
HERMIT: Mechanized Reasoning during Compilation in the
Glasgow Haskell Compiler

By

Andrew Farmer

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Chairperson Dr. Andy Gill

Dr. Perry Alexander

Dr. Prasad Kulkarni

Dr. James Miller

Dr. Christopher Depcik

Date Defended: April 30, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213413841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Andrew Farmer
certifies that this is the approved version of the following dissertation:

HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler

Chairperson Dr. Andy Gill

Date approved:

ii

Abstract

It is difficult to write programs which are both correct and fast. A promising approach, functional

programming, is based on the idea of using pure, mathematical functions to construct programs.

With effort, it is possible to establish a connection between a specification written in a functional

language, which has been proven correct, and a fast implementation, via program transformation.

When practiced in the functional programming community, this style of reasoning is still typ-

ically performed by hand, by either modifying the source code or using pen-and-paper. Unfortu-

nately, performing such semi-formal reasoning by directly modifying the source code often obfus-

cates the program, and pen-and-paper reasoning becomes outdated as the program changes over

time. Even so, this semi-formal reasoning prevails because formal reasoning is time-consuming,

and requires considerable expertise. Formal reasoning tools often only work for a subset of the

target language, or require programs to be implemented in a custom language for reasoning.

This dissertation investigates a solution, called HERMIT, which mechanizes reasoning during

compilation. HERMIT can be used to prove properties about programs written in the Haskell

functional programming language, or transform them to improve their performance. Reasoning

in HERMIT proceeds in a style familiar to practitioners of pen-and-paper reasoning, and mech-

anization allows these techniques to be applied to real-world programs with greater confidence.

HERMIT can also re-check recorded reasoning steps on subsequent compilations, enforcing a

connection with the program as the program is developed.

HERMIT is the first system capable of directly reasoning about the full Haskell language. The

design and implementation of HERMIT, motivated both by typical reasoning tasks and HERMIT’s

place in the Haskell ecosystem, is presented in detail. Three case studies investigate HERMIT’s

capability to reason in practice. These case studies demonstrate that semi-formal reasoning with

HERMIT lowers the barrier to writing programs which are both correct and fast.

iii

Acknowledgements

I read somewhere, once, that a dissertation takes a village. That is certainly true in my experience.

I am indebted to a great many people, both professionally and personally, over the last six(!) years.

Foremost, I would like to thank my advisor, Andy Gill, for providing me many opportunities

I did not even realize existed, and for tolerating my occasional divergences. I have learned an

incredible amount in my time as his student, and have always valued his guidance and support. I

definitely owe him a non-trivial amount of beer.

I was fortunate to have Neil Sculthorpe as a collaborator for much of HERMIT’s development.

I learned a lot from Neil, especially in regards to writing about research. Without his excellent

work, both on KURE and HERMIT itself, HERMIT would not exist as it does.

Thanks also to HERMIT’s first users: Michael Adams, Conal Elliott, and Paul Liu. Their

feedback was invaluable, and they were kind enough to put up with HERMIT’s ever-changing

APIs breaking their code. Thanks to Jim Hook for hosting me for a semester at Portland State

and enabling my collaboration with Michael Adams. To my peers and mentors, past and present,

in the CSDL lab (and elsewhere): Perry, Prasad, Garrin, Ed, Nick, Mark, Evan, Wes, Megan,

Brigid, Mike J, Nathan, Pedro, Laurence, Brent, Richard, Kevin, Tristan, Mike S, Justin, Jason,

Ryan, Bowe, and Brad. I learned something from each of you, and appreciate having been able to

work with you all at some point. Also thanks to the National Science Foundation, which partially

supported HERMIT under grants CCF-1117569 and DGE-0742523.

I could not have accomplished a great many things in life without the support of my parents,

who are some of the most selfless people I know. Thanks Mom and Dad, for everything. Thanks

also to my brother, Ben, who is someone I look up to, both literally and figuratively. To some great

friends: Austin, Bob, Michael, John, Derick, Amy, Jys, Jess, Beth, and a great many others. To

Larryville, for all the shenanigans, punctuated with the occasional running. Finally, to Karen, for

putting up with my absentmindness, for making sure I ate something besides fast food, and for

cheering me up when I was stressed out. I love you.

iv

Contents

1 Introduction 1

1.1 Reasoning . 3

1.1.1 Proving Properties . 4

1.1.2 Domain-Specific Optimizations . 6

1.1.3 Calculational Programming . 8

1.2 Contributions . 9

1.3 Organization . 11

2 Technical Background 14

2.1 GHC Plugins . 14

2.2 GHC Core . 16

2.2.1 Names . 17

2.2.1.1 OccName . 17

2.2.1.2 RdrName . 17

2.2.1.3 Name . 18

2.2.1.4 Var . 19

2.2.2 Dictionaries . 19

2.2.3 RULES . 20

2.3 KURE . 22

2.3.1 Transformations . 22

v

2.3.2 Monad . 23

2.3.3 MonadCatch . 24

2.3.4 Traversal . 24

2.3.4.1 Context . 25

2.3.4.2 Congruence Combinators . 27

2.3.5 Summary . 27

3 HERMIT Architecture 32

3.1 Plugin . 34

3.2 Kernel . 36

3.3 Plugin DSL . 37

3.3.1 Example Plugin . 39

3.3.2 Pretty Printer . 39

3.4 Shell . 41

3.4.1 Interpreted Command Language . 42

3.4.2 Scripts . 44

3.4.3 Extending HERMIT . 45

3.4.4 Proving in the Shell . 45

3.5 Invoking HERMIT . 46

4 Transformation 50

4.1 Example . 51

4.2 KURE . 58

4.2.1 Universes . 59

4.2.2 Crumbs . 60

4.2.3 The HERMIT Context . 63

4.2.3.1 Recording Bindings . 63

4.2.3.2 Accessing Bindings . 66

vi

4.2.3.3 In-scope RULES . 67

4.2.3.4 Paths . 67

4.2.4 Congruence Combinators . 68

4.2.5 The HERMIT Monad . 71

4.2.6 Conventions . 71

4.3 Names . 72

4.4 Folds . 73

4.4.1 Definition . 74

4.4.2 Implementation . 75

4.4.2.1 Tries . 75

4.4.2.2 TrieMaps . 76

4.4.2.3 α-equivalence . 78

4.4.2.4 Adding Holes . 79

4.4.2.5 Implementing Folds . 82

4.4.3 Applications . 82

4.5 Dictionary . 83

4.5.1 Fold/Unfold . 84

4.5.2 Local Transformations . 84

4.5.3 Creating and Finding Variables . 85

4.5.4 Constructing Expressions . 86

4.5.5 Navigation . 86

4.5.6 Debugging . 87

4.5.7 Composite Transformations . 88

4.5.7.1 Simplify . 89

4.5.7.2 Smash and Bash . 89

5 Proof 90

5.1 Example . 91

vii

5.2 Lemmas . 96

5.3 Equivalence . 97

5.4 Creating Lemmas . 98

5.5 Primitive Operations . 100

5.5.1 Redundant Binder Elimination . 100

5.5.2 Instantiation . 101

5.6 Lemma Universes . 103

5.7 Pre-conditions . 104

5.8 Lemma Strength . 106

5.9 Lemma Libraries . 106

5.10 Lemma Dictionary . 107

5.10.1 Lemmas As Rewrites . 107

5.10.2 Simplification . 109

5.10.3 Instantiation . 109

5.10.4 Strengthening . 110

5.10.5 Structural Induction . 110

5.10.6 Remembered Definitions . 112

6 Case Study: Proving Type-Class Laws 114

6.1 Example: return-left Monad Law for Lists . 116

6.2 Configuring Cabal . 118

6.3 Proving in GHC Core . 120

6.3.1 Implications . 120

6.3.2 Newtypes . 120

6.3.3 Missing Unfoldings . 121

6.4 Reflections . 122

viii

7 Case Study: concatMap 124

7.1 Introduction . 124

7.2 Stream Fusion . 126

7.3 Fusing Nested Streams . 129

7.4 Transforming concatMap to flatten . 132

7.4.1 Non-Constant Inner Streams . 133

7.4.2 Monadic Streams . 134

7.5 Implementation . 135

7.5.1 Multiple Inner Streams . 138

7.5.2 List Comprehensions . 139

7.5.3 Call-Pattern Specialization . 140

7.5.4 The Plugin . 141

7.6 Performance . 143

7.6.1 Micro-benchmarks . 143

7.6.2 Nofib Suite . 145

7.6.3 Performance Advantages of concatMap 147

7.7 ADPfusion . 149

7.8 Conclusions and Future Work . 152

8 Case Study: Making a Century 154

8.1 HERMIT Scripts . 155

8.2 Associative Operators . 157

8.3 Assumed Lemmas in the Textbook . 158

8.4 Constructive Calculation . 159

8.5 Calculation Sizes . 160

8.6 Reflections . 161

ix

9 Applications 162

9.1 Worker/Wrapper Transformation . 162

9.2 Optimizing SYB is Easy! . 165

9.3 Haskell-to-Hardware . 167

10 Related Work 170

10.1 Testing . 170

10.2 Automated Proof . 171

10.3 Semi-formal Tools . 173

10.4 Stream Fusion . 175

10.5 Design . 175

11 Conclusion 177

11.1 Reflections . 179

11.2 Future Work . 182

x

List of Figures

2.1 GHC Architecture . 29

2.2 The GHC Core Language . 30

2.3 Projection and Injection Transformations Provided By KURE 31

2.4 An Instance of Walker Defined using Congruence Combinators. 31

3.1 HERMIT Architecture . 33

3.2 HERMIT Plugin - Installed Core-to-Core Passes . 35

3.3 Kernel Request/Response Cycle . 48

3.4 Kernel API . 49

3.5 Plugin DSL - Transformation Functions . 49

3.6 Plugin DSL - Temporal Guards . 49

4.1 Mean.hs: Haskell Source for the Mean Example. 52

4.2 The Crumb Type. 62

4.3 Congruence Combinators for the Lam Constructor of CoreExpr. 68

4.4 Lookup Function for ExprTrie with Holes. 81

5.1 Tree.hs: Haskell Source for the Tree Example. 91

5.2 Congruence Combinators for Implication Clauses. 104

6.1 Laws Proven in the Type-Class Laws Case Study. 115

6.2 Test Added to Cabal Configuration File for containers. 119

xi

7.1 Stream Fusion HERMIT Plugin . 142

7.2 Micro-benchmark Performance Results . 144

7.3 Nofib Performance Comparison between foldr/build and Stream Fusion with the

concatMap->flatten Transformation . 145

7.4 Optimizing Equivalent Stream Pipelines for the vector Package. 148

8.1 Main Lemmas in the ‘Making a Century’ Case Study. 155

8.2 Comparing the Textbook Calculation with the HERMIT Script for Lemma 6.8. . . 156

8.3 Auxiliary Lemmas Proved in HERMIT during the ‘Making a Century’ Case Study. 158

9.1 The Worker/Wrapper Transformation . 163

xii

List of Tables

6.1 Summary of Proven Type-Class Laws. 122

7.1 Runtime in Seconds for the Nussinov78 Algorithm using ADPfusion and C. . . . 152

8.1 Comparison of Calculation Sizes in ‘Making a Century’. 160

xiii

Chapter 1

Introduction

Writing a program which is both correct and fast is difficult. Often, the clear, concise, ‘obviously

correct’ version of a program does not perform well. This is because such programs are, by nature,

written at a high level of abstraction. If better performance is desired, the program is usually altered

to specialize it in some way. Doing so results in a program which is typically more verbose, less

clear, and less obviously correct.

With effort, it is possible to establish that the fast version of the program is a refinement of the

correct version, providing assurance that the fast version is still correct. One example is the formal

verification of the seL4 microkernel [Klein et al., 2009], where an executable specification written

in the functional language Haskell [Peyton Jones, 2003] was transliterated into Isabelle/HOL [Paul-

son, 1989, Wenzel and Berghofer, 2012] using a custom translator. The result was then formally

connected to a fast C implementation. This required over 200,000 lines of proof and over 20

person-years of effort.

Even in smaller examples, formal verification such as this is often time-consuming, requiring

considerable expertise. Formal reasoning tools often require programs to be implemented in a

custom language for reasoning. In the case of seL4, the executable Haskell specification had to

be translated into Isabelle/HOL, and this translation itself later had to be verified. Tools which

actually target the desired language often only work for a subset of the language, making them

1

difficult to apply to existing programs, which may not have been written with the restrictions of

the tool in mind.

Due to the high costs of formal verification, the process is often instead performed semi-

formally, without a formal logic or machine checking the reasoning steps. This semi-formal rea-

soning is easier if the programs are implemented in a functional, rather than imperative, program-

ming language. In functional languages, computation is expressed using pure functions applied to

immutable, persistent values. Pure functions, the kind found in mathematics, cannot mutate their

environment. Reasoning about the behavior of pure programs is simpler due to the absence of this

mutable state [Hughes, 1989].

When practiced in the functional programming community, semi-formal reasoning is often

performed by hand [Sculthorpe and Hutton, 2014, Gibbons and Hutton, 2005, Bird, 2010]. The

source code of the correct program is transformed into the fast version using a series of correctness-

preserving steps, in a process known as program transformation. This offers a high assurance of

correctness, but results in an obfuscated program. By destructively modifying the source, access

to the intermediate results of the transformations is lost. Future modifications to the program must

be made on the now-obfuscated version, lest the transformations be painstakingly repeated.

When an attempt is made to record the intermediate results, it is typically done alongside the

code, either in comments or in an entirely separate document. Such pen-and-paper reasoning must

be kept up-to-date as the program changes over time, or the correctness assurances will be lost.

With nothing enforcing the connection between the recorded reasoning and the program, keeping

the reasoning up-to-date is an error-prone, manual process.

Nevertheless, semi-formal reasoning is popular due to its simplicity. This dissertation de-

fends the thesis that mechanizing semi-formal reasoning, during compilation, lowers the burden

of writing programs which are both correct and fast. It does so by investigating a solution, called

HERMIT, which mechanizes reasoning from within the Glasgow Haskell Compiler (GHC) [GHC

Team, 2014]. Haskell is a strongly typed, pure, non-strict functional programming language [Mar-

2

low, 2009]. Semi-formal reasoning is popular in the Haskell community. GHC is the flagship

Haskell compiler, representing the de facto Haskell language standard.

The decision to operate from within GHC makes HERMIT the first system capable of interac-

tively reasoning about the full Haskell language. Other tools for reasoning about Haskell programs

typically operate at the source level. They must necessarily contend with a large amount of syntax,

and rely on type inference to reason about types. HERMIT targets the syntactically smaller inter-

mediate language used by GHC’s optimizer, called GHC Core. GHC Core features explicit, local

type information, but is sufficiently similar to Haskell that the same reasoning techniques apply.

HERMIT can be used to prove properties about programs written in Haskell, or transform them

to improve their performance, in a style familiar to practitioners of semi-formal reasoning.1 It is

important that HERMIT is able to match the ease and abstraction inherent in pen-and-paper rea-

soning, as that is one of the major advantages of reasoning semi-formally. The included examples

and case studies demonstrate that HERMIT largely succeeds at this.

When reasoning by-hand, working with code larger than a few lines is both tedious and error-

prone. Syntactic manipulations muddle the clarity of the reasoning itself, and mistakes are easily

made. HERMIT mechanizes this manipulation, allowing the programmer to focus on what needs

to be done, rather than how to do it. Mechanization allows semi-formal techniques to be applied to

real-world programs with greater confidence. HERMIT can also re-check recorded reasoning steps

on subsequent compilations, enforcing a connection with the program as the program is developed.

1.1 Reasoning

HERMIT is a practical system, designed to be applied to real Haskell programs and to accomplish

real reasoning tasks which are currently performed semi-formally by the Haskell community. This

section provides concrete examples of three such semi-formal reasoning tasks. Each of the case

1This dissertation uses the term “proof” as shorthand for the notion of making a systematic argument about correct-
ness using an informal logic, as is done in traditional mathematical proofs expressed using natural language. Chapter 5
elaborates on this notion of proof.

3

studies included in this dissertation addresses one of these tasks, evaluating HERMIT’s effective-

ness at mechanizing them.

1.1.1 Proving Properties

It is common for programmers to state expected invariants about the code they are writing. These

properties may be part of the program specification, or generated documentation. They often serve

as sanity checks, or to facilitate a simpler implementation of key functionality. In Haskell, these

properties are common alongside type classes. That is, a given class states that all valid instances

must satisfy certain properties.

GHC allows a subset of these properties to be stated as rewrite rules which the optimizer at-

tempts to apply during compilation. This feature is commonly used by library writers to specify

library-specific optimizations. The rewrites themselves are typechecked, but no attempt is made to

verify their correctness. The assumption is that the programmer specifying the rules has verified

them separately.

Research into automated testing of these properties has spawned a number of tools to check

them mechanically. The most successful of these in the Haskell eco-system is Quickcheck [Claessen

and Hughes, 2000], and variants of Quickcheck are used in other languages, such as Erlang and C

[Arts et al., 2008, Arts and Castro, 2011]. Quickcheck allows the programmer to state equational

properties about their library, testing these properties on randomly-generated test vectors. As an

example, the following Quickcheck property states that reversing a list twice is equivalent to the

original list.

prop_reverse_reverse xs = reverse (reverse xs) == (xs :: [Int])

To test the property, Quickcheck generates random test vectors based on the types of the prop-

erty’s arguments. In this case, xs has been ascribed the type [Int], so Quickcheck generates random

lists of integers. User-defined datatypes can also be generated randomly by defining an appropriate

type class instance for the type.

4

This automated random testing is good at finding small counter-examples, but a successful test

is obviously not a proof of correctness. Combining random testing with code coverage increases

the assurance that all paths through the code were exercised by the test, but even that may not be

sufficient to catch subtle bugs.

Using the following definition of reverse, the property can actually be proven using structural

induction on the list type and simple equational reasoning.

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Since lists are a lifted type, the first base case is when xs is ⊥.

reverse (reverse ⊥)
{reverse is strict in xs}

= reverse ⊥
{reverse is strict in xs}

= ⊥

The other base case is when xs is the empty list.

reverse (reverse [])
{unfold reverse}

= reverse []
{unfold reverse}

= []

Finally, the inductive case. The argument to reverse is a non-empty list and the inductive

hypothesis is that the property holds for ys, the tail of the list.

reverse (reverse (y : ys))
{unfold reverse}

= reverse (reverse ys ++ [y])
{reverse (xs ++ ys) = reverse ys ++ reverse xs }

= reverse [y] ++ reverse (reverse ys)
{inductive hypothesis}

= reverse [y] ++ ys
{unfold reverse}

= reverse [] ++ [y] ++ ys
{unfold reverse}

= [] ++ [y] ++ ys
{unfold ++}

= [y] ++ ys
{unfold ++}

= y : ys

5

While performing this proof by hand is straightforward, it is informal in a number of ways.

First, there is no check against simple oversight on the part of the programmer. For instance,

such proofs often fail to consider the case for ⊥. Second, it uses a naive, inefficient definition

of reverse. This is common practice, as the naive definition requires less syntactic manipulation,

which is tedious to do by hand. However, this means the property has not been proven for the actual

implementation of reverse which is used in practice. It is possible to prove two implementations

equivalent by appealing to more reasoning. In general, however, two implementations may be

semantically different in subtle ways, such as when dealing with partial or infinite values. Third,

an auxiliary lemma stating how reverse distributes over ++ is assumed. Such lemmas may appear

obvious, but should also be proven.

HERMIT allows the programmer to perform such a proof similarly to how it it is done by

hand, but with mechanical support. HERMIT’s notion of structural induction automatically con-

siders cases where partial values matter. Auxiliary lemmas must be stated (and ideally proven)

explicitly before HERMIT permits their use. HERMIT’s tools for mechanizing the transformation

steps themselves lower the burden of manipulation, allowing the proof to be performed on the ac-

tual implementation with less tedium. HERMIT’s proof-checking is integrated into compilation,

meaning the proof can be kept up-to-date as the program changes.

1.1.2 Domain-Specific Optimizations

Modern compilers expend considerable effort to improve the performance of target code. This pro-

cess, known as optimization, is especially important for pure functional programming languages,

where the semantic model of computation differs significantly from the execution model of the

typical machine. Fortunately, pure functional programming languages are particularly amenable

to aggressive optimization due to the absence of mutable state [Peyton Jones and Santos, 1998].

Compiler optimizations fall on a spectrum of generality:

1. The most general optimizations apply to programs written in any language. Consider con-

stant folding, which is the elimination of computation which is completely statically known [Weg-

6

man and Zadeck, 1991]. Regardless of language, it is better to perform such a computation

once, at compilation time, rather than every time the program is executed.

2. More specific optimizations might apply only to programs in a certain class of languages.

One example from functional languages is lambda lifting [Johnsson, 1985], which may avoid

the repeated allocation of a closure by turning it into a top-level function.

3. More specific still are those that apply to a specific implementation of a functional language.

For example, GHC implements Haskell’s type class method dispatch using implicit dictio-

nary parameters [Jones, 1995]. Thus, its optimizer is keen to specialize functions to the

(statically-known) dictionary arguments.

4. Even more specific, an optimization may only apply to a certain library, and programs which

make use of that library. An example is Stream Fusion [Coutts, 2010], which optimizes

computations involving sequence data types, such as lists. The Stream Fusion technique

generally benefits programs that rely heavily on lists, but has no effect on programs which

do not. In fact, it may have a negative effect on certain programs, so it must be selectively

enabled.

5. Most specifically, an optimization may target only a specific program. Such an optimiza-

tion may be a form of specification refinement, where a clear, but inefficient, program is

systematically transformed into a more efficient, but obscure program.

Traditionally, a line is drawn between items 3 and 4. Those above the line are considered “gen-

erally useful” and included in the compiler’s repertoire. Those below the line are domain-specific

optimizations, as they only apply to a narrow class of programs and may pessimize programs to

which they do not apply. Since they are neither widely applicable or generally positive, these

optimizations are usually not implemented by the compiler.

However, domain-specific optimizations can have extraordinarily positive effects on programs

for which they are designed. As an example, the Stream Fusion technique, mentioned above,

7

regularly provides greater than 50% speedup on first-order, list-heavy programs [Coutts et al.,

2007].

Some compilers provide a means for specifying such an optimization. Indeed, GHC offers two

facilities for specifying domain-specific optimizations: rewrite rules [Peyton Jones et al., 2001] and

plugins, overviewed in Sections 2.2.3 and 2.1, respectively. Rewrite rules are easy to use, but their

power is limited. For instance, they can only pattern match on function application, meaning other

syntactic constructs, such as case expressions, cannot be transformed. GHC plugins are powerful,

providing direct access to the compiler’s intermediate representation of the program. Writing a

plugin, however, is daunting. It requires specialized knowledge of the compiler’s internal data

structures and methods. The plugin author must ensure that all invariants on these structures are

maintained, and that the compiler’s internal bookkeeping is accurate and up-to-date.

HERMIT, itself a plugin, offers the power of plugins without requiring the user to be an expert

on the internals of GHC. Rather than manipulating the compiler’s data structures directly, the

HERMIT user constructs an optimization by combining primitive transformations. Each primitive

ensures that it maintains the invariants expected by the compiler. HERMIT’s interface is both

interactive and scriptable. The details of an optimization can be explored interactively, then it can

be saved as a script and refined to address a broader range of programs. This makes HERMIT

well-suited as a prototyping tool for optimizations.

1.1.3 Calculational Programming

Combining the notions of proving properties and writing domain-specific optimizations is the prac-

tice of calculational programming [Hu et al., 2006, Bird, 2010]. This is when the programmer

writes a declarative specification of the program, then systematically refines it into an efficient

implementation. The goal of the original program is to be clear, concise, and “obviously correct”.

The goal of the refinement is to arrive at an efficient version of the program that is equivalent to

the original program in terms of correctness, but with better performance.

As an example, consider the following “obviously correct” definition of the mean function:

8

mean :: [Double]→ Double
mean xs = sum xs / length xs

This definiton is inefficient because it traverses the input list twice (once by sum, once by

length). Operationally, this means the list is resident in memory longer than necessary. A more

efficient version computes the sum and length of the list in a single pass:

mean :: [Double]→ Double
mean xs = sm / len
where (sm, len) = sumlength xs

sumlength :: [Double]→ (Double,Double)
sumlength [] = (0, 0)
sumlength (d : ds) = case sumlength ds of

(s, l)→ (d + s, 1 + l)

This definition is less obviously correct, but considerably more efficient2. Importantly, using

a series of equational transformations, one can derive, or calculate, the complicated, efficient defi-

nition from the simple, declarative one. This particular derivation is performed interactively using

HERMIT in Section 4.1.

Calculational programming is also known as equational reasoning (in the functional program-

ming community) [Hutton, 2007, Chapter 13] and specification refinement (more broadly). This

dissertation uses the term ‘calculational programming’ to be more precise in the presence of the

discussion of other types of reasoning. HERMIT’s ability to prove program properties and script

transformations makes it well-suited to this form of program refinement.

1.2 Contributions

Specifically, this dissertation makes the following contributions:

• It presents the design and implementation of HERMIT, a compile-time reasoning assistant

for the Haskell language. HERMIT is the first such system capable about reasoning about

the entire Haskell language, including language extensions. There are many pragmatic issues

to be solved when implementing a system like HERMIT, and this dissertation presents the

details of HERMIT’s solutions.
2Of course, this version is still not tail-recursive. Further refinements exist.

9

• It demonstrates that semi-formal reasoning can be mechanized at compile time at a level

of abstraction comparable to performing it by hand. This is evidenced by the examples in

Sections 4.1 and 5.1 and the case studies in Chapters 6 and 8, which find that transformation

and proof scripts in HERMIT largely correspond to their by-hand counterparts in both length

and form.

• It provides evidence that an interactive means of exploring optimizations, such as HERMIT’s

interactive interface, reduces the effort in developing such optimizations. HERMIT is used

to prototype optimizations in the case study in Chapter 7 and two projects in Chapter 9.

• It demonstrates that TrieMaps can be extended to support first-order pattern matching in the

map key. This functionality is used to implement HERMIT’s primitive expression folding

capability, which is central to several primitive transformations. A TrieMap is data structure

which implements a finite map whose keys are finite sequences, such as strings. TrieMap

implementations exist in several languages, including Haskell [Wasserman, 2013] and Scala

[Prokopec et al., 2012], but none have yet been extended in this way.

• The case study in Chapter 7 solves a long-standing practical limitation of the Stream Fusion

shortcut deforestation system by modifying GHC’s optimizer, via HERMIT, to fuse a key

higher-order sequence combinator. It allows users of Stream Fusion to write higher-order

sequence processing pipelines using modular, reusable combinators, instead of writing a

hand-fused loop, without loss of performance. Lifting this limitation allows Stream Fusion

to outperform competing systems in many cases in which it previously underperformed,

broadening its appeal.

10

1.3 Organization

The remainder of this dissertation is organized as follows.

Background

• Chapter 2 provides technical background sufficient to make this dissertation self-contained.

This includes an introduction to GHC plugins, the GHC Core language, and the University

of Kansas’ strategic rewriting language, KURE.

HERMIT’s Design and Implementation

• Chapter 3 presents the overall architecture of HERMIT, including the design of the HERMIT

plugin and HERMIT’s low-level transformation manager. It also describes HERMIT’s two

main user interfaces, the Plugin DSL and the HERMIT Shell.

• Chapter 4 details HERMIT’s support for program transformation. It begins with an example

transformation to provide intuition for HERMIT’s capabilities. It then describes HERMIT’s

support for transforming GHC Core programs using the KURE strategic rewriting language,

and the ability to rewrite expressions using other expressions as patterns. It concludes by

surveying the large number of primitive transformations that HERMIT provides.

• Chapter 5 describes HERMIT’s support for proving program properties. It presents an inter-

active proof example before describing HERMIT’s encoding of properties in detail. Proof in

HERMIT is accomplished by rewriting, in the style of natural deduction, and key transfor-

mations relevant to proving in HERMIT are examined in detail.

Primary Evidence

The case studies in Chapters 6 and 7 provide primary evidence of the utility of HERMIT.

• Chapter 6 presents a case study which uses HERMIT to prove type-class laws for data types

in the Haskell standard libraries. These laws are properties which are expected to hold for

instances of the type class but are not enforced by the type system. They are instead left as

11

proof obligations to the programmer which, when proved at all, are typically proved by hand.

The case study mechanizes these proofs using the actual data types and instances defined in

the standard libraries. It also shows how, once scripted, the proofs can be automatically

checked during subsequent compilation of the libraries, enforcing a correspondence with the

code as it changes over time. It concludes by reflecting on the pragmatics of performing

this kind of reasoning at compile-time. This case study, which was led by the author, was

investigated jointly with Neil Sculthorpe, a Postdoctorate Fellow at the University of Kansas,

and is currently under peer review.

• Chapter 7 develops a domain-specific optimization pass using HERMIT. Both the problem

and approach are presented in detail, along with key simplification steps necessary to ap-

ply the transformation in practice. These simplifications were developed empirically, using

HERMIT’s interactive capabilities to investigate the optimization as it happened. Users of

the optimization benefit by being able to express computation at a higher-level of abstrac-

tion, with greater safety, without loss of performance. This case study, which was led by the

author, was investigated jointly with Christian Höner zu Siederdissen, Postdoctoral fellow at

the University of Vienna, and published in Farmer et al. [2014].

Secondary Evidence

The case study in Chapter 8 and the projects in Chapter 9 reflect investigations where the author

played a critical supporting role as HERMIT expert, and are offered as secondary evidence of the

utility of HERMIT.

• Chapter 8 is a third significant HERMIT case study which mechanizes a calculational pro-

gramming derivation taken from a textbook on the subject. The proofs presented in the text-

book, along with many properties which were assumed, are mechanized with HERMIT. The

resulting properties are used to transform a program to improve its performance. The study

concludes by reflecting on HERMIT’s success at matching the level of abstraction found in

semi-formal derivations such as these. This chapter reflects joint work with Neil Sculthorpe,

12

a Postdoctorate Fellow at the University of Kansas, who led an earlier, unpublished version

of the case study. The study has since been significantly revised and extended by the author,

with Neil’s mentorship, and is currently under peer review.

• Chapter 9 gives a high-level summary of various other efforts which use HERMIT as a

central enabling technology, reflecting on HERMIT’s role and on the effect these efforts had

on HERMIT’s development.

Closing

• Chapter 10 provides research context about other systems for reasoning about programs in

Haskell and more broadly.

• Chapter 11 concludes, and reflects on HERMIT’s development. It also discusses potential

future work both on improving HERMIT, and on applying it to reasoning tasks.

13

Chapter 2

Technical Background

In order that this dissertation be self-contained, this chapter presents background material relevant

to the implementation and discussion of HERMIT. Knowledge of the Haskell language itself is

assumed, and discussion focuses on the architecture of the Glasgow Haskell Compiler (GHC),

GHC’s plugin system, GHC’s internal intermediate language (GHC Core), and the KURE strategic

rewriting language. HERMIT is implemented as a GHC plugin which uses KURE to transform

GHC Core.

Thoughout this dissertation, some GHC types will be replaced with more familiar, morally-

equivalent types for clarity. For example, GHC pervasively uses its own string representation,

which offers fast comparison and compact memory layout. As these details are not important for

the discussion of HERMIT, Haskell’s standard String type is used instead.

2.1 GHC Plugins

GHC, like most compilers, is structured as a sequence of compiler phases. Broadly, these can be

divided into the front end, which includes parsing, renaming, typechecking, and desugaring; the

optimizer, which is a series of passes that transform an intermediate representation of the program;

and the back end, which includes low-level optimization and code generation [Marlow and Peyton

Jones, 2012].

14

Figure 2.1: GHC Architecture

Figure 2.1 diagrams the major components of GHC. Arrows between components are annotated

with the intermediate representation used at that point. The front end primarily uses the HsSyn

type, which captures all of Haskell’s source syntax. HsSyn is annotated with the type of named

identifier used at that stage. Names are progressively refined by each stage in the pipeline, a process

described in Section 2.2.1.

15

The output of the front end is an intermediate representation of the program in the GHC Core

Language (Section 2.2). The optimizer is structured as a series of passes which accept a GHC

Core program as input and produce a new GHC Core program. The program produced by the

final optimizer pass is the input to the back end. While Figure 2.1 includes the back end for

completeness, this disseration focuses exclusively on the optimizer and those parts of the front-end

that are useful when reasoning about GHC Core Language programs.

GHC’s plugin mechanism allows the programmer to modify the list of optimization passes,

including inserting arbitrary passes between existing passes. A plugin itself is a function which

takes a list of command-line flags and a list of passes and returns a new list of passes, which are

then run by GHC. The CoreM monad provides access to global optimizer state, a unique name

supply, and IO; and collects statistics.

type Plugin = [CommandLineOption]→ [Pass]→ CoreM [Pass]

A plugin is only run once, and can only determine which passes GHC runs, and in what order.

It cannot, for instance, change the pass pipeline on a per-module basis. Once GHC begins running

the passes, the pipeline is fixed.

Each pass is a monadic computation in GHC’s CoreM monad.

type Pass =ModGuts→ CoreM ModGuts

A pass accepts and produces GHC’s ModGuts data type, which encapsulates all the details of

the GHC Core program. For the purposes of this dissertation, ModGuts can be thought of as a list

of top-level binding groups along with relevent information about the typing environment such as

type class instances [Wadler and Blott, 1989], type family instances [Chakravarty et al., 2005], and

GHC rewrite rules [Peyton Jones et al., 2001] which are in scope.

2.2 GHC Core

GHC desugars source programs into a strongly-typed intermediate representation called GHC

Core. GHC Core is an implementation of the System FC calculus [Sulzmann et al., 2007], which

16

descends from Girard and Reynolds’ System F [Girard et al., 1989]. System FC, and GHC’s im-

plementation via GHC Core, has evolved over time. Figure 2.2 presents the language of both terms

and types in System FC as it currently implemented within GHC.

Names in GHC Core are unique identifiers for both term- and type-level entities. Variables

are names which have been annotated with their type (or kind). Identifiers are term-level vari-

ables. Expressions are those typical to System F, including variables, literals, application, and

abstraction. As in System F, expressions may be abstracted over types, formalizing the notion of

parametric polymorphism. Accordingly, types may appear at the expression level as the arguments

to polymorphic abstractions. Abstractions may never return types, however.

System FC extends System F at the expression level with let-binding, abstract data, and type

casting. Types may be bound by non-recursive let-bindings, whereas values may be bound both

recursively and non-recursively. Abstract data is created by applying constructors. This data can

be deconstructed using a case expression, which binds the arguments of the matched constructor

in each case alternative.

Casts wrap an expression, changing its type. A cast requires evidence, in the form of a co-

ercion from the expression’s actual type to the desired type. These coercions are constructed by

the typechecker and manipulated by the optimizer. They support Haskell’s zero-cost type abstrac-

tion [Breitner et al., 2014a] and Generalized Abstract Datatype [Schrijvers et al., 2009] features.

Expressions may be abstracted over coercions. Thus, like types, they may appear at the term level.

The language of coercions are omitted from Figure 2.2 because the HERMIT user is gen-

erally not concerned with transforming coercions directly, relying instead on the correctness of

HERMIT’s rewrites for manipulating casts. It is sufficient to understand that coercions exist, and

are GHC Core’s means of passing around evidence of type equality.

