs consisting of a list of variables and a term. The parameter
I  is the class of abstract atomic identifiers allowing terms to refer to other terms 
in Termi-

Parameters are constants or other arguments not constituent in the subterms 
e.g. within the FDL representation of Nuprl and PVS terms, the number 1 is a 
constant term of the form natura l{l:im m }(), the string “xyzzy” is represented 
by the term string{"xyzzy" : string} ( ) .  The class of parameters is not fixed 
and can be extended to accommodate new languages and logics.

The bterms are the subterms of a term, possibly containing bound variables. 
A bterm consists of a list of variables (the bound variables) and a term (the 
body). Occurrences of variables included in the list of bound variables are bound 
in the body of the bterm. The use of bterms to encode binding operators can be 
seen by considering the encoding of the lambda abstraction in this structure. The 
term Ax.M  is encoded as lambda{}(x.M). The opid of this term is lambda, it 
has no parameters, and it has one subterm M  in which occurrences of the variable 
x are bound. The universal quantifier V x :T.P  is encoded as all{} (T;x.P). The 
operator id is all, there are no parameters, and the operator has two subterms, T 
(the domain from which the bound variable x is chosen, and the bound term x . P  
where P  is a term possibly containing free occurrences of the variable x. The fact 
that there may be multiple variables bound simultaneously in a subterm allows 
for the specification of an operator like NuprPs spread operator, a generalized 
destructor for pairs; it is defined as spread{}(p;x,j/.i). The computation rule 
for spread makes clear how the simultaneous binding is used when the subterm 
p is a pair.

opid{parameters} (bterms)

(T ermi) 
(opid) 
(bterm j)
(parameter) 
( C )

D  | (opid){(parameter)*}((btermi)*)
(C)(C)*
(vars)*. (term i) 
(value) , (type) 
any character

spread(<a,b>; x . y . t ) —>• t[a ,b/x,y]

9 For an interesting discussion of alternative binding structures see [13] and references 
therein.



i.e. if the first argument to spread is a pair of the form (a, b), spread simulta
neously substitutes the first element of the pair for x  in t and the the second 
element of the pair for y in t.

The index set I  is not necessary for representing individual terms of a logic. 
By providing a means for terms to refer to other terms, the identifiers in the 
set I  allow arbitrarily complex structures to be embedded within a collection 
of terms. Formal libraries are such structured collections. Allen has argued in 
detail elsewhere [2] that the references between terms should be abstract and 
atomic, thus the identifiers in I  have no discernible structure and simply serve to 
refer. Indeed, within the conception of the FDL, the only significant property of 
the indices in a structured collection of terms is the topology of the constituent 
components induced by the references between the terms. More precisely, if I  is 
the set of abstract identifiers used in Term i and V is a set of abstract identi
fiers of equal or greater cardinality, then the process of uniformly replacing the 
abstract identifiers in a database of terms in Term / (under any injective map 
from I  to I') results in a database of terms in Term// which carries the same 
semantic import as the original.

This term structure has been used to represent both Nuprl, HOL and PVS 
terms in the FDL [8,3].

A language is a decidable subset of terms i.e. £  is a language if C C Term / 
and for every t £ Term i, we can decide if t £ C. We assume interesting languages 
have names and abuse our own notion by identifying C both with the set of terms 
in the language and as a name of the set of terms. If £  is a language we also 
use the name C to denote the property of membership in C, thus if C occurs as 
a property it denotes the property (At .t  £ C). We note here that many of the 
languages we are interested in will be the terms of some logic, though not all 
interesting languages are logical.

3.2 Databases and Filters

In our model, libraries are collections of terms that refer to one another via the 
abstract atomic identifiers together with collections of certificates making claims 
about the stored terms.

Every individually stored term has an index i G I  and terms may contain 
indexes to other terms. There is no requirement that every subterm of a term 
be indexed, though it is possible to build terms by storing subterms individually 
and referring to them by their abstract identifiers.

The evidence associated with a term is carried in the certificates for the term. 
We use the Greek ‘e\ possibly decorated, as meta-variables denoting evidence. 
Terms retrieved from databases are packaged with the evidence associated with 
them and we call such packages eterms. We denote the type of evidentiary terms 
Term,is and write te to denote elements of this type. Evidence can be erased 
from an evidentiary term, =  t, i.e. : Term,is —>• Term i and similarly, 
evidence can be garnered from an eterm ^ ej =  e. No mechanism is provided for 
evidentiary terms to be composed (except by the database itself) and we expect



to apply encryption mechanisms to enforce the constraint that only the database 
can deliver an eterm.

Once exported from a database, every term has at least one piece of evidence 
associated with it which an identifier of the database it originated in. Of par
ticular practical interest and current research is the problem of how evidence in 
the form of certificates can be transferred from one database to another without 
forcing the re-verification of the certificates. We expect that methods based on 
digital signatures, like that described in [12], can be applied to this problem.

Within a database, term indexes (either stored as data or computed as 
needed) are used to select objects satisfying some property e.g. the terms of the 
PVS logic, or the Nuprl tactics. Term indexing is a tool to pair down the search 
space before the computationally expensive part of the search is performed by 
filtering objects that are unlikely to match. See [24] for efficient data-structures 
and algorithms for term indexing of first-order terms. We imagine many such 
indexing operations will be defined and provide the framework for specifying 
them here.

Given a database V  of terms and a property (ip : Term,ie —>■ B) of terms, 
T>ltp is the set of eterms in V  satisfying ip:

V  lip =f { te € V \  ip[te] }

If P  =  {y)1; • • •, ipn] is a set of properties of eterms, we write V  \.P to denote 
the set of terms satisfying at least one of the properties in P  i.e. {ip\, ■ ■ ■ ,y>n} 
is a notation for the property (Xte. ipi[te] V • • • V ipn[ie]). Note that the fact that 
properties are defined on eterms means we can filter databases by syntactic 
properties of the terms and/or by the evidence the terms carry.

If D  is any set of databases and if ip is any property of terms, then:

D  I  ip d=  (J V i i p
T> £D

Individual databases may vary in their underlying implementations though 
they must all support translations from their internal representations into the 
term representation that serves as the medium of communication between sys
tems. A framework like the one proposed here, characterized by operations on 
terms, allows for specification of search methods in terms of the interface lan
guage.

3.3 Translations

Our methodology for sharing results rests on the idea that there may be effective 
translations between logics. In [26], an application similar to the one here is given 
which accounts for the use of multiple logics within a single specification.

If there is a partial function /  mapping terms to terms ( /  : Term i Termi) 
such that the domain of /  is CJ and the codomain of /  is C we call { / ,£ ' ,£ )



a translation. Note that since the domains of translations may intersect, we ex
plicitly carry the domain and codomain with the translation10. If /  is a function 
from £  to C and t £ £  then f ( t )  evidently denotes the translation of t £ £  
into a term in the language C.

We are typically interested in translations that make some kind of guaran
tee, e.g. that some property is preserved by the translation. The evidence for 
guarantees are represented in certificates11 and so, a translation which generates 
evidence for its own correctness must generate certificates. Only the database 
can generate certificates and so evidentiary translations must carry references to 
certificate kinds (a certificate generator) and make requests to the database to 
execute them. A translation certificate kind (of type CK) takes an eterm te whose 
term part is of type £  and returns a new eterm t'e, where e' is the new evidence 
for the translated term t'. As a side effect it adds the new term (t1 =  to
the database and creates new certificates for t' both preserving the old certifi
cates |iej (noting that they belonged to the untranslated term ie) and generating 
a new certificate certifying that t' was indeed generated by the translation of te. 
If C is a reference to a certificate kind we write C*(te) to denote the result of a 
request for the database to apply certificate kind C to ie.

Thus,the type of evidentiary translations is defined to be the four-tuple:

Tr d— (Term i —̂ Termi) x (Term i Set)  x (Termi Set) x CK 

If r  =  { / ,  C, £ ,  C) is in Tr then:

r (te) d=  C*(te) dom(r) d=  C codom(r) d=  £

We define the composition of evidentiary translations (r o f )  as follows.
If r  =  { f ,£ ,C ,C )  and f  =  {g ,C ,C ,C ) are compatible translations (i.e. if 
codom(r) =  dom(f)) then:

r  o f  =  {/  o g, £ ', C, C o C)

The notation ( /  o g) denotes ordinary function composition defined 
as ( f  o g)(x) =  g (f(x )).

The identity translation on a language C is defined as Idc =  (Xx.x, £ , £ , Cm), 
where Cid is the certificate kind that has no side effects and Cjd(t() simply returns 
the value te.

In practice the syntactic translations between the formal languages may be 
straightforward, the hard part for nontrivial translations between logics is the 
justification that the translation preserves intended meanings. The justification

10 This is consistent with formalizations of category theory [16, 6] in which each arrow 
has a dom and codom function and so arrows in non-trivial categories are triples. 
With this in mind, we see that languages are the objects of the category, translations 
are the arrows and composition is defined as below.

11 Certificates justifying a translation may refer to an informal argument (a paper)or 
they may refer to other formal content.



that the intended meaning is preserved by a translation may be informal or 
formal. To the extent that a user believes the justification for a translation, 
he will include it (or not) in the set of translations he wants considered when 
calculating a set of candidates for a search.

3.4 Stratification of Languages by Translations

To consider the relationships between objects in different languages in a het
erogeneous database, we stratify terms relative to a fixed language C by their 
distance from that language via some sequence of translations in a specified12 
set T. For the purposes of search, we are ultimately interested terms that can be 
effectively translated from one language (logic) to another. Based on this idea, 
we provide the following definition of the n-closure of a translation set T relative 
to a language C.

T o { 7- : Tr | r =  Idc}
rjm+i d±f |r  . rjif | gr /  ̂ t .  3 f G T£. codom(T') =  dom( f )  A r = ( r ' o  f ) }

The class T£ consists of all translations mapping terms of languages £  to the 
language £  by a sequence of n translations from the set T.

We define the closure of the stratification to be the union of all the levels.

T i «  |J T i
?gn

This is the set of all terms interpretable as terms in C by some sequence of 
translations in T.

The languages at level k in T* can be retrieved by projecting them from the 
translations in that level.

IIT2II ^  7T2(T2)

where the projection functions are lifted to sets of tuples point-wise in the natural 
way (i.e. if S C  Si x • • • x Sn then Wi(S) =  { Xi : 5j|{xi, • • • , X j ,  • • • ,x n) G S} 
where 0 < i <  n }).

The distance of a language £  from C under the translations set T is defined 
if and only if £  G ||T*|| for some k and is the minimum k such that £  G ||T|||.

The languages included in the closure T£ determine the potential search 
space (and translations to use) to satisfy a query in the language C.

The set of terms from a collection of databases D under translation set T 
at distance k from C is the set D  4- ||T* ||. We call this set the k-step candidate 
term,s. The full set of candidate terms are the terms in D 4- ||T̂ -1|. These sets are 
sets of terms in the languages £ ,  that can be translated into terms in C. We are 
of course not only interested in the sets of terms which can be translated into 
the language C but are interested in their translations. The effective candidate

12 We specify the set of allowable translations T because it is a basic tenet of our 
approach that users must be able to account for the results they receive.



terms of C from D under T is the set of terms from the languages in D 4- ||T̂ . || 
paired with their translations.

The following property states that if r  is in set of translations in T£, then 
every term t in dom(r) actually is mapped to a term in C by r.

V T :Tr Set. VC C Term i. Vr G T£. Vi G ofom(r). r(i) G C

The proof of this property is by induction on the level k at which r  occurs in T£ 
and then follows directly from the definition and the properties of composition.

The fact that translations are not necessarily invertible determines how 
search is done in the languages that are one or more translation steps from 
C; we apply the search methods implemented for C to terms in (t, r) G T£ by 
searching against the translated term r(i).

As an example of these definitions, consider the following. There are extant 
translations of HOL terms to classical Nuprl terms (n ), a translation of Isabelle 
terms to classical Nuprl terms (7 2 ) and a translation of ACL2 terms into HOL 
terms (7 3 ).

I I O 'L p r ; ) !  =  {N u prl}

||{ Ti,T2,T3} 1Nupril =  {H O L ,Isa b elle}  

\\{run}1Nuprl\ = {H O L }

\\{TuT2,n}2Nuprl\\={AC L2}

I {'Tl, Vi }pfUpr i I { }
Note that the levels as specified here are not cumulative; e.g. Nuprl G 

II{ti,T3}QNuprl| but Nuprl 0 I' Thus a user interested in searching
HOL theorems but excluding theorems of Nuprl to satisfy a Nuprl proof can 
specify the domain of search as \{'ri,Tz} 1Nuprl||.

Note that the translations between these different logical theories preserve 
validity of theorems but do not necessarily translate proofs. Translations are 
justified somehow, formally or informally. But such justifications may be based 
on semantic arguments and the translation of proofs is unknown.

3.5 Deductive Searching

Based on these ideas we propose the following general framework for search in 
heterogeneous databases of theorems from multiple logics. We cast our descrip
tion in terms of sequents, though it should be obvious how to recast these ideas 
in non-sequent based logics.

We are interested in searching the library to complete a proof of some sequent 
of the form F  b-£ A. Should some AG J  already be proved in C and stored in 
the library, then r,<j> l-£ A  can be trivially proved in C by cutting in (j) and 
then invoking the axiom rule. Less directly, perhaps there is some translation 
mapping a theorem of some other logic into the term (j) in the language of C.

Search will be performed using procedures that are, in most cases, incomplete. 
Our framework assumes that a search procedure used to find results within the



context of some logic C can construct a “proof” in C when a search is successful 
e.g. a search procedure to be used in the context of an HOL theorem will return 
both the lemmas found in the database and tactic to apply them in the context 
of sequent being searched for.

Let r  he 4  be a sequent in the logical language C, let D  be a collection 
of databases {X>i,X>2, • • • ,T>n} and let S  be a proof search procedure for C. We 
define [ r i -£  /V]d,5 as follows:

[r  hc z\ ] D ,5  d=  {(r’,p)\r’ c  u d  a p proves r ,r '  hc a }

where UD is the set of all terms in the databases in the set D. Thus [P b  ZSJd.s 
is a set of pairs consisting of lists of theorems F' from the databases in D, 
paired with a method of proof p which proves the sequent F, F' he A. The proof 
p (together with the theorems in F') is the information needed by the prover for 
the logic C to complete the proof of the sequent F he A. We write [Z\]d,s for 
[ b  ZV]d ,5 and [ ^ ] d , s  for [ b  ^]D,s-

Now we discuss some consequences and applications of the definition.
Typically, the actual answer set [P b^ Z\]d,s is infinite; to see this note that 

once some list of terms is enough to prove the desired result, any extension 
of that list will also do13. However, note that non-empty approximations to 
[ f b £  Z\]d,s are usually satisfactory answers to queries i.e. any answer provides 
a means to prove F he A  from the contents of databases in D. Indeed, although 
[ f b £  is defined as a complete answer, only one answer is ever required
to discharge the proof obligation. Multiple answers may provide the requester 
with options allowing them to make choices based on any number of criteria. We 
can imagine that one criteria might be to choose the answer that requires the 
minimum update to the local database. Others might be based on elegance.

To search a collection of databases D for an individual theorem q>, one 
searches for an approximation of [^]d,s- Note that if any theorem (j) of C is 
in the database, then {{<f>}, Axiom{<f>}) £ P ]d ,s  where Axiom,{<f\ is the axiom 
rule for C i. e. the rule justifying sequents of the form

I 'i • <?■ 12 b e Ai,<j>, A 2

Thus, we have defined a framework for deductive search in a way that users 
can both account for the results they receive and can apply the results in proofs.

Name and Content based Search in the Deductive Framework We
note here that name and content based searches can be fit into the framework 
just described for deductive search. For name searches, we assume that there 
is a function name mapping library objects to user specified names (strings of 
characters) and returning the empty string if a name does not exist. We define 
a logic of names CN. where the language of the logic of names is Term i (all

13 Of course we are excluding various resource-bounded and substrutural logics from 
this consideration.



terms, including strings, are in the language of the logic of names). The logic 
CN has one proof rule.

——---------Ax if s G string  A s C nameit)
t I™CN S a

Here, s is a string and s C s' if and only if s is a substring of s'. Thus, a name 
search for all objects in some collection of databases D is computed as [s]d,£JV- 
To search the names of the terms of some language C for a particular string s 
can be specified as [ s ] d 4x , £ 7v ; e.g. to search Nuprl terms having the string “lis f  
as a substring of their name is specified as [  “list” ]  (piNupri) ,cn -  The result of 
the search would be a set of pairs { ( i i , A x) , • • •, (tn, A x)}.

We can cast content-based search in the deductive framework by similarly 
defining a logic of content.

4 Apologia and Conclusion

In this paper we have described an implementation of a peer-to-peer framework 
for connecting databases of formalized mathematics [17] and the term structures 
used to communicating between them. We have proposed a framework for de
ductive searching in distributed collections of heterogeneous databases and have 
described how name and content based searchers can be cast into the deduc
tive framework. We have emphasized that both evidence and effective methods 
of translation and proof should be included as part of the results of searches. 
There is obviously significant work that remains to be done, most features of 
the proposed framework have not been implemented. Work on representing ev
idence using Allen’s certificate mechanism continues at Cornell and Wyoming. 
We have only implemented name and content based searching and intend to 
further explore more powerful deductive methods based on heuristic search.

In a number of ways this paper is unsatisfactory: some aspects of the proposed 
framework for sharing and searching have been elaborated in too much detail; 
while a number of aspects of the presentation are too vague. However, we believe 
that the proposed approach has several advantages. We do not propose to impose 
any particular logic or any absolute criteria for correctness on users. To us, any 
attempt to make such impositions will result in failure, perhaps not for technical 
reasons but for social ones14. Choice of logic and the criteria for correctness 
are matters for individual deliberation. Instead, we have proposed a framework 
within which mechanisms for translating between logics can be implemented and 
where mechanisms to account for results is embedded within the framework. The 
only imposition we reluctantly make is one of syntax, of term structure. And 
although we can imagine that XML or some other structured notation would 
work as well as the one presented here, we can not imagine how to avoid such 
an imposition. In any case, matters of syntax require far less commitment than

14 One might reasonably claim that the QED project [4] ended prematurely down for 
precisely this reason.



matters of semantics. We believe that something very much like the system 
proposed here, if not this one, will eventually provide a practical means for 
seamless sharing formal mathematics.

Acknowledgments We would like to thank Stuart Allen and Constable at 
Cornell for the intellectual enjoyment gained from the time spent discussing FDL 
related matters. We thank Rich Eaton also at Cornell for cheerful responses to 
our unreasonable requests for his time and for his programming support. The 
first author also thanks John Paul at the University of Wyoming for acting as a 
sounding board for many of the ideas presented here.

References

1. Stuart Allen. Nuprl Basics. Cornell University, 2001. 
http://www.es.Cornell. edu/Info/People/sfa/Nuprl/NuprlPrimitives/.

2. Stuart Allen. Abstract identifiers, intertextual reference and a compu
tational basis for recordkeeping. First Monday, 9(2), February 2004. 
http: / /firstmonday. org/issues/issue9_2/alien/.

3. Stuart F. Allen, Mark Bickford, Robert Constable, Richard Eaton, and 
Christoph. Kreitz. A Nuprl-PVS connection: Integrating libraries of for
mal mathematics. Technical Report TR2003-1889, Cornell University, 2003. 
http: / / techreports. library. Cornell.edu:8081/Dienst/UI/l.0 /
Display/cul. cis/TR2003-1889.

4. Anonymous. QED Manifesto, http://www-unix.mcs.anl.gov/qed/.
5. James Caldwell and Judith Underwood. Classical tools for constructive proof 

search. In Didier Galmiche, editor, Proceedings of the CADE-13 Workshop on 
Proof search in Type-theoretic languages., Rutgers N.J., July 1996.

6. James Caldwell and Tjark Weber. A formal framework for constructive category 
theory, http://www.cs.uwyo.edu/~jlc/papers, July 2003.

7. Gilles Dowek. Higher-Order Unification and Matching, chapter 16, pages 1009
1065. In Robinson and Voronov [23], 2001.

8. The Formal Digital Libraries Project (Homepage), 
http: / / www.nuprl. org/html/Digital.Libraries.html.

9. D. M. Gabbay and M. de Rijke, editors. Frontiers o f Combining Systems 2 
(Proceedings of the Second International Workshop, FroGoS’98, Amsterdam, The 
Netherlands, October 1998), volume 7 of Studies in Logic and Computation. Re
search Studies Press Ltd., 2000.

10. Joseph Goguen and Rod Burstall. Introducing institutions. In Edward Clarke and 
Dexter Kozen, editors, Proceedings, Logics of Programming Workshop, volume 164 
of LNCS, pages 221-256. Springer, 1984.

11. Joseph A. Goguen and Rod Burstall. Institutions: Abstract model theory for spec
ification and programming. Journal o f the Association for Computing Machinery, 
39(1):95-146, 1992.

12. Jim Grundy. Trustworthy storage and exchange of theorems. Technical Report 
TUCS-TR-1, Turku, Finland, April 1996.

13. Jaakko Hintikka. The Principles o f Mathematics Revisited. Cambridge University 
Press, 1996.

http://www.es.Cornell.edu/Info/People/sfa/Nuprl/NuprlPrimitives/
http://firstmonday.org/issues/issue9_2/alien/
http://techreports.library.Cornell.edu:8081/Dienst/UI/l.0/
http://www-unix.mcs.anl.gov/qed/
http://www.cs.uwyo.edu/~jlc/papers
http://www.nuprl.org/html/Digital.Libraries.html


14. Douglas Howe. Toward sharing libraries of mathematics between theorem provers. 
In Gabbay and de Rijke [9], pages 161-176.

15. Douglas J. Howe. Importing mathematics from HOL into Nuprl. In J. von Wright, 
J. Grundy, and J. Harrison, editors, Proceedings o f the 11th International Confer
ence on Theorem Proving in Higher Order Logics, volume 1125, of LNCS, pages 
267-282. Springer-Verlag, 1996.

16. G. Huet and A. Saibi. Constructive category theory. In Gordon Plotkin, Colin Stir
ling, and Mads Tofte, editors, Proof, Language and Interaction: Essays in Honour 
of Robin Milner. MIT, 1998.

17. Christoph Jechlitschek. Distributed Sharing of Formalized Mathematics: a P2P  
approach. Master’s thesis, University of Wyoming, Laramie, W Y, May 2004.

18. The JXTA project homepage, http://www.jxta.org.
19. Evan Moran. Forthcoming Cornell Ph.D. Thesis, Dept, of Computer Science.
20. Pavel Naumov. Importing Isabelle formal mathematics into Nuprl. The 12th In

ternational Conference on Theorem Proving in Higher Order Logics, supplemental 
proceedings, 1999. http: / / www-sop. inria.fr/croap/TPH0Ls99/ps/paper4.ps.

21. Pavel Naumov, Mark O. Stehr, and Jose Meseguer. The HOL/NuPRL proof trans
lator: A practical approach to interoperability. In Proceedings of the 14th Inter
national Conference on Theorem Proving in Higher Order Logics, volume 2152 of 
LNCS, pages 329 -  345. Springer, 2001.

22. National Center for Biotechnology Information (Homepage), 
http: / / www.ncbi.nlm.nih.gov/.

23. Alan Robinson and Andrei Voronov, editors. Handbook of Automated Reasoning: 
Volume II. MIT, North Holland, 2001.

24. R. Sekar, I. V. Ramakishnan, and Ardrei Voronkov. Term Indexing, chapter 26, 
pages 1855-1964. In Robinson and Voronov [23], 2001.

25. Mark Staples. Linking ACL2 and HOL. Technical Report 476, Cambridge Univer
sity, Computer Laboratory, 1999.
h ttp ://c ite s e e r .is t .psu.edu/staples991inking.html.

26. Andrzej Tarlecki. Towards heterogeneous specifications. In Gabbay and de Rijke 
[9], pages 337-360.

http://www.jxta.org
http://www.ncbi.nlm.nih.gov/
http://citeseer.ist.psu.edu/staples991inking.html




Mechanical Verification of 
Automatic Synthesis of Failsafe Fault-Tolerance1

(Extended Abstract)

Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir

Department of Computer Science and Engineering,
Michigan State University,

48824 East Lansing, Michigan, USA 
{sandeep, borzoo, ebnenasi}®cse.msu.edu 

http://www.cse.msu.edu/"{sandeep,borzoo,ebnenasi}

Abstract. Fault-tolerance is a crucial property in many systems. Thus, 
mechanical verification of algorithms associated with synthesis of fault- 
tolerant programs is desirable to ensure their correctness. In this paper, 
we present the mechanized verification of the algorithm that automates 
the synthesis algorithm for adding failsafe fault-tolerance to a given fault- 
intolerant program using the PVS theorem prover. By this verification, 
not only we prove the correctness of the synthesis algorithm, but also 
we guarantee that any program synthesized by this algorithm is correct 
by construction. Towards this end, we formally define a framework for 
formal specification and verification of fault-tolerance that consists of ab
stract definitions for programs, specifications, faults, and levels of fault- 
tolerance, so that they are independent of platform and architecture. The 
essence of the synthesis algorithm involves fixpoint calculations. Hence, 
we also develop a reusable library for fixpoint calculations on finite sets 
in PVS.

K eyw ords: Fault-tolerance, PVS, Program synthesis, Program transforma
tion, Mechanical verification, Theorem proving, Addition of fault-tolerance

1 Introduction

Fault-tolerance is a necessity in most computer systems and, hence, one needs 
strong assurance of fault-tolerance properties of a given system. Mechanical veri
fication of such systems is one way to get a strong form of assurance. The related 
work in the literature has focused on verification of concrete fault-tolerant pro
grams. For example, Owre et al [1] present a survey on formal verification of
1 Extended version appears in the proceedings of International Symposium on Logic- 

based Program Synthesis and Transformation (LOPSTR’04) Verona, Italy.
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a fault-tolerant digital-flight control system. Mantel and Gartner [2] verify the 
correctness of a fault-tolerant broadcast protocol. Qadeer and Shankar [3] me
chanically verify the self-stability property of Dijkstra’s mutual exclusion token 
ring algorithm [4], Kulkarni, Rushby, and Shankar [5] verify the same algorithm 
by exploiting the theory of detectors and correctors [6].

While the verifications performed in [1-3,5] enable us to gain confidence 
in the programs being verified, it is difficult to extend these verifications to 
other programs. A more general approach, therefore, is to verify algorithms that 
generate fault-tolerant programs.

With this motivation, in this paper, we focus on the problem of verifying 
an algorithm that synthesizes fault-tolerant programs. With such verification, 
we are guaranteed that all the programs generated by the synthesis algorithm 
indeed satisfy their fault-tolerance requirements. Towards this end, we verify 
the transformation algorithm for adding failsafe fault-tolerance, presented by 
Kulkarni and Arora [7] using the PVS theorem prover. To verify this algorithm, 
first, we model a framework for fault-tolerance in PVS. This framework consists 
of definitions for programs, specifications, faults, and levels of fault-tolerance. 
Then, we verify that any program synthesized by the algorithm is indeed failsafe 
fault-tolerant. By this verification, we ensure that any program synthesized by 
this algorithm is also correct by construction and, hence, there is no need to 
verify the individual synthesized programs.

We note that the algorithms in [7], are the basis for their extensions to deal 
with simultaneous occurrence of multiple faults from different types [8] and for 
synthesizing distributed programs [9,10]. Thus, the specification and verification 
of transformation algorithms in [7] is reusable in developing specification and 
verification of algorithms in [8-10]. Since fixpoint calculation is at the heart of 
the synthesis algorithm for adding failsafe, we also develop a library for fixpoint 
calculations on finite sets in PVS. This library is reusable for other purposes 
that involve fixpoint calculations as well.

Contributions of the paper. The contributions of this paper are as follows:
(1) We verify the correctness of the synthesis algorithm for adding failsafe fault- 
tolerance in [7]. Thus, not only we ensure its correctness but also we guarantee 
that any program synthesized by the algorithm is also correct by construction.
(2) We provide a foundation for formal specification and verification of later 
research work that are extensions of [7]. (3) We develop a reusable library in 
PVS for fixpoint calculations on finite sets.

Organization of the paper. The organization of the paper is as follows: 
We provide the formal definitions of programs, specifications, faults, and fault- 
tolerance in Section 2. Using these definitions, we formally state the problem of 
mechanical verification of synthesis of failsafe fault-tolerant programs in Section
3. In Section 4, first, we develop a theory for fixpoint calculations on finite sets. 
Then, based on the definitions in Section 2 and our fixpoint calculation library, 
we formally specify the synthesis algorithm for adding failsafe tolerance in PVS. 
In Section 5, we present verification of the algorithm for synthesizing failsafe 
fault-tolerant programs. Finally, we make concluding remarks and discuss future 
work in Section 6.
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2 Modeling a Fault-Tolerance Framework
In this section, we give formal definitions for programs, specifications, faults, 
and fault-tolerance. The programs are specified in terms of their state space 
and their transitions. The definition of specifications is adapted from Alpern 
and Schneider [11], The definitions of faults and fault-tolerance are adapted 
from Arora and Gouda [12] and Kulkarni [6]. We also discuss how we model 
the definitions in PVS in an abstract way, so that they are independent of any 
particular program.

2.1 Program

A program p is a finite set of transitions in its state space. In our framework, 
the notion of state is abstract. Hence, in PVS, we model state by an UNIN
TERPRETED TYPE [13]. Likewise, a transition is modeled as an ordered pair of 
states, which is also an uninterpreted type. We also assume that the number of 
states and transitions are finite. The state space of p, Sp, is the set of all possible 
states of p. In PVS, we model the state space by the finite fullset over states.

We model program, p, by a subset of Sp x Sp. A state predicate of p is a subset 
of Sp. In PVS, we model a state predicate, StatePred, as a finite set over states. 
The type Action denotes finite sets of transitions. A state predicate S is closed in 
the program p if f for all transitions (s0, si) in p, if s0 € S then si € S. Hence, we 
define closure as follows: dosed(S,p) =  (Vs0,si | (s0,s i )€ p  : (s0€ S  =>■ si eS )). 
A sequence of states, (s0, s i , ...), is a computation of p if f any pair of two consec
utive states is a transition in p. We formalize this by a DEPENDENT TYPE [13] 
as follows: Computation(p) : T Y P E  =

{ c : sequence [state] | (Vi | i >  0 : (cj,cj+1) € p)}

where sequence[state] : N —> state and p is any finite set of type Action. A com
putation prefix is a finite sequence of states, where the first j  steps are transitions 
in the given program:

p refix (p ,j) : T Y P E  =  { c : sequence [state] | (V* | i <  j  : (cj,cj+i) € p)}

We deliberately model computation prefixes by infinite sequences of which 
only a finite part is used. This is due to the fact that using finite sequences in PVS 
is not very convenient and the type checker generates several proof obligations 
whenever finite sequences are used.

The projection of program p on state predicate S consists of transitions of p 
that start in S and end in S, denoted as p | S. Similar to the notion of program, 
we model projection of p on S by a finite set of transitions: p | S =  { (s0,s i) | 
(s0,s i) E p  A (s0,si € S )}.

2.2 Specification

The specification consists of a safety specification and a liveness specification. The 
safety specification is specified as a set of bad transitions. Thus, for program p,
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its safety specification is a subset of Sp x Sp. Hence, we can model the safety 
specification by a finite set of transitions, called spec. We explain the liveness 
issue in Section 2.3.

Given program p, state predicate S, and specification spec, we say that p 
satisfies its specification from S iff (1) S is closed in p, and (2) every computation 
of p that starts in a state where S is true, does not contain a transition in spec. 
If p does not satisfy its specification from S, we say p violates its specification. 
If p satisfies specification from S and S ^ { } ,  we say that S is an invariant of p. 
Since we do not deal with a specific program, in PVS, we model an invariant by 
an arbitrary state predicate that is closed in p.

2.3 Faults and Fault-Toleranee

The faults that a program is subject to are systematically represented by a 
finite set of transitions. A class of fault /  for program p is a subset of Sp x Sp. A 
computation of program p in presence of faults /  is an infinite sequence of states 
where either a transition of p or a transition of /  occurs at every step. Hence, we 
model computation of program in presence of faults as c : Computation(p U / ) .

We say that a state predicate T is an /-span (read as fault-span) of p from S 
iff the following two conditions are satisfied: (1) S => T, and (2) T  is closed in 
p U / .  Thus, we model fault-span in PVS as follows: FaultSpan(T, S,p U / )  =  
((S C T) A (closed(T,p U / ) ) ) .  Observe that for all computations of p that start 
at states where S is true, T  is a boundary in the state space of p up to which 
(but not beyond which) the state of p may be perturbed by the transitions in / .  
Hence, we define the different levels of fault-tolerance based on the behavior of 
the fault-tolerant program in its fault-span.

We say that p is failsafe /-to lerant (read as fault-tolerant) to its specification 
from S iff two conditions hold: (1) p satisfies its specification from S, and (2) there 
exists T  such that T  is an /-span of p from S, and no prefix of a computation 
of p U /  that starts in T  has a transition in spec.

In [7], the liveness specification is modeled implicitly. Specifically, for fail
safe fault-tolerance, the requirement is that the fault-tolerant program does not 
deadlock in the absence of faults. A program deadlocks in state s0 iff Vsi | si € 
S : (s0,s i) £ p.

3 Problem Statement

In this section, we formally state the the problem of automatic synthesis of 
failsafe fault-tolerance. As described in Section 2, the fault-intolerant program 
p is specified in terms of its state space Sp, its transitions, p. and its invariant,
S. The specification provides a set of bad transitions (that should not occur in 
program computation). The faults, / ,  are specified in terms of a finite set of 
transitions. Likewise, the fault-tolerant program p' is specified in terms of its 
state space Sp, its set of transitions, say p'. its invariant, S', its specification, 
spec, and the type of fault-tolerance it provides.



The Transformation Problem
Given p, S, spec, and /  such that p satisfies spec from S.
Identify p' and S' such that:

S' C S
(p'\S') C (p\S')
p' is failsafe /-tolerant to spec from S'

We now explain the reasons behind the first two conditions briefly:

-  If S' contains states that are not in S then, in the absence of faults, p' 
will include computations that start outside S and hence, p' contains new 
behaviors in the absence of faults. Therefore, we require that S' C S.

~~ Regarding the transitions of p and p', we focus only on the transitions of 
p'\S' and p\S'. If p'\S' contains a transition that is not in p\S', p' can use 
this transition in a new computation in the absence of faults and hence, we 
require that p'\S' C p\S' .

Soundness. An algorithm for the transformation problem is sound iff for any 
given input, its output, namely p' and S', satisfies the transformation problem.

Our goal is to mechanically verify that the proposed algorithm in [7], for 
adding failsafe fault-tolerance is indeed sound.
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4 Description and Specification the Synthesis Algorithm

In this section, we describe the synthesis algorithm for adding failsafe fault- 
tolerance proposed in [7], and explain how we formally specify it in PVS. The 
essence of adding failsafe fault-tolerance to a given fault-intolerant program is re
calculation of the invariant of the fault-intolerant program which in turn involves 
calculating the fixpoint of a formula. More specifically, we calculate fixpoint of a 
given formula to (i) calculate the set of states from where safety may be violated 
by faults alone; (ii) remove deadlock states that occur in a given set of states.

The /i—calculus theory of the PVS prelude contains general definitions of the 
standard fixpoint calculation, however, it is not convenient to use that theory 
in the context of our problem. This is due to the fact that this library focuses 
on infinite sets and is not specialized to account for the properties of functions 
used in the synthesis of fault-tolerant programs. By contrast, we find that by 
customizing the theory to the properties of functions used in the synthesis of 
fault-tolerant programs, we can simplify the verification of the synthesis algo
rithm. Hence, in Section 4.1, we develop a theory for fixpoint calculations on 
finite sets and we verify it in Section 5.1. This theory is expected to be reusable 
for other formalizations that involve fixpoint calculations on finite sets. Based 
on the definitions in Section 4.1, we model the synthesis algorithm for addition 
of failsafe fault-tolerance in Sections 4.2.
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4.1 Specification of Fixpoint Calculation for Finite Sets

In this section, we describe how we formally specify fixpoint calculation for finite 
sets in PVS. A fixpoint of a function /  : X  -»■ X  is any value xq £ X  such that 
f ( x o) =  x q .  In the context of finite sets, domain and range of / ,  X , are both finite 
sets of finite sets. Throughout this section and in Section 5.1, the variables i, j, k 
range over natural numbers. The variable x  is any finite set of any uninterpreted 
type. Variable b is any member of such finite set.

One type of functions used in synthesis of failsafe fault-tolerance is a decreas
ing function for which the largest fixpoint is calculated. Towards this end, we 
start from an initial set and at each step of calculation, we remove a subset of 
the initial set that has a certain property. Thus, the type DecFunc is the type 
of functions g, such that g : {A  : fin iteset} —> {B  : fin iteset | B  C A }. In 
other words, for all finite sets x, g(x) C x. With such a decreasing function, 
we define D ec(i,x)(g) to formalize the recursive behavior of the largest fixpoint 
calculation. D ec(i,x)(g) keeps removing the elements of the initial set, x, that 
the function g of type DecFunc returns at every step:

Deed x)(q) =  I  D e°^  1' x^ ~  9 (Dec(i -  1 ,x ){g )) if i ±  0;
 ̂ | x  if % =  0

We define the largest fixpoint as follows:
LgFix(x)(g) =  {b  | Vfc : b € D ec(k ,x )(g ))}

Our goal is to prove the following property of largest fixpoint based on our 
definitions:

g(LgFix(x)(g)) =  0 
Likewise we define an increasing function, r, for which the smallest fixpoint 

is calculated:

j- w > ( Inc(i — l,x )(r )U r (In c (i — l,x )(r ))  if i ^  0;Inc(t,x)(r) =  < • nv [ x  if i =  0

Finally, we define the smallest fixpoint as follows:
Sm Fix(x)(r) =  {b  | 3k : b € In c(k ,x )(r )}

4.2 Specification of the Synthesis of Failsafe Fault-Tolerance

The essence of adding failsafe tolerance is to remove the states from where safety 
may be violated by one or more fault transitions. We reiterate the algorithm 
Add-failsafe (from [7]) in Figure 1.

Throughout this section and Sections 5.2, the variables x ,s ,s 0,s i range over 
states. The variables i ,j ,  k, m range over natural numbers. The variable X  ranges 
over StatePred and the variable Z  ranges over Action. As defined in Section 3, 
p and p' are respectively fault-intolerant and fault-tolerant programs, S and S' 
are respectively invariants of fault-intolerant and fault-tolerant programs, /  is 
the finite set of faults, and spec is the finite set of bad transitions that represents 
the safety specification.
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Add_failsafe(p, /  : transitions, S : state predicate, spec  : specification)
{

m s :=  s m a l l es t f ixp o in t (X  =  X  U {so I (3si :
(so ,si) G / )  A (si (so ,«i) violates spec) };

m t  : =  {(sch «i) : ( (s i  G m s)  V «i) violates spec) };
S' :=  Const ructInvariant(S — m s ,p  — mi)\
if =  declare no failsafe /-tolerant program exists;

else p' :=ConstructTransitions(p — mt, S')
}
Const ructInvariant(S : state predicate, p  : transitions)
/ /  Returns the largest subset of S  such that computations of p 

within that subset are infinite 
return la r g e s t f ix p o in t (X  =  (X  n S) — {so I (V*i : s\ £ X  : (*o ,*i) ^ p ) }

ConstructTransitions(p : transitions, S : set of states)
{ return p — {(so^ s i )  : sq £  S A si £  S }  }

Fig. 1. The synthesis algorithm for adding failsafe tolerance

In order to construct ms, the set of states from where safety can be violated 
by one or more fault transitions, first, we define m slnit as the finite set of 
states from where safety can be violated by a single fault transition. Note that 
(so,si) € spec means violation of the safety specification. Formally,

m sln it : StatePred =  {s 0 | 3 si : (s0,s i) € /  A (s0,s i) € spec}

Now, we define a function, RevReachStates, that calculates a state predicate from 
where states of another finite set, rs. are reachable by fault transition. Formally, 

RevReachStates(rs : StatePred) : StatePred =
{s 0 | 3 si : si € rs A (s0, si) € /  A s0 f  rs}

We use the definition of smallest fixpoint in Section 4.1 to define the state pred
icate ms. Towards this end, we instantiate the initial set with mslnit, and the r 
function with RevReachStates:

ms : StatePred =  SmFix(msInit)(RevReachStates)

Then, we define the finite set of transitions, mt, that must be removed from p. 
These transitions are either transitions that may lead a computation to reach a 
state in ms or transitions that directly violate safety:

m t : Action =  {(s0,s i) | (si € ms V (s0,s i) € spec)}

The algorithm Add-failsafe removes the set ms from the invariant of the fault- 
intolerant program S. However, this removal may create deadlock states. The set 
of deadlock states in ds of program Z  is denoted as follows: 

DeadlockStates(Z)(ds : StatePred) : StatePred =
{s0 | s0 € ds : (Vsi | si € ds : (s0,s i) ^ Z )}

We construct the invariant of the fault-tolerant program by removing the 
deadlock states to ensure that computations of fault-tolerant program are infinite
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(cf. Section 2.3). In general, we define Constructlnvariant using largest fixpoint 
of a finite set X , that removes deadlock states of a given state predicate X : 

ConstructInvariant(X,Z) : StatePred =  LgFix(X)(DeadlockStates(Z ))

The formal definition of the invariant of fault-tolerant program is as follows:
S' : StatePred =  ConstructInvariant(S — m s ,p — mt)

Finally, we construct the finite set of transitions of fault-tolerant program by 
removing the transitions that violate the closure of S':

p' : Action =  p - m t - { ( s 0, si) | ((s0,s i) € ip—mt)) A (s0 € S'Asi ^ S ')}

5 Verification of the Synthesis Algorithm

In this section, we verify the soundness of the synthesis algorithm for adding 
failsafe fault-tolerance based on the formal specification in Section 4.