Lastly, Ticks are used by GHC to annotate expressions with profiling and debugging infor-

mation. Ticks are both created by source-level annotations and generated automatically by the

front end based on compilation flags. While the optimizer has limited scope to move ticks, they

generally pass through unmolested to the back end, where they affect code generation.

17

n ::= String × Int Type- or term-level name

v , α ::= nτ Type- or term-level variables

l ::= ...machine literals ... Literals

Expressions
e ::= v Variables

| l Literals
| e1 e2 Application
| λ v . e Abstraction
| τ Type
| let b in e Let Binding
| case e as v return τ of alti Pattern Matching
| e B γ Cast
| γ Coercion
| etick Tick

Bindings
b ::= v = e Non-recursive

| rec vi = ei Recursive

Alternatives
alti ::=K vs → e Data

| l → e Literal
| DEFAULT → e Default

Types and Kinds
τ κ ::= α Variables

| τ1 τ2 Application
| T τi Type constructor application
| τ1 → τ2 Function
| ∀ α. τ Polymorphism
| L Type Literals

Type Literals
L ::= BIGN Integers

| String × Int Symbols

Figure 2.2: The GHC Core Language

18

At the type level, GHC Core features a flat type hierarchy. That is, types and kinds are encoded

using the same data types. Thus, features at the type level, such as polymorphism, are available

at the kind level. This supports Haskell’s datatype promotion [Yorgey et al., 2012] and kind poly-

morphism [Yorgey et al., 2012] features.

2.2.1 Names

GHC offers several notions of ‘named identifier’ at various stages of compilation (Figure 2.1).

While the optimizer, and thus HERMIT, primarily works with the Name and V ar types, it is

important to understand the other types used in the front end in order to discuss HERMIT’s notion

of names (Section 4.3).

2.2.1.1 OccName

An OccName, or occurrence name, is a pair of the string portion of a name and a namespace.

data OccName = OccName NameSpace String

The String is the unqualified, human-readable portion of the name. GHC currently enumerates

four possible namespaces: value-level, type-level, data constructors, and type constructors. Class

names are type constructors.

For instance, the unit type constructor () and its single data constructor () have the same string

representation as two parentheses. However, the appropriate namespace is inferred by GHC’s

parser from the context of the name as it appears in the program (as part of a type or expression).

2.2.1.2 RdrName

TheRdrName type, or reader name, pairs anOccNamewith information about where it is defined.

data RdrName = Unqual OccName
| QualModuleName OccName
| Orig Module OccName
| Exact Name

19

Unqualified names are just OccNames lifted by the Unqual constructor. They denote identifiers

defined in the current module. Qualified names, using the Qual constructor, pair an OccName

with a module name. This may be the module that defines the identifier or another module which

re-exports the identifier. The ModuleName type may be thought of as a string such as “Data.List”.

The remaining two constructors to RdrName are used internally by GHC. The Orig constructor

is used to generate reader names which point to an identifier from a specific module in a specific

package. The Module type is a pair of ModuleName and package identifier, meaning it is more

specific than a ModuleName alone. Whereas a Qual reader name will be resolved to a specific

package using a complicated set of rules regarding package visibility, an Orig reader name bypasses

this, specifying explicitly which package (and version) the module is found in.

The Exact constructor is used for built-in syntax, such as [] and (,), and for names generated by

Template Haskell [Sheard and Peyton Jones, 2002]. In these cases, GHC already knows the more

specific Name (Section 2.2.1.3), but may need to return a RdrName.

2.2.1.3 Name

A Name is a fully resolved, unique named identifier. It can be thought of as a triple of the

OccName, a unique integer, and the provenance of the name, denoted by aNameSort type. Eliding

the details of NameSort, it denotes the specific module and package a name is defined in, whether

it is visible externally, whether it was user- or compiler-generated, and whether it is wired-in to the

compiler.

data Name = Name NameSort OccName Int

The important aspect of Name is the integer, which serves as the globally unique identifier for

the name within a single GHC session, and is used for fast comparison. Multiple distinct reader

names may resolve to the same Name, but distinct Names refer to distinct entities. The unique

identifier associated with a given entity is cached, so if two Names are created which in fact refer

to the same entity, they receive the same unique identifier.

20

2.2.1.4 Var

A V ar pairs a Name with an associated type or kind. A value-level V ar is also called an Id, and

may contain additional metadata, such as arity and unfolding information. This metadata is stored

using the IdInfo type, and is attached directly to the Id in question so it is locally available.

The information in IdInfo is extensive. Unfolding information and GHC RULES (Section

2.2.3) for the Id contain entire expressions representing the desired replacement expression. It is

important to update this information appropriately during transformations. For instance, substitu-

tion must be done in the expressions appearing in IdInfo fields.

While creating new local Ids with no IdInfo is straightforward, the importance of proper

IdInfo means global V ars are looked up in a cache by Name. This cache is populated when GHC

loads the interface file for an imported module. Exported V ars are serialized into the interface file

in the back end.

2.2.2 Dictionaries

GHC Core supports Haskell’s parametric polymorphism [Strachey, 1967] with explicit type appli-

cation and abstraction. Similiarly, it supports ad-hoc polymorphism, embodied by the type class

language feature [Wadler and Blott, 1989], with explicit application and abstraction over class

dictionaries [Jones, 1995].

A dictionary is, conceptually, an n-ary tuple of functions implementing the n methods of a

given class for a specific type. Class methods are, in turn, selector functions, selecting the imple-

mentation for a given method from a given dictionary. A single dictionary value exists for each

instance of a given class. As the contents of the dictionary are entirely determined by the dictionary

type, dictionaries are implicit in Haskell.

As an example, consider the Functor type class and its instance for the Maybe type.

21

class Functor f where
fmap :: (a → b)→ f a → f b

instance Functor Maybe where
fmap :: (a → b)→Maybe a →Maybe b
fmap Nothing = Nothing
fmap g (Just x) = Just (g x)

In Haskell, the full type of the fmap class method is:

fmap :: ∀ f . Functor f ⇒ ∀ a b . (a → b)→ f a → f b

This type signature makes clear that fmap is parametrically polymorphic in types a and b, and

ad-hoc polymorphic in f , due to the Functor constraint.

The implicit arguments to fmap bound by the ∀s and to the left of the ⇒ become explicit

arguments in GHC Core. As the method implementation for a specific instance is carried by the

dictionary, fmap in GHC Core just projects that implementation out of the dictionary.

fmap :: ∀ f . Functor f → (∀ a b . (a → b)→ f a → f b)
fmap = λf $dFunctor → case $dFunctor of

Functor g → g

Lastly, compare corresponding applications of fmap in Haskell and GHC Core.

digitToInt :: Char → Int

-- Haskell
fmap digitToInt (Just ’5’)

-- GHC Core
fmap Maybe $fFunctorMaybe Char Int digitToInt (Just Char ’5’)

In GHC Core, all the implicit arguments to the application of fmap have been provided by the

typechecker. The first, third, and fourth arguments are types. The second argument is the concrete

dictionary for the Maybe instance of Functor. The remaining arguments are values. The ordering

of these arguments follows the order of their appearance in fmap’s type signature. In general,

GHC prefixes the names of dictionary binders with $d and concrete dictionary values with $f .

These prefixes have no special semantic significance, but provide a visual clue as to when a value

or binder has a dictionary type.

2.2.3 RULES

A compiler, even a sophisticaled one like GHC, is limited in the reasoning it can perform automat-

ically to ensure that a given program optimization is correct. The programmer, on the other hand,

22

has a much deeper understanding of their program. For instance, the programmer may know that

converting a finite map to a list of key-value pairs and back again will result in the original map.

∀ m . fromList (toList m) ≡ m

However, the optimizer cannot work this out itself, especially if the data structure used to

implement the map is at all complicated, which it is likely to be for performance reasons. A pro-

grammer is unlikely to do such a redundant conversion on purpose, but such situations commonly

arise as the result of aggressive inlining and simplification. Haskell’s (and GHC Core’s) purity

means GHC can be very aggressive about inlining and simplification, since it does not have to

worry about duplicating or reordering side-effects [Peyton Jones and Marlow, 2002].

Rather than maintain a large collection of ad-hoc rules about libraries like the one above, GHC

implements a general mechanism allowing the programmer to specify such properties in their

program using a RULES pragma. GHC then uses the properties as rewrites during simplification.

For instance, the above property can be specified using the following RULES pragma:

{-# RULES “toList-fromList” forall m . fromList (toList m) = m #-}

GHC will apply this property left-to-right whenever an expression matches the left-hand side.

Rules are not allowed to have pre- or side-conditions. Pattern matching is first order, with ∀-quantified

variables in the pattern matching the corresponding sub-expression in the target expression. Also,

the head of each side of the rule is syntactically limited to applications of known, in-scope func-

tions. GHC does not check that the rule is correct (because it cannot), thus an implicit proof

obligation is left to the programmer. In fact, GHC doesn’t even ensure that the set of rules in scope

is consistent or terminating. Thus, rules are intended to be used primarily by expert programmers

and library writers.

However, in practice, the use of rules is widespread in the Haskell community. Despite the

restrictions on form, a large number of useful properties can be expressed as rules. Again, purity

means a great many properties can be specified in Haskell syntax, without a meta-language for pre-

or side-conditions.

23

2.3 KURE

The Kansas University Rewrite Engine (KURE) is a strategic programming language, implemented

as a Haskell-embedded domain-specific language [Sculthorpe et al., 2014]. Strategic programming

is concerned with composing transformations over tree-structured data using strategies [Visser,

2005]. KURE supports rewriting strongly-typed data using typed transformations and strategies.

HERMIT uses KURE as its primary means of specifying and applying transformations to a

GHC Core program. KURE offers a principled means of performing typed generic traversals [Jeur-

ing et al., 2009] of mutually recursive data types while maintaining a rewriting context and han-

dling transformations with effects. It also comes with a substantial library of useful strategies for

common traversal and error-handling patterns.

This section will present KURE from the point of view of a KURE user, as this is the knowl-

edge needed to understand HERMIT’s implementation. Readers interested in the details of KURE’s

design and implementation are encouraged to read Sculthorpe et al. [2014]. Throughout, examples

will be presented for the following simple expression language:

data Expr = Var String | App Expr Expr | Let Bind Expr
data Bind = Bind String Expr

2.3.1 Transformations

The principle type in KURE is Transform, implemented as a function which accepts both a con-

text c and an expression e, and produces a result r in monad m.

newtype Transform c m e r = Transform {apply :: c → e → m r }

When the expression type e and the result type r are the same, a transformation is refered to as

a rewrite.

type Rewrite c m e = Transform c m e e

By convention, KURE transformations are suffixed with either R or T to indicate whether they

are rewrites or transformations, respectively. This mnemonic assists in reading dense KURE code.

24

KURE provides a number of smart constructors for transformations, some of which will appear

in code samples in this dissertation.

-- Build a Transform from a function.
transform :: (c → e → m r)→ Transform c m e r

-- Build a Rewrite from a function.
rewrite :: (c → e → m e)→ Rewrite c m e

-- Build a Transform that does not depend on the context.
contextfreeT :: (e → m r)→ Transform c m e r

Additionally, KURE offers several primitive transformations and strategies, including the iden-

tity rewrite idR, deterministic choice <+, and sequential composition≫.

idR ::Rewrite c m e

(<+) :: Transform c m e r → Transform c m e r → Transform c m e r

(≫) :: Transform c m a b → Transform c m b c → Transform c m a c

These primitives can be composed to produce more complex strategies. For instance, a strategy

which turns a potentially failing rewrite into one which always succeeds can be implemented as:

tryR r = r <+ idR

That is, tryR attempts to apply the rewrite r . If r fails, then the identity rewrite is performed.

2.3.2 Monad

The monad [Peyton Jones and Wadler, 1993] instance for KURE transformations is a reader trans-

former [Liang et al., 1995] where the environment is both the context and the expression to be

transformed. Note that the same expression and context are passed to each transformation by >>=.

instanceMonad m ⇒Monad (Transform c m e) where
return :: r → Transform c m e r
return = contextfreeT return

(>>=) :: Transform c m e r1 → (r1 → Transform c m e r2)→ Transform c m e r2
t >>= k = transform $ λc e → do r1 ← applyT t c e

applyT (k r1) c e

Thus, a series of transformations sequenced by >>= all have access to the same context and

input expression. To sequence a series of transformations in a pipeline, where each transformations

operates on the result of the previous transformation, KURE’s sequencing operator≫ is used.

25

2.3.3 MonadCatch

The most common effect required by transformations is failure, and catching failure. The ability

to fail is included in Haskell’s Monad type class, but the ability to catch failure is not. Correspond-

ingly, KURE introduces a subclass of Monad for this purpose, called MonadCatch.

classMonad m ⇒MonadCatch m where
catchM :: m a → (String → m a)→ m a

The String argument allows failure to include a message to the handler. This catchM primitive

is used to implement KURE’s deterministic choice operator at the general MonadCatch type.

(<+) ::MonadCatch m ⇒ m a → m a → m a
ma <+ mb = ma ‘catchM ‘ const mb

An instance of MonadCatch is provided for Transform, allowing <+ to be used on transfor-

mations as described in Section 2.3.1.

2.3.4 Traversal

The primitive traversal strategy in KURE is allR, which applies a rewrite to each child of the

current node. allR is overloaded in both the context type and the expression type.

classWalker c u where
allR ::MonadCatch m ⇒ Rewrite c m u → Rewrite c m u

As an example of defining a traversal in terms of allR, the following strategy, provided by

KURE, applies a rewrite to every node in a top-down (pre-order) traversal.

alltdR r = r ≫ allR (alltdR r)

Instances of Walker are typically not defined directly on the data type being traversed. Doing

so would limit allR to traversing a homogenous tree made up of a single type. In order to traverse

heterogeneous data (trees featuring more than a single type), the Walker instance is defined for a

universe type. A universe is a disjoint sum of all the types which need to be traversed.

For example, in order to rewrite all expressions in the language of Expr and Bind, the traversal

must be able to visit both Expr and Bind nodes. This is because expressions appear as children to

bindings. Thus, the universe for this task includes both types.

26

data EB = EBExpr Expr | EBBind Bind

Note that String is not included in the universe, so traversals do not descend into strings. The

ability to control which nodes in a tree are traversed based on their type is called static selectivity,

and is important for performance.

With a universe selected, two tasks remain. First, data must be lifted into the universe and

projected back out of it. Doing so is required because allR (and thus, any traversal) will only apply

to universe types. KURE provides a type class called Injection for this purpose.

class Injection a u where
inject :: a → u
project :: u →Maybe a

Note that projection from the universe can fail if the value is not of the desired type. While

static typing guarantees that allR only visits nodes in the universe, and that the rewrite argument

to allR can be applied to all nodes in the universe, it does not guarantee that the rewrite will not

transform a node from one type to another type in the same universe. This guarantee is made by

the dynamic type check implicitly provided by the project function. A rewrite over the universe

type which does not preserve the node type will fail.

Instances of Injection are trivial to define:

instance Injection Expr EB where
inject :: Expr → EB
inject = EBExpr

project :: EB →Maybe Expr
project (EBExpr e) = Just e
project = Nothing

Once such Injection instances are defined, the combinators in Figure 2.3, which are provided

by KURE, can be used to lift and lower both values and transformations between target data types

and their universe.

2.3.4.1 Context

The second task is to define a Walker instance for the universe. The Walker class is parameterized

over the context type so that allR can update the context as it descends the tree. Properly updating

27

injectT :: (Monad m, Injection a u)⇒ Transform c m a u
injectT = contextfreeT (return ◦ inject)

projectT :: (Monad m, Injection a u)⇒ Transform c m u a
projectT = contextfreeT (λu → case project u of

Nothing→ fail "projectT failed"
Just a → return a)

promoteT :: (Monad m, Injection a u)⇒ Transform c m a b → Transform c m u b
promoteT t = projectT ≫ t

extractT :: (Monad m, Injection a u)⇒ Transform c m u b → Transform c m a b
extractT t = injectT ≫ t

promoteR :: (Monad m, Injection a u)⇒ Rewrite c m a → Rewrite c m u
promoteR rr = projectT ≫ rr ≫ injectT

extractR :: (Monad m, Injection a u)⇒ Rewrite c m u → Rewrite c m a
extractR rr = injectT ≫ rr ≫ projectT

Figure 2.3: Projection and Injection Transformations Provided By KURE

the context in allR means all other traversals, which are defined in terms of allR, will automatically

update the context accordingly.

For this expression language, one might wish to maintain a collection of in-scope bindings in

the context, making them locally available to any rewrite.

type Context = [Bind]

Thus, a Walker instance for Context and EB can be defined. Notice the case for Let in

allRExpr , where the binding is added to the context while rewriting the let body.

instanceWalker Context EB where
allR ::MonadCatch m ⇒ Rewrite Context m EB → Rewrite Context m EB
allR rr = rewrite (λc u → case u of

EBExpr e → EBExpr $© allRExpr c e
EBBind b → EBBind $© allRBind c b)

where
allRExpr ::MonadCatch m ⇒ Context→ Expr → m Expr
allRExpr (Var s) = pure (Var s)
allRExpr c (App e1 e2) = App $© apply (extractR rr) c e1 ~ apply (extractR rr) c e2
allRExpr c (Let b e) = Let $© apply (extractR rr) c b ~ apply (extractR rr) (b : c) e

allRBind ::MonadCatch m ⇒ Context→ Bind→ m Bind
allRBind c (Bind s e) = Bind s $© apply (extract rr) c e

28

Transformations can now rely on this contextual information. As one example, an inlining

rewrite can be implemented which replaces variable occurrences with the corresponding expres-

sion.
inlineR ::MonadCatch m ⇒ Rewrite Context m Expr
inlineR = rewrite (λc e → case e of

Var s → case lookup s c of
Nothing→ fail "variable not in scope."
Just e2 → return e2

→ fail "not a variable.")
where

lookup :: String → [Bind]→Maybe Expr
lookup [] = Nothing
lookup s1 (Bind s2 e : bs)
| s1 == s2 = Just e
| otherwise = lookup s1 bs

This inlineR rewrite only handles the local case where the expression being rewritten is a

single variable occurrence. This is by design! Rather than write a traversal which handles all

the constructors of Expr by hand, inlineR can be lifted using one of KURE’s traversal strategies.

For instance, KURE’s anytdR strategy can be used to lift inlineR into a rewrite which inlines all

in-scope variables in a larger expression or binding.

inlineAnyR ::Rewrite Context m EB
inlineAnyR = anytdR (promoteR inlineR)

2.3.4.2 Congruence Combinators

Primitive transformations must also update the context. To reduce code duplication, it is recom-

mended that the KURE user define a set of congruence combinators for their target types. Each

congruence combinator can be thought of as a version of allR specialized to a particular construc-

tor, accepting one transformation for each interesting child of the constructor. For example, the

congruence combinators for the Let constructor are:

letT :: Transform Context m Bind a → Transform Context m Expr b → (a → b → d)
→ Transform Context m Expr d

letT t1 t2 f = transform (λc e → case e of
Let b e → f $© apply t1 c b ~ apply t2 (b : c) e

→ fail "not a let.")

letR ::Rewrite Context m Bind→ Rewrite Context m Expr → Rewrite Context m Expr
letR r1 r2 = letT r1 r2 Let

29

instanceWalker Context EB where
allR ::MonadCatch m ⇒ Rewrite Context m EB → Rewrite Context m EB
allR rr = rewrite (λc u → case u of

EBExpr e → EBExpr $© apply allRExpr c e
EBBind b → EBBind $© apply allRBind c b)

where
allRExpr ::MonadCatch m ⇒ Rewrite Context m Expr
allRExpr = appR (extractR rr) (extractR rr)

<+ letR (extractR rr) (extractR rr)
<+ varR

allRBind ::MonadCatch m ⇒ Rewrite Context m Bind
allRBind = bindR (extractR rr)

Figure 2.4: An Instance of Walker Defined using Congruence Combinators.

Similiar combinators can be defined for Var, App, and Bind. Note that letT updates the context

appropriately. Also note that congruence combinators are defined on the target type directly, not

on the universe type. This is because they are local, only rewriting the direct children of the current

node.

Figure 2.4 redefines the instance of Walker for EB using the congruence combinators, mak-

ing them the sole place where context updates must be explicitly made. This is the way KURE

recommends implementing allR.

2.3.5 Summary

To summarize, the KURE user must select a universe of types to be traversed, create a universe sum

type, create Injection instances, define a desired context type, and write an instance of Walker for

the given context and universe. It is recommended that the user also implement a set of congruence

combinators, one for each constructor, because they are useful to ensure the context is always

updated appropriately.

More than one universe may be used for a given set of types. Each universe may have different

traversal behavior, determined both by the types in the universe and the implementation of allR.

The user is free to write an instance of Walker that selectively traverses based on position instead

30

of type, only descending into the left-hand side of applications, for instance. Additionally, it is

possible to use more than one type of context. Having conguence combinators reduces the burden

of implementing multiple Walker instances.

31

Chapter 3

HERMIT Architecture

This chapter overviews the architecture of the HERMIT system. It describes HERMIT’s place

in the GHC optimization pipeline and the three levels of API provided by HERMIT: the kernel,

which is a low-level client-server interface; the plugin DSL, a monadic domain-specific language

for sequential transformation; and the Shell, a read-eval-print loop for interactive transformation

and proof.

Figure 3.1 summarizes the major components comprising HERMIT. The arrows in the fig-

ure indicate a depends on relationship. The first major component is the core of HERMIT. The

HERMIT core provides the interfaces and types for using KURE on the GHC Core Language. It

also implements the Kernel, which acts as the main transformation loop for a single HERMIT pass;

Folds, a means to use one GHC Core expression as a pattern for matching another expression; a

unified interface for names; Lemmas, which are the principal method of performing equational

reasoning in HERMIT; and a common API which unites various GHC functionality. The Kernel is

discussed in this chapter, with the remainder of the HERMIT core featuring in Chapters 4 and 5.

The second major component is the HERMIT Dictionary, a collection of commonly used trans-

formations on GHC Core. These include fundamental rewrites for folding, unfolding, and other

local transformations, as well as higher-level rewrites for reasoning, accessing GHC functional-

ity, debugging, navigating the AST, and constructing expressions. In essence, any transformation

32

Figure 3.1: HERMIT Architecture

33

provided directly to the user is defined in the dictionary, and it represents the majority of the user-

facing API for HERMIT. Capabilities of the Dictionary are highlighted in Sections 4.5 and 5.10.

The final two major components are the Plugin API and HERMIT Shell. The Plugin API im-

plements the functionality for scheduling HERMIT passes in the GHC optimization pipeline, and

is discussed in Section 3.1. It implements a small DSL for structuring HERMIT transformations

which involve multiple passes. This Plugin DSL (Section 3.3) is more powerful than the Shell

alone, and is intended primarily for creating automated HERMIT passes. The Shell (Section 3.4)

features a language that is less expressive, but safer, and is meant for interactive transformation and

proof. The two components are interdependent: the Shell can be invoked by a HERMIT plugin

and is itself built using the Plugin DSL.

3.1 Plugin

Recall from Section 2.1 that a GHC plugin is allowed to modify the collection of optimization

passes normally run by the optimizer, including inserting new passes. However, once the new list

of passes is handed back to GHC, there is no way to further modify the pipeline. Additionally,

when compiling multiple modules, there is no way to specify different pipelines on a per-module

basis, the same pipeline of passes is applied to every module.

Typical HERMIT use cases can require more flexibility. The programmer may wish to target

each module at different points in the pipeline, or skip some modules altogether, allowing GHC

to compile them as normal. The particular passes which HERMIT should target may not be stat-

ically known. It is also useful to be able to see the results of GHC’s own passes, especially when

constructing a domain-specific optimization.

To provide this extra flexibility, HERMIT inserts its own pass at every point in the pipeline

(Figure 3.2). Each pass, when invoked by GHC, may decide whether to act or immediately re-

turn the program unmodified. This decision can be made based on the module being compiled,

command-line flags, or the pass’s position in the pipeline.

34

Figure 3.2: HERMIT Plugin - Installed Core-to-Core Passes

In order to maintain a history of transformations across passes, including GHC passes, the

plugin creates a mutable, global AST store. This store can be empty if no transformation has yet

occurred. When populated, it is tagged with a module name, ensuring the transformation histories

of previously compiled modules are discarded after they are no longer useful. (GHC only actively

compiles one module at a time.) The store is mutable, because the design of the GHC plugin

system otherwise prevents HERMIT passes from communicating their changes to the store.

type GlobalStore = IORef (Maybe (ModuleName,ModuleStore))

When a HERMIT pass opts to transform a module, it will first select the ModuleStore for that

module. If no store exists, or the module store present belongs to another module, a new one is

created and inserted into the global store with the name of the current module being transformed.

typeModuleStore = IORef (Maybe (ASTId,ASTMap))

The module store itself is mutable, containing a unique identifier for the GHC Core program

returned by the previous HERMIT pass (ASTId) and a complete transformation history of that

35

program (ASTMap). If this is the first HERMIT pass in the pipeline, the store will be empty,

indicated by a Nothing value.

Recall that a single HERMIT pass is a ModGuts→ CoreM ModGuts function. The first thing

each pass does is add the input ModGuts to the store, attributing it to the GHC pass which just

completed (if any). This effectively versions GHC passes as if they were themselves monolithic

transformations. The last thing the pass does is update the store with the ASTId of its result, and

the updated transformation history.

This design presents a number of capabilities which are useful in practice, including access to

definitions and program properties from prior passes. As an example, the user may load a GHC

rewrite rule, prove it valid once in the first pass, then apply it throughout the rest of the pipeline,

without reloading or re-proving it.

3.2 Kernel

The kernel is HERMIT’s lowest level API. It acts as a store for snapshots of each version of the

GHC Core program being transformed, as well as arbitrating access to GHC’s shared state among

(potentially) multiple clients.

The HERMIT kernel is implemented using a client/server model. A single server loop, operat-

ing within the thread of the GHC optimizer, services requests from multiple clients. This server is

started by the hermitKernel function, which accepts a callback implementing the client.

hermitKernel :: (Kernel→ ASTId→ IO ())→ModGuts→ CoreM ModGuts

The server invokes this callback once, creating a separate thread and passing it a Kernel object

and a unique identifier representing the initial abstract syntax tree of the GHC Core program which

is being transformed. Figure 3.3 diagrams the request/reponse cycle of the client and server threads.

The Kernel object is a set of IO functions for making requests to the server, and is itself

stateless. Thus, it may be duplicated as necessary, allowing the single client callback to spawn an

arbitrary number of client threads. Figure 3.4 contains the full kernel client API.

36

Figure 3.3: Kernel Request/Response Cycle

Once partially applied to the callback function for the client, the hermitKernel function has

the type ModGuts→ CoreM ModGuts. Recall (from Section 2.1) that this is the type of a GHC

optimization pass. Note that the client callback is an IO computation, not a CoreM computation.

37

data Kernel = Kernel
{resumeK :: MonadIO m ⇒ ASTId→ m ()
, abortK :: MonadIO m ⇒ m ()
, applyK :: (MonadIO m,MonadCatch m)

⇒ RewriteH ModGuts → CommitMsg → KernelEnv → ASTId
→ m ASTId

, queryK :: (MonadIO m,MonadCatch m)
⇒ TransformH ModGuts a → CommitMsg → KernelEnv → ASTId
→ m (ASTId, a)

, deleteK :: MonadIO m ⇒ ASTId→ m ()
, listK :: MonadIO m ⇒ m [(ASTId,Maybe String,Maybe ASTId)]
}

Figure 3.4: Kernel API

The client is run in its own thread, which does not have access to GHC’s monadic state. Thus, all

transformations must happen in the server thread.

This is not an arbitrary restriction of HERMIT’s design, but rather intentional. GHC’s optimizer

relies on shared, often global, state for performance reasons, and is not designed to be multi-

threaded. A critical function of the HERMIT kernel is to multiplex requests from multiple client

threads into this single stateful GHC thread for transformation.

The other key function of the kernel server is to maintain a collection of KernelState objects

which are identified by unique keys. A client may ask to list the objects, delete an object, rewrite

an object, or query an object. Each KernelState object is a pair of GHC Core abstract syntax tree

(GHC’s own ModGuts type) and collection of HERMIT lemmas (Section 5.2).

data KernelState = KernelStateModGuts (Map LemmaName Lemma)

If a rewrite or query request modifies a KernelState object, it is saved with a new unique key.

Since KernelState objects may be added or deleted, but never modified, requests are idempotent.

3.3 Plugin DSL

The Kernel arbitrates access to GHC’s internal state and is used to define a single pass in the

pipeline. The Plugin DSL builds on the Kernel to allow the specification of an entire plugin,

38

determining the transformations to be applied and at what stage in the pipeline to do so. It was de-

veloped with domain-specific optimizations in mind, but it is also the primary means of extending

HERMIT (Section 3.4.3).

Domain-specific optimizations are typically automatic transformation passes. They consist of

applying one or more transformations in sequence, modifying the AST statefully. A transformation

may need to run in a specific optimization pass, or in multiple passes. HERMIT’s Plugin DSL is a

small, monadic language for expressing a linear sequence of transformations in one or more stages

of the pipeline.

The PluginM monad encapsulates the effects in the DSL. These include failure, and an ap-

propriate MonadCatch instance (Section 2.3.3); a reader for access to the Kernel and information

about the current pass’s position in the pipeline; state for the current ASTId, as well as pretty-

printer options; and IO. A hermitPlugin function is provided to lift a PluginM computation into a

GHC Plugin.

hermitPlugin :: ([CommandLineOption]→ PluginM ())→ Plugin

Note that this is at a higher level than the hermitKernel function defined in Section 3.2. The

PluginM computation provided to hermitPlugin is run for every HERMIT pass in the pipeline,

whereas hermitKernel is only used to define a single pass.

PluginM computations are constructed from a set of primitives which parallel those of the

Kernel interface in Figure 3.4, except that the ASTId and KernelEnv parameters are supplied

implicitly by the monadic state. These combinators are summarized in Figure 3.5.

The information summarizing the current pass in PluginM ’s reader environment allows the

computation to behave differently at different points in the pipeline. Temporal guards selectively

enable or disable a sub-computation by applying a predicate to this pass information. Unguarded

computations are run in every HERMIT pass (before and after every GHC pass). A selection of

commonly used temporal guards is listed in Figure 3.6. In the figure, the PassInfo type embodies

information about the current pass, including numeric position in the pipeline, a list of passes

39

abort :: PluginM a
resume :: PluginM a
apply :: (Injection ModGuts g ,Walker HermitC g)

⇒ CommitMsg → RewriteH g → PluginM ()
query :: (Injection ModGuts g ,Walker HermitC g)

⇒ CommitMsg → TransformH g a → PluginM a
list :: PluginM [(ASTId,Maybe String,Maybe ASTId)]
delete :: ASTId→ PluginM ()

Figure 3.5: Plugin DSL - Transformation Functions

guard :: (PassInfo→ Bool)→ PluginM ()→ PluginM ()
pass :: Int → PluginM ()→ PluginM ()
after :: CorePass → PluginM ()→ PluginM ()
before :: CorePass → PluginM ()→ PluginM ()
until :: CorePass → PluginM ()→ PluginM ()
firstPass :: PluginM ()→ PluginM ()
lastPass :: PluginM ()→ PluginM ()

Figure 3.6: Plugin DSL - Temporal Guards

already executed, and a list of passes that remain. The CorePass type is an enumeration type for

each type of GHC pass.

Finally, there are several utility combinators for displaying the current Core program and

changing the behavior of the pretty-printer. This is primarily to allow plugins utilize the debug-

ging combinators in Section 4.5.6. For instance, a plugin can dump an expression before and after

transformation, in a manner similar to GHC’s own debugging dumps, but with control over the

level of detail of the pretty-printed information.

3.3.1 Example Plugin

As a small example of the Plugin DSL in action, the following HERMIT Plugin observes the effect

of GHC’s Worker/Wrapper pass, which attempts to unbox function arguments based on strictness

information. Before and after the Worker/Wrapper pass, it pretty-prints the definition of each

function in the list, which is supplied via command-line flags.

40

To print each function, it finds a path to the definition of that function using the bindingOfT

transformation (Section 4.5.5), then pretty-prints the GHC Core expression at that location using

the observeT debugging transformation (Section 4.5.6). As the applied transformation does not

alter the Core program, there will be no change to the history maintained by the Kernel, so no

commit message is supplied.

module DumpWorkerWrapper where

import ...

plugin :: Plugin
plugin = hermitPlugin $ λopts → do
let printAll = query NoMessage $

forM_ opts $ λnm → do
path ← bindingOfT (cmpHN2Var (fromString nm))
localPathT path (observeT nm)

before WorkerWrapper printAll
after WorkerWrapper printAll

3.3.2 Pretty Printer

GHC implements a pretty-printer for the GHC Core language. This pretty-printer is used by vari-

ous debugging flags to dump the GHC Core program, or parts thereof, at different stages of opti-

mization, for manual inspection. This is primarily useful to performance-conscious programmers

trying to determine the effect of source annotations such as RULES, INLINE, and SPECIALIZE

pragmas citepSPJ:02:Inliner on optimization. It is also useful to GHC developers while developing

new optimization passes or diagnosing poor or unexpected optimization behavior.

With these use-cases in mind, the GHC Core pretty-printer is designed to display a lot of

detailed information in a reasonably compact format. Occurrence names are printed with their

unique identifiers, and identifiers from other modules tend to be printed with their fully-qualified

names. Type and dictionary applications are explicit, and the former is indicated with an explicit

@ symbol. Binders are annotated with types, and the structure of coercions is presented in detail.

Applications, even of infix operators, are in prefix notation. In general, it displays all available

information, and since this information is normally viewed in a terminal, or written to a file, no

syntax highlighting is used. As an example, the output for the expression (f ∗ t) + e <= c is:

41

(GHC.Classes.<=
@ GHC.Types.Int
GHC.Classes.$fOrdInt
(GHC.Num.+

@ GHC.Types.Int
GHC.Num.$fNumInt
(GHC.Num.* @ GHC.Types.Int GHC.Num.$fNumInt f t)
e)

c)

This pretty-printer is not well suited for interactive use because the output tends to be dense.

The density stems from the fact that it is inteded for post-mortem inspection. For interactive

use, the default pretty-printer should produce output which obviously corresponds to the source

program as much as possible. If more information is desired, settings can be modified and the

expression re-displayed. Also, since the actual data structures representing the expression are

available, information can be extracted in other ways besides pretty-printing.

To this end, HERMIT defines its own pretty printer which attempts to be more compact by

default. The expression above, rendered by HERMIT’s default settings, looks like:

(<=) N $fOrdInt ((+) N $fNumInt ((*) N $fNumInt f t) e) c

The green triangles are type expressions. Types are always displayed in green, to help distin-

guish them from terms. They appear as this abstract symbol by default so that the overall expres-

sion more closely resembles source-level Haskell, where type application is implicit. If the user

decides they wish to see the types explicitly, HERMIT can be instructed to do so.

(<=) Int $fOrdInt ((+) Int $fNumInt ((*) Int $fNumInt f t) e) c

Types and dictionaries can also be hidden altogether.

(<=) ((+) ((*) f t) e) c

This results in an expression which corresponds most closely with the Haskell expression.

This is useful at times for viewing large expressions, but hides details which are important for

navigation. For instance, in this view it is not obvious how many arguments the + function is

applied to, making navigation to a particular argument difficult. For this reason, HERMIT defaults

to the abstract view.

42

HERMIT’s pretty printer has several other optional views which can be enabled or disabled.

These include the ability to see the unique identifier for each variable (as in the GHC pretty-

printer); the ability to view the structure of coercions, or only the type of the coercion, or hide

coercions and casts altogether; and the ability to view the difference between two versions of the

program.

The rendering of the pretty-printer is also overloaded, allowing the output to be rendered in

ASCII (with no color or unicode symbols), unicode (the default), latex, JSON, or HTML. The

latter two have been used to build prototypes of rich browser-based clients for HERMIT, as they

are formats that are well understood by browsers.

HERMIT also permits the use of the GHC pretty-printer if desired. An additional third pretty-

printer displays the raw constructors of the datatypes which make up a GHC Core expression, and

is primarily used for debugging HERMIT itself.

3.4 Shell

An important HERMIT feature is the ability to explore a transformation or proof interactively.

The HERMIT user is free to experiment on their program, gaining intuition for the desired trans-

formation or proof. Interactive use occurs in a read-eval-print loop (REPL) style common to other

interactive theorem provers. The HERMIT REPL is called the HERMIT Shell because it is an

interface suited for use in a command-line terminal.

The implementation of the Shell is largely a matter of engineering, and not particularly relevant

to the discussion of HERMIT as a system. However, the capabilities offered by the Shell represent

a significant aspect of HERMIT’s user interface. With this in mind, the discussion in this section

is focused on what the Shell can do, and not necessarily how it is done.

43

3.4.1 Interpreted Command Language

The primary function of the Shell is to allow the user to easily apply transformations to a specific

part of the GHC Core program. To that end, the Shell maintains a focus into the program which

may be changed by navigation commands, similar to a cursor in a word processor. Each com-

mand is applied to the focused part of the program. When a command alters the focused part of

the program, it is redisplayed. When proving a property, that property is the focus of command

application, rather than the underlying program.

Commands are entered into the Shell in an applicative style using a small interpreted command

language. Expressions in the language are monomorphic, and the language itself is both strongly

and dynamically typed, with built-in support for ad-hoc polymorphism [Strachey, 1967].

The command language itself is made up of statements and expressions. Statements are de-

limited by semicolons or carriage returns. A sequence of statements is called a script. The parser

for this language is extremely liberal regarding the placement of statement separators in order that

scripts may use whitespace for organization, or themselves be generated.

Expressions may be fully-applied commands or infix operators, identifiers in the target program

(prefixed with an apostrophe), strings or names (such as GHC rewrite rule names), or a list of

expressions of the same type. Strings and names may optionally be enclosed in double quotes if

they contain whitespace.

A single statement is comprised of a top-level expression. A top-level expression is a fully

applied call to a command in the HERMIT Dictionary. The Dictionary is a list of dynamically

typed values which wrap monomorphic Haskell functions or values that implement the command.

Each of these values is principally a pairing of command name string and a Dynamic [Peterson]

value, plus additional metadata used for HERMIT’s internal command documentation.

type Dictionary = [External]
data External = E String Dynamic ... other metadata ...

An interpreter uses this dictionary to associate command names with a list of dynamically-

typed values. If a single command name is associated with multiple values, then all of the values

44

are possible interpretations of the command. The ambiguity is resolved during application, where

the number and types of the arguments determine which command was intended. If this ambiguity

cannot be resolved, or no command exists with the desired type, the expression is ill-typed. Thus,

commands in the language are ad-hoc polymorphic, or overloaded.

For example, given the expression foo bar, both foo and bar are looked up in the dictionary,

each returning one or more dynamic values. The values for foo are applied to the values for bar

in a cross product fashion. For any pair, if the application is ill-typed, the result of the applica-

tion, itself a dynamic value, is discarded. The result of the application is a list of one or more

dynamically-typed partial applications which can be applied to the next argument. If no arguments

remain, the interpreter attempts to cast each dynamic value in the list of results to one of a set of

known command types. The first such cast to succeed is the action taken by the Shell.

By convention, command names in the Shell are taken from the underlying KURE transforma-

tion which implements the command. To distinguish the two during discussion, KURE transforma-

tions are named in the camelCase style typical to Haskell, whereas the equivalent Shell command is

hyphen-delimited, in the style of Lisp. For example, the caseFloatArgR transformation is accessed

in the Shell using the command name case-float-arg.

This language is both simple and easily extensible, a capability explored in Section 3.4.3.

However, its lack of abstraction and parametric polymorphism, in particular, have become pain

points as the Dictionary has grown and HERMIT has been applied to ever larger examples. As

future work, it will likely be replaced by a full Haskell interpreter, in a manner similiar to GHC’s

own GHCi. This would allow the KURE transformations underlying the current commands to be

used directly, along with the full power of the Haskell language.

This replacement has not been made to date because running an in-process GHCi is problematic

for several technical reasons. In large part this is due to GHC’s use of global state internally, as state

relating to the target program would become mixed up with state relating to interpreting HERMIT

commands. A significant amount of refactoring of GHC itself, considered outside the scope of this

dissertation, would be involved in enabling this.

45

In any case, the deficiency of the Shell language relative to a full Haskell interpreter is not a

fundamental limitation of HERMIT itself. It has proven sufficient to accomplish a wide array of

proof and transformation tasks.

3.4.2 Scripts

Once a transformation has been performed interactively, it is important that the sequence of com-

mands can be saved and replayed on subsequent compilations. This replay ability is key to enforc-

ing a correspondence between the transformation script and the underlying program as it changes

over time. In the case of proving properties, the ability to replay a sequence of commands imple-

ments proof checking.

A HERMIT script is a sequence of Shell command statements. HERMIT provides commands

for saving, loading, and running scripts, as well as turning a subset of scripts into KURE transfor-

mations.

To save a script, the Shell follows the command history maintained by the Kernel from the

current version of the program to the initial version, recording the list of commands. The script

may be written out to a file, optionally including the focused expression as a comment between

each command to aid script legibility. By convention, script files are saved with the extension hec,

for ‘HERMIT Command’.

To load a script, the Shell reads a specified script file and parses the contents as statements. The

distinction between loading and running is that loading does not interpret the statements, merely

storing them under an associated script name. Once loaded, a script may be run, causing it to be

interpreted in the current context of the Shell session. This means scripts can be used as a primitive

means of abstraction for Shell commands, with identifiers in the script dynamically scoped.

A subset of scripts can be used to generate transformations that are added to the Dictionary.

This subset includes scripts that consist solely of a sequence of rewrites on the GHC Core ex-

pression in focus. Commands which extract information from the expression, or otherwise change

46

Shell behavior cannot be lifted in this way. This is useful for higher-order commands, as the

argument command can be constructed from a script.

3.4.3 Extending HERMIT

The Shell itself is implemented as a computation in the PluginM monad of the Plugin DSL. It

accepts a Dictionary of commands and a list of command line options.

interactive ::Dictionary → [CommandLineOption]→ PluginM ()

Command line options are interpreted as the filenames of scripts which should be run automat-

ically. The plugin that comes with HERMIT is defined thus:

module HERMIT where

import HERMIT .Dictionary (dictionary)
import HERMIT .P lugin

plugin :: Plugin
plugin = hermitPlugin (firstPass ◦ interactive dictionary)

The Shell may be used by user-defined plugins as well. For instance, a user may specify

a custom plugin which attempts a transformation and falls back on the Shell when an error is

encountered.
plugin :: Plugin
plugin = hermitPlugin $ λopts → firstPass $ do

apply NoMessage fooRewriteR ‘catchM ‘ (λ_errMsg → interactive dictionary opts)

To extend HERMIT, commands can be added to the default Dictionary included with HERMIT

before invoking interactive.

3.4.4 Proving in the Shell

To support proof, the Shell maintains a stack of proof obligations. This stack is initially empty,

but obligations may be added explicitly by the user, or implicitly by transformations (Section 5.7).

Whenever the stack is non-empty, the Shell considers the property on top of the stack to be the

focus of commands. Additionally, the Dictionary is extended to include commands which only

apply during proof, such as the ability to end a proof. When a proof is successfully completed, the

obligation is popped from the stack.

47

3.5 Invoking HERMIT

HERMIT installs an eponymous executable which is the primary means of starting the HERMIT

system. The only required argument is the name of the Haskell source file.

$ hermit Foo.hs

This executable is a simple option parser, turning a set of HERMIT flags into a set of GHC

flags, and is provided for convenience. An invocation of HERMIT is actually just an invocation of

GHC with the flags generated by this option parser. The above invocation of hermit becomes:

$ ghc Foo.hs -fplugin=HERMIT -fplugin-opt=HERMIT:*:

This invokes GHC on Foo.hs with a modified optimization pipeline which runs the Shell for

all modules targeted for compilation, in the very first pass. Thus, the user is operating on the result

of desugaring, before any other GHC passes are run. This is the default because the GHC Core

program at this point is most similiar to the original Haskell source, making this a useful point to

prove properties and perform calculational programming. The Shell’s position in the pipeline may

be altered with a flag.

Recall that the same pipeline is run on every module targeted for compilation, not just the one

contained by Foo.hs. In general, GHC compiles any modules included by the target file which

are in the same package and have changed since they were last compiled. A module-target flag

may be added to instruct HERMIT to target a specific module, including modules defined in files

besides Foo.hs.

$ hermit Foo.hs +Bar

This will invoke GHC as before, with the Shell as the first pass in the pipeline, but only for the

module named Bar . Any options or flags after the module-target flag are considered per-module

flags, up to the subsequent module-target flag. These per-module flags are the ones passed to the

callback function by the hermitPlugin function in Section 3.3.

The default HERMIT plugin invokes the Shell at the beginning of the pipeline. To invoke a

custom HERMIT plugin defined using the Plugin DSL, a -plugin flag may be specified after

48

the file name, but before any module-target flags. For example, the DumpWorkerWrapper plugin

defined in Section 3.3.1 can be invoked on module Bar while compiling file Foo.hs:

$ hermit Foo.hs -plugin=DumpWorkerWrapper +Bar

Note that, due to a technical restriction in GHC, the DumpWorkerWrapper module must be in-

stalled in GHC’s package database (using cabal install) before it may be used. Thus, custom

plugins are typically defined in separate packages from the code which they target.

49

Chapter 4

Transformation

At its core, HERMIT is a system for transforming GHC Core programs. HERMIT provides a large

set of standard transformations for this task, as well as the necessary supporting infrastructure

for a HERMIT user to define their own transformations. This chapter presents this infrastructure,

detailing key design decisions and capabilities.

It begins by walking through an example program transformation to give a feel for interactive

transformation in HERMIT (Section 4.1). It then discusses HERMIT’s chosen language for speci-

fying transformations, KURE. This includes motivation of the capabilities needed in a transforma-

tion DSL, why KURE was selected, and the infrastructure HERMIT provides for applying KURE

to GHC Core (Section 4.2). Next, it presents HERMIT’s notion of named identifier, which dif-

fers from GHC’s various name types (Section 4.3). Subsequently, HERMIT’s primitive expression

folding capability is described in detail (Section 4.4), as it is key to applying transformations which

are only known at HERMIT runtime, such as GHC rewrite rules (Section 2.2.3) or HERMIT’s

lemmas (Section 5.2). Finally, it closes with a survey of the HERMIT Dictionary, highlighting key

transformations as a means of demonstrating the scope of HERMIT’s transformation capabilities

(Section 4.5).

50

4.1 Example

One of HERMIT’s defining features is the ability to transform GHC Core programs interactively,

allowing the user to explore transformations in an ad-hoc manner and gain intuition for gen-

eral transformations from specific instances. This chapter informally introduces the reader to

HERMIT’s interactive transformation capabilities by performing a small example program trans-

formation.

The intent is to give a sense of HERMIT’s capabilities, and the reader is encouraged to install

HERMIT and follow along. HERMIT can be installed using Haskell’s package management sys-

tem, Cabal [Jones, 2005]. Assuming a working installation of the Haskell Platform [Coutts et al.,

2008], the following two commands are sufficient:

$ cabal update

$ cabal install hermit

To demonstrate this interactive capability, an inefficient definition of the mean function is trans-

formed into a more efficient version. The transformation begins with the following clear specifica-

tion of mean:

mean :: [Int]→ Int
mean xs = sum xs ‘div ‘ length xs

This definition is inefficient because it traverses the input list xs twice, requiring space linear in

the length of the list. After the first traversal, the entire list will be resident in memory, as it cannot

be garbage collected until the second traversal is made. The goal is to derive the following more

efficient version of mean using a series of correctness-preserving transformations.

mean :: [Int]→ Int
mean xs = case sumlength xs of

(s, l)→ s ‘div ‘ l
where sumlength :: [Int]→ (Int, Int)

sumlength [] = (0, 0)
sumlength (i : is) = case sumlength is of

(s, l)→ (i + s, 1 + l)

This version of mean is less-obviously correct, but more efficient because it only traverses the

input list once and, after GHC’s other optimization passes, requires only constant space.

51

module Main where

import Prelude hiding (sum, length)

mean :: [Int]→ Int
mean xs = sum xs ‘div ‘ length xs

sum :: [Int]→ Int
sum [] = 0
sum (x : xs) = x + sum xs

length :: [Int]→ Int
length [] = 0
length (x : xs) = 1 + length xs

main :: IO ()
main = print $ mean [1 . . 10]

Figure 4.1: Mean.hs: Haskell Source for the Mean Example.

HERMIT is invoked on the Haskell source file listed in Figure 4.1. Definitions for sum and

length are provided so the transformation is more concise for presentation purposes. An equivalent

transformation could be performed with the sum and length defined in the Haskell prelude.

$ hermit Mean.hs

This causes GHC to parse, typecheck, and desugar the Haskell source to GHC Core, which

HERMIT then presents to the user, along with a prompt.

module main:Main where
sum :: [Int] � Int
length :: [Int] � Int
mean :: [Int] � Int
main :: IO ()
main :: IO ()

hermit>

HERMIT initially presents a summary of the module, displaying only the type signatures of

top-level functions. In general, HERMIT’s pretty-printer displays types in the color green.

In order to transform mean, the rhs-of command is used to focus on the right-hand side

of mean’s binding. Note that names in the target code are prefixed with an apostrophe when

referenced in HERMIT command arguments.

52

hermit> rhs-of ’mean

λ xs � div N $fIntegralInt (sum xs) (length xs)

The div function, called in infix position in the Haskell source, is now in prefix position. div’s

first argument, displayed as a green triangle, is a type argument. In this case, the type is Int, but

HERMIT elides type arguments by default, instead using these triangular placeholders. Visually,

this helps maintain the correspondence to the Haskell source, while still indicating the type is

present. The $fIntegralInt argument to div is a dictionary (Section 2.2.2).

This example is not concerned with types, so they can be hidden altogether.

hermit> set-pp-type Omit

λ xs � div $fIntegralInt (sum xs) (length xs)

One of HERMIT’s crumb commands can be used to move into the body of the function (Section

4.2.2). Crumbs take their name from the idea of leaving a trail of bread crumbs. A sequence of

crumbs denotes a path in the abstract-syntax tree. HERMIT provides a crumb for each combination

of parent and child node. For instance, from an application node, one can descend into the function

with the app-fun crumb, or the argument, with the app-arg crumb.

hermit> lam-body

div $fIntegralInt (sum xs) (length xs)

The essence of this transformation is to return the result of sum and length in a tuple. HERMIT

provides a means of tupling let bindings, so the first step is to create let bindings for the applications

of the two functions. Rather than navigate down to the application expressions using crumbs, the

application-of navigation command is used.

hermit> { application-of ’sum ; let-intro ’s }
hermit> { application-of ’length ; let-intro ’l }

div $fIntegralInt (let s = sum xs in s) (let l = length xs in l)

HERMIT maintains a stack of foci in the AST. The open brace ({) pushes the current focus

from the stack, and the close brace (}) pops the top focus on the stack. In this case, HERMIT is

53

told to remember the current focus, move the focus to the application of sum (or length), introduce

the let expression, then return to the current focus. The semicolon is a statement separator.

Now to float the newly introduced let expressions outward, in preparation for tupling the bind-

ings. This is done with a general purpose let-float command, which floats let expressions

from several different kinds of expressions. A high-level strategy named innermost applies

let-float in a bottom-up manner. Whenever let floating succeeds, innermost will repeat

the traversal. An innermost traversal terminates when the given transformation no longer applies

anywhere in the AST.

hermit> innermost let-float

let l = length xs
s = sum xs

in div $fIntegralInt s l

The last bit of housekeeping is to reorder the bindings to the match the desired order of the tuple.

hermit> reorder-lets [’s,’l]

let s = sum xs
l = length xs

in div $fIntegralInt s l

Now to tuple the let bindings. Let tupling can be seen as the dual of case reduction, in that it

introduces a tuple constructor application, which is immediately scrutinized by a case expression.

Such a transformation is generally not implemented in an automatic program optimizer, because

it increases both allocation and runtime, but is necessary to proceed with the derivation. The ’sl

argument to let-tuple is the desired name for the case binder which will be introduced.

hermit> let-tuple ’sl

case (,) (sum xs) (length xs) of sl
(,) s l � div $fIntegralInt s l

The case scrutinee is an expression which builds a tuple of sum and length values using the

sum and length functions. The rest of the derivation calculates a more efficient function which

does this. To do so, we start by moving into the case scrutinee with the case-expr crumb and

abstracting it over the input list.

54

hermit> case-expr ; abstract ’xs

(λ xs � (,) (sum xs) (length xs)) xs

Now to name the new function and let-bind it. Recall that the app-fun crumb moves the focus

to the left-hand side of an application.

hermit> app-fun ; let-intro ’sumlength

let sumlength = λ xs � (,) (sum xs) (length xs) in sumlength

The intent is that sumlength will eventually be a recursive function. The let expression we just

introduced is non-recursive, so we descend into the let binding and convert it to a recursive binding.

hermit> let-bind ; nonrec-to-rec

rec sumlength = λ xs � (,) (sum xs) (length xs)

Before transforming sumlength in earnest, we tell HERMIT to remember the current definition

under the name “sumlen”. Remembered bindings can later be folded or unfolded, and make explicit

the notion of “looking up the page” in a pen and paper derivation. Recall that a recursive binding

group may contain multiple bindings. Even though this newly created group contains only one

binding, we must explicitly focus on it in order to remember it.

hermit> binding-of ’sumlength ; remember sumlen

sumlength = λ xs � (,) (sum xs) (length xs)

Moving into the function body, case-splitting on xs introduces a case expression with an al-

ternative for each constructor of xs’s type. The right-hand side of each alternative is the original

expression with xs replaced by the data constructor application making up the left-hand side of the

alternative.

hermit> def-rhs ; lam-body ; case-split-inline ’xs

case xs of w
[] � (,) (sum []) (length [])
(:) a b � (,) (sum ((:) a b)) (length ((:) a b))

Each application of sum and length is to a manifest data constructor, meaning we can perform

a bit of evaluation. We unfold both functions at each call site. The command we give can be read:

“at any application site, try unfolding either sum or length”.

55

hermit> any-call (unfold ’sum <+ unfold ’length)

case xs of w
[] �
(,) (case [] of wild

[] � I# 0
(:) x xs � (+) $fNumInt x (sum xs))

(case [] of wild
[] � I# 0
(:) x xs � (+) $fNumInt (I# 1) (length xs))

(:) a b �
(,) (case (:) a b of wild

[] � I# 0
(:) x xs � (+) $fNumInt x (sum xs))

(case (:) a b of wild
[] � I# 0
(:) x xs � (+) $fNumInt (I# 1) (length xs))

With the bodies of sum and length inlined, case reduction is possible in several places. Rather

than explicitly case reduce, we use simplify, which performs case reduction, dead let elimina-

tion, and other cleanup.

hermit> simplify

case xs of w
[] � (,) (I# 0) (I# 0)
(:) a b �
(,) ((+) $fNumInt a (sum b)) ((+) $fNumInt (I# 1) (length b))

The desired base case for an empty list is now established. We focus on the alternative for the

non-empty list which calls sum and length on the tail of the list.

hermit> case-alt 1 ; alt-rhs

(,) ((+) $fNumInt a (sum b)) ((+) $fNumInt (I# 1) (length b))

Again, we want to tuple these calls so we can replace them with a call to sumlength. As before,

we introduce let bindings for each call and float them upward.

hermit> { application-of ’sum ; let-intro ’s }
hermit> { application-of ’length ; let-intro ’l }
hermit> innermost let-float

let l = length b
s = sum b

in (,) ((+) $fNumInt a s) ((+) $fNumInt (I# 1) l)

As before, we reorder and tuple the let bindings, creating the case expression which projects

the results for the tail of the list from a tuple.

56

hermit> reorder-lets [’s,’l] ; let-tuple ’sl

case (,) (sum b) (length b) of sl
(,) s l � (,) ((+) $fNumInt a s) ((+) $fNumInt (I# 1) l)

Now the key step in this derivation. The case scrutinee is an instance of the body of sumlength

which we told HERMIT to remember. We can tell HERMIT to fold the remembered definition, re-

placing the instantiated body with an application of sumlength to the tail of the list. This eliminates

the calls to sum and length, and makes sumlength self-recursive.

hermit> { case-expr ; fold-remembered sumlen }

case sumlength b of sl
(,) s l � (,) ((+) $fNumInt a s) ((+) $fNumInt (I# 1) l)

Though the derivation is completed, for presentation purposes, we move the focus back to the

top of the module, then focus on the binding for mean, to view the result. The new sumlength

function is bound within the case scrutinee of mean, so we float it outward to make clear the

correspondence with the desired result.

hermit> top ; binding-of ’mean ; innermost let-float

mean =
let rec sumlength = λ xs �

case xs of w
[] � (,) (I# 0) (I# 0)
(:) a b �
case sumlength b of sl
(,) s l � (,) ((+) $fNumInt a s) ((+) $fNumInt (I# 1) l)

in λ xs �
case sumlength xs of sl
(,) s l � div $fIntegralInt s l

This example demonstrates the equivalence of the two definitions of mean using a series of

correctness-preserving transformations to transform one into the other. This sort of reasoning,

motivated in Section 1.1.3, can be seen as specification refinement. An executable specification of

mean has been refined into a more efficient implementation.

We performed this transformation interactively, though the derivation can be saved as a HERMIT

script for future use. To do so, we invoke the save command, which writes out the commands in

this session to a file.

57

hermit> save "Mean.hec"

[saving Mean.hec]

To run the derivation script automatically in the future and compile the transformed result, we

can invoke HERMIT on Mean.hs, telling it to target the Main module with the Mean.hec script,

resuming compilation if the script executes successfully.

$ hermit Mean.hs +Main Mean.hec resume

Since the hermit command itself is a thin wrapper which invokes GHC with special flags,

the derivation can be integrated into existing build scripts directly. This is discussed in detail in

Section 6.2.

The similarity between this interactive transformation and a pen and paper derivation is inten-

tional. Recall that the goal of HERMIT is to mechanize the sort of semi-formal reasoning Haskell

programmers already do, rather than to automate any given transformation (though HERMIT can

certainly be used to construct automated transformations).

Mechanizing these reasoning steps allows the programmer to focus on what needs to be done,

rather than getting lost in the details of how to manipulate the program correctly. For instance, the

reorder-lets command ensures that no variables are captured or left unbound. More powerful

commands such as simplify perform many tedious substeps that pen and paper derivations of-

ten gloss over. As demonstrated, HERMIT also allows the derivations to be re-used during future

compilation, enforcing a correspondence between a changing specification and its derived imple-

mentation.

4.2 KURE

A significant portion of the HERMIT implementation is dedicated to specifying transformations

over GHC Core programs. To ease this implementation effort, a means of specifying modular,

reusable transformations was required. Additionally, due to the large number of primitive trans-

formations, it was paramount that transformations be both composable and reusable to the extent

58

possible. GHC Core programs are composed of multiple mutually recursive data types, so support

for generic traversals of these types was also important. Finally, HERMIT’s interactive features

required that transformations could be targeted to a specific point in the tree.

Strategic programming languages [Visser, 2005] are a promising approach to this problem, but

previous strategic languages were either untyped [Bravenboer et al., 2008] or required run-time

type comparisons [Lämmel and Visser, 2002]. Given that HERMIT is implemented in Haskell,

the transformation language provided by HERMIT would ideally be strongly-typed. GHC Core

programs tend to be large trees, so the ability to express statically selective traversals, which do

not descend into subtrees with certain types, was important for efficiency reasons.

Thus, the Kansas University Rewrite Engine (KURE) was developed to meet these needs.

KURE is a strongly typed strategic programming language which supports static selectivity, and

has the ability to rewrite nodes of different types during the same traversal, automatically maintain

a context during generic traversals, and express traversals with arbitrary monadic effects. No other

library for strategic or generic programming provides this combination of features. KURE was

initially included as part of HERMIT, but has since developed into an independently-useful library

with broad applications [Sculthorpe et al., 2014].

This section describes HERMIT’s support for using KURE to transform GHC Core programs.

It does so by describing the various types used to specialize generic KURE strategies to be GHC

Core transformations. The concepts of KURE, such as universes, traversals, promotion, and con-

gruence combinators, were presented in Section 2.3.

4.2.1 Universes

GHC implements GHC Core using several different data types. The entire module currently being

compiled is encapsulated by the ModGuts type. Within ModGuts, the CoreProgram type is a list

of top-level binding groups. Each binding group consists of CoreBind values. A CoreBind is

either a single, non-recursive pair of V ar and CoreExpr, or a list of pairs of V ar and CoreExpr

59

representing a recursive binding group. Expressions, defined by the CoreExpr type, can include

V ars, Literals, CoreAlts, CoreBinds, Types, Coercions, and Tickishs.

HERMIT is primarily concerned with transforming expressions, but occasionally a transforma-

tion may also need to traverse types and coercions. To this end, HERMIT defines two universes.

The first, Core, is a universe for traversing nodes which contain expressions. The second, CoreTC,

is the Core universe plus Types and Coercions. Note that CoreTC is actually defined in terms of

Core and a third universe of only Types and Coercions.

data Core = GutsCore ModGuts -- The module.
| ProgCore CoreProg -- A program (a telescope of top-level binding groups).
| BindCore CoreBind -- A binding group.
| DefCore CoreDef -- A recursive definition.
| ExprCore CoreExpr -- An expression.
| AltCore CoreAlt -- A case alternative.

data CoreTC = Core Core | TyCo TyCo

data TyCo = TypeCore Type | CoercionCore Coercion

The Core universe will be the focus on the remainder of this section. CoreTC is used less

often, mostly by the pretty printer and some navigation commands, and is in any case entirely

analogous. When rewriting CoreExprs, the Core universe is targeted because it does not traverse

type and coercion terms, which do not contain expressions. This static selectivity results in better

traversal performance.

4.2.2 Crumbs

Targeting transformation using a path is a key operation in HERMIT. For instance, the user may

wish to transform the body of a specific function definition. A path is used to descend to the desired

location, which can then be transformed.

KURE provides strategies for generating and using generic paths in this way. A path in KURE

is a list of crumbs, so named because they act as proverbial bread crumbs, determining which

child to descend into at each point along the path, starting at the root of the tree. The strategies

KURE provides are necessarily polymorphic in the crumb type, allowing crumbs to be specific to

the universe type being traversed.

60

A simple means of constructing such a path would be to use a list of integers. If the children of

each node were numbered in some arbitrary fashion, say left-to-right, from zero, then each crumb

in the path would be the integer of the child into which the traversal should descend. For example,

the path to the right-hand side of the binding in a non-recursive let-expression would be [0, 1].

Let

ExprNonRec

ExprVar

0 1

0 1

However, denoting paths this way is not very specific. A given path of integers may apply to

many different ASTs. For example, the path [0, 1] would apply equally well to a tree of applica-

tions.

App

ExprApp

ExprExpr

0 1

0 1

In both cases, an expression is targeted by the path, so a transformation applied using the path

may succeed, even if the user only intended it to apply to the right-hand side of a non-recursive let

binding.

In practice, a more specific means of specifying paths was found to be necessary to make trans-

formations more robust to changes in the target program. This is especially true when manually

specifying paths in scripts. Changes in the source code of a module targeted by HERMIT usually

result in different GHC Core. The less specific integer paths may inadvertently still apply, but re-

sult in an unexpected destination, causing the intended rewrite to fail. Worse, the intended rewrite

61

data Crumb = . . .
| NonRec_RHS | NonRec_Var
| Rec_Def Int
| . . .
| Def_Id | Def_RHS
| . . .
| App_Fun | App_Arg
| Lam_Var | Lam_Body
| Let_Bind | Let_Body
| Case_Scrutinee | Case_Binder | Case_Type | Case_Alt Int
| . . .
| Alt_Con | Alt_Var Int | Alt_RHS
| . . .

Figure 4.2: The Crumb Type.

may succeed, but in the wrong place. More specific paths give a better error message (that the path

is invalid) to the user, and make scripts easier to read.

To this end, HERMIT defines a crumb type, called Crumb, which is specialized to the Core

universe. It is a large data type, with one constructor for each possible combination of parent and

child. Figure 4.2 gives a sampling of the Crumb type.

In addition to specifying which child to descend into, it specifies the expected current node.

Thus, each crumb denotes movement from a specific parent to a specific child, rather than from

an arbitrary parent to an arbitrary child that happens to be in the correct position. With these

crumbs, the path [0, 1] would in fact be [Let_Bind,NonRec_RHS], which would not apply to a tree

of applications.

Let

ExprNonRec

ExprVar

NonRec_Var NonRec_RHS

Let_Bind Let_Body

62

4.2.3 The HERMIT Context

The context for HERMIT’s transformations over GHC Core is implemented by the HermitC type.

However, all the transformations in the HERMIT Dictionary are overloaded in the context type so

that they may be used with any context that supplies the necessary information. This is useful if the

user desires to extend the context with additional information. HermitC is a context type which

implements all the interfaces required by transformations in the Dictionary. Accordingly, this

section describes HermitC in terms of these interfaces, rather than as a concrete implementation.

4.2.3.1 Recording Bindings

The most important function of the context is to collect in-scope bindings during traversal. This

makes all type- and value-level bindings which are in-scope locally available to a transformation.

HERMIT supplies a type class for contexts which can accumulate the information HERMIT needs

about bindings. This class is used by congruence combinators to update the context.

class AddBindings c where
addHermitBindings :: [(V ar,HermitBindingSite,AbsolutePathH)]→ c → c

The addHermitBindings class method adds parallel binding groups to the context. A parallel

binding group is a group of bindings which occur at the same depth in the tree. Examples of parallel

groups with multiple binders include case alternative patterns and recursive binding groups. Other

forms of binding give rise to singleton groups.

The information for a single binding is the binder itself (a V ar), the path to the binding, and

information about the type of the binding, which is encapsulated by the HermitBindingSite type.

HermitBindingSite records the nature of the binding (whether it is bound by a lambda, a let

expression, case alternative, etc) and, potentially, unfolding information.

data HermitBindingSite = LAM
| NONREC CoreExpr
| REC CoreExpr
| SELFREC
| MUTUALREC CoreExpr
| CASEALT
| CASEBINDER CoreExpr (AltCon, [V ar])
| FORALL

63

Binders bound by lambdas, universal quantifers (in types), and case alternatives are recorded

by LAM, FORALL, and CASEALT, respectively. These binding sites do not record unfolding infor-

mation because doing so would require evaluation. For instance, while applying a transformation

to the body of a lambda expression, the context contains x as a LAM binding site.

(λx → body) arg

In order to get the unfolding for x , the entire expression would have to be β-reduced. Even

though, in this case, such a β-reduction is available, HERMIT makes no attempt to do this auto-

matically when building the context.

When applying a transformation to the body of a let expression, the let binders are recorded

in the context using either NONREC or REC depending on whether the let is non-recursive or

recursive, respectively. These constructors carry a CoreExpr, which is the right-hand side of the

binding. This can be used to inline the variable in question. Noting whether a binding is recursive

or non-recursive is important when performing the depth check during inlining (Section 4.5.1).

Recall that case expressions in GHC Core (Section 2.2) differ from case expressions in Haskell

in that they have an explicit type annotation and a case binder. The case binder binds the scru-

tinized expression over the right-hand side of each alternative. This binder is unique in that it

actually has two possible unfoldings. Consider the following case expression, where b is the case

binder:
case f x y of b
Just z → . . . b . . .
Nothing→ . . .

If b were to be unfolded in the right-hand side of the first alternative, both f x y and Just z are

valid unfoldings. In most cases, the latter behavior is prefered because it includes the result of the

computation performed by the case expression. However, occasionally the first behavior is desired

because it enables a subsequent transformation, even though it nominally duplicates computation.

For instance, inlining the scrutinized expression may enable the application of a GHC rewrite rule.

For this reason, case binders are recorded with both possible unfoldings using the CASEBINDER

constructor. The CoreExpr argument to CASEBINDER is the scrutinee, while the pattern for the

current alternative is stored as a constructor along with a list of pattern binders for that constructor.

64

The most interesting constructors for HermitBindingSite are SELFREC and MUTUALREC. These

are used to record binders in a recursive binding group when descending into the right-hand side

of one of the binders in the group. As an example, consider descending into the right-hand side of

x in the following recursive let expression.

let x = e1
y = e2
z = e3

in . . .

When descending into e1, the context will be extended with two MUTUALREC entries, for y

and z . These contain the appropriate right-hand sides as unfoldings (e2 and e3, respectively). It

will also be extended with a SELFREC entry for x . Note that SELFREC does not carry an unfolding,

so there is no unfolding information for x while rewriting its own right-hand side.

This is for good reason. Consider, hypothetically, that the context did provide an unfolding for

x , like it does for other bindings in the recursive group, and that x is recursive. The following two

rewrites would behave in subtly different ways when applied to let expressions.

rr1 = replicateR 2 (onetdR (promoteExprR (inlineR (== x))))
rr2 = focusR (rhsOfT x) (replicateR 2 (onetdR (promoteExprR (inlineR (== x)))))

Both rewrites would unfold the definition of x twice, but the result would differ. The first

rewrite (rr1) begins at the let expression and performs a top-down traversal, applying inlineR to

the first place it succeeds (an occurrence of x). It then performs a second top-down traversal, again

starting from the overall let-expression, performing a second inlining. This second inlineR will

use the new definition of x which was the result of the first inlining. This is because the rewrite

descends past the binding of x twice. The second rewrite (rr2) descends past the binding of x once

using rhsOfT , then applies the two top-down traversals with their inlining steps, using the same

definition of x each time.

The subtlety of which unfolding of x is used compounds in more complex composite rewrites,

and makes refactoring such rewrites difficult. Similiar problems arise when converting HERMIT

scripts into rewrites, as described in Section 3.4.2. This conversion replaces the statement se-

quencing operator (;) of the Shell language with the KURE sequencing operator (≫). Two rewrite

65

statements separated by (;) each begin at the top of the module, meaning the second statement

occurs in a (potentially) different context than the first. This is similiar to the rr1 example. The

same two rewrites combined using (≫) will see the same context, similiar to rr2 .

To avoid tripping over this subtle difference in semantics, HERMIT elects to not include an

unfolding with SELFREC. To unfold x within its own right-hand side requires first telling HERMIT

to remember the definition of x (Section 5.10.6). In this way, the user is explicit about which

unfolding is desired.