5.1 Verification of the Fixpoint Theory

In order to verify the soundness of the synthesis algorithm for adding failsafe 
fault-tolerance, first, we prove the properties of fixpoint calculations (cf. Section 
4.1) in Theorem 5.6.
Lemma 5.1: Until the fixpoint is achieved, the cardinality of D ec(j +  1, x) is 
less than or equal to \x\ — j  — 1. Formally,

Vj : ((g (D ec(j,x)(g )) ±  0) = »  \(Dec(j +  l,x)(g)\ < \x\ -  j  -  I)) 
P roof. We prove this lemma by induction on j .  In the base case, j  =  0, after 
eliminating the quantifiers and expanding the definitions, we need to show if 
g(x) is nonempty then \x — g (x )| < \x\ — 1. We prove this by using two pre
defined lemmas in PVS: ^y,z : fin iteset : ((y C z) =>■ (|z — y\ =  \z\ — |j/|)), 
and Vj/ : fin iteset : (y ^  0 \y\ > 0). After instantiations, using the
facts g(x) C x  and g(x) ^ 0, the GRIND strategy [14] discharges the base case. 
For induction step, after eliminating quantifiers, and expanding definitions, we 
need to prove (g(Dec(j +  1 ,x)(g )) ^ 0  A | D ec(j +  l,x)(g)\ < \x\ — j  — 1) =>■ 
(|D ec(j +  1 +  l,x)(g)\ < \x\ — (j  +  1) — 1). We discharge the induction step this 
in the same way we proved the base case. □

Lemma 5.2: If the fixpoint is reached by step j  then in any subsequent steps, 
fixpoint will be maintained. Formally,

Vj : ((g (D ec(j,x )(g )) =  0) =>■ (Vfc | k > j  : g (D ec(k ,x)(g )) =  0))
Proof. After skolemization to remove the universal quantifier, we place in
duction on k. The base case, k =  j  =  0, is trivially true. In the induction 
step, we need to prove (g(D ec(k ,x)(g )) =  0) =>■ (g(Dec(k  +  1 ,x )(g )) =  0). 
By expanding the definition of Dec in the deducing part, Dec(k +  1 ,x)(g) =  
D ec(k ,x)(g ) — g(D ec(k ,x)(g)), and considering the assuming part we infer that 
g(D ec(k,x)(g)) =  0, therefore g(Dec(k +  1 ,x )(g)) =  g (D ec(k ,x)(g)), which is
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equal to the empty set. □

Lemma 5.3: There exists a step i such that subsequent applications of g returns 
the empty set. Formally, 3* : ('in | n >  i : g(Dec(n,x)(g)) =  0)
Proof. First, we instantiate i with \x\. Then, after skolemization, we need to 
prove g(Dec(n,x)(g)) =  0. Using Lemma 5.1 and instantiating j  with \x\, we 
need to show two subgoals:
Subgoal 1: \Dec(\x\ +  l,x)(g)\  >  \x\ — \x\ — 1, which is trivially true.
Subgoal 2: (g(Dec(\x\,x)(g)) =  0) =>■ (g(D ec(n,x)(g)) =  0). From Lemma 
5.2, we know ¥j : (g (D ec(j,x)(g)) =  0) =>■ (Vfc | k > j  : g (D ec(k ,x)(g )) =  0). 
After automatic instantiations, we need to prove (Vfc | A? > |ar| : g(D ec(k ,x)(g )) =  
0) (9 (D ec(n,x)(g)) =  0). Manual instantiation of k with n discharges the 
lemma. □

Lemma 5.4: There exists a step j  where fixpoint is achieved. Formally,
3j : (Vfc | k > j  : ((D ec(k,x)(g) =  D ec(j,x )(g )) A (g(D ec(k,x)(g)) =  0))) 

Proof. Proof of the second conjunct is exactly the same as proof of Lemma 5.3, 
so we proceed with the proof of the first conjunct. From Lemma 5.3, we know 
that the existence of j  such that Vfc | k > j  : g(Dec(k, x)(g)) =  0. Using Lemma
5.3 and after skolemization, we place induction on k. In the base case, k =  j  =  0, 
we need to show D ec(0 ,x)(g ) =  D ec(j,x )(g ), which is trivially true. In induction 
step, we need to prove:

V* | i > j  '■ ((Dec(i,x)(g) =  Dec(j,x)(g)  A g(D ec(i,x)(g )) =  0) ==>
(Dec(i +  1 ,x)(g) =  Dec(j,x)(g)))

We prove this by applying the rule of extensionality and expanding Dec(i +  
1 ,x )(g ), which is equal to D ec(i,x)(g) — g(D ec(i,x)(g)). As g(D ec(i,x)(g )) =  0, 
Dec(i +  1 ,x)(g) =  D ec(i,x)(g) =  D ec(j,x)(g ) and the proof is complete. □

Lemma 5.5: For some value j ,  D ec(j,x ) will reach a fixpoint, and at this step 
value of Dec(j, x) will be the largest fixpoint. Formally,

3j : (g(D ec(j,x )(g ))  =  0 A (Dec(j,x)(g) =  LgFix(x)(g)))
Proof. Similar to proof of Lemma 5.4, the proof of the first conjunct is the same 
as proof of Lemma 5.3. To prove the second conjunct, first, we apply the rule of 
extensionality to convert the set equalities to boolean equalities. A propositional 
split generates two subgoals:
Subgoal 1: ¥6 € LgFix(x)(g) : b € Dec(j,x)(g).  First, we expand the definition 
of LgFix =  {b | Vfc : b € D ec(k ,x )(g )} in the assuming part. Then, instantiating 
k with j  proves the subgoal.
Subgoal 2: V(6 € D ec(j,x )(g )) : b € LgFix(x)(g).
To verify this subgoal, after expanding the definition of LgFix  and eliminating 
the universal quantifier by skolemization, we need to show ¥6 € Dec(j,x)(g) : 
b € Dec(k,x)(g).  Using Lemma 5.4, we know that

V* | i > j  : (Dec(i,x)(g) =  D ec(j,x )(g ) A g(Dec(i,x)(g)) =  0).
We instantiate i with k and by propositional simplification through the GROUND
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command [14], we prove this subgoal. □

Theorem 5.6: Application of function g on the largest fixpoint of a finite set 
returns the empty set. Formally, g(LgFix(x)(g)) =  0
Proof. Using Lemma 5.5, the GRIND strategy completes the proof. □

5.2 Verification of the Synthesis of Failsafe Fault-Tolerance

In order to verify the soundness of Add-failsafe algorithm, we now prove that 
the synthesized program, p', satisfies the three conditions of the transformation 
problem stated in Section 3. More specifically, in Theorems 5.9 and 5.10, we 
prove the correctness of the first two conditions of the transformation problem. 
Then, in the remaining theorems, we show that the program synthesized by 
Add-failsafe is indeed failsafe fault-tolerant.

Observation 5.8: S' fl ms =  0
Proof. After expanding the definition of S', Constructlnvariant, and LgFix, 
we need to prove: ¥a? : (¥& : x  € Dec(k, S — ms)(DeadlockStates(p — mt)) = >  
x  ^ ms). By instantiating k with 0, propositional simplification discharges the 
observation. □

Theorem 5.9: S' C S
Proof. Our strategy to prove this theorem is based on the fact that S' is 
made out of S by removing some states. After expanding the definition of S', 
Constructlnvariant, and LgFix, we need to prove:

Vfc : (¥a? : (x E Dec(k, S — ms)(DeadlockStates(p — mt)) ==> x  € S)). 
Towards this end, first, we instantiate k with zero. Then, after expanding the 
definitions, we need to prove ¥a? : (x € S — ms ==> x 6 S), which is trivially 
true. □

Theorem 5.10: p'\S' C p\S'
Theorem 5.11: S' is closed in p'. Formally, dosed(S',p')
Lemma 5.12: V(s0, Si) : ((s0, Si) € /  A Si € ms) =>■ s0 € ms
Proof. The GRIND strategy discharges this lemma and theorems 5.10 and 5.11.q

T heorem  5.13: Deadlock States(p — mt)(S') =  0
Proof. First, we expand the definitions of S' and Constructlnvariant. Then, 
we need to prove: DeadlockDtates(p — m t)(LgFix(S — ms)(DeadlockStates(p — 
mt))) =  0. Using Theorem 5.6, first, we instantiate x  with LgFix(S  — ms), and 
g with DeadlockStates{p — mt) to complete the proof. Then, a sequence of ex
pansions of definitions and propositional simplifications discharge the theorem.^

Remark. Note that Theorem 5.13 is one of the instances where formalization 
of the fixpoint in Section 4.1 is used. More specifically, DeadlockStates(p')(S') 
denotes the deadlock states in S' using program p'. We repeatedly remove these
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deadlock states. Hence, once the fixpoint is reached, there are no deadlock states.

Lemma 5.14: In the presence of faults, no computation prefix of failsafe toler
ant program that starts from a state in S', reaches a state in ms. Formally,

Vj : (Vc : prefix(p' U / ,  j )  | co € S' : Vfc | k < j  : c& ^ ms)
Proof. After eliminating the universal quantifier on c(p' U / )  by skolemiza- 
tion, we proceed by induction on k. In the base case, k =  0, we need to prove 
co £ S' = >  co ^ ms. The base case can be discharged using Observation 5.8. In 
induction step, we need to prove (Vn | n < j  : (c„, cn+i) € p' U / )  =>■ (Vfc | k < 
j  : Ck ^ ms =>■ Ck+i ^ ms). From Lemma 5.12, we know that if the destination 
of a fault transition , (s0, si), is in ms, then the source, s0, is in ms as well. This 
means that if so is not in ms then si is not in ms either. We know that c* ^ ms 
and, hence, based on Lemma 5.12, Ck+i ^ ms. □

Theorem 5.15: Any prefix of any computation of failsafe tolerant program in 
the presence of faults that starts in S' does not violate safety. Formally,

Vj : V(c : prefix(p' U / ) ,  j  | cq € S') : Vfc|fc < j  : (c*,c*+i) ^ spec 
Proof. In Lemma 5.14, we proved that no computation prefix of p' U /  that 
starts from a state in S' reaches a state in ms. In addition, p' does not contain 
any transition that is in spec. Thus, a computation prefix of p' U /  that starts 
from a state in S' does not contain a transition in spec. □

6 Conclusion and Future Work

In this paper, we focused on the problem of verifying transformation algorithm 
for adding failsafe fault-tolerance that generate fault-tolerant programs that are 
correct by construction. We would like to note that we have also verified the 
algorithm for synthesizing (i) nonmasking fault-tolerant programs where the 
program recovers to states from where its specification is satisfied although safety 
may be violated during recovery, and (ii) masking fault-tolerant programs where 
the program recovers to states from where its specification is satisfied while 
preserving safety [15,16].

Since we focus on verification of a transformation algorithm, we note that our 
results ensure that any program synthesized using the algorithm indeed satisfies 
its required fault-tolerance properties. Thus, our approach is more general than 
verifying a particular fault-tolerant program. Also, to verify the algorithm that 
synthesizes failsafe fault-tolerant programs, we developed a fixpoint library for 
finite sets. This library is expected to be applicable elsewhere.

In a broader context, the verification of the algorithm considered in this paper 
will assist us in verifying several other transformations. For example, in [8], the 
authors extend the algorithms in [7] to deal with multiple classes of faults. The 
algorithms in [7] have also been used to synthesize fault-tolerant distributed 
programs. As an illustration, we note that the algorithms in [9,10,17] that are 
extensions of the algorithms in [7] have been used to synthesize solutions for 
several fault-tolerant programs including, Byzantine agreement, consensus, token
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ring, and alternating bit protocol. Thus, the theories developed in this paper are
directly applicable to verify the transformation algorithms in [8-10,17] as well.
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ARM 6 Formal Verification: Experience with a 
Commercial Microprocessor

Anthony Fox 

University of Cambridge

Abstract. The ARM6 processor has been modelled in IIOL at the RTL 
and ISA levels of abstraction; the entire instruction set has been verified.
This paper explains how the models were developed and briefly discusses 
the verification of the block data transfer and multiply instructions. Ex
ceptions are in the process of being verified -  the correctness model with 
input streams is presented here.

1 Introduction

The ARM6 is a commercial. 32-bit. RISC processor that has been widely used in 
mobile and embedded systems. Section 2 describes how this processor was mod
elled in HOL. and Section 2.4 discusses the verification of two instruction classes: 
block data transfers and multiplies, which are both implemented with iterative 
execute cycles. Section 2.5 presents work in progress -  verifying the ARM6 excep
tions using a definition of correctness with input streams (Section 3.2). Section 3 
contrasts this definition of correctness with the basic version.

1.1 Related Work

Early work on the mechanical verification of processors includes: TAM ARACK [18], 
SECD [12], the partial verification of Viper [6], Hunt’s FM8501 [15], and the 
generic interpreter approach of Windley [30]. Following this work. Miller and 
Srivas verified some of the instructions of a simple commercial processor called 
the AAMP5 [22]; this was based on Cyrluk’s approach [7].

Recent work has focused on verification techniques applied to complex (but 
academic) micro-architecture designs, which have out-of-order execution (typ
ically using Tomasulo’s algorithm), speculative execution (branch prediction) 
and exceptions [28. 21.29.17.25.3.14]. Most of these projects use variants of the 
flushing correctness model of Burch and Dill [5], which Jones et al extended 
to out-of-order designs [16]. The instruction set architectures used for academic 
case studies are usually fairly simple, often based on the DLX architecture of 
Hennessy and Petterson [13].

Complex commercial designs have also been specified, simulated and verified 
using ACL2 [4.19]. There has also been industrial verification work on processor 
sub-systems; for example. Intel and AMD have verified the IEEE compliance of 
floating-point hardware [24. 23].



Many notions of correctness have been used in processor verifications and it 
is not easy to make comparisons; see Aagaard et. al [1]. Much work has been 
built on the flushing approach of Burch and Dill, and bespoke versions have been 
used in different contexts. However, as Manolios [20] points out. there are some 
technical problems with this approach.

2 Specification and Verification of the ARM6

The ARM6 specification and verification project, carried out at Leeds and Cam
bridge. has been funded by the EPSRC. Work initially started at Leeds (Gra
ham Birtwistle. Dominic Pajak and Daniel Schostak) to produce specifications 
(including ML models) of the ARM architecture (Pajak) and of the ARM6 mi
croprocessor (Schostak). The two students had regular internships with the com
pany and their work was aided with technical data supplied by ARM.1 In Octo
ber 2000 work then started at Cambridge, with the aim to verify the processor 
model. The first work to be carried out at Cambridge was in formalising the 
correctness framework (Section 3.1) in HOL. This was motivated with a couple 
of small verification examples: a micro-programmed data path, and a five stage 
pipeline implementing a minimal instruction set [9.8].

2.1 The Architecture

Version 4 of the ARM architecture was modelled in HOL [10] -  this model has 
been refined during the course of the project. The specification was influenced 
by Dominic Pajak’s ML model and the standard ARM reference manuals were 
used as well [11.27]. Some features of the architecture are listed below:

— It is a 32-bit RISC architecture.
— There are six operating modes and the registers are arranged into overlapping 

banks. The program counter is register fifteen.
— There is a program status register (CPSR) and five saved versions (SPSR 

registers).
— All instructions are conditionally executed. The CPSR contains four condi

tion flags.
— There are seven types of exceptions: reset, undefined instruction, software 

interrupt, prefetch abort, data abort, normal interrupt and fast interrupt.
— There are eight main instruction classes (Table 1) and also coprocessor in

structions.

Early on there was some experimentation as to how best to model the under
lying data type. 32-bit words, in HOL. A bespoke theory of 32-bit words (using 
equivalence classes) was eventually developed; the pre-existing HOL theory of 
words (a list based model developed by Wong [31]) was not really suitable. With 
the new theory: a word length predicate is not needed; it enables expressions

1 Dominic and Daniel now work for ARM Ltd. full time.



Table 1. The ARM instruction classes.

Class Instructions

Branch and Branch with Link B, BL

Data Processing ADD, ADC, SUB, SBC, RSB, RSC, CMP, CMN, 

AMD, ORR, EOR, MOV, MVN, BIC, TST, TEQ

Multiply and Multiply Accumulate MUL, MLA

PSR Transfer MRS, MSR

Single Data Transfer LDR, STR

Block Data Transfer LDM, STM

Single Data Swap SWP

Software Interrupt and Exceptions SWI

to be readily evaluated (using call-by-value conversion [2]); and it provides an 
easy mechanism for producing sets of theorems about the logic and arithmetic 
operations (e.g. addition, multiplication, shifting and bitwise logic). The theory 
was later generalised for any fixed word length; this is the n_bit library, which 
is included as part of the latest Kananaskis version of HOL.

2.2 The A R M 6

The ARM6 is a three stage pipelined processor with a multi-cycled execute 
stage. A swap instruction, for example, is fetched, decoded and then takes four 
(or six) cycles to execute. Daniel Schostak’s RTL specification [26] was used 
to produce a HOL model of the ARM6. Schostak produced three specifications 
of the ARM6, these were: a mathematical style presentation (a set of assign
ments tagged by instruction step and phase e.g. ts cp2 is the second phase of the 
third execute cycle); an engineering style presentation (using a set of tables); 
and an executable model (ML program). The specifications have three parts: 
the data path specification, the data path control specification and the pipeline 
control specification. The mathematical specification is organised by instruction 
class, instruction step and then by signal order; this enables one to trace the 
processor’s behaviour for a particular instruction type. The engineering spec
ification is organised by pipeline activity and then by signal order; the tables 
allow one to see how signal behaviour varies according to instruction class and 
step. Table 1 shows a fragment of the engineering specification for the pc-bus 
write signal, PCWA; this controls whether the program counter register is incre
mented. Schostak’s specifications made distinctions between different types of 
entities i.e. buses; combinational logic (functional units, multiplexers and static 
logic); and memory elements (a latch, conditional latch or R-S latch).

The HOL specification of the ARM6 is a hybrid of Schostak’s mathematical 
and engineering specifications. It is organised in accordance with the engineer
ing specification, but with each table converted into an equivalent function (the 
equivalence is not strict in the case don’t care output -  this simplifies some defi
nitions). Unlike Schostak’s specification, no explicit distinction is made between



PC W A
IC IS IREG CPB
* * 24 23 21 15 14 13 12 0

data.proc t3 1 0 X X X X X X (true,,n(llll,NBS[6:0]))
data.proc t3 X X X 1 1 1 1 X (false,,n(llll,NBS[6:0]))
mrs_msr t3 x x 0 1 1 1 1 X (false,,n(llll,NBS[6:0]))

Fig. 1. Daniel Schostak’s tabular specification of the ARM6 .

the different types of entities. The overall cycle level behaviour of the processor 
is specified using a next state function. Schostak’s specification does not define 
a next state function but the required behaviour can be deduced from the phase 
and order of presentation of the signal assignments.

The initial HOL processor model left out: hardware interrupts; coprocessor 
instructions; swaps; multiplies and block data transfers. The design was progres
sively extended with the inclusion of the swaps, followed by the block transfers 
and then the multiplies. At each stage the design was verified with respect to 
an instruction set model which only covered the instructions implemented. This 
approach enabled working verifications to be completed (and archived) before 
adding new features which would take some time to verify.

2.3 A bstractions

The correctness of the ARM6 is expressed using data and temporal abstraction 
maps (Section 3.1). The data abstraction projects out the memory and registers 
from the processor’s state space. The processor’s program counter has value 
pc +  8 because it is used for instructions fetch (i.e. it is two instructions, or 
eight bytes, ahead of the instruction being executed) and the data abstraction 
accounts for this by subtracting eight. It is shown that the data abstraction is a 
surjective map from the initial states implementation to the initial (all) states of 
the specification; this proves that the implementation is not partial (or trivial). 
The temporal abstraction is defined using a duration map: this gives the number 
of cycles needed to complete instruction execution from a given processor state.

Store instructions require special attention when the memory address is pc+  4 
or pc +  8; instruction fetch and decode are invalidated by this localised self 
modification of code. Two approaches to this were tried before settling on a third 
solution. The first approach was to block writes to these addresses and the second 
solution was to ‘fix’ the processor implementation by ensuring that the pipeline’s 
state is correctly updated. Both of these methods have the disadvantage that 
they do not reflect the actual ARM6 behaviour. The third method was to modify 
the ISA model so as to reflect the pipelined behaviour; this was comparatively 
simple to specify and verify. The data abstraction projects out the opcodes of 
the fetched and decoded instructions.



2.4 Non-trivial Instruction Classes

B lock  D a ta  Transfers Block data transfer instructions load/store a set of 
general purpose register values from /to main memory; the instruction format is 
shown in Figure 2. These instructions are used for procedure entry and return 
(saving and restoring workspace registers), and in writing memory block copy 
routines.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

f  Cond | 1 0 0 | P  | U | S  |W | L  | Rn | Register list |

I---------------------------  base register
'------------------------------------------  load/store

'------------------------------------------------  w rite-back (auto-index)
1------------------------------------------------------  restore P S R  and force user bit

'------------------------------------------------------------  up/down
------------------------------------------------------------------  pre-/post-index

Fig. 2. Block data transfer instruction encoding.

The five option flags (bits 20-24) give us thirty-two possible variants. For 
example, the instruction LDMLSDB rlO ! , { r l , r 2 ,p c } ~  is encoded as follows:

1001 ■ 100 ■ 1 ■ 0 ■ 1 ■ 1 ■ 1 ■ 1010 ■ 1000000000000110

Bit L is set -  this indicates that it is load. Bit P is set and bit U is clear: this 
means that the load address (initially base register value rlO) is decremented 
before each transfer. Bits S and fifteen are set: this means that the SPSR for 
the current mode is copied to the CPSR. Bit W is set: this means that the base 
address takes the value of the last load address (i.e. subtract twelve). The register 
set is encoded in the bottom sixteen bits i.e. bits one, two and fifteen are set. 
Transfers always occur in register index order.

The ARM 6 implements this instruction class using a 16-bit mask; this keeps 
track of which registers have already been transfered and is used to compute 
the index of the next register to be transfered. The following table shows the 
value of this mask and the priority register (rp) for each execute cycle ( is )  of 
the block load above:

is mask mask Aie ireg rp orp oorp

£4 1111111111111101 1000000000000100 1
tn 1111111111111001 1000000000000000 15 2 1
tn 0111111111111001 0000000000000000 i  15 2
tm -L -L 1  1  15

The tn instruction step is repeated until the masked value (column three) is zero, 
there is then a final step tm. The state of the mask and priority register becomes 
undefined (_L) but the transfers have been completed by this stage.



The ISA specification creates a list of register indices and then defines the 
state of the memory (store) or registers (load) by applying an appropriate fold 
operation over this list. There is, therefore, a significant difference in the way 
the two models work and some tricky lemmas were needed in order to relate the 
ISA (list based) and micro-architecture (masking) models.

The state of the processor during each execute cycle is established with the 
use of invariants. The block data transfers and multiplies were the only classes 
for which such invariants were required.

M ultiplies At the ISA level multiplies are fairly simply but the ARM6 imple
mentation is quite complex. Unlike most modern microprocessors, the ARM6’s 
ALU cannot carry out multiplication directly. Instead, the instruction class is im
plemented using ALU addition/subtraction and the barrel shifter (which shifts 
the value on the data path’s B  bus). The processor’s control logic is used to 
implement the modified Booth’s algorithm; this can take from two to seventeen 
execute cycles to complete. The output of the ALU on each cycle is:

ALU6*(borrowZ, mul, alua, alub) =

{
alua, if borrow2 A (mul =  3) V -iborrowS A (mul =  0),
alua +  alub, if borrowS A (mul =  0) V (mul =  1), 
alua — alub, otherwise.

Here alua is the destination register, alub is the shifted multiplier, mul stores 
two bits of the multiplicand and borrow2 is the borrow status.

As with the block data transfers, an invariant is needed to establish the state 
of the processor during each execute cycle. The final state of the destination 
register is shown to be the product of the register arguments.

2.5 Exceptions

The ARM6 verification is currently being extended to include resets, memory 
aborts and interrupts (both fast and normal). These exceptions are triggered by 
external signals and so the basic correctness model (Section 3.1) is no longer 
adequate. A correctness model with input streams [8] has been formalised in 
HOL -  the definition of correctness is presented in Section 3.2.

At the time of writing, the ISA and ARM6 specifications have been extended 
to model exceptions. For example, the next-state function for the ARM6 now 
takes four additional values: NRESET, ABORT, NFQ and NIQ. Suitable data, stream 
and temporal abstractions have also been defined. Work is in progress on veri
fying correctness.

Note that the exceptions, and the associated abstractions, are being mod
elled deterministically. Throughout the project, the aim has been to ensure that 
the specifications are executable and that the abstraction mechanisms is made 
explicit.



3 Correctness

Section 3.1 defines correctness for two isolated systems at different levels of 
abstraction. This is then generalised in Section 3.2 to include input from the 
environment, modelled with input streams. The basic model has been used to 
verify the correctness of the entire ARM6 instruction set. With the inclusion of 
external exceptions, the model with input is now being used.

Correctness is defined with reference to all times at the abstract system level. 
For verification, it is shown that under certain circumstances it is possible to 
consider just one time step i.e. from time zero to one [9].

3.1 Basic M odel

Definition 1 (Iterated map state functions). Given a state space (non
empty set) A  then state : N —► A  —► A  is an iterated map state function  with 
initialisation function  init : A  —► A  and next state function  next : A  —► A  i f  
and only if

state(0)(a) =  init (a), 
state (t +  l)(a) =  next(state(t)(a)).

Definition 2 (Immersions). A  function  A : A  —► N —► N is an im m ersion if, 
and only i f  for all a € A , A(a)(0) =  0 and for all t\ <  X(a)(ti) <  X(a)(t2).

Definition 3 (Data abstractions). A  function  abs : B  —► A  is a data abstrac
tion for initialisation functions in itj : B  —► B  and inits '■ A  —► A  i f  and only 
i f  fo r  all b € in itr (B ), abs(b) € inits (A ) and fo r  all a € in its (A ) there exists 
b € in it [(B ) such that abs(b) =  a ; where f (D )  =  Range( / )  =  { f ( x )  : x € D }.

Definition 4 (Correctness). A state function  impl : l' .: • />’ • />’ is a correct 
im plementation o f  a state function  spec : N —► A  —► A  with respect to an im
m ersion X : B  —► N —► N and a data abstraction abs : />’ • .1 fo r  im pl(0) and 
spec( 0) i f  and only if, f o r  all b € B  and

spec(t)(abs(b)) =  abs(im pl(X (b)(t))(b )).

Correctness holds when the following diagram commutes:
spec(t)

A A

abs abs

B  --------- > B
implx (t)

where im pl^(t)(b) =  im pl(X (b)(t))(b). Note that spec and impl need not neces
sarily be iterated maps.



3.2 Input Stream Model

Definition 5 (Iterated map state functions with input). Given a stream 
space Sb C N  —> B (Sb ^  t )  then state : N - > 4 x  Sb —*• A is an iterated map 
state function with initialisation function init : A  —> A and next state function 
next : A  —> B  —> A if, and only if

state(0)(a,s) =  init(a), 
state (t +  l)(o, s) =  next(state(t)(a,s))(s(tj).

Definition 6 (Stream abstractions). A function srnpl : A x  S'b —*• Sc is a
stream abstraction if, and only if, for all a £ A and s £ Sc there exists s' £ Sb 
such that s =  smpl(a, s').

Definition 7 (Correctness with input). A State function impl : N —> C x
Sd —*■ C is a correct implementation of state function spec : N —> A x —> A 
with ■respect to an immersion A :C x 5 x > —> N —>N, data abstraction abs : C —> A 
and stream abstraction srnpl : C x Sd —*■ Sb if, and only if, for all x £ C x Sd 
and t G N

spec(t)(abs o fst(x), smpl(x)) =  abs(impl(X(x)(t))(x)).

Correctness holds when the following diagram commutes:
spec(t)

A x  SB --------- * A

( abs o jst.srnpl) abs

C x SD --------- ► c
irnplx (t)

where (f ,g )(x ) =  (f(x ),g (x )).

4 Future Work

Future work will focus on producing more extensive models of ARM based sys
tems. This will include looking at the co-processor and other ARM bus interfaces, 
such as AMBA. We will also aim to introduce higher levels of abstraction, so as 
to reason about small programs and investigate hardware-software co-design.

ARM processors are used to implement devices like mobile phones and PDAs, 
and so case studies will be developed with this in mind. In particular, modelling 
system-on-chip devices in which data security is important. Here, formal reason
ing and correctness assurances are likely to add particular value. Examples may 
use a framework that is loosely based on ARM’s TrustZone architecture:

A new Monitor mode within the core acts as a gatekeeper to identify 
secure code and reliably switch the system between secure and non-secure 
states. When the monitor switches the system to the secure state, the 
processor core gains additional levels of privilege to run trusted code, 
and to handle tasks such as authentication, signature manipulation and 
the processing of secure transactions.

www.arm.com/products/CPUs/arch-trustzone.html

http://www.arm.com/products/CPUs/arch-trustzone.html
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Abstract. We outline a new methodology for compiler design, based 
on the use of a transformation logic defined within an existing general- 
purpose logical framework. We discuss how this methodology can be used 
to address several central issues in compiler design and implementation: 
ease of implementation, extensibility, compositionality, and trust. We 
show how pre-existing features of the logical framework we use help in 
compiler implementation; and we also discuss which features need to be 
added to the framework in order to facilitate our approach to compiler 
development.

1 Introduction

We are developing a new methodology for compiler design, based on the use of 
a transformation logic defined within an existing general-purpose logical frame
work. In our approach the central part of the compiler is a set of specifications 
on a formal language; these specifications follow a standard textbook account of 
programming language semantics almost to the letter. Most of the work required 
to turn these specifications into an actual compiler is handled automatically by 
the logical framework. We demonstrate how this methodology can be used to 
address several central issues in compiler design and implementation: ease of 
implementation, extensibility, compositionality, and trust.

We use the MetaPRL formal tool [9,11], which provides a well-defined syntax 
of terms, types, and programs. We represent programs and program transfor
mations using higher-order abstract syntax (HOAS); binding, scoping, and sub
stitution are handled automatically by the framework. The HOAS also allows 
mixing the object language (that contains operators like “l e t ” ) with the meta
language (that contains operators like “CPS” ), explicitly expressing the interme
diate states of the compilation process. In addition, the framework provides a
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rich tactic language for guiding proofs and transformations and for automatically 
extracting such guidance information from annotated specifications. Finally, the 
framework provides us with an interactive program refinement mode (initially 
designed for interactive formal proof development) and together with the explicit 
meta-language it proved to be an extremely powerful debugging tool.

Compositionality is a well-established principle in the construction of logical 
theories. In the compiler domain, we take a similar approach to compositional
ity and extensibility. The compiler defines a core theory for System F (variables, 
functions, application, and second order quantifiers) that is divided into trans
formation stages including type inference, type checking, CPS transformation, 
closure conversion, and assembly code generation. Additional components for 
Boolean values, arithmetic, tuples, arrays, recursive functions, etc., are defined 
as independent extensions. Each extension defines its own set of formal rules 
for each transformation stage and adds new strategy code to the tactic used to 
control that stage. By locally ensuring that the component acts as a conserva
tive extension of the core and other components it is derived from, we get a 
strong guarantee that there will be no unexpected interactions between different 
compiler modules or different language features.

Another extremely important and challenging issue in compiler development 
is reliability and trust. In the context of a compiler, it is useful to focus on the 
code where flaws have the potential to cause the compiler to produce incorrect 
output for some input program—we call such code trusted. Flaws in untrusted 
code may cause the compiler to fail to produce output on some valid input 
programs, but they cannot cause the compiler to produce incorrect output.

When a compiler is implemented in a general purpose language, it is often 
difficult to isolate the parts of the compiler that must be trusted, and in the 
worst case the entire code base must be trusted. Trust is also a central issue in 
compositionality and ease of implementation. If the invariants that specify the 
compiler involve complex interactions between many parts of the implementa
tion, maintaining and extending the compiler can be quite difficult.

In our approach, the compiler is built in the style of the LCF theorem 
prover [4]. The program transformations are each defined in two parts: a set 
of trusted transformation axioms and untrusted tactic code to direct the trans
formation strategy. The transformation axioms are defined in a formal logic 
using notation similar to that in the literature, they represent only a small part 
of the compiler, and they are verifiable. That is, the entire trusted code path 
is small, precisely and formally defined, and it may be validated against a pro
gram semantics if desired. Note, however, that we do not consider verifiability to 
be the primary concern of this work. We believe that there is substantial value 
in significantly reducing the amount of trusted compiler code, even if it is not 
completely eliminated.

A number of guarantees are provided by the framework itself. For example, 
the HOAS implementation ensures that program transformations are never al
lowed to violate scoping or accidentally capture a variable. Even the framework 
implementation does not have to be trusted— the tool is capable of retaining
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and providing a full log of the program transformations performed during the 
compilation process; if an extreme level of confidence is needed, an independent 
checker could be implemented.

1.1 Overview

This paper is based on a case study of a working compiler implementation for an 
ML-like source language [7], compiled to assembly code for the Intel x86 machine 
architecture. As mentioned, the core is based on the language of System F. There 
are extensions for 1) additional base types like Boolean values and integers, 2) 
aggregates like arrays and tuples, and 3) recursive functions. The backend uses 
HOAS to define a scoped x86 assembly language [7,10], The compiler stages 
include type inference, type checking, CPS transformation, closure conversion, 
and assembly code generation. The compiler is implemented in the MetaPRL 
logical framework.

This paper focuses on demonstrating how the features of the logical frame
work help to implement the compiler and improve its trustworthiness and ex
tensibility. In our implementation we were able to precisely and concisely define 
each of the standard compiler stages (excluding parsing and pretty-printing of 
the output assembly) formally. The precision comes from using the formal no
tation, and the brevity follows from the rich set of tools provided by the logical 
framework. We begin the account with a description of terminology (Section 2) 
and the overall compiler architecture (Section 3), and follow it with a description 
of a few of the key stages of the compiler. As a demonstration of our approach, 
we present the CPS stage of the compiler (Section 4) based on the work of 
Danvy and Filinski [3] and show how the use of HOAS and derived rules in 
logical framework can make our implementation simpler that Danvy and Filin- 
ski’s original account. Finally, Section 5 provides a discussion of our experiences 
and give some ideas for further improvements of the methodology and Section 6 
discusses related work.

2 MetaPRL

All logical syntax in the MetaPRL framework is expressed in the language of 
terms. The general syntax of all terms has three parts. Each term has 1) an 
operator-name (like “sum” ), which is a unique name identifying the kind of term; 
2) a list of parameters representing constant values; and 3) a set of subterms 
with possible variable bindings. We use the following syntax to describe terms:

opnarrw [pi; ■ ■ ■ ;pn] {vi.tr, ■ ■ ■ ;v m.tm}
operator name parameters subtej'ms

All the free occurrences of variables Vi in f* will be considered bound by the 
operator. When n =  0, the parameter brackets are omitted; when Vi is empty, 
the dot before is usually omitted.
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Pretty-printed form Term
1 in te g e r [1 ] { }

Xx.b lambda [] { x . b }
/ ( « ) apply□ { f ;  a }
x +  y sum [] { x ; y }

Numbers have an integer parameter. The lambda term contains a binding oc
currence: the variable x  is bound in the subterm b.

Each operator has a fixed arity, which includes a fixed number of parameters, 
a fixed number of subterms and a fixed number of bindings for each subterm. 
(More specifically, if two operators have different arities, they will be considered 
to be distinct even if they happen to have the same opname.)

In addition to the basic term language described above, the framework also 
provides three special kinds of terms. The first one is the simple first-order 
(object language) variables. These are the variables that can be bound in a 
term.

Another class of special terms are second-order (meta-level) variables, which 
are patterns used to define scoping and substitution [16]. A second-order variable 
pattern has the form y [t 'i ;---  ;v„], which represents an arbitrary term that 
may have free first-order variables v \ ,.. . ,v n. The corresponding substitution 
has the form ;t„], which specifies the simultaneous, capture-avoiding
substitution of terms for v\,. . . .  vn in the term matched by V . Second-
order variables are used to specify logical rules and term rewrites.

A term rewrite states that any term that matches the left-hand-side of the 
rewrite (its redex) can be replaced with the corresponding value of the right- 
hand-side of the rewrite (its contractum), and vice-versa, in any context. For 
example, /3-reduction could be specified with the following rewrite.

(\x.vi[x\) V'2 <—[beta]—► t'i[t'2]

The V]\x) in the redex stands for an arbitrary term that may have free occur
rences of the first-order variable x. and w2 is another arbitrary term. The meta
term v\ [t ]̂ in the contractum specifies the substitution of the term matched by 
t'2 for x  in v\.

Second-order notation can also express the lack of bound occurrences of 
a certain variable. The following rewrite is valid in second-order notation and 
would be provable in the presence of the /3-reduction rewrite.

(Ax.t'[]) 1 <— [const] —► (Ax.t'[]) 2

In the context Xx, the second-order variable t[] matches only those terms that 
do not have £ as a free variable. No substitution is performed; the /3-reduction of 
both sides of the rewrite yields t[] «— > t[], which is valid reflexively. Normally, 
when a second-order variable t[] has an empty argument list [], we omit the 
brackets and use the simpler notation v.
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The last class of special terms is sequents (sometime also called telescope 
terms) of the form

xi : t 1; . . . ; x n : t n ha c,
where n can be 0. The term c is the conclusion of the sequent; the terms U are 
its hypotheses; the variables x t introduce binding occurrences (each x t is bound 
in all tj for j  >  i and in c). Finally, the term a is the sequent argument that 
specifies what kind of sequent it is— essentially the argument plays the same role 
for sequents as the operator name plays for ordinary terms. Sequent schemas [16] 
may also include context meta-level variables that stand for arbitrary lists of 
hypotheses. For example, the sequent schema

r ; x : T[]; A[x] hag c[x]

(where F  and A  are context variables and T, a and c are second-order variables) 
stands for an arbitrary sequent with at least one hypothesis.

The compilation process is expressed in MetaPRL as a judgment of the form 
r  h ((e)), which states that the program e is compilable in the logical context P. 
The exact meaning of the ((e)) judgment is defined by the target architecture. A 
program e' is compilable if it can be represented by a sequence of valid assembly 
instructions. The compilation task is a process of rewriting the source program 
e to an equivalent assembly program e!.

MetaPRL uses OCaml [19] as its tactic construction language in the LCF 
style. When an inference rule or a rewrite rule is defined in MetaPRL, the frame
work creates an OCaml expression that can be used to apply the rule. Code 
to guide the application of rules and rewrites is written in OCaml, using a rich 
set of primitives provided by MetaPRL. In addition, MetaPRL automates the 
construction of most guidance code.

3 Compiler Overview

A compiler is defined by a sequence of transformations that take a program in a 
source language and translate it to a program in a target language. In this case 
study, the full source language is an ML-like source language with type inference 
and higher-order functions and the target language is the x86 assembly language.

Figure 1 shows a diagram of the compiler architecture, where the core and the 
extensions are represented horizontally. Extensions do not have to define code 
for each of the stages; for example, closure conversion applies only to functions, 
and the other extensions may ignore it. Extensions may also have dependencies 
upon one another, as shown by the arrows on the left of each extension: tuples 
require integers, which require general operations for arithmetic, which require 
Boolean values for relations.

The compiler includes an initial informal phase that uses the Phobos exten
sible parser to convert the textual source code to the term representation used 
by the logical framework [5].

The syntax for the typed intermediate language for the case study is shown 
in Figure 2. The source language is similar, except it is untyped. For clarity, the
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recursive
functions

arrays 

integers 

arithmetic 

Boolean values

source
program type

inference
type

checking
CPS

conversion

core: polymorphic lambda calculus

closure
conversion

code
generation

x86 target 
program

F i g .  1 .  The high-level compiler architecture is designed around a sequence of 
transformations for a core language based on the polymorphic lambda calculus. 
Each extension defines new types and values, as well as an extension to each of 
the core stages. The vertical arrows indicate extensions to core stages: the code 
is structured horizontally.

syntax is shown in the pretty-printed form: internally each of the expressions 
and types uses native M e ta P R L  notation.

The arities of functions, application, type abstractions, type applications, 
and tuples are unconstrained. Internally, functions and their types use sequent 
notation. For example, the sequent a?i: t i , . . .  ,x„  : t„ b-h, e is used to represent 
the function AK.(a?i : t i , . . . , x „  : t„).e.  There are three kinds of functions and 
application: Ar represents a recursive function ( /  is the recursive binding): As 
represents a “normal’' function: an application e (e i, . . . ,  e„ : t i , . . . ,  t „ ) c repre
sents a closure (the runtime passes the arguments as a tuple).

4 Example: CPS Conversion

The implementation of CPS conversion is a good illustration of our methodology. 
We wish to demonstrate both that 1) the formal definition of the compiler trans
formations is natural, and 2) that the methodology is compositional. We present 
a very straightforward implementation based on the ability of the framework to 
combine the meta-language and the object language and we will show how the 
tail recursive optimizations can be derived formally from the eta reduction.

We use a higher-order variant of Danvy and Filinski’s approach to CPS 
conversion [3]. We start by adding a new term to the meta-language—  
CPS{e:*: t>.c[t>]}, where the first argument e is the expression that is being con
verted, the second argument t is the type of that expression and the third argu
ment is the meta-continuation of the CPS process. In other words, e is the rest 
of the program and v marks the location where the CPS of e should go.

The following rule specifies CPS for variables of the object language.

CPS{!:r; t; v.e[v]} •*— [cps_var] —► c[!:e]
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Expressions 
Core language 
e ::= x

I (e : t)
| let v : t =  ei in 62 

| XK(xi : t i , . . . ,  xn ’■ tn).e Functions 
| e(ei,. . . ,  e„ : t i , . . . ,  tn)K, Application

Types

Variables t
Type constraint

| A (a i , . . . ,  an).t 
| e[tl,...,tn\

Boolean values 
| true | false 
I i fe then e else e

Type abstraction 
Type application

Constants
Conditional

(tl, . . . ,t„)  

V ( o i , . . . ,  a n).t

Variables 
Empty type 
All programs 

t Function types

Polymorphism

Boolean type

Integers
I *
| e binop e 
| e relop e

Tuples
| (ei , . . . ,e„)  
j (e : t).i

Constants
Arithmetic
Relations

Tuples
Projection

Recursive functions
Ar(xi : t i , . . .  , x „  : t „ , f  : t).e

binop ::=  +  | — 
relop ::= <  | <

I tl * ■ ■ ■ * tn

Function kinds 
«  ::= s | c | r

Binary operations 
Binary relations

Integer type

Product type

Pig. 2. The typed intermediate language is based on the polymorphic lambda 
calculus. Extensions add Boolean values, arithmetic, tuples, arrays (not shown), 
and recursive functions. The source language is a type erased version of the 
intermediate language.

The notation \x is MetaPRL syntax for first-order variables that are bound out
side of the local scope of the rewrite rule. In this rule, the meta-continuation 
is consumed. The rewrite puts the variable into the appropriate location and 
returns the whole expression. Note that we use meta-language notation in place 
of Danvy and Filinskrs “static” operators @ and A.

In the rule for let expressions, a new meta-continuation is created.

CPS {let t>i : t-L =  e-i in e2[t'i];<2 ;t ’2 -c[t'2]} 
<— [cps_let] —►

CPS{ei; <1 ; t>3.let v% : TyCPS{<i} =  v3 in 
CPS{e2[t<i];<2;t<2.c[t<2] } }
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TyCPS here is a meta-term that is used to specify the CPS conversion for types 
(adding an extra argument to all function types) similarly to how the CPS term 
is used to specify the CPS conversion for expressions.

The rule for the CPS of applications could be specified the following way:

CPS{/(es : ts); t; v.c[v}}
<— [cps_apply] —>

CPS{ / ;  ts ->  t ;v f .
CPS{es; ts; ve.
let c2 : (TyCPS{t} -► ± )  =  Xsv : TyCPS{t}.c[u] in 
vf (c2,v e : (TyCPS{t} _L), TyCPS{te})}}

where es and ts are second-order variables used to match lists of arguments and 
types respectively.

In our implementation we add a meta-let operation to the meta-language.

m eta_let v =  e\ in e-2 [v\ <— [metaJet] —> e-2 [e-i]

Using this operation, the cps.app ly  rule is written as follows.

CPS{ f ( e s  : ts);t;v.c[v}}
<— [cps_apply] —>

CPS{ / ;  ts ->  t ;v f .
CPS{es; ts; ve. 
m e ta J e t t ' =  TyCPS {t }  in 
m eta_let I" =  t' —> ±  in 
let c-2 : t "  =  Xsv : t',c[v] in 
vf (c2,ve  :t" ,T yC P S {te})}}

This is more efficient as the type t will only have to be converted once, not 3 
times. Again, the ability to combine the object language with meta-language 
yields very compact straightforward and precise formal code.

The ability to manipulate the meta-continuations also helps making the rules 
for the conversion of the argument lists very concise.

CPS{e-i :: es;ti :: ts;v.c[v}}
<— [cps_args_cons]

CPS{e-i; t\; ui.CPSjes; ts; vs.c\vi :: vs]}}

CPS{(); 0 ;u .c[u]} [cps_args_nil] —> c[()]

Below is an example of a CPS rewrite from the Boolean extension, written 
in the MetaPRL native syntax.

prim_rw cps_true {| cps |> :
CPS{bTrue; TyBool; v. ’ c[’v]>
<— >
’ c [bTrue]
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The above 4 lines are the only code that needs to be added to the system for it 
to know how to handle the true constant in the CPS stage. The system does not 
require this code to go in a specific place. The { I cps I}  annotation specifies 
that this rewrite should be added to the lookup table [8] used by the CPS tactic.