4.2.3.2 Accessing Bindings

HERMIT defines two classes for accessing the binding information stored in the context. The first

returns a set of V ars using the GHC-defined VarSet type. This can be used in situations where it

is only important to determine if a variable is bound, and unfolding information is not needed.

class BoundVars c where
boundVars :: c → VarSet

To access unfolding information requires the ReadBindings interface. It has methods for ac-

cessing the current binding depth, as well as the unfolding information recorded by AddBindings.

class BoundVars c ⇒ ReadBindings c where
hermitDepth :: c → BindingDepth
hermitBindings :: c →Map V ar HermitBinding

data HermitBinding = HB BindingDepth HermitBindingSite AbsolutePathH
type BindingDepth = Int

The binding depth represents the number of parallel bindings groups that have been added to

the context by addHermitBindings. Note that this means the binding depth is not equivalent to the

length of the path to that binding. Many nodes in the AST do not bind values (application nodes,

for instance), and hence are not counted for depth purposes. Depth is recorded in order to avoid

variable capture during inlining, which is discussed in Section 4.5.1.

66

4.2.3.3 In-scope RULES

GHC rewrite rules for the current module are stored in the IdInfo (Section 2.2.1.4) of the binder

which forms the head of the left-hand side of the RULES pragma. For instance, the following

rewrite rule would be stored in the IdInfo for abs.

{-# RULES “abs-rep-id”[∼] forall e . abs (rep e) = e #-}

GHC does this for efficiency reasons. IdInfo is propagated from binder to occurrence by

GHC’s substitution algorithm, meaning applicable rules are always available exactly where they

might be applied, and only when the appropriate identifiers are in scope. Additionally, when GHC

generates specializations for a function, these specializations are stored as rules on the binder for

the function.

Similar to bindings, HERMIT accumulates these rules in the context as it descends the AST

during a traversal. This means all in-scope rules are locally available to tranformations using a

context that implements the following class:

class HasCoreRules c where
hermitCoreRules :: c → [CoreRule]

This class is only for reading the rule environment. Since rules only appear in a top-level envi-

ronment and on binders, they are added to the context by the AddBindings instance for HermitC.

4.2.3.4 Paths

KURE defines its path generating and focusing strategies in terms of two type classes. This allows

the strategies to be defined generically for any context and crumb type which together implement

an instance of these classes.

class ExtendPath c crumb | c → crumb where
(@@) :: c → crumb → c

class ReadPath c crumb | c → crumb where
absPath :: c → AbsolutePath crumb

These classes are used primarily by congruence combinators (Section 4.2.4) to update the path

during traversal, and to provide the current path to calls of addHermitBindings.

67

lamT :: (AddBindings c, ExtendPath c Crumb, ReadPath c Crumb,Monad m)
⇒ Transform c m V ar a1
→ Transform c m CoreExpr a2
→ (a1 → a2 → b)
→ Transform c m CoreExpr b

lamT t1 t2 f =
transform (λc exp →

case exp of
Lam v e → let c′ = addHermitBindings [(v , LAM, absPath c @@ Lam_Var)] c

in f $© applyT t1 (c @@ Lam_Var) v
~ applyT t2 (c

′ @@ Lam_Body) e
→ fail "not a lambda.")

lamAllR :: (AddBindings c, ExtendPath c Crumb, ReadPath c Crumb,Monad m)
⇒ Rewrite c m V ar
→ Rewrite c m CoreExpr
→ Rewrite c m CoreExpr

lamAllR r1 r2 = lamT r1 r2 Lam

Figure 4.3: Congruence Combinators for the Lam Constructor of CoreExpr.

4.2.4 Congruence Combinators

HERMIT defines a set of congruence combinators for the types in the Core universe, as recom-

mended by KURE (Section 2.3.4.2). Congruence combinators serve both as guards, to ensure a

transformation is applied to an expression with the desired structure, and as means of ensuring that

contextual information is properly updated while traversing the target program.

Two congruence combinators, one for transformations and one for rewrites, are defined for

each constructor of each type in the Core universe. While they cannot be automatically generated

(due to the non-regularity of updating the context), their form is otherwise extremely regular. The

congruence combinator for rewrites is always defined in terms of the one for transformations.

As an example, the two combinators which are defined for the Lam constructor to CoreExpr are

featured in Figure 4.3.

In contrast to the example congruence combinators in Section 2.3.4.2, those in HERMIT are

overloaded in the context type, constraining it only to the interfaces necessary for updating the

context during traversal. This permits reuse of the congruence combinators for different context

68

types which may extend the default HermitC context. In this case, the call to addHermitBindings

requires an AddBindings constraint (Section 4.2.3.1). The call to absPath requires a ReadPath

constraint and the call to the (@@) combinator requires the ExtendPath constraint (both in Sec-

tion 4.2.3.4).

The instance of KURE’s Walker class for the Core universe is defined in terms of these con-

gruence combinators, in the recommended style of Figure 2.4 in Section 2.3.4.2. Thus, thisWalker

instance is also overloaded in the context type, meaning custom traversals of the Core universe can

also be reused for other context types.

Use of congruence combinators leads to an idiomatic style of constructing local transforma-

tions. A typical transformation projects components from the structure of the expression which are

relevant to the transformation, extracts information from those components, then uses the infor-

mation to construct a result. If the computation which extracts information from the components

relies on contextual information, this can lead to subtle bugs. These bugs can be mitigated by using

congruence combinators.

For example, consider defining a hypothetical rewrite which inlines a specific variable, but

only when it occurs in the body of a lambda abstraction. One might start with the following

implementation, which matches on explicit lambda expressions, then calls a KURE strategy for

applying the inlining anywhere in the body in a bottom-up traversal. A valid implementation of

inlineR, which always inlines a given variable, is assumed.

-- Note: this definition is incorrect, see discussion below
inlineInBodyR ::Monad m ⇒ V ar → Rewrite HermitC m CoreExpr
inlineInBodyR v = do
Lam b e ← idR
e ′ ← return e ≫ extractR (anybuR (promoteExprR (inlineR (== v))))
return $ Lam b e ′

Following the pattern, this transformation projects the relevant components of the expression

(the binder and body of the lambda expression), extracts information from them (the new body,

with v inlined), then constructs a result (the new lambda expression).

There is a subtle bug is this implementation, however. While not obvious from this code,

one of the safety checks performed by inlineR is to ensure that all variables in the result of the

69

inlining are in scope. This check is necessarily context-dependent, since the context is the source

of information about in-scoped-ness. If the result happens to contain an occurrence of the lambda-

binder b, this check will fail. The call to anybuR happens in the context of the overall lambda-

expression, not the context of the actual body.

The definition could be altered to manually ensure that b is in the context of the call to anybuR

by projecting the current context and calling addHermitBindings (Section 4.2.3.1) to construct a

new one. But this is exactly the problem that congruence combinators solve! Thus, it is better to

rewrite the transformation in terms of the lamAllR congruence combinator from Figure 4.3.

inlineInBodyR ::Monad m ⇒ V ar → Rewrite HermitC m CoreExpr
inlineInBodyR v = lamAllR idR (extractR (anybuR (promoteExprR (inlineR (== v)))))

This example was contrived, but bugs arising from incorrectly maintaining the context were

common early in HERMIT’s development because congruence combinators were not exploited.

Any time a transformation is applied to a component of the current expression without wrapping

that transformation in a congruence combinator, care must be taken to ensure a proper context is

provided. A ‘proper’ context does not just include appropriate bindings. The context also tracks

information related to shadowing (binding depth), the current path, and in-scope GHC rewrite

rules. Any transformation that is sensitive to this information may fail in unexpected ways. Relying

on congruence combinators eliminates this large class of bugs in practice.

Congruence combinators can also be used to construct non-structural guards. Ordinary monadic

pattern matching can be used to guard on the structure of an expression. Congruence combinators

can be used to guard on both structural and non-structural aspects of the expression.

For example, the following rewrite attempts to float a let-expression from the right-hand side

of an application, failing if variable capture would occur. It relies on two rewrites, freeVarsT

and letVarsT , which return the free variables of an expression and the variables bound by a let-

expression, respectively. The intersection of the free variables of the left-hand side and the bound

variables of the right-hand side is computed. If the intersection is non-empty, capture would occur.

70

letFloatArgR ::Monad m ⇒ Rewrite HermitC m CoreExpr
letFloatArgR = do

captures ← appT freeVarsT letVarsT intersect
guardMsg (null captures) "floating would lead to variable capture."
App f (Let b e)← idR
return $ Let b (App f e)

Congruence combinators, overall, were found to be very advantageous when defining primitive

transformations because they alleviate the need to explicitly manage the context.

4.2.5 The HERMIT Monad

The monad used by HERMIT transformations is called HermitM . Conceptually, it is a reader

and state transformer on top of GHC’s CoreM monad. The reader environment provides access

to a debugging channel which is passed in as part of the KernelEnv argument supplied to calls

to the Kernel API (Figure 3.4). This channel is used primarily by the debugging primitives in

Section 4.5.6. The state carried by HermitM is the list of available lemmas, which are discussed

in Section 5.2. The initial set of lemmas is provided by the Kernel, modified by the transformation,

then saved by the Kernel, alongside the resulting GHC Core program. The interface for accessing

lemma state is entirely conventional to state monads.

The rest of the functionality of HermitM is inherited from CoreM . This includes an interface

for generating unique identifiers, which is used by HERMIT’s name creation primitives. It also

includes functionality for looking up V ars by Name, which HERMIT uses to find identifiers in

other modules. Since CoreM is built on IO, it also includes a MonadIO instance.

In general, the HERMIT user should never deal with HermitM directly. All the functionality

has been lifted into KURE transformations which are exposed in the Dictionary (Section 4.5).

4.2.6 Conventions

As transformations are often performed using the HermitC context and HermitM monad types,

HERMIT provides the following type synonyms to simplify type signatures.

type TransformH a b = Transform HermitC HermitM a b
type RewriteH a = Rewrite HermitC HermitM a

71

Additionally, all transformations provided by HERMIT follow some conventions:

• Rewrites either modify the term, or fail. This makes it viable to use such rewrites with

iteration strategies which repeat until failure. Succeeding with an unmodified term would

lead to unbounded iteration.

• Primitive rewrites do not perform traversal. They apply only to the local expression, and are

lifted into traversals using KURE’s strategy combinators. For instance, the primitive inlineR

matches on a single variable, replacing it with its unfolding expression. It can then be lifted,

using a traversal strategy such as anytdR, to apply anywhere in a given tree.

• The type of a transformation is as specific as possible. For instance, inlineR applies to

CoreExpr, not one of the universe types, because it is a rewrite on expressions. It can

be promoted, if necessary, using KURE’s promotion combinators (Section 2.3.4), to any

universe it is a member of.

4.3 Names

An important practical aspect of transforming GHC Core programs is working with, and creating,

named identifiers. These identifiers may be bound locally in the module being transformed, or

imported from another module, possibly in another package.

GHC’s internal types for named identifiers were summarized in Section 2.2.1. HERMIT opts

for a simpler data type. The goal is that a Haskell programmer, unfamiliar with the details of

GHC’s internal name types, but familiar with Haskell’s simple module hierarchy, can productively

create and manipulate names using HERMIT.

Ultimately, HERMIT transformations must modify or introduce the V ar type, as it is the type-

annotated identifier used by GHC Core. HERMIT’s monad provides a unique supply for creating

new local variables, and primitive transformations for modifying existing variables. More chal-

lenging is introducing a variable which represents an external, imported identifier.

72

To do so using GHC’s existing plugin API, one must first create an OccName, specifying both

the string representation of the identifier and the desired namespace. Then, a qualified RdrName

may be created by specifying a module name. If the specified module’s interface has not already

been loaded into GHC’s caches, it must be. Modules are loaded on an as-needed basis, when they

are imported explicitly in the source. With all this done, the RdrName may be looked up in the

cache, returning a Name. The Name may in turn be looked up, returning a V ar.

This process, and the design of GHC’s name types, follows from the steps taken by GHC’s front

end. The namespace is paired with the occurrence name because both are known, by the parser,

when the OccName is created. The RdrName adds the module name because this is determined

later, by the renamer, which resolves the scoping of module import statements. The necessary

module interfaces are loaded after determining which packages are in-scope to the compilation

session. Once this package information has been determined, a Name can be created. Next,

typechecking creates the full-fledged V ar.

Given the occurrence name, module name, and namespace, all the remaining steps can be

performed automatically. This informs the design of HERMIT’s identifier type:

data HermitName = HermitName (Maybe ModuleName) String

Note that a HermitName does not specify a namespace. This is instead determined at the time

of use. The module name is optional so that HermitName can represent local, unqualified names.

This type is easy to construct (recall that ModuleName is essentially a String), and leads to

the simple interface for finding external identifiers described in Section 4.5.3.

4.4 Folds

KURE transformations are a powerful means of expressing transformations when all the matching

conditions of the transformation are known in advance. For instance, a β-reduction transformation

must always match on an application where the function is an explicit lambda expression.

73

However, it is often the case where the matching conditions are only known at HERMIT run-

time. The most common example is when folding a function definition, in the course of fold/unfold

reasoning [Burstall and Darlington, 1977]. The matching conditions are determined by the struc-

ture of the expression representing the function body, and vary by function.

A fold is a first-order pattern matching operation for replacing an expression which matches

a pattern with another expression. Folds are used to implement several key transformations in

HERMIT, and the performance of the matching operation has been found to be critical when trans-

forming large programs. This section formalizes HERMIT’s fold operation and describes key parts

of its implementation.

4.4.1 Definition

First, some terminology. An expression context is a GHC Core expression with a hole, into which

an arbitrary expression of the appropriate type can be placed. A multi-hole expression context is a

GHC Core expression with zero or more named holes. Two holes with the same name must have

the same type and be filled with the same expression. A pattern is a multi-hole expression context

used for matching on a concrete expression. A template is a multi-hole expression context used to

instantiate the resulting expression. An equality is a triple of pattern, template, and a list of named

holes. An equality states that the pattern and template are equivalent for all possible assignments

to the holes. An equality is only valid if the named holes in the template are a subset of those in

the pattern.

Given a pattern C with a named hole h and expression e, C [e/h] is the operation of substituting

e for all occurrences of h in C. If C has multiple distinct named holes, then C [es / hs] is the

operation of filling all of the holes with their corresponding expressions.

A fold, in the sense of fold/unfold reasoning [Burstall and Darlington, 1977], is the following

operation:

(hs,C,D) C [es / hs] ≡ e

e =⇒ D [es / hs]
FOLD

74

That is, given an equality between C and D with holes hs, if C, with holes instantiated to

expressions es, is equivalent to expression e, then e can be rewritten to D, instantiated to the same

expressions es.

4.4.2 Implementation

HERMIT’s implementation of the fold operation is based on TrieMaps. TrieMaps are a well known

means of mapping complex keys to values [Hinze, 2000], and are used by GHC itself for common

sub-expression elimination and determining α-equivalence. The primary benefit, and thus motiva-

tion, of implementing fold using TrieMaps is that multiple patterns can be checked at once. This

has dramatic performance implications for certain primitive operations in HERMIT.

This section develops HERMIT’s implementation of TrieMaps using a small expression lan-

guage as a running example. Beginning from tries, it illustrates GHC’s implementation of TrieMaps.

Then it extends the matching operation of GHC’s TrieMap to patterns which contain holes. Finally,

the TrieMap implementation is used to implement the fold operation. Only the lookup function of

the TrieMap is presented. The insertion operation is entirely straightforward, but dense, providing

no additional illumination beyond that gained from understanding lookup. It is left as an exercise

to the reader.

4.4.2.1 Tries

A trie, or radix tree, is an efficient means for associating keys with values when the keys are finite

strings. It is efficient in the sense that insertion and lookup operations are both linear in the length

of the key, not the size of the trie. It is also space efficient because redundant prefixes of keys are

only stored once.

A trie can be used to associate bit strings with values. For instance, the map {00 ⇒ A, 01 ⇒

B, 011⇒ C} can be represented by the following trie:

75

B

C

1

A

0 1

0

Looking up a string in the trie involves following the edges corresponding to the components

of the string. For instance, to check if the bit string ‘01’ is in the trie above, the lookup operation

begins at the root and follows the edge labeled ‘0’, then the edge labeled ‘1’, arriving at the node

containing B, which is the value returned. If no value is associated with the node reached when the

string is exhausted, the key is not in the map. For instance, looking up the bit string ‘0’ will end at

a node with no value, so ‘0’ is not in the map.

4.4.2.2 TrieMaps

Rather than construct an explicit tree, a trie can be implemented as a map of maps, hence a

TrieMap. Each level of the trie optionally has a value (if the empty string is in the map), as

well as a map whose keys are single bits, and whose values are other tries. The lookup operation

looks up each successive bit in the map returned by the lookup of the previous bit.

newtype BitTrie a = BTrie (Maybe a) (Map Bit (BitTrie a))

lookupBT :: [Bit]→ BitTrie a →Maybe a
lookupBT [] (BTrie v) = v
lookupBT (b : bs) (BTrie m) = case lookup b m of

Nothing→ Nothing
Just t → lookupBT bs t

The idea can be extended to any key which can represented by a finite structure. That is, rather

than require the value of the key to be a string, the structure used to encode the value can be turned

into a string which is appropriate to use as a key. To see how, consider using the following small

expression type as a key:

76

data Expr = App Expr Expr | Var String

Using the idea that tries are maps of maps, each level of the trie for Expr is a map whose keys

are constructors of Expr and whose values are other tries. A standard Haskell Map cannot be

keyed on constructors, but observe that there are a finite number of constructors for any Haskell

type, so an n-ary tuple (or record) will suffice.

data ExprTrie a = ETrie {etApp :: ExprTrie (ExprTrie a), etVar ::Map String a }
| EEmpty

The ETrie constructor can be seen as a map with two possible keys, one for each constructor

of Expr. Lookup is a matter of choosing between these keys based on whether the Var or App

constructor was matched, then recursively looking up the components of the constructor.

lookupE :: Expr → ExprTrie a →Maybe a
lookupE EEmpty = Nothing
lookupE (Var s) trie = lookup s (etVar trie)
lookupE (App e1 e2) trie = case lookupE e1 (etApp trie) of

Nothing → Nothing
Just trie ′ → lookupE e2 trie ′

Looking up a variable consists of looking up the variable’s string in the map held in the etVar

field. The interesting case is the one for AppCon. The etApp field contains a ExprTrie whose values

are themselves ExprTries. The left subexpression is looked up in the outer ExprTrie, returning an

inner ExprTrie, if present. The right subtree is then looked up in this inner ExprTrie. Intuitively,

this corresponds to flattening the AST for the expression into a sequence of nodes using a pre-order

depth-first traversal, then using the resulting sequence as a key to a trie.

This technique depends on two advanced features of Haskell’s type system. Notice that ExprTrie

is a non-regular, or nested datatype [Bird and Meertens, 1998]. A nested datatype is one where the

recursive calls on the right-hand side of the data definition are substitution instances (not copies)

of the left-hand side of the definition. In this case ExprTrie is nested because the etApp field

has type ExprTrie (ExprTrie a). Any time a key has a constructor with more than one field, the

corresponding trie will be a nested datatype.

Accordingly, functions which operate on nested datatypes, such as lookupE , require a non-

regular, or polymorphic, form of recursion [Hallett and Kfoury, 2005]. In the right-hand side of

77

the last case of lookupE , the two recursive calls are made at different types. The first lookupE has

type:

Expr → ExprTrie (ExprTrie a)→Maybe (ExprTrie a)

whereas the second has type Expr → ExprTrie a →Maybe a.

4.4.2.3 α-equivalence

Imagine adding abstraction to the Expr language.

data Expr = App Expr Expr
| Var String
| Lam String Expr

The ExprTrie type and lookupE function could be extended to handle Lam in a manner sim-

iliar to the handling of App. However, the resulting trie would only match keys that are strictly

structurally equivalent. Languages like Expr usually have a notion of α-equivalence, where equiv-

alence is defined modulo binding names. In such languages, the expression Lam "x" (Var "x")

and Lam "y" (Var "y") are said to be α-equivalent, because they represent the same function,

only differing in choice of binding name. It is natural when using Expr as a key that matching

should occur up to α-equivalence.

This can be accomplished by distinguishing between free and bound vars when looking up

variable occurrences. To do this, a new VarMap type is introduced. A VarMap is actually a pair

of maps: one is keyed on the names of free variables, the other is keyed on the De Bruijn index of

bound variables.

data VarMap a = VarMap {vmBound ::Map Int a, vmFree ::Map String a }

In order to distinguish free variables from bound variables, the lookup function for VarMaps re-

quires a renaming environment, which is just a mapping from variable names to De Bruijn indices,

and a supply of fresh indices.

78

data RenameEnv = RNEnv Int (Map String Int)

emptyEnv :: RenameEnv
emptyEnv = RNEnv 0 empty

extendEnv :: String → RenameEnv → RenameEnv
extendEnv s (RNEnv i m) = RNEnv (i + 1) (insert s i m)

lookupEnv :: String → RenameEnv →Maybe Int
lookupEnv s (RNEnv m) = lookup s m

The lookup function for VarMaps uses this renaming environment to determine whether a

variable is bound, and thus which of its maps to look in.

lookupVM :: RenameEnv → String → VarMap a →Maybe a
lookupVM env s m = case lookupEnv s env of

Nothing→ lookup s (vmFree m)
Just i → lookup i (vmBound m)

With this in place, ExprTrie can be modified to use VarMap for the etVar field.

data ExprTrie a = ETrie {etApp :: ExprTrie (ExprTrie a)
, etVar :: VarMap a
, etLam :: ExprTrie a
}

| EEmpty

Now, lookupE updates the renaming environment whenever a binding is encountered and the

updated environment is used for looking up the body of the abstraction. Thus, any occurrences of

the variable are now bound and De Bruijn indexed.

lookupE :: RenameEnv → Expr → ExprTrie a →Maybe a
lookupE EEmpty = Nothing
lookupE env (Var s) trie = lookupVM env s (etVar trie)
lookupE env (App e1 e2) trie = case lookupE env e1 (etApp trie) of

Nothing → Nothing
Just trie ′ → lookupE env e2 trie ′

lookupE env (Lam s e) trie = let env ′ = extendEnv s env
in lookupE env ′ e (etLam trie)

4.4.2.4 Adding Holes

The TrieMaps described thus far are those implemented by GHC. Appropriate trie datatypes and

insertion and lookup functions are defined for GHC Core’s various types, including CoreExpr,

Type, CoreBind , and CoreAlt . They are used to check expressions for α-equivalence by inserting

one expression into the map, then looking up the other expression. In this case, the value associated

79

with the key is irrelevant, it is only important that the keys match. They are also used for common

sub-expression elimination. An expression is used as the key, and a binder which is bound to that

expression as the value. Subsequent expressions are looked up in the TrieMap and, if found, are

replaced with an occurrence of the associated binder.

HERMIT extends TrieMaps further, with the notion of holes. Holes can be thought of as meta-

variables which match any expression. A key which features one or more holes is a pattern. A

successful lookup operation returns a mapping from holes to matched expressions, in addition to

the value associated with the key.

To be concrete, consider modifying Expr and ExprTrie to enable matching with holes. First

the Expr type needs some notion of named hole occurrences. This could be a distinct constructor

which carries the hole name.

data Expr = Hole String
| ... as before ...

However, this new Hole constructor is isomorphic to the existing Var constructor, so it is also

valid to say that certain variables will be treated as holes. This is what is done for GHC Core, since

HERMIT wishes to use the GHC-defined CoreExpr type as keys to the map. With that in mind,

this example will assume that no distinct Hole constructor is added to Expr.

The ExprTrie types does need to distinguish holes from regular variable occurrences. Since

holes unify with expressions, a field for holes must be added to ExprTrie, not VarMap.

data ExprTrie a = ETrie {etApp :: ExprTrie (ExprTrie a)
, etVar :: VarMap a
, etLam :: ExprTrie a
, etHole ::Map String a
}

| EEmpty

When a variable is encountered during insertion, it is checked against the list of holes. If it is a

hole, insertion proceeds with the etHole field. Otherwise, it is a normal variable and the insertion

is made in the etVar field.

The lookupE function must be modified in two ways. First, it must accumulate a mapping

from holes to expressions. Second, it must be capable of returning multiple values. The reason

80

lookupE ::Map String Expr → RenameEnv → Expr → ExprTrie a → [(Map String Expr, a)]
lookupE EEmpty = []
lookupE hs env expr trie = hss ++ go expr
where hss = [r | (h, v)← toList (etHole trie)

, r ← case lookup h hs of
Nothing→ [(insert h expr hs, v)]
Just e → [(hs, v) | exprAlphaEq e expr]

]

go (Var s) = case lookupVM env s (etVar trie) of
Nothing→ []
Just v → [(hs, v)]

go (App e1 e2) = [r | (hs ′, trie ′)← lookupE hs env e1 (etApp trie)
, r ← lookupE hs ′ env e2 trie ′]

go (Lam s e) = let env ′ = extendEnv s env
in lookupE hs env ′ e (etLam trie)

Figure 4.4: Lookup Function for ExprTrie with Holes.

for the latter change is that holes allow patterns to overlap. Consider inserting the following two

expressions into the map, where variables hole1 and hole2 are holes.

App (Var "hole1") (Var "x")
App (Var "hole2") (Var "y")

The left-hand side of the applications overlap. Only the right-hand side differentiates the pat-

terns. Looking up the expression App (Var "f") (Var "x") will begin by looking up (Var "f")

in the ExprTrie for the left-hand side of the application. This will match both patterns, with both

holes assigned the expression (Var "f") and two possible sub-maps suitable for looking up the

right-hand side. Consequently (Var "x"), will need to be looked up in both. It will only be found

in one of them. The final version of lookupE is found in Figure 4.4.

Notice in Figure 4.4 that hss attempts to assign the current expression to every hole at this

point in the pattern. Recall that a hole may occur in a pattern multiple times, but the same ex-

pression must appear in all holes with the same name. If the hole has been previously assigned

an expression, then the previous assignment and this expression are compared for α-equivalence.

If the equivalence check fails, then the same hole has matched two different expressions, and the

81

result is discarded. The other (non-hole) cases are largely as before, but instead of returning zero

or one result with the Maybe type, zero or more results may be returned.

4.4.2.5 Implementing Folds

The fold transformation defined in Section 4.4.1 can be implemented by building a TrieMap keyed

on patterns, with the corresponding templates as values. To fold an expression, it is looked up in

the map. The holes of the resulting template are filled with their matching expressions.

subst :: (String,Expr)→ Expr → Expr
subst = ...

insertE :: [String]→ RenameEnv → Expr → a → ExprTrie a
insertE = ...

fold :: [String]→ Expr → Expr → Expr →Maybe Expr
fold holes pattern template expr =
let trie = insertE holes emptyEnv pattern template EEmpty
in case lookupE empty emptyEnv expr trie of

[(hs, tmpl)]→ Just (foldr subst tmpl (toList hs))
→ Nothing -- no match, or ambiguous match

4.4.3 Applications

Many transformations in HERMIT are instances of the lookup operation of this TrieMap. As

previously mentioned, folding an instance of a function body into a call to that function is one such

transformation. For example, given the following definition of mean:

mean xs = sum xs ‘div ‘ length xs

An equality is formed by using the function parameter xs as the hole, the right-hand side as the

pattern, and the left-hand side as the template. A fold operation using this equality would transform

the expression sum ys ‘div ‘ length ys into mean ys. This is known as folding the definition in

fold/unfold reasoning [Burstall and Darlington, 1977], and is the source of the ‘fold’ name.

Of course, swapping the pattern and template causes the transformation to act as an unfold.

Thus, folds can be used to implement that transformation, which is extremely common in practice,

as well.

82

Applying GHC rewrite rules is also a fold operation. Looking up a rewrite rule in GHC’s

internal state returns a set universal quantifiers and GHC Core expressions for the left-hand side

and right-hand side of the rule. The quantifiers are used as holes, and either side can be the pattern

and template, depending on which direction the rule is being applied. Thus, while GHC only

applies its rewrite rules left-to-right, HERMIT can apply them in either direction.

Like GHC, HERMIT’s TrieMaps can be used to determine α-equivalence. In that case, there

are no holes. Folds are also used to implement several transformations necessary for proving

properties in HERMIT. These are discussed in Sections 5.8 and 5.10.

4.5 Dictionary

HERMIT provides a substantial dictionary of rewrites and transformations for GHC Core. Some

present capabilities already built into GHC with a more convenient user interface. Others use

KURE to encode operations commonly used in pen-and-paper reasoning. Together, they serve as

a general toolkit from which HERMIT users can construct their own transformations.

GHC’s APIs for working with GHC Core are powerful and flexible, but not particularly safe.

They allow a plugin author to construct any Core expression desired, including ones which do not

typecheck! More subtly, GHC’s optimizer maintains a number of invariants in Core expressions

which are not enforced by the types. A significant challenge when writing a GHC plugin is to

ensure that transformed or generated code is type safe and maintains these invariants.

HERMIT’s primitive transformations provide significant value as the base of a modular and

composable transformation language which maintains these invariants. This section surveys some

transformations offered by HERMIT’s library of transformations, refered to as ‘the Dictionary’.

The Dictionary contains hundreds more transformations not covered here. Though, in practice, the

user only need remember the high-level ones, as they combine many simple transformations.

83

4.5.1 Fold/Unfold

Fundamental to semi-formal reasoning is the ability to fold [Burstall and Darlington, 1977] or

unfold the definition of a function. HERMIT implements the fold rewrite by lifting a primitive

fold operation implemented using TrieMaps (Section 4.4.2.5) into a KURE rewrite. In contrast, the

unfold operation is implemented in terms of a primitive inlining transformation. Both operations

have to ensure that variable capture does not occur. This is done using a depth check.

To perform the depth check, the depth of each binding is recorded in the context. The depth

begins at zero, and grows as each parallel binding group is added to the context during descent.

When a bound variable is folded or unfolded, its binding depth is compared with the binding depths

of all of the free variables in the resulting expression. If any of the free variables was bound at

a depth greater than the depth of the binder, then that free variable has been redefined since the

unfolding was recorded for the binder. Replacing the binder with the resulting expression would

lead to variable capture by this redefinition, so the transformation must fail.

As an alternative approach, for each binder added to the context, all unfoldings featuring that

binder could be invalidated. Thus, unfoldings which would result in variable capture would simply

not be available. The depth-based approach was taken instead for performance reasons. Comparing

depths is less performance intensive than updating unfolding information for every binder in the

context each time a new binder is added.

4.5.2 Local Transformations

HERMIT provides a large suite of local algebraic transformations of GHC Core expressions. These

are the lowest-level primitives, implementing operations such as case reduction, let-floating, or the

case-of-case transformation. Many of these transformations are taken from Santos [1995]. All

of these transformations are careful to avoid pitfalls such as variable capture, or violations of the

invariants of GHC Core, making them a useful base for constructing larger transformations.

84

4.5.3 Creating and Finding Variables

Recall that variables in GHC Core are unique names which have been annotated with their type (or

kind) and other information, such as specialization rules or an unfolding. Creating local variables

is relatively straightforward, requiring only the desired name and type, using the monadic name

supply to generate a unique identifier. HERMIT supplies transformations for this purpose.

Creating non-local variables is more difficult, because the unique identifier of the resulting

variable needs to match the unique identifier assigned to that entity previously in the same compi-

lation session. GHC provides a name cache for this purpose, allowing variables to be looked up

by RdrName. HERMIT lifts this capability into transformations which look up HermitNames

(Section 4.3), which are more convenient for user-specification.

If the desired variable is from a module which has not been imported by the current module,

the exports of that module will not have been loaded into GHC’s name cache. Thus, looking up

the variable will fail. This creates a fragile situation where the target program needs to explicitly

import every module from which HERMIT might look up a variable, even if the source program

does not depend on those modules.

To avoid this, HERMIT’s lookup transformations provide a key extension to GHC’s own

lookup functions. GHC’s dynamic loading facilities are used to dynamically load the module

in question, adding its exports to the name cache, allowing lookup to succeed. This is akin to

injecting a dependency on that particular module. GHC rewrite rules can be dynamically loaded in

a similar manner.

The ability to dynamically inject module dependencies in this way has been found to be crit-

ical for domain-specific optimizations which rely on auxiliary GHC rewrite rules, or any data-

refinement transformation which introduces a new data type to the program. This includes many

Worker/Wrapper derivations (Section 9.1).

85

4.5.4 Constructing Expressions

GHC provides a library of smart constructors for building GHC Core expressions which respect the

required invariants. Even with these functions, constructing expressions can be a tedious process,

requiring careful thought to ensure all the explicit type and dictionary arguments are in their proper

places. This is especially true when the types in question must be extracted from some existing

expression.

To ease this burden, HERMIT’s dictionary includes a handful of transformations for construct-

ing GHC Core expressions. These transformations lift the GHC smart constructors for constructing

expressions into KURE transformations, and additionally attempt to handle types automatically.

The most primitive of these is buildAppT which, given two expressions, builds an application. The

domain type of the function expression is unified with the type of the argument expression by call-

ing GHC’s type unification functionality. From this, a type substitution is generated which can be

used to specialize both expressions, making them suitable for pairing in an application.

Building on buildAppT , several transformations are provided which build commonly needed

expressions, including applications of the id and fix functions and function composition, as well

as applications to undefined . The latter is used when generating strictness lemmas. The ability

to build function compositions is used by the Worker/Wrapper rewrites (Section 9.1) to generate

appropriate pre-condition obligations.

4.5.5 Navigation

HERMIT, via KURE, uses sequences of crumbs to denote a path in the AST. Crumbs are also

exposed by the Shell as a primitive means of navigation, allowing the user to descend into child

nodes. Navigating solely with crumbs is both verbose and tedious, however. Scripts which rely

heavily on crumbs for navigation tend to be extremely sensitive to changes in the program.

To offer navigation at a higher level of abstraction, HERMIT offers many transformations for

generating paths in the tree. Like other transformations in HERMIT, path-finding transformations

are defined using KURE.

86

bindingOfT :: (V ar → Bool)→ TransformH CoreTC (Path Crumb)

Path-finding transformations such as bindingOfT , which finds a path to the binding whose

binder satisfies the given predicate, are usually defined in terms of KURE’s generic path-finding

functions. KURE has generic support for finding a single path, the shortest path, the longest path,

or all paths that satisfy a given predicate. HERMIT’s path-finding transformations are typically

defined over the universe type, so that they generate valid paths when applied to any of the member

types of the universe.

The paths generated by applying these transformations can be used to focus a subsequent trans-

formation at the given path via one of KURE’s focusing combinators. When used in the Shell, the

resulting path is appended to the current focus, changing the focused expression.

4.5.6 Debugging

When developing large composite rewrites, it is often helpful to understand which of the compo-

nent rewrites is succeeding, and when. If the overall composite rewrite simply fails, it is usually

helpful to be able to see intermediate results, to understand where the rewrite is failing. This is

especially true when the composite rewrite involves an iteration strategy, which may apply a large

number of component rewrites in a non-obvious order.

It is also helpful to be able to typecheck the expressions generated by a rewrite. A subtle

mistake in expression construction can lead to an ill-typed expression, which only becomes obvious

when future rewrites that depend on correct type information behave strangely, or when GHC itself

aborts compilation due to type errors.

To aid in debugging rewrites, HERMIT provides three helpful combinators. The first, traceR,

is an identity rewrite which prints a given message and a count of the number of times the message

has been printed as a side effect. The second, observeR, is an identity rewrite which prints a given

message and the current expression as a side effect. The third, bracketR, calls observeR before and

after a given rewrite, but only if that rewrite succeeds.

87

traceR :: String → RewriteH a

observeR :: String → RewriteH a

bracketR :: String → RewriteH a → RewriteH a

Note that traceR and observeR never fail, so care must be used when including them in iteration

strategies which require (eventual) failure to terminate. bracketR succeeds only when its argument

rewrite succeeds. Together, these combinators have been found useful for debugging large com-

posite rewrites, especially in automated domain-specific optimization passes which may involve

thousands of iterations of a particular strategy.

To check that expressions resulting from rewrites are well-typed, HERMIT lifts GHC’s Core

Lint [Hudak et al., 2007] functionality into KURE transformations. Core Lint is both a type check-

ing pass and a lint checking pass for GHC Core. The lint checking pass checks for various in-

variants expected on the GHC Core program, such as correct liveness annotations on binders and

variable occurrences.

HERMIT’s lifted versions of Core Lint can be applied to expressions or the entire module.

The latter pass detects more lint errors, as it has more information available. Internally, HERMIT

uses these transformations as a sanity check, applying them after rewriting steps during proof, for

instance. A special mode of the shell runs Core Lint on the module after every rewrite, which is

useful for catching errors early. As no type inference is necessary, Core Lint is quite fast compared

to type checking Haskell source. Even so, automatic linting is disabled by default for performance

reasons.

4.5.7 Composite Transformations

When rewriting real Haskell programs, the key steps are often decisions about when and where to

unfold a definition, or abstract an expression, or apply a GHC rewrite rule. In between are many

simplification and reduction steps which are usually glossed over in pen-and-paper derivations.

Rather than require the user to be explicit about all these steps, HERMIT provides rewrites which

attempt to simplify automatically. This allows the user to focus on the key steps, and leave the

tedious manipulation to HERMIT.

88

4.5.7.1 Simplify

The gentle simplification rewrite simplifyR attempts to clean up an expression without drastically

altering it. It applies β-reduction, case reduction, dead-let elimination, and non-work-duplicating

let-substitution anywhere they apply in the expression, to exhaustion. It also unfolds a limited set

of Haskell functions which tend to be used by programs written in a point-free style. Currently,

these are: ($), (◦), id, flip, const , fst , snd , curry , and uncurry. Unfolding these combinators often

reduces expression size, leaving an expression which involves explicit abstraction and applica-

tion, associated in a consistent way. Eliminating this syntactic noise generally makes it easier for

subsequent rewrites to target the expression.

4.5.7.2 Smash and Bash

More aggressive than simplifyR are smashR and bashR. Both rewrites apply a wide range of local

transformations which either evaluate or eliminate expressions in some way, or float let- and case-

expressions outward. This includes an collection of rewrites for eliminating casts by floating and

merging them. Generally, these rewrites are used interactively as a crude means of normalizing a

term.

bashR is careful not to duplicate work, making it more suited to program transformation and

domain-specific optimizations. smashR is less limited, freely duplicating expressions by inlining

let bindings and performing other evaluation, and is intended for use during proof, where perfor-

mance of the resulting expression is not a concern.

It is sometimes helpful to understand the sequence of rewrites applied by both smashR and

bashR, so corresponding debugging versions are also defined. The debugging versions wrap each

component rewrite in bracketR, generating a log of successful rewrites, with before and after ex-

pressions, as they happen. The debugging versions also check each intermediate result using Core

Lint, to aide debugging HERMIT itself, so they tend to be slower.

89

Chapter 5

Proof

HERMIT is designed to support proving program properties and performing equational reasoning

transformations. Properties may be stated directly by the user, or arise during transformation,

capturing necessary pre-conditions for the transformation to succeed. HERMIT refers to such

properties as lemmas.

This chapter presents the design of HERMIT’s capabilities for proving lemmas. It starts with

an example of proving a property interactively in order to give a flavor for proof in HERMIT.

Subsequent sections consider of the design implications of HERMIT’s lemmas in detail.

It is important to note that HERMIT does not encode proofs using a formal logic, as is done

in a formal theorem prover. Rather, proof in HERMIT is akin to the systematic application of

informal logic found in traditional mathematical proofs. Reasoning in such proofs is typically

performed using natural (rather than formal, symbolic) language, meaning some ambiguity is in-

volved. Likewise, HERMIT’s notion of equivalence (Section 5.3) is defined in terms of available

transformations which may have varying degrees of correctness guarantees. Nevertheless, this

style of proof still offers a higher assurance of correctness than testing alone, falling somewhere

on a spectrum between testing and formal proof. Throughout this dissertation, the term “proof” is

used to refer to this notion of making a systematic argument about correctness using an informal

logic.

90

module Tree where

data Tree a = Node (Tree a) a (Tree a)
| Leaf a

treeMap :: (a → b)→ Tree a → Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Node t1 x t2) = Node (treeMap f t1) (f x) (treeMap f t2)

{-# RULES “treeMapId”[∼] treeMap id = id #-}

Figure 5.1: Tree.hs: Haskell Source for the Tree Example.

5.1 Example

Proofs, in HERMIT, proceed in the style of natural deduction [Smith, 2012]. The user rewrites a

property until a primitive truth value is reached. This is done in the Shell, which has support for

rewriting properties in addition to transforming the underlying GHC Core program.

To demonstrate HERMIT’s interactive proof capabilities, this section seeks to prove a property

about the implementation of the treeMap function in Figure 5.1. The property to be proven is the

familiar first functor law, namely that mapping the identity function over the tree is itself an identity

operation. As in the previous example in Section 4.1, the reader is encouraged to install HERMIT

and follow along.

The property in question has been stated as a GHC rewrite rule (Section 2.2.3), named

treeMapId. GHC rewrite rules are currently the primary means of stating properties. The rule

will be parsed by GHC, along with the rest of the program, and made available to HERMIT. To

begin the proof, we invoke HERMIT on the source file.

$ hermit Tree.hs

module main:Tree where
treeMap :: ∀ a b . (a � b) � Tree a � Tree b

As before, HERMIT displays a summary of the module. In this case, we are not concerned

with transforming the module itself. To begin the proof, we first need to instruct HERMIT to turn

the treeMapId rule into a HERMIT lemma. HERMIT will create a lemma with the same name,

which can then be proven.

91

hermit> rule-to-lemma treeMapId
hermit> prove-lemma treeMapId

Goal:
∀ M. treeMap N N (id N) ≡ id N

The prove-lemma command instructs the Shell to enter proof mode, where rewrites target the

lemma we are trying to prove instead of the underlying GHC Core program. The goal in proof

mode is to rewrite the lemma to a primitive truth value. Once this is accomplished, HERMIT will

exit proof mode and mark the original version of the lemma as proven.

Once again, types are displayed as green symbols by HERMIT’s default pretty-printer. For

clarity, we will instruct HERMIT to hide them.

hermit> set-pp-type Omit

Goal:
treeMap id ≡ id

This proof will require structural induction, but the rule (and thus the resulting lemma) was

stated in a point-free style. In order to have a variable to induct on, we need to apply an extension-

ality rewrite to the lemma. The argument to extensionality is a name for the new universal

quantifier. The type of the quantifier is inferred from the type of the expressions which make up

the equivalence.

proof> extensionality ’t

Goal:
∀ t. treeMap id t ≡ id t

In this case, the type of t is inferred to be Tree a, where a is a new universally quantified

type variable that is currently hidden by the decision to not display types. Now we can perform

structural induction on t .

proof> induction ’t

Goal:
(treeMap id undefined ≡ id undefined)
∧
((∀ a b c.
(treeMap id a ≡ id a)
⇒
((treeMap id c ≡ id c)

92

⇒
(treeMap id (Node a b c) ≡ id (Node a b c))))

∧
(∀ a. treeMap id (Leaf a) ≡ id (Leaf a)))

Structural induction (Section 5.10.5) is not a special built-in proof technique. It is a trans-

formation like any other, rewriting the lemma into a conjunction of the two base cases and the

inductive case. Note that, due to the order of the constructors in the data definition of Tree in

the source file, the inductive case is the second case of the three in the conjuction. Two inductive

hypotheses are generated for the inductive case (because the Node constructor has two components

of type Tree a) and made available via implication. Implications in HERMIT lemmas are like

non-recursive let-expressions in GHC Core programs. While focused on the consequent of the

implication, the antecedent is assumed, and available as a rewrite; similar to how a let-binding is

in-scope in the body of the let-expression, and available for inlining.

The two base cases will be easy to prove, so let us first focus on the inductive case. To do so,

we navigate using crumbs, similiar to the way we navigate in GHC Core expressions. As before,

the open brace ({) pushes the current focus on a stack, then each crumb changes the focus path.

The semi-colon is a statement separator.

proof> { forall-body ; conj-rhs ; conj-lhs

Goal:
∀ a b c.
(treeMap id a ≡ id a)
⇒
((treeMap id c ≡ id c)
⇒
(treeMap id (Node a b c) ≡ id (Node a b c)))

We are now focused on the inductive case, which is comprised of two implications, one for

each inductive hypothesis. To prove the implication requires rewriting the consequent until it is

true, so we will once again use crumbs to navigate to it.

proof> forall-body ; consequent ; consequent

Assumed lemmas:
ind-hyp-0 (Built In)
treeMap id a ≡ id a

ind-hyp-1 (Built In)

93

treeMap id c ≡ id c
Goal:
treeMap id (Node a b c) ≡ id (Node a b c)

Notice that by navigating into the consequent of the implications, the antecedents are in scope

as assumed lemmas. The HERMIT Shell helpfully displays any in-scope local lemmas such as

these above the goal.

Since treeMap and id are applied to explicit Node constructors, it makes sense to perform a bit

of evaluation. Rather than do this step-by-step, we instruct HERMIT to unfold any function call,

then apply the powerful smash rewrite to the result (Section 4.5.7.2).

proof> any-call unfold ; smash

Assumed lemmas:
ind-hyp-0 (Built In)
treeMap id a ≡ id a

ind-hyp-1 (Built In)
treeMap id c ≡ id c

Goal:
Node (treeMap id a) b (treeMap id c) ≡ Node a b c

Notice that the first argument to the Node constructor on the left-hand side is an instance of

the left-hand side of the ind-hyp-0 lemma. We can use that lemma as a rewrite, applying it

left-to-right (or ‘forward’).

proof> one-td (lemma-forward ind-hyp-0)

Assumed lemmas:
ind-hyp-0 (Built In)
treeMap id a ≡ id a

ind-hyp-1 (Built In)
treeMap id c ≡ id c

Goal:
Node (id a) b (treeMap id c) ≡ Node a b c

The same can be done for the third argument to Node, using the other inductive hypothesis.

proof> one-td (lemma-forward ind-hyp-1)

Assumed lemmas:
ind-hyp-0 (Built In)
treeMap id a ≡ id a

ind-hyp-1 (Built In)
treeMap id c ≡ id c

Goal:
Node (id a) b (id c) ≡ Node a b c

94

It is obvious that the two sides are equivalent at this point. We could manually unfold the calls

to id and invoke HERMIT’s reflexivity command to rewrite the entire equality to true, but we

will call smash eventually, which will do this for us. Instead, we will pop the scope using (}) to

return to the top of the lemma.

proof> }

Goal:
(treeMap id undefined ≡ id undefined)
∧
((∀ a b c.
(treeMap id a ≡ id a)
⇒
((treeMap id c ≡ id c) ⇒ (Node (id a) b (id c) ≡ Node a b c)))
∧
(∀ a. treeMap id (Leaf a) ≡ id (Leaf a)))

The base cases are now in view again. They are simple to prove, only requiring us to unfold

the calls to treeMap and id and smash the result.

proof> any-call unfold ; smash

Goal:
true

In fact, smash has rewritten the entire lemma to the primitive truth value. This is because

smash includes reflexivity as one of its rewrites, along with a host of lemma simplification

rewrites which apply the usual boolean identity laws (Section 5.10.2). All that remains is to end

the proof.

proof> end-proof

Successfully proven: treeMapId

HERMIT now marks the lemma as proven, meaning it can be used as a bi-directional rewrite,

or as an auxiliary lemma during another proof. To display a list of available lemmas, we can use

the show-lemmas command.

hermit> show-lemmas

treeMapId (Proven)
treeMap id ≡ id

95

5.2 Lemmas

The remainder of this chapter is concerned with detailing the design of HERMIT’s proof capabili-

ties. This discussion primarily centers around the Lemma type, and operations defined on lemmas.

A lemma is principally a clause, along with some status information indicating whether the lemma

has been proven and whether it has been used.

data Lemma = Lemma Clause Proven Used

The Clause type encodes the actual property which the lemma embodies. Primitive clauses are

CTrue, the primitive truth clause, and Equiv, which states an equivalence between two GHC Core

expressions. Composite clauses combine other clauses via conjuction, disjunction, or implication.

Implication clauses carry a lemma name which allows transformations to refer to the antecedent

when it is in scope (Section 5.6). Any clause may reference universally quantified variables which

are introduced by an enclosing Forall clause.

data Clause = CTrue -- truth
| Equiv CoreExpr CoreExpr -- alpha-equivalence
| Conj Clause Clause -- conjunction
| Disj Clause Clause -- disjunction
| Impl LemmaName Clause Clause -- implication
| Forall [CoreBndr] Clause -- quantification

An example of a primitive lemma is the map fusion law:

∀ a b c (f :: b → c) (g :: a → b) . map f ◦map g ≡ map (f ◦ g)

This lemma is an equivalence between the expressions map f ◦map g and map (f ◦ g), along

with the universal quantifiers a, b, c, f , and g . The quantifiers a, b, and c quantify types, whereas f

and g quantify values. Quantifiers scope over other quantifiers to their right, just as lambda-binders

do, allowing b to appear in the type of f , for instance. Note that occurrences of the type quantifiers

have been elided in the two expressions, for clarity.

An example of a composite lemma is the foldr fusion law:

∀ f g h a b .
(f undefined ≡ undefined) ∧ (f a ≡ b) ∧ (∀ x y . f (g x y) ≡ h x (f y))
⇒

f ◦ foldr g a ≡ foldr h b

96

This lemma is an implication whose antecedent is a conjunction of three clauses. The clause

f undefined = undefined states that f is expected to be strict. Note the third clause in the conjuc-

tion, which has its own quantifiers which scope only over that particular clause. Again, the type

quantifiers are elided for clarity.

The proven and used status of a given lemma is encoded by the following two types.

data Proven = NotProven | Assumed | BuiltIn | Proven
data Used = Obligation | UnsafeUsed | NotUsed

Lemmas marked Assumed have been assumed by the user, whereas BuiltIn lemmas are assumed

by a lemma library (Section 5.9), or by HERMIT itself. This distinction is important mainly to the

Shell, which has different safety modes that may warn about or disallow assumed lemmas.

The Obligation and UnsafeUsed tags both indicate a lemma has been used, and that the validity

of the current transformation or proof depends on the validity of the lemma. Again, the distinction

is for the benefit of the Shell. By default, all lemmas are marked Obligation when they are used.

Special unsafe commands in the Shell use the UnsafeUsed status, allowing proofs to be put off, or

ignored altogether. Such unsafe commands are only available when HERMIT is explicitly run in

unsafe mode, but are useful for rapid exploration of a transformation.

5.3 Equivalence

As HERMIT’s lemmas are concerned with stating equivalences, it is important to be clear about

the notion of equivalence. Two GHC Core expressions are considered to be equal if one can be

transformed into the other, modulo α-equality. Thus equivalence is dependent on the set of prim-

itive transformations that HERMIT provides, which include transformations that can change the

strictness properties of a program. Consequently, HERMIT’s equivalence relation only guarantees

partial correctness: the output produced by a program after transformation can be either more or

less defined, but when the output is defined it does not differ in value.

Partial correctness in this sense is still valuable, however. HERMIT is not intended to supplant

automated formal theorem provers. Instead if seeks to improve the currently common practice of

97

semi-formal reasoning by mechanizing it. In that light, even this partial correctness represents an

increase in formality. Some commonly used transformations already introduce their strictness con-

ditions as lemma obligations (Section 5.7). Future work on classifying HERMIT’s transformations

with a full accounting of pre-conditions and correctness criteria could strengthen the equivalence

guarantee.

Similiarly, two clauses are equivalent if one can be transformed into the other, modulo α-equality.

A proof in HERMIT consists of demonstrating a clause is equivalent to the primitive CTrue clause.

The validity of a given transformation depends on the context in which is used. Intuitively, proving

a specific case does not prove the general case. Thus, a transformation which weakens a clause by

making it more specific is not valid during proof. However, a transformation which strengthens

a clause by making it more abstract is valid. Conversely, it is not valid to apply a strengthening

transformation to an already proven clause, but it is valid to apply a weakening transformation.

As the current primary means of proving lemmas is via the HERMIT’s Shell, validity is ensured

by selectively enabling or disabling certain transformations during proof. Fully classifying trans-

formations as strengthening/weakening and enforcing validity at the KURE level remains future

work.

5.4 Creating Lemmas

There are two methods of introducing lemmas into HERMIT. The first method is to state the lemma

as a GHC RULES pragma, then convert it to lemma using the ruleToLemmaT transformation,

which inserts the resulting Lemma into HERMIT’s lemma store.

GHC RULES are convenient because they can be stated in Haskell syntax, rather than GHC

Core. They are parsed, type-checked, and desugared into GHC Core by GHC’s front end, allowing

HERMIT to reuse these front-end capabilities. Most Haskell programmers will be familiar with

RULES, as they are commonly used to influence the behavior of GHC’s optimizer. As an example,

the map fusion lemma can be stated as the following rule:

{-# RULES “map-fusion”[∼] forall f g . map f ◦map g = map (f ◦ g) #-}

98

As GHC rules are intended to alter the behavior of the optimizer, they carry a phase annotation,

directing GHC to only apply the rule during a specific phase of simplification. This rule is intended

only for use as a HERMIT lemma, so it has been given the special [∼] annotation, indicating it is

never active during optimization.

GHC rules are equivalences between expressions, so they can only be used to specify primitive

equivalence lemmas. Additionally, GHC imposes syntactic restrictions on the expressions in the

pragma. One of these restrictions is that the head of each side of the rule must be a function

application of an in-scope function, meaning only a subset of all possible primitive lemmas can be

expressed. However, in practice, many useful properties can be specified using RULES, including

most of the familiar type-class laws, which are the target of the case study in Chapter 6.

RULES pragmas intended as lemmas can be specified in the target program as inactive rules,

or they may be contained in another module or package entirely. If the RuleName argument to

ruleToLemmaT includes a fully-qualified module name, that module will be dynamically loaded

in order to find the rule, even if the target program does not depend on it. When dynamically

loading in this fashion, no rules are actually introduced into the target program.

Many interesting properties, such as foldr’s fusion law, cannot be specified as GHC rules. One

means of constructing these properties is to merge separate rule-based lemmas. While HERMIT

does supply transformations for this task, it can be tedious. A more direct solution is to construct

the desired lemma entirely in KURE, using HERMIT’s combinators for finding names (Section

4.5.3) and constructing expressions (Section 4.5.4). A lemma constructed this way can then be

used by dynamically loading it from a lemma library (Section 5.9).

Ideally, GHC’s parser could be modified to parse composite lemmas directly, or HERMIT

itself could implement a parser for GHC Core and allow lemmas to be specified via the Shell or in

scripts. In practice, both are likely useful, as some properties may require more explicit control of

the resulting GHC Core than a Haskell-source-to-Core translation would allow. These capabilities

are left as future work.

99

5.5 Primitive Operations

HERMIT implements a number of primitive operations on the Clause type which parallel those

available for GHC Core expressions. These include capture-avoiding substitution, syntactic and

α-equality, free variable calculation, redundant binder elimination, lint/type checking, unshad-

owing, and instantiation. This section presents redundant binder elimination and instantiation in

detail, as both are specific to lemmas.

5.5.1 Redundant Binder Elimination

When lemmas are created from GHC RULES pragmas, constraints in the types of the expressions

appear as explicit dictionary binders. For instance, the following rule states the bind associativity

law expected of any monad instance.

{-# RULES “bind-assoc”[∼] forall j k l . (j >>= k)>>= l = j >>= (λx → k x >>= l) #-}

Once desugared into GHC Core, the following property is given to HERMIT for conversion

into a lemma. Note the explicit type binders (m, b, a, and c) and dictionary binders ($dMonad1

and $dMonad2).

∀ m b a c $dMonad1 $dMonad2 j k l .
(>>=) m $dMonad1 c b ((>>=) m $dMonad2 a c j k) l
=
(>>=) m $dMonad2 a b j (λx → (>>=) m $dMonad2 c b (k x) l)

Here, the class method >>= has been desugared into a selector function which is applied to

the monad type m and a dictionary for that monad $dMonad1 (or $dMonad2). This selector func-

tion projects the actual implementation of >>= for this specific monad from the dictionary. The

implementation function will be applied to the remaining arguments.

Inspection of the types of $dMonad1 and $dMonad2 will reveal they both have type Monad m.

GHC’s typechecker guarantees that only one instance for a given type is in scope at a time, so

these binders will necessarily always have the same concrete dictionary implementation. Two

such binders are created in order that the rewrite rule liberally matches two different expressions

which will eventually evaluate to the same dictionary.

100

However, having two such binders as universal quantifiers in a lemma can be problematic.

Mildly inconvenient, they must both be instantiated separately when proving, even though they

will get the same concrete value. More seriously, occurrences of the two binders are considered

distinct, because the two binders are in fact unique. The fact that they must have the same concrete

value eventually is not evident to GHC or HERMIT.

This is problematic when transforming the lemma itself because it prevents a rewrite which

expects identical expressions for the dictionaries from matching. Consider transforming the left-

hand side of the bind-assoc lemma above with the following hypothetical rewrite.

∀ m a b c $dMonad j k l .
(>>=) m $dMonad c a ((>>=) m $dMonad b c j k) l = foo m $dMonad a b c j k l

This rewrite is only parameterized over a single $dMonad dictionary, and thus, to match, the

dictionary arguments to the two >>=s must be the same. However, in bind-assoc, they are not!

In short, redundant binders are never a problem when applying a lemma as a rewrite, but are

problematic when rewriting the lemma itself (and lemmas must be rewritten to be proven).

In order to avoid this, redundant dictionary binders are eliminated at lemma construction. This

is accomplished by substituting the first binder of a given dictionary type for any subsequent

binders of the same type. Nominally, this means lemmas will successfully apply less often than

rules, because the two dictionary expressions are required to be structurally equivalent expres-

sions. In practice, this is rare, and can be worked around by using HERMIT to transform the two

dictionary expressions to make them equivalent before applying the lemma.

5.5.2 Instantiation

Whereas substitution is concerned with substituting for a free variable occurrence in a clause, in-

stantiation is more akin to β-reduction, weakening a clause by making the value of a universal

quantifier concrete. However, unlike β-reduction, HERMIT allows quantifiers to be instantiated

even if they are under other quantifiers, meaning the instantiation of a given quantifier may spe-

cialize the quantifers above it.

101

For instance, consider the following clause, stating a polymorphic identity property.

∀ t (x :: t) . id t x ≡ x

Instantiating x to Just "Hello" fully determines the type of t to be Maybe String. Thus, the

resulting clause would be:

id (Maybe String) (Just "Hello") ≡ Just "Hello"

More subtly, instantiating a quantifier may introduce new quantifiers. If, for instance, x was

instantiated to the constructor Just, which has type Maybe a, the following clause would result:

∀ a . id (Maybe a) Just ≡ Just

It is also possible for the quantifier’s type to specialize the type of the expression for which it

is being instantiated. Consider instantiating the following clause which states that f is monotonic.

∀ (f :: Int→ Int) x y . (x < y ≡ True) ⇒ (f x <= f y ≡ True)

Instantiating f to the identity function id :: a → a will specialize the type of id to Int→ Int.

Type specialization is accomplished by GHC’s built-in type (or kind) unification. The type (or

kind) of the quantifier and the expression to which it is being instantiated are unified, giving a type

substitution which can be applied to both. New quantifiers are introduced by free variables in the

instantiation expression which results from this substitution.

In general, instantiation is a weakening transformation, and thus not valid during proof. It is

primarily used to make a weakened instance of a lemma which can then be proved. For example, a

type class law can be stated as a lemma, but can only be proved for specific instances of the class.

Obtaining the weakened lemma for the specific instance is accomplished by instantiating it to a

specific type.

Note, however, that instantiating dictionaries does not weaken or strengthen a clause because

the typechecker guarantees that only one dictionary instance per type is in scope. The fact that

HERMIT runs after the typechecker means it can rely on this guarantee. Thus, dictionary instanti-

ation is allowed during proof.

102

5.6 Lemma Universes

HERMIT defines two universe types for clauses which extend the Core and CoreTC universes

defined in Section 4.2.1. The first, LCore, only descends into nodes which contain GHC Core

expressions or clauses. The second, LCoreTC, additionally descends into nodes which contain

types and coercions.

data LCore = LClause Clause | LCore Core
data LCoreTC = LTCCore LCore | LTCTyCo TyCo

The rest of this section will present LCore in detail. LCoreTC is entirely analogous.

Injection instances to LCore are provided for Clause and all the component types of Core,

including CoreExpr. The Walker instance is defined in terms of congruence combinators for the

constructors of the Clause type, as is conventional in KURE.

instance (AddBindings c, ExtendPath c Crumb
, LemmaContext c, ReadPath c Crumb)⇒Walker c LCore where

allR :: ∀ m . MonadCatch m ⇒ Rewrite c m LCore→ Rewrite c m LCore
allR r = prefixFailMsg "allR failed: " $

rewrite $ λc e → case e of
LClause cl → inject $© applyT allRclause c cl
LCore core → inject $© applyT (allR $ extractR r) c core

where
allRclause ::MonadCatch m ⇒ Rewrite c m Clause
allRclause = forallR idR (extractR r)

<+ conjAllR (extractR r) (extractR r)
<+ disjAllR (extractR r) (extractR r)
<+ implAllR (extractR r) (extractR r)
<+ equivAllR (extractR r) (extractR r)
<+ ctrueR

This definition takes advantage of the fact that clauses do not occur inside GHC Core expres-

sions, so once the LCore constructor is encountered, traversal can be entirely delegated to the allR

defined by the Walker instance for the Core universe.

The only notable difference from theWalker instance for theCore universe is the LemmaContext

constraint on the context. This constraint specifies that the context can accumulate local lemmas

during traversals. This is similiar to how bindings are accumulated using the AddBindings class.

class LemmaContext c where
addAntecedent :: LemmaName→ Lemma→ c → c
getAntecedents :: c →Map LemmaName Lemma

103

implT :: (ExtendPath c Crumb, LemmaContext c,Monad m)
⇒ Transform c m Clause a1
→ Transform c m Clause a2
→ (LemmaName→ a1 → a2 → b)
→ Transform c m Clause b

implT t1 t2 f =
transform $ λc cl → case cl of
Impl nm ante con →
let l = Lemma ante BuiltIn NotUsed
in f nm $© applyT t1 (c @@ Impl_Lhs) ante

~ applyT t2 (addAntecedent nm l c @@ Impl_Rhs) con
→ fail "not an implication."

implAllR :: (ExtendPath c Crumb, LemmaContext c,Monad m)
⇒ Rewrite c m Clause→ Rewrite c m Clause→ Rewrite c m Clause

implAllR r1 r2 = implT r1 r2 Impl

Figure 5.2: Congruence Combinators for Implication Clauses.

The congruence combinators for the Impl constructor in Figure 5.2 make use of addAntecedent

to bring the antecedent into scope as a local lemma while traversing the consequent. Accumulating

local lemmas in this manner is key to proving implication lemmas in HERMIT. Local lemmas in

scope can be used as rewrites like any other lemma. This is used most notably by HERMIT’s struc-

tural induction scheme, where the induction hypothesis is the antecedent to the clause representing

the inductive case (Section 5.10.5).

5.7 Pre-conditions

HERMIT lemmas offer a convenient means for transformations to record necessary pre-conditions.

In general, HERMIT transformations do not require pre-conditions to be proven first. Instead, they

are recorded as an unproven lemma obligation. These obligations can then be proven after the fact.

Consider, for example, the transformation which floats a case expression from its position as

an argument to a function.

f (case scrut of =⇒ case scrut of
alts → rhs) alts → f rhs

104

This transformation is only valid if f is strict in its argument. Otherwise, it may alter the

termination properties of the program by evaluating scrut more often.

The transformation can be idiomatically defined using KURE to perform both the rewrite itself

and introduce the strictness condition as an unproven lemma.

caseFloatArgR :: LemmaName→ RewriteH CoreExpr
caseFloatArgR nm = do
App f (Case s b ty alts)← idR
r ← ... -- construct the actual result, checking for capture, etc.
clause ← buildStrictnessT f
verifyOrCreateT nm $ Lemma clause NotProven Obligation
return r

In HERMIT, as a general pattern, transformations which introduce lemmas for pre-conditions

accept a lemma name to assign to the generated lemma. This particular transformation

makes use of an auxiliary transformation buildStrictnessT which constructs the expression

f undefined = undefined at the proper types. It then uses the verifyOrCreateT transformation to

either introduce or discharge the obligation.

verifyOrCreateT first attempts to find a lemma with the given name. If found, the lemma is

compared against the generated obligation. If the existing lemma can be used to prove (Section

5.8) the generated obligation, then the obligation is discarded. If it cannot, or no lemma with the

given name exists, the obligation is recorded with the given name.

This design has two main benefits. First, not requiring proof of pre-conditions up-front allows

larger transformations to be more easily constructed from smaller transformations which have pre-

conditions. If the proof was required up-front, a large transformation would need a proof for

every one of its component transformations up-front, making its use unwieldy. Instead, a large

transformation ends up generating several pre-condition lemmas as appropriate.

Second, the use of verifyOrCreateT avoids unnecessary duplication of proof effort. In many

cases, a single general property can be proved once, then used to discharge several pre-conditions

which are instances of the general property.

105

5.8 Lemma Strength

TrieMaps (Section 4.4) are defined for the Clause type, meaning clauses can be folded in a manner

similar to expressions. There is no notion of a variable at the clause level, and clauses do not appear

within GHC Core expressions, so clauses cannot unify with holes. The resulting fold requires the

clause structure of the pattern and target to be identical, modulo the antecedent names, which are

discarded during matching. (As antecedent names are only bound and do not occur, the fold does

not even have to ensure they are α-equivalent.) Expressions within Equiv clauses are folded using

the TrieMaps defined for expressions, determining the value of any holes in the same way as a

regular expression fold.

The ability to fold clauses in this way leads to a natural means of defining relative strength

of clauses. A clause D is weaker than clause C if C can be used as a pattern to fold D, using

C’s quantifiers as holes. Intuitively this follows from the idea that instantiation is a weakening

transformation. If C can be successfully used to fold D, that is the same as saying that C can be

transformed into D by exclusively using a series of weakening instantiations of C’s quantifiers.

Thus, C is stronger than D, and a proven C subsumes the proof of D.

5.9 Lemma Libraries

HERMIT lemmas may be packaged up into a library, allowing for sharing and reuse. HERMIT

exports the following type:

type LemmaLibrary = TransformH () (Map LemmaName Lemma)

A lemma library is a normal Haskell module which exports one or more top-level bindings with

the type LemmaLibrary. Such a Haskell module can be packaged using Cabal and distributed in-

dependently of HERMIT itself. HERMIT provides a primitive transformation which dynamically

loads the desired library, applies it in the current context, and inserts the lemmas defined by the

library into the Kernel’s lemma store.

loadLemmaLibraryT ::HermitName→ TransformH a ()

106

The HermitName argument should be the fully-qualified name of a binding with the type

LemmaLibrary. For instance, given the following library module:

module HERMIT .FooLibrary where

lemmas :: LemmaLibrary
lemmas = do ...

The library can be loaded using:

loadLemmaLibraryT "HERMIT.FooLibrary.lemmas"

The dynamic loading of the library is done using GHC’s built-in dynamic loading capabilites,

meaning the target program does not need to depend on the library in any way. As the LemmaLibrary

type synonym indicates, lemma libraries are themselves transformations, so they have access to the

current context and GHC state when loaded. Thus, library definitions can potentially be quite so-

phisticated and context-dependent. GHC’s Core Lint (Section 4.5.6) is applied to lemmas returned

by the library before insertion into the lemma store.

5.10 Lemma Dictionary

Proof, in HERMIT, is the process of rewriting a lemma’s clause until it is the primitive CTrue

clause. This demonstrates that the lemma is equivalent to truth by a series of equational transfor-

mations. To facilitate this, HERMIT’s dictionary includes a number of useful rewrites over clauses.

Additionally, proven lemmas are an important source of rewrites for both expressions and clauses.

This section highlights the most interesting transformations in the dictionary which involve

lemmas. The full dictionary contains many more transformations not listed here which do things

such as looking up lemmas by name, marking them proved, pretty-printing them, etc. The intent

of this section is to give a sense of HERMIT’s capabilities regarding lemmas.

5.10.1 Lemmas As Rewrites

A proven lemma is itself a useful rewrite. A primitive lemma can be used to rewrite an expression

by folding the expression using either side of the lemma as the fold pattern, and the quantifiers

107

of the lemma as holes. The result of the fold is the other side of the lemma, with holes instanti-

ated to their matching expressions. This is accomplished using the rewrites lemmaForwardR and

lemmaBackwardR, which apply the lemma left-to-right and right-to-left, respectively.

lemmaForwardR :: LemmaName→ RewriteH CoreExpr
lemmaBackwardR :: LemmaName→ RewriteH CoreExpr

A lemma can also be used to rewrite another lemma. For instance, in the course of proving

a lemma by rewriting it, the user may be faced with a clause which is an instance of an already

proven lemma. HERMIT’s lemmaR rewrite allows the clause to be rewritten directly to truth.

lemmaR :: LemmaName→ RewriteH Clause

This rewrite works by using the named lemma as a fold pattern, with any top-level quantifiers

as holes. If the targeted clause can be folded by the pattern, it is considered a more specific instance

of the named lemma (Section 5.8), and thus true if the named lemma is true. This is the capability

that allows HERMIT proofs to be modular and reusable.

The lemmaR rewrite is actually a special case of the more general lemmaConsequentR.

lemmaConsequentR :: LemmaName→ RewriteH Clause

This rewrite requires the named lemma to be an implication1. The consequent of the impli-

cation is used as a fold pattern, with the top-level quantifiers (those scoping over the entire im-

plication) as holes. The result is the antecedent, instantiated with expressions which matched the

holes.

As an example of lemmaConsequentR in action, consider trying to prove the following lemma,

where f and g are concrete functions.

filter f ≡ filter f ◦ filter g

Rather than proceeding directly, one could appeal to the following more general lemma, which

has been proven separately.

filter-split
∀ p q . (∀ x . (q x ≡ False) ⇒ (p x ≡ False)) ⇒ (filter p ≡ filter p ◦ filter q)

1Any clause cl can be turned into true ⇒ cl , thus lemmaR is a special case of lemmaConsequentR.

108

Using lemmaConsequentR, the concrete instance being proved can be folded using the conse-

quent of filter-split. The result of the rewrite is the antecedent of filter-split, instanti-

ated to the expressions which matched the holes in the consequent.

∀ x . (g x ≡ False) ⇒ (f x ≡ False)

Proof proceeds by proving this instantiated antecedent. This capability allows general proper-

ties such as filter-split to be used to prove specific instances of the property.

5.10.2 Simplification

Two important simplification rewrites are provided for clauses. The first is reflexivityR, which

checks an Equiv clause for α-equivalence between its expressions, replacing it with a primitive

truth clause. As a matter of convenience, reflexivity is applied automatically by the end-proof

command in the Shell. It is also included in smash.