In addition to the basic CPS transformation, we define a tail-recursive version 
as TailCPS{e; t; k} := CPS{e; t; v.k(v)}. Using this definition we formally derive 
the tail call optimizations using the eta reduction rule.

5 Conclusions and Future Work

During the course of this work on the case study, we found that the implemen
tation was easier than we expected, in part because the ability to mix the object 
and meta-language freely gave us more power than we anticipated. Because the 
account mirrors standard semantics textbook specifications very closely and the 
amount of code that must be trusted is only a few hundred lines, it is relatively 
easy to believe in its correctness. The mechanisms for extensions and comp os i- 
tionality provided by the logical framework generalized naturally to the compiler 
design.

On the compiler structure side, there are many open avenues to explore. We 
plan to investigate bounded polymorphism, which we will use for object systems 
and extensible tuples. The current core language already provides preliminary, 
but incomplete support. We also plan to develop a representation of mutually 
recursive functions, which will require extending the support provided by the 
logical framework.

One apparent challenge of our approach is that all program transformations 
must be constructed from a fixed number of rewrite rules that each describe 
a pattern over a fixed number of program points. In other words, global pro
gram transformations must be composed of a sequence of local transformations, 
and it is not always obvious how to do this. In addition, global transformations 
may require knowledge of the entire program syntax, which can be at odds with 
compositionality. In our experience, however, we have found this problem to be 
much easier to solve than we originally expected; all of the transformations we 
have implemented so far have been easy to break into appropriately localized 
pieces. On the other hand, we have not yet tried formalizing optimization tech
niques that are normally implemented using global program analysis, such as 
global code motion; the problem of breaking these types of transformations into 
localized rewrites could be harder.

For the most part, our work concentrated on implementing the compiler 
without modifying the existing logical framework. However in the future we 
are likely to try adding some additional features to the framework to facilitate 
compiler implementation. There are two main limitations that we are planning to 
address— recursive variable-arity binding structure and context-aware rewriting.
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5.1 Recursive Binding Structure

Recursive functions are a very basic feature of ML-like languages. In general, 
recursive functions have the following form.

le t  rec / i  x\ . . .  x kl =  ei 
and f 2 xi . . .  x k2 =  e2

and / „  xi . . .  x kn =  e„ 
in  e

There are two difficulties associated with the above— first, the functions have 
variable arity, and second, the functions are mutually recursive and each of the 
d  may have free occurrences of each of the f j .

As we describe in Section 3, variable arity functions could be implemented 
by using a sequent representation. Mutual recursion is more challenging. One 
approach would be to pack the mutually recursive functions into a record and 
then define the record recursively [10]. Defining a single variable recursively 
is easy, but in this approach function variables turn into explicit record field 
names and are no longer mapped to normal variables. As a result, most of the 
advantages provided by HOAS are lost and the labels have to be managed (and 
alpha-renamed) explicitly.

A proper HOAS solution would be to introduce a new kind of sequent to the 
logical framework— a recursive sequent of the form

x,\ : ti =  e-i; . . x n : tn =  e„ h e

where each Xi is bound in all the subsequent tj (j  >  i), in all of the e* (1 <  k <  
n), and in e. The traditional sequent mechanism can be subsumed by recursive 
sequents by making the e$ optional.

5.2 Context-Aware and Conditional Rewriting

Consider the following trivial optimization rewrite:

let v : t =  e in v <— [let.opt] —> e

Depending on the exact semantics used, this rewrite could be considered 
invalid since it potentially allows turning mistyped expressions into well-typed 
ones and vice-versa (remember that rewrites are bidirectional). In this simple 
example, the rewrite can be fixed relatively easily by adding an explicit type 
constraint to the contractum as follows.

let v : t =  e in v <— [let.opt] —> e : t

However, we would generally like to be able to express rewrites that are only 
conditionally applicable. In particular, we would like to specify conditions of 
the forms “ applicable in a context that expects the redex to have type t” and 
“ applicable when subterm e is well-typed.’’’ While the MetaPRL system does pro
vide support for conditional rewriting, not all conditions that are natural in the 
compiler implementation domain are easily expressible in MetaPRL.
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6 Related Work

FreshML [17] adds to the M L  language support for straightforward encoding of 
variable bindings and alpha-equivalence classes. Our approach differs in several 
important ways. Substitution and testing for free occurrences of variables are 
explicit operations in FreshML, while MetaPRL provides a convenient implicit 
syntax for these operations. Binding names in FreshML are inaccessible, while 
only the formal parts of MetaPRL are prohibited from accessing the names. Infor
mal portions— such as code to print debugging messages to the compiler writer, 
or warning and error messages to the compiler user— can access the binding 
names, which aids development and debugging. FreshML is primarily an effort 
to add automation; it does not address the issue of validation directly.

Liang [13] implemented a compiler for a simple imperative language using a 
higher-order abstract syntax implementation in AProlog. Liang’s approach in
cludes several of the phases we describe here, including parsing, CPS conversion, 
and code generation using a instruction set defined using higher-abstract syntax 
(although in Liang’s case, registers are referred to indirectly through a meta-level 
store, and we represent registers directly as variables). Liang does not address 
the issue of validation in this work, and the primary role of AProlog is to sim
plify the compiler implementation. In contrast to our approach, in Liang’s work 
the entire compiler was implemented in AProlog, even the parts of the compiler 
where implementation in a more traditional language might have been more 
convenient (such as register allocation code).

Hannan and Pfenning [6] constructed a verified compiler in LF (as realized in 
the Elf programming language) for the untyped lambda calculus and a variant 
of the CAM [2] runtime. This work formalizes both compiler transformation 
and verifications as deductive systems, and verification is against an operational 
semantics.

Previous work has also focused on augmenting compilers with formal tools. 
Instead of trying to split the compiler into a formal part and a heuristic part, 
one can attempt to treat the whole compiler as a heuristic adding some external 
code that would watch over what the compiler is doing and try to establish 
the equivalence of the intermediate and final results. For example, the work 
of Necula and Lee [14,15] has led to effective mechanisms for certifying the 
output of compilers (e.g., with respect to type and memory-access safety), and for 
verifying that intermediate transformations on the code preserve its semantics. 
Pnueli, Siegel, and Singerman [18] perform verification in a similar way, not by 
validating the compiler, but by validating the result of a transformation using 
simulation-based reasoning.

Semantics-directed compilation [12] is aimed at allowing language designers 
to generate compilers from high-level semantic specifications. Although it has 
some overlap with our work, it does not address the issue of trust in the compiler. 
No proof is generated to accompany the compiler, and the compiler generator 
must be trusted if the generated compiler is to be trusted.

Boyle, Resler, and Winter [1], outline an approach to building trusted compil
ers that is similar to our own. Like us, they propose using rewrites to transform
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code during compilation. Winter develops this further in the HATS system [20] 
with a special-purpose transformation grammar. An advantage of this approach 
is that the transformation language can be tailored for the compilation process. 
However, this significantly restricts the generality of the approach, and limits 
re-use of existing methods and tools.
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Abstract. We present a framework for extracting and compiling proof 
tools and theories from a higher order logic theorem prover, so that the 
theorem prover can be used as a platform for supporting reasoning in 
other applications. The framework is demonstrated on a small applica
tion that uses H0L4 to find proofs of arbitrary first order logic formulas.

1 Introduction

The normal mode of use of a theorem prover is for the user to enter into a 
dialogue with the system, guiding the way towards the proof of one or more 
key theorems. The end result is a mechanically checked theory, which might 
demonstrate that a program meets its specification, say, or that a purported 
mathematical proof is in fact a valid argument.

A feature of theorem provers in the LCF tradition is that they provide a full 
programming language, ML, for implementing proof tools: programs that use 
the infrastructure of the theorem prover to ensure sound reasoning. The most 
common kind of proof tool is the ad-hoc tactic, implemented by the user to 
speed up the development of a mechanically checked theory. However, there is 
no reason why a proof tool should not be an arbitrary ML program that happens 
to use the theorem prover as a ‘reasoning library’ . In this alternative mode of 
use of the theorem prover, this program is the end-product, not a mechanically 
checked theory.

Motivating this work are two recent proof tools implemented using the H0L4 
theorem prover1 [3]:

— W ith the present author, Gordon [4] has built on a formalization of the 
temporal logic PSL by implementing a prototype proof tool. It takes as input 
a PSL formula, deduces an equivalent finite state automaton, and prints the 
finite state automaton in the form of a Verilog monitor that can be simulated 
with a circuit to check the property is never violated.

— Using their H0L4 specification of the TCP internet protocol, Bishop et al. [2] 
have implemented a proof tool that seeks to validate a trace of packets 
captured from a test network. Discrepancies between the specification of 
TCP and the implementation on the test network manifest themselves as 
failures to prove that a trace is legal.

* Supported by a Junior Research Fellowship at Magdalen College, Oxford.
1 HOL4 is available at h ttp ://h o l.sou rce fo rg e .n e t/.

http://hol.sourceforge.net/
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Both the above proof tools are computationally expensive, and require no 
interaction with the user after the initial invocation. As such, they are prime 
candidates to optimize for speed. In this paper we describe the experience of 
porting HOL4 to a modern optimizing compiler, to make proof tools like these 
run as efficiently as possible. We present the general framework for compiling 
the theorem prover infrastructure, and then demonstrate it on a case study with 
the HOL4 first order prover.

The rest of the paper is structured as follows: section 2 describes the expe
rience of porting HOL4 to the compiler; section 3 presents the results of a small 
experiment to show what efficiency gains are possible; and section 4 concludes.

2 Compiling HOL4 to Native Code

2.1 Assembling the Program Source Code

The source language for the HOL4 theorem prover is Standard ML, interpreted 
using Moscow ML.2 The current distribution ships with 384 ML modules: 6 are 
simple utility functions; 20 form the logical kernel of the theorem prover; and 
30 comprise the parser. Of the remaining 328 modules, 247 form a collection of 
proof tools (e.g., a simplifier) provided by the system, and 81 are mechanized 
theories (e.g., the real numbers) providing useful types, constants and lemmas 
that users might need.

The 81 mechanized theory files (xTheory.sml) contain theorem statements, 
but not any proofs. Users create theory files by executing a separate ML program 
called the proof script (xScript.sm l): this calls the necessary proof tools to 
create all the theorems, which are then written out to the theory file. In later 
sessions, when xTheory is required, only the theory file needs to be loaded, the 
proofs do not need to be rechecked by the system every time. After downloading 
HOL4, the initial step is to build all of the theory files from the proof script files, 
after that all the theories that are part of the distribution are ready to be used.

The program that we wish to compile may both make calls to HOL4 proof 
tools and refer to the contents of mechanized theories. For example, the tool 
mentioned in the introduction for checking TCP traces makes use of several 
theory files in which the TCP protocol is modelled using operational semantics. 
Certainly we do not want all the proofs to be re-checked every time the program 
is invoked, and so we drop the proof script files, including only the generated 
theory files needed by the program.

The assembled program source code thus consists of:

1. simple utility functions;
2. the logical kernel;
3. the parser (needed by the generated theory files);
4. any proof tools directly called by the program;
5. any theory files used by the program;
6. and finally the program source code.

2 Moscow ML is available at http://www.dina.dk/~sestoft/mosml.html.

http://www.dina.dk/~sestoft/mosml.html
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2.2 Porting H 0 L 4  to the MLton Compiler

Whereas Moscow ML translates ML source code into byte code which is then 
interpreted, the MLton3 compiler translates ML source code directly into native 
code. In addition. MLton is a whole program compiler, so that functors and poly
morphism can be eliminated to produce still more efficient code. Performance 
on various benchmarks4 indicate that MLton produces the fastest running code 
of the leading Standard ML compilers, making it suitable to compile computa
tionally expensive proof tools.

Although H0L4 is written in Standard ML. the source language for both 
Moscow ML and MLton. there are enough differences between the platforms 
to make porting non-trivial. For example, in several primitive inference rules, 
a check must be performed to see whether two lambda terms are ^-equivalent. 
This check can be made more efficient using a pointer equality test, but this is 
not part of Standard ML. Both Moscow ML and MLton provide such a test, but 
differently in the two platforms.

Also, the Standard ML basis library is evolving at present, and there are 
two versions in current use: the 1997 version and the 2002 version. Moscow ML 
implements the 1997 version, plus some useful modules that are not part of the 
official basis library. MLton implements both versions, the user selects which 
one to use with a command-line argument. This part of the port was therefore 
easy: the 1997 basis was selected in MLton. and the extra modules in Moscow 
ML were ported to MLton.

The hardest part of the port was the HOL4 lexer. As part of the distribution. 
Moscow ML provides an efficient lexer generator called mosmllex. and this is 
used to generate the HOL4 lexer. Unfortunately, despite being type safe, the 
code generated by mosmllex does not pass the Standard ML type checker, and 
Moscow ML casting operations are deployed in the generated code to avoid type 
clashes. Creating an equivalent lexer in Standard ML required manually altering 
the HOL4 lexer to use a suitable union type that included all types that caused 
a clash.

Finally, and most seriously, there were problems associated with the size of 
the assembled source code. The size of the program for validating TCP traces 
mentioned in the introduction comes to 440.000 lines of Standard ML. This 
breaks down as 170.000 lines for files in the HOL4 distribution, and 270.000 lines 
for theories and tools in the trace checker itself. Most of the bulk is a result of 
large HOL4 datatype declarations, which automatically generate theorems about 
induction, cases and representation. Despite dense packing in the theory files by 
making use of term /type sharing and abbreviations, five theory files in the trace 
checker are each more than 10.000 lines long. At the time of writing. MLton 
has performance problems beyond about 150.000 lines of source code, and so we 
have not been able to test the TCP trace checker.5 Instead, we restrict ourselves

3 MLton is available at http://www.m lton.org/.
4 Data from http://www.mlton.org/performance.html.
° However, the MLton team are actively working on improvements that will permit

the compilation of such large programs.

http://www.mlton.org/
http://www.mlton.org/performance.html
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to compiling applications that use a subset of H0L4, such as the following case 
study.

3 Case Study: First Order Proof

Provided with the H0L4 theorem prover is a proof tactic called METIS-TAC that 
uses ordered resolution to search for a first order refutation on the input goal, 
and if successful translates the proof to higher order logic [5]. This tactic has 
evolved somewhat since its initial deployment, and amongst other improvements 
now converts formulas to clauses using definitional CNF, where new variables are 
introduced successively (in a greedy fashion) to minimize the number of clauses.

In this experiment, we create a H0L4 proof tool that reads in a first order 
formula in T P T P 6 syntax and sets it as a proof goal, and then tries to prove 
it by invoking the METIS-TAC tactic. The advantage of such an experiment is 
that it gives us two points of comparison: firstly the MLton compiled version 
of the proof tool can be compared to the Moscow ML interpreted version; and 
secondly both can be compared to the results of other first order provers on the 
same problems.

This experiment made use of a RedHat 9 Linux box with a Pentium 4 3GHz 
processor and 4Gb of main memory (essential for compiling large programs with 
MLton), Moscow ML version 2.00, and MLton version 20040227. The problems 
all come from version 2.6.0 of the TP TP library.

Assembling the source code for the proof tool results in 60,000 lines of 
Standard ML, which includes three theory files used by the first order prover: 
booleans, combinatory logic and normal forms (such as CNF).7 Compiling us
ing MLton results in a 14Mb standalone executable, whereas doing the same in 
Moscow ML (using the —standalone compiler flag) results in a relatively small
0.5Mb executable.

We first look at problem SYN007+1 in the TP TP library, which has the form

Pi <=> (P2 <=> (••• (Pn <=> (Pi <=> (P2 <=> (••• Pn)) - - - )

where n is a problem parameter. When n is set to 14, the compiled version of 
METIS_TAC proves the goal in 4.5s. This makes use of HOL4 stripping tactics 
that reduce a goal of the form P  <=> Q to the two subgoals P  => Q and 
Q => P. Also, for each of the subgoals generated, the definitional CNF engine 
kicks in, and for the most extreme subgoal reduces the number of final clauses 
from 67,000,000 to a mere 100. Running the Moscow ML version of exactly the 
same program takes 63.5s.

We next run both versions of the prover on the same 70 first order formulas 
that were used in the 2003 CADE Automatic Theorem Prover System Compe
tition8. To aid comparison with other provers’ results in the competition, we set

8 The TPTP problem library is available at http://w w w .tptp.org/.
' The largest version of HOL4 that was successfully compiled was a 120,000 line 

METIS_TAC self-test that used 26 theories.
8 The CASC 2003 homepage is at http://www.cs.miami.edu/~tptp/CASC/19/.

http://www.tptp.org/
http://www.cs.miami.edu/~tptp/CASC/19/
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the same time limit of 600s per problem, although it should be noted that we 
are running on a much faster machine with more memory than those used in the 
competition.

The MLton version of the prover solves 28 problems out of 70, which puts it 
between the 4th prover (DCTP 10.2p, at 42 problems) and the 5th prover (Otter 
3.2, at 14 problems) out of the 6 that entered the first order formula division. 
For comparison, the top prover in this division was Vampire 5.0, which solved 
57 out of 70 problems. The Moscow ML version of the prover solves 25 problems 
out of 70, missing 3 of the harder problems, which puts it at the same place in 
the results table. A graph showing the times that each version found proofs is 
shown in Fig. 1.

To calculate the average speed-up, we look at the 25 problems that both 
provers succeeded with, and calculate the geometric mean of the ratio between 
the times. This gives a speed-up factor of 10.3, which correlates with the present 
author’s experiences porting other programs from Moscow ML to MLton.

4 Conclusions and Related Work

In this paper we have presented a framework for extracting theories and proof 
tools from a higher order logic theorem prover, and compiling them to native 
code using a modern optimizing compiler. This is a useful step along the road 
of embedding theorem proving inside other applications, such as compilers or 
question answering systems.

Although it is not yet possible to compile the proof tools that directly mo
tivate this work, we are confident that further work on both the compiler and 
theorem prover sides will soon allow this to take place, bestowing a factor of 10 
speed-up to the users with no change in functionality.

We have also seen that a simple wrapper allows HOL4 to compete with the 
first order provers in the CASC competition. No tuning of parameters took place 
before running the experiment: exactly the same proof tactic was used that is 
available to users during interactive proof.

The Twelf theorem prover9 [6] has been ported to MLton, and provides an 
interface via a Twelf Standard ML module. Our work shares a similar approach 
of theorem prover as platform: in the case of Twelf a major application is proof- 
carrying code; we aim to support reasoning applications (such as those mentioned 
in the introduction) where higher order logic is a more convenient modelling 
language.

The Coq theorem prover10 [1] has also been compiled to native code using 
the OCaml compiler, though the objective seems to be more speeding up the 
type checking of theories rather than providing a theorem prover platform.

9 Twelf is available at http://www-2 .cs.cm u.edu/~tw elf/.
10 Coq is available at h t t p :/ /c o q . in r ia .f r / .

http://www-2.cs.cmu.edu/~twelf/
http://coq.inria.fr/
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Number of proofs found

Fig. 1. The times a t  which the provers discovered proofs.
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A bstract. A simple functional language embedded in higher order logic 
is used as a hardware description language. Our approach uses proof 
scripts to synthesise circuits directly from logical specifications. As well 
as synthesising implementations, we also generate theorems exhibiting 
their correctness. Our goal is to experiment with synthesis by proof 
along a spectrum of automation ranging from push-button compilation 
to user guided refinement. This paper describes formal compilation to 
synchronous implementations with a handshaking interface.

1 Introduction

We describe an approach to hardware synthesis by mechanised proof. A compiler, 
implemented as a proof rule, transforms specifications expressed in a simple 
functional language embedded in higher order logic into hardware devices that 
interact via a handshaking protocol. This approach allows the designer to focus 
solely on the high level behaviour of the system without having to reason about 
the correctness of the circuit at the gate level.

Our compilation method is partly inspired by SAFL [10], especially ideas 
in Richard Sharp’s PhD [12]. Our long term goal is to develop correct-by- 
construction SAFL-like formal synthesis by proof. The current paper is only 
a very first proof-of-concept step.

Higher order logic (HOL) [6] has already been successfully applied to specify 
and verify hardware [4,5,9], and functional programming languages have been 
used as hardware description languages [2,11,12]. Formal synthesis by proof has 
previously been investigated by, among others, Johnson and Bose [8], Hanna [7], 
Fourman [3] and a researchers at Karlsruhe on high-level synthesis using the 
Gropius language [1,13].

The novelty of our work is (i) the details of the device interface, (ii) the 
implementation of synthesis by deduction (rather than by the application of 
pre-verified transformations) and (iii) the way synthesis results are encoded as 
composable theorems certifying the correctness of the synthesised implementa
tions.

Section 2 introduces the simple functional language used as source code. 
Section 3 defines the specification of generic handshaking devices to be used 
during the compilation.

The implementation and the verification of handshaking devices are pre
sented in Section 4. The synthesis-by-proof algorithm is described in Section 5 
and is illustrated by a case study in Section 6. Finally, conclusions and future 
work are outlined in Section 7.



2 A  Simple Language

In collaboration with Konrad Slind of the University of Utah, we eventually plan 
to compile from an ML-like subset of higher order logic, but in this paper we 
start from an intermediate language consisting of expressions built using a set 
of simple operators. These are quite expressive, and the construction of a front 
end to parse into the intermediate language is orthogonal to the work described 
here.

We implement functions of type <ji x • • • x a m —> Tt x • • • x rn where 
<7i,. . . ,  a m, t i ,  . . . ,  rn are types of values that can be carried on busses. In real 
applications, these types will often be words of different widths, but in this pa
per we will use booleans (T  and F are the only values of type bool) and natural 
numbers ( 0,1, . . .  etc. of type nurri). Let / ,  / i ,  f 2, . . .  range over such functions. 
The constructs of our language are expressions e given in BNF by:

e ::= Atm /  | Lib /  | Seq e\ e2 | Par e\ e2 | Ite e\ e.2 e.3 | Rec 6% e.2 e.3

Both Atm /  and Lib /  implement function / .  The difference is that Atm /  is 
constructed from a combinational circuit (see definition of ATM in Section 4 be
low) and Lib /  assumes /  is in a library (initially assumed empty) of previously 
designed components (see Section 6.2 for an example). We make a shallow em
bedding of expressions in higher order logic by defining functions with the same 
names as the expression constructors by:

Seq / 1  f 2 =  Ax. / 2( / i  x)
Par f i  ,f2 =  Ax. ( / 1  x, f 2 x)
Ite fi f2 fs =  Ax. i f  fi x  then f2 x  e ls e  fs x
Rec h  f 2 h  =  ef. f  =  Ax. i f  h  x  then f 2 x  e ls e  , f ( /3 x)

Rec /1  f 2 fs  uses Hilbert’s e-operator, and so means “choose a function f such 
that /  satisfies the equation /  =  Ax. i f  f% x  then f 2 x  e ls e  f ( f s  x) ” . In practise, 
fi-. f ‘i and fs  will be such that /  is uniquely determined. For example, taking:

uniquely defines the function

/  =  A(n,occ). i f  (n =  0) then (n, occ) e ls e  f ( n — 1, n xocc)

A program p is a list of declarations (c\ =  e\ . . .  cn =  en), where for 
1 <  i <  n, Ci is a new name and e.j is an expression built out of library functions
and c i , . . . ,  Cj_i.

Lib /  
Atm /

/
/

f i  =  A(n,occ). n =  0
f 2 =  A(n,occ). (n,occ)
fs  =  \(n,acc). (n— 1, nxocc)



3 Handshaking Devices

Our compiler takes a pair ({ci =  e\ . . .  c„ =  e„), e), consisting of a program 
(ci =  ei . . .  c„ =  e„) and expression e. It generates a clocked device that com
putes e via a simple handshaking protocol. This section describes the protocol 
and its definition in HOL.

Figure 1 shows a sequence of events that illustrates a transaction in which 
a handshaking device performs a single computation starting at a time t and 
ending at a later time t' (where time counts cycles). The variables inp and out 
represent the usual input and output data, respectively. The wires load and done 
control the access to the device. If done is asserted, it means that the device is 
idle and ready to compute a request. Once a positive edge on load is detected, the 
device samples the input and starts to compute the result (see when (time =  t) 
and (time =  t + 1) at Figure 1). During the computation, done remains low and 
every call is ignored. Eventually, the device outputs the result and indicates its 
completion by asserting done.

time =  t time =  t+  1

Fig. 1. A handshake protocol.

Suppose the device computes a function / .  At the start of a transaction 
(time t) the device must be outputting T on done (to indicate it is ready) and 
the environment must be asserting F on load (i.e. in a state such that a positive 
edge on load can be generated). A transaction is initiated by asserting (at time 
t+1) the value T on load (i.e. load has a positive edge at time <+l), and this 
causes the device to read the value, v say, being input on inp (at time t + 1 ) and 
to de-assert done. The device then becomes insensitive to inputs until T is next 
asserted on done, at which time (say time t' >  t + 1 ) the value / ( v) computed 
will be output on out.

The behaviour of hardware is modelled in HOL as a boolean-valued term 
whose free variables represent the external (observable) wires of the circuit. This 
term evaluates to true if the values observed at the external wires could occur in 
the circuit. The variables are functions from natural numbers (representing time) 
to values. For a signal, the low value zero and the high value one are represented 
by false (F) and true (T), respectively.



Before specifying the behaviour of a handshaking device, the auxiliary pred
icates Posedge and HoldF are defined.

A positive edge of a signal is defined as the transition of its value from low 
to high or. in our case, from F to T. Posedge is specified by:

h Posedge s t =  i f  t=0 then F e lse  (—■ —1) A s t )

Note that if the time is zero, it is assumed that no positive edge lias occurred.
The term HoldF (t j , tg) s says that a signal s holds a low value F during a 

half-open interval starting at t% to just before tg.

h HoldF (t i, 2̂) s — Vt. ti <  t <  t2 =4- ^(s t)

The behaviour of the handshaking device computing a function /  is described 
by the term Dev f  (load, inp, done, out) where:

h Dev f  (load, inp, done, out) =
(Vt. done t A Posedge load (t+ l)

31'. t' > t+ l  A HoldF (t+ l ,tr) done A 
done t' A (out t' =  f(inp (t+l))))

A
(it. done t A ->(Posedge load (t+ l)) =4- done (t+ l))

The first conjunct in the right-hand side describes the context presented in Fig
ure 1. If the device is available and a positive edge occurs on load, there exists a 
time t' in future when done signals its termination and the output is produced. 
The value of the output at time t' is the result of applying /  to the value of the 
input at time t+ l. The signal done holds the value F during the computation. 
The second conjunct specifies the situation where no call is made on load and 
the device simply remains idle.

4 Implementing Handshaking Devices

This section describes how we implement our language. Our convention is to 
use fully capitalised named for primitive circuits and circuit constructors. First, 
we describe a circuit constructor ATM that builds a handshaking device from a 
combinational circuit. Next we describe circuit constructors SEQ. PAR. ITE and 
REC that compose handshaking devices corresponding to Seq e\ e-2 , Par e\ e-2 , 
Ite e-i e-2 e-3 and Rec e\ e-2 e-3 . respectively. The key property of these constructors 
that ensures they are correct are the following theorems (the notation g o f  
denotes the function composition Xx. g (f x)):

h ATM /  (load, inp, done, out)
Dev /  (load, inp, done, out)

h SEQ (Dev fi)  (Dev / 2) (load, inp, done, out)
Dev (f‘2 o fi) (load, inp, done, out)



b PAR (Dev / i )  (Dev / 2) (load, inp, done, out)
=> Dev (Xx. ( / i  x ,f -2 x)) (load, inp, done, out)

b ITE (Dev / i )  (Dev / 2) (Dev fs) (load, inp, done, out)
=> Dev (Xx. i f  / i  x then / 2 x e lse  fs x) (load, inp, done, out)

b Total(/i, / 2, f-3) A REC (Dev f\) (Dev / 2) (Dev / 3) (load, inp, done, out)
=> Dev (Rec fi / 2 fs) (load, inp, done, out)

where Total(/i, / 2, fe) is a predicate ensuring that there is a unique function 
satisfying /  =  Xx. i f  fi x then / 2 x e lse  f(fs  x) and is defined by:

To ta l(/ i,/2,/s) =  Svariant. \fx. - i( /i  x) =4- variant(fs x) <  variant x

The constructors ATM. SEQ, PAR. ITE and REC use some primitive com
binational hardware components AND. OR. NOT and MUX. and two primitive 
sequential components DEL and DFF. The behaviour of a combinational AND- 
gate is specified as a relation that constrains the value of the output to the 
conjunction of the inputs.

b AND (ini, in2, out) =  Vt. out t =  (in\ t A m2 t)

A combinational OR-gate with inputs ini and m2 and output out is defined in 
a similar way.

b OR (ini, in'i, out) =  Vt. out t =  (ini t V m2 t)

An inverter simply outputs the negation of the input.

b NOT (inp, out) =  \/t. out t =  ->(inp t)

A multiplexer connects the input in i to the output out if the selector sel has 
the value T. Otherwise, it outputs the value of m2.

b MUX (sel, ini, out) =  Vt. out t =  i f  sel t then ini t e lse  m2 t

In general, a combinational component computing a function /  is specified by:

b COMB /  (inp, out) =  V I  out t =  f(inp t)

At any given time, this generic combinational device outputs /  applied to the 
current value of the input.

A delay outputs the value of the input at the previous time.

b DEL (inp, out) =  (out 0 =  inp 0) A ( V I  out(t+1) =  inp t)

At time zero, the delay behaves as a wire. A D-type flip-flop DFF outputs the 
value of the input d on the positive edge of the signal elk. If no positive edge 
occurs, the output q remains unchanged.

b DFF(d, elk, q) =  V£. q(t+l) =  i f  Posedge elk (t+1) then d(t+1) e lse  q t



The connection between two components is modelled by the conjunction of 
their specifications. The physical connection is represented by the identically- 
labelled wires of the subcomponents. Moreover, the existential quantifier hides 
the internal wires of the composite device.

For example. POSEDGE(mp. out) specifies a composite device that asserts T 
on its output out if and only if a positive edge has occurred on the input inp. 
Our implementation is:

b POSEDGE(mp. out) =  3co c%. DEL (inp. Co) A N O T (co , c i )  A  AND(ci, inp. out)

This component connects a DEL. NOT and AND by the internal wires Co and c\. 
The wire Co has the value of the input at the previous time. The circuit outputs 
T if Co has the value F and the current input is T —  which is exactly what 
characterises a positive edge. It is easy to show that POSEDGE has the following 
property.

b POSEDGE(mp. out) =4» (\ft. out t =  Posedge inp t)

The circuit ATM implements an atomic device.

b ATM f  (load, inp, done, out) =
3co c i.  POSEDGE(load, Co) A NOT(co, done) A 

COMB /  (inp, ci) A DEL(ci, out)

This device takes one time unit to compute (see Figure 2(a)). Although a com
binational circuit is clearly more efficient than an atomic device, this device is 
suitable for composing with other handshaking devices.

The constructor SEQ specifies a circuit which combines two devices to com
pute in sequence.

b SEQ f  g (load, inp, done, out) =
3co Ci C'2 C3 data.

NOT(c2! c3) A OR(cs,load,c0) A f(co, inp, a , data) A 
g(a , data, c-2 , out) A AND(ci, c2, done)

The subcomponents /  and g have the same interface of a handshaking device. 
The output of the component /  is the input of the component g (see the variables 
Ci and data in Figure 2(b)). This composite device signals its completion when 
both /  and g terminate.

The constructor PAR combines two devices in parallel.

b PAR /  g (load, inp, done, out) =
3co Ci start done 1 done-2 data% data2 out% out2.

POSEDGE(load,Co) A DEL(<ione. ci) A AND(co, ci, start) A 
f  (start, inp, done 1 , datai) A g(start, inp, done2, data2) A 
DFF(datai, donei, outi) A DFF(data2, done2, out2) A 
AND(donei, done2, done) A (out =  Xt. (out 1 t,out2 t))



(a) ATM / (b) SEQ f  g (c) PAR f  g

F ig . 2. Implementation of composite devices.

The devices /  and g are triggered simultaneously by start and return data% 
and data2 , respectively (see Figure 2(c)). As /  and g may terminate at different 
times, their outputs are stored by DFFs and made available by out\ and out2 - 
The components POSEDGE and DEL prevent calls to either /  or g during their 
computation.

The conditional constructor ITE implements an if-then-else circuit from three 
subcomponents.

b ITE e f  g (load, inp, done, out) =
3cq Ci c>2 start start' done.e data.e q not.e data.f data_g sel 

donej done-g start-f start.g.
POSEDGE(/oad. Cq) A DEL(done.ci) A AND(cq, c\, start) A 
e,(start, inp, done_e. data.e) A POSEDGE(done.e, start') A 
DFF(data-e, done-e, sel) A DFF(inp, start, q) A 
AND (start1, data.e, start J ) A NOT (data .e, not .e) A 
AND (start', not-e, start _g) A f  (start _/ ,q, done _/. dataj) A 
g(start-g, q, done-g, data.g) A MUX(seZ, data.f, data.g, out) A 
AND(done.e, done.f,c2) A AND(c2, done-g, done)

The device e implements a boolean test, while /  and g implement the conditional 
branches. The output of e triggers either /  or g (see the variable data.e in 
Figure 3). A multiplexer selects the right output based on the (stored) value of 
data.e. The variable done is asserted if all subcomponents have terminated.

A function is tail-recursive if its recursive calls are the very last executed 
statements in the function. Tail-recursion is interesting for hardware compilation 
because it does not require the compiler to allocate storage for every function 
call.



load

done

Fig. 3. The conditional constructor: ITE e f  g.

The language introduced in Section 2 has an operator Rec for specifying 
tail-recursive functions f  of the form

T  x =  H e x  then /  x e lse  J-(g x)

Such a function T  is specified by Rec e /  g as defined above. A handshaking 
circuit that implements T  (if it is well-defined) is constructed using the REC 
constructor, where:

b REC e /  g (load, inp, done, out) =
3done.g data-g start-e q done.e data-e startj start-g inp-e donej 

Co Ci C'2 cs C4 start sel start' not-e.
POSEDGE(toad, cq) A DEL(done.ci) A AND(cq, c\, start) A
OR (start, sel, start.e) A POSEDGE(done_g, sel) A
M UX(sel, data.g, inp, inp.e) A D FF (m p _ e , start-e, q) A
e(start-e, inp-e, done-e, data-e) A POSEDGE(done_e, start') A
AND (start', data-e, start J )  A NOT (data-e, not-e) A
AND (not-e, start', start-g) A f  (start-f,q, done-f, out) A
g(start-g,q, done-g, data-g) A DEL(done-g, C3) A
AND(done_0 , C3 , C4) A AND(done_/, done.e, c2) A AND(c2, C4 , done)



The recursive constructor is similar to the conditional one (see Figure 4). The 
main difference is the connection between the “else” branch and the circuit itself
— characterising a recursive call. A multiplexer selects the input from either 
the external environment or from the recursive call. The circuit terminates if 
every subcomponent terminates (see the variables done-e, donej and done.g in 
Figure 4). Furthermore, the component g must have terminated at least one time 
unit before. This is necessary to distinguish a recursive call from the complete 
termination of the computation.

done

Fig. 4. The recursive constructor: REC e f  g.

5 Compiling by Proof

The prototype compiler we have implemented takes a program and an expression 
((c-i =  e-i . . .  cn =  en). e). where the expression e is built out of library functions



and c i , , cn. It generates a circuit C(load, inp, done, out), represented as a term 
in higher order logic, and returns a theorem:

h yioad inp done out. C(load, inp, done, out) => Dev e (load, inp, done, out)

The compilation procedure is a straightforward recursive application of the fol
lowing theorems (which are proved from the key properties given in Section 4 
and the semantics of the expression and circuit constructors):

ATM_INTR0
h Ve s. ATM c s =4> Dev c s

SEQ_INTR0
h yPi p2 h  / 2.

(Vs. P\ .s => Dev / i  s) A (Vs. P2 s => Dev f 2 .s)

Vs. SEQ Pi P2 s => Dev (Seq fi f 2) s 

PAR_INTR0
t- ypi p2 h  f 2.

(Vs. Pi s => Dev fi s) A (Vs. P2 s => Dev f 2 s)

Vs. PAR Pi P2 s =» Dev (Par fi f 2) s

ITE_INTR0
h VPi P2 PA fi f 2 f 3.

(Vs. Pi s => Dev fi s) A 
(Vs. P2 s => Dev f 2 s) A 
(Vs. / ;; S => Dev /;; s)

Vs. ITE Pi P2 P3 s => Dev (Ite fi f 2 f 3) s

REC-INTRO
t- V /j f 2 f 3 Pi P2 P3.

Total( h , f 2, f3)

(Vs. Pi .s => Dev fi s) A 
(Vs. P2 s => Dev f 2 s) A 
(Vs. / ;; S => Dev /;; s)

Vs. REC Pi P2 PA s => Dev (Rec fi f 2 f 3) s

The theorem REC-INTRO is an implication whose antecedent is Total(/i, f 2, fs).
We will outline how our compiler works using an ML-style pseudo-code to 

describe the inferences that deductively transform a specification to an imple
mentation. Theorems in the HOL system logic have the form F  h t where F  is 
a set of assumptions and t is a conclusions that follows from the assumptions.



The ML pseudo-code SPEC [ti . . . . .  t„] (F  h Va;i . . .  x n. P (x i . . . . .  x n)) eval
uates to r  h P (t\ ,. . .  , t n). UNDISCH(F h t\ => t2) evaluates to F  U {t  1} h t2. 
MATCH_MP (Fi h t ) (i~2 h ti => 2̂ ) matches ti with t and then instantiates the 
theorem (F2 H ti => £2 ) to (F2 h t => t') (where t' is the instance of t2 corre
sponding to the match) and returns I"i U F2 b t', the result of applying Modus 
Ponens. (I"i h t i)  AND (F2 h 2̂ ) evaluates to (I"i U I 2 H ti A 2̂ )- Evaluating 
LibraryLookup l i b  /  searches the library l i b  for a theorem of the form:

h Mload inp done out. C(load, inp, done, out) => Dev /  (load, inp, done, out)

and uses the first one it finds (or raises an exception if no matching theorem 
found in l ib ) .

To compile (p, e), first rewrite e with the definitions in p  to obtain an 
expanded expression e ’ that only contains atomic or library functions, and then 
recursively apply the rules below to evaluate Compile e ’ .

Compile l i b  (Atm f )  =
SPEC f  ATM_INTR0

Compile l i b  (L ib  f )  =
LibraryLookup l i b  f

Compile l i b  (Seq e l  e2) =
MATCH_MP SEQ_INTR0 (Compile l i b  e l  AND Compile l i b  e2)

Compile l i b  (Par e l  e2) =
MATCH_MP PAR_INTRO (Compile l i b  e l  AND Compile l i b  e2)

Compile l i b  ( I t e  e l  e2 e3) =
MATCH_MP 

PAR_INTRO
(Compile l i b  e l  AND Compile l i b  e2 AND Compile l i b  e3)

Compile l i b  (Rec e l  e2 e3) =
MATCH_MP

(UNDISCH(SPEC [ e l , e 2 , e 3 ]  REC_INTRO))
(Compile l i b  e l  AND Compile l i b  e2 AND Compile l i b  e3)

Note that evaluating Compile l i b  (Rec e l  e2 e3) will generate a theorem 
with an assumption Total(el. e2. e3).

6 The Factorial Case Study

The tail-recursive function Factlter defined below can be used to compute the 
factorial function.

h Factlter(n,acc) =  i f  (n =  0) then (n,acc) e ls e  Factlter(n—1. nxacc)

The variable acc accumulates the result of the computation. Evaluating Factlter(n. 1) 
returns (0. nl), where nl is the factorial of n.



6.1 Implementation with an atomic (combinational) multiplier

The following program in our language computes nl.

FactProg (TestO =  Atm A n .  n  =  0,
Ident =  Atm A  (n.acc). (n.acc),
Dec =  Atm A n .  n — 1,
Mult =  Atm A  (n.acc). nxacc,
Fst =  Atm A ( n , acc). n,
Snd =  Atm A (n,acc). acc,
PairOne =  Atm A n .  ( n ,  1),
Factlter =  Rec (Seq Fst TestO) Ident (Par (
Fact =  Seq PairOne (Seq Factlter Snd))

The expressions TestO, Ident, Dec, Mult, Fst, Snd and PairOne are assumed atomic 
(i.e. implementable by combinational circuits). This is unrealistic for Mult; see 
Section 6.2 for a (slightly) more realistic version.

If we invoke the compiler on the program (FactProg, Fact) the result is:

[ TOTAL (Seq (A(n,acc). n) (An. n = 0), (A(n,acc). (a.acc)),
Par (Seq (A(n,acc). n) (An. n-1)) (A(n,acc). nxacc)) ]

I - Vload inp done out.
SEQ (ATM (An. (n,l)))

(SEQ
(REC (SEQ (ATM (A(n.acc). n)) (ATM (An. n = 0)))

(ATM (A(n,acc). (n.acc)))
(PAR

(SEQ (ATM (A(n,acc). n))
(ATM (An. n-1)))

(ATM (A(n,acc). nxacc))))
(ATM (A(n,acc). acc))) (load,inp,done,out)

=>
Dev Fact (load,inp,done,out)

The outcome is a theorem of the form F  h t where f  is a singleton set 
consisting of an assumption expressing the totality of Factlter. Simplifying the 
assumption with the definitions of Seq and Par yields:

Total((A (n ,acc). n =  0 ),(A (n.acc). (n,acc)),(X(n,acc). (n —1,nxacc)))

which is easily proved (with the function (A(x,y). x) as the variant). Once the 
totality assumption has been proved it can be eliminated. Furthermore, it is easy 
to prove by elementary arithmetic from the definitions of the components of 
FactProg and the meanings of Atm, Seq, Par, Ite and Rec, that b Fact =  An. nl. 
The output of the compiler thus simplifies to:



I- Vload inp done out.
SEQ (ATM (An. (n,l)))

(SEQ
(REC (SEQ (ATM (A(n,acc). n)) (ATM (An. n = 0)))

(ATM (A(n,acc). (n,acc)))
(PAR

(SEQ (ATM (A(n,acc) . n))
(ATM (An. n-1)))

(ATM (A(n,acc) . nxacc))))
(ATM (A(n,acc). acc))) (load,inp,done,out)

=>
Dev (An., nl) (load,inp,done,out)

6.2 Implementation with a pre-verified multiplier

The example above used Mult =  Atm A(n,acc). nxacc. Such a combinational 
multiplier is unrealistic (except for small words). However, we can easily imple
ment a (naive) sequential multiplier that works by repeated addition and so, 
more realistically, only assumes combinational addition (and decrementing):

MultProg
(TestO =  Atm Am. rn =  o,
Ident =  Atm A (rn n. acc). (rn, n,
Dec =  Atm Am. rn- 1 ,
AddAcc =  Atm A (m n. acc). n+acc
Fst =  Atm A (m n. acc). rn,
Snd =  Atm A (m n. acc). n,
Thd =  Atm A (m n. acc). acc.
PairZero =  Atm A (m n) ■ (m >n, 0),
Multlter =  Rec (Seq Fst TestO) Ident (Par (Seq Fst Dec) (Par Snd AddAcc)), 
Mult =  Seq PairZero (Seq Multlter Thd))
Note that we have used the same names in FactProg and MultProg for differ

ent (though semantically related) expressions (e.g. Fst). This is not a problem 
as names are local to the program they occur in.