If a rewrite like reflexivityR or lemmaR introduce a primitive truth clause in part of a larger

composite clause, it is important that it can be simplified away. A rewrite for this purpose, called

clauseIdentitiesR implements the following standard boolean identity laws.

true ∧ c ≡ c
c ∧ true ≡ c
true ∨ c ≡ true
c ∨ true ≡ true
true ⇒ c ≡ c
c ⇒ true ≡ true
∀ vs. true ≡ true

These simplifications are also included in smash. In cases where the user wishes to simplify the

clause structure without affecting the expressions, HERMIT provides the simplifyClauseR rewrite,

which iteratively applies reflexivity and these boolean identity simplifications to exhaustion.

5.10.3 Instantiation

Instantiating the universal quantifiers of a lemma is an important operation when proving a specific

instance of a general property. This is central to the case study in Chaper 6, where a property for

109

each type class law is stated in terms of the class, then instantiated to a specific instance of the

class, and proved for that instance. HERMIT provides two means of instantiating lemmas.

The first instantiation rewrite is instClauseR, which allows the user to select an arbitrary quan-

tifier and replace it with an expression (or type) whose type (or kind) unifies with that of the

quantifier. This is the type of instantiation discussed in Section 5.5.2, lifted into a rewrite over

clauses. Since instantiation is a weakening transformation, it is not allowed during proof.

The second instantiation rewrite is instDictionariesR, which automatically instantiates any dic-

tionary binders which have concrete types. To obtain expressions for the dictionaries, GHC’s

typechecker and desugarer are invoked. Since the typechecker guarantees that only one class in-

stance for a given type is in-scope, dictionary instantiation is considered non-weakening, and is

allowed during proof.

5.10.4 Strengthening

It is also possible to strengthen, or increase the generality of, a lemma. HERMIT provides a rewrite

called abstractForallR which adds a universal quantifier to the lemma, then folds all occurrences

of a given expression into occurrences of this quantifier. This operation is the dual to instantiation,

and thus is allowed during proof. If a lemma is strengthened outside of proof, its proven status is

reset.

5.10.5 Structural Induction

Haskell programs usually contain recursive functions defined over (co)inductive data types. Prov-

ing even simple properties of such programs often requires the use of an induction principle. For

example, while [] ++ xs ≡ xs can be proved simply by unfolding the definition of ++, proving the

similar property xs ++ [] ≡ xs requires reasoning inductively about the structure of xs.

To formalize HERMIT’s notion of structural induction requires some notation: vs denotes a

sequence of variables. ∀(C vs :: A) quantifies over all constructors C of the algebraic data type

A, fully applied to a sequence vs of length matching the arity of C. C : A B denotes that C is

110

an expression context containing one or more holes of type A, having an overall type B. For any

expression a :: A, CJaK is the context C with all holes filled with the expression a.

Given contexts C,D : A B, for any algebraic data types A and B, then structural-induction

provides the following inference rule:

CJ⊥K ≡ DJ⊥K ∀(C vs :: A) . (∀(v ∈ vs, v :: A) . CJvK ≡ DJvK)⇒ (CJC vsK ≡ DJC vsK)
∀(a :: A) . CJaK ≡ DJaK

STRUCTURAL-INDUCTION

The conclusion is called the induction hypothesis. Informally, the premises of the judgement re-

quire that:

• the induction hypothesis holds for undefined values;

• the induction hypothesis holds for any fully applied constructor, given that it holds for any

argument of that constructor (of the same type).

HERMIT implements this induction scheme as a rewrite over clauses named inductionR.

inductionR :: (Id→ Bool)→ RewriteH Clause

This rewrite accepts a predicate for selecting the quantifier over which to induct. It then trans-

forms a clause matching the induction hypothesis into a conjuction of the premises, essentially

applying the STRUCTURAL-INDUCTION judgement as a rewrite bottom-to-top.

As an example, applying inductionR to the clause ∀ xs . xs ++ [] ≡ xs transforms it to:

(⊥++ [] ≡ ⊥) ∧ ([] ++ [] ≡ []) ∧ (∀ y ys . (ys ++ [] ≡ ys) ⇒ ((y : ys) ++ [] ≡ (y : ys)))

This resulting clause can now be further rewritten using standard unfolding and simplification

rewrites. The implication antecedent generated in the third sub-clause will be key to rewriting the

consequent. Recall that antecedents are available as local lemmas in the consequent (Section 5.6).

This form of structural induction is somewhat limited in that it only allows the induction hy-

pothesis to be applied to a variable one constructor deep. Concretely, applying induction again on

111

ys above would yield an additional hypothesis which includes y , rather than the desired original

hypothesis instantiated to a variable that is substructural to ys.

Consequently, there are some data types for which HERMIT’s induction scheme is insuffi-

cient to prove properties. Generalizing the induction rewrite to handle recursive calls which are n

constructors deep remains future work.

5.10.6 Remembered Definitions

Commonly, when reasoning about a function definition, a prior definition of that function is needed.

If the definition has been transformed equationally, then any prior definition is transitively equiva-

lent to the current definition, so any prior definition is a valid unfolding for the function.

In pen-and-paper reasoning, using a past definition is a matter of looking up the page for a

version of the function which is useful for the current step. Since HERMIT maintains a revision

history of all versions of the GHC Core program, it certainly has access to all versions of the

function so far encountered. HERMIT could offer an interface such as the following, whereASTId

denotes a specific version of the program, from which it finds the definition of the function specified

by HermitName.

unfoldR :: (...)⇒ HermitName→ ASTId→ RewriteH CoreExpr
foldR :: (...)⇒ HermitName→ ASTId→ RewriteH CoreExpr

However, a single reasoning session may involve dozens or hundreds of steps, making speci-

fying the correct version of the function difficult for the user. Additionally, this interface makes

scripted transformations both less clear and more brittle. ASTId version numbers are not explicitly

denoted in scripts, so the given step may seem to refer to a magic number. Modifying the script

may create additional intermediate ASTIds, requiring all subsequent uses of the identifiers to be

modified.

Instead, HERMIT builds upon lemmas to offer a facility for reasoning with ‘remembered’

definitions. This requires the user to tell HERMIT to explicitly ‘remember’ definitions with a user-

specified name. Remembering a definition simply creates an assumed lemma whose left-hand side

is the function name and whose right-hand side is the function body.

112

The transformation which remembers a definition is called rememberT . It applies to either a

non-recursive binding or a single binding in a recursive binding group. A lemma is created from

the binding using the supplied lemma name. Any lambda bindings at the head of the right-hand

side of the binding become universally quantified variables of the lemma.

For example, applying rememberT "initsumlength" to the following binding:

sumlength :: [Int] � (Int, Int)
sumlength = λ xs � (,) Int Int (sum xs) (length xs)

generates this lemma:

initsumlength (Proven)
∀ xs. sumlength xs ≡ (,) Int Int (sum xs) (length xs)

The lemma is assumed proven so it can immediately be used as a rewrite.

113

Chapter 6

Case Study: Proving Type-Class Laws

The most prominent example of informal equational reasoning in Haskell is type-class laws. Type-

class laws are properties of type-class methods that the class author expects any instance of the

class to satisfy. However, these laws are typically written as comments in the source code, and are

not enforced by a compiler; the onus is on the instance declarer to manually verify that the laws

hold. For example, the following documentation for the Functor class is included in the Haskell

standard library.

class Functor f where
fmap :: (a → b)→ f a → f b

Instances of Functor should satisfy the following laws:

fmap id == id
fmap (f ◦ g) == fmap f ◦ fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

A similar situation arises regarding GHC’s rewrite rules [Peyton Jones et al., 2001]. GHC

applies these rules as optimisations at compile-time, without any check that they are semantically

correct; the onus is again on the programmer to ensure their validity. This is a fragile situation:

even if the laws (or rules) are correctly verified by hand, any change to the implementation of the

114

Monoid
mempty-left ∀x . mempty � x ≡ x
mempty-right ∀x . x � mempty ≡ x
mappend-assoc ∀x y z . (x � y) � z ≡ x � (y � z)

Functor
fmap-id fmap id ≡ id
fmap-distrib ∀g h . fmap (g ◦ h) ≡ fmap g ◦ fmap h

Applicative
identity ∀v . pure id~ v ≡ v
homomorphism ∀f x . pure f ~ pure x ≡ pure (f x)
interchange ∀u y . u ~ pure y ≡ pure (λf → f y)~ u
composition ∀u v w . u ~ (v ~ w) ≡ pure (◦)~ u ~ v ~ w
fmap-pure ∀g x . pure g ~ x ≡ fmap g x

Monad
return-left ∀k x . return x >>= k ≡ k x
return-right ∀k . k >>= return ≡ k
bind-assoc ∀j k l . (j >>= k)>>= l ≡ j >>= (λx → k x >>= l)
fmap-liftm ∀f x . liftM f x ≡ fmap f x

Figure 6.1: Laws Proven in the Type-Class Laws Case Study.

involved functions requires that the proof be updated accordingly. Such proof revisions can easily

be neglected, and, furthermore, even if the proof is up-to-date, a user cannot be sure of that without

manually examining the proof herself. What is needed is a mechanical connection between the

source code, the proof, and the compiled program.

This case study proves a number of type-class laws on common Haskell data types. These laws,

listed in Figure 6.1, are expected to hold of any instance of the class. Types targeted include lists,

Maybe, and the Map type from the containers package, as well as Identity and Reader from the

transformers package. Both containers and transformers are core standard libraries for

Haskell. Each law was stated as a GHC rewrite rule and loaded into HERMIT as a lemma. The

laws were then instantiated for each type and proved, when possible. The results are summarised

in Table 6.1.

Note that these laws were proven for the actual data types and class instances defined in the

base, containers, and transformers packages. Occasionally these instance methods could

be defined in a way that is more amenable to reasoning. For example, the Applicative instances are

115

usually defined in terms of Monad, which complicates the proofs. This case study operates on the

actual types and instances because it reflects proving laws for real code.

The study begins by providing a full example of proving a single law (Section 6.1). It then de-

scribes how to modify the containers Cabal file to cause the proofs to be automatically checked

during compilation (Section 6.2) and discusses some practical issues when proving properties in

GHC Core (Section 6.3). Finally, it concludes with reflection on the overall success of the case

study (Section 6.4).

6.1 Example: return-left Monad Law for Lists

This section walks through a HERMIT proof for the return-left Monad Law for lists in order to

give a flavor for the work involved in proving a type-class law. The steps in this proof involve more

complex transformations than previous examples, demonstrating the advantages of using KURE’s

strategy combinators for directing transformations.

In order to observe the effect of instantiation on the types of the lemma quantifiers, HERMIT’s

pretty printer is first instructed to display detailed type information. The general law, which has

already been loaded from a GHC RULES pragma, is then copied in preparation for instantiation.

hermit> set-pp-type Detailed
hermit> copy-lemma return-left return-left-list

return-left-list (Not Proven)
∀ (m :: * � *)
(a :: *)
(b :: *)
($dMonad :: Monad m)
(k :: a � m b)
(x :: a).

(>>=) m $dMonad a b (return m $dMonad a x) k ≡ k x

Next, the type variable m is instantiated to the list type constructor.

hermit> inst-lemma return-left-list ’m [| [] |]

return-left-list (Not Proven)
∀ (a :: *) (b :: *) ($dMonad :: Monad []) (k :: a � [b]) (x :: a).
(>>=) [] $dMonad a b (return [] $dMonad a x) k ≡ k x

116

(The [| |] syntax are delimiters enclosing manually written Core expressions, which HERMIT

then parses and resolves.) Entering proof mode, the type of the dictionary binder has been fully

determined, so it can also be instantiated.

hermit> prove-lemma return-left-list
hermit> inst-dictionaries

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(>>=) [] $fMonad[] a b (return [] $fMonad[] a x) k ≡ k x

Next, note that the (return [] $fMonad[] a x) expression can be simplified to [x]. This

can be achieved by unfolding return, which will expose a case expression which scrutinises

the $fMonad[] dictionary. This will be simplified away by HERMIT’s powerful smash rewrite,

which performs a number of simplifying rewrites until exhaustion. This will leave the actual

instance method defining return for lists, which can also be unfolded. Rather than do this step by

step, HERMIT is directed to focus on the application of return and repeatedly unfold and smash

the expression.

proof> { application-of ’return ; repeat (unfold <+ smash) }

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(>>=) [] $fMonad[] a b ((:) a x ([] a)) k ≡ k x

Now to simplify away the >>= applications. Unfolding >>= directly results in a locally defined

recursive worker named go, in terms of which the list instance of >>= is defined. Proving in the

context of this recursive worker is tedious and brittle. It is cleaner to prove the following pair of

lemmas separately, then apply them as necessary during this proof:

bind-left-nil ∀ k . []>>= k ≡ []
bind-left-cons ∀ x xs k . (x : xs)>>= k ≡ k x ++ (xs >>= k)

proof> one-td (lemma-forward bind-left-cons)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(++) b (k x) ((>>=) [] $fMonad[] a b ([] a) k) ≡ k x

117

proof> one-td (lemma-forward bind-left-nil)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a).
(++) b (k x) ([] b) ≡ k x

Appealing to another auxiliary lemma, which can be proved by straightforward induction, elim-

inates the list append.

append-right ∀ xs . xs ++ [] ≡ xs

proof> one-td (lemma-forward append-right)

Goal:
∀ (a :: *) (b :: *) (k :: a � [b]) (x :: a). k x ≡ k x

As both sides are α-equivalent, the proof can be concluded.

proof> end-proof

Successfully proven: return-left-list

6.2 Configuring Cabal

As a GHC plugin, HERMIT integrates with GHC’s existing ecosystem, including Haskell’s pre-

mier packaging system, Cabal. Cabal packages feature a single, per-package configuration file.

This file describes how Cabal should build the package, including how to build test cases.

HERMIT co-opts Cabal’s test feature to mechanically check the proofs whenever the package

is rebuilt. As an example, a laws/ directory can be added to the containers package which

contains three files. The first is Laws.hs, which provides the RULES pragmas that define the

desired laws. The other two files are the proof scripts. One for the Functor proofs, the other for

Monoid.

A Test-suite section, seen in Figure 6.2, is then added to the Cabal configuration file for

containers. This defines the target code for the test, which is Laws.hs, along with build depen-

dencies. The build dependencies shown are those of the containers library, plus an additional

dependency on hermit. Note that this additional dependency is only for the test case, and does

not change the dependencies of the containers library itself.

118

Test-suite hermit-proofs
hs-source-dirs: laws, .
main-is: Laws.hs
type: exitcode-stdio-1.0

build-depends: base >= 4.2 && < 5, array,
deepseq >= 1.2 && < 1.4, ghc-prim

ghc-options:
-fexpose-all-unfoldings
-fplugin=HERMIT
-fplugin-opt=HERMIT:Main:laws/Functor.hec
-fplugin-opt=HERMIT:Main:laws/Monoid.hec
-fplugin-opt=HERMIT:Main:resume

build-depends: hermit

Figure 6.2: Test Added to Cabal Configuration File for containers.

Cabal runs the proofs by providing GHC the required series of flags. The

-fexpose-all-unfoldings flag is described in Section 6.3.3. The -fplugin=HERMIT flag

enables HERMIT, and the remaining three flags direct HERMIT to target the Main module (found

in Laws.hs) with two scripts, resuming compilation on successful completion.

The proof scripts should also be added to the configuration file’s extra-source-files sec-

tion, so they are included in source distributions. The normal Cabal testing work-flow can be used

to check the proofs.

$ cabal configure -enable-tests

$ cabal build

Note that the executable generated by the test does not have to actually be run, as the proof checking

is done at compile time.

119

6.3 Proving in GHC Core

Despite being a small, relatively stable, typed intermediate language, GHC Core is not designed

with proof in mind. Consequently, there are a few practical concerns and limitations when proving

properties in GHC.

6.3.1 Implications

Recall that the Monoid instance for Maybe a requires a Monoid instance for the type a. Likewise,

the proof of the mappend-assoc law for Maybe a depends on the law also holding for a. Thus,

the following modified mappend-assoc lemma for Maybe must be proved instead:

mappend-assoc-impl
∀ m . (∀ (x :: m) (y :: m) (z :: m) . (x � y) � z ≡ x � (y � z))

⇒
(∀ (i ::Maybe m) (j ::Maybe m) (k ::Maybe m) . (i � j) � k ≡ i � (j � k))

The proof proceeds by rewriting the consequent of the implication using the antecedent. HERMIT

cannot yet generate such an implication lemma from the original mappend-assoc lemma automat-

ically. Though it can spot the superclass constraint, it has no way of knowing which laws are

associated with a given type class, because GHC itself does not have this information. Instead, the

implication is constructed and introduced directly using a purpose-built KURE transformation.

6.3.2 Newtypes

GHC’s newtype declaration offers the benefits of type abstraction with no runtime overhead [Bre-

itner et al., 2014b, Vytiniotis and Peyton Jones, 2013]. To accomplish this, GHC Core implements

newtype constructors as casts around the enclosed expression, rather than as normal algebraic data

constructors. These casts are erased before code generation.

Proofs in the presence of newtypes must deal with these casts explicitly. HERMIT’s smash

rewrite is effective at floating and eliminating casts in all the examples in this study. In some cases

smash could not eliminate all the casts, but still produced alpha-equivalent expressions, allowing

the proof to be completed without further cast elimination.

120

6.3.3 Missing Unfoldings

Equational reasoning often involves fold/unfold transformations [Burstall and Darlington, 1977].

One consequence of the choice to target GHC Core and work within GHC, is that in order to unfold

functions defined in previously compiled modules, HERMIT relies on the unfolding information

present in the interface files generated by GHC. Unfortunately, GHC does not normally include

unfoldings for recursive functions in the interface files for their defining modules. This prevents

HERMIT from unfolding those functions. This includes, for example, the ++ and map functions.

There are three work-arounds to this issue.

The first option is to recompile the defining packages with GHC’s

-fexpose-all-unfoldings flag. This is the prefered solution when the needed unfold-

ings are defined in the current package. For example, when proving the monoid and functor

laws for containers, the test suite can compile the library with this flag to get the unfoldings

HERMIT needs. However, in the case of ++ and map, this would mean recompiling the base

package, which is not possible without reinstalling GHC itself.

The second option is to redefine the function with a new name, and use that function instead of

the library function. For example:

myAppend :: [a]→ [a]→ [a]
myAppend [] ys = ys
myAppend (x : xs) ys = x : myAppend xs ys

However, this is not an option when reasoning about pre-existing code that uses the library version

of the function.

A third option is to define a GHC rewrite rule to convert calls to the library function into calls

to the new function, and then use this rule to transform the program before beginning to reason

about it. For example:

{-# RULES “my-append”[∼] (++) = myAppend #-}

This is the solution used by this case study to get unfoldings for ++ and map. None of these work-

arounds is ideal, and finding a cleaner solution remains as future work. Possibilities include making

the -fexpose-all-unfoldings behavior the default for GHC, or implementing a systematic

121

Law (see Fig. 6.1)
Data type

List Maybe Map Identity Reader
mempty-left 7 5 5

N/Amempty-right 9 5 5
mappend-assoc 9 16 -
fmap-id 10 7 15 5 10
fmap-distrib 11 8 20 5 10
identity 7 7

N/A

5 15
homomorphism 8 5 5 15
interchange 17 5 5 15
composition - 5 5 15
fmap-pure 18 5 5 15
return-left 7 5 5 12
return-right 10 5 5 12
bind-assoc 11 5 5 12

Numbers represent length of proof script, including instantiation steps.

Table 6.1: Summary of Proven Type-Class Laws.

means of compiling alternative, parallel versions of libraries including all unfolding information

in a manner similiar to GHC’s existing profiling and dynamic-linking compilation modes.

6.4 Reflections

Results for the case study are listed in Table 6.1, and the complete set of HERMIT proof scripts

are available online [Farmer et al., 2015]. The numbers in the table represent the number of lines

in the proof script, including instantiation steps. Overall, proving type-class laws in GHC Core

appears to be viable with the simple reasoning techniques offered by HERMIT.

In general, the proofs were brief, and predominantly consisted of unfolding definitions and

simplification, with relatively simple reasoning steps. Once this is done, any required inductive

proofs tend to be short and straightforward.

Unsurprisingly, proving auxiliary lemmas for use in larger proofs helped to manage complexity.

Proving the larger lemmas directly required working at a lower level, and led to a substantial

amount of duplicated effort. This was especially true of the Applicative laws, as the Applicative

122

instances were often defined in terms of their Monad counterparts. Unfolding a single ~ results in

several calls to >>=. In the case of lists, naively unfolding >>= results in a local recursive worker

function. Proving equalities in the presence of such workers requires many tedious unfolding and

let-floating transformations. Using proven auxiliary lemmas about >>= avoided this tedium.

No attempt was made to quantify the robustness of the proof scripts to changes in the underlying

code. The types and instances for which the laws were proven are relatively stable over time. As

most of these proofs were fairly heavy on unfolding and simplification, they are expected to be

sensitive to changes. However, HERMIT’s interactive proof mode does allow the user to stop a

proof script midway, lowering the burden of amending existing proofs.

Configuring a Cabal package to check proofs on recompilation is straightforward, requiring

a single additional section to a package’s Cabal configuration file. Proofs can be checked at any

time by enabling the package tests. End users of the package can still build and install the package

exactly as before.

Finally, note that while this case study focused on type-class laws, the approach outlined here

could be used to provide proofs to accompany the GHC RULES pragmas commonly included in

Haskell libraries.

123

Chapter 7

Case Study: concatMap

This chapter presents a case study in developing a domain-specific optimization using HERMIT.

The optimization itself is described in detail, along with a simplification algorithm which is re-

quired to enable the key transformation in practice. This simplification algorithm was developed

by using the HERMIT Shell to interactively apply the transformation to example programs. From

this, an intuition was developed for directing key steps, such as unfolding, that create the conditions

necessary for the transformation to succeed.

The primary benefit of the optimization is that it allows programmers to express higher-order

sequence computations at a high level of abstraction, but still achieve the performance of a hand-

fused loop. Avoiding the need to write this low-level loop code mitigates many possible bugs.

Thus, a program which is more “obviously correct” can also be fast.

7.1 Introduction

In functional languages, it is natural to implement sequence-processing pipelines by gluing to-

gether reusable combinators, such as foldr and zip. These combinators communicate their results

to the next function in the pipeline by means of intermediate data structures, such as lists. If

these pipelines are compiled in a straightforward way, the intermediate structures adversely affect

performance as they must be allocated, traversed, and subsequently garbage collected.

124

Many techniques, collectively known as deforestation [Wadler, 1988, Hinze et al., 2011] or

fusion, exist to transform such programs to eliminate these intermediate structures. Intuitively,

rather than allow each combinator to transform the entire sequence in turn, the resulting code

processes sequence elements in an assembly-line fashion. In many cases, after fusion, no sequence

structures need to be allocated at all.

Shortcut (or algebraic) fusion works by expressing sequence computations using a set of primi-

tive producer and consumer combinators, along with rewrite rules that combine, or fuse, consumers

and producers. The three most well-known shortcut fusion systems, foldr/build [Gill et al., 1993],

its dual unfoldr/destroy [Svenningsson, 2002], and Stream Fusion [Coutts et al., 2007], each choose

a different set of primitive combinators and fusion rules.

This choice determines which sequence combinators can be fused by each system1. The trade-

offs are briefly summarized here, though an excellent and thorough overview of the three systems

can be found in Coutts [2010].

The foldr/build system cannot fuse zip-like combinators which consume more than one se-

quence. It also cannot fuse consumers which make use of accumulating parameters, such as foldl,

without a subsequent non-trivial arity-raising transformation [Gill, 1996]. Despite these shortcom-

ings, GHC has used foldr/build to fuse list computations for 20 years in part because it performs

well on nested sequence computations, such as concatMap, which are common in list-heavy code.

The unfoldr/destroy system fuses zip and foldl, but cannot fuse filter or concatMap. Stream

Fusion improves on unfoldr/destroy by fusing filter, but it still cannot fuse concatMap. Stream

Fusion is currently the system of choice for array computations, which tend to heavily use zip,

foldl, and filter.

This case study enhances Stream Fusion so that it fuses concatMap. This enhancement re-

moves a significant limitation which prevents Stream Fusion from replacing foldr/build as the

fusion system of choice for GHC. This is accomplished by using HERMIT to transforms calls to

1There is a distinction between “fusion” and “fusion that results in an optimization”. Fusion is only an optimization
if it reduces allocation. Fusion may occur, but result in a function which allocates an internal structure equivalent to the
eliminated sequence. In this case study, only fusion that results in an optimization is relavent, and this is the meaning
intended when saying a particular system “can fuse” a given combinator.

125

concatMap into calls to a similar combinator, flatten, which is more amenable to fusion. GHC’s

current user-directed rewriting system, GHC RULES, cannot express this transformation. Thus,

while the transformation has been proposed previously, it has never been implemented in practice.

This case study explores the practicality and payoff of implementing such a transformation

using HERMIT and applying it to real Haskell programs. There are many details, especially re-

garding simplification and desugaring, that were not obvious at the outset.

Section 7.4 describes a transformation from concatMap to flatten which enables fusion. This

is extended to monadic streams in Section 7.4.2 so that it may be applied to vector fusion. The

HERMIT implementation of the transformations includes a necessary simplification algorithm to

enable the core transformation in practice (Section 7.5). The resulting system is applied to the

nofib [Partain, 1993] suite of benchmark programs, demonstrating its advantage over foldr/build

in list-heavy code (Section 7.6.2). It is also applied to the ADPfusion [Höner zu Siederdissen,

2012] library, which is used to write CYK-style parsers [Grune and Jacobs, 2008, Chapter 4.2]

for single- and multi-tape grammars. The library makes heavy use of nested vector computations

that need to be fused to achieve high performance and previously made extensive use of flatten.

Applying the transformation with HERMIT simplifies the implementation of ADPfusion with no

loss of performance (Section 7.7).

7.2 Stream Fusion

This section summarizes the Stream Fusion technique. Readers familiar with the topic may safely

skip ahead, as none of this material is new. More detail can be found in Coutts et al. [2007] and

Coutts [2010].

The key idea of Stream Fusion is to transform a pipeline of recursive sequence processing

functions into a pipeline of non-recursive stream processing functions, terminated by a single re-

cursive function which “runs” the pipeline. The non-recursive functions are known as producers,

126

if they produce a stream, or transformers, if they transform one stream into another. The recursive

function at the end of the pipeline is known as the consumer.

The benefit of this transformation is that it enables subsequent local transformations such as

inlining and constructor specialization, which are generally useful and thus implemented by the

compiler, to fuse the producers and transformers into the body of the consumer, yielding a single

recursive function which produces no intermediate data structures. Stream Fusion relies on a data

type which makes explicit the computation required to generate each element of a given sequence:

data Stream a where
Stream :: (s → Step a s)→ s → Stream a

data Step a s = Yield a s | Skip s | Done

A Stream is a pair of a generator function (s → Step a s) and an existentially-quantified state

(s). When applied to the state, the generator may give one of three possible responses, embodied

in the Step type. Yield returns a single element of the sequence, along with a new state. Skip

provides a new state without yielding an element. Done indicates that there are no more elements

in the sequence. Generator functions are non-recursive, which allows them to be easily combined

by GHC’s optimizer.

Conversion to and from this Stream representation is done using a pair of representation-

changing functions. This section uses Haskell lists as the sequence type, but the same technique

works for other sequence types, such as arrays. The stream function is a producer that converts a

list to a Stream:

stream :: [a]→ Stream a
stream xs = Stream uncons xs
where uncons :: [a]→ Step a [a]

uncons [] = Done
uncons (x : xs) = Yield x xs

The state of stream is the list of values to which it is applied. The generator function yields the

head of the list, returning the tail of the list as the new state.

The unstream function is a consumer that repeatedly applies the generator function to obtain

the elements of the list:

127

unstream :: Stream a → [a]
unstream (Stream g s) = go s
where go s = case g s of

Done → []
Skip s ′ → go s ′

Yield x s ′ → x : go s ′

Using stream and unstream, list combinators can now be redefined in terms of their Stream

counterparts. Consider map:

map :: (a → b)→ [a]→ [b]
map f = unstream ◦mapS f ◦ stream
mapS :: (a → b)→ Stream a → Stream b
mapS f (Stream g s0) = Stream mapStep s0
where mapStep s = case g s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x) s ′

Note that stream and mapS, as producer and transformer, respectively, are both non-recursive.

Rather than traverse a sequence, mapS simply modifies the generator function. Wherever the

original stream would have produced an element x , the new stream produces the value f x instead.

Subsequent inlining and case reduction will fuse the two generators into a single non-recursive

function.

The final, crucial, ingredient is the following GHC rewrite rule, the proof of which can be

found in Coutts [2010]:

stream ◦ unstream ≡ id

As an example of Stream Fusion in action, consider a simple pipeline consisting of two calls to

map.

map f ◦map g

Unfolding map yields the underlying stream combinators.

unstream ◦mapS f ◦ stream ◦ unstream ◦mapS g ◦ stream

Applying the rewrite rule eliminates the intermediate conversion.

128

unstream ◦mapS f ◦mapS g ◦ stream

Inlining the remaining functions, along with their generators, and performing standard local

transformations such as case reduction and the case-of-case transformation [Santos, 1995] results

in the following recursive function, which produces no intermediate lists.

let go [] = []
go (x : xs) = f (g x) : go xs

in go

In this case, Stream Fusion has effectively implemented the map f ◦ map g ≡ map (f ◦ g)

transformation.

7.3 Fusing Nested Streams

The concatMap combinator is a means of expressing nested list computations. It accepts a higher-

order argument f and a list, referred to as the outer list. It maps f over each element of the outer

list, inducing a list of inner lists. It returns the concatenation of the inner lists as its result. Similiar

to map in the previous section, concatMap can be implemented in terms of its stream counterpart,

concatMapS.

concatMap :: (a → [b])→ [a]→ [b]
concatMap f = unstream ◦ concatMapS (stream ◦ f) ◦ stream

The concatMapS function is a non-recursive transformer with a somewhat complicated gener-

ator function.

concatMapS :: (a → Stream b)→ Stream a → Stream b
concatMapS f (Stream g s) = Stream g ′ (s,Nothing)
where

g ′ (s,Nothing) =
case g s of
Done → Done
Skip s ′ → Skip (s ′,Nothing)
Yield x s ′ → Skip (s ′, Just (f x))

g ′ (s, Just (Stream g ′′ s ′′)) =
case g ′′ s ′′ of
Done → Skip (s,Nothing)
Skip s ′ → Skip (s, Just (Stream g ′′ s ′))
Yield x s ′ → Yield x (s, Just (Stream g ′′ s ′))

129

The state of the resulting stream is a tuple, containing as its first component the state of the

outer stream (the second argument to concatMap). Its second component is optionally an inner

stream.

The generator function g ′ operates in two modes, determined by whether the inner stream is

present in the state (Just) or absent (Nothing). When the inner stream is absent, g ′ applies the

generator for the outer stream to the first component of the state. When this results in a value x , it

constructs a new state by applying f to x to obtain the inner stream.

Subsequent applications of g ′ will see the Just constructor and operate in the second mode,

which applies the generator for the inner stream to its state. When the inner stream is exhausted, it

switches back to the first mode by discarding the inner stream state.

Optimizing concatMapS, GHC will use call-pattern specialization [Peyton Jones, 2007] to

eliminate the Maybe type, yielding two mutually recursive functions, one for each mode. Unfortu-

nately optimization stops before all Step constructors are fused away.

go1 acc s = . . . go2 acc s ′ g ′′ s ′′ . . .

go2 acc s g ′′ s ′′ = case g ′′ s ′′ of
Done → go1 acc s
Skip s ′ → go2 acc s g ′′ s ′

Yield x s ′ → go2 (acc + x) s g ′′ s ′

The problem is that the generator for the inner stream g ′′ is an argument to go2 , and there-

fore not statically known in the body of go2 . Indeed, this follows from the original definition of

concatMapS above, where g ′′ is bound by pattern matching on the tuple of states. The fact that g ′′

is not statically known in go2 means it cannot be inlined, thwarting case reduction, which would

have eliminated the Step constructors.

The code for g ′′ is statically known in go1 . Additionally, go2 always repasses g ′′ unmodified

on recursive calls. The static-argument transformation (SAT) [Santos, 1995] could be applied to

go2 and the resulting wrapper could be inlined into go1 . This would make the code for g ′′ statically

known at its call site, enabling full fusion.

This approach was suggested in the original Stream Fusion paper [Coutts et al., 2007], but it

involves a delicate interaction between call-pattern specialization and the SAT that is difficult to

130

control. Aggressively applying the SAT can have detrimental effects on performance, so GHC is

quite conservative in its use. In this case, GHC will not apply the SAT to go2 automatically. Even

if GHC had a means of targeting the SAT via source annotation, the fact that go2 is generated by

call-pattern specialization, at compile time, with an auto-generated name, means there is nothing

in the source to annotate. Despite considerable effort by GHC developers, successfully applying

this solution in the general case has remained elusive.

Stepping back, note that this is a consequence of the power of concatMapS itself. The in-

ner stream, including its generator function, is created by applying a function to a value of the

outer stream at runtime. That function could potentially pick from arbitrarily many different inner

streams based on the value it is applied to. Each of these streams may have an entirely different

generator function. In fact, since the type of the state in a Stream is existentially quantified, the

returned streams may not even have the same state type.

A less powerful alternative to concatMapS is flatten. The type of flatten makes explicit that

the generator, and the type of the state, of the inner stream are always the same, regardless of

the value present in the outer stream. This means that flatten cannot express the choice of inner

streams possible with concatMapS, but it is readily fused by GHC.

flatten :: (a → s) -- initial state constructor
→ (s → Step b s) -- generator
→ Stream a → Stream b

In the overwhelming majority of cases found in real code, the extra power of concatMapS

is unnecessary, meaning flatten can be used instead. The disadvantage is that flatten is more

difficult to use, as it breaks the Stream abstraction by exposing the user to the Step type. Whereas

the rest of the Stream Fusion system hides the complexity of state and generator functions from

the programmer, providing familiar sequence combinators, flatten requires one to think in terms

of generator functions and state. A call to concatMap with a complicated inner stream pipeline

can make use of existing stream combinators, while flatten requires the programmer to write a

hand-fused, potentially complex generator function.

131

7.4 Transforming concatMap to flatten

In his dissertation, Coutts [2010] proposes the following transformation for optimizing common

uses of concatMap by transforming them into calls to flatten. The advantage of such a transfor-

mation is its specificity. Rather than manage a brittle interaction between two general program

transformations with potential negative performance consequences, one specific transformation is

performed which is known to be advantageous. This is exactly the motivation for GHC rewrite

rules.

∀ g s . concatMapS (λx → Stream g s) =⇒ flatten (λx → s) g

This transformation is only valid if the state type and generator function of the inner streams are

independent of the runtime values of the outer stream. That is, the state type and generator function

are the same for each inner stream, and statically known. This restriction is exactly what allows

the stream to be expressed in terms of flatten, and doing so makes this independence explicit.

While this transformation enforces the essential restriction that the value of x does not deter-

mine which generator and state is selected, it has the undesirable side condition that x cannot be

free in g . This side condition severely limits the applicability of the transformation in practice. To

see why this is a problem, consider this simple nested enumeration.

concatMapS (λx → enumFromToS 1 x) (enumFromToS 1 n)

As traditionally written, the generator for the inner enumFromToS will necessarily depend on

x in order to know when to stop generating additional values. The proposed transformation would

fail to apply in this situation.

This could be worked around by carefully defining enumFromToS such that it stores its argu-

ments in the stream state. That is, an additional invariant could be placed on generator functions

that they have no free variables that are not also free in their enclosing stream combinator defini-

tion. From a practical perspective, this complicates all stream combinator definitions for the benefit

of concatMap. More complicated state types are required, which results in higher arity functions

after call-pattern specialization, even when concatMap is not present.

132

This section defines a more sophisticated transformation which separates these concerns, per-

mitting g to use x to compute its result, without allowing x to determine which g is selected, and

without requiring all stream combinators to be redefined with the additional invariant on their gen-

erators. Unfortunately, the GHC RULES system is incapable of expressing such a transformation.

7.4.1 Non-Constant Inner Streams

The principal limitation to the proposed transformation is the free variable check on the generator

function. For any interesting use of concatMapS, this will fail. To lift this restriction, the transfor-

mation is altered to extend the state with the value of the outer stream. The generator function then

has access to the value of the outer stream by way of the state. Note this transformation makes

intentional use of variable capture (when x is free in g).

∀ g s . concatMapS (λx → Stream g s)
⇓
flatten (λx → (x , s)) (λ(x , s)→ fixStep x (g s))

Notice this changes the type of the inner stream state. The original state can be projected out

of the extended state in order to apply the original generator, getting a Step result which contains

a possible value and new state. This new state is of the original state type. A state of the extended

type must be returned. To do this, an auxiliary fixStep combinator is used to place x back into the

state held by the Step result, thereby lifting it to the extended state type.

fixStep :: a → Step b s → Step b (a, s)
fixStep Done = Done
fixStep a (Skip s) = Skip (a, s)
fixStep a (Yield b s) = Yield b (a, s)

This improved transformation cannot be implemented as a GHC rewrite rule because it requires

manipulating syntactic language constructs such as case expressions. More practically, it is rare

that the body of the function argument is in Head-Normal Form (i.e. starting with an explicit

Stream constructor). Often the body will involve a call to another stream combinator instead. A

custom simplification algorithm (developed in Section 7.5) is used to expose the constructor.

133

7.4.2 Monadic Streams

So far, the transformation works on pure streams. The vector streams targeted in Section 7.7

are parameterized by a monad, permitting generator and state construction functions to perform

monadic effects. This leads to the following definition of the stream datatypes.

data Stream :: (∗ → ∗)→ ∗ → ∗where
Stream :: (s → m (Step s a))→ s → Stream m a

concatMapM :: Monad m
⇒ (a → m (Stream m b))
→ Stream m a → Stream m b

flattenM :: Monad m
⇒ (a → m s)
→ (s → m (Step s b))
→ Stream m a → Stream m b

The Stream constructor of the inner stream is now wrapped in a monadic context. The simplest

such context is return.

concatMapM (λx → return (Stream g s))

However, the monadic context may also have an arbitrary number of binds which scope over

the inner stream. The transformation must collect the bound values and store them in the state, like

it does for the outer stream binder x . Here the monadic context is denoted as M�. . .�. Since

the context is executed once per element of the outer stream, it can safely be moved to the state

construction function of flattenM .

∀ g s . concatMapM (λx →M�Stream g s�)
⇓
flattenM (λx →M�((x , b1 . . bn), s)�)

(λ((x , b1 . . bn), s)→ liftM (fixStep (x , b1 . . bn)) (g s))

Instead of storing x in the state, an n-ary tuple of x and the other binders is stored. The

projection is modified to project out of this tuple. As a minor optimization, only those binders

which appear free in the generator function are stored. Finally, fixStep is lifted over the monadic

result of the generator in the normal way.

134

7.5 Implementation

In practice, the body of the function passed to concatMapS is not an explicit Stream constructor.

The body must be simplified with Algorithm 1 in order to expose the constructor. This simplifica-

tion is done by HERMIT when it tries to apply the transformation. While the HERMIT implemen-

tation necessarily operates on GHC Core, the code in this section is presented in Haskell syntax

for clarity.

Algorithm 1 Simplification Algorithm SIMPLIFY

In order, repeatedly apply the first transformation that succeeds.

1. Gentle simplification

2. Once, in a top-down manner:

(a) Apply the stream/unstream rule.

(b) Float a let inwards.

(c) Eliminate a case.

(d) Reduce a case on an inner stream.

(e) Float a case inwards.

3. Unfold an application.

1. Gentle simplification Performs dead-let elimination, case reduction, β-reduction, limited

(non-work-duplicating) let substitution, and unfolds Haskell’s operators for function composition

(◦) and application ($), as well as the identity function (id).

2a. Apply the stream/unstream rule. Recall the definition of concatMap in terms of

concatMapS from Section 7.2.

concatMap :: (a → [b])→ [a]→ [b]
concatMap f = unstream ◦ concatMapS (stream ◦ f) ◦ stream

After transformation, f will be composed of stream combinators wrapped in an unstream

which turns the stream back into a list. When f is inlined, this unstream will unite with stream,

135

enabling the elimination of both. If the stream application were to instead be unfolded in search of

an explicit Stream constructor that would be a commitment to having an intermediate list. (Recall

that the state type of a Stream produced by stream is a list.)

2b. Float a let inwards. The inner stream will often be wrapped in let bindings, especially if a

stream combinator has been unfolded. These bindings will scope over the entire Stream construc-

tor, and may or may not depend on the value of the outer stream, so they cannot be reliably floated

outwards. Observe, however, that they will never capture the Stream constructor itself, so they can

be reliably floated inwards past the constructor.

let b = e in Stream g s =⇒ Stream (let b = e in g) (let b = e in s)

Floating inwards necessarily duplicates let bindings. This loss of sharing could result in dupli-

cated allocation and computation. In practice, it appears rare that a let binding is used in both the

generator and the state (the two arguments to the Stream constructor), so at least one will usually

be eliminated by the next gentle simplification step, which, according to Algorithm 1, will occur

directly after this transformation. In addition to applications, lets are floated into case expressions

and lambdas.

2c. Eliminate a case. This step eliminates a case with a single alternative when none of the

binders of the case are free in the right-hand side of the alternative.

∀v ∈ vs. v /∈ freeVars rhs

case e of =⇒ rhs
C vs→ rhs

One might question the necessity of this rule. This situation most often arises from simpli-

fication step 2e (float a case inwards), which itself is primarily caused by strictness annotations.

Strictness annotations, and use of the Haskell seq function, are desugared to case expressions. (Op-

erationally, case expressions in GHC Core perform computation.) When a case is floated inwards

in 2e, it is necessarily duplicated (just as when lets are floated inwards). Some of the duplicates

may bind values that are never used.

136

2d. Reduce a case on an inner stream. Nested streams will result in a case expression on the

inner stream. Consider:

concatMapS (λx → concatMapS (λy → enumFromToS 1 y)
(enumFromToS 1 x))

(enumFromToS 1 n)

When transforming the outermost concatMapS, the body of the function argument will even-

tually be:

λx → case flatten mkS g ′′ (enumFromTo 1 x) of
Stream g s → . . . Stream g ′ s ′ . . .

GHC would have unfolded flatten eventually. However, in order to transform the outer concatMapS

to flatten, it needs to be unfolded now so as to expose the Stream constructor in the right-hand

side of the alternative.

A wrinkle arises if the head of the scrutinee is not a stream combinator. It may be a case

expression, let expression, or application; or, more subtly, the stream combinator itself.

λx → case stream (unstream (flatten...)) of
Stream g s → . . . Stream g ′ s ′ . . .

If the algorithm were to unfold stream, the case would reduce, but it would fall prey to the

same problem mentioned in step 2a. That is, a commitment would be made to a state type that

includes a list, missing a fusion opportunity.

These issues are all ones Algorithm 1 is designed to handle, so it is recursively applied to the

scrutinee. When finished, it will yield an explicit Stream constructor, which will be reduced by the

next gentle simplification step.

e =⇒ e ′

case e of =⇒ case e ′ of
Stream g s → rhs Stream g s → rhs

2e. Float a case inwards. Strictness annotations result in case expressions with a single, always

matching default alternative. The right-hand side of the alternative may refer to the bound result of

the evaluated scrutinee. For the same reasons that lets cannot always be floated outward, the only

option is to eliminate the case or float it inwards.

137

Note, however, that it cannot be eliminated wholesale, or step 2c would have done so. Elim-

inating it involves either changing the case to a let, which would make the program more lazy, or

substituting the scrutinee into the right-hand side of the alternative, which could duplicate work.

Instead, the algorithm floats it inwards.

case e of v → Stream g s =⇒ Stream (case e of v → g) (case e of v → s)

In most situations, one of these cases is eliminated, avoiding duplicated work, though how

often this happens in practice has not been explicitly quantified. Within the context of the overall

transformation, strictness remains unaltered. Nominally, if e is ⊥, it is now possible to force the

entire expression to the Stream constructor, where before it would have diverged. However, forcing

just the Stream constructor without forcing one of its arguments provides no useful information, so

only a pathological stream combinator would do so.

The other situation which requires this rule is the desugaring of pattern binders for list com-

prehensions (Section 7.5.2). The desugaring results in a case with a single alternative to bind the

components of the pattern.

3. Unfold an application. The last resort is to unfold a function application. It is crucial that

this step be tried last, for the reasons mentioned in steps 2a and 2d. That is, the algorithm should

avoid unfolding the stream combinator when possible, because it commits the program to a list

state type, resulting in an intermediate list.

7.5.1 Multiple Inner Streams

A slightly more general version of the transformation in step 2e as actually implemented. This

more general version floats a case with multiple alternatives inwards if all alternatives share the

same constructor and type.

138

case e of =⇒ Stream (case e of
P→ Stream g1 s1 P→ g1
Q→ Stream g2 s2 Q→ g2)

(case e of
P→ s1
Q→ s2)

This has the effect of merging two streams whose state type is the same. The strictness argu-

ment is the same as for step 2e, though the resulting cases are less likely to be eliminated, so work

duplication is an issue. It is easy to construct a small example which would benefit from this rule:

concatMapS (λx → case even x of
True → enumFromToS 1 x
False→ enumFromToS 1 (x + 1))

It remains unclear how often this happens in a real program. How often the transformation has

this effect has not been quantitatively measured. It does, however, suggest possible future work on

a more involved means of merging streams.

7.5.2 List Comprehensions

Haskell offers convenient syntax for nested list computations in the form of list comprehensions.

A list comprehension has a body and a series of clauses. A clause can be a generator, a guard,

or a let expression. GHC desugars list comprehensions in two different ways. Haskell 98 desug-

aring [Peyton Jones, 2003] is used when optimization is disabled or parallel list comprehensions

are present. With standard optimizations enabled, comprehensions are desugared to applications

of foldr and build [Gill, 1996].

Neither scheme will result in good fusion with this extended Stream Fusion system. When

desugaring guards and pattern-match failures, both will produce branching case expressions inside

the function argument to concatMap. These case expressions cannot be merged because their state

type differs, blocking the transformation.

Thus, in the paper on which this case study is based, a third means of desugaring comprehen-

sions is provided. The translation is a novel extension of Haskell 98 desugaring, and is required

to fuse list comprehensions with this system. Altering the behavior of GHC’s desugarer is not

139

possible with a GHC plugin, so is outside the scope of HERMIT’s capabilities. Since this study

is intended to focus on HERMIT’s role in the optimization, the desugaring details are not pre-

sented here. The interested reader is referred to Farmer et al. [2014]. Note, however, that the

results presented in Section 7.6.2 were generated with this desugaring enabled because many of

the benchmark programs feature list comprehensions, rather than explicit calls to list combinators.

7.5.3 Call-Pattern Specialization

Stream Fusion depends crucially on call-pattern specialization to eliminate the constructors in the

stream state. GHC allows a data type to be annotated to indicate that it should try to aggressively

specialize functions with arguments of the annotated type. In the following example, sPEC is the

dummy argument of such an annotated type, and should force GHC to specialize go. Unfortunately

GHC tends to bind deeply nested constructors and float them outwards, defeating specialization.

let s1 = (,) (Left (Left (Left (Just (I# 3))))) Nothing
go = . . . go . . .

in go sPEC (I# 0) s1

To counter this, immediately before call-pattern specialization runs, a HERMIT transforma-

tion collects all the non-recursive bindings in the program whose heads are non-recursive data

constructors and inlines them unconditionally.

To do so, a nonRecDataConT transformation is defined which matches only on constructor

applications. It then checks that none of the arguments to the constructor have the same type as

the constructor’s result type, using two functions supplied by the GHC API to get this information.

This check is to avoid inlining recursive constructors, such as the (:) constructor for lists. These

recursive constructors cannot be specialized by call-pattern specialization anyway.

The nonRecDataConT transformation is defined in such a way that it only succeeds if expres-

sion is of the desired form. Using this, it can be lifted using the letT and nonRecT congruence com-

binators to only succeed on non-recursive let expressions where the right-hand side of the binding

is an expression on which nonRecDataConT succeeds. This acts as a guard which only succeeds

on let expressions which should be inlined. The actual inlining is done by the letNonRecSubstR

140

transformation from the HERMIT Dictionary. The whole rewrite is applied wherever possible, in

a top-down manner, using the anytdR traversal provided by KURE.

inlineConstructorsR ::RewriteH Core
inlineConstructorsR = anytdR

$ promoteExprR
$ do letT (nonRecT successT nonRecDataConT const) successT const

letNonRecSubstR
where nonRecDataConT = do

(dc, _tys, _args)← callDataConT
let dcResTy = dataConOrigResTy dc

dcArgTys = dataConOrigArgTys dc
guardMsg (not (any (eqType dcResTy) dcArgTys)) "constructor is recursive"

In practice, this simple heuristic offers a huge improvement in the form of decreased allocation,

because specialization completely eliminates the constructors.

7.5.4 The Plugin

A custom plugin which applies the transformation is defined using the Plugin DSL. The plugin

consists of two modules.

The first module provides the definitions of the Stream Fusion combinators and the fixStep

function (Section 7.4.1), along with GHC RULES which transform list combinators into their

Stream Fusion counterparts. A dependency on this module will be injected into the target module

when the transformation runs, so code targeted by the transformation need not be altered in any

way.

The plugin follows the standard Stream Fusion approach to inlining and forcing call-pattern

specialization. Where it differs from tradition is the rewrite rules it provides for list combinators.

Traditional Stream Fusion makes use of an alternative list prelude, in which list combinators were

defined directly in terms of stream combinators. Instead, the plugin provides GHC RULES such

as this one:

{-# RULES “map-mapS”[∼] forall f . map f ≡ unstream ◦mapS f ◦ stream #-}

141

module HERMIT .Optimization.StreamFusion where

import HERMIT

plugin :: Plugin
plugin = hermitPlugin $ λ_opts → do

pass 0 $ apply (Always "-- apply all rules")
$ do f ← compileRulesT allRules

tryR (repeatR (anytdR (promoteExprR $ runFoldR f) <+ simplifyR))
apply (Always "-- concatmap -> flatten")

$ tryR $ repeatR $ anyCallR $ promoteExprR concatMapSR
before SpecConstr $ apply (Always "-- inline constructors")

$ tryR inlineConstructorsR

Figure 7.1: Stream Fusion HERMIT Plugin

The motivation for this approach is two-fold. First, there is no need to hide or redefine the

list combinators in the Prelude. This would be less onerous if Stream Fusion were the default list

implementation, but redefining Prelude functions makes selective use more difficult.

Second, and more importantly, the desugaring of list comprehensions requires GHC to assign

globally unique identifiers to the combinators it generates, so it can generate proper names even

if the combinators themselves are not visible to the compiler. Desugaring directly to stream com-

binators, or even the alternative prelude combinators, would require the combinator and module

names to be hard-coded into GHC itself. A change to the Stream Fusion library would require a

corresponding change to GHC. On the other hand, the standard list combinators are stable and not

likely to change, and are already assigned unique names by GHC. Desugaring to these standard

combinators, then rewriting with rules, minimizes changes to GHC itself.

The second module provides the actual GHC plugin, defined using HERMIT’s Plugin DSL.

This module is the one specified to GHC using the -fplugin flag when compiling the target

program. Figure 7.1 presents the plugin definition.

The fact that list combinators already have GHC rewrite rules defined for foldr/build is a com-

plicating factor. To sidestep this, the plugin applies all of its rules to exhaustion before the first

optimization pass runs. This transforms all the list combinators before their own rules get a chance

to fire.

142

Then, before and after every optimization pass, the concatMap->flatten transformation is ap-

plied whenever possible. Finally, before the call-pattern specialization pass, non-recursive con-

structor bindings are aggressively inlined, as discussed in Section 7.5.3.

7.6 Performance

To evaluate the performance benefits of the transformation, it is applied to both Haskell lists

and vectors. First, Section 7.6.1 benchmarks the results of the optimization on several micro-

benchmarks that exercise different aspects of the transformation. Next, Section 7.6.2 applies the

transformation to GHC’s nofib benchmark suite. Finally, Section 7.6.3 illustrates how concatMap

can sometimes lead to better performance than flatten.

All measurements were performed on a 64-bit 1.7Ghz Intel CoreTM i7-4650U, with 8GB RAM,

running OS X 10.9.5 and GHC 7.8.3 (modified with the additional desugaring scheme).

7.6.1 Micro-benchmarks

In order to illustrate the performance gap between flatten and concatMap, and thus characterize

the potential benefit of the transformation, it is applied to the micro-benchmarks listed below.

Note that these particular benchmarks characterize best case improvements, as they are designed

to result in tight loops on unboxed integers.

The graph in Figure 7.2 summarizes the results. Each benchmark provides the following mea-

surements, where appropriate:

• concatMap Use the vector library’s concatMap combinator. This represents the current

status quo for Stream Fusion.

• flatten Use vector’s flatten combinator and hand-written generator functions.

• Optimized Apply the transformation to concatMap.

• List Use lists and apply foldr/build.

143

Enum Nested Monadic Merge10−1

100

101

102

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
)

concatMap flatten Optimized List

Figure 7.2: Micro-benchmark Performance Results

Enum This benchmark characterizes the potential speedup gained by using flatten instead of

concatMap, and demonstrates that the optimization can fully close the gap.

f n = foldl ′ (+) 0 (concatMap (enumFromTo 1) (enumFromTo 1 n))

Nested This benchmark demonstrates the advantage foldr/build normally has on nested list com-

putations. Note that lists outperform vectors despite being slower in Enum. In this case, superior

fusion for lists is overcoming vector’s normally superior data structure.

f n = foldl ′ (+) 0 (concatMap (λx → concatMap (λy → enumFromTo y x)
(enumFromTo 1 x))

(enumFromTo 1 n))

Monadic This benchmark exercises the monadic stream transformation. As lists are not param-

eterized over a monad, they are absent from this comparison.

f n = runST (do vec ← getVector
foldl ′ (+) 0 (concatMapM (λx → do z ← readVector vec x

return (enumFromTo 1 z))
(enumFromTo 1 n)))

144

Negative figures indicate an improvement over foldr/build.
Program Allocs Runtime Elapsed TotalMem

bernouilli -6.4% +0.0% +0.0% +0.0%
exp3_8 +0.0% -1.3% -1.2% +0.0%

gen_regexps -44.7% -45.4% -45.4% -56.7%
integrate -61.3% -48.2% -42.6% +0.0%

kahan +0.0% +1.2% 1.4% +0.0%
paraffins +129.9% -11.6% -12.6% -29.1%

primes +2.2% -15.2% -15.9% -33.3%
queens -17.1% -7.5% -6.9% +0.0%

rfib +0.0% +0.0% +0.0% +0.0%
tak +0.0% -4.7% -4.7% +0.0%

wheel-sieve1 +195.2% +4.6% +4.7% -29.6%
wheel-sieve2 -0.6% -1.2% -2.4% +0.0%

x2n1 -77.4% +0.0% +0.0% +0.0%
Min -77.4% -48.2% -45.4% -56.7%
Max +195.2% +4.6% +4.7% +0.0%

Geom. Mean -9.9% -15.2% -14.5% -13.8%

Figure 7.3: Nofib Performance Comparison between foldr/build and Stream Fusion with the
concatMap->flatten Transformation

Merge This benchmark involves merging two streams with the same state type, as discussed in

Section 7.5.1.

f n = foldl ′ (+) 0 (concatMap (λx → case (odd x) of
True → enumFromTo 1 x
False→ enumFromTo 2 x)

(enumFromTo 1 n))

7.6.2 Nofib Suite

In order to evaluate the transformation on real Haskell programs, it is applied to a subset of GHC’s

nofib benchmarking suite [Partain, 1993]. The nofib suite is the standard by which other GHC

optimizations are measured before inclusion in the compiler.

The “imaginary” subset of the suite is targeted. This limits the number of necessary stream

combinator implementations (aside from concatMapS and flattenS) to those used by this subset.

This is a practical engineering issue that can be solved in a more mature fusion system, and is

unrelated to the concatMap transformation itself.

145

Figure 7.3 summarizes the results for the selected programs. In summary, programs experience

≈15% speedup over foldr/build on average, with an ≈10% reduction in allocation. In the follow-

ing discussion, the Stream Fusion system which includes the concatMap->flatten transformation

developed in this case study is referred to as HERMITSF, to distinguish it from existing Stream

Fusion.

The gains for bernouilli, integrate, and x2n1 are due to Stream Fusion itself, and HER-

MITSF provides no additional benefit. The integrate program features no calls to concatMap

at all, but makes heavy use of the zipWith combinator. Similarly, x2n1 is a true micro-benchmark,

consisting of a single mapping operation inside a strict left fold. Though the results are not pre-

sented here for brevity, Stream Fusion performs significantly worse than foldr/build on each of the

other programs. Allocation increases by 45.7% on average, and 836.7% in the worst case. Runtime

is equivalent on average, but increases by 66.1% in the worst case. This is the penalty Stream

Fusion pays on concatMap-heavy code. HERMITSF always outperforms Stream Fusion alone.

The gen_regexps program is an ideal case for HERMITSF, as it makes heavy use of both

foldl and concatMap. Previous systems could fuse one of these combinators, but HERMITSF can

fuse both.

Programs which make use of explicit recursion on lists, rather than combinators, tend to be

slowed by HERMITSF. Both paraffins and wheel-sieve1 make use of functions which ex-

plicitly accept and return lists, and are also recursive. These recursive functions will not be inlined

by GHC, preventing the stream and unstream combinators from coming together and being elim-

inated. This results in many extra conversions between lists and streams. The resulting allocation

is high, even if gains elsewhere improve runtime. To solve this, Stream Fusion systems typically

include extra RULES to “back out” unfused stream combinators at the end of the optimization

process, converting them back to their list counterparts. HERMITSF currently does not focus on

doing this.

146

These initial results are promising, and demonstrate the viability of the approach. Applying

the optimization to the full nofib suite remains future work. Compilation time, currently 1.5-10×

that of ghc -O2, could also be improved.

7.6.3 Performance Advantages of concatMap

Somewhat surprisingly, concatMap can provide performance advantages over flatten. When using

flatten, the programmer must carefully consider low-level performance issues because they are, in

essence, writing a hand-fused inner-loop. By using concatMap, the inner loop can instead be con-

structed from existing stream combinators, which presumably are already efficiently implemented.

In this case, modularity makes it easier to get good performance.

To illustrate, this section benchmarks a pair of equivalent vector pipelines (one using

concatMap, the other flatten) and examines the resulting Core. Using list combinators, the speci-

fication of the pipeline is:

spec :: Int→ Int
spec n = foldl (+) 0 [i | x ← [1 . .n], i ← [1 . . x]]

The vector code is morally equivalent, though with added strictness and use of vector’s

enumFromStepN in place of enumFromTo in order to reflect the sort of code a user of the

vector library would write in practice.

cmap :: Int→ Int
cmap n = foldl ′ (+) 0 (concatMap (λ(!x)→ enumFromStepN 1 1 x)

(enumFromStepN 1 1 n))

flat :: Int→ Int
flat !n = foldl ′ (+) 0 (flatten mkS stp Unknown (enumFromStepN 1 1 n))
where

mkS !x = (1, x)
stp (!i , !max)
| i <= max = Yield i (i + 1,max)
| otherwise = Done

These functions are first benchmarked with standard Stream Fusion optimizations using

criterion [O’Sullivan] to establish a baseline. As can be seen in Figure 7.4, cmap is con-

sistently 10x slower than flat . Examining the Core reveals that flat results in a single wrapper

147

n flat cmap

SF ratio HERMITSF ratio
5000 9.7ms 100.3ms 10.3x 8.8ms 0.91x

10000 39.3ms 395.6ms 10.1x 35.0ms 0.89x
20000 155.9ms 1603.8ms 10.3x 139.3ms 0.89x

Figure 7.4: Optimizing Equivalent Stream Pipelines for the vector Package.

function to unbox the input and box the result, along with a tight recursive worker on unboxed

integers.

Generally, uses of concatMap result in residual Step constructors, indicating fusion is incom-

plete. GHC actually manages to fuse away the Step constructors in cmap, as this code is very

simple. However, the resulting inner loop involves both boxed integers and a tuple argument.

Applying the concatMap transformation results in nearly equivalent performance. In fact, cmap

is now consistently 11% faster than flat! Examining the Core for the inner loop of each function

reveals why. The bodies of the loops consist only of tail calls on unboxed integers, but the bounds

test in the inner loop is different. In cmap, the iterator is compared to zero, whereas in flat , the

iterator is compared to a max bound.

Indeed, this behavior is exactly what the generator function for flat implements. Changing this

generator to implement the same algorithm as enumFromStepN , results in comparisons to zero.

step (!i , !max)
| max > 0 = Yield i (i + 1,max− 1)
| otherwise = Done

However, this actually makes flat 18× slower! Examining the Core again, the inner loop now

involves Integer arguments, a clue to what is happening. The result type of flat only constrains the

type of i . Since the state of the stream is existentially quantified, and max is no longer compared

to i , the type of max is defaulted to Integer rather than Int. Ascribing a type fixes the problem,

resulting in flat being as fast as cmap.

step (!i , !max)
| max > (0 :: Int) = Yield i (i + 1,max− 1)
| otherwise = Done

The fact that the programmer must consider such performance issues each time she writes a

generator function is exactly what makes flatten burdensome to use. Using concatMap (properly

148

optimized) allows them to take advantage of the hard work done by the vector library writers,

who have heavily optimized their enumerating stream producer. Thus, in practice, transforming

concatMap to flatten can result in better performance than direct uses of flatten itself.2

7.7 ADPfusion

ADPfusion [Höner zu Siederdissen, 2012] is a library designed to simplify the implementation of

complex dynamic programming algorithms in Haskell. It targets both single- and multi-tape linear

and context-free grammars. ADPfusion can be used to implement complex parsing problems, such

as weakly synchronized grammars for machine translation [Burkett et al., 2010] in computational

linguistics or interacting ribonucleic acid structure prediction as considered by Huang et al. [2009].

As ADPfusion employs CYK-style parsing [Grune and Jacobs, 2008] that lends itself well to a

low-level “table-filling” implementation, the resulting programs will perform close to equivalent C

code, while being implemented at a much higher level of abstraction.

ADPfusion makes index calculations implicit. Production rules are combined by a small set of

combinators, producing a parsing function from an index to a set of (co-)optimal parses. Lifting

index calculations from explicit manipulations by the user to combinators makes it less likely that

bugs appear, while the type system keeps evaluation functions and production rules in sync.

Questions of how to develop algorithms like these lead to the development of an algebraic

framework that allows users to “multiply” dynamic programming algorithms in a meaningful way

[Höner zu Siederdissen et al., 2013]. The resulting algorithms (grammars) are naturally of the

multi-tape variety and the grammar definitions call for an automated embedding in an efficient

framework. ADPfusion is used as the target DSL in this case to give efficient code.

2A more recent build of GHC eliminates the 11% disparity in the original code. This is the result of new boolean
primitive operations which were added after this section was written. While this specific example is no longer strictly
true, it is illustrative of the general problem with optimizing flatten by hand. This issue accounts for the perfor-
mance gains made by concatMap relative to flatten in Section 7.7.

149

Using concatMap instead of flatten

The availability of concatMap helps control the complexity of ADPfusion’s underlying Stream

Fusion framework by simplifying the design of specialized (non-)terminal symbols for formal

grammars.

To understand how ADPfusion uses flatten, consider the parses for the production rule S →

SS, given in set notation:

iSj → {(Sik, Slj) | k ← {i . . . j }
, Sik ← iSk
, l ← {k }
, Slj ← lSj }

That is, partial parses are generated from left to right for each production rule. All parses,

except the final one, make use of the flatten combinator to extend the current stream of partial

parses and current index state with the parses for the current symbol. As all indices are already

fixed when considering the right-most symbol in a production rule, only a single parse is generated

in such a case (denoted l← {k}).

This explanation assumes that, for fixed indices (say iSk), a non-terminal produces only a

single parse. When only a single optimal result is required, this is actually the desired behaviour. In

cases where co- or sub-optimal parses are required, non-terminals produce multiple results, thereby

requiring an additional flatten operation for each non-terminal, leading to the full notation above.

Thus, the flatten function is used extensively in ADPfusion. Each new (non-)terminal requires

up to two flatten operations. Symbols on the right-hand sides of production rules admit multiple

parses. Nesting further, in multi-tape settings, flatten is used to combine parses from individual

tapes.

ADPfusion must handle a fixed, but arbitrary, number of input tapes and allow the user to inte-

grate new (non-) terminal parsers easily with the existing library. The ability to fuse applications of

concatMap, instead of having to rely on flatten, allows for the replacement of the complex system

of recursive calls to flatten with simpler calls to concatMap.

As an example, the following (simplified) code is used for multi-tape indices. A Subword (i : .j)

denotes the substring currently parsed. The highest subword index is removed from the index stack,

150

followed by a recursive call to tableIx to calculate inner indices. Using flatten, the set of indices

is expanded and the index stack extended (with a payload z and a temporary stack a).

class TableIx i where
tableIx :: i → Stream (z , a, i)→ Stream (z , a, i)

instance TableIx is ⇒ TableIx (is : . Subword) where
tableIx (is : . Subword (i : . j))

= flatten mk step ◦ tableIx is ◦map (λ(z , a, (ns : . n))→ (z , (a : . n),ns))
where

mk (z , a : . Subword (k : . l),ns) = (z , a,ns, l , l)
step (z , a,ns, k , l)
| l > j = Done
| otherwise = Yield (z , a, (ns : . Subword (k : . l))) (z , a,ns, k , l + 1)

A fusable version of concatMap simplifies the implementation.

instance TableIx is ⇒ TableIx (is : . Subword) where
tableIx (is : . Subword (i : . j))

= concatMap f ◦ tableIx ◦map (λ(z , a, (ns : . n))→ (z , (a : . n),ns))
where

f (z , a : . Subword (k : . l),ns) =
map (λm → (z , a,ns : . Subword (m : . j))) (enumFromStepN l 1 (j − l + 1))

This simplicity becomes more pronounced as TableIx instances statically track additional bound-

ary conditions, maximal yield sizes, and special table conditions which have been omitted here,

for clarity.

Performance of ADPfusion

ADPfusion was re-implemented using concatMap in order to test the performance of the concatMap

transformation on real code. Since ADPfusion is built upon a finite, fixed set of functions (mainly

the stream-generating MkStream type class), HERMIT optimizations can be targeted to exactly the

offending calls.

Table 7.1 summarizise these results for various input lengths. All applications of concatMap

are rewritten, the Step data constructors are successfully eliminated, and unboxing (especially of

loop counters) of all variables occurs. The HERMIT-optimized version (ADPfusionhermit) is

on par with the version using flatten. Using concatMap without HERMIT optimization leads

to a slowdown of ≈6-8× compared to both optimized versions. Runtimes for the C reference

151

input length 400 600 800 1 000

ADPfusionhermit 0.03s 0.10s 0.22s 0.41s
ADPfusionflatten 0.03s 0.10s 0.22s 0.44s
ADPfusionconcatMap 0.19s 0.64s 1.56s 3.15s
C 0.01s 0.04s 0.09s 0.20s

Table 7.1: Runtime in Seconds for the Nussinov78 Algorithm using ADPfusion and C.

implementation are included for comparision. (Options used: ghc -O2 -fllvm, resp. gcc -O3,

measurements performed on an Intel Core i5-3570K).

7.8 Conclusions and Future Work

This case study uses HERMIT to specify a custom GHC plugin which implements a transformation

for fusing Stream Fusion’s concatMap. A key benefit of HERMIT is that it lowers the barrier to

implementing such transformations. HERMIT allows a user to rapidly prototype an optimization,

interactively exploring the transformation in action during compilation.

The transformation extends one originally proposed by Coutts [2010]. The value of the outer

stream is stored in a modified inner-stream state so it is available to the inner-stream generator. The

transformation is also extended to monadic streams. These extensions require the manipulation of

syntactic constructs of the GHC Core representation of the program, something that is currently

inexpressible by GHC’s RULES rewrite system.

Several subtleties were uncovered by implementing the transformation itself. This led to the

specific simplification heuristics in Algorithm 1, which are required to enable the transformation

in practice. Each step in this algorithm, and their specific ordering, was discovered by exploring

the optimization interactively with HERMIT.

Aggressive call-pattern specialization is crucial for Stream Fusion. The inlining heuristic in

Section 7.5.3 was key to achieving fusion. This suggests that modifying GHC’s implementation of

specialization to look through let bindings may be profitable in general, and is worth pursuing as

152

future work. However, if such a modification is not found to be generally useful, it can continue to

be applied by HERMIT for this specific optimization.

A number of steps in the transformation have the potential to duplicate work (or allocation).

The impact of this duplication remains unquantified, though the performance measurements in

Section 7.6 show the transformation is generally an optimization. Speedups of micro-benchmarks

targeted by the transformation are considerable. This is in no small part due to the fact that existing

Stream Fusion frameworks perform so poorly on concatMap. As Figure 7.2 illustrates, lists often

perform better than vectors in concatMap-heavy code because foldr/build is so good at fusing

concatMap.

Results from the nofib benchmark suite are mostly positive with speedup of ≈15% and a ≈10%

reduction in allocation, on average. Some programs experience large speedups or slowdowns. The

slowdowns are the result of the limited set of stream combinators implemented, along with other

practical implementation issues, rather than the concatMap transformation itself. Making a pro-

duction quality system that can be “always on” remains future work. Nevertheless, the HERMIT-

based implementation presented in this study can be selectively enabled when it is determined to

be beneficial.

This performance is already available to users of flatten, but at considerable cost in imple-

mentation complexity. This complexity often leads to sub-optimal uses of flatten. Users of a fully

fused concatMap can more readily take advantage of the hard work of library writers.

The ADPfusion library relies on Stream Fusion on vectors to achieve good performance. The

preliminary results we presented in Sec. 7.7 suggest that using HERMIT to optimize concatMap

will reduce the implementation complexity of the library considerably, without unduly sacrificing

performance.

153

Chapter 8

Case Study: Making a Century

To assess how well HERMIT supports calculational programming, this case study mechanizes a

program derivation from the chapter Making a Century in Pearls of Functional Algorithm Design

[Bird, 2010, Chapter 6]. The book is entirely dedicated to reasoning about Haskell programs,

with each chapter calculating an efficient program from an inefficient specification program. Thus,

unlike the case study in Chapter 6, the goal is program transformation, not proving properties.

However, many of the transformations used have preconditions, and thus there are several proof

obligations along the way, making this case study more than just an optimization pass like the one

in Chapter 7.