Compiling (MultProg, Mult), simplifying and discharging the totality proof 
obligation (in a way very similar to the factorial example) results in:

I- Vload inp done out.
SEQ (ATM_IMP (A(m,n). (m,n,0)))

(SEQ
(REC (SEQ (ATM_IMP (A(m,n,acc). m)) (ATM_IMP (Am. m = 0))) 

(ATM_IMP (A(m,n,acc). (m,n,acc)))
(PAR (SEQ (ATM_IMP (A(m,n,acc). m)) (ATM_IMP (Am. m - 1))) 

(PAR (ATM.IMP (A(m,n,acc). n))
(ATM_IMP (A(m,n,acc). n + acc)))))

(ATM_IMP (A(m,n,acc). acc))) (load,inp,done,out) =>■
Dev (A(m,n). m x n) (load,inp,done,out)

After adding this theorem to the library, we can replace the combinational mul
tiplier in the factorial example by Mult =  Lib A(n,acc). nxacc.



If we recompile the factorial program after this change, the implementation 
of the multiplier is ‘inlinecP and we get:

I- Vload inp done out.
SEQ (ATM_IMP (An. (n,l)))

(SEQ
(REC (SEQ (ATM_IMP (A(n,acc). n)) (ATM_IMP (An. n = 0))) 

(ATM_IMP (A(n,acc). (n,acc)))
(PAR (SEQ (ATM_IMP (A(n,acc). n)) (ATM_IMP (An. n - 1))) 

(SEQ (ATM_IMP (A(m,n). (m,n,0)))
(SEQ

(REC
(SEQ (ATM_IMP (A(m,n,acc). m))

(ATM_IMP (Am. m = 0)))
(ATM_IMP (A(m,n,acc). (m,n,acc)))
(PAR

(SEQ (ATM_IMP (A(m,n,acc). m))
(ATM_IMP (Am. m - 1)))

(PAR (ATM_IMP (A(m,n,acc). n))
(ATM_IMP (A(m,n,acc). n + acc))))) 

(ATM_IMP (A(m,n,acc) . acc))))))
(ATM_IMP (A(n,acc). acc))) (load,inp,done,out) =>

Dev (Xn. nl) (load,inp,done,out)

This is an implementation of the factorial with an ‘inner-loop: for each mul
tiplication. Not an efficient circuit, but it illustrates hierarchical development.

7 Future Work
The handshaking protocol for devices is preliminary and we plan to refine and 
extend it. For example. Dev /  (load, inp, done, out) holds if F is continuously 
asserted on done. We need to prove some liveness results saying that if there is 
no posedge on load then eventually done will go to T. This property looks clearly 
true of ATM and should be compositional with respect to Seq. Par. Ite and Rec 
(assuming totality). The compiler should also be able to generate handshaking 
devices that are shared by several callers. An arbiter would control the concurrent 
calls and preserve the handshaking behaviour. This may require us to extend the 
handshaking protocol to support more than one request (load) and acknowledge 
(done) line per device.

In the future we plan to explore formally validated optimisations to the 
compiler, perhaps using ideas from SAFL compilation [12].

Finally, the compiler could provide the choice to generate either machine code 
or pure hardware. This feature would allow the user to partition the system into 
software and hardware parts and explore different designs.
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A bstract We present some experiments in and tools for automated the
orem proving in Martin-Lof’s type theory. The main purpose of the tool 
is to facilitate interactive proving by filling out the tedious, yet rela
tively simple details of a proof. One particular application, where such 
automation is extremely handy, is verification of functional programs.
The main contribution of this work is the use of induction and general
ization in automated proofs, which is superior to automation available 
so far in proofs assistants based on higher-order logic, such as the Auto 
tactic in Coq.

1 Introduction

In this paper, we present some experiments in automated theorem proving 
in Alfa [HROO], an interactive proof system based on Martin-Lof type theory 
[CC99,ML84]. It can also be viewed as a small purely functional programming 
language with a type system that provides dependent types, thus allowing spec
ification and verification of program properties within its type system. As such, 
Alfa supports algebraic datatypes, pattern matching and general recursive def
initions. To preserve logical consistency, all proofs are subject to termination 
check as well as typechecking.

Alfa is a term-based proof editor. This means that the proof is presented and 
recorded as a term, rather than as a tactic expression as in tactic-based proof 
editors such as Coq.

Our tool, given a proposition (type), tries to find its proof (inhabitant). 
If a solution is found, it is presented as a proof term, which can be verified 
by the type-checker. The main purpose of the tool is to facilitate interactive 
proving by filling out the tedious, yet relatively simple details of a proof. One 
particular application, where such automation is extremely handy, is verification 
of functional programs.

The main contribution of this work is the use of induction and generalization 
in automated proofs, which is superior to automation available so far in proof 
assistants based on higher-order logic, such as the Auto tactic in Coq.

To ensure termination, we rely on structural induction. However, the tool can 
construct proofs with nested induction and induction appearing in subproofs as



well as generalize (strengthen) the induction hypothesis when needed. Proofs 
containing case analysis on compound expressions can sometimes be found. This 
is needed to prove e.g. that the functions map and filter commute in a certain 
way.

A notion of quasi normal forms has been investigated. One advantage of this 
approach is to avoid higher-order unification which is otherwise imposed in type 
theory. It can also reduce the amount of computation in the search. Although we 
can miss some equalities this way, tests have indicated that for most problems 
the fidelity of our notion of equality is sufficient. It also gives useful information 
as to when case analysis on compound expressions should be performed.

1.1 Related Work

A system for automatic theorem proving in Martin-Lof type theory has been 
developed by Tammet and Smith[TS98]. The implementation, called Gandalf, 
was designed to work with ALF, the predecessor of Agda. In Gandalf, problems 
are not solved directly. The authors mention the presence of higher-order unifica
tion as an obstacle of a direct approach. Instead, a theoretical basis for encoding 
ALF types into first-order intuitionistic logic is developed. Problems are encoded 
and then solved using various existing techniques for first-order logic. When a 
problem has been solved, the corresponding ALF term is constructed. Gandalf 
can produce inductive proofs. The encoding of such problems however seems to 
result in a rather time consuming search.

The Coq system for formalization and proof-checking is also based on an 
implementation of type theory. Proof search in Coq works with tactics. There 
are tactics for doing induction and generalization manually. There are also auto 
tactics which use elementary tactics in automatic proof search. These do however 
not make use of the tactics for induction and generalization, so such proofs 
cannot be found automatically.

2 The Language

The tool that has been developed is based on the Agda language[Coq98]. This 
subsection gives a brief description of the language and the notation. Only a 
fragment of Agda is used.

There are three type classes; function types, signatures and data types. The 
output type of a function may depend on the input value. The following notation 
is used for function types:

(x : X)  -¥ Y

A signature consists of zero or more components with names. The type of a 
component may depend on the value of any previous component.

sig {(*i : Xi); . . . ; ( xn : X n)}
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Data types consist of zero or more constructors, each taking any fixed number of 
arguments. An argument’s type may depend on the values of previous arguments.

data ci (* 1 , 1  :Xi,i) . . .  (*i>m : X 1>ni)

I cm ( r̂a, 1 ■ ^ra,l) ■ ■ ■ (^m5nm ■

The symbols ‘S ’ and ‘X>’ will designate the generic signature and data type as 
presented above. We let all type expressions themselves be of type *.

Functions are constructed with A-abstractions:

A( x : X ) ^ Y  : (x : X)  -> Y

The elements of signatures are structures:

struct { * 1  =  Mi; . . . ;  xn =  M n} : S

Elements of a data type are introduced by using any of its constructors.

cj Mi  . . .  M nj : V

The rule is valid for any j  G [1 ,m].
Elimination is done by application, projection and case-expression respec

tively.

M  N  M.Xk case M  {ci y —> N i ; . . . ;  cm y —> N m}

When type-checking a case-expression where the scrutinee is a parameter and 
not a compound expression, the parameter is substituted by its assumed value 
for each branch.

Reduction works in the expected way. Apart from these basic components, 
also the term construction let . . .  in . . .  will appear. It introduces local definitions 
and is used in the proof search for defining recursive functions. All occurrences 
will have the following form:

let f  (x : X)  : T  = M  
in f N

Note that termination issues lie outside the typechecker. Termination check is 
performed as an extra step.

3 The Basic Concepts of the Proof Search

Proof search is performed mainly by backward reasoning. The basic concepts 
of the proof search are target type, problem, meta variable and refinement. The 
target type is the formulation of a proposition as a type. A problem is completely 
represented by a target type together with a variable environment in which an
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element of the type is to be found. If such an element is found, it is a term proving 
the proposition. During the search, meta variables are used as place holders for 
subexpressions which are not yet known. These are denoted by question-marks. 
If we have an environment F  and a target type T, then the initial problem of 
the search can be depicted like this:

f h ? : T

The task is to find an expression not containing meta variables which can re
place ?. This is done by successively replacing a meta variable by an expres
sion containing new meta variables. The new meta variables correspond to the 
subproblems. The collection of partially given proof terms together with their 
associated subproblems are called the refinements of the problem.

The formulation of the initial problem must be extended to encompass all 
subproblems. The information of each new meta variable will be stored in a meta 
environment. For each meta variable, the meta environment gives the variable 
environment and the type associated to the meta variable. The letter A  will be 
used for meta environments.

One more entity may appear in a problem. The way we handle data type 
elimination, solutions to subproblems are tagged with a set of value constraints. 
These are statements which specify which form a data type term must have in 
order to make the solution valid. In the end, no such constraints may of course 
remain for the solution of the main problem. Solutions with value constraints 
are combined in a case expression to generate a solution with less constraints. 
This is further explained in subsection 4.2. The value constraints have the form

M  =  cj xjt i . . .  Xj>nj

A set of value constraints will be denoted by a.
We can now write the general form of a problem. First, there is a meta 

environment, then a variable context, P, which is associated to the meta variable 
of the subproblem. After this there may be a set of value constraints, which refer 
to variables in F. In this environment, a proof term should be found which has 
the same type as the current meta variable.

A,r,<r h ? : T

There are a number of different rules used by the tool to generate refinements, 
but they are all expressed in a uniform way to allow them to be processed equally. 
A refinement consists of a proof term. If the proof term is not complete, i.e. it 
contains new meta variables, the meta environment must be extended accord
ingly. New value constraints may also emerge and thus extend a. In addition, the 
refinement can induce meta variable constraints. These have the form ? =  M . 
A meta variable constraint says that the refinement is valid only if the meta 
variable is bound to the specified term. Collections of meta variable constraints 
will be denoted by p.
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The refinement rules will have this general form:
A, r, a H ? : T <  side conditions >

A'.fi. I'.a' b ? M  : T

Refinements are recursively generated as long as new subproblems arise. When 
a refinement with no subproblems is encountered, it is a solution to the cur
rent problem. A refinement that does have subproblems is combined with the 
solutions of the subproblems, if such were found, to form a solution. Any solu
tion that reach the top of the search potentially solves the given problem and 
contains all the necessary meta variable assignments to compile the proof term. 
Apart from the proof term information, solutions also inherit the meta variable 
and value constraints of the constituting refinements.

All new meta variables are classified as either proofs or parameters. Parame
ters are those which appear in other objects’ types, i.e. those upon which other 
objects depend. The rest are considered to be proofs. Note that a parameter 
can depend on another parameter. The classification is used to determine which 
new meta variables should be treated as subproblems. Only proofs should be 
searched for. Searching for parameters is trivial and the result is arbitrary. The 
parameters’ values should instead be settled as a side effect when searching for 
solutions to the proof objects.

Section 4 describes the collection of rules that are used to generate refine
ments.

3.1 Expression Reduction and Comparison

A notion of quasi normal forms for types has been used in the experiments. 
It is here called simplification of a type. When simplifying a type, computa
tion is carried on until the next reduction step would introduce a non-reducible 
A-abstraction, case-expression, data-expression or signature. This means that 
simplified types normally consist of applications where the terms are either iden
tifiers, projections or A-abstractions deriving from the type that was stated by 
the user. When a type is simplified, reduction is not only performed on the head 
of the expression. Also the subexpressions are reduced in the same way. This is 
necessary since there are refinement rules that do not just look at the head of 
the target type.

Using simplified types to do comparison entails the risk that two expressions 
that actually represent the same type, i.e. are convertible, are judged to be 
unequal. The simplification is designed to make most equal types syntactically 
equal modulo a-conversion. But in some situations this is not the case. To avoid 
this, a few technical things can be kept in mind when stating the problem. We 
also think that the simplification could be improved to achieve higher fidelity to 
actual equality.

One effect of type dependencies is that meta variables will occur in types. 
A meta variable represents an arbitrary value. This means that comparing two 
types involves assigning meta variables to values. Comparison is therefore re
placed by unification. In type theory, higher-order unification is required. This
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means that you have to take conversion equality into account when unifying. 
Higher-order unification is undecidable. Confer for instance [DowOl]. This prob
lem is avoided here since syntactical equality is used and thus no reduction is 
allowed when unifying.

If the unification succeeds, the list of meta variable bindings is returned. The 
bindings are then used as constraints of the resulting refinement. Unification will 
be denoted as in the following example. Assume that two types, Ta and T&, are 
unified in the meta environment A  and variable environment P.

_L ( ? i =  M i. ? 2 =  M 2 ), I ' I-  T„ =  Ti,

In the example, the unification induces the binding of two meta variables.
Types are however not only compared to each other. In some refinement 

rules ordinary head normalization is needed, denoted by the symbol When 
normalization is used, the conclusion is always either of the following:

T  ‘t. (x : X ) 1' T ^  S T  -1 V

4 Refinement Rules

This section presents most of the refinement rules which are implemented in the 
tool. There are rules for introduction, one for each type class, and one universal 
rule for elimination. Case analysis and induction are combined in one rule. Fi
nally, one rule is devoted to generalization. Meta variables that are introduced 
in the rules are given various subscripts. It is however implicitly assumed that 
they all represent fresh meta variables.

4.1 Introduction Rules

The introduction rules construct a member of the target type according to the 
introduction typing rules of the language. There is one rule for each type class. 
First we have introduction of A-abstractions:

Z\,F, <rb?  : T T  - »  (x : X ) Y  /  abstraction\
A(T(x : X ) b ?v : Y ),T ,a  b ? (X(x : X ) ->?y ) : T  V refinement J

The side condition states that the target type normalizes to a function type.
If target type instead normalizes to a signature, the corresponding structure 

is a refinement.

_________ A, T, a b ? : T______ T  - »  S_________  /signature constrA
A ',T ,a  b ? struct {x^ —? i ; xn = ? „ }  : T  \ refinement )

The symbol ‘<S’ again refers to the generic signature. The new meta environ
ment, A', is A  extended with one new meta variable for each constituent of the 
structure.

A' =  A ir  b ?1 : X I , . . . ,  / ’ b ?„ : X'„)
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The target types of the subproblems, X'k, are equal to unless there are type 
dependencies between the signature elements. In that case the appropriate meta 
variables must be substituted into the types. Generally, the following substitu
tions are carried out.

X'k =  Xk[?k-l/Xk-l] ■ ■ ■ [?2/*2][?l/*l]
The refinement rule for construction of data type elements is similar and is 
therefore left out.

In case there are type dependencies, meta variables will enter the target types. 
Later on they may also appear in the variable environment, as a consequence of 
further A-abstractions. This is why unification of types is required and also why 
refinements and sub solutions are tagged with meta variable constraints.

4.2 Elimination Rules

In the case of introduction rules, the search is well guided by the target type. For 
elimination rules the situation is different. If you would simply use the elimina
tion rules of the language, they would be valid for any target type. This would 
lead to a highly blind search of infinite depth. To avoid this, we demand that 
there is an appropriate hypothesis in the environment before producing an elim
ination refinement. But a type can be compound on more than one level, so in 
order to find e.g. C in A  —> (B A C) V D, the hypotheses must be completely 
taken apart within the same refinement. We do not have to do this for every 
subproblem. When a hypothesis is added to the environment, all possible de
compositions can be computed. These decompositions will be called elimination 
judgements.

The elimination judgements have the following general form:

A .I'.a  b M  : U

It means that given the meta environment A, the variable environment F  and 
value constraints a, the term M  is of type U.

Elimination judgements are generated from a number of elimination inference 
rules corresponding to the typing rules of the language.

First we have the initial and trivial rule that every variable can be used as 
it is.

X ' ^  Y (reference)
ZA j A I X  •

The occurrence of x below the line should be interpreted as the term referring 
to x. This rule is used as the starting point for every elimination judgement. 
All the other elimination inference rules presuppose a prior elimination judge
ment. Chains of judgements are thus constructed to iteratively decompose the 
hypotheses.

Now follow the inference rules containing actual elimination, one for each 
type class. First, we have application:

A .l'.a  b M  : U U -1 {x : X ) 1' , , 
A {r ^ x : X ) , r , ^  (M  ?x ) : Y P x / l ]
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The side condition is that U normalizes to a function type. Function invoking 
extends A  with a meta variable corresponding to the argument of the application. 
For type dependent functions, the new meta variable will appear in the type of 
the elimination.

Next, if the type of the current elimination judgement normalizes to a signa
ture, projection can be used to generate a new judgement for each element.

where k is between 1 and n. The types of the new judgements must be modified 
so that all references to other elements are correctly qualified.

We must also be able to do data type elimination using case-expressions. Data 
type elimination introduces a new problem, since there is no direct connection 
between the decomposed types and the target type. As a consequence, it is 
difficult to know at which point the elimination involving a certain data type

is to search the parts of every construction for a data type just as if they are 
all accessible. If a match is encountered, a refinement with a value constraint is 
generated. The idea is that solutions with complementary value constraints will 
later on be combined to form one solution with no constraints.

The data type elimination inference rule looks like this:

—--------y—j ------------- :-------------------------------—— (data type elimination)
A ,r ,a (M  =  Cj xjti . . .  Xj>nj)\- xjk : X jk

where j  £ [l,m] and k £ [1 ,nj]. There are J2jnj possible elimination judge
ments, one for each component of the data type. For each judgement, the set 
of constraints is extended with the constraint that M  has the form of a certain 
construction. Note that the term of the new judgement refers to a variable that 
only appears in the value constraints. The constraints thus in a sense serve as 
an extra variable environment.

We now formulate the general elimination refinement rule:

There are four side conditions. The two at the top demand that A' is an extension 
of A  and a' an extension of a. This is guaranteed due to the constitution of the 
elimination inference rules. The third side condition is the elimination judgement
saying that M  is of type U. The last one assures that the target type can be

A,r,<j\- M  : U U S 
A ,F ,a  b  M.Xk : X'k

(projection)

X'k = Xk[s.Xk-ilxk-i]...[s.x2lxQ\[s.xilxi\

object should appear and if it should take place at all. The approach chosen here

A .I'.a  b M  : U U V

A  C  A', a C  a' 
A'.l' .a'  b  M  : U 

A.I ' .a h  ? : T  J ' . / n / ’ b T =  U 
A'.fi. I'.a' b  ? M  : T
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unified with U. An elimination judgement can include extension of both the 
meta environment, A, and the set of value constraints, a. The extensions are 
reflected in the resulting refinement. The unification may produce meta variable 
constraints, p, which are also added to the refinement.

There is one situation which is not covered by the main elimination refine
ment rule. When there is a member of the empty type, i.e. absurdity, in the 
environment, it can be used to prove anything. A special elimination refinement 
rule is required. The empty type is in Agda represented by a data type with 
no constructors. In accordance with the typing rules, a case expression with 
no branches matches any type. Instead of comparing the type of the elimina
tion judgement to the target type, the refinement rule for absurdity elimination 
demands that it normalizes to the empty type.

When the target type is an equality, the implementation of the elimination 
refinement rule behaves differently. Some knowledge about refiexivity, symmetry, 
transitivity and substitutivity has been hard-coded in the program. Equalities 
are proved and rewritten using these properties.

4.3 Case Analysis and Induction

The previous subsection described briefly how case-expressions for hypotheses 
are generated. But proofs may also contain case analysis on parameters. This is 
covered by a special refinement rule.

The case refinement rule must have some source which provides it with the 
collection of scrutinees to try. One place to look is in the environment. All ob
jects that are parameters, are of data type and have not earlier been analyzed 
could qualify. Another way to generate scrutinees is to look at the target type 
and the environment elements’ types and see which ones halt the computation,
i.e. which scrutinees cannot be reduced to a construction and thus stop the type 
from being reduced any further. This seems somewhat more cunning than the 
first alternative, because it actually looks at the structure of the types involved. 
Another important advantage is that this method not only presents scrutinees 
that are single parameters, but also compound expressions, such as function 
applications where the argument is unknown. Case analysis on compound scru
tinees is sometimes necessary. There is a special version of the case refinement 
rule dedicated to this. It is described further on in this subsection.

The implementation currently uses both these methods to produce candi
dates. The second does produce most relevant scrutinees, including compound 
ones. But it sometimes leaves out parameters that have a passive role in the 
types but still needs to be analyzed at that certain point in the proof.

For each candidate scrutinee which is a parameter, the refinement method 
generates a case expression with branches for each constructor of the data type. 
It also adds a locally defined function just outside the case expression. This 
is intended for recursive calls from within the branches or, in other words, for 
reference to the induction hypotheses of the problem. As arguments, the function 
takes the parameter itself, but to be flexible enough it must also take all objects 
in the environment whose type depends on the parameter. Furthermore, any
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other parameter present in those objects’ types should also be included and so 
forth.

In the subproblems of the refinement, the target type and variable environ
ment are specialized for each branch by substituting the parameter with the 
correct construction and then re-simplifying the types. The locally defined func
tion is added to the environment. It is however treated in a special way since we 
want to avoid bad recursive behaviour. The program currently restricts the use 
of the function in a way which only allows structural recursion, which guaran
tees program termination. This limitation is imposed by indicating that when 
the elimination judgements are generated for the function, it is not itself used 
as the starting point. Instead, the function applied to any recursive part of the 
parameter serves a starting points.

The rule for case refinement looks like this:

Z\, F, <7 b ? : T  / ’ b y : Y  Y  .» V

f let /  (j/  : Y ) ( z ' : Z ) : T  =  
case y' {

ci Xiti . . .  Xi>ni —>?i;
z A ',I > b

}
in f  y z

(case refinement)

T

The side conditions of the rule are that y, the main parameter, is of type Y  and 
that it in turn normalizes to a data type. The declarations z : Z  is the collec
tion of secondary parameters and dependent objects. The meta environment is 
extended by one new meta variable for each branch of the case expression.

4 ' =  z A (ltb ? i  :T [ ,.. . ,P 'm h l m :T'm)

The variable environments and target types of these meta variable are the fol
lowing:

P'3 r ((f : { y ’ : Y ) ^ Z ^ T )  (y’ : Y) (z’ : Z ’ ) (xjA : X jA) . . . (x

T-3 T[cj xj,l ■■■ xj,rij/y]

Z 3 Z [ c 3 ^ i . 1 ■ ■ ■ X 3>n i / y \

In case the candidate scrutinee is a compound expression, the refinement is 
generated in a slightly different way. The side condition P  b y : Y  is replaced 
by P  b M  : Y  where M  is an arbitrary term and y' serves as a new parameter 
replacing M.  Also, instead of substituting the variable y for the different con
structions, every occurrence of the subexpression M  is replaced. There is one 
more difference, namely that whenever possible, a proof of M  = =  y' is passed as 
an argument to the locally defined function. A proof of this equality is provided 
by reflexivity.

10



Experiments with a method for introducing generalizations have been done. The 
method has two simple procedures for suggesting generalizations. The first looks 
for several occurrences of the same subexpression. If at least two occurrences 
are found, a generalization is constructed by replacing that subexpression with 
a new parameter of the correct type. The second procedure looks for two or 
more occurrences of the same parameter. Upon finding this, the parameter is 
separated into two or more new ones and all combinations of distributing the 
new parameters are tried.

The rule for generalization refinements has the following general form:

P b  X  : * 
/ ’(.? : X)  b  T ' : *  

r  b  M  : X  
A.  I a  ? : T A, p, T\-  T =  T' [M/x]  / generalization^

( let n (r ■ X) - T' —? "1 \ refinement jlet g [x . A )  . 1  . g | T

m  g M  J
where

A'  =  A{I' {x : X)  b  ?.; : T')

The variables x are the new parameters introduced by the generalization proce
dure and T' is the generalization of T.  The rule has four side conditions. The 
first presents the types of the new parameters, X.  The second says that T' is a 
valid type in P  extended by the new parameters. The third introduces the set 
of terms that will be the arguments of the function application. Finally, the last 
one ensures that by replacing x by M  in T' the two types become equal.

5 Examples

A few examples are presented to illustrate what kind of problems can be solved 
by the tool. The examples refer to natural numbers and lists, which are defined 
as follows.

Nat =  data 0 | s (n : Nat)
List X  =  data [] | ( : : ) ( * :  X ) (xs : List X )

Infix notation will be used for the constructor ‘ :: ’ .

5.1 Natural Numbers

As the first example, we look at commutativity for addition of natural numbers.

a +  b = = b +  a

Addition for natural numbers is assumed to be defined as follows
0 + 6 = 6 

s a' +  6 =  s (a' +  6)

4.4 Generalization
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The tool solves this problem by induction on a. In the base case, induction on b 
is also done. In the inductive step, the target type is s (a' +  b) = =  b + s  a'. The 
hypothesis is used to replace a' +  b by b +  a', yielding s (b +  a') = =  b +  s a'. 
Now, an induction on b is done. The base case of this is proved by referring to 
reflexivity.

5.2 Lists

We take the following property of list reversing as an example:

rev (rev xs) = =  xs

The list reversing function is defined in terms of concatenation.

rev [] =  [] 
rev (x:: xs') =  rev aw'-H- (x:: [])

[] ++ ys =  ys 
(x:: a;s')++ ys =  x: :  (xd +V ys)

The proof is by induction on xs. The ground case is trivial. The inductive step 
has the target type rev (rev xs'++(x:: []))  = =  x :: xs' and the hypothesis 
ascertains rev (rev xs') = =  xs'.

The hypothesis is used to replace xs' with rev (rev xs') in the RHS. This 
renders the problem rev (rev xs'++ (x::  []))  = =  x::  rev (rev xs').

Here, the subexpression rev xs' appears twice and therefore the more general 
problem rev (ys+j- (x:: []))  = =  x::  rev ys is attacked. The generalized problem 
is solved by induction on ys.

5.3 Quicksort

We prove the correctness of the quicksort algorithm. 

qsort [] =  []
qsort (x:: xs) =  qsort (filter (x >) xs)-H- (x:: qsort (filter (x <) xs))

The type of the elements will be denoted by X , which is any ordered set. In 
order to adhere to structural recursion, we do the proof for a modification of the 
algorithm, qsort!. This takes two extra arguments; a natural number, n, which 
is the recursor and a proof, p, that the length of xs is at most n. The definition 
of qsort! is left out.

To prove the correctness, we show that the output list is sorted and that it 
is a permutation of the input list. This is established for qsort! in prop_ qsort!. 
As a corollary, the result is then brought to qsort in prop_ qsort.

prop_ qsort! : Sorted (qsort! n xs p) A Perm xs (qsori! n xs p) 
prop_ qsort : Sorted (qsort xs) A Perm xs (qsort xs)
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To show this, the problem is divided into a number of lemmas. Each of them can 
automatically be solved by the tool. Some of the lemmas depend on previous 
ones. Apart from the ones that are listed below, a couple of trivial properties 
of natural numbers and booleans have to be provided in a few cases. The main 
proposition, prop_ q s o r twas then proved using several lemmas and prop_ qsort 
is a trivial consequence.

Most of the lemmas are general properties for Perm, Mem,her and occs, which 
counts the number of occurrences of an element in a list. In all propositions, non
proof arguments are omitted.

lemi : Mem,her x x s - ->(occs x xs = =  0)
leniQ : Perm xs ys —► (x : X )  —► (Member x xs • Member x ys)
lems : occs x (xs-H- ys) = =  occs x xs +  occs x ys
lem,̂  : Perm (xs-H- ys) (ys+txs)
lem§ : Perm zs (xs-H- ys) —► Perm (x:: zs) (xs++ (x:: ys))
lem® : Perm xsi XS2 —► Perm ysl ys2 —► Perm (xsi ++ ysl) (xs2++ ys2)
lemj : Perm xs ys —> Perm ys zs —► Perm xs zs

The remaining two lemmas are specific to the algorithm.

lems : Perm xs (filter (x >) xs+^r filter (x <) xs)
lem® : Sorted xs Sorted ys ((x : X ) Member x xs \x <  a|)

—> ((x : X )  —► Member x ys —̂ \a <  x\) —> Sorted (a;s++ (a:: ys))

Time cost of a search is measured by the number of refinements generated 
before a solution is found. The problems above typically take around 1000 refine
ments. The most difficult, lem  ̂ takes around 6000 refinements. These numbers 
are valid for searches where the needed lemmas are specified as hints.

6 Conclusions and Future Work

The experiments have resulted in a tool, that can construct proof terms for a 
fairly wide variety of problems. Inductive proofs can be constructed automat
ically, including nested induction. The tool can find some proofs in which a 
generalization is needed at some point to strengthen the induction.

The way types are compared and our approach for data type elimination 
substantially improve the efficiency of the search. The response time of the tool 
is in most cases satisfactory for an interactive proving system.

Among possible continuations of this work, we consider the following issues 
most interesting:

— Make the generalization more general. Investigating how far generalization 
can be automated is an interesting field.

— Make the induction capabilities more flexible by handling non-structural or 
mutual recursion. It would also be interesting to develop the mechanism that 
picks the parameter to do induction on, if possible.
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— Further investigate the effects of using normal forms and syntactical com
parison for types in type theory.

— Use testing (cf. e.g. [Hai03])to restrict search space. As the flexibility of the 
refinement methods grows, search complexity tends to increase. This should 
be compensated by improving the mechanism that limits the search forking. 
If e.g. generalization is improved, more candidates will be generated. Some of 
these may however be too general, i.e. false. It should be possible to disqualify 
some candidates by falsification. Testing could also be useful when invoking 
lemmas.
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A bstract. HOL Light is a lightweight interactive theorem prover in the 
LCF style. CVC Lite is a fast, automated first order theorem prover that 
produces proofs of its deductions. This paper is a case study in combining 
theorem provers. We define a derived rule in HOL Light, CVC-PROVE, 
which, given a term of a theory supported by CVC Lite, calls the CVC 
Lite decision procedure and translates the solution back into HOL Light.
This technique fundamentally expands the capabilities of HOL Light, in 
the sense that some valid terms that are intractable in the current HOL 
Light decision procedures become quickly provable. Furthermore, CVC 
Lite supports decision procedures for theories that do not exist in HOL 
Light. For instance, it decides unquantified statements in the theory of 
arrays. We give a minimal set of array definitions in HOL Light, and 
extend the translation mechanism. The result is that CVC-PROVE is able 
to prove difficult theorems about arrays with an extension of the HOL 
Light source of 8 lines of definitions and 6 basic proofs! After a brief 
historical discussion, we give the details of the translation mechanism. We 
give an example of a class of problems that were solved with CVC_PR0VE 
but were unsolvable otherwise. Other less successful examples are given 
for comparison. We discuss the theory of arrays, and the minimal effort 
required to add an array theory to HOL Light with the help of CVC 
Lite. Finally, we discuss potential applications and future work.

1 Introduction and History

There are many different ways to formalize mathematics. Similarly, there 
are many kinds o f problems that need to be solved in a rigorous way. 
As a result, there are a number o f theorem provers being used today, all 
with differing underlying logics and all with different strengths and weak
nesses. It is unfortunate that the efforts o f the formal methods community 
arc so ramified. For instance, the exciting advances made in TPS [5] arc 
generally unavailable to a user o f Mizar [16] without extensive study and 
programming. Users arc loathe to change systems and even having a de
sired theorem proved in another system is often unsatisfactory. What 
is needed is some way to harness the power o f another theorem prover 
without having to leave the environment o f one’s own system.



There are some efforts underway to address these issues. One is the 
nascent Logosphere project [1]. This promises to be a database o f theo
rems in varying formats with a translation mechanism between the various 
logics.

In the hope o f encouraging further progress along these lines, this pa
per describes a case study in which proofs from the automatic theorem 
prover CVC Lite are translated into corresponding proofs in the interac
tive theorem prover HOL Light.

1.1 HOL Light

HOL Light [11] is an interactive theorem prover descended from the LCF 
projects [8,14] and the HOL4 theorem prover [2].

All the theorems are created by a core set o f 10 primitive inference 
rules such as modus ponens and reflexivity. All other rules o f inference 
are conservatively derived from these rules. The core system consists of 
those 10 rules and 3 logical axioms. W ith OCaml as the metalanguage, 
the user may program arbitrary new rules that cannot compromise the 
correctness o f the system. This is ensured by defining an abstract type 
thm with no primitive constructor, and is enforced by the OCaml type 
system. The core consists of just over 300 lines o f OCaml. HOL Light has 
been used extensively by its author to verify hardware designs at Intel 
[12]. But because o f its transparent design and minimal base of trusted 
code, HOL Light was also chosen by Thomas Hales as the system in 
which to formalize his proof o f the Kepler Conjecture (see Section 5.2). A 
large body of mathematics has been formalized in the system, from the 
construction o f the real numbers to basic results in transfinite set theory 
and real and complex analysis.

1.2 CVC Lite

CVC Lite [6] is an automatic proof-producing theorem prover for deeid- 
able first order theories. It is derived from the SVC and CVC projects at 
Stanford University [7,15]. It is one o f the fastest theorem provers in exis
tence today, solving problems in seconds that take hours for systems like 
HOL Light. The logical core differs in many ways from the HOL Light 
kernel. For example, as speed is a design goal o f the system, there are 
many more primitive inference rules in CVC Lite. In fact, there are over 
one hundred rules alone for the theory o f real linear arithmetic. (Contrast 
this number with the 10 total inference rules o f HOL Light, where the 
reals are constructed from the axiom of infinity.) The trusted code base



is correspondingly larger, over 3000 lines being used to solve problems of 
linear real arithmetic. A  natural question is whether wc can acccss the 
speed and power o f the CVC Lite engine without having to rely on its 
soundness.

2 Translation

There arc numerous ways of connccting another prover like CVC Lite to 
HOL Light. One would be to acccpt theorems generated by CVC Lite 
as valid theorems. However, any bug in CVC Lite would compromise the 
soundness o f HOL Light. A  less intrusive approach is to tag theorems 
proved by CVC Lite [9]. This amounts to proving a theorem under the 
assumption false. While logically meaningless, this approach would allow' 
the propagation o f CVC Lite proofs so that, when faced with a theorem 
C V C  b P , wc can say with certainty that if the output o f CVC Lite was 
correct, then P  holds. Fortunately, because CVC Lite can produce proofs, 
there is another alternative which is true to the spirit o f HOL Light. 
This is to translate the proofs produced by CVC Lite into actual HOL 
Light proofs. W c implement a HOL Light derived rule for each CVC Lite 
inference rule and translate the proof tree, calling the HOL Light rules as 
necessary from the bottom  up, constructing the proof on traversal. Thus, 
a bug in CVC Lite would not compromise the HOL Light system. A  false 
proof generated by CVC Lite would simply fail to translate into HOL 
Light.

2.1 Languages

HOL Light is written in the OCaml language [3]. CVC Lite is written in 
C + + . The first challenge was getting the two languages to interact. A  C 
interface for CVC Lite was written, allowing one to construct arbitrary 
CVC Lite formulae and to query the validity o f a formula from a C pro
gram. OCaml functions wore then written to call the C functions from the 
OCaml read-eval-print loop. The communication process is complicated 
by the different memory management systems o f the two languages and 
imposes obvious limitations. Also, because it uses general strategies tai
lored for large proofs, even simple proofs in CVC Lite can be surprisingly 
large. A  naive proof o f x +  y — y  +  x runs some 15 lines. An example 
described below' produces a multi-gigabyte proof. It is easy to produce 
proofs that exhaust main memory on a modern computer. W ith a bit 
more work, one can find a problem whose proof docs not fit inside any



modern hard disk. A  real concern for problems we arc currently investi
gating is their ability to fit in the section of the heap allocated to C + +  
when the languages arc combined. This was more of a software engineer
ing feat than one o f interest to the logic community. The details and code 
can be found on the Internet at [13].

2.2 Terms

After connecting OCaml to the C interface of CVC Lite, the next task 
was to translate terms between HOL Light and CVC Lite. Given that 
the CVC Lite logic is close to a subset o f the HOL Light logic, this 
was relatively straightforward. The types o f the terms we considered had 
obvious analogues. The term translation algorithm performs a depth first 
search of the term, constructing a term in the other system recursively.

Though it was not difficult for the part of CVC Lite we considered, it 
seems that such a translation may not always be so easy. Systematically 
translating between set theory, and typed lambda calculus, for instance, 
would take much deeper consideration.

2.3 Proofs

Translating proofs formed the heart of the research. As an illustration, 
we demonstrate a proof o f the term !x = x ! in CVC Lite.

(iff mp true (= x  x)
(proof by contradiction true 

(let p ((assumpi (not true)))
(iff mp (not true) false assumpj (rewrite not true))) 

(iff-symm (— x  x)  true (rewrite eq ref!a’))))

Some examples o f the rule semantics arc:

-  (iff mp [ti] [t2] [b  ( h  =  t2)] [b h ) )  = >  [b  t2)
-  (proof by contradiction [t] [not t b  false]) =>• [b t]
-  (rewrite not true) = >  b  not true =  false

In order to translate these rules to HOL Light, we wrote a derived rule 
for each CVC Lite rule encountered in the proof tree. Thus, to translate



proof by contradiction, wc must define1 a HOL Light derived rule 
where, given a proof o f false from the term ->t, a proof o f t is produced.

l e t  CCONTR =
l e t  P = [P :b o o l [ in
l e t  pth  = TAUT 1(~P ==> F) ==> P [ in
fun tm th  ->

t r y  l e t  tm’ = mk_neg tm in
MP (INST [tm ,P] p th ) (DISCH tm’ th ) 

w ith  F a ilu re  _ ->  f a i lw i t h  "CCONTR";;

If the reader is unfamiliar with the HOL Light style, the crucial point 
is that we can define the rule in terms o f previously defined rules o f in
ference (here MP, INST, TAUT, DISCH). We have a similar rule for every 
inference rule in CVC Lite. We can then combine these rules in a recursive 
procedure that translates the proofs in a depth first traversal o f the proof 
tree. The translation o f the root proof node should yield the desired HOL 
Light theorem.

Note: It is interesting to consider the relative strengths o f the infer
ence rules in the two systems. For CVC Lite.

(0 +  1  y\x\ +  ly | ® 3  +  H— 2 y^y3x 2x\+

2yiy2x 3xi +  - 2 y4yia’4a’ i +  ly fa l  +  1 ^ 3 +  

ly fa f  +  2 y 3y 2x 3x 2 +  - 2 y 3y ia 4a 2 +  1 y\x\+  

l y i a’ 2 +  +  ly fa § +

ly?® ! +  1 +  0 +  ly\x\ +  2 y^y3x 2x\+

-  2yi y 2x 3x 1 +  2y4yia4ai +  ly|a| +  - 2 y 3y 2x 3x 2+  

2y m x i X 2 +  1 y%x3 +  - 2 y 2yiX4X3 +  1 y\x\)

(0 +  ly\x\ +  ly\x\ +  1 y|a| +  ly\x\+

ij/3*4 +  +  ̂ yix I +  { y l x { +

1 y\x\ + \y\x\ + \y\x\ + ly2x\+
\y\x\ +  \y\x\ +  \y\x\ +  1//f-rf)

is a primitive inference. This corresponds to 101.359 HOL Light prim
itive inference rule applications!

1 The rule CCONTR was written by John Harrison and is a part of the IIOL-Light 
system. The actual rules we defined are longer and less instructive.



3 Results

HOL Light and CVC Lite have two overlapping theories, those of real 
arithmetic and boolean satisfiability. These are the realms at which wc 
aimed our translation mechanism in order to determine its relative effec
tiveness.

3.1 Satisfiability

Consider the following class of problems. You arc given n — 1 sets of 
n pigeon-holes, arranged in n rows o f n — 1 columns. Given that that 
no column can contain more than one pigeon, find a contradiction to the 
assertion that each row can contain a pigeon. For instance, this translates, 
for n — 3 as

( ( “ 'Xi V “ 'X3 ) A (~'Xi V - 'X5) A 

( - 1x 3 V - 1x 5) A (-nx2 V - .x 4) A 

( “ 1X2 V “ 1X5) A ( “1X4 V “ 1X5) A 

(x i  V x 2) A (x 3 V x 4) A (x 5 V x 6)) -► false

for the picture

© © 
© ©

This is a notoriously difficult class of problems for typical boolean 
satisfiability methods. The following table2 gives times for CVC Lite run
ning alone (but still producing proofs), HOL Light running alone, and 
HOL Light using CVC Lite and performing the translation.

2 All times are in seconds, running on a 1GII Pentium III running FreeBSD 5.2



n CVC Lite HOL Light CVC-PE0VE
2 0.10 4.5 1.75
3 0.18 13 10
4 0.90 34 43
5 2.9 * 210
6 19 * 980
7 238 * 4308

The empty entries under “HOL Light” are intractable in that system. 
Even the example with n =  5 ran for over 4 hours before we killed the 
process. We thus expand the power o f HOL Light using the external 
system CVC Lite.

Note: The drastic slowdown between the CVC Lite program and the 
translation process requires some analysis. There are many places the 
inefficiency may reside. The OCaml process is running uncompiled under 
an interpreter. There is overhead from the many C function calls. There 
is also a great deal o f inefficiency in the translation code. The lack o f a 
profiler for the OCaml top level loop makes optimizing for HOL Light 
difficult. This could be overcome by packaging HOL Light and compiling 
the modules and in turn running the profiler. This option, along with 
other optimizations, will be explored in future research.

3.2 Real Arithmetic

The first problems we investigated with the translation process were terms 
of real linear arithmetic. The HOL Light decision procedure REAL_ARITH 
was unacceptably slow. This was a primary motivation for beginning the 
project in the first place. For instance, the following term



(.Pi 9i s i ^  ^  'ai v i w ‘i )

(P 22 + <?2 + r 2 + s 2 + *2 + U 2 + u2 + w l )  =

{p irp2 -  q m  -  n r 2 -  s i s 2 -  h t 2 -  u tu 2 - v iv 2 -  m w 2f +  

(piQ2 + gi'P2 + n s 2 -  s\r2 + tiu 2 -  U\t2 -  v\w2 + Wiv2f +  
( p m  -  q is2 + r ip 2 + Siq2 + tiv 2 + Uiw2 -  V\t2 -  w \u2f +  

(P1S2 +  91^2 -  riq2 +  Sip2 +  h w 2 -  u i v 2 +  t>iu 2 -  w 1t2)2+  

(Pih -  qiU2 -  n v 2 -  srw2 +  h p 2 +  Uiq2 +  t>ir2 +  u>is2)2+  

(P1 U2 +  Qit‘2 -  r\w2 +  s\v2 -  tiq2 +  uip2 -  v\s2 +  w\r 2)2+  
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(P1W2 -  q iv2 +  n u 2 +  s i t2 -  h s 2 -  u\r2 +  t>iq2 +  w\p2f

took over 1900 seconds with REAL_ARITH. In contrast, CVC Lite solves 
the problem in under 2 seconds. Using CVC_PR0VE, wc cut the time in half. 
W c planned further optimizations until John Harrison, the author o f HOL 
Light, produced a hyper-optimized version o f REAL_ARITH that solved the 
problem in 21 seconds! W ith the new arithmetic procedure, CVC_PR0VE is 
consistently around six times slower than REAL_ARITH.

The reasons for this are likewise numerous. The inferences made by 
CVC Lite were so large that the translation mechanism was forced to call 
REAL_ARITH itself just to prove the inferences were correct. Thus, wc were 
forced to rely upon the very procedure we were trying to replace! We 
arc currently designing a layer o f inference rules in CVC Lite that more 
closely resemble the low level inference rules o f HOL Light. In time we will 
see if such a translation process will be useful for pure linear arithmetic.

4 The Theory of Arrays

The experiments documented above arise from theories that exist in both 
theorem provers. A  more obvious application o f translation is to theories 
for which decision procedures do not yet exist in one o f the provers. For 
instance, CVC Lite has a well developed theory o f arrays. This theory 
does not exist in the current HOL Light version. As an alternative to 
implementing a decision procedure for arrays in HOL Light we extended 
the current translation mechanism to handle the CVC Lite array inference



rules. This gives us all the power o f an array theory built in to HOL Light 
without the otherwise obligatory implementation effort.

4.1 Theory

The theory is a simple extensional theory of arrays, as found in [4], 
Roughly, an array is a polymorphic type with two type variables, one 
corresponding to the indexing type, and the other corresponding to the 
value type. There are two constants, read and write. There are two ax
ioms in the theory. One, the axiom of extensionality for arrays, saying 
that two arrays are equal if and only if they have the same elements. The 
second is a read over write axiom, giving a simple term reduction. The 
following is the entire contents of the HOL Light array theory:

new_type("array",2);; (* index_type, data_type *)

new_constant("read",1:(I,D)array->I->DI) ;;

new_constant("write",1:(I,D)array->I->D->(I,D)array1);;

let read_over_write = new_axiom(1!(a:(I,D)array) (i :I) (j:I) (v:D).
((i = j) ==> (read(write a i v) j = v)) /\
(~(i = j) ==> (read(write a i v) j = (read a j)))1);;

let array_extensionality = new_axiom(1!(a:(I,D)array) (b:(I,D)array). 
(!(i:I). read a i = read b i) ==> (a = b)c);;

Note: Adding axioms to the HOL Light system is generally discour
aged. A  conservative extension theory o f arrays is certainly possible, but 
the logic is greatly complicated. One way this could be accomplished is 
by defining an ( I,D)array as the set of functions from type I to type D 
where a read is simply a function call and a write would be a conditional 
wrapper for the function

write A c v = (\x. if x = c then v else A x)

4.2 Results

Consider the following HOL Light term:



‘((SI:(real,real)array) = S2) ==>
((write SI i (read S2 i)) = SI)‘;;

Given the axioms, the built-in HOL Light decision procedure can solve 
this problem in 56 seconds. CVC_PE0VE takes .015 seconds.

Even slightly more difficult problems such as the following are in
tractable for HOL Light. By contrast, CVC-PEOVE solved it in 7.6 seconds.

‘(((write (SI:(real,real)array) i v) = (write S2 j w)) /\ 
(read SI i = v) /\
(read S2 j = w)) ==>

((SI = S2) /\
((i = j) ==> (v = w)) /\
(~(i = j) ==> (read SI j = w)))‘;;

5 Future Research

We briefly consider some directions for future research.

5.1 Proof Size Reduction

There is an extensive proof theoretic literature on proof compaction. None 
o f this is currently applied to the CVC Lite proofs. For larger problems, it 
could be necessary to translate proofs in pieces to allow the entire object 
to fit in memory. For instance, if the top level inference rule is iff-m p, 
one may create two separate processes to translate the separate parts of 
the proof, b (ti =  t-z) and b t\. Once such a subproof exists as a HOL 
Light theorem, the proof can be deleted and another subproof begun. In 
this way it will be possible to handle proofs o f practically limitless size.

5.2 The Flyspeck Project

The Flyspeck Project is an effort to formally verify Thomas Hales’ 1998 
proof of the Kepler Conjecture [10]. The proof relies critically on a large 
number of 6 and 7 dimensional real inequalities. These were proved using 
interval arithmetic and recursive branching using linear approximations 
and an explicit error bound given by Taylor’s theorem. The verification 
o f the inequalities required a large number o f floating point arithmetic 
calls, often over 107 double precision multiplications in the course o f a 
proof. These calculations are extremely slow in HOL Light. While still 
tractable in theory, a highly efficient implementation will be necessary to



prove them in practice. We are hoping that CVC Lite can be used as a 
tool to help guide the branching process to allow HOL Light to do as 
little work as possible in the proofs. In general, speed will be an issue on 
such a large project. We hope that CVC can help us attain the goal of 
verifying the proof in Hoi Light.

6 Conclusion

This work demonstrates several benefits that can be derived from combin
ing theorem provers. We have presented concrete examples o f a qualitative 
increase in the power of HOL Light by translating proofs from CVC Lite. 
In a perfect world, any prover would be able to call any other for help in 
deciding terms automatically. This is a small step in that direction.

W e’d like to thank New York University, the University o f Pittsburgh, 
and the National Science Foundation for partial support o f this work.
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A bstract. In this paper, we present an embedding of Multiway Decision 
Graphs (MDG) in the HOL theorem prover. We first embedded the MDG 
underlying logic and then implemented a set of MDG graph manipulation 
operators and algorithms. This platform allowed us to develop state- 
exploration based applications inside HOL, such as MDG reachability 
analysis, equivalence checking and model checking. Furthermore, we also 
developed decision procedures for equivalence and tautology checking 
based on the MDG tool. The proposed embedding provides a verification 
framework, in which the verification problem is specified in HOL, while 
the proof is derived by tightly combining the MDG based computations 
and the HOL theorem prover facilities.

1 Introduction

Whenever an error creeps into a design, time and money must be spent to lo
cate the problem and correct it, and the longer a bug evades a detection, the 
harder and more expensive it is to fix. As design complexity increases, simulation 
times become prohibitive and coverage becomes poor, allowing numerous bugs 
to slip through to later stages of the design cycle. What is needed, therefore, 
is a complement to simulation for determining the correctness of a design. For 
this reason, there has been a surge of research interest in formal verification 
techniques [14]. In general, formal verification problem consists of mathemat
ically establishing that an implementation satisfies a specification. The imple
mentation refers to the system design that is to be verified and the specification 
refers to the property with respect to which the correctness is to be determined. 
Formal verification methods fall into two categories [12]: proof-based methods, 
mainly theorem proving and state-exploration methods, mainly model checking 
and equivalence checking. While theorem proving is a scalable technique that can 
handle large designs, model checking suffers from the so-called state-explosion 
problem which prevents its application to industrial systems [15]. On the other 
hand, while model checking is fully automatic, deriving proofs is a user guided 
technique that requires a lot of expertise and hence can be tedious and difficult.

Both techniques do not allow the automatic verification of large systems. 
So, various compromises are being explored to combine the strengths of both.



They can be summarized as : (i) tools integration, (ii) adding deduction rules 
to a state of the art checking tool or (iii) deeply embedding checking algorithms 
inside a theorem prover. For the first approach, we start with two stand-alone 
tools, a theorem prover and a checking tool, where we link the latter to the the
orem prover using scripting languages to be able to automatically verify small 
sub-goals generated by the theorem prover from a large system. The starting 
point of the second approach is a state-of-the-art checker to which we add prov
ing rules to hopefully extend the verification to complete systems. Finally, the 
third approach, which is the one we adopted in our work, consists of embedding 
algorithmic infrastructures inside a theorem prover resulting in a hybrid system 
tightly combining checking algorithms and proving facilities. This approach dif
fers from the first one in the way the verification is performed. In fact, we do not 
use an external checking tool, instead we develop state-exploration algorithms 
inside the theorem prover.

In this work, we developed a platform of state-exploration algorithms inside 
the HOL proof system [9], Our decision diagram data structure is the Multiway 
Decision Graphs (MDGs) [5], which we integrate in HOL as a built-in datatype. 
The logic underlying MDGs will be embedded as a theory that provides the 
tools to specify the verification problem in the logic supported by the MDGs. 
The specification will consist of a set of HOL formulae that can be represented 
by their correspondent MDGs. Operations over these formulae will be viewed 
as MDG operations over their respective graphs. An MDG package will, then, 
be used to build the graph representation of HOL formulae allowing the ma
nipulation of graphs rather than HOL terms. Once available inside the theorem 
prover, the MDG data structure and operators can be used to automate parts 
of the verification problem or even to write state enumeration algorithms like 
reachability analysis or model checking.

The organization of this paper is as follows: Section 2 reviews some related 
work. Section 3 describes the embedding of the logic underlying the MDGs in 
HOL. Section 4 shows how HOL is linked to the MDG package. Section 5 de
scribes the embedding of the reachability analysis procedure. Sections 6 and 7 
illustrate the use of the embedding in the implementation of state-exploration 
algorithms. Finally, Section 8 concludes the paper and gives some future research 
directions.

2 Related Work

The quest for an efficient combination of theorem proving and model checking 
has long been one of the major challenges in the field of formal verification. The 
work described here has been strongly influenced by the HolBdd [6,7] system 
developed by Gordon. HolBdd consists of a platform allowing the programming 
of Binary Decision Diagram, (BDD) [3] based symbolic algorithms in the Hol98 
proof assistant. It provides intimate combinations of deduction and algorithmic 
verification. They use a small kernel of ML [10] functions to convert between



BDDs, terms and theorems. Their work was applied to perform reachability 
programming in Hol98.

A pioneering work in the area is the one of Joyce and Seger [11] combin
ing HOL and the symbolic trajectory evaluation (STE) tool VOSS. HOL-VOSS 
presents a mathematical link between the specification language of the VOSS 
system and the specification language of HOL. A tactic, VOSS-TAC, was imple
mented as a remote function. It calls the VOSS system as a child process of the 
HOL system to check whether an assertion, expressed as a term of higher-order 
logic, is true. If this is the case, the assertion will be turned to a HOL theorem. 
The early experiment with HOL-VOSS suggested that a lighter theorem prover 
component was sufficient, since all that was needed was a way of combining re
sults obtained from STE. A system based on this idea, called VossProver was 
developed. As a continuation of HOL-VOSS, Aagaard et al. [1] developed the 
Voss-ThmTac system combining the ThmTac theorem prover with the VOSS 
system. Its power comes from the very tight integration of the two provers, us
ing a single language, FL, as both the theorem prover’s meta-language and its 
object language.

Rajan et al. [20] described an approach where a BDD based model checker 
for the propositional /u-calculus has been used as a decision procedure within the 
framework of the PVS [18] proof checker. They used /u-calculus as a medium for 
communicating between PVS and the model checker. It was formalized by using 
the higher-order logic of PVS. The temporal operators are given the customary 
fixpoint definitions using the /u-calculus. These expressions were translated to 
the form required by the model checker. The latter was then used to verify the 
subgoals generated within PVS.

Schneider and Hoffmann [21] linked the SMV model checker [16] to HOL 
using PROSPER. They embedded the linear time temporal logic (LTL) in HOL 
and translated LTL formulae into equivalent u- Automata, a form that can be rea
soned about within SMV. The translation is completely implemented by means 
of HOL rules. On successful model checking, the results are returned to HOL 
and turned to theorems. The deep embedding of the SMV specification language 
in HOL allows LTL specifications to be manipulated in HOL.

In [13], [19] and later [17] a hybrid tool and a methodology tailored to perform 
hierarchical hardware verification have been developed by the Hardware Verifica
tion Group of Concordia University. They integrate the HOL theorem prover to 
the MDG equivalence checker and later to the MDG model checker. The work is 
done within the proof system but using the specification style of the automated 
verification tool. The HOL-MDG tool is used to verify that a structural spec
ification of hardware implementation implies its behavioral specification. They 
perform the equivalence checking within the MDG tool by applying a HOL tac
tic .VIDC EQ TAG. This latter mainly generates the MDG required files and 
ensures the interaction with the MDG equivalence checker. If the design is large 
enough to cause state explosion, and since the description model is written in a 
hierarchical way, a tactic HIER_VERIF_TAC is called to break the design into 
sub-blocks. The same procedure is recursively applied if necessary. At any point,



the goal proof can be done in HOL. Similarly, they provide a way to express 
temporal properties inside the theorem prover and support the full properties 
specification language of MDG by introducing abstract datatypes and uninter
preted functions. A HOL tactic, called MDG_MC_TAC is used to perform model 
checking. It supports hierarchical verification and model reduction.

While [13,17,19] describe systems integrating two stand-alone tools, namely, 
HOL and an external MDG tool, the work described here is not intended to 
use an external tool to verify subgoals. Instead MDGs are a built-in datatype 
of HOL and operators over MDGs are available in the proof system which al
lows us to tightly combine HOL deduction and MDG computations. Besides, 
state-exploration algorithms will be written inside HOL. Thereafter, the main 
difference between our approach and the HOL-MDG tool is that our embedding 
provides a secure and general programming infrastructure to allow the users to 
implement their own MDG-based verification algorithms inside the HOL system.

The work in [1,11,21] use the same approach as the HOL-MDG hybrid tool 
in the way they integrate the model checker to the theorem prover. The work 
in [20] uses the /u-calculus as a medium for communicating between the theorem 
prover and the model checker. It is a shallow embedding of stand-alone tools 
language while ours is a deep embedding of the decision diagram data structure 
and its operators are embedded inside the theorem prover.

Obviously, the most related work to ours is that of Gordon [6,7]. Our work, 
however, deals with embedding MDGs rather than BDDs. In fact, while BDDs 
are widely used in state-exploration methods, they can only represent Boolean 
formulae. On the other hand, MDGs represent a subset of first-order terms allow
ing the abstract representation of data and hence raising the level of abstraction.

3 Embedding The M D G  Logic in HOL

3.1 Multiway Decision Graphs

A Multiway Decision Graph (MDG) is a finite directed acyclic graph G where 
the leaf nodes are labeled by formulae, the internal nodes are labeled by terms, 
and the edges issuing from an internal node N  are labeled by terms of the same 
sort as the label of N. Such a graph represents a formula defined inductively 
as follows: (i) if G consists of a single node labeled by a formula P, then G 
represents P ; (ii) if G has a root node labeled A  with edges labeled B \,...,B n 
leading to subgraphs G'1,...,G'n and if each G\ represents a formula P, then G 
represents the formula Vi<;<n((A =  Bi) A P;). For example, if x, u, and v are 
variables of abstract sort a, f  is a function symbol of type a —>• a, and G, G1, 
and G " represent P , P ', and P ", respectively, then the graph

u /  \ v \ f(u )
G G’ G”



represents the formula

((x =  u) A P) V ((x =  v) A P') V ((x =  f(u)) A P "). (1)

The above is of course too general, a set of well-formedness conditions [5] 
turns MDGs into canonical representations that can be manipulated by efficient 
algorithms. More details on MDG are described in the sections to follow.

Multiway Decision Graphs are intended to represent Abstract State Machines 
(ASM) [5], an abstract description of state machines based on a many-sorted first 
order logic with a distinction between abstract and concrete sorts. More details 
on MDGs are described in the subsections to follow.

3.2 M D G  Sorts

Concrete sorts have enumerations, while abstract sorts do not. An enumeration 
is a finite set of constants. This is embedded in HOL as follows:
— Concrete_Sort = Concrete_Sort of strings string list;

It declares a constructor called Concrete Sort, that takes as arguments a sort 
name and its enumeration to define a concrete sort. For example, if state is a 
concrete sort with [ stop, run ] as enumeration, then this is declared in HOL by:

val state = Define ‘state = Concrete_Sort ‘‘state’’ [ stop; run ]‘;
— Abstract_Sort = Abstract_Sort of ’a;

To define an abstract sort of type alpha (which means that the sort is actually 
abstract and hence can represent any HOL type) we use the Abstract,Sort con
structor as follows:
val alpha =  Define ‘alpha =  Abstract-Sort “alpha”
To determine whether a sort is concrete or abstract, we use predicates over the 
sorts constructors called IsConcreteSort, and IsAbstractSort, where means 
“don’t care” .
(IsConcreteSort (Concrete_Sort _) = T) /\ (IsConcreteSort = F); 
(IsAbstractSort (Abstract_Sort _) = T) /\ (IsAbstractSort = F);
These predicates will be used for instance to determine the sort of a variable or 
a function symbol.

The vocabulary consists of concrete and generic constants, variables and 
function symbols (also called operators). The distinction between abstract and 
concrete sorts leads to a distinction between three kinds of function symbols. 
Let /  be a function symbol of type a\ x ... x a „ 4  an+i - If « n+i is an abstract 
sort then /  is an abstract function symbol Abstract function symbols are used to 
denote data operations and are uninterpreted. If all ai...an+i are concrete, /  is 
a concrete function symbol Concrete function symbols, and concrete constants 
as a special case, can always be entirely interpreted and thus be eliminated; for 
simplicity, we assume that they are not used. Finally, if a n+i is concrete while 
at least one of a\...an is abstract, then we refer to /  as a cross-operator.



3.3 M D G  Variables

An abstract variable can be either primary or a secondary variable. A primary 
variable labels a node in the graph while a secondary variable is an abstract 
variable occurring in the argument list of a function symbol. It can also be an 
abstract variable labeling an edge in the graph. In our embedding, a primary 
abstract variable will be declared using the Abstract-Var constructor while a 
secondary variable will be declared using the Secondary- Var constructor.

— Concrete_Var = Concrete_Var of string =>• Concrete_Sort;

A variable is specified by its name and sort. A concrete variable is a variable of 
concrete sort. For example, If a; is a variable of sort state, declared above, then 
this is written in HOL as follows:

val x = Define ‘x = Concrete_Var “ x ”  state';

— Abstract_Var = Abstract_Var of string =>• Abstract_Sort;

An abstract variable y with name “y” and sort alpha is declared using: 

val y = Define ‘y = Abstract_Var ‘‘y ’’ alpha';

— Secondary_Var = Secondary_Var of string =>• Abstract_Sort;

The Secondary-Var constructor is similar to the Abstract-Var constructor. For 
example:

val yl = Define ‘yl = Secondary_Var ‘ ‘ y l ’ ’ alpha'.

In this case also, we use some predicates to determine whether a variable 
is concrete, abstract or secondary. They are called, respectively, IsConcreteVar, 
IsAbstractVar and IsSecondary Var.

3.4 M D G  Constants

A constant can be either an individual (concrete) constant or an abstract generic 
constant. The latter is identified by its name and its abstract sort. The individual 
constants can have multiple sorts depending on the enumeration of the sort in 
which they are. In HOL they are declared as follows:

— Individual_Const = Individual_Const of string;

The enumeration of the concrete sort state is “ [stop , run ]” . stop and run are 
two individual constants that have state as their sort. They must be defined in 
order to be able to declare the sort state.

val stop = Define ‘stop = Individual_Const ‘‘stop’’1; 
val run = Define ‘run = Individual_Const ‘‘run’’‘;

— Generic_Const = Generic_Const of string =>• Abstract_Sort;



Having declared “alpha” as abstract sort, we can declare generic constants of 
that sort. Say a is a generic constant of sort alpha.

val a = Define ‘a = Generic_Const “ a ”  alpha';
To check whether a constant is an individual constant or an abstract generic 
constant, we define two predicates, IsIndividualConstant and Is Generic Constant.

3.5 M D G  Functions

MDG functions can be either concrete, abstract or cross-operators. As mentioned 
before, concrete functions are not used since they can be eliminated by case 
splitting. Cross-functions are those that have at least one abstract argument. 
But when we focus on terms that are concretely reduced, all the sub-terms of a 
compound term (abstract/cross function) have to be abstract. In addition they 
are secondary variables.
— Cross_Function = Cross_Function of string =>• Secondary_Var list 

=>• Concrete_Sort;
In general, a function is identified by its name, the sorts of its arguments and 
its sort. In this case, we specify the variables rather than sorts because we focus 
on cross-terms or abstract terms instead of the correspondent symbols. If equal 
is a function that checks if two abstract variables are equal, then, equal is a 
cross-function.
val bool = Define ‘bool = Concrete_Sort "bool" ["0";"1"]‘;
val yl = Define ‘yl = Secondary_Var ‘ ‘ y l ’ ’ alpha';
val y2 = Define ‘ y2 = Secondary_Var ‘‘y2’’ alpha';
val equal = Define ‘equal = Cross_Function "equal" [yl;y2] bool‘;
— Abstract_Function=Abstract_Function of string =>• Secondary_Var list 

=>• Abstract_Sort;
If max is a function that takes two abstract variables as arguments and returns 
the greater one, then max is an abstract function.
val max = Define ‘max = Abstract_Function ‘‘max’’ [yl;y2] alpha';
The predicates IsAbstractFunction and IsCrossFunction are used to determine 
the nature of a compound term.

3.6 M D G  Terms

MDG terms are either individual constants, generic constants, concrete or ab
stract variables, cross-operators or abstract function symbols. We provide a con
structor called MDG-Term that is used every time a new term is declared. The 
single constructor is used so that terms will have the same type and hence can 
be used in equalities. In fact if x is declared using the Concrete- Var constructor 
and stop using the IndividuaLConst constructor, we will not be able to write 
an equation of the form x =  stop due to type mismatching. However, such an 
equation is possible if both are declared using the same constructor.



Hol_datatype ‘MDG_Term =
Individual_Const of string => Concrete_Sort

of string => ’a Abstract_Sort 
of string => Concrete_Sort 
of string => ’a Abstract_Sort
of string=>(’a Secondary_Var)list=> Concrete_Sort

Generic_Const 
Concrete_¥ar 
Abstract_¥ar 
Cross Function
Abstract_Function of string=>(’a Secondary_¥ar)list=>’a Abstract_Sort‘

3.7 Well-formed M D G  Terms

For BDDs to be canonical, they have to be reduced and ordered. Similarly, 
MDG require certain well-formedness conditions to represent canonically the 
MDG terms. The set of well-formed terms that can be represented canonically 
by the MDGs is called the set of Directed Formulae (DF). Given two disjoint sets 
of variables U and V, a DF of type U ->• V  is a formula in disjunctive normal 
form (DNF) such that

1. Each disjunct is a conjunction of equations of the form:
— A =  a, where A is a cross-term of concrete sort a containing no vari

ables other than elements of U, and a is an individual constant in the 
enumeration of a, or

— u =  a, where u £ U is a variable of concrete sort a and a is an individual 
constant in the enumeration of a, or

— v =  a, where v £ V  is a variable of concrete sort a and a is an individual 
constant in the enumeration of a, or

— v =  A, where v £ V  is a variable of abstract sort a and A is a term of 
type a containing no variables other than elements of U ;

2. In each disjunct, the left hand sides of the equations are pairwise distinct; 
and

3. In each disjunct, every variable v £ V  should appear as the left hand side of 
an equation v =  A.

Conditions 2 and 3 must be respected by the user when specifying the verification 
problem. The condition 3 is less stringent than it seems. In practice, one can 
introduce an additional dependent variable u and add an equation v =  u to a 
disjunct where an abstract v is missing.

For example, condition 1 is embedded in HOL and checked using the func
tion WelLformedTerm that, recursively, calls WelLformedEQ to check the well- 
formedness of an equation.

fun Well_formedEQ eq =
((IsConcreteVar Ihs) /\ (IsConcreteConstant rhs)) \/
((IsCrossFunction Ihs) /\ (IsConcreteConstant rhs)) \/
((IsAbstractVar Ihs ) /\ (IsAbstractFunction rhs)) \/
((IsAbstractVar Ihs ) /\ (IsAbstractVar rhs)) \/
((IsAbstractVar Ihs ) /\ (IsGenericC rhs)) \/ 
(IsBool Ihs);



4 Linking HOL to The M D G  Package

The MDG logic is embedded in HOL to make it possible to specify a verification 
problem in HOL in terms of formulae that can be represented by canonical 
MDGs. The next step would be to provide the tools to build and manipulate 
the graph representations of these formulae. This platform will consist of ML 
functions that call an MDG package1 as an external process. The package is 
invoked using a script file, in which, the different manipulations to be done in 
MDG are specified. For example, to perform the conjunction of a list of well- 
formed Terms, we use the ML function Conj. This function calls an intermediate 
function to write the script file corresponding to a conjunction, then calls the 
specific MDG functions to perform the operation and eventually return the result 
to HOL. The ML functions pass the script file to the MDG package using the 
system function [10]. The latter computes the result (MDG graph) and then 
writes it in a file “mdghol.ch” . Using the function ReadMdgOutput, the result is 
retrieved.

4.1 C onstructing M D G s in HOL

To construct the graph representation of a HOL term we use the function 
termToMdg. Well-formedness conditions are first checked using the predicate 
WelLformedTerm. It either raises an exception when this is not the case or 
begins gathering the information to call the package.

The first step is to determine the sorts of all the sub-terms using the func
tion ToMdgSorts. If a sub-term is of concrete sort Sort, it is declared as “con- 
cretesort(Sort,Enum)” , where Enum is the enumeration of Sort. When an ab
stract sort, say alpha, is encountered, then it is declared by “abssort(alpha)” . 
For example, if a term A  includes a concrete variable of sort bool and an abstract 
variable of sort alpha, then ToMdgSorts returns the following list:

[“concsort( bool, [0,1] ) , ” abssort( alpha) . ” ].

The second step is to declare all the variables, functions and generic constants 
used in the term. A variable is declared by “ signal (label, sort)” . A generic con
stant is declared by “gen-const(label,sort)n. When a function is encountered, 
both the secondary variables and the function symbol must be declared. The 
function symbol is declared as ufunction(f,[sorts],sort)” . sorts are the sorts of 
the secondary variables, arguments to the function symbol / .  sort is its target 
sort.

Thereafter, termToMdg writes the variables order list in the script file and 
then calls the function header responsible for retrieving the list of the LHSs 
and RHSs of the equations in the term which will be the parameters of the 
mdg function. The latter is then called and the result is retrieved using the 
readMDGOutput function. Instead of returning the whole graph structure, we 
return only its ID which will be used to map the term to its MDG representation.
1 We provide a lifted version of the MDG package with which we are able to call 

internal MDG functions.



4.2 Embedding M D G  Basic Operators

The MDG operators are embedded, as well, to allow the manipulation of graphs 
rather than terms, we show below the basic MDG operators.

- Conj : performs the conjunction of a set of graphs;
- Disj : performs the disjunction of a set of graphs;
- Help (Relational Product) : used for image computation. It takes the con

junction of a collection of MDGs, having pairwise disjoint sets of abstract 
primary variables, and, exist entially quantifies with respect to a set of vari
ables, either abstract or concrete, that have primary occurrences in at least 
one of the graphs. In addition, it can rename some of the remaining primary 
variables according to a renaming substitution;

- PbyS (Pruning By Subsumption) : used to approximate the set difference 
operation. Informally, it removes all the paths of a graph P  from another 
graph Q.

5 Reachability Analysis in HOL

The reachability analysis is embedded using the MDG operators interfaced to 
HOL. We show here the different steps to compute the set of the reachable states 
of an abstract state machine.

5.1 Computing Next States

Let I, B  and R be, respectively, a set of inputs, a set of initial states of a machine 
and its transition relation. The ML function ComputeNext representing the set 
of next states, computed from B  with respect to R , is defined by:

ComputeNext(Gi Gb G r ) =  RelP(Gi Gb G r  Q v)-

where, G j ,G b  and G r  are the MDG representations for I, B  and R , respectively. 
Q is the set of input and state variables over which the MDG is quantified, r] is 
the renaming substitution. B  can be the set of initial states as well as the set of 
states already reached by the machine.

5.2 Computing Outputs

The set of outputs corresponding to a set of initial states and inputs, with respect 
to an output relation O, is represented by the ML function ComputeOutputs 
below, where Go is the MDG representation of O.

ComputeOutputs(Gi Gb Go ) =  RelP(Gj Gb Go Q)

For every state of the machine, and a set of data inputs, corresponds a set of 
output values. These will be used to check an invariant.



5.3 Computing Frontier Set

The frontier set is the set of newly visited states. If V  represents the set of states 
already visited, Vn =  Com,puteNext(Gj V  G r ) is the set of next states reached 
from V. In this case the frontier set is Vn \ V  which is represented by the ML 
function ComputeFrontier.

ComputeFrontier(Vn V) =  PbyS(Vn V).

The frontier set is used to check if all the states reachable by the machine are 
already reached. If this is the case (the frontier set is empty), then the reachabil
ity analysis terminates and the set of reachable states is returned. If the frontier 
set is not empty, then new states were visited during the last iteration. In this 
case, the analysis continues until reaching the fixpoint (set).

5.4 Computing Reachable States

The set of reachable states is the set of all the states of a machine, starting from 
an initial state, for a certain set of inputs. For abstract state machines, the state 
space can be infinite. Hence, the set of reachable states may not exist2. Using the 
solutions proposed in [2], the set of reachable states is computed and represented 
by the function, ComputeReachable, defined by3:

ComputeReachable Gr Gb Gr =
K =  0. 5 =  G h 
loop 

K  =  K  +  1
N  =  ComputeNext Gjk Gb G r  
if ComputeFrontier N  S =  F  then return success 
Gb =  ComputeFrontier N  S 
S =  Disj N  S

end loop
end;

ComputeReachable computes the set of reachable states S of a state machine 
described by its transition relation, starting from an initial state and for a certain 
data input. S is initialized to B  (the initial state), and the sets of next-states 
are computed until reaching a fixpoint characterized by an empty frontier set.

6 Invariant and Model Checking in HOL

6.1 Invariant Checking

Invariant checking is a direct application of the reachability analysis algorithm. 
It consists of checking that a property or an invariant holds on the outputs
2 This is called the non-termination problem which was tackled in [2] using various 

heuristics.
3 For the sake of clarity, this is just a simplified version of the algorithm



of a state machine in every reachable state. First, the invariant is checked in 
the initial state. This is done by computing the outputs corresponding to that 
state and then using the MDG operators to check that these outputs satisfy the 
invariant. After that, next-states are computed and for every state reached, the 
invariant is checked on the outputs. In a given iteration, if the outputs of the 
machine satisfy the invariant, then the procedure continues for the next-state. 
If, on the other hand, the invariant does not hold, the analysis terminates and 
a failure is reported. A counterexample can be generated to trace the error. 
The invariant checking algorithm is implemented in HOL as an ML function 
InvariantChecking which takes as arguments:

— T r: the transition relation specified as a list of directed formulae;
— O r : the output relation specified by a directed formula;
— In '- the initial state specified by a directed formula;
— Inputs: the input variables list;
— States: the state variables list;
— NxStates: the next-state variables list corresponding to States.
— Inv: the invariant to be checked specified as a directed formula.

The function InvariantChecking, first, builds the graphs of the transition re
lation, output relation, the initial state and the invariant using the function 
termToMdg. Then, generates the input graph. After that, the outputs are com
puted using NewOutputs and then the invariant is checked. If the invariant holds, 
the next-state variables are computed using ComputeNext. Checking the frontier 
set will cause the termination of the analysis or another iteration.

InvariantChecking T r  O r  In  Inputs States NxStates Inv =
/ /  builds the MDG representations 
/ /  generates the renaming substitution function 
K  =  0, S =  G in , R =  C i\  
loop

K  =  K  +  1
/ /  generates the input graph G jk  
Os =  ComputeOutputs G q r  R G jk  
if (PbyS Os G jnv) ^  F  return failure 
N  =  ComputeNext G jk  R G t r  
if ComputeFroiitier N  S =  F  then return success 
R =  ComputeFroiitier N  S 
S =  Disj N  S 

end loop 
end InvariantChecking;

6.2 M odel Checking

Similarly, MDG temporal operators can be implemented in HOL for model check
ing. In the following we present how the operator A F  on a first-order property



Check_AF T r  In  Inputs States NxStates P  =
/ /  builds the MDG representations Gt r , G i n , Gp 
/ /  generates the renaming substitution function 
K  =  0, £  =  F, G =  Gi \
/ /  £  contains sets of states not satisfying P  
loop

Q = ComputeFroiitier G Gp
/ /  removes states satisfying P  
if Q =  F  then return success
if C om puteFroiitier £  Q ^  £  then return failure

--  D  1SJ

/\ =  K -  I
G =  ComputeNext G in  Q G t r  

end loop 
end Check AF;

7 M D G  as a Decision Procedure

The multiway decision graphs are a canonical representation of the directed for
mulae. Two directed formulae are equivalent if and only if they are represented 
by the same graph for a fixed order. This property can be used to prove auto
matically the equivalence of HOL terms or to check that a formula is a tautology 
in case it is represented by the MDG true.

7.1 Combinational Equivalence Checking

We provide here a decision procedure that enables us to verify automatically the 
equivalence of a certain subset of first-order HOL terms. This is performed using 
the ML function EquivCheck.

fun EquivCheck order tl t2 =

let val si = termToMdg order tl 

val s2 = termToMdg order t2

in

(s l= s2)
end;

Using EquivCheck we write an oracle that builds a theorem stating the equiva
lence between terms. The theorem is not derived from axioms and inference rules 
which will endanger the security provided by the HOL reasoning style. Theo
rems created using the oracle are tagged so that an error can be traced whenever 
it occurs. This kind of decision procedures are widely used to introduce some 
automation to the theorem provers.

formula P [22] is embedded.



7.2 Tautology Checking

A formula is a tautology if it is represented by the MDG T. This makes the 
check very easy for the subset we consider which are the directed formulae. We 
use the ML function Tautology.

fun Tautology order t =

let val s = termToMdg order t 

in

isTrue s

end;

8 Conclusions and Future Work

In this paper, we proposed an approach that allows certain verification prob
lems, specified in the HOL theorem prover, to be verified totally or in part using 
state-exploration algorithms. Our approach consists of an infrastructure of deci
sion diagrams data structure and operators made available in HOL, which will 
allow the user to develop his own state-exploration algorithms in the HOL proof 
system. The data structure we considered in our work is the multiway decision 
graphs (MDG). MDG is an extension to the well-known binary decision diagrams 
in that it eliminates the state explosion problem introduced by the datapath.

The MDGs are embedded in HOL as a built-in datatype. Operations over 
the MDGs are interfaced to HOL functions allowing the manipulation of graphs 
rather then their correspondent HOL terms. Using the embedding of the logic un
derlying the multiway decision graphs in HOL, the verification problem is speci
fied as a set of well-formed directed formulae that can be represented canonically 
by well-formed MDGs. This is made possible thanks to the lifted MDG package 
that we provided and interfaced to HOL resulting in a platform of functions to 
represent terms by their correspondent MDGs and manipulate them.

The platform, we provide, allowed us to develop state-exploration algorithms 
inside HOL like the reachability analysis, model checking and the invariant check
ing procedures. The transition and output relations are written as HOL terms. 
They are translated to their corresponding MDGs and then reachability analysis 
is performed. The state machines we consider are the abstract state machines 
which raises the level of abstraction of the problem specification. We also de
veloped decision procedures based on the multiway decision graphs allowing the 
equivalence checking and tautology checking of a certain subset of HOL terms 
automatically. Finally we illustrated our approach by considering the Island 
Tunnel Controller example for which we verified a number of safety properties.

The embedding of the MDGs in HOL opens the way to the development of 
a wide range of new verification applications combining the advantages of state- 
exploration techniques and theorem proving. There are many opportunities for 
further work on this embedding and its use for formal verification. For instance, 
MDG canonicity can also be used in HOL for term simplification. In fact, when 
built, MDGs are reduced by construction. Retrieving the term represented by



this graph gives a simplification of the original term. The Embedding can be used 
for the formal proof of the soundness of the MDG algorithms. A similar work was 
done in [4] to verify a SPIN model checking algorithm. Finally, the embedding 
can be enhanced by using the LCF style. In this case, an MDG representation for 
a HOL term cannot be constructed by using the term ToM dg  function, instead, it 
is derived from inference rules, corresponding to MDG operators, and the trivial 
MDGs representing simple equations. This restricts the scope of soundness to 
single operators which are easy to get right [8].
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Abstract. This paper presents work in progress on a project to for
malize the AMBA High Performance Bus (AHB) in higher order logic 
with a view to proving properties of the protocol, as a basis for verifying 
properties of computing components that might be connected to a bus 
and as a foundation for reasoning about SoCs (systems-on-a-chip).
This AMBA bus has been modeled using the specification language, Z [4,
5]. The system that is specified is one that consists of a number of masters 
and slaves connected by an AHB according to the protocol described in 
the document “AMBA Specification (Rev. 2 .0 )” [ 1],
The focus of this article is to present illustrative extracts from this Z 
specification[3] in order to exhibit a structure that arguably makes it a 
suitable foundation for the project as a whole.

Although much work has been done on the formalization of processors, the 
underlying assumption has usually been that they are directly connected to 
memory. In the world of the SoC (System-on-a-Chip), multiple components such 
as processors and memories on a chip communicate by means of a shared bus 
according to some protocol.

Traditionally, correct interactions on a bus are characterized in natural lan
guage with the help of timing diagrams. The aim of the present project is to 
describe the protocol using mathematics.

A commonly used industry standard is the Advanced High-performance Bus 
(AHB) flavour of the Advanced Microcontroller Bus Architecture (AMBA), pro
duced by ARM. The standard reference for the AHB[1] is used as the principal 
authority for this document but the AMBA FAQ[2] was also consulted. We treat 
this FAQ as authoritatively correcting and clarifying the specification.

1 The A M B A  High Performance Bus

Figure 1, which gives the standard communications view of a bus architecture, 
serves to illustrate that the active components of a typical system are classified 
as masters and slaves. Masters are such agents as CPUs and DMA devices; the 
typical slave is a memory, which may be on-chip or external.

In such a view, one master will acquire ownership of the bus while a transfer 
is completed over (at least)two clock cycles -  one for adress and control signals 
to be sent and one for data. The AHB protocol overlaps these activities enabling 
the fast transmission of much larger blocks of data than can be sent in one atomic



Fig. 1. Typical Bus Architecture User View

transfer. Such pipelining behaviour enables successive transfers to complete in 
consecutive clock cycles.

Figure 2, showing a typical trace of bus activity, shows the way that a master 
and slave interact to achieve this efficiency.

Fig. 2. Typical Timing Diagram Showing Data Transfer

Signals are carried on a significant number of separate bus lines; those shown 
in this timing diagram are the ones directly related to I /O  and show three 
complete data transfers over five clock cycles. The first of these transfers consists 
of the signals with the subscript A, some of which are in the first clock cycle 
shown (the address phase) while the others are in the second cycle (the data 
phase).

Note that, for any given signal, the value that matters is the stable one at 
the end of any clock cycle; signals are sampled on each rising clock pulse.



— The signal value Addr a  is the address of data for a transfer being initiated by 
the master that owns part of the bus including signal HADDR. This address 
is used to identify the slave whose responses will appear on another part of 
the bus in the next cycle.

— The signal ControlA is a collection of more basic signals that describe the 
transfer here being initiated. For example. HSIZE gives the number of bits 
in parallel and HWRITE says whether a read or a write is intended.

— The signal HREADY originates in the slave that was addressed in the most 
recent transfer. In the case of the second cycle shown, it indicates that the 
slave addressed by Addra has either consumed the signal WDatdA or pro
duced the signal RDatdA, as appropriate.
In the case of the first clock period shown, the origin of the high HREADY 
signal is not apparent, but it is a necessary condition for us to interpret this 
cycle as the start of a transfer.

— The bus signal RDatdA  originates in the slave addressed by Addr a , not the 
slave that corresponds to Addr a- Similarly. WDatdA flows from the master 
that owned the bus when the transfer commenced.

In the third clock cycle shown in Figure 2 the HREADY signal being low 
indicates that the slave addressed by Addrs is pleading for more time to complete 
the transfer. This prevents the master given the bus in cycle three from starting 
its intended transfer straight away. In the case that the transfer started in cycle 
two was a write, that master is obligated to hold the signal W D atas  for an extra 
cycle.

It is possible, if unlikely, that each of the transfers in Figure 2 was initiated 
by a different master. It should be clear that there is multiplexing of the signals 
from the various masters and slaves according to some scheme. The simplest, 
the multiplexing of address and control signals from a master while a transfer is 
getting under way. is shown in Figure 3.

Fig. 3. Multiplexing Address and Control Signals from Masters to the Bus

The A rbiter  controls the ownership of the bus allocating it to masters on the 
basis of requests, priorities and past history. The diagram shows how the Arbiter 
exerts control via the address/control multiplexer. The Arbiter also contributes



several signals to the bus, including one called HMASTER, which identifies, in 
any clock cycle, the master owning the bus .

An important concept in the design of the AHB is that of a burst, where a 
master gets control of the bus for the duration of a transaction where a larger 
block of memory than can be transmitted in one transfer is sent in consecutive 
transfers (typically 4, 8 or 16).

When a slave which is part way through a burst decides that it has more 
pressing business, it is able to pause the transaction and resume it when ready. 
This is referred to as a split and several signals on the bus relate to the splitting 
and resumption of bursts.

2 Modeling Basic Types

Since this paper relies on selected extracts from a full Z specification, it will 
be incomplete and so the reader should not expect that every item mentioned 
will be defined. In particular, the full specification[3] should be consulted for 
explanations of the various signals.

2.1 Masters and Slaves

Two sets of objects that are fundamental to the construction and operation of a 
system based around an AMBA bus are the sets of masters and slaves,. Of the 
16 possible masters one is called Dummy. It is natural to model each of these 
sets as arbitrary subsets of {0..15}.

2.2 Basic Signal Values

All physical lines that are in a ‘settled’ state have values that are either HIGH or 
L O W . These values are synonyms for 1 and 0, respectively, in both our treatment 
and the specification from ARM.

Bit = =  { 0,1 }
HIGH = =  1 
LOW  = =  0

2.3 Numbers vs Bit Sequences

In this specification, many of the objects are coded as sequences of Bits with 
the convention that the last element of the sequence holds the least significant 
bit of a binary representation of a number. So, for example, the Z sequence 
< 1,0,1,1,1 > will be interpreted as the number 23.

The function bits2N maps bit-sequences to their numeric value.

bits2N : seq Bit —> N

bits2N () =  0
V b : Bit; s : seq Bit • bits2N(s (b)) =  (2 * bits2N(s) +  b)



2.4 The Decode Function

For any particular A MBA bus, the Decoder is a combinatorial circuit that selects 
a slave on the basis of the address lines. A crucial feature of the mapping is that 
every address in any 1024-byte block must map to the same slave.

decode : Address —► Slave

V a1} a2 : Address • ( ( bits2N % )  div 1024) =  ( ( bits2N a2) div 1024)
=> decode(ai) =  decode(a2)

2.5 The Type of Data in Transfers

For any particular AHB bus, the width of each data path is a constant. Its value, 
width, must be one of the powers of two between 8 and 1024 bits, inclusive.

The size, in bits, of any transfer is bounded by width and must also be one 
of these numbers. It is convenient to have a global constant which is the set of 
permissible sizes for single transfers:

width : N
permittedSizes : P N

width e  {8,16,32,64,128,256,512,1024}
permittedSizes =  [n : {8,16,32,64,128,256,512,1024} | n <  width}

2.6 Signals and Signal Groups

The bus is composed of 18 groups of lines (apart from the clock), where each 
line carries one bit of information. Their names are the following (except for 
HLOCK and HBUSREQ).

Name ::= HRESETn | HADDR | HTRANS | H WRITE 
| HSIZE | HBURST \ HP ROT \ II W I)M  A 
| HSELx | HR D M A \ HREADY \ HRESP 
| HBUSREQx | HBUSREQ \ HLOCKx \ HLOCK 
j HGRANTx | HMASTER, \ HMASTLOCK \ HSPLITx

The names of signals originating from each master are as follows. The signals 
HBUSREQ and HLOCK from each master contribute one bit to the bus signals 
HBUSREQx and HLOCKx.

MSNames = =  { HADDR, HWDATA, HTRANS, HWRITE,
HSIZE, HBURST, HPROT, HBUSREQ, HLOCK }

Similarly, each slave has signals that carry data that is particular to that 
slave. They are multiplexed onto the bus when appropriate.

SSNames = =  { HRDATA, HREADY, HRESP, HSPLITx }



One fundamental characteristic of each of these named groups of lines is the 
number of bits of the bus, a master or a slave that it occupies. The function 
grp Width gives the number of bits associated with any given signal name.

grp Width : Name —► N

grpWidth =  { (HRESETn ^  1), (HADDR ^  32), (HTRANS ^  2),
(HWRITE ^  1), (11 SIZE ^  3), (HBURST ^  3),
(HPROT ^  4), (HWDATA ^  -width), (HSELx ^  #  Slave), 
(HRDATA ^  width), (HREADY ^  1), (HRESP ^  2),
(HBUSREQx h-y ff Master), (HBUSREQ ^  1),
(.HLOCKx h-y # Master), (HLOCK ^  1),
(HGRANTx h-y ^Master), (HMASTER ^  4),
(HMASTLOCK ^  1), (HSPLITx ^  16)}

2.7 Signal Maps

Each signal is a bunch of bits and so we model each of them as an object of type 
‘sequence of bits’. Consequently, the state of the bus, each master and each slave 
is modeled as a mapping from names to such bit sequences.

SignalMap : P(Name -++ seq Bit)

Vs : SignalMap • Vn : dom s • # (s  n) =  grpWidth(n)

Each of the types MapM, MapS and Bus is a specialization of SignalMap as 
appropriate for masters, slaves and the bus itself.

Data W idth  The signal HSIZE indicates the number of lines of the data bus 
that will be used in the current transfer. The 3-bit value of HSIZE can be decoded 
using the following function:

decodeSize : (0 .. 7) —► N

decodeSize =  {(0  ^  8), (1 ^  16), (2 ^  32), (3 ^  64),
(4 ^  128), (5 ^  256), (6 ^  512), (7 ^  1024)}

3 State-Related Types

3.1 The Cycle Abstraction

In the following schema, the state of all signals at any instant is captured. The 
structure of the abstraction reflects the separation of signals between the various 
parts of the system. The predicate part expresses the following properties:

1. Arbitration results in exactly one master being granted the bus;
2. Exactly one bit of HSELx will be high;
3. Address and control signals for current master are multiplexed on the bus;



4. Data buses and the HREADY and HRESP signals are multiplexed;
5. The HSPLIT signals are properly multiplexed;
6. Certain signals from the dummy master can be relied on.

__Cycle_____________________________________________________________
bus : Bus
stateMx : Master —► MapM 
stateSx : Slave —► MapS

to : Master .  (bus H GRANTx)( 16 -  to) =  HIGH 
Vs : Slave • (bus HSELx)( 16 -  s) =  HIGH

<=> (bus(HADDR) i—► s) € decode
let map = =  stateMx(bits2N (bus HMASTER)) •

((V nam : {HADDR, HTRANS, HWRITE, HSIZE,
HBURST, HPROT} • (bus nam) =  (map nam)) A 

(let mast = =  bits2N(bus(HMASTER)) •
((bus HLOCKx)( 16 -  mast) =  (map HLOCK)( 1) A 
(bus HBUSREQx)( 16 -  mast) =  (map HBUSREQ)(1)) ))

3 m : Master .  bus(HWDATA) =  stateMx(m)(HWDATA)
V nam : {HRDATA, HREADY, HRESP} •

3 s : Slave • bus(nam) =  stateSx(s)(nam)
Vto : Master • (((bus HSPLITx)( 16 -  to) =  HIGH)

(3 s :  Slave • stateSx(s)(HSPLITx)(16 -  to) =  HIGH))
(bus HBUSREQx) (16 -  Dummy) =  LOW  
(bus H LOCKx)( 16 -  Dummy) =  LOW  
stateMx(Dummy)(HTRANS) =  IDLE

For each component of the system, history is important for constraining 
future behaviour. However, that dependence does not involve the relative timing 
of the possibly numerous events within the current or past clock cycles. So when 
the Cycle abstraction is used as a unit of history it will a snapshot of all signals 
at the rising clock pulse.

3.2 The Transfer Abstraction

Transfers consist of two or more consecutive cycles. The first cycle is the one 
where a master owns the bus and completes the address phase of the transfer. 
The last cycle is where the transfer of data is complete. All the intermediate 
cycles in the transfer are wait cycles that arise because the slave delays by 
forcing HREADY low.

The predicate part of the schema for the type Transfer, which follows, asserts 
consistency of all cycles making up the transfer, not just the first and last.



__Transfer__________________________________________________________
cycles : seq Cycle 
time : N

if cycles >  1
let trans = =  ((cycles l).bus)(HTRANS);

addr = =  Uts2N(((cycles l).bus)(HADDR)); 
size = =  decodeSize(bits2N(((cycles l).bus)(HSIZE))) •

(trans € { NON SEQ, SEQ }
A addr mod (size div 8) =  0
A addr div 1024 =  (addr +  (size div 8) — 1) div 1024 
A (Vj : (2 .. if cycles) • ((cycles j).bus)(HRESP) =  OKAY)
A ((last cycles).bus)(HREADY) =  (HIGH)
A (Vj : (2. .  (ifcycles -  1)) •

((cycles j).bus)(HREADY) =  (LOW))
A (((cycles l).bus)(HWRITE) =  (HIGH)) =>

(V i  : (2 .. if cycles) •
((aycles(j)).bus)(HWDATA) =  ((cycles 2).bus)(HWDATA)))

3.3 A M B A  Transactions

A complete transaction consists either of a single transfer or of some number 
of transfers which accomplish the transmission of one block of data in uniform 
sized pieces. Details of this breakup of a transaction are given by the HBURST 
signal. The first transfer will be tagged NONSEQ and subsequent ones will have 
SEQ as the HTRANS signal.

The components of any Transaction object are the sequence of transfers that 
belong to it with a flag to indicate completion (or otherwise). The possible values 
for this flag are InProgress, Complete, Split and Interrupted.

__Transaction_______________________________________________________
xfers : seq Transfer 
completion : Completion

ifxfers >  0
let mode = =  modeOf (xfers 1) •

(ifxfers =  beatUB(mode) => completion =  Complete A 
ifxfers <  beatUB(mode) => completion ^  Complete A 
(mode =  INCH) completion ^  Interrupted A 
addressesOf (xfers) C

addrSeq(addrOf(xfers( 1)), sizeOf (xfers( 1)), mode))
V t : Transfer \ t € (ranxfers) • xMatches(t, (xfers 1))

Functions appearing without definition in this schema are described thus: 

modeOf (t) extracts the burst mode of transfer t (its HBURST value).



— beatUB(m) is a bound on the length of a burst of mode rn.
— addrSeq(A, s, rn) gives the full sequence of transfer addresses starting with 

A in a burst of mode rn and transfer width size s bits.
— Two transfers are in relation xMatches if their control signals match.

4 State Specification Schemas

The state of an AMBA bus is characterized by what progress has been made 
toward finalizing the current cycle. The physical aspects of state are the values 
of signals on the bus, on the masters and on the slaves, but the behaviour of 
the bus depends also on the past history of the system. The latter aspects are 
modeled in the schema Histories defined below.

4.1 The History Component

The following schema captures the history of the system at the levels of cycles, 
transfers and transactions. Note that there is redundancy in that transactions 
are all made up of transfers which are made up of cycles.

__Histories__________________________________________________________
cycHist: seq Cycle
xferHist : seq Transfer
xactionHist : seq Transaction
partXfer : seq Cycle
partXactions : Master -+> Transaction

3 sc : seq Cycle • (sc partXfer) =  cycHist 
3 1 : Transfer • partXfer =  front(t.cycles)
Vj ,k : dom xferHist • j  <  k =>

((xferHist j).time) <  ((xferHist k).tirne)
V t : Transfer • t € (ran xferHist) O

(V j : ( 1 .. #( t . cycles) ) • cycHist(t.tirne +  j  — 1) =  ( t.cycles)(j))
V t : (ran partXactions) •

t.xfers / { )  A t. completion € { InProgress, Split }
V rn : dom partXactions • masterOf (((partXactions rn).xfers)( 1)) =  rn 
# ( { t  : ran partXactions | t. completion =  InProgress}) <  1
V t : ran xactionHist • t. completion € { Complete, Interrupted} 
ran xactionHist fl ran partXactions =  0
ran xactionHist =  ran xactionHist U ran partXactions

In the above schema the predicates assert that

The partial transfer, if any, is the tail of the cycle history. 
An appropriate next cycle can legally complete partXfer. 
The transfer history, xferHist, is properly ordered.



— xferHist is complete and consistent, relative to the cycle history.
— partXactions is well formed.
— Each transaction in xactionHist is either Complete or Interrupted.
— Each transfer in xferHist is in either in xactionHist or in a partXaction.

4.2 The State in General

The schema AMBAState captures system state to extent of its current snapshot 
and a complete record of past cycle activity. Since this state schema contains 
both aspects, its predicate part adds constraints on possible values of current 
signals to that given in the Cycle abstraction. In particular,

— The HWDATA signal is multiplexed from the master that owns the data bus 
at that point, not necessarily the current master.

— Several signals that originate in slaves are multiplexed from the slave that 
was addressed in the last transfer.

__AM BAState______________________________________________________
Cycle
Histories

partXfer /  {) =>
(let lastMast = =  bits2N(((partXfer l).bus)(HMASTER)); 

lastSlav = =  decode (((partXfer 1) .bus)(HADDR)) • 
(bus(HWDATA) =  stateMx(lastMast)(HWDATA) A 
bus(HRDATA) =  stateSx (lastSlav) (HRDATA) A 
bus(HREADY) =  stateSx (lastSlav) (HREADY) A 
bus(HRESP) =  stateSx(lastSlav)(HRESP) ))

5 Intracycle Operations

Most atomic events that occur in the system are actions initiated by masters 
and slaves updating one or more of the signals for which they are the source. 
The more unusual event is initiated asynchronously by the reset controller. An 
action by any one of these agents will cause changes to the state of the bus as 
specified in the BasicOperation schema given subsequently.

5.1 The O peration A bstraction

Each primitive operation is characterized by identifying the agent (a master, 
a slave or the reset controller) and a map which indicates the updates to that 
agent’s signals. Primitive operations are identified by their structure as given in 
the type OpType below.

The possible values that the agent identifier variable (agld) can take depends 
on the sort of that agent. These agent types are distinguished with the type



AgentType ::= Mast | Slav \ Bus

__Op Type___________________________________________________________
agTy : AgentType 
agld : N
updates : SignalMap

agTy =  Mast =4- (agld € Master) A (3 m : MapM • updates C rn) 
agTy =  Slav => (agld € Slave) A (3 m : MapS • updates C m) 
agTy =  =4- agld =  0 A updates =  { HRESETn i-> (LOW) }

5.2 A pplication  o f  Basic Operations

Each basic operation, other than a reset, is effected by a master or a slave altering 
its own signal map while leaving those of all others the same. Multiplexing and 
decoding cause signals from some agents to make it onto the bus thus:

— The Cycle schema (imported through AmbaJstate) takes care of the the 
relationship between old and new multiplexed address and control signals 
(HADDR, HTRANS, HWRITE, HSIZE, HBURST and HPROT).
It also captures the derivability of HSELx, HSPLITx, HBUSREQx and 
HLOCKx from a variety of other signals.

— The invariant of schema AMBA_State specifies how multiplexing of signals 
HWDATA, HRDATA, HREADY and HRESP happens.

— The remaining bus signals are specified directly.

__BasicOperation___________________________________________________
AAMBA-State 
E  Histories 
op ? : Op Type

op?.agTy =  Mast =4-
(stateSx' =  stateSx A bus' (HRESETn) =  bus(HRESETn) A 
state Mx' =  stateMx®

{ op?.agld i—> (stateMx(op?.agld) ® op?.updates) } ) 
op?. agTy =  Slav =>

(stateMx' =  stateMx A bus' (HRESETn) =  bus(HRESETn) A 
stateSx' =  stateSx®

{ op?.agld i—> (stateSx(op?.agld) ® op?.updates) } )
op?.agTy =  Bus (bus'(HRESETn) =  (LOW) A

stateMx' =  stateMx A stateSx' =  stateSx)
V nam : { HGRANTx, HMASTER, HMASTLOCK } •

bus'(nam) =  bus(nam)



6 End of Cycle Operations

The end of each clock cycle is marked by the rising edge of a clock pulse. All 
signals will be steady at that time and for some minimum hold time after the 
rising edge. Although no operations that change signals should take place at 
that time, our interpretation of the state changes because we deem transfers to 
start and/or complete at cycle’s end. Thus we define an operation History Update 
which registers in the Histories component of state just what has cumulatively 
been accomplished in the system.

There are three matters for History Update to address:

— Transfers that may have completed or been extended;
— Transactions that may be more advanced or may be completed, interrupted

or split.
— Transfers that may have just commenced with their control/address phase.

It makes sense to separate these concerns into three sub-operations which are 
carried out sequentially and so we define History Update in terms of three new 
schemas which will be defined in subsequent sub-sections:

History Update = =  Ac tiveTransfer Update g X  act ion Activity g New Transfer

This sequential decomposition requires a minimum of information discovered 
in one phase to be transmitted to later phases (apart from that naturally con
tained in the variables of global state). The variable xferlnProgress is an output 
of ActiveTransferUpdate and an input to XactionActivity.

6.1 Transfer Continuation and Completion

If there was an incomplete transfer cycle after the last clock pulse then this 
transfer may be complete, incomplete are may have been aborted. So there are 
four cases for ActiveTransferUpdate to consider; the four cases, handled by four 
sub-operation schemas, and combined thus:

ActiveTransferUpdate = =  Transfer Continuation V Transfer Completion V
TransferAborted V NoCurrentTransfer

Without considering violations of the AMBA protocol, the following table 
gives the precise preconditions for the various cases.

Partial transfer HREADY HRESP Relevant Schema
No Don’t care Don’t care No CurrentTransfer
Yes low Don’t care Transfer Continuation
Yes high OKAY Transfer Completion
Yes high not OKAY TransferAborted

Each of the schemas given in the classify the partial transfer, if any. and give 
an output value which is of type XferStatus which is as follows:

XferStatus ::= None | Extending \ Finished | Aborted



A  Representative Example - Transfer Continuation

At the end of a cycle a transfer is deemed to be continuing if the slave involved 
in the transfer is pleading not ready. This usually indicates an extension of the 
transfer by the slave but it also includes the situation where the slave is indicating 
first cycle of a two-cycle READY, ERROR or SPLIT response.

__TransferContinuation______________________________________________
AAMBAState 
S  Cycle
xferlnProgressl : XferStatus

partXfer ^  {) 
bus(HREADY) =  [LOW)
^partXfer > 1 A bus(HRESP) ^  OKAY  =*

((last partXfer).bus)(HRESP) =  OKAY  
cycHist' =  c y c H i s t (9Cycle) 
xferHist' =  xferHist 
partXfer' =  partXfer (0 Cycle)
xactionHist' =  xactionHist A partXactions' =  partXactions 
xferlnProgressl =  Extending

6.2 Transaction Continuation and C om pletion

When it comes to updating history to reflect progress (or otherwise) in transac
tion activity there are three broad possibilities -  a transaction may be completed 
(successfully or not), a transfer may grow larger but still be partial, or there may 
be no change to any transaction. In writing the schemas however, it is convenient 
to specify X  action Activity in terms of ten separate cases, as follows.

In the first table each row starts with the value of the variable xferlnProgress. 
The columns labeled HTRANS and HBURST give the values of those signals in 
the partial transfer, if any, rather than in the current state,

Xfer Status HTRANS HBURST HRESP Relevant Schema
Extending

None
Finished
Finished
Aborted
Aborted
Aborted

Don’t care 
N /A 

NONSEQ 
NONSEQ 

SEQ 
Don’t care 
Don’t care

Don’t care 
N /A 

SINGLE 
not SINGLE 
not SINGLE 
Don’t care 
Don’t care

OKAY
OKAY
OKAY
OKAY
SPLIT

RETRY
ERROR

MidTransfer 
Busldle 

SingleShot 
First Of Burst

SplitBurst
InterruptedBurst
InterruptedBurst

The following table distinguishes between the various remaining cases; in 
each of them the variable partXfer contains a completed transfer . The first row 
corresponds to the case that the burst is continuing while other rows are for the 
several ways in which that completed transfer could be the last in a burst.



HTRANS Last type This type New master Relevant Schema
SEQ, BUSY 
Don’t care 

NONSEQ, IDLE 
NONSEQ, IDLE 

Don’t care

not SINGLE 
INCR 
INCR 

not INCR 
not INCR

not SINGLE 
Don’t care 
Don’t care 
Don’t care 
Don’t care

No 
Yes 
No 

Don’t care 
Yes

Burst Continues 
IncrBurstDone 
IncrBurstDone 
BurstComplete 
Free mp tedBurst

A n Exam ple - The schema MidTransfer

In this case, the variable xferlnProgress would have been set to Extending 
by the previous history update operation Transfer Continuation and so there is 
nothing to do.

__Mid Transfer______________________________________________________
E  A MBAState 
xferlnProgress? : XferStatus

xferlnProgress? =  Extending

A  Bigger Exam ple - The Schema SingleShot

In the case that a transfer just completed was of burst mode SINGLE, this 
constitutes a complete transaction consisting of that one transfer. It is not pos
sible that there is a partial transfer for the same master, since it would have 
been completed or aborted on a previous cycle.

__SingleShot________________________________________________________
AAMBA-State
E  Cycle
xferlnProgress? : XferStatus
to : Master-
new : Transaction

xferlnProgress? =  Finished A bus(HRESP) =  OKAY
to =  bits2N(((partXfer l).bus){HMASTER))
m qL dom partXactions
((partXfer l).bus)(HTRANS) =  NONSEQ
((partXfer 1 ).bus)(HBURST) =  SINGLE
new.xfers =  {partXfer)
new .completion =  Complete
cycHist' =  cycHist A xferHist' =  xferHist
partXfer' =  {)
xactionHist' =  xactionHist(new)  
partXactions' =  partXactions



6.3 Transfer Initiation

The schema New Transfer updates history according to whether the control sig
nals indicate that a new transfer was started in the cycle just completed (or not). 
Each of these two possibilities is captured by a schema and so New Transfer is 
defined thus:

NewTransfer = =  Transferlnitiation V NoNew Transfer

The following table shows necessary conditions for each of the following two 
schemas to be applicable.

HREADY HTRANS partXfer Relevant Schema
LOW
HIGH
HIGH
HIGH
HIGH

Don’t care 
SEQ, NONSEQ 
SEQ, NONSEQ 

BUSY, IDLE 
BUSY, IDLE

Don’t care 
empty 

nonempty 
empty 

nonempty

NoNew Transfer 
Trans fe riniti at ion 
NoNew Transfer 
NoNew Transfer 
Impossible

When a new transfer is initiated, the signal HTRANS having value SEQ 
occurs exactly when the new transfer will augment an existing partial transaction 
for the current master. In such a case the control and address signals must be 
consistent with this partial transaction.

__Transferlnitiation_________________________________________________
AAMBA-State
S  Cycle 
rn : Master
trans : { SEQ. NONSEQ } 
new : Transfer

trans =  bus(HTRANS)
rn =  bus(HMASTER)
partXfer =  ()
bus(HREADY) =  HIGH
trans =  SEQ rn € (dom partXactions)
partXfer' =  {9 Cycle)
(new.cycles) =  partXfer'
trans =  SEQ => xMatches(new, (partXactions m )(l) )
cycHist' =  cycHist
xferHist' =  xferHist
xactionHist' =  xactionHist
partXactions' =  partXactions

1 The Composite Cycle Operation

Given above are schemas for all aspects of what can happen within one cycle. 
The following schema. CornpleteCycle specifies what happens, over a full clock 
cycle when a sequence of basic operations occurs.



CompleteCyle = =  Arbitration § Operationsequence^ History Update
V ResetCycle

Space limitations in the present paper preclude a discussion of the operation 
of the arbiter or what happens in a clock cycle where a reset occurs.
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9 Conclusion

Although the approach of modeling an AMBA bus using Z was taken to get 
the project of the ground quickly, it has proved to be a fortunate decision. The 
obvious alternative was to formalize AHB directly in higher order logic using 
HOL since theorem proving in that system was definitely on the agenda. There 
are two reasons for satisfaction with postponing HOL activity.

— The AMBA buses turn out to be quite complicated to understand in detail. 
The Z spec, is 30 pages of which fully half is mathematics. Because of the 
complexity, the development process saw the document go through seven 
versions as various ways of looking at the problem were tried. Had the same 
development been done in HOL (or any similar system) lots of time would 
surely have been wasted proving theorems associated with the dead ends.

— Having a formal specification in Z makes the audience of possible readers 
much wider than if it was presented as a proof script for a theorem prover. 
Of course, having parallel definitions in two formal systems begs the question 
of verifying consistency. However, this question has been asked before and 
so we need to search for possible answers for the present situation.
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Abstract. The Calculus of Inductive Constructions is an underlying 
logic of the Coq proof assistant - a widely used mature proof assistant.
In this paper we present our work on implementing the Calculus of Induc
tive Constructions in the MetaPRL logical framework. Rules from the Coq 
reference manual have quite unrestricted format so we have to make cer
tain design decisions in order to express those rules in the plain Gentzen 
style supported by MetaPRL. The most complicated case-analysis and 
fixpoint rules have yet to be implemented. There is a working implemen
tation with rudimentary proof automation; the toy example of inductive 
definition (parameterized lists) is type-checked.

1 Introduction

MetaPRL [5,7] is a relatively young logical framework from the PRL family [2] 
originated at Cornell University

Among logical theories already defined in MetaPRL there are

— NuPRL-like Computational Type Theory CTT (based on Martin-Lof’s Intu- 
itionistic Type Theory);

— the constructive set theory CZF, based on Aczel’s axiomatization;
— the First Order Logic.

MetaPRL was designed to address scalability and efficiency issues of NuPRL; 
as a result of these efforts CTT in MetaPRL is two decimal orders of magnitude 
faster than in NuPRL [6].

The Coq proof assistant [8] is a widely used mature logical system. Its 
underlying logic is the Calculus of Inductive Constructions (CIC) [8,3,4,10,1], 
CIC is a rather sophisticated and powerful system. Implementing CIC in Meta
PRL is the natural next step in developing the latter. It would be a good test 
for MetaPRL’s universality and a challenge for a fast MetaPRL proof engine. It 
could help MetaPRL to import Coq’s vast formal libraries.

In this paper we discuss our pilot implementation of CIC in the MetaPRL 
logical framework. We have a working code (rules, rewrites and tactics) that im
plements lambda calculus and inductive definitions. Implementation of inductive
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definitions is not complete. We implemented rule about correctness of an induc
tive definition, typechecking of inductive types and constructors. Case-analysis 
and fixpoint are not supported yet.

2 MetaPRL meta-language

A brief syntax description of MetaPRL will give a better understanding of im
plementation problems and their solutions further in the article. Terms have the 
following syntax:

term ::=  operator { bterms }

where the operator represents the name of a term and bterms are possibly bound 
terms.

Bound terms have the following syntax:

bterm ::=  term | vars.term

For bound term v\,. . . ,  vn.t variables v i , , vn are bound in t. Such binding is 
the part of signature (arity) of the outer operator. For example, \/x : T.P(x) can 
be expressed as forall{T;a;.F[a;]}, where forall has arity (0,1) - no bindings in the 
first subterm and one binding in the second subterm.

Variables are special terms treated specifically by the system. There are two 
types of variables: first-order variables represent variables of the object theory., 
second-order variables (meta-level variables) represent terms with substitutions.

A theory is defined by its inference rules and computational equivalences 
between terms. The syntax of an inference rule is

rule name [params] : inference

where name is the name of the rule, params are extra parameters passed to the 
inference rule (optional) and inference is a valid inference in the defined logic. 
Inference is declared in the following form:

inference ::=  term | term —> inference

Inference rules can be derived from previous rules or they can be defined as a 
primitive axioms of the theory.

Rewrites can be used to establish computational and/or definitial equality 
between certain terms. Rewrites are declared as follows:

rewrite name [params] : [conditions] redex contractum

where name is a name, params are extra variables and terms needed in rewrite 
and if the rewrite is conditional then the condition is stated in conditions. Rewrite 
replaces redex with contractum in any context. Just like rules rewrites can be 
primitive or derived. Rewrites and inference rules are logical inferences of Meta
PRL.
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Sequent schema language [9] is used for specifying new inference rules in a 
theory. The extension of the theory with sequents is conservative and derived 
rules can be used as primitive axioms [9]. The sequent syntax is:

sequent [name] {H i ; . . . ;  / /„  h C}

where name is a name of a sequent (optional), which can be used to assign dif
ferent semantics to differently named sequents. Each of Hi; . . . ; H n is either a 
variable declaration (hypothesis) or a sequent context, and C  is a conclusion. 
Contexts are meta-variables that are used as placeholders for sequences of hy
potheses (again variable declarations and contexts). A variable declaration x : T 
introduces a variable x bound in the rest of the sequent.

One can think of sequents as a special kind of terms with flexible arity, where 
name is an analogue of operator and “sequent’' indicates that this is a special 
kind of term (with flexible arity). It is more convenient to look at sequents in 
this perspective for the rest of the article.

There is a discipline of specifying permitted dependencies of a context or a 
second-order variable on all contexts and declarations from the left of it. We say 
that a context F  (a second order variable A) can depend on variable declaration 
x : T  if x is allowed to occur in F  (in A). We indicate it by F[x] and A[x\. If 
variable declared before F  (before A) is not listed in brackets it is interpreted 
as prohibition of free occur

We say that a context A  (a second order variable A) can depend on a context 
r  if it is allowed for variables potentially declared in F  to occur freely in A  (in 
A). We indicate it by and T{p}- If a context F  declared before A  (before 
A) and F  is not listed in curly brackets after A  (after A) it is interpreted as 
prohibition of occur potentially declared in F  to occur freely in A  (in A). If curly 
brackets are not used at all it is interpreted as a dependency on all preceding 
contexts.

Sequents are legitimate terms and can be used wherever regular terms can be 
used. In particular nested sequents (when conclusion is again a sequent) allows 
to separate different kinds of contexts from each other so they won’t mix:

sequent{.Ta h sequent { I); ~ £ ‘}}

can be thought as Fa \Fb C  where “|” is a marker used to enforce some 
structure in antecedent pattern (to separate Fa and Fb )-

3 A  brief description of CIC

CIC is based on a typed lambda calculus. Without inductive definitions it ’s a sys
tem AP uj (or AC) from Barendergt’s cube. There is no syntactical differentiation 
between types and objects, they are just terms. Terms are built from variables, 
global names, constructors, abstraction, application, product and “let-in” ex
pressions. Each term should have a type, types of types are constants called 
sorts. There are two basic sorts Set and Prop and a cumulative hierarchy of
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higher sorts Type(O), T y p e(l),. . .  all containing the basic sorts. Intuitively Prop 
is a type of all propositions and Set is a type of specifications (of programs) and 
usual types (integers, booleans, lists, etc).

We based our work on the system of rules presented in the chapter 4 “Calculus 
of Inductive Constructions” of The Coq Proof Assistant Reference Manual [8]. 
Although CIC is formulated in Gentzen style, it’s not a usual plain Gentzen 
style system. Each CIC rule is explicitly parameterized with environment and 
can explicitly change it. Environment contains declarations of global constants 
and global assumptions. Such a non standard format is chosen because of in
ductive definitions - once inductive definition is verified to be correct, all types 
and constructors it defines are (automatically) added to the environment. Al
ternatively one can carry the whole inductive definition all over the proof as a 
term. The latter approach is in original papers [4,10] about inductive definitions 
for the Calculus of Constructions; it is (at least) easier to express in the plain 
Gentzen style. For this reason we use the latter approach.

4 Implementation problems and their solutions

Coq’s implementation of CIC operates with the notion of environment (or to be 
more precise global environment). It is an ordered list of declarations of global 
names, such as names of new operators and types. Of course MetaPRL maintains 
something similar internally but it is not available for the direct control of the 
user. It also seems that explicit global environment was introduced primarily for 
efficiency reason - to mention inductive definitions only once and later only refer 
to them. We prefer the global environment. So we modified all rules not to use 
the global environment explicitly.

There is also a notion of context (or more precisely local context) where the 
names of variables are declared. Contexts are native entities of the MetaPRL 
meta-language so we are fine here.

There are two official kinds of judgments in CIC:

-  E[E) b t : T  means that the term t is well-typed and has type T  in the 
environment E  and context E

-  WJr(E)[E] means that the environment E  is well-formed and the context E 
is a valid context in this environment

But in the actual rules we find one more kind of judgement:

-  D € E

where D is either inductive definition lnd(.T) [ /> ] { / /  :=  Ec}  or constant dec
laration c : T  and E  is an environment. It means that E  is well-formed and 
contains D (or if D € E  is the conclusion of the rule, I) is added to E).
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4.1 W  J- - j virigemei it

More traditional formulation of calculus of constructions [1] does not use WJ--  
judgement:

h Prop : Type(i) h Set : Type(i) h Type(i) : Type(j) axioms, i <  j

F  h A : s , F -  A : I! F  h C : s . ,
start, x £ I ------ - ------ — — ------------  weakening, x £ I

F ; x : A h x : A  '  ̂ F ; x : C h A : B

The problem is that if you want to pull some declaration from the middle of an 
antecedent to the succedent F; x : A; A  h x : A  you need to type-check A  and 
whole A  using the weakening rule. This is not practical and not desirable if you 
want to prove something like F; x : A; A  h x : A  about arbitrary A.

Coq has the rule

WT( E) [ F ; x :  T;A[x} } 
E\r ; x : T: A\x\ } h x : T

(Var)

but then you can hardly prove something like E[F\ h t : T  for t and T  not 
depending on F  without assuming WJ-(E)[F}.  So this kind of assumption would 
precede any theorem.

We decided to use the following set of rules:

r  h Prop : Type(i) F  h Set : Type(i) F  h Type(i) : Type(j) (axioms, i <  j )

F - A h T - . s
F; x  : T; A h  x : T

F - A h A - . B  F - A h C - . s  
r - x  : C; A h  A : B

(Var)

(Weak)

So unlike rules in [1] we allow to insert new declarations in the middle of 
hypotheses list. We also allow nonsense in hypotheses (because of our choice of 
axioms) but it seems alright - falsum derives anything.

4.2 Lam bda Calculus

Implementation of the lambda part of CIC is pretty straightforward, after we 
settled with treating of WJ- and don’t tell anything about environment E.

We didn’t implement “let-in” construction and definition x :=  t : T  because 
first of all they seem redundant. Secondly, the majority of the rules do not 
distinguish definition x :=  t : T  and variable declaration x : T , so for now we 
decided not to complicate our implementation with such a polymorphism.
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4.3 In d u ctive  D efin ition s

Inductive definitions allow us to introduce new types and constructors of these 
types. ln d (P )[Ip ](I/  :=  Fc) is a formal representation of an inductive definition 
valid in context F  with parameters Fp, a context of definitions Fj and a context 
of constructors F c . Fj actually contains types defined by the inductive definition.

E xam ple  Parameterized lists is defined as follows:

lnd()[A: Set](List : Set := nil : List, cons : A  —> List —> List)

List is a new inductive type, nil (an empty list) and cons (a concatenation of 
an element and a list) are the constructors of type List; A is a parameter of 
type Set. List A is a type of lists with elements of type A.

Since Ind has contexts as parameters it has to have flexible arity. As it was 
mentioned, in MetaPRL the only construct with flexible arity is sequent term. 
But we should not simply write F ; Fp; Fj; Fc b •, because there is no way to tell 
later which hypotheses are from context F, which hypotheses are from context 
Fp, etc. Of course we can reserve special terms to separate those contexts but 
MetaPRL allows nested sequents so we can write:

sequent} F b sequ en t} Fr b sequent} Ft b sequent} F( b A } } } }

because we use nested sequents all over the place we label all sequents generously:

s e q u e n t {r  b
sequent [IndParams]{ I p  b

seq u en t[IndTypes]{J/ b
sequ en t[IndConstrs]{Fc b A } } } }

We do not label the outermost sequent because F  really plays role of hy
potheses so outermost sequent is really logical, whereas all other sequents here 
are merely placeholders with an arbitrary arity. Using display forms we can easily 
give it a “traditional’' format

l n d ( r ) [/>](/> := FC)A 
or

ln d (r )[/> ](/>  :=  Fc) b A 
or

r  b Ind[/>](/> := FC)A

which we will use for the rest of the paper. Here A  is the actual meaning of 
the term lnd [Ip ](I/  := Fc)A  but A  can refer to the inductive definition it is 
wrapped in. Note that due to the nesting, variables declared in an outer sequent’s 
antecedent are bound in all inner sequents but that’s exactly what we want.
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Types of inductive types and constructors are described by the following two 
rules. For the rest of the paper we assume that Fp is [pi : Pi ; . . .  ;pr : Pr), Fj is 
[h : A i ; . . . ; I k : A k], and Fc  is [c-i : Ct ; . . . ;  cn : C'n).

lnd(r)[J>](Jj :=  Fc) € E  . _
(Ij : (p1 : P 1) . . . ( p r : P r)Aj ) e E  (J ~  •" j

______________ lnd(r)[J>](Jj :=  Fc ) € E______________  ,, _  ,
(c-t : (pi : P i ) . . .  (p r : l ’r ) ( ' , { ! , ,  ( I j p i . .  -_Pr)}j= 1 ...fc) e  E  1 "  '

here (x : S)T is a dependent product type (or dependent function type) and 
it associates to the right.

Aside from giving certain types to inductive types and constructors these 
rules say that if an inductive definition was given all types and constructors 
from it are injected in the environment (thus becoming accessible for the later 
use).

Of course we have to give some explicit meaning for all “. . in those rules and 
for “massive’' simultaneous substitution Ij / ( I jpi .. ,pr). Again we use sequents 
to express something with flexible arity.

E xam ple  We define (xi : T i ) . . . ( x n : Tn)S using two rewrites over sequent 
term sequ en t[longProduct]{:ci : T i ; . . . ; x n : Tn b S}.  For readability we 
will write longProduct{:ci : Tj ; . . . ;  xn : Tn b S} :

longProduct{ b S} <— ► S base case, n =  0
longProduct{r;x : T  S} <— ► longProduct{r b (x : T)S}  rec. step

on each iteration rightmost declaration x : T  is taken from the context F  
and used to form a function type (x : T)S to the result S of the previous 
iteration.

For the latter rule we need to give definitions of massive application, prod
uct and substitution simultaneously because all bindings in the rule have to be 
preserved correctly. It unfolds to 8 rewrites that act as one recursive function 
on contexts (basically base case and recursive step for each operation which is 6 
already plus some glue).

The next rule tells us if inductive definition is correct.

(E[F;Fp] b Aj : S j )j= 1  k (E[F; FP; F^ b C* :
WT{E-, Ind (r)[/> ](/ j := FC))[F}

providing the following side conditions hold:

— k >  0, Tj,a are different names for j  =  1 . . .  k and i =  1 . . .  n
— for j  =  1 . . .  k we have Aj  is an arity of sort Sj and Ij ^ F  U E
— for i =  1 . . .  n we have Ci is a type of constructor of TPi which satisfies the 

positivity condition for PL.. .  Tk and c* ^ F  U E
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As you can see this rule has a few side conditions. We need to formalize those 
side conditions via rules and/or rewrites. Side conditions of this rule operate with 
notions:

— Aj  is an arity of sort Sj
— C'i is a type of constructor of IPi
— Ci satisfies the positivity condition for a constant X
— constant X  occurs strictly positively in T

Exam ple The constant X  occurs strictly positively in T  in the following cases:
— X  doesn’t occur in T
— T  converts to ( X t i .. . tn) and X  does not occur in any of ti
— T  converts to (x : U)V and X  does not occur in type U but occurs 

strictly positively in type V

actually there is a fourth case but it is too complicated for the discussion.
And the formalization of this definition in MetaPRL looks like this:

(base case)
F ;x  : T ; A  h strictly_pos{:c; S}

here x does not occur freely in S because according to MetaPRL syntax we would 
have to say S[x] in order to allow free occur

F; x : T; A  h strictly_pos{:c; appContextfZ1 h a;}} ( 'PP ' ' ' ' ’ )

here again x does not occur freely in E  because according to MetaPRL syntax 
we would have to say S[x\ in order to allow free occur

r ; x : T\ A; y : U h strictly-posix; V\y\ ,
(function case)

F ;x  :T ;  A  h strictly_pos{:c; y :U  —► V[y; ;c]} 
again x does not occur freely in U.

Because we do not use W.F-judgement we need some special treatment for 
the conclusion of the last rule. We use another judgement

r h indWF[rF](rj := rc)
which sole purpose is to claim correctness of the inductive definition.

As it was said we do not add types and constructors from inductive definitions 
to the global environment hence we carry whole inductive definitions everywhere 
we use it.
E xam ple  Using inductive definition of parameterized lists we say:

List := lnd[A Set (List Set :== nil List; cons A ■+ List -■+ List) List
nil := lnd[A Set (List Set :== nil List; cons A ■+ List -■+ List)nil

cons := lnd[A Set (List Set :== nil List; cons A -■+ List -■+ List)cons

To support this approach our implementation has three rewrites: 

Ind[!> ](!/  := Fc)t{\ t
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lnd [Jp ](J/  := Fq ; x : T;Ac)t[x] lnd [Jp ](J/  := Fq ; x : T\Aq)
<[lnd[Jp](J/ := Fq ] x : T; A q )x]

Ind[/>](//; x : T ; Ai  := Fc[x])t[x] <-» Ind [/>](//; x : T; Ai  := Fc[x})
<[lnd[Jp](J/; x : T; A j  := Fc[x])x]

The first rewrite says that if term t under inductive definition does not really 
depend on it, we can get rid of inductive definition and use just t. Second and 
third rewrite say that any occurrence of inductive type or constructor (under 
inductive definition) can be wrapped additionally with one more layer of that 
inductive definition. Having in mind that rewrites are bidirectional we can prove 
such trivial facts as:

List € Set —> Set 
nil € (A : Set)(ListA) 

cons € (A : Set) (A  —> List A  —> List A)

Up to this point we were describing actually working implementation. It 
includes all the necessary rules, rewrites and tactics for rudimentary proof au
tomation. The example of parameterized lists is proved correct and simple facts 
given above are proved. The implementation is available for download under 
GPL license from the MetaPRL CVS server
http: / / cvs.metaprl.org: 12000/cvsweb/metaprT/theories/cic/.

4.4 Implementation of Cases and Fixpoint

Besides defining inductive types, establishing their sorts and types of construc
tors one needs means for case analysis of such types and recursion over inductive 
types. In CIC (Coq) there are two separate operations - case analysis and re
cursion (fixpoint) each accompanied with a certain number of rules governing 
it.

Unfortunately we again face the problem of formalizing side conditions. Con
sider an inductive definition with several mutually defined types. The case anal
ysis rule has to collect all constructors for one of those types from the list of 
all constructors of that inductive definition. This was the place where we’ve got 
stuck. Although the above condition seems expressible as a collection of rules 
we don’t know any elegant (and efficient) approach. So we decided there is no 
point in formalizing case analysis and fixpoint rules if it would be too slow and 
no competitor to Coq.

We do consider an alternative approach. It’s possible to wrap each rule in a 
tactic and implement too complicated side conditions in the tactic. Such tactics 
will check too intricate syntactical conditions and pre-compute parameters for 
rules (e.g. extract all appropriate constructors for case analysis rule). Those 
tactics should be considered as a part of the trusted core but we will get much 
better efficiency. Such an implementation would be no less reliable than Coq

http://cvs.metaprl.org:12000/cvsweb/metaprT/theories/cic/
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because (as far as we understand) in Coq this logic is also hard-coded and not 
explicitly written as a system of rules.

5 Future work

Presently we are at the crossroad of several treatments for the case-analysis and 
fixpoint rules, which are:

— Find a way to represent side conditions of those rules as rules and rewrites. 
This will most likely lead to a significant drop in the speed comparing with 
Coq but MetaPRL trusted core won’t be extended.

— Wrap each rule in a tactic and implement too complicated side conditions 
in the tactic. This would probably boost the performance. But such tactics 
would actually extend MetaPRL trusted core.

— Find a formal generic notation that would allow to implement case-analysis 
and fixpoint rules nicely. If successful this might be a good tradeoff between 
performance and extension of the trusted core. And we would got an extra 
bonus - improve the expressiveness of the MetaPRL meta-language.

After the decision is made the rest of the CIC core and basic proof automation 
will be implemented. Then we will benchmark our implementation against Coq. 
If successful, more steps towards compatibility with the existing Coq-libraries 
will be made. The ultimate goal is to support import or direct access to Coq 
library files.

References

1. Henk P. Barendregt. Handbook of Logic in Computer' Science, volume 2, chapter 
Lambda Calculi with Types, pages 118-310. Oxford University Press, 1992.

2. Robert L. Constable, Stuart F. Allen, II. M. Bromley, W. R. Cleaveland, J. F. Cre- 
mer, R. W. Harper, Douglas J. Howe, T. B. Knobloek, N. P. Mendler, P. Panan- 
gaden, James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the 
N uPRL Proof Development System. Prentice-Hall, NJ, 1986.

3. Thierry Coquand and G. Huet. The calculus of constructions. Information and 
Computation, 76:95-120, 1988.

4. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types, pre
liminary version. In COLOG ’88, International Conference on Computer Logic, 
volume 417 of Lecture Notes in Computer Science, pages 50-66. Springer, Berlin, 
1990.

5. Jason Hickey, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir, Eli Barzilay, 
Yegor Bryukhov, Richard Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz, 
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl Witty, and Xin Yu. Meta
PRL —  A modular logical environment. In David Basin and Burkhart Wolff, 
editors, Proceedings of the 16th International Conference on Theorem Proving in 
Higher Order Logics (TPIIOLs 2003), volume 2758 of Lecture Notes in Computer 
Science, pages 287-303. Springer-Verlag, 2003.



Title Suppressed Due to Excessive Length 11

6. Jason J. Hickey and Aleksey Nogin. Fast tactic-based theorem proving. In J. Har
rison and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th' 
International Conference, TPIIOLs 2000, volume 1869 of Lecture Notes in Com
puter Science, pages 252-266. Springer-Verlag, 2000.

7. Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al. MetaPRL home page, http : 
/  /m etaprl. org /.

8. INRIA. The Coq Proof Assistant Reference Manual, 2003.
9. Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Victor A. 

Carreno, Cezar A. Munoz, and Sophiene Tahar, editors, Proceedings of the 15th' 
International Conference on Theorem Proving in Higher Order Logics (TPIIOLs 
2002), volume 2410 of Lecture Notes in Computer Science, pages 281-297. Springer- 
Verlag, 2002.

10. Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and prop
erties. In J. F. Groote M. Bezem, editor, Typed Lambda Calculi and Applications, 
Lecture Notes in Computer Science. Springer-Verlag, 1993.





Towards Verified Virtual Memory in L4

Gerwin Klein and Harvey Tuch

1 University of New South Wales, Sydney 2052, Australia 
2 National ICT Australia*, Sydney, Australia 
{gerwin. klein I harvey. tmchJ-Qnicta. com. am

Abstract. We report on the initial stage of an on-going verification 
project: the formalisation and verification of the L4 p-kernel. We describe 
an abstract model of the virtual memory subsystem in L4, prove safety 
properties about this model, and describe refinement of the abstract 
model towards the implementation of L4. All formalisations and proofs 
have been carried out in the theorem prover Isabelle.

1 Introduction

L4 is a second generation microkernel based on the principles of minimality, flex
ibility, and efficiency [10]. It provides the traditional advantages of the micro
kernel approach to system structure, namely improved reliability and flexibility, 
while overcoming the performance limitations of the previous generation of mi
crokernels. With implementation sizes in the order of 10,000 lines of C + +  and 
assembler code it is about an order of magnitude smaller than Mach and two 
orders of magnitude smaller than Linux.

The operating system (OS) is clearly one of the most fundamental com
ponents of non-trivial systems. The correctness and reliability of the system 
critically depends on the OS. In terms of security, the OS is part of the trusted 
computing base, that is, the hardware and software necessary for the enforcement 
of a system’s security policy. It has been repeatedly demonstrated that current 
operating systems fail at these requirements of correctness, reliability, and secu
rity. Microkernels address this problem by applying the principles of minimality 
and least privilege to operating system architecture. However, the success of this 
approach is still predicated on the microkernel being designed and implemented 
correctly. We can address this by formally modelling and verifying it.

L4 has a design that is not only geared towards flexibility and reliability, 
but is of a size which makes formalisation and verification feasible. Compared 
to other operating system kernels, L4 is very small; compared to the size of 
other verification efforts, 10,000 lines of code is still considered a very large and 
complex system. Our methodology for solving this verification problem is shown 
in Fig. 1. It is a classic refinement strategy. We start out from an abstract model 
of the kernel that is phrased in terms of user concepts as they are explained in

* National ICT Australia is funded through the Australian Government’s Backing 
Australia’s Ability initiative, in part through the Australian Research Council



Fig. 1. Overview

the L4 reference manual [1], This is the level at which most of the safety and 
security theorems will be shown. We then formally refine this abstract model 
in multiple property preserving steps towards the implementation of L4. The 
last step consists of verifying that the C + +  and assembler source code of the 
kernel correctly implements the most concrete refinement level. At the end of 
this process, we will have shown that the kernel source code satisfies the safety 
and security properties we have proved about the abstract model.

To keep complexity and time manageable, we have decided to take a thin 
vertical slice out of this refinement process and to test the methodology on 
one non-trivial subsystem of the kernel initially. This will not give hard safety 
guarantees about the full system, but it will increase confidence in the imple
mentation and improve understanding of the target subsystem. The goal is to 
move through the full process quickly and to uncover problems in the interaction 
of refinement layers and the different formalisms utilised.

In this paper we report on first experiences with this project. L4 provides 
three main abstractions: threads, address spaces, and inter-process communica
tion (IPC). We have chosen to start with address spaces. This is supported by 
the virtual memory subsystem of the kernel and is fundamental for implementing 
separation and security policies on top of L4. We have built an abstract model 
of address spaces and we show a first refinement of it.

One of the central questions in any verification project is: When exactly is 
the specification of the system correct? What is the system supposed to do? In 
this case we have taken the L4 X.2 API description as the main reference [1] and 
use the L4Ka::Pistachio [8] implementation on the ARM architecture to resolve 
ambiguities and address implementation issues, in addition to discussions with 
the developers on the pistachio-core mailing list.

As we are mainly trying to test the methodology, we are making some sim
plifying assumptions in the formalisation. We are also not planning to verify the 
current implementation of L4Ka::Pistachio. On the contrary, it is a goal and ex
pected outcome of this project that we clarify and simplify the implementation.



If verification makes it necessary, even a complete reimplementation of the L4 
X.2 API is possible.

Earlier work on operating system kernel formalisation and verification in
cludes PSOS [11] and UCLA Secure Unix [15]. The focus of this work was on 
capability-based security kernels, allowing security policies such as multi-level 
security to be enforced. These efforts were hampered by the lack of mechanisa
tion and appropriate tools available at the time and so while the designs were 
formalised, the full verification proofs were not practical. Later work, such as 
KIT [3], describes verification of properties such as process isolation to source 
or object level but with kernels providing far simpler and less general abstrac
tions than modern microkernels. There exists some work in the literature on 
the modelling of microkernels at the abstract level with varying degrees of com
pleteness. Bevier and Smith [4] specify legal Mach states and describe Mach 
system calls using temporal logic. Shapiro and Weber [13] give an operational 
semantics for EROS and prove a confinement security policy. Our work differs 
in that we plan to formally relate our model to the implementation. Some case 
studies [7,5,14] appear in the literature in which the IPC and scheduling sub
systems of microkernels have been described in PROMELA and verified with 
the SPIN model checker. These abstractions were not necessarily sound, having 
been manually constructed from the implementations, and so while useful for 
discovering concurrency bugs do not provide guarantees of correctness. Finally, 
the VFiasco project, working with the Fiasco implementation of L4, has pub
lished exploratory work on the issues involved in C + +  verification at the source 
level [9].

After introducing our notation in the following section, we first present an 
abstract conceptual model of virtual memory in L4 in section 3 and refine it 
towards an implementation in section 4.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical 
notation. This section introduces further non-standard notation and in particular 
a few basic data types with their primitive operations.

The space of total functions is denoted by =>. Type variables are written 'a, 
'b, etc. The notation t:: r  means that HOL term t has HOL type r.

datatype 'a option =  None | Some 'a

adjoins a new element None to a type 'a. For succinctness we write [aj instead 
of Some a.

Function update is written f ( x  :=  y) where /  :: 'a => 'b, x :: 'a and y :: 'b.
Partial functions are modelled as functions of type 'a => 'b option, where 

None represents undefinedness and /  x =  [y\ means x  is mapped to y. We call 
such functions maps, and abbreviate f (x := [y \ )  to f ( x  >->■ y). The map Aa;. None 
is written empty, and em pty(...), where . . .  are updates, abbreviates to [...]. For 
example, em p ty (x^ y )  becomes [x >->■ y}.



Implication is denoted by =$> and [ A\\ . . A„ ] =$■ A abbreviates A\ =$■ 
( . . .  = >  {An = >  A) . ..).

Finally, how are the formulae you see related to the formal Isabelle text? Our 
motto is

What you see is what we proved!

Isabelle theories can be augmented with M ^ X  text which may contain ref
erences to Isabelle theorems (by name —  see chapter 4 of [12]). We use this 
presentation mechanism to generate the text for most of the definitions and all 
of the theorems in this paper automatically.

3 Abstract Address Space Model

The virtual memory subsystem in L4 provides a flexible, hierarchical way of 
manipulating the mapping from virtual to physical memory pages of address 
spaces at user-level. We now present a formal model for this. Although the 
granularity at which L4 maps memory is the page level and does not go down 
to single addresses, we use the terms address and page interchangeably in the 
following.

3.1 Address Spaces

Fig. 2 illustrates the concept of hierarchical mappings. Large boxes depict virtual 
address spaces. The smaller boxes inside stand for virtual pages in the address 
space. The rounded box at the bottom is the set of physical pages. The arrows 
stand for direct mappings which connect pages in one address spaces to addresses 
in (possibly) other address spaces. In well-behaved states, the transitive closure 
of mappings always ends in physical pages. The example in Fig. 2 maps virtual 
page «i in space m , as well as V2 in n2, and «4 in m  to the physical page n .

Fig. 2. Address Spaces



Formally, we use the types R for the physical pages (n ,  r2, etc.), V for 
virtual pages (vi, v2, etc.), and N  for the names of address spaces (rii, n2, etc.).

A position in this picture is determined uniquely by either naming a virtual 
page in a virtual address space, or by naming a physical page. We call these the 
mappings M:

datatype M  =  Virtual N  V | Real R

An address space associates with each virtual page either a mapping, or 
nothing (the nil page). We implement this in Isabelle by the option datatype:

types space =  V => M  option

The machine state is then a map from address space names to address spaces. 
Not all names need to be associated with an address space, so we use option 
again:

types state =  N  =>■ space option

To relate these functions to the arrows in Fig. 2, we use the concept of paths. 
The term s b  x ~^1 y means that in state s there is a direct path from position 
x to position y. There is a direct path from position Virtual n v to another 
position y if in state s the address space with name n is defined and maps the 
virtual page v to y. There can be no paths starting at physical pages. Formally,

s h x ~^1 y =  (3 n v a. x =  Virtual n v A s n =  [o'] A a v =  [y\)

We write _ b  _ _ for the transitive and _ b  _ _ for the reflexive and 
transitive closure of the direct path relation.

3.2 Operations

The L4 kernel exports the following basic operations on address spaces: unmap, 
flush, map, and grant The former two operations remove mappings, the latter 
two create or move mappings. We explain and define them below.

Fig. 3 illustrates the unmap n v operation. It is the most fundamental of the 
operations above. We say a space n unmaps v if it removes all mappings that 
depend on Virtual n v, or in terms of paths if it removes all edges leading to 
Virtual n v.

To implement this, we use a function clear that, given name n, page v, and 
address space tr in a state s, returns a with all v' leading to Virtual n v mapped 
to None.
clear :: N  =t- V state space space 
clear n v s a =
\v'. case a v' o f  None None

| [ m j  =>  i / ' s  b ra Virtual n v then None else [ m j

An unmap n v in state s then produces a new state in which each address 
space is cleared of all paths leading to Virtual n v.



Fig. 3. The unmap operation (before and after)

unmap :: N  =>- V =>■ state =>■ state
unmap n v s =  An', case s n! o f None =>■ None | [crj =>■ [clear n v s a  J

For updating a space with name n at page v with a new mapping m we write 
n,v 4- m, where m may be None.
n.v *— m =  As. s(n  :=  case s n o f None =>■ None | [crj =>■ [a(v  :=  m)J)

With this, the flush operation is simply unmap followed by setting n,v to 
None.

flush :: N  =>■ V =>■ state =>■ state 
flush n v =  n.v None o unmap n v

The remaining two operations map and grant establish new mappings in the 
receiving address space. To ensure a consistent new state, this new mapping 
must ultimately be connected to a physical page. We call a mapping m valid in 
state s (written s b  m) if it is a physical page, or if it is of the form Virtual n v 
and is the source of some direct path. We show later that in all reachable states 
of the system, this definition is equivalent to saying that the mapping leads to 
a physical page.
s b m =  case m o f Virtual n v 3 x. s b m x \ Real r True

Before the kernel establishes a new value, the destination is always flushed. 
This may invalidate the source. The operation only continues if the source is 
still valid, otherwise it stops. We capture this behaviour in a slightly modified 
update notation
n.v m =  As. let so =  flush n v s in (if so b m then n.v [m j else id) so

In L4, an address space n can map a page v to another space n! at page v'. 
Again, the operation only goes ahead, if the mapping Virtual n v is valid: 
map state state
map n v n v s =  if -i s b Virtual n v then s else (n'.v' Virtual n v) s

Fig. 4 shows an example for the map operation. Address space n maps page 
v to n' at v'. The destination n',v' is first flushed and then updated with the 
new mapping Virtual n v.

A space n can also grant a page v to v' in n!. As illustrated in Fig. 5, granting 
updates n',v' to the value of n at v and flushes the source n,v.



Fig. 5. The grant operation (before and after)

grant : : iV = ^ F = ^ i V = ^ F = ^  state =>■ state
grant n v n' v 's  =
if -i s I- Virtual n v then s
else let [crj =  s n; [m\ =  a v in (flush n v o n'.v' m) s

This concludes the kernel operations on address spaces. We have also mod
elled the hardware memory management unit (MMU). On this abstract level, all 
the MMU does is lookup: it determines which physical page needs to be accessed 
for each virtual page v and address space n. We write s h n v t> r if lookup of 
page v in the address space with name n in state s yields the physical page r. 
As we already have the concepts of paths, this is easily described formally:
s I- n.v >  [rj =  s b Virtual n v Real r
s I- n.v >  None =  (3cr. s n =  [crj A a v =  None) V s n =  None

The model in this section is based on an earlier pen-and-paper formalisation 
of L4 address spaces by Liedtke [10]. Formalising it in Isabelle/HOL eliminated 
problems like the mutual recursive definition of the update and flush functions 
being not well-founded. It would be well-founded— at least on reachable kernel 
states—if the model had the property that no loops can be constructed in ad
dress spaces. This is not true in the original model. The operation map n v n' v' 
followed by grant n' v' n v is a counter example. We also have introduced the 
formal concept of valid mappings to establish this no-loops property as well as 
the fact that any page that is mapped at all is mapped to a physical address.



3.3  A n  abstract data  ty p e  for  v irtu a l m em ory

In the following we phrase the model of virtual memory and of the MMU hard
ware in terms of an abstract data type consisting of the type state and the 
operations detailed above. This data type (not to be confused with Isabelle’s 
keyword d ata typ e) is used implicitly by any user-level program. Even if the 
program does not invoke any mapping operations directly, the CPU performs a 
lookup operation with every memory access.

Putting the operations in terms of an abstract data type enables us to formu
late refinement explicitly: if the data type of the abstract address spaces model 
is replaced with the data type of more concrete models (and finally the imple
mentation) the program will not have any observable differences in behaviour.

Formally we define an abstract data type as a record consisting of an initial 
set of states and of a transition relation that models execution:

record  ('a, 'j ) DataType =
Init :: 'a set
Step :: 'j 4  ( 'a  x ’a) set

For our virtual memory model, the operations are enumerated in the index 
type VMIndex:

d ata typ e  VMIndex =  create N  | unmap N V  | flush N V  | map N  V N  V  
| grant N  V N  V  | lookup N  V (R option)

The definition of the abstract model A  in terms of a data type is then:
Init A  = {[(to >-> cr] |a. injp a A ran a C range Real}
Step A  (lookup n v r) =  { (s , s') | s =  s' A s b n,v > r }
Step A  (create n) =  {(s , s') | s n =  None A s' =  s(n  >-» empty)}
Step A  (unmap n v) =  {(« , s') \ s n ^  None A s' =  unmap n v s}
Step A  (flush n v) =  {(s , s') \ s n ^  None A s' =  flush n v s}
Step A  (map n v n' v') =  { (s , s') \ s n None A s n' ^  None A s' = map n v n' v ' s} 
Step A  (grant n v n v') =
{(s , s') \ s n ^  None A s n ^  None A s' = grant n v n v ' s}

The boot process creates an address space ao that is an injective mapping 
from virtual to physical pages. The functions ran and range return the codomain 
of a function, where ran works on functions 'a => 'b option and range on total 
functions. Injectivity is constrained to the part of the function that returns \x\: 
injp f  =  inj-on f  { x  | 3 y. f x  =  [y }} .

The lookup operation is special. In the context of a real system this operation 
would return a value, since one of the points of the virtual memory abstraction 
is to provide address translation. If a lookup yields a None result the kernel 
typically raises a page fault exception. Since we do not model the larger system, 
we simplify lookup instead to a subset of the identity relation on state.

Creating a new address space n is modelled by updating the state s at n 
with the predefined map empty. The other mapping operations have been de
fined above. All of them require the address spaces they operate on to be valid. 
This condition is ensured automatically in the current L4 implementation as the 
address spaces are determined by sender and receiver of an IPC operation.



3.4 Properties

We have shown a number of safety properties about the abstract address space 
model. They are formulated as invariants over the abstract datatype. A set of 
states I  is an invariant if it contains all initial states and if execution of any 
operation in a state of I  again leads to a state in I. We write V  \=  I  when I  is 
an invariant of data type V.

Theorem 1. There are no loops in the address space structure.

.4 |= {s | Va;. i s h i  x }

The proof is by case distinction on the operations and proceeds by observing 
how each operation changes existing paths. Theorem 1 is significant for im
plementing the lookup function efficiently. It also ensures that internal kernel 
functions can walk the corresponding data structures naively. Together with the 
properties below it says that address spaces always have a tree structure.

Theorem 2. All valid pages translate to physical pages.

A  |= {s | Vx. s h x — ► (3r. s h i  Real r )}

The proof is again by case distinction on the operations. Together with the 
following theorem we obtain that address lookup is a total function on data 
type A.

Theorem 3. The lookup relation is a function.

[s h n,v t> r; s h n,v t> r'J =>■ r =  r'

This theorem follows directly from the fact that paths are built on functions. 
That address lookup is a total function may sound like merely a nice formal 

property, but it is quite literally an important safety property in reality. Un
defined behaviour, possibly physical damage, may result if two conflicting TLB 
entries are present for the same virtual address. The current ARM reference 
manual [2, p. B3-26] explicitly warns against this scenario.

3.5 Simplifications and Assumptions

The current model makes the following simplifications and assumptions.

-  The L4Ka::Pistachio API stipulates two regions per address space that are 
shared between the user and kernel, the kernel interface page (KIP) and 
user thread control blocks (UTCBs). These should have a valid translation 
from virtual to physical memory pages, but can not be manipulated by the 
mapping operations.

-  The mapping operations in L4 work on regions of the address space rather 
than individual pages. These regions, known as flexpages, are 2kb,k >  0 
aligned and sized where b is the minimum page size on the architecture. This 
introduces significant complexity in the implementation and has a number of



boundary conditions of interest, so adding this to the abstract model would 
be beneficial. At the same time, it is possible to create systems using L4 that 
only use the minimum flexpage size so this omission does not pose a serious 
limitation to the utility of the model.
map and grant are implemented through the IPC primitives in L4 and involve 
an agreement on the region to be transferred between sender and receiver. 
This can be added when the IPC abstraction is modelled.
Flexpages also have associated read, write and execute access rights. At 
present the model can be considered as providing an all or nothing view of 
access rights.
We assume that all of the mapping operations are atomic, which is the case in 
the current non-preemptable implementation, and a single processor, hence 
a sequential system.

4 Model Refinement

The model in the previous section provides an abstract model of address spaces 
in L4 but does not bear much resemblance to the kernel implementation. This 
is not surprising since the kernel must provide an efficient realisation of the 
mapping operations and the code supporting this executes under time and space 
restrictions. For the purpose of source-code verification it is desirable to have a 
more concrete model of the implementation. This model will be more complex 
and detailed than the previous model and hence less suited to proving properties 
such as the absence of loops in paths. By showing the concrete model to be a 
refinement of the abstract model it is possible to retain the ability to reason and 
prove properties at the abstract level. In this section we provide a motivation 
and overview of the implementation in the L4Ka::Pistachio kernel of address 
spaces, and then describe the refinement of the abstract address spaces model.

4.1 L4Ka::Pistachio Implementation

The implementation of address spaces is provided by the hardware and OS vir
tual memory mechanisms. The lookup relation corresponds to the virtual-to- 
physical mapping function provided by the MMU on the CPU. This transla
tion is carried out on every memory access and so is critical to system perfor
mance. This is typically hidden in the pipeline by an associative cache, called the 
translation-lookaside buffer (TLB), holding a subset of mappings from the page 
table data structure which is located in memory. On a TLB miss the page table is 
accessed to perform address translation by a hardware mechanism (on the ARM 
architecture) that walks the page table data structure. The page table must sup
port fast address translation, since TLB misses are frequent enough to warrant 
this, but this must be balanced with space considerations. In L4Ka::Pistachio a 
multi-level hierarchical page table is implemented, of which the ARM hardware



defined page table format, a two-level page table, is an instance. The operations 
that update mappings must also maintain coherence between the TLB and page 
table, and also the data and instruction caches and memory on ARM since the 
caches are virtually-addressed.

In addition to the virtual-to-physical mappings, an implementation of L4 
address spaces requires a representation of the mappings between address spaces, 
the mapping database (MDB). This is conceptually quite similar to the abstract 
model, with paths reversed to give a tree rooted at each physical memory page. 
The map, grant and unmap operations correspond to system calls and execute 
with a small, fixed-size kernel stack. Hence it is desirable to avoid recursion. 
This is achieved in L4Ka::Pistachio by implementing the mapping tree with a 
linked-list representing the preorder traversal of the tree, augmented with depth 
information. The list is doubly-linked and there are pointers stored between 
nodes in the mapping database and nodes associated with the corresponding 
page table nodes to avoid unnecessary traversals of either data structure in the 
mapping operations.

4.2 Tree Address Space M odel

We first show that a model of address spaces with the mapping database as a 
forest to be a refinement of the model in Section 3. This is a conceptual step. It 
is the view that most people working with the kernel implementation adopt.

J 3*

Fig. 6. Forest

types MDB =  (N x V) (N  x V) set

A tree here is a partial function from a node to a set of child nodes (see 
Fig. 6). The function is required to be partial so that nodes with no children 
and nodes not present in the tree can be distinguished.



record state 1 =
N :: N  set 
M  :: R=> MDB

The N  component of the state now contains the names of the valid address 
spaces and each physical memory page has an associated mapping tree (possibly 
empty) in the M  component of the state.

The direct path relation is defined as

s b a ~^1i b =  (3 r mn. M  s r a =  \mn\ A b G mn)

A direct path exists between nodes a and b if b is a child of a in a tree r. 
Again, we write _ I- _ ~-*+ ! _ for the transitive and _ b _ _ for the 

reflexive and transitive closure of the direct path relation. A path between a 
and b indicates that b is in the subtree of a.

Lookup in the tree model is written as s b n,v >1 r and is defined with:
s b n,v >1 [rj =  (M  s r  (n, v) ^  None)
s b n,v >1 None =  ((V r. M  s r  (n, v) =  None) t \ n £ N s V n £ N s )

Lookup corresponds to tree membership for a node.
The unmapi operation then simply removes all nodes in the subtree of the 

target from the tree, except the target, and all references to these nodes from 
other nodes. The notation s(\M :=  denotes update of field M  in record s with 
value x.
unmapi n v s =
s(]M :=  Ar  x. case M  s r  x o f None None 

| [mnJ
i f  s b (n, v) ~++ i x then None
else [{6 | b G mn A -i s b (n, v) ~++i 6}JD

Similarly, flush i removes all nodes in the subtree along with their correspond
ing references.
flushi n v s =
s(]M :=  Ar  x. case M  s r  x o f None None 

| [mnJ
i f  s b (n , v) x then None
else [{6 | b € mn A -i s b (n, v) -~**i 6}JD

mapi is implemented by inserting a new node for the map destination in the 
tree beneath the map source.
map i n v n v 's  =
if  s b n,v > i None then s
else let s' =  flushi n' v 's

in i f  s' b n,v > i None then s' else update-mapi n v n' v' s'

update-mapi n v n' v ' s =
s(|M :=  Ar. case M  s r  (n, v) o f None => M  s r

| [mn J = > M s  r((n , v) mn U { { n,  v1)} , (n', v') {})D



In granti a node is inserted into the tree for the destination if the prior flush 
and unmap do not result in the source being removed, and any references to the 
source are replaced by references to the destination node.
granh n v n v 's  =  
if s b n,v > 1  None then s 
else let s' =  flushi n' v 's

in if s' b n,v > 1  None then s' else update-granh n v n v s'

update-granti n v n' v 's  =  
let s' =  unmapi n v s
in s%M  :=  Ar x .  if x =  (n', v') A s' b n,v > i [rj then [_{}J 

else case M s' r x o f  None =>■ None 
| [ mn J =t-

if x =  (n, v) then None
else [{6  | b € mn A b ^  (n, v) V

(n, v) € mn A b =  (n 1, t/)}JD

4.3 Refinem ent P ro o f

In this section we again phrase the model presented above in terms of a data 
type. The tree data type M  is:
Init M  =
{(]iV =  {cro}, M =  Xr nv. if P ' nv =  [rj then [{}J else NoneD |P'. 
injp P ' A fst 1 dom P' C {<to}}

Step M  (lookup n v r) =  {(s , s') | s =  s' A s b n,v > i r }
Step M  (create n) =  {(« , s') \ n f  N s A s' =  s§N  :=  insert n (N  s)D}
Step M  (unmap n v) =  {(s , s') \ n € N s A s' =  unmapi n v s}
Step M  (flush n v) =  {(s , s') \ n £ N s A s' =  flushi n v s}
Step M  (map n v n v') =  { (« , s') | n € N s A n € N s A s' =  mapi n v n v ' s} 
Step M  (grant n v n' v') = {(s , s') \ n € N s A n' € N s A s' = granti n v n' v ' s}

We show that the tree data type is a refinement of the abstract data type. 
Here refinement is taken to mean data refinement [6] and we use the proof 
technique of simulation.

We begin with the abstraction relation Rx between concrete state sc and 
abstract states sa:

Rj =
{ ( s c, S o )  | dom sa =  N Sc A

(¥ n v r. sa b n,v >  [rj =  sc b n,v > i [r j)  A
(V n v n v'. sa b Virtual n v Virtual n v' =  sc b (n', v’) (n, v ))}

Here it is clear that the path relation in the tree model is the inverse of the 
path relation in the abstract model.

We then show that the diagrams in Fig. 7 commute, for all operations. This 
is achieved by showing forward simulation:

C </.- A =  3 r. Init C C r “  Init A A (Vj. r ;; Step C j  C Step A j  ;; r)
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Fig. 7. Simulation

where “  is the image of a set under a relation, and ;; the composition of two 
relations.

T heorem  4. The tree data type simulates the abstract data type

A4 -4

The proof is by case distinction on the operations of the data type. It proceeds 
by observing how each operation changes the state in terms of the path and 
lookup relations on the concrete and abstract level. For example, the direct path 
relation after flush can be shown to be:

flush n v s h x ~^1 y =  (s h x ~^1 j A i s h i  Virtual n v)

flushi n v s h x ~^1i y =  (s h x ~^1i y A -> s h (n, v) ~^*i y)

Simulation gives that the properties proved as invariants on the abstract 
data type also hold on the concrete data type, i.e. the safety properties proved 
in Section 3.4 also hold on the concrete data type.

Also, since the operations are deterministic, the simulation also holds in the 
other direction.
T heorem  5. The abstract data type simulates the tree data type

A M

4.4 Further Refinem ent

The next step in the refinement process is to implement the forest with a list 
model. The state space for this is based on the following type:

record TreeListNode =
Next :: TreeListNodeName option 
Prev :: TreeListNodeName option 
PTE :: PTEName 
Depth :: nat



record TreeListHeap =
Valid :: TreeListNodeName set
Heap :: TreeListNodeName =>■ TreeListNode

where TreeListNodeName and PTEName are uninterpreted types. These rep
resent pointers to list nodes and page table entries respectively.

The mapping operations in this model are closer to those in the implementa
tion. Unmap/flush iterate over the subtree unlinking nodes, map inserts a node 
into the list immediately after the destination node and grant replaces the source 
node with that of the destination in the list.

The following subtree relation can be used to connect the list to the tree 
model.

s (- i  h> j  =  (Next (Heap s x) =  [yj A x € Valid s)

[s b m m'\ Depth (Heap s m) < Depth (Heap s m')] =>■ s b m -~*T m

[s b m -~*T m'; s b m' >-> ma; Depth (Heap s m) <  Depth (Heap s raa)J
=>■ « b m 7 ma

The refinement relation then implies the equivalence of subtrees in the mod
els. We omit the page table and operations here, a complete description of this 
refinement step will be published in later work.

Further refinement will proceed by independent refinement of the list heap 
and page table to source level. There are a number of issues to address in this 
process, including a choice of suitable language for use in the refinement steps 
once we decompose operations into imperative code.

5 Conclusion

We have presented the initial stage of a refinement process to verify the virtual 
memory subsystem of the L4 microkernel. We have shown an abstract model of 
address spaces together with the operations on them that the kernel API offers. 
We have refined it into a tree-like structure that is conceptually closer to the 
data structures used in the kernel implementation.

The next step after refining the current stage into a linked list structure and a 
page table implementation will be source code verification. Even though we have 
not yet reached the implementation level, the process of building an abstract 
model and refining it has already had a beneficial impact on the L4 kernel. 
During the process of developing these models we have encountered and clarified 
a number of small ambiguities and errors in the reference manual, have identified 
unnecessary restrictions, and discovered small errors in the implementation.

Our activities in verifying the L4 kernel apart from the memory subsystem 
include building a complete abstract model of the L4 API that is executable and 
lends itself to simulation and exploration. We are also looking at how further



safety and security properties like confidentiality and information flow are best 
formulated in the context of the L4 model we are building.
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Abstract. XPath was introduced as the standard language for addressing parts 
of XML documents, and has been widely adopted by practioners and theoreticaly 
studied. We aim at building a logical framework for formal study and analysis 
of XPath and have to face the combinatorial complexity of formal proofs caused 
by XPath expressive power. We chose the Coq proof assistant and its powerful 
inductive constructions to rigorously investigate XPath peculiarities. We focus in 
this paper on a basic modeling of XPath syntax and semantics, and make two con
tributions. First, we propose a new formal semantics, which is an interpretation 
of paths as first order logic propositions that turned out to greatly simplify our 
formal proofs. Second, we formally prove that this new interpretation is equiv
alent to previously known XPath denotational semantics [20,18], opening per
spectives for more ambitious mathematical characterizations. We illustrate our 
Coq based model through several examples and we develop a formal proof of a 
simple yet significant XPath property that compare quite favorably to a former 
informal proof proposed in [18].

1 Introduction

XML [4] is now becoming the de facto standard for both representing structured docu
ments and exchanging information. This success impacts major parts o f the computing 
infrastructure such as the future world wide web, information systems, and databases. 
XPath [6] was introduced by the W3C [16] for specifying node selection, matching con
ditions, and for computing values from an XML document. XPath is part of other XML- 
related standards such as the transformation language XSLT [5], the modeling language 
XML Schema [12], the linking standard XLink [8] and the forthcoming XQuery [3] 
database access language, that is triggering considerable attention from big industrial 
players. Because o f its fundamental role, we see XPath as a cornerstone of XML tech
nologies.

Motivation. We aim at building a rigorous framework for formal study and analysis of 
XPath. This paper focuses on a basic modeling o f XPath data model, syntax and seman
tics as a first step toward a more ambitious goal, which is to axiomatize and characterize 
the containment and equivalence relations over XPath expressions. The first problem to 
address is the combinatorial complexity of proofs caused by XPath structure (e.g. cases 
analysis, structural inductions). The second problem is to handle incremental variations 
(and extensions) of the language fragment we want to deal with while maintaining the
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established properties. These two difficulties are clearly in favor of using mechanized 
proofs, but require a proof assistant offering powerful data structure modeling capa
bilities and providing a specialized language for building complex and modular proof 
tactics. We chose the Coq proof assistant [7] because o f (i) its powerful inductive con
structions, (ii) its type system and (iii) its tactics language. Another important point for 
the authors was the availability o f module abstractions (clearly in favor of large project 
developments) and also o f a very good documentation [2] that considerably eased enter
ing Coq’s arcanes. Last but not least, Coq is currently a large and active research project 
offering long term perspectives as well as a good support to a growing user community. 
Usually, proof assistants allow enforcing and verifying known mathematical results or 
proving simple but important algorithms. The authors expect from this exploratory work 
an ambitious step toward offering a common framework to theoreticians and engineers 
working around XML technologies. We consider XQuery as a potential target since it 
comes with a very large and complex formal semantics [11] while being probably too 
complex to support mathematical treatments without the help o f a scalable and typed 
proof assistant (for instance, proving a worthwhile weak type soundness for the query 
language, or reasoning formally about normalization and optimization).

Contribution. As a first result, we propose a new formal semantics for the XPath lan
guage, which is basically an interpretation of XPath expressions in first-order logic. One 
of the main advantages o f this semantics is that both paths and qualifiers get an unified 
interpretation; thus the general complexity o f proofs involving XPath interpretation is 
greatly reduced. The other expected benefit is to abstract over the usual computational 
vision and to focus on the intrinsic meaning o f the language. Our second contribution is 
a formal proof o f the equivalence o f semantics that enables further construction on top 
of this simple logical interpretation.

Related Work. The first version of the XPath specification [6], published in 1999, de
scribes the meanings o f XPath constructs and operators in more than thirty pages of 
english. A formal semantics o f XPath was given in 2000 by Wadler in [20]. This de- 
notational semantics inspired works on theoretical issues around XPath: rewriting [18], 
query containment [19] and algorithmic complexity [15]. However, this semantics con
veys a computational vision and has often been directly translated into poorly efficient 
functional algorithms [15]. Several authors adopted simpler semantics, focusing on 
boolean tests or tree patterns [13] thus missing the most innovative and core XPath 
feature: node-set selection. Recent work on the forthcoming XPath 2.0 language for
mally defined static and operational semantics [10]. While being able to deal with com
plex typing issues raised by substantial evolution o f the language specification, these 
semantics are probably too complex for being directly used in useful manual proofs.

Works on XPath containment and equivalence problems identified and conjectured 
complexity classes for several XPath fragments (see [17] for an overview). However, 
most o f these works rely on manual proofs-by-reduction that do not help for finding 
sound and complete algorithms on a significant XPath subset. On the opposite, we aim 
at building a logical and formal framework for studying XPath, and especially for in
vestigating XPath containment in a constructive way.
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Outline We first introduce XPath and its data model in section 2. Section 3 presents the 
basics of XPath semantics: query results, axes and node tests. A denotational semantics 
of paths inspired from established contributions is then described in section 4, which 
also highlights its drawbacks for formal proofs. Section 5 introduces our new logical 
semantics and illustrates the interest o f its Coq modeling through the demonstration of 
an XPath property. Before concluding, section 6 summarizes the formal proof o f the 
equivalence o f both semantics, constructed using the Coq proof system.

2 XPath Syntax and Data Model

A tree document model. XPath considers an XML document as a tree with several 
kinds o f nodes (root, element, text, attribute, namespace, processing instruction, and 
comment). The tree is built by a successful parsing o f a well-formed XML document. 
The tree contains only one root node, which has no parent, no attribute and no names
pace node, but that may have any other kind o f nodes as children. Only elements can 
have children. Nodes are fully connected using the relation that maps a node to its 
children, and the reflexive and transitive closure -h>* of this relation. Moreover, a total 
ordering relation between any two elements reflects the depth-first traversal order of 
the tree. We implemented this document model in Coq as two separate modules “XN- 
odes” and “XTree” that respectively define the types “Node” and “Tree” which we refer 
to in this paper.

XPath expressions. In their simplest form XPath expressions look like “directory navi
gation paths” . For example, the XPath expression

book chapter section

navigates from the root o f a document (designated by the leading slash “/” ) through 
the top-level “book” element to its “chapter” child elements and on to its “section” 
child elements. The result of the evaluation of the entire expression is the set o f all 
the “ section” elements that can be reached in this manner, returned in the order they 
occurred in the document. At each step in the navigation the selected nodes for that step 
can be filtered using qualifiers. A qualifier is a boolean expression between brackets 
that can test path existence. So if we ask for

book chapter section[citation]

then the result is all “ section” elements that have at least one child element named “cita
tion” . The situation becomes more interesting when combined with XPath’s capability 
of searching along “axes” other than the shown “children o f” axis. Indeed the above 
XPath is a shorthand for

/  child::book/child::chapter/child::section[child::citation]

where it is made explicit that each path step is meant to search the “child” axis contain
ing all children o f the previous context node. If we instead asked for

/  child::book/descendant::*[child::citation]
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Path p ::=  p /p  | p[q] | p i p | p PI p | (p) | a::Ar | X

Qualifier q :: =  (/ and g | (/ or g | not <7 | p \p C p | true | false

Axis child descendant self descendant-or-self 
following-sibling following parent ancestor 
preceding-sibling preceding ancestor-or-self

NodeTest N  ::=  n | * | text() | com m ent | element() 
| processing-instructionQ | node()

Fig. 2. XPath Abstract Syntax.

Our syntactic modeling in Coq is directly inspired from the abstract syntax. A cross- 
inductive set definition (see figure 3) models XPath expressions: _L, a, a::N  are path 
atoms and true, false are qualifier atoms, whereas other operators are binary construc
tors. The definition relies on the definitions o f “Axis” and “NodeTest”  which are simple 
set enumerations.

Inductive XPath : Set :=
— void : XPath
— top : XPath
— union : XPath —»■ XPath —»■ XPath
— inter : XPath XPath XPath
— slash : XPath XPath XPath
— qualif : XPath —»■ XQualif —»■ XPath
— step : Axis ^  NodeTest —»■ XPath 

with XQualif : Set :=
— not: XQualif —»■ XQualif
— and : XQualif —»■ XQualif —»■ XQualif
— or : XQualif —»■ XQualif —»■ XQualif
— leq : XPath —»■ XPath ^  XQualif
— _true : XQualif
— _false : XQualif.

Fig. 3. Set of all XPath expressions in Coq.

Paths inside qualifiers (as in ) are modeled through a syntaxic sugar: 

Definition path (p : XPath) : XQualif := not (leq p void).

At this stage, XPath expressions can be instantiated using functional notation, for ex
ample:

slash root (qualif (step child book) (path (step child chapter)))
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or even with the familiar infix notation:

book[chapter]

made possible by Coq’s notation mechanism and definitions of operators associativity. 
Although some syntactic properties can already be worked out, involving results of 
XPath expressions requires further modeling. We formalize and model the interpretation 
of XPath expressions in the next sections.

3 XPath Semantics: Basics

Result of an expression. The evaluation o f an XPath expression returns a node-set: an 
unordered collection o f nodes without duplicates. We chose to model a node-set in Coq 
as a custom list type (shown on figure 4) rather than a set. This is in order to cope 
with the “position()” feature in qualifiers [6] and sequences o f the forthcoming XPath 
2.0 language [1]. Indeed, the “position()” feature requires an ordered representation of 
selected nodes for filtering purposes. Moreover, XPath 2.0 handles node sequences (or
dered collections o f zero or more items, with possible duplicates) instead o f node-sets. 
Thus, our Coq modeling o f node-sets presently uses a list together with an associated 
predicate for forcing uniqueness o f nodes in the node-set.

Inductive NodeSet: Set :=
— empty : NodeSet
— item : Node —* NodeSet —* NodeSet.

Fig. 4. Coq modeling of node-sets.

Axes and node tests. The path step (a::N) is the most basic XPath construct that allows 
to navigate in the tree in order to retrieve a node-set. Its semantics relies on two func
tions /  and T  that respectively define the semantics o f an axis a and a node test TV. The 
navigational semantics of axes can be pictured using the tree document model (see fig
ure 1); and more formally defined using the parent/child relation (as usual -h>+ means 

), and the irreflexive ordering relation . The function retrieves a node-set 
starting from a context node :
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a /  (a)z
self { x j

child {y\x -e> y }
parent {y\y -e> x }

descendant {y\x y }
ancestor {y\y x }

descendant-or-self {y\x -•>* y }
ancestor-or-self (y\y -»*  x }

following-sibling {y\y € sibling(a-) y }
preceding-sibling {y\y € sibling(z-) A y <  x }

preceding {y\y «
following {y\x <£ y }
attribute {y\x —» y A is-attribute(j/)}

namespace {y\x —» y A is-namespace(j/)}
with sibling(a:)= {y\3z z —1> x  A z —•> y }

The node test part o f a step is useful to filter the nodes according to their kind. The 
function T  performs the test by attempting to match a node a; with the node test N used 
in the step, according to the table below. The matching depends on the axis used in the 
step:

N a T(a, N, x)
n
*
*
*

textQ 
comment 0  

processing-instruction() 
element 0  

node()

attribute
namespace

other

name(a;)='n-
is-attribute(z)

is-namespace(z)
is-element(z)

is-text(z)
is-comment(z)

is-pi(z)
is-element(z)

true

The functions and are directly translated into Coq definitions that drive our 
“XTree” document model. The composition o f /  and T  allows to define the interpreta
tion o f a path step, which is an essential aspect of path semantics.

4 Denotational Semantics of Paths and Qualifiers

A classic formal semantics o f paths finds its origins in [20], [18] and [19]. A formal 
semantics function S  computes the node-set selected by a path p starting from a context 
node in the tree:
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1edNodIthPat —> Set(Node)
<5[Ala: — root
S{±h 0
<%1 i P2jx Slpijx U % ] t
Sfp!np2jx {®1 I X \  e <S[pi]s A X \  e <S[p2]a:}
Sfp!/p2jx {x2 1 X !  e 5[pi]x a x 2 e }
<S[(p)]U <% !*
«%[<7]]U {;Ei 1 x\ e S M * a  Q M *J

:: {®1 1 x\ e  f (a ) x A T (a, N, a?i)}

The interpretation o f a qualified path p[q] uses the dual formal semantics function 
Q for qualifiers. Q returns the boolean evaluation of a qualifier q from a context node cc:

Q : Qualifier -  
Q [true] x 
Q [false]x
Q b i and mix
Qbi °rq.2h 
QMx 
Q[(«)L 
Qlnot olx 
Q[pi QP2jx

The implementation o f in Coq requires updatable definitions o f common set op
erations (union, intersection, inclusion) over previously defined node-sets. More inter
esting are the two XPath-specific constructs P1/P2 and p[q] that require an ordered 
evaluation of subterms. Indeed, the node-set retrieval driven by and the filter per
formed by respectively operate on the results o f and . This can be captured in Coq 
via two higher order functions. These functions abstract over the context node used for 
the evaluation o f and :

Fixpoint product (s : NodeSet) (fs : Node —> NodeSet) {struct s} : NodeSet := 
match s with
—  empty => empty
—  item a s1 => union (fs a) (product s1 fs) 
end.

Fixpoint filter (s : NodeSet) (fs : Node —► bool) {struct s} : NodeSet := 
match s with
—  empty => empty
—  item a s1 => if fs  a then item a (filter s1 fs) else filter s1 fs  
end.

The denotational semantics can then be modeled as a fixpoint that returns the node
set selected by a path p from a context node a; in a tree t as shown on figure 5.

Node Boolean 
true
falsefalse

Qlqilx v QlqJlx 
=  Q[not (p C _L)]X
=  QMU 
=  -|QMx 
=  5 fo iL  C Slp2Ix
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Fixpoint semanS ( t : Tree) (p : XPath)
(x : Node) { structp } : NodeSet := 
match p with
— void empty
— top XTree.roots t x
— slash p1 p2 => product (semanS t p1 x) (semanS t p2)
— union p1 p2 => union (semanS t p1 x) (semanS t p2 x)
— inter p1 p2 => inter (semanS t p1 x) (semanS t p2 x)
— qualif p1 q2 => filter (semanS t p1 x) (semanQ t q2)
— step a n=> filter (f a x  t) (test-node t n) 
end

with semanQ (t : Tree) (q : XQualif) (x : Node) struct q : 
bool := 

match q with
— _ true => true
— -false => false
— not q1 if semanQ t q1 x then false else true
— and q1 q2 => if semanQ t q1 x then semanQ t q2 x else false
— or q1 q2 if semanQ t q1 x then true else semanQ t q2 x
— leq p1 p2 => incl (semanS t p1 x) (semanS t p2 x) 
end.

Fig. 5. XPath Denotational Semantics in Coq.

At this stage, XPath interpretation can be used for studying properties involving 
query results. Consider for example the containment relation, which holds between two 
XPath expressions pi and P2 when the set o f nodes returned by pi is included in the set 
of nodes returned by , for all trees and context nodes. The containment relation can 
be formally modeled as follows:

Variable t:Tree. 
Variable x:Node.

Variable Sle : XPath —► XPath —► Prop.

Conjecture Sle sound: forall (p1 p2 : XPath),
Sle p1 p2 —► incl (semanS t p1 x) (semanS t p2 x)=true.

Conjecture Sle-complete: forall (p1 p2 : XPath), 
incl (semanS t p1 x) (semanS t p2 x)=true —> Sle p1 p2.

The general path equivalence relation , that holds between two paths that always 
have the same interpretation, can then be defined:

Inductive Sequiv: XPath —> XPath —> Prop :=
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—  seq: forall (p1 p2 : XPath), Sle p1 p2 —> Sle p2 p1 —> Sequiv p1 p2.

Identifying path equivalence classes is o f very first importance for simplifying gen
eral formal treatment o f XPath. The equivalence relation is particularly crucial for 
XPath normalization and rewriting issues (see [18] for an application motivated by 
streaming XML querying). In addition, both equivalence and containment relations are 
currently o f great interest for XML researchers notably because o f their implications 
for integrity constraints checking [9] and database query optimization [14]. Consider 
the following basic example: if Vp : XPathp\p = s P holds then p|p can securely be 
replaced by p for optimization purposes while preserving query semantics. Using the 
Coq modeling, the proof o f relies on two set-theoretic lemma (idempotence
of set union and reflexivity of set inclusion):

Lemma o p t : forall (p : XPath), Sequiv (union p p) p.
Proof.
intro;constructor; apply Sle-complete; simpl;rewrite union-idem;apply incLreflexive. 
Qed.

Now consider a more general XPath property, often named “qualifier flattening” , 
that was first given in [18]. This property basically states that nested qualifiers can be 
seen as paths:

Path [ [ ]] [ ] (1)

This property can be formulated as follows:

Lemma flatten-qualifs: forall (p p1 p2:XPath),
Sequiv (qualif p (path (qualif p1 (path p2)))) (qualif p (path (slash p1 p2))).

The Coq modeling o f the denotational semantics allows to prove this property. How
ever, using the denotational semantics in proofs means dealing with combined node-set 
computation and boolean evaluation. Indeed, the denotational semantics relies on node
set construction for evaluating paths and boolean evaluation for interpreting qualifiers. 
Subsequently, ad-hoc auxiliary lemma are required for characterizing these two differ
ent computational visions, together with their compositional peculiarities. As a conse
quence, a major drawback is that intrinsic complexity o f proofs becomes hidden behind 
numerous operational considerations. This causes rather long and complex proof terms. 
Consider for example the proof o f (1); it could begin with the following tactic applica
tions:

intros; constructor; apply Sle-complete. 
simpl.

This generates two subgoals that require to deal with mixed node-set construction and 
boolean evaluation (see appendix A). In the next section, we present a new simple XPath 
semantics designed to eliminate this computational overload.
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5 A Relational Semantics in First-Order Logic

We propose to translate an XPath expression p into a dyadic formula o f the first order 
logic (FOL). The semantics function defines the interpretation o f paths in the first 
order logic. Rp(x, y) holds for all pairs x, y o f nodes such that y is accessed from x  
through the path :

Path Node Node FOL

K p M l root
K p i m false

f t p b i E v f t p M
n PlP l r\P2f x = Kp\pirx AKp\p2]»
^ p | P l/P 2 l 3z K p lp tll  A R p[ r ]
K K pM K M l
K I p^ M K p M l ^ K M y35 a :: :

Pi y € f (a ) x A T (a ,N ,y )

The dual formal semantics function R g translates qualifiers into monadic formula. 
Rq (x) holds for all nodes a; such that the qualifier is true from the context node a;:

TZq : Qualifier — Node FOL

TZq [true] x true
Kq [false] x false
K g lq iand mix =  H-q [<Zllx A 7Zq |̂ 2]x
fcqlqi or qilx =  K q M x V K q M x
KqMx not
K q M h =  K M *

[not q\x =
TlqlPl 'QP'llx

PifrPi>

This semantics abstracts over the usual computation o f node-sets. It gives an unified 
interpretation o f paths and qualifiers. This enables further studying and manipulatation 
of XPath with an exclusive logical vision. The Coq implementation o f this semantics, 
shown on figure 6, basically translates an XPath expression into a logical proposition. 
Capturing XPath semantics using Coq’s basic “Prop” sort greatly reduces the complex
ity o f proof terms. Indeed, dealing with set-handling peculiarities (such as “product” 
or “ filter” ) is no more required. Proofs involving query results can be accomplished 
by using built-in Coq’s tactics. For example, let us model the containment relation (as 
“Rle” ) and the path equivalence relations = TC (as “Requiv” ) on top of this new logical 
interpretation:

Variable Rle : XPath —> XPath —> Prop.

Conjecture Rle sound: forall (p1 p2 : XPath),
Rle p1 p2 —> (forall y:Node, Rp t p1 x y —> Rp t p2 x  y).
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Fixpoint Rp ( t : Tree) (p : XPath) (x y : Node) {struct p} : Prop := 
match p with
— void => False
— top => s-in y (XTree.roots t x)=true
— union p1 p2 => Rp t p1 x y V Rp t p2 x y
— inter p1 p2 => Rp t p1 x y A Rp t p2 x y
— slash p1 p2 => exists z : Node, Rp t p1 x z A Rp t p2 zy
— qualif p q = > R p tp x y A R q tq y
— step an => (s-in y (f a x  t))=true A (test-node t n y)=true 
end

with Rq ( t : Tree) (q : XQualif) (x : Node) { struct q} : Prop := 
match q with
— _ true => True
— -false => False
— not Rqt qx
— and q1 q2 Rq t q1 x Rq t q2 x
— or q1 q2 Rq t q1 x Rq t q2 x
— leq p1 p2 => forall z : Node, Rp t p1 x z —> Rp t p2 x z 
end.

Fig.6. XPath Logical Semantics in Coq.

Conjecture Rle-complete: forall (p1 p2 : XPath),
(forall y:Node, R p t p 1 x  R p t p 2 x y ) —> Rle p1 p2.

Inductive Requiv: XPath —> XPath —> Prop :=
—  req: forall (p1 p2 : XPath), Rle p1 p2 —> Rle p2 p1 —> Requiv p1 p2.

The “ flattening qualifiers” property can now be expressed as follows:

Vp,pi ,p2 ■■Path p f c t e ] ^ P ^ P 2] (2)

As opposed to the lemma (1), the lemma (2) based on =  R can be proved with a few 
applications of Coq’s built-in tactics only:

Lemma flatten-qualifs2: forall (p p1 p2:XPath),
Requiv (qualif p (path (qualif p1 (path p2)))) (qualif p (path (slash p1 p2))).
Proof.
intros; constructor; apply Rle-complete; simpl; intros y H; elim H; 
intro H0; split; try assumption; intro H2;apply H1; intros z H3; elim H3; 
intros H4 H5; elim H5; intros H6H7;  [ elim (H2 H6); exists z —  elim (H2 H4)]; 
split; try assumption; intro H8;apply (H8 z);assumption.
Qed.

The reader will notice that the proof of (2) is even comparable in size with the 
manual proof o f (1), found in [18], that expands the denotational semantics:
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<Sb[P l[P2]]l ;* =  {x\\x-i.e Sfpjx  A Q [p i[p2]]U }
[ ]

=  { x i j x !  e  < S [p L  a  ( { x 2 |x2  e  < S [p i]U  A  (<S[p2] U  #  0 ) }  #  0 ) }

=  {x^ X ! E S l p l e  A  ( { x 2\x2 E < S [p il® i A l 3  e  <S[p2 l® 2 }  #  0 ) }
=  { x i j x !  e  <S[pl® a  ( < S [p i /p 2] U  #  0 ) }

[ ]

To summarize, the Coq proof system and our modeling o f XPath offer the major 
advantages we are interested in:

-  rigour o f a mechanized inference system in a precisely defined logic framework;
-  ability to tackle combinatorial issues by using tactic composition;
-  ability to achieve “ incremental proving” thanks to proof replaying and updating 

facilities.

Incremental proving is convenient since it allows to handle the XPath language progres
sively and to update the semantics accordingly. Last but not least, all these advantages 
come at a low cost when using our logical semantics, which greatly simplifies proof 
development.

6 Equivalence of Denotational and Logical Semantics

To ensure that the formal semantics function really captures XPath semantics, we 
built a formal proof with Coq that shows that denotational and logical semantics are 
equivalent:

Proposition 1. Equivalence o f  semantics. Mp: Path Vx,y :  Node, y E <S[pJ;e 7 £ p | p ]I

The proof uses the modelings presented in sections 4 and 5. Proposition 1 is formulated 
as follows:

Theorem sem-equivalence:
forall (p : XPath) (x y : N ode), s-in y (semanS t p x)=true <-> Rp t p x y .

Where “ s_in” simply tests the membership o f a node in a given node-set. Since paths 
are inductively defined, the proof naturally uses an induction on p. However, because 
the definition o f paths is cross-inductive with the definition o f qualifiers (see figure 3), 
a mutual induction scheme is used. It is required to prove property 1 for the inductive 
casep[g], otherwise not possible without assuming the dual property for qualifiers. The 
appropriate mutual induction scheme (XJ1) can be automatically built by Coq from the 
definition o f paths:

Schem e XJ1 := Induction for XPath Sort Prop 
with XJ2 := Induction for XQualif Sort Prop.
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The dual property for qualifiers is defined:

Definition sem-equivalence-for-qualifs (q : XQualif): Prop := 
forall x  : Node, (semanQ env t q x)=true «-> Rq t q x.

The proof o f proposition 1, whose skeleton is shown on figure 7, can then begin 
by applying the mutual induction scheme on p. We attempted to build the proof in 
a modular way, so that when XPath constructs are changed or added, proof parts of 
unchanged constructs remain valid. To this end, several tactics named “ Solve_X” are 
defined with the intent to deal with a particular subgoal o f the proof. The main proof 
body (see figure 7) consists in composing these tactics. Each tactic is applied in a way 
that either completely solve a subgoal or does not modify it at all. This allows to con
trol which parts of the proof require an update when the underlying definitions evolve. 
Each tactic first attempts to match the goal it is intended to solve and the corresponding

Theorem sem-equivalence:
forall (p : XPath) (x y : Node) , s-in y (semanS t p x)=true <-> Rp tp xy.
Proof. 
intro p .
pattern p in .
apply XJ1 with sem-equivalence-for-qualifs; intros; split;intros; 

try solve-void1;try solve _void2; 
try solve-top1; try solve-top2; 
try solve-union1; try solve-union2; 
try solve-inter1; try solve-inter2; 
try solve-product1; try solve-product2; 
try solve-qualif1; try solve-qualif2; 
try solvestep1; try solvestep2; 
try solve-not1; try solve-not2; 
try solve-and1; try solve _and2; 
try solve_or1; try solve_or2; 
try solve-leq1; try solve-leq2; 
try solve [simpl;auto]; 
try solve [simpl;reflexivity]; 
try solve [simpl in H;auto;discriminate]; 
try solve [simpl in H;auto].

Qed.

Fig. 7. Main body of the modular proof of semantics equivalence.

hypotheses. For example, the tactic named “ Solve_product1” (see figure 8) isolates the 
proof o f the first inductive case for the “product” construct, whereas the tactic named 
“Solve_product2” contains the proof o f the reciprocal property. In each tactic, the vari
able names used for matching purposes (e.g. strings after the “ ?” ) in the proof con
text directly correspond to the names that Coq would generate if the proof is manually 
achieved step by step. Preserving compatibility o f names is convenient for updating
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Ltac solve-product1:= 
match goal with
— H1: s-in ?y (semanS ?t (slash ?x 7x0) ?x1) = true,

H: (forall (gx0 gy : Node)(gt: Tree),
((s-in gy (semanS gt ?x gx0) = true) <-> Rp gt ?x gx0 gy)), 

H0:(forall (hx hy : Node)(ht: Tree),
((s-in hy (semanS ht ?x0 hx) = true) ^  Rp ht ?x0 hx hy))

Rp ?t (slash ?x ?x0) ?x1 ?y 
simpl in ; simpl in H1; 

assert (H2 := in-product1 y (semanS t xx1) (semanS tx0) H1); 
elim H2;intros x2 H3; elim H3; intros H3A H3B;exists x2; 
elim (H x1 x2 t); intros HE1 HE2; 
elim (H0 x2 y t); intros HF1 HF2; 
split; [ apply HE1;assumption —apply HF1;assumption] 
end.

Fig. 8. A tactic for solving a specific subgoal.

proofs, as the proof script can simply be copied and pasted to and from the proof en
gine. Tactics can use auxiliary lemma that characterize peculiarities o f the denotational

Lemma in-product1: forall (y : Node)(s : NodeSet)(f :Node—>NodeSet), 
s-in y (product s f)  = true —> exists z : Node, s-in z s=true A s-in y (f z) = true.
Proof. 
induction s;
[ intros; rewrite product-empty in H; rewrite insem1 in H; discriminate
— intros;simpl;cut ({s-in y (product s f)  = true} + { s-in y (product s f)  = false} );

[ intros HC; elim HC; intros HC1;
[ elim (IHsf); intros;

[ exists x; elim H0; intros; split;
[ apply in_sem5; assumption — assumption] — assumption]

—  exists a; split; [ apply insem2
— eapply in_Lunion;[ apply H; assumption — assumption]]]

—apply in_dec]].
Qed.

Fig. 9. Lemma for characterizing a peculiarity of the denotational semantics.

semantics. For example, the lemma “in_product1” , shown on figure 9 is used by the tac
tic “Solve_product1” (figure 8). “in_product1” basically states that when the result o f a 
path construct is not empty then at least one result node o f is used for evaluat
ing p2. This is proved using several trivial lemmas on node-sets pictured on figure 10. 
Proposition 1 allows to securely take advantage o f the logical semantics.
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Lemma product-empty : forall f  : Node —» NodeSet, product empty f  = empty.
Lemma insem1 : forall a : Node, s-in a empty = false.
Lemma insem2 : forall (a : Node) (s : NodeSet), s-in a (item a s) = true.
Lemma in-sem5 : forall (a b : Node) (s : NodeSet), s-in as = true —> s-in a (item b s) = true.
Lemma in-Lunion : forall (a : Node) (s1 s2 : NodeSet),
s-in a (union s1 s2) = true —> s-in a s2 = false —» s-in a s1 = true.
Lemma in-dec : forall (s : NodeSet) (a : Node), { s-in as = true} + {s_in a s = false}.

Fig. 10. Trivial lemma on node-sets used by proof of “in_product1”.

7 Conclusion

In this paper, we focused on a basic modeling o f XPath syntax and formal semantics 
for using the Coq proof system. We introduced a new formal semantics for XPath, that 
has two main advantages: first, it unifies path and qualifier interpretations. Second, it 
allows to focus on the intrinsic meaning o f XPath from a pure logic point of view. 
These advantages allow significant simplifications in formal proofs. In addition, we 
formally proved that this new interpretation is equivalent to the previously known XPath 
semantics.

Lessons learned. Modeling XPath within the Coq proof system has shown to be a good 
choice for building a scalable logical framework around XPath. Indeed, Coq’s tactic 
composition features are a realistic way to cope with combinatorial issues raised by 
XPath expressions. Moreover, Coq provides facilities for incrementally updating proofs 
when our XPath fragment evolves.

Future Directions We plan to take part o f this framework for studying longer and more 
complex proofs around XPath open questions. Especially, our intent is to axiomatize the 
containment relation over XPath expressions; and then to demonstrate the soundness 
and possibly the completeness of the relation. This characterization will strongly rely 
on the Coq modeling o f our logical semantics. After defining the relation, we plan to 
demonstrate the properties “Rle_sound” and “Rle_complete” presented as conjectures 
in section 5. The next step is to progressively extend the XPath fragment to support 
significant real world applications.
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if incl
(filter (semanS t pi x0)

(fun xi : Node => 
if incl (semanS t p2 x1) empty 
then false 
else true)) empty 

then false 
else true))

(filter (semanS t p x)
(fun x0 : Node =>
if incl (product (semanS env t p1 x0) (semanS env t p2)) 

empty 
then false 
else true)) = true

subgoal 2 is:
Sle (qualif p (path (slash p1 p2))) (qualif p (path (qualif p1 (path p2))))
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A bstract. We explore a machine-checked formalization of elementary 
group theory in constructive set theory. Our formalization uses an ap
proach where we start by specifying the group axioms as a collection of 
inference rules, defining a logic for groups. Then we can derive all prop
erties of groups from these inference rules as well as the axioms of the 
set theory. The formalization of all other concepts in abstract algebra 
is based on that of the group. The formalization we present was fully 
implemented in the MetaPRL theorem prover and all properties of the 
algebraic objects were formally derived in MetaPRL.

1 Introduction

The notions of abstract algebra are central to many areas of mathematics. A b
stract algebra lias also made many contributions to computer science, including 
abstract datatypes and object-oriented programming. Formalizing abstract alge
bra in a formal, automated system where proofs can be mechanically generated 
and verified is valuable: formalization of many areas of mathematics could be 
based on such abstract algebra theory; and formalization of many computer sci
ence concepts could be modeled after it.

O f course, we are far from being the first ones to work with abstract algebra 
in a formal system. For example, Gunter working with HOL [1] has proved group 
isomorphism theorems and shown the integers mod n to be an implementation of 
abstract groups [2]. Jackson has implemented computational abstract algebra in 
the NuPRL system [3,4,5]. And in IMPS [6] there is a notion of little theories [7] 
which they use for proving theorems about groups and rings. Kammiiller and 
Paulson [8] have proved Sylow’s theorem in Isabelle-HOL, a large proof that 
required mechanizing a great deal of group theory.

In this paper, we present a formalization of the abstract algebra concepts 
in set theory by axiomatization. This is a part of larger effort to explore differ
ent approaches to formalizing basic abstract algebra concepts to find out which 
approach works the best.

Currently most efforts of formalizing algebra using general purpose theorem 
provers are grounded in type theory. In practice, set theory, as the standard 
foundation for mathematics, may have an advantage over type theory. Since there 
is no extensive tradition of presenting mathematics in a type theoretic setting, 
many techniques for representing mathematical ideas in a set theoretical language



have to be reconsidered for a type theoretical language. In addition, there is 
much less variation among set theories, in which the well known formulations 
are defined by a small collection of axioms in the predicate calculus, and for 
practical purpose, are more or less equivalent [9]. In particular, set theory can 
often present a convenient framework for developing constructive mathematics 
using ordinary mathematical concepts.

It is the advantage of set theory over type theory and the fact that abstract 
algebra is traditionally defined in the language of set theory that motivated us to 
carry out our implementation of the axiomatization idea for formalizing abstract 
algebra in a set theory setting. The actual work was done in the constructive set 
theory of the MetaPRL system [10,11,12].

W e first specify the group axioms as a collection of inference rules, defining 
a logic for groups. Then we can tell what it means for a given set together with 
a binary operation to be a group, and derive all properties of groups from these 
inference rules as well as the axioms of the set theory. The formalization of other 
abstract algebra concepts, such as subgroups and homomorphisms, is based on 
that of the group.

W e have proved many theorems of group theory in MetaPRL. As a verification 
of the method and a good illustration of constructivity, such a machine-checked 
formalization plays an important role in our implementation. In the interest of 
space, we only give an overview of our formalization and sketch some proofs in 
this paper; more details can be found in [12,13].

Organization. Section 2 introduces our detailed formalization of group the
ory. Section 3 gives an example of a concrete group, provides a detailed discussion 
of some properties of our formalization, and suggests some alternative formaliza
tion approaches. Section 4 gives conclusions.

1.1 Constructive Set T heory and the C ZF  m odule in MetaPRL

Constructive set theory, initiated by John Myhill in 1975 [14], is a theory of sets 
that, among several others, provides a formal framework for the development 
of constructive mathematics. It is based on the standard first order language of 
classical axiomatic set theory and makes no use of constructive notions or ob
jects. Therefore the set theoretical development of constructive mathematics can 
employ the same ideas, conventions and practice as the set theoretical presenta
tion of classical mathematics. To explain the constructive notion of the set, Aczel 
introduced Constructive Zermelo-Fraenkel set theory, CZF [15], as a variant of 
MyhilFs constructive set theory and showed its constructiveness by interpreting 
it in M artin-Lof’s type theory [16], which was considered a precise foundation 
for the constructive approach to mathematics.

Hickey [17] formalized CZF in the MetaPRL logical framework and interactive 
proof assistant [10,11]. First, he implemented in MetaPRL a constructive Martin- 
Lof style type theory called IT T  (which stands for intuitionistic type theory) 
similar to NuPRL’s one [3]. Next, he derived the axioms of CZF from IT T . Since 
Aczel’s CZF theory is described completely explicitly with a collection of axioms,
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after sets and these axioms are encoded in MetaPRL’s CZF module, we can use 
them directly without referring to the type theory.

In CZF, all non-propositional elements of the set theory are sets; the num
bers and other structures are coded in the usual manner. Sets use an extensional 
equality; two sets are considered equal if they have the same elements. The fol
lowing concepts have been formalized in MetaPRL’s CZF module: extensional 
set equality si = s S2 , m em bership si Es S2 , first-order logic which includes 
the restricted quantifiers \/x € s s,P[x) and 3x e s s,P[x), and the unrestricted 
quantifiers \fsx.P\x\ and 3sx.P[x), subset si C s2, separation {./: Es s \ P{x\}, 
em pty set { } ,  singleton set {s }, binary union si U s 2 , general union Us, 
unordered pairing ( s i , ^ ) ,  and infinity (the natural numbers) u>. The sub
script s in the representations of si = s S2 , etc., means this is set theoretical 
compared with those type theoretic implementations in MetaPRL’s IT T  module.

Our formalization of abstract algebra is built on the basis of MetaPRL’s CZF  
implement at ion.

2 Formalization of Group Theory

2.1 Groups

In mathematics, a group {G, *) is defined as a set G together with a binary 
operation * defined on G that satisfies the following axioms:

G l .  * is associative: for any a,b,c € G, (a * b) * c =  a * (b * c).
G2. There is a left identity element e e  G such that for every a E G, e * a =  a. 
G3. For some left identity element e, there is, for every a €  G, at least one left 

inverse element a' such that a! * a =  e.

A  group must satisfy all of the group axioms; and all properties of groups are 
derived from these axioms. Inspired by this mathematical definition, we use a 
set theoretic axiomatization to formalize groups in CZF. That is, we first specify 
the group axioms as a collection of inference rules that any group should satisfy; 
then all properties of groups are derived from these inference rules as well as the 
axioms of CZF.

W e use term groups to denote “g is a group” which, theoretically, should be 
defined as a predicate satisfying axioms G l, G 2, and G3:

groups = f V®, y , z e  g.ear.(a; g.* y) g. * z = s x g. * (yg.*  z) A
Be e s g.c&r.Vx Es g.c&r.(eg. * x = s x A 3x' Es g-c&r.x1 g. * x = s e),

where g should be an ordered pair (car, *). In our current implementation though, 
we consider groups as an abstract concept with the meaning of “g is a group” . 
The reason for this is that MetaPRL’s CZF theory do not yet support ordered 
pairing. This works fine as far as this paper goes. In the future, however, if we 
need, for example, functors for groups, then we should unfold this definition of 
groups .
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In terms of g, we represent the four components of group g, carrier set, bi
nary operation, identity, and inverse operation, with terms car9, eg, *g, and '» 
respectively1, which altogether conform to a collection of axioms that are stated 
as inference rules in the formal system.

Gl, G2, and G3 must be included in the collection of axioms since they specify 
what groups are (see 5-7 in the list below). In addition, in the CZF setting of 
MetaPRL, some axioms about the well-formedness of the group terms are needed 
(as number 1 describes). Furthermore, the properties of binary operation, unary 
operation, etc. are usually taken for granted when working informally on paper; 
in a mechanized system, they must be stated explicitly, so axioms 2 through 4 
are necessary.

1. In the CZF set theory of MetaPRL, anything that is not a proposition should 
be a set: car9 and eg are sets; for any sets a and b, a *g b and a'g are sets.

F  b group9 F  b group9 F  b a is a set F  b b is a set
r  b car9 is a set ’ F  b a *g b is a set ’

r  b group9 r  b group9 F b a is a set
r  b eg is a set ’ F b a'» is a set

2. For *g to be a binary operation on car9, car9 has to be closed under *g, and 
exactly one element is assigned to each possible ordered pair of elements of 
car9 under *g, i.e., for any a,b,c € car9, if a =  b, then a *g c =  b *g c and 
c *g a =  e *g b.

F  b group9 r  b a is a set F  b b is a set F  b a, b e s car9 
r \ - a * g b Es carg

F b group9 r  b a is a set F  b b is a set F  b c is a set F  b a, b, c e s car9 
r  b a = s b => a * g  c = s b *g c

F b group9 r  b a is a set F  b b is a set F  b c is a set F  b a, b, c e s car9
r  b a =s b => c * g  a =s c *g b

3. Similarly, for '» to be a unary operation on car9, car9 has to be closed under 
'» and exactly one element is assigned to each element of car9 under '».

r  b group9 r  b group9 F  b a is a set F  b b is a set
r  b a is a set F  b a €s car9 F  b a €s car9 F  b b €s car9

r  b a!a e s car9 ’ F  b a = s b => a/» = s

1 In MetaPRL, input is in ASCII format, while output is pretty-printed so that it can 
be easily understood by those unfamiliar with the MetaPRL syntax. For example, we 
use carf't/} for the input of the carrier set of the group in the actual system. In this 
paper, we try to avoid the ASCII representations and instead use the pretty-printed 
forms of terms and definitions for clarity.

4



4. eg is in car3.
F b groupg 

F b eg €s car3
5. is associative.

F b group3 F b a is a set F b b is a set F b c is a set F b a,b,c € s car3
r  h a *g (b *g c) =s (a *g b) *g c

6. eg is the left identity.

r  h group3 r  h a is a set f h a € s car3
r  h eg *g a = s a

7. 'a is the left inverse operation.

r  h group3 r  h a is a set f h a € s car3
r  h a!» *g a = s eg

The above inference rules define the axioms for groups. For any instance of a 
group, we will need to verify the axioms. However, for general groups, many 
properties are immediate, such as the left inverse/identity is also the right in
verse/identity, and a*b =  a*c implies b =  c given a, 6, c € G for any group {G, *}. 
We also proved some theorems that are a little more complicated, such as the 
uniqueness of the identity and the inverse operation, and the unique solutions 
for linear equations a* x =  b and y * a  =  b in the group (G, *) where a,b € G.

In MetaPRL, these properties are proved in a straightforward way. The ba
sic idea is similar to that done on paper, but since MetaPRL is an interactive 
system and provides some automated reasoning, some proofs tend to be easier. 
Meanwhile, since CZF in MetaPRL is not yet sufficiently automated, some extra 
efforts might be needed in the proofs. For illustration, we present a proof of one 
of the theorems below.

Suppose we have already proved, from the axioms of groups and CZF, that 
the left inverse is also the right inverse and now we want to prove the left identity 
is also the right identity. First we need to add the statement of this theorem to 
the Czf_itt_group module:

r  b group r  b a is a set f b a € s car3
r  b a *g eg = s a

Our idea for proving it is

^  * 5  9̂ =s ® *9 9 *9 ^0 =s  ^  P )  ^  = s *g & = s

where the second equation holds because of the associativity of and the third 
holds because the left inverse is also the right inverse.

To prove it in the MetaPRL proof editor, we first need to replace eg with 
a'9 *g a, which can be done by a tactic setSubstT provided by MetaPRL’s CZF
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theory. The usage is setSubstT (si = a S2 ) i, which replaces all occurrences of 
the term si with S2 in clause i (i =  0 implies the conclusion). So we navigate to 
this rule and apply the setSubstT (eg = a u!a *g a) 0 thenT autoT tactic.2 

Two subgoals are generated. The first one,

r  h groups r  h a is a set F h o e ,  cars 
r  h eg = a a'9 *g a ’

is trivial since we have the axiom

r  h groups r  h a is a set F h a e ,  cars 
r  h a '9 *g a = a eg

and = a is symmetric. With the use of the eqSetSymT tactic provided by MetaPRL, 
this subgoal is proved.

As for the second subgoal,

r  b groups r  h a is a set F  h a £s cars
r h a * g  (a's *g a) = s a ’

we can utilize the associativity axiom G1 by applying the tactic setSubstT (a *g 
(a,g *g a) = s (a *g a!3) *g a) 0 thenT autoT, which generates a new subgoal

r  h groups r  h a is a set r  h a e s cars 
r  h (a*g a'9) *g a = s a ’

where a *g a'9 can be replaced with eg thanks to the right inverse property we 
have proved. After this substitution, we get the goal of proving eg *g a = s a, 
trivial by the left identity axiom G2. This completes the proof of the theorem. 

For a complete list of the theorems we proved, see [12].

2.2 Abelian Groups

With the elementary group concepts formalized, we can go ahead with formalizing 
the other concepts in group theory, such as the abelian group.

We define the predicate “g is an abelian group’' as

defabels =  groups A Va, b e 3 carg.(a *g b = 3 b *g a).

Since abels implies groups, all the properties of groups hold for abels.

2 The autoT tactic performs “automated” proving based on repeated application of
several “basic” tactics; and the infix function thenT is a tactical used for sequencing:
the proof first applies the substitution, and then applies the autoT tactic [17].
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2.3 Subgroups

A group can have multiple subgroups. For instance, both (Z, +) and (2Z, +) are 
subgroups of (Q, +). where Z is the integer set. 2Z is the set of even integers, 
and Q is the set of rational numbers. To specify a subgroup H of a group G, we 
need at least two parameters, one specifying the group G and another specifying 
the subgroup H. The predicate “h is a subgroup of gr' can be defined as

defsubgroup^ =  groups A groups A car/j, C cars A Vo, b €s car/j,.(a */j, b = s a*g b).

The last condition ensures that *h is the induced operation on car/j, from cars.
We proved that if subgroup^ g, then 1) carh is closed under *g; 2) e,h = s eg, 

and eg €s c a r 3) for all a €s carh, a!h = s a'9 and a’9 €s car

2.4 The Power O peration

Before formalizing cyclic subgroups and cyclic groups, let us study the “power” 
operation which is prerequisite for defining cyclic subgroups and cyclic groups. 

Suppose (G, *) is a group. For any element a € G, we define

as the power operation  of the group (G, *} based on a (a is the base).
To formalize it. obviously, we need to use mathematical recursion. However. 

MetaPRL’s CZF module does not yet have the integer set or arithmetic on inte
gers defined. Since the MetaPRL definition of CZF is derived from ITT. we can 
borrow the integers from ITT for use as the recursion variable, and also borrow 
the mathematical recursion rules from ITT. This is valid since the recursion pa
rameter is n, which means an is still a set given a is a set. In other words, under 
the mathematical recursion of ITT. a0, a1, a2, .... and a-1 , a-2 , ...  are still sets; 
all set properties and set operations can be applied to them. By doing this we can 
also utilize the arithmetic part in the MetaPRL type theory, which is currently 
much more complete than that in the MetaPRL set theory.

Now let us define the power operation in group g as:

where n is of the integer type in ITT and the recursion is also the one in ITT.
From this definition, we can prove, by induction, that the power operation 

has the following properties:

a * a * ... * a if n > 0
n
e if n =  0

a' * a' * ... * a' if n < 0
— n
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1. Well-formedness.

r  b groups F b a is a set F b n € Z 
r  b (an)g is a set

2. The membership is preserved.

r  b group3 r  b a is a set F b a €s car3 F b n € Z 
r  b ( a n )g €s car3

3. The power operation is functional, which means it computes equal set values 
for equal base arguments.

r  b group r  b a is a set F  b b is a set 
r  b a €s car3 F  b €s car3 f b n e Z  F  a = s b

r  b (an)g = S ( b n )g

Also, with the use of arithmetic rules in the ITT type theory, we can prove 

r  b groups r  b a is a set F b a €s cars f b r o g Z  F b n € Z
r  b ( a m )g * g  (a n )g = s (a m + n ')g '

2.5 C yclic Subgroups

The key to formalizing a cyclic subgroup H  of group G  generated by a is to build 
the carrier set H =  {an \ n € Z}  from a where aP is the power operation of group
G. Since it can also be described as the set of all elements in cars that are equal 
to a n for some n € Z, we use the separation axiom of CZF to define it as

sep(a; €s car3 | 3n € Z.x = s (an)g).

Note that we are using a type theoretic existential within the construction; the 
CZF implementation in MetaPRL allows this.

Now we define “h is a cyclic subgroup of g generated by a" as

defcycj5ubg/l<s<a = group/j A group3 A a € s car3 A Vo, b € s c&Th-(a *h b = s a *g b) A 
carh = s sep(a; €s car3 | 3n € Z.x = s (an)g).

Of course, the cyclic subgroup H of G  generated by a is a subgroup of G.
It can be easily proved here: since car  ̂ = s sep(a; €s car3 | 3n € h.x = s (an)g), 
any element in car  ̂ is also in car3. Thus, car  ̂ is a subset of car3. All the other 
requirements for H  to be a subgroup of G  are satisfied. So, we can conclude 
subgroup,^ from cycj5ubg/l s a.

Equivalently, we can also define cycj>ubg/l<s<a as

cycj5ubg/l<s<a =f subgroup/j^Ao €s csxghcsxh = s sep(a; €s car3 | 3n € Z.x = s (an)g).
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2.6 Cyclic Groups

A group G is cyclic if there exists a £ G such that for every x €  G  there is an 
integer n such that x =  an. We define it as

cycg =f groupg A 3a Es carg.Va; Es earg.3n € h.x  = , (an)g.

The existential quantifiers in the definition are constructive, so given eyegg, we 
know what its generator is and each element is to what power of the generator; 
on the other hand, to conclude eyegg, we need to find its generator first.

Since a cyclic group must be a cyclic subgroup of itself, when its generator is 
explicitly known, we can define “g is a cyclic group generated by a" as

def ,eyes g.a =  cye_subg g<g<a, 

which is equivalent to (by unfolding eye_subggg(l)

cycggxi =f group g A a Es carg A carg = , sep(a; Es carg | 3n € Z.x = s (an)g).

The last condition might look strange at the first glance. What it actually means 
is the carrier is such a set that any element in it is to some integer power of a. 

We proved that eyegg is equivalent to 3a Es earg.eyegg_a.
A cyclic group must be abelian, which is easy to prove formally. Suppose we 

want to conclude from eyegg that abelg. Since group g is cyclic, it has a generator 
a and for any two elements x and y of carg, there exist rn and n in Z such that 
x = s (am)g and y =,, (an)g. g is abelian requires

x * g y = s y * g x, i.e., (am)g *g (an)g = s (an)g *g (am)g.

We already have the result

r  h groupg r  h a is a set F a Es carg f h r o e Z  f h n G Z  
r  h (am)g *g (an)g = 8 (am+n)g ’

so it turns out that we need to prove

(am+n)g = s (an+m%, 

which is trivial by the commutativity of addition on integers.

2.7 Cosets and N orm al Subgroups

With the separation axiom, we define the left and right cosets as

lcoset/i g.a =f sep(a; Es carg | 3y Es carft.(x = s a *g y)), 

rcoseth.g .a =f sep(a; Es carg | By Es car/,,.(x = s y *g a)).

We need to specify the following inference rules for them: an element x is in 
lcoset .̂g.a if and only if it is in carg and there exists y Es ear/, such that x = , a*gy
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where subgroup^ and a €s car9; same with rcoset/l:9!a except that x = s y *g a. 
Both the left and right cosets are subsets of car9.

Then we define the predicate “h is a normal subgroup of g” as

defnormal_subg/l 9 =  subgroup,A  Va, €s car9.(lcoset/l!9!a = s rcosets,9,a).

We proved that all subgroups of abelian groups are normal.

2.8 H om om orphism s and Isom orphism s

Now let us look at the relationships between groups, which are generally exhibited 
in terms of a structure-preserving mapping from one group to the other.

For /  to be a mapping from H into G, it is required that: 1) f(a) is in G for 
any a in H; 2) exactly one element in G is assigned as f(a) for each a in H.

So, we define “/  is a homomorphism from H into G” as

homh,g,f =f group h A group g A Va, € s car^.(/(a) is a set A f(a) €s carg) A 
Va, b €s car^.(a = s b =4> /(a ) = s /(&)) A 
Va, b €s ca iv (/(a  *h b) = s f(a) *g /(&)).

homh,gj  is functional in the sense that for any two equal mappings /  and / ' ,  
homh,gj  always implies homh,gj '-

To illustrate our formalization of the homomorphism, let us study a simple 
example—the trivial homomorphism, which is a mapping f e from a group H into 
a group G such that / e(a.) =  cq for all a € H. Suppose H and G are represented 
by h and g respectively. For any a, b € s car ,̂ f e(a) = s f e{b) = s eg, so f e{a) is a 
set, / e(a.) €s car9, and a = s b => / e(a.) = s f e{b). h is a group implies a *h b is in 
cai'h, so f e(a *h b) = s eg, which in turn is equal to eg *g eg = s f e(a) *g f e{b). All 
the conditions for homh,gj c are satisfied; homh,gj c holds.

Homomorphisms preserve group structure. Put differently, if /  is a group 
homomorphism from H into G, we might know the structure of G from that of
H. For example, /  maps the identity of H to that of G; it also maps the inverse 
of an element a in H to the inverse of /[a] in G. And if /  is onto and H is 
abelian, then G must also be abelian. In addition, if H\ is a subgroup of H, then 
the image f[Hi] of Hi under /  is a subgroup of G; if G\ is a subgroup of G, then 
the inverse image / - 1 [Gi] of G\ is a subgroup of H. We have proved all these 
properties of homomorphisms in MetaPRL.

Once homomorphism is formalized, the formalization for isomorphism is triv
ial since an isomorphism is a bijective homomorphism, i.e., it is a homomorphism 
that is one to one and onto. We define " /  : / /  • G is an isomorphism” as

isoh,g,f =f homh,gj  A Va, b € s carh-(f(a) = s f(b) => a = s b) A 
Va, € s carg3b €s car/,,.(a = s /(&)).
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2.9 Kernels

Given /  is a group homomorphism from H into G, the kernel of /  is the subgroup 
of H  whose carrier set is {x € H \ f(x )  =  ea}- To describe the homomorphism, 
three parameters are needed; we also need an extra parameter to specify the 
kernel itself. We define “k is the kernel of the homomorphism /  : h —► g" as

kernelfc./j.g.j =f homh.g.f A su bgrou p^  A car  ̂= s sep(:c Gs car/,, | f ( x )  = s eg). 

Noticing that
delsubgroup ,̂ h =  groupfc A grouph A car  ̂ C  car/, A Va, b Gs carfc.(a *k b = s a */, b),

where group/, is implied in houifigj ,  and car  ̂ C  car/, is implied in car  ̂ = s 
sep(:c £ s car/, | f ( x )  = s eg), we can update the kernel formalization to be

kernelfc,/,^/ =f hom/^gj A groupfc A carfc = s sep(:c Gs car/, | f ( x )  = s eg) A 
Va, b Gs carfc.(a b = s a */, b).

This definition implies that if kernelfc./,.s./ then subgroupfc /,.

3 Discussions

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

3.1 The Form alization o f  a Specific G roup

We have successfully formalized most of the fundamental concepts in group the
ory. Now the question is: under this formalization, given a set, a binary opera
tion, an identity, and an inverse operation, how can we know whether they form 
a group or not?

Recall the definition of a group. A group must sat
isfy all those axioms. So first we define car/,, */,, e/,, 'h as 
the given set, binary operation, identity, and inverse oper
ation respectively. Then without making the assumption 
grouph, check whether all the axioms of groups (number 
1-7 in Section 2.1) are satisfied. If not, we can conclude 
this composition is not a group at all. If yes, we conclude 
they do form a group and thus all the proven group prop
erties apply to it. The negative case is easy to understand.
For the positive case, let us examine a concrete example, 
the Klein 4-group, to illustrate this method.

The K lein 4-group contains four elements, its group table listed in Fig. 1.
Let us call the Klein 4-group M ein4 and declare k-Q, k\, k-z, k$ as its four 

elements. Its carrier set, binary operation, identity, and inverse operation can be 
defined as in Table 1.

With these definitions, we can verify that all of the group axioms are satisfied 
for kh i n without assuming groupfciein . For example, we can prove the axiom 
G2 for kh in

/ ' (I is a Set f h a e ,  C&Tklein*

Fig. 1. Group table 
of the Klein 4-group

r &klein4 * k l e i n .i & s &
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Hpf
carfc(e<„4 =  { fco}  U { f c i }  U { f e }  U {fc3}

def j
^ k l e i n  4  —  & O

k 0 k 0
def

k 0 k l  *k le in.i ^0
def

k i f e  *k le in ,4 k 0
def

fe k s  *k le in .4 ko
def

k s

k 0 *k le in 4 k i
def

k i k l  *k le in 4

def
k 0 f e  *k le in 4  k\

def
k 3 k s  *k le in.4 k\

def
k 2

k 0 *k le in 4 k-2
def

k 2 k l  *k le in 4  k ‘2
def

k-3 f e  *k le in 4  k ‘2
def

k 0 k s  *k le in 4  k ‘2
def

k i

k 0 + i;i t ; I 1 k-3
def

k-3 k l  *k le in .4 k s
def

k 2 f e  *k le 1 ri/i k s
def

k i k s  *k le in .4 k s
def

k 0

, 'Jciein 
k 0

1, def ^
' 0

j fkl
k x

e.i ti 1 def j 
4  =  fc] j fklc 

k 2
L n.4  def

' k 2
J 'kle.il
k s

7,4 def
k s

Table 1. Definitions for the Klein 4-group

First, since caxkiein* is defined as {£0} U {hi} U {£2} U {fe }, from the properties 
of union and singularity, it can be proved that if a Es caikieim-. then a must be 
equal to one of ko, k\, k2, ks. Then for each of these four cases, by definition,

&kleiti4 *kleitii k-i = s k$ *kle,in,t k-i = s k-i it =  0, 1, 2, 3).

All the other group axioms can be proved similarly for the Mein4 case. Thus we 
can conclude that this is a group and can make the hypothesis groupfcjei„ . As a 
consequence, all the group theorems apply for klein .̂

The other specific groups can be formalized in the same way.

3.2 Construetivity

Constructivity sometimes makes things harder, especially for work done with 
machines. For example, classically, there is a theorem “any subgroup of a cyclic 
group is cyclic.” The proving process for the nontrivial case (i.e., the subgroup is 
other than {e} where e is the identity) is assuming G is a cyclic group generated 
by a and H is a subgroup of G, then supposing m is the smallest integer in Z+ 
such that am e  H, and finally claiming and proving am generates H. One of 
the problems is that in order to assume that rn is the smallest natural number 
such that am e  H, we need to prove such m exists. In constructive mathematics, 
the validity of such an existential statement would imply being able to actually 
compute m. In a straightforward formulation like the one we have implemented, 
this is not generally possible (since the group membership could be undecidable).

On the other side, constructivity sometimes has advantages. For example, we 
can extract computational content from the proofs, which allows us to use our 
formalism for developing guaranteed correct formal abstract algebra algorithms 
by extracting them from proofs of existentials. However, algorithms extracted 
naively from proofs are often inefficient, as is the case for MetaPRL for now. 
Although Caldwell [18] and Nogin [19] demonstrate methods to address this 
problem, we have not explored this option in detail in MetaPRL.
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3.3 Limitations and Alternatives of the Formalization

As discussed above, our formalization of the foundations of abstract algebra
— mainly the group theory — is a success: All the major group concepts are 
formalized; whether a set-operation combination is a group or not can be decided; 
most theorems and properties can be proved effectively.

Compared with type theory, set theory is more natural in some cases in for
malizing algebra. For example, types use intensional equality, but we often care 
more about extensional properties of algebraic objects.

However, our formalization still has some limitations. For now, it is impossible 
to quantify over groups and to have sets of groups. But this can be easily fixed 
if we expand the definition of group9 as mentioned in Section 2.1, that is, we 
define a group as being an ordered pair of a carrier and a binary operation with 
axioms specifying the associativity of the operator, the existence of an identity 
element, and an existence of an inverse for each group element. Anther benefit of 
doing this is that we need no more to explicitly give names for the identity and 
the inverse operation. Besides, if we add universal levels to the CZF set theory, 
then we can also describe the category of all groups.

We tried to limit ourselves to pure CZF, although we still ended up using 
a few elements of type theory when some parts of MetaPRUs CZF theory were 
not yet implemented. It could be beneficial to try to clean that up and come up 
with a truly pure-CZF implementation. On the other hand, we may want to try 
to take advantage of the availability of the embedding of CZF into ITT in Meta- 
PRL by allowing ourselves to use the type theoretic concepts more freely in our 
formalization. This way we might be able to come up with some natural “hybrid” 
formalization where some aspects are formalized using set theoretic concepts and 
some using type theoretic concepts, picking the most natural approach in every 
case.

In addition, the formalization is somewhat awkward because typing axioms 
are not cleanly separated from the principal algebra axioms. We proposed another 
formalization method of abstract algebra in MetaPRUs ITT theory, which is 
based on the use of the dependent record type, and in which all objects are 
first-class and the type information is cleanly separated [20].

4 Conclusions

This paper presents a formal, mechanically verifiable account of foundations of 
abstract algebra in set theory. We use set axiomatization to formalize groups. 
Every group should agree with all of the group axioms and all properties of 
groups are derived from the group axioms and set axioms. We further formalize 
subgroups, cyclic groups, homomorphisms, and other concepts in group theory 
on the basis of the formalization of groups. Rings, fields and more advanced 
abstract algebra can be formalized in constructive set theory based on the group 
formalization.

Although our work is still elementary and has some limitations, overall the 
idea is natural (easy to understand), the formalization is easy to use (both for
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proving purposes and for extending purposes), and the limitations are more due 
to the incompleteness of our CZF implementation in MetaPRL than due to the 
inefficiency of this formalization method or the fault of the CZF theory itself. 
We believe it will have wide applications in the future.
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