The program in Making a Century computes the list of all ways the addition and multiplication

operators can be inserted into the list of digits [1 . . 9], such that the resultant expression evaluates

to 100. For example, one possible solution is:

12 + 34 + 5× 6 + 7 + 8 + 9 = 100

The details of the program are not overly important to the case study, and the interested reader

should consult the textbook for details [Bird, 2010, Chapter 6]. What is important is that the

derivation of an efficient program involves a substantial amount of equational reasoning, and the

use of a variety of proof techniques, including fold/unfold transformation [Burstall and Darling-

154

Fold Fusion ∀f g h a b . (f⊥ ≡ ⊥ ∧ f a ≡ b ∧ ∀x y . f (g x y) ≡ h x (f y))
⇒

f ◦ foldr g a ≡ foldr h b
Lemma 6.2 filter (good ◦ value) ≡ filter (good ◦ value) ◦ filter (ok ◦ value)
Lemma 6.3 ∀x . filter (ok ◦ value) ◦ extend x

≡
filter (ok ◦ value) ◦ extend x ◦ filter (ok ◦ value)

Lemma 6.4 ∀x . map value ◦ extend x ≡ modify ◦ map value
Lemma 6.5 ∀f g . fst ◦ fork (f , g) ≡ f ∧ snd ◦ fork (f , g) ≡ g
Lemma 6.6 ∀f g h . fork (f , g) ◦ h ≡ fork (f ◦ h, g ◦ h)
Lemma 6.7 ∀f g h k . fork (f ◦ h, g ◦ k) ≡ cross (f , g) ◦ fork (h, k)
Lemma 6.8 ∀f g . fork (map f ,map g) ≡ unzip ◦ map (fork (f , g))
Lemma 6.9 ∀f g . map (fork (f , g)) ≡ zip ◦ fork (map f ,map g)
Lemma 6.10 ∀f g p . map (fork (f , g)) ◦ filter (p ◦ g)

≡
filter (p ◦ snd) ◦ map (fork (f , g))

Figure 8.1: Main Lemmas in the ‘Making a Century’ Case Study.

ton, 1977], structural induction (Section 5.10.5), fold fusion [Meijer et al., 1991], and numerous

auxiliary lemmas.

Rather than present every proof in detail, this case study focuses on a representative extract,

and then discuss the aspects of the mechanization that proved challenging. The HERMIT scripts

for the complete case study are available online [Farmer et al., 2015].

8.1 HERMIT Scripts

After creating a Haskell file containing the function definitions from the textbook, the next task is

to introduce the lemmas used in the equational-reasoning steps. The main lemmas (specifically,

those that are named in the textbook) are displayed in Figure 8.1, giving a rough idea of their com-

plexity. The majority of these lemmas are equivalences between expressions and can be introduced

via (inactive) rewrite rules in the Haskell source file (see Section 5.4). The notable exception is

the fold-fusion law, which is constructed and introduced using a custom KURE transformation.

Lemma 6.5 is also a composite lemma, but it was more convenient to introduce a pair of lemmas

rather than constructing an explicit conjunction.

155

unzip ·map (fork (f , g))
= {definition of unzip }

fork (map fst ,map snd) ·map (fork (f , g))
= {(6.6) and map (f · g) = map f ·map g }

fork (map (fst · fork (f , g)),map (snd · fork (f , g)))
= {(6.5) }

fork (map f ,map g)

(a) Textbook extract.

-- ∀ f g . fork ((,) (map f) (map g)) = (.) unzip (map (fork ((,) f g)))
forall-body ; eq-rhs

-- (.) unzip (map (fork ((,) f g)))
one-td (unfold ’unzip)

-- (.) (fork ((,) (map fst) (map snd))) (map (fork ((,) f g)))
lemma-forward "6.6" ; any-td (lemma-forward "map-fusion")

-- fork ((,) (map ((.) fst (fork ((,) f g)))) (map ((.) snd (fork ((,) f g)))))
one-td (lemma-forward "6.5a") ; one-td (lemma-forward "6.5b")

-- fork ((,) (map f) (map g))

(b) HERMIT script.

Figure 8.2: Comparing the Textbook Calculation with the HERMIT Script for Lemma 6.8.

Irrespective of how they were introduced, the same approach was taken to proving each lemma:

the proof was performed in HERMIT’s interactive mode until successful and then the final proof

was saved as a script that could be invoked thereafter. Finally, the main program transformation

(solutions) was developed interactively, invoking the saved auxiliary proof scripts as necessary.

Roughly half of the proofs in this case study were transliterations of proofs from the textbook,

and half were proofs that were not included in the text and had to be developed in HERMIT (see

Section 8.3). Both sets of proofs proceeded in a similar manner, but with more experimentation

and backtracking during the interactive phase for the latter set.

As an example, compare the proofs of Lemma 6.8. Figure 8.2a presents the proof extracted

verbatim from the textbook [Bird, 2010, Page 36], and Figure 8.2b presents the corresponding

HERMIT script. Note that lines beginning “--” in a HERMIT script are comments, and for read-

ability have been typeset differently to the monospace HERMIT code. These comments represent

the current expression between transformation steps, and correspond to the output of the HERMIT

156

REPL when performing the proof interactively. When generating a HERMIT proof script after an

interactive session, HERMIT can automatically insert these comments if desired. The content of

the comments can be configured by HERMIT’s various pretty-printer modes — in this case they

omit the type arguments (as in Section 4.1) to make the correspondence with the textbook extract

clearer.

The main difference between the two calculations is that, in HERMIT, one must specify where

in the term to apply a rewrite, and in which direction lemmas are applied. In contrast, in the

textbook the lemmas to be used or functions to be unfolded are merely named, relying on the

reader to be able to deduce how it was applied.

In this proof, and most others in the case study, the HERMIT scripts are about as clear, and not

much more verbose, than the textbook calculations. There is one exception though: manipulating

terms containing adjacent occurrences of the function-composition operator.

8.2 Associative Operators

On paper, associative binary operators such as function composition are typically written without

parentheses. However, in GHC Core, operators are represented by nested application nodes in

an abstract syntax tree, with no special representation for associative operators. Terms that are

equivalent semantically because of associativity properties can thus be represented by different

trees. Consequently, it is sometimes necessary to perform a tedious restructuring of the abstract

syntax tree before a transformation can match the term.

For function composition, one way to avoid this problem is to work with eta-expanded terms

and unfold all occurrences of the composition operator, as this always produces an abstract syntax

tree consisting of a left-nested sequence of applications. However, the goal of this case study was

to match the textbook proofs, which are written in a point-free style, as closely as possible. Thus,

this unfolding was not performed.

157

comp-id-L ∀f . id ◦ f ≡ f
comp-id-R ∀f . f ◦ id ≡ f
comp-assoc ∀f g h . (f ◦ g) ◦ h ≡ f ◦ (g ◦ h)
comp-assoc4 ∀f g h k l . f ◦ (g ◦ (h ◦ (k ◦ l))) ≡ (f ◦ (g ◦ (h ◦ k))) ◦ l
map-id map id ≡ id
map-fusion ∀f g . map (f ◦ g) ≡ map f ◦ map g
map-strict ∀f . map f undefined ≡ undefined
zip-unzip zip ◦ unzip ≡ id
filter-strict ∀f . filter f undefined ≡ undefined
filter-split ∀p q . (∀x . q x ≡ False ⇒ p x ≡ False)⇒ filter p ≡ filter p ◦ filter q

Figure 8.3: Auxiliary Lemmas Proved in HERMIT during the ‘Making a Century’ Case Study.

More generally, rewriting terms containing associative (and commutative) operators is a well-

studied problem [e.g. Dershowitz et al., 1983, Kirchner and Moreau, 2001, Braibant and Pous,

2011], and it remains as future work to provide better support for manipulating such operators in

HERMIT.

8.3 Assumed Lemmas in the Textbook

As is common with pen-and-paper reasoning, several properties that are used in the textbook are

assumed without a proof being given. This included some of the named lemmas from Figure 8.1,

as well as several auxiliary properties, some explicit and some implicit (Figure 8.3). While per-

forming reasoning beyond that presented in the textbook was not intended to be part of the case

study, proofs of these properties were nevertheless attempted in HERMIT.

Of the assumed named lemmas, the fold-fusion law has a straightforward inductive proof,

which can be encoded fairly directly using HERMIT’s built-in structural induction. Lemmas 6.5,

6.6, 6.7 and 6.10 are properties of basic function combinators, and proving them mostly they con-

sisted of inlining definitions and simplifying the resultant expressions, with the occasional basic

use of induction. The same was true for the auxiliary lemmas, which are listed in Figure 8.3. Sys-

tematic proofs such as these are ripe for mechanization, and HERMIT provides several strategies

158

that perform a suite of basic simplifications to help with this. Consequently, the proof scripts were

short and concise.

Lemmas 6.2, 6.3 and 6.4 were more challenging. For Lemma 6.2, it was helpful to introduce

and prove the filter-split auxiliary lemma (Figure 8.3), which captures the essence of the key

optimization in the case study. After this, the proof was fairly straightforward.

Lemmas 6.3 and 6.4 appear to be non-trivial properties without obvious proofs, so they were

not proven in HERMIT. This did not inhibit the rest of the case study however, as HERMIT allows

a lemma to be taken as an assumption, which can then be used without being proved. If such

assumed lemmas are used in a calculation, HERMIT will issue a compiler warning. This ability to

assume lemmas can be disabled by a HERMIT option, allowing the user to ensure that only proved

lemmas are used.

Finally, the simplification of the definition of expand is stated in the textbook without presenting

any intermediate transformation steps [Bird, 2010, Page 40]. It is not obvious what those interme-

diate transformation steps would be, and thus this simplification was not encoded in HERMIT.

8.4 Constructive Calculation

There was one proof technique used in the textbook that HERMIT does not directly support: cal-

culating the definition of a function from an indirect specification. Specifically, the textbook pos-

tulates the existence of an auxiliary function (expand), uses that function in the conclusion of the

fold-fusion rule, and then calculates a definition for that function from the indirect specification

given by the fold-fusion pre-conditions. HERMIT is based around transforming (and proving prop-

erties of) existing definitions, and does not support this style of reasoning; so this calculation could

not be replicated. However, the calculation was verified by working in reverse: starting from the

definition of expand , the use of the fold-fusion law could be validated by proving the corresponding

pre-conditions.

159

Calculation
Textbook HERMIT Commands

Lines Transformation Navigation
Fold Fusion assumed 24 28
Lemma 6.2 assumed 11 7
Lemma 6.3 assumed assumed
Lemma 6.4 assumed assumed
Lemma 6.5 assumed 4 4
Lemma 6.6 assumed 2 2
Lemma 6.7 assumed 2 1
Lemma 6.8 7 5 6
Lemma 6.9 1 4 4
Lemma 6.10 assumed 23 18
solutions 16 6 8
expand 19 18 18

Table 8.1: Comparison of Calculation Sizes in ‘Making a Century’.

8.5 Calculation Sizes

As demonstrated by Figure 8.2, the HERMIT proof scripts are roughly the same size as the text-

book calculations. It is difficult to give a precise comparison, as the textbook uses both formal

calculation and natural language. Table 8.1 presents some statistics, but this is only intended to

give a rough approximation of the scale of the proofs. The size of the two main calculations

(transforming solutions and deriving expand) are given, as well as the sizes of the proofs of the

named auxiliary lemmas. Textbook lines measures lines of natural language reasoning as well as

lines of formal calculation, but not definitions, statement of lemmas, or surrounding discussion.

In the HERMIT scripts, the number of transformations applied, and the number of navigation and

strategy combinators used to direct the transformations to the desired location in the term are mea-

sured. HERMIT commands for stating lemmas, loading files, switching between transformation

and proof mode, or similar, are not measured, as they are considered comparable to the surround-

ing discussion in the textbook. To get a feel for the scale of the numbers given, compare Lemma

6.8 in Table 8.1 to the calculation in Figure 8.2.

160

8.6 Reflections

Overall, mechanizing the textbook calculations was fairly straightforward, and it was pleasing that

most of the steps in the textbook translate directly into an equivalent HERMIT command. The only

annoyance was the need to occasionally manually apply associativity lemmas (see Section 8.2) so

that the structure of the term would match the transformation being applied.

While having to specify where in a term each lemma must be applied does result in more

complicated proof scripts than in the textbook, this is not necessarily detrimental. Rather, a pen-

and-paper proof that does not specify the location is passing on the work to the reader, who must

determine for herself where, and in which direction, the lemma is intended to be applied. Fur-

thermore, when desired, strategic combinators such as any-td can be used to avoid specifying

precisely which sub-term the lemma should be applied to by applying it anywhere it matches.

This case study also uncovered one error in the textbook. Specifically, the inferred type of the

modify function [Bird, 2010, Page 39] does not match its usage in the program. The definition of

modify should include a concatMap, which would correct the type mismatch and give the program

its intended semantics. This is the version the case study uses. However, this cannot be claimed

as HERMIT detecting an error in a pen-and-paper proof, as it was caught by GHC’s type checker,

not by HERMIT.

161

Chapter 9

Applications

HERMIT has been applied to a number of projects in addition to the large case studies in this

dissertation. The tool support it provides for working within GHC make it valuable for prototyp-

ing optimization passes and building other experimental compiler features. HERMIT’s reasoning

features support the exploration of equational reasoning techniques on real programs. This chapter

surveys some of the projects which make use of HERMIT, reflecting on HERMIT’s role.

9.1 Worker/Wrapper Transformation

The Worker/Wrapper transformation [Gill and Hutton, 2009, Peyton Jones and Launchbury, 1991]

changes how a (typically recursive) function operates using only locally verifiable assumptions.

The transformation is a general form of data-refinement [Hoare, 1972]. Worker/wrapper has been

used as a mechanism to implement strictness analysis optimizations [Jones and Partain, 1993],

argument transposition [Launchbury and Sheard, 1995], constructor specialization [Peyton Jones,

2007], memoization [Michie, 1968], and CPS translation [Sussman and Steele, 1975, Appel, 1992].

The Worker/Wrapper transformation is illustrated in Figure 9.1. Solid arrows signify function

calls, and dashed arrows signify the application of specified refinements. The boxes are computa-

tions that have a type, given as an incoming arrow, and require the use of a second computation,

162

abs

A

B
rep

A

comp

A

abs

A

B
rep

A

comp

abs

A

B
rep

A

comp

abs

A

wrapper

A

B

worker

original computation coercion chain spliced computation unrolled computation worker and wrapper

splice in

coercion
chain

use original

comp

unroll by

cloning
abs

push rep
and abs

into comp,
simplify

and apply
fusion

Original
type

Target
type

Final
optimized
recursion

uses target
type

worker
embodies
effective
usage of

target type

Cloning
wrapper

gives access
to the B API.

Original
recursive

computation
using original

 type

abs becomes

the wrapper

Verify
worker/wrapper
pre-conditions!

3

4

5

6

1

2

7

8

9

10

Figure 9.1: The Worker/Wrapper Transformation

given as an outgoing arrow. As such, these computational boxes can be considered as representing

functions with higher-order arguments. A and B should be read as the type of a computation.

The original computation1 is a recursive function, notated with an arrow back to the type of

the computation, A2. (Superscripts in this paragraph refer to Figure 9.1.) The Worker/Wrapper

transformation operates as follows: A target type3 for the recursion is selected, here called B. A

coercion chain4 is constructed from two higher-order functions, that coerce from A to B, and

back to A, using the standard data-refinement terminology of abs and rep [Hoare, 1972]. The

Worker/Wrapper local preconditions are verified5; one example is when abs and rep form an

identity over A. The coercion-chain can now be spliced into the original recursion back-edge6,

replacing the original computation. The abs definition can now be unrolled a single step7, which

exposes abs as a non-recursive component of the overall computation8. This new formulation can

be transformed and optimized using local, well understood algebraic transformations and fusion

rules into an efficient worker9 that operates over B, and a wrapper10 that allows original users of

A’s API to call the new function.

The three possible pre-conditions for Worker/Wrapper are:

(A) abs ◦ rep ≡ idA
(B) abs ◦ rep ◦ comp ≡ comp
(C) fix (abs ◦ rep ◦ comp) ≡ fix comp

163

All three follow from the formalization, with each pre-condition directly implying the subsequent,

weaker pre-condition. The third pre-condition can actually be observed inside Figure 9.1, where

the splicing is a use of this final rule, applied right-to-left. The intuition behind all the pre-

conditions is that they ensure, specifically for the function comp, that the alternative type B can

safely be used.

Following from these pre-conditions, and other well understood equational reasoning princi-

ples, is a factorization transformation which states how the wrapper is defined in terms of the new

worker, along with a set of equations for calculating the definition of the worker itself. In these

equations, fix f is the original computation, and fix g is the new worker, where fix is the function

for definining the least fixed point of another function.

Factorization :
fix f ≡ abs (fix g)

(1α) g ≡ rep ◦ f ◦ abs
(1β) fix g ≡ fix (rep ◦ f ◦ abs)

(2α) rep ◦ f ≡ g ◦ rep ∧ strict rep
(2β) fix g ≡ rep (fix f)

(3α) abs ◦ g ≡ f ◦ abs

Part of the appeal of Worker/Wrapper is that the factorization equation is simple, and that

the derivation relies on a single pre-condition which can itself be verified by simple equational

reasoning. The transformation can thus be performed semi-formally, usually by hand, to justify a

data refinement, or even calculate a previously unknown definition for the worker.

This simplicity makes Worker/Wrapper an obvious target for HERMIT. In fact, the transfor-

mation was the original motivating example of the HERMIT project. The two primary tasks re-

quired to perform Worker/Wrapper are to verify one of the pre-conditions and to simplify away

the representation-changing functions (abs and rep) after factorization. Both tasks are supported

by HERMIT’s mechanized reasoning and transformation capabilities.

HERMIT provides two rewrites for the factorization step. The first, called split-1-beta im-

plements the factorization using rule (1β) above. The second, called split-2-beta implements

the factorization using rule (2β). In each case, a lemma corresponding to pre-condition (C) is

164

generated as a proof obligation. If the user has previously proven pre-conditions (A) or (B), these

lemmas can be used to prove (C).

The other rules are not implemented because they either follow directly from these two, or are

not definitional in g , requiring constructive calculation (as defined in Section 8.4). Constructive

calculation is a style of reasoning not supported by HERMIT. The fact that these other rules are not

implemented does not reduce the power of Worker/Wrapper in HERMIT. A particular derivation

may begin more conveniently using a certain rule, but they are equivalent.

All of the known Worker/Wrapper derivations from the literature have been mechanized using

HERMIT. The derivations are included as examples with the HERMIT package. In his thesis,

Torrence [2015] uses HERMIT to mechanize a series of Worker/Wrapper transformations which

systematically refine an executable specification of Conway’s Game of Life [Adamatzky, 2010]

into an efficient implementation. This is the first time Worker/Wrapper has been mechanized on a

complete program.

HERMIT currently only provides specialized support for the factorization step, relying on its

other general purpose transformations and the user for proving the pre-condition and fusing away

the representation changing functions. It is conceivable that patterns in both the proof and simpli-

fication could be exploited to offer an even higher level of abstraction, though this remains future

work.

9.2 Optimizing SYB is Easy!

In Adams et al. [2014], HERMIT is used to implement a domain-specific optimization pass which

removes the overhead of generic traversals for the Scrap Your Boilerplate library [Lämmel and

Peyton Jones, 2003]. Scrap Your Boilerplate (SYB) is the most widely used generic-programming

library in the Haskell community, permitting the concise expression of data-type generic traver-

sals. It also happens to be the slowest. The runtime type comparison necessary during SYB

traversals makes them an order-of-magnitude slower than equivalent non-generic, hand-written

165

traversals [Adams and DuBuisson, 2012, Sculthorpe et al., 2014]. Previous optimization tech-

niques were unable to eliminate this performance penalty.

The optimization which HERMIT implements takes advantage of domain-specific knowledge

about the structure of SYB traversals to direct a limited form of partial evaluation [Jones et al.,

1993]. The work itself focuses on formalizing the optimization technique and evaluating it empir-

ically on a selection of benchmarks. HERMIT was used to actually implement the optimization in

order to perform the evaluation, and this section reflects on HERMIT’s role in its development, as

well as the project’s effect on HERMIT itself.

The intuition for this optimization is that the evaluation of the run-time type comparisons can

actually be performed at compile-time when the type of the structure being traversed is statically

known. The structure type is most often known at the application site of the traversal, though

simply ascribing a concrete type to a traversal is enough. Performing this evaluation is a matter

of unfolding SYB combinators and performing other local transformations such as case reduction,

augmented with rewrites for statically evaluating certain primitive operations that compare run-

time type representations.

HERMIT’s interactive mode was used to explore these necessary evaluation steps on several

examples. Eventually, a pattern emerged. Run-time type comparisons always occurred in computa-

tions whose types featured certain ‘undesirable’ types. These types include the Data and Typeable

dictionaries used to implement SYB’s type-safe cast interface, as well as the types related to run-

time type representations. Directing evaluation to focus on terms with these ‘undesirable’ types

allowed it to proceed automatically.

A key step in the algorithm is memoizing prior specialization results. If the traversal has

already been specialized to a particular set of arguments, all future applications to the same set of

arguments can be replaced by a call to the specialized version. This is the step that “ties the knot”

of recursion in the algorithm, preventing unbounded unfolding and evaluation.

To implement this step, a call to an unspecialized traversal is first let-bound to a new name,

and the resulting binding is maximally floated. Any further occurrence of the same unspecialized

166

traversal is folded (Section 4.4) to this new name. All unfolding and evaluation occurs in the

right-hand side of the let-binding, so all the calls share the results of the specialization, including

recursive calls.

Since a binding is generated for every combination of traversal and type and dictionary argu-

ments, a large number of fold patterns will be generated for non-trivial examples. Each of these

patterns must be checked at every traversal application site. This is the single most time-consuming

aspect of the optimization. HERMIT’s original naive implementation of the fold rewrite could only

check a single pattern at a time. The poor performance of this memoization step motivated the cur-

rent implementation of fold in terms of TrieMaps, which greatly improved performance of the

optimization by allowing all the patterns to effectively be checked simultaneously.

The SYB optimization and the Stream Fusion optimization in Chapter 7 were both imple-

mented by first gaining an intuition for the optimization through interactive transformation. This

approach appears to be fruitful, exposing many of the unforeseen (until implementation) details

of the optimization early, and providing fast development iteration. HERMIT is the key enabling

technology for this methodology.

9.3 Haskell-to-Hardware

HERMIT has also been used to build a prototype compiler backend which compiles Haskell pro-

grams to configurations suitable for a programmable logic device, such as an Field-Programmable

Gate Array (FPGA). The dominant means of programming these devices is via specialized Hard-

ware Description Languages (HDLs) such as Verilog [Thomas and Moorby, 1998] or VHDL [Arm-

strong and Gray, 1993]. Another approach which is currently being actively explored by the func-

tional languages community is to reify a functional computation as a structure which can then be

translated into a circuit description [Bjesse et al., 1998, Gill et al., 2013]. This approach is moti-

vated by the desire to raise the level of abstraction for describing circuits, and to take advantage of

advanced type system features offered by modern functional languages.

167

Typically, these functional HDLs are implemented as embedded domain-specific languages

(eDSLs), using features of the host language such as type-classes to interpret computations both

as regular programs (simulation) and data structures (reification). Despite continued progress,

there are limits to the computations which can be reified this way [Mainland and Morrisett, 2010].

Notoriously tricky are issues of sharing, both of bindings and abstractions, and higher-order com-

putations, which are common in functional programs.

The lambda-ccc compiler is implemented as a custom HERMIT plugin which observes the

GHC Core representation of the program at compile time. The program is already an explicit

structure at this point, bypassing many reification issues that source-level eDSLs face. Addition-

ally, GHC Core is syntactically smaller, and more stable, than the full Haskell language, making it

a more suitable target for compilation. In effect, lambda-ccc is an alternative back end for GHC

which generates hardware descriptions, and it can take advantage of GHC’s front end parsing,

typechecking, and desugaring capabilities.

The plugin works by rewriting the GHC Core program to an alternative program which, when

run, will generate a hardware description which implements the computation embodied by the

original program. This hardware description can then be synthesized using standard tools.

Reflecting on the lambda-ccc prototype: “HERMIT made it relatively easy to experiment

with different reification strategies. It was very helpful to have a high-level tool for writing in-

dividual transformations as well as repetition and traversal strategies.” [Elliott, 2015]. While the

choice to use HERMIT has been beneficial for prototyping, especially by leveraging HERMIT’s in-

teractive capabilities, one drawback is compilation speed, which is slower than desired. (HERMIT

itself has had relatively little performance tuning.) It is likely that the ideas developed using the

HERMIT prototype will be used to build a dedicated GHC plugin pass in the future.

HERMIT’s use for a project such as lambda-cccwas unexpected, but beneficial to HERMIT’s

development. The project was the primary motivator for developing the ability to call the GHC

typechecker from within HERMIT to generate dictionary expressions. This feature was later lever-

aged to create the dictionary instantiation transformation necessary to perform the type-class law

168

proofs in Chapter 6. Additionally, many of HERMIT’s practical features, especially in the Shell,

were motivated by the needs of viewing and navigating the relatively large programs generated by

the lambda-ccc translation.

169

Chapter 10

Related Work

There have been three main approaches taken to verifying properties of Haskell programs: test-

ing, automated theorem proving, and semi-formal methods, such as equational reasoning. Testing

tends to be lightweight, with good support for integrating into existing development workflows.

Tests are adept at finding small counterexamples to properties which are not true, but tests do not

constitute a proof. Automated theorem provers can provide formal, machine-checked proofs, but

typically require considerable time and expertise. Using an automated prover often requires a rad-

ical departure from typical development workflows. Semi-formal methods offer a middle ground,

with more assurance than testing, but considerably less effort than using a formal theorem prover.

10.1 Testing

The most prominent testing tool in the Haskell community is QuickCheck [Claessen and Hughes,

2000]. QuickCheck automatically generates random inputs to the property being tested, in search

of a counterexample. A related tool, SmallCheck [Runciman et al., 2008], exhaustively generates

test values of increasing size in order to find minimal counter examples. This has been extended

by Lazy SmallCheck [Runciman et al., 2008, Reich et al., 2013], which also tests partial values.

Jeuring et al. [2012] develops infrastructure which uses QuickCheck to test type-class laws or the

individual steps of a user-supplied equational-reasoning proof in order to locate errors in such

170

proofs. QuickCheck itself has been replicated in other languages, including Erlang [Arts et al.,

2008], and C [Arts and Castro, 2011].

10.2 Automated Proof

Several tools exist which attempt to automatically prove properties of Haskell programs by inter-

facing with an automated theorem prover. The general approach taken by these tools is to translate

the Haskell program, via GHC Core, into a first-order logic. Program properties are then checked

by passing them to an external theorem prover for verification. Most of these tools provide their

own automated induction principle(s), invoking the external theorem prover as required.

While this overlaps with some of HERMIT’s functionality, the aim of these tools is different.

They seek to generate proofs for program properties (and in some cases, the properties themselves)

without user guidance. HERMIT’s goal is broader, seeking to mechanize semi-formal reasoning

for both proof and program transformation, lowering the burden of performing the sort of reasoning

that is typically done by hand. In some cases, HERMIT could profitably incorporate these tools as

decision procedures for its own proofs.

Zeno [Sonnex et al., 2012] is an automated prover which attempts to solve the general problem

of determining if two Haskell terms are equivalent. Zeno targets the GHC Core representation

of the program, but translates it to its own intermediate language which lacks the first class type

equality (coercion evidence) features of GHC Core. Thus, Zeno targets Haskell 98 plus language

extensions which are purely syntactic, not full GHC-extended Haskell. It automatically proves

user-specified properties, including implications and any auxiliary lemmas it generates. Proofs are

output to Isabelle/HOL theory files, which can then be checked. The language for specifying prop-

erties is similar to that of QuickCheck, and properties are included in the program. Zeno needs

access to the definitons of all functions involved in a proof, meaning it cannot reason about library

functions, including those from the Haskell Prelude. This is more restrictive than HERMIT, which

can reason about library functions as long as the unfoldings for those functions are included in the

171

interface file for their defining module. As Zeno has access to GHC Core, this appears to be a

limitation of the implementation, and not fundamental. Zeno also cannot target programs which

feature local recursive definitons or functions which are non-terminating, such as corecursive def-

initions. Zeno can only reason about inductive data types, meaning built-in types such as Integer,

Int, and Char cannot be used in targeted functions.

HALO [Vytiniotis et al., 2013] is another system which translates Haskell to first-order logic,

via GHC Core. HALO’s distinguishing feature is its translation, which allows it to reason is the

presence of partial and infinite values. Additionally, the authors prove that if a property is proven

for the translated version of the program, then it actually holds in the underlying program, a prop-

erty of the translation which is often assumed. Properties can be specified using user-supplied

predicates written in Haskell directly, in the target program. HALO relies on existing first-order

logic provers, such as Z3 De Moura and Bjørner [2008] or Vampire Hoder et al. [2010]. The

project appears to be not be maintained.

The Haskell Inductive Prover (Hip) [Rosén, 2012] is another tool which translates Haskell to

first-order logic, focusing on automating induction proofs. Unlike the previous tools, Hip translates

Haskell source, instead of GHC Core. A limitation of Hip is that it only attempts to apply induction

to user-specified conjectures, not to any intermediate lemmas that may be needed to complete the

proof. HipSpec [Claessen et al., 2013] is built on top of Hip. HipSpec uses QuickSpec [Claessen

et al., 2010] to exhaustively generate conjectures (up to a fixed term size) about the functions of the

target program. Hip is used to prove these conjectures first, using those that are successfully proven

when attempting the main proof. The main novelty of HipSpec is that it infers suites of properties

about programs from their definitions in a bottom-up fashion, rather than taking the goal-directed

approach of the aforementioned tools which start from the user-stated program properties and seek

to prove them. In fact, using HipSpec, user-specified properties are entirely optional.

HaskHOL [Austin, 2011] is an effort to implement a theorem prover for higher-order logic as a

Haskell-hosted domain-specific language, providing Haskell libraries and tools access to proving-

172

as-a-library. Work currently under peer review implements a HERMIT plugin which acts as a

translation layer, providing program definitions to HaskHOL, though integration is in early stages.

One can also use proof assistants, such as Coq [Bertot and Castéran, 2004] or Agda [Norell,

2007], directly to interactively mechanize program transformations. This requires modeling the

syntax and semantics of the target language, and then encoding the program in that model. If the

goal is to transform the program (rather than just verifying properties), then the resulting program

must be transliterated back into the target language before it can be compiled and executed. To

perform this kind of reasoning on Haskell programs requires modeling Haskell’s domain-theoretic

setting of continuous functions over pointed ω-complete partial orders [Schmidt, 1986]. This is

true even for programs written in a subset of the Haskell language, and is due to the fact that

Haskell’s partial values and lazy semantics are a poor fit for the total languages provided by such

proof assistants. One of the aims of the HERMIT project is to make transforming and reasoning

about Haskell programs easy for the user: familiarity with domain theory and proof assistants

should not be prerequisites.

10.3 Semi-formal Tools

Semi-formal reasoning can be used both to prove properties of Haskell programs and to validate the

correctness of program transformations. There are numerous examples of semi-formal reasoning

being performed manually in the literature [e.g. Gibbons and Hutton, 2005, Bird, 2010, Danielsson

and Jansson, 2004, Gill and Hutton, 2009]. Several tools have attempted to mechanize semi-formal

reasoning on Haskell programs, though most are not currently maintained. The majority of these

tools operate on Haskell source code (or some variant thereof), and do not attempt to support the

full Haskell language, including extensions, which is implemented by GHC. HERMIT’s decision

to operate on GHC Core, during compilation, is the primary difference between it and these tools.

Closely related to HERMIT is the Programming Assistant for Transforming Haskell (PATH)

[Tullsen, 2002]. Both are designed to be user directed, rather than fully automated, and are targeted

173

at regular Haskell programmers, without advanced knowledge of language semantics and formal

theorem proving tools. The significant difference is the choice of target language for transforma-

tions. PATH first translates Haskell into PATH-L, a Haskell-like functional language with explicit

recursion and unlifted tuples, performs its transformations, then converts PATH-L back to Haskell,

which is then compiled.

The Ulm Transformation System (Ultra) [Guttmann et al., 2003] is similar to PATH, although

its underlying semantics are based on CIP [Bauer et al., 1988], whereas PATH develops its own

formalism. A distinguishing feature of Ultra is that it operates on a subset of Haskell extended

with some non-deterministic operators, thereby allowing concise non-executable specifications to

be expressed and then transformed into executable programs.

Another tool similar to HERMIT is the Haskell Refactorer (HaRe) [Li et al., 2005, Brown,

2008, Li and Thompson, 2008a, Thompson and Li, 2013], which supports user-guided refactoring

of Haskell programs. The objective of HaRe is slightly different, as refactoring is concerned with

program transformation, whereas HERMIT supports both transformation and proof. HaRe targets

Haskell source, providing a graphical user interface and built-in transformations for manipulating

the program. The original version of HaRe targeted Haskell 98 source code, using Programat-

ica [Hallgren et al., 2004] to transform Haskell source code into an AST. Work has recently begun

on a re-implementation of HaRe which targets GHC-extended Haskell.

HERMIT is a direct descendant of HERA [Gill, 2006]. HERA operated on Haskell syntax us-

ing Template Haskell [Sheard and Peyton Jones, 2002]. An (unpublished) conclusion from HERA

was that transformations such as the Worker/Wrapper transformation need typing information. The

local availability of explicit type information was the original motivation for choosing GHC Core

as the target language for HERMIT. HERA can be considered as an early prototype of HERMIT,

now completely subsumed.

More broadly, there are a wide variety of refactoring tools for other languages. However,

unlike HERMIT, most do not support higher-order commands and the scripting of composite

174

refactorings [Li and Thompson, 2012]. One exception is Wrangler [Li and Thompson, 2008b],

a refactoring tool for Erlang, which has recently added such support [Li and Thompson, 2012].

10.4 Stream Fusion

Starting with deforestation work by Wadler [1988] a number of approaches to deforestation in

Haskell have been developed, including foldr/build [Gill et al., 1993], unfoldr/destroy [Svennings-

son, 2002], and Stream Fusion [Coutts et al., 2007]. Each approach is limited both theoretically

and practically. The inability of foldr/build to fuse zip is a theoretical limitation due to the nature of

the primitive consumer (foldr), which can only traverse a single list at a time. On the other hand,

fusing foldl is only a practical limitation to foldr/build, and Gill [1996] proposes an arity-raising

transformation to lift this limitation. As the dual to foldr/build, the unfoldr/destroy approach can-

not fuse unzip, because the primitive producer (unfoldr) cannot produce more than a single list at a

time. Stream Fusion extends unfoldr/destroy, overcoming a practical limitation when fusing filter.

The case study in Chapter 7 addresses another practical limitation common to unfoldr/destroy and

Stream Fusion, fusing concatMap. Further details, including an algorithm for list comprehension

desugaring which is required to get good fusion, and further related work, can be found in Farmer

et al. [2014].

10.5 Design

There are a wide variety of approaches to formalizing program transformation, such as fold/un-

fold [Burstall and Darlington, 1977], expression procedures [Scherlis, 1980, Sands, 1995], the

CIP system [Bauer et al., 1988], and the Bird-Meertens Formalism [Meijer et al., 1991, Bird and

de Moor, 1997]. These systems vary in their expressive power, often trading correctness for expres-

siveness. For example, fold/unfold is more expressive than expression procedures, but expression

procedures ensures total correctness whereas fold/unfold allows transformations that introduce

non-termination [Tullsen, 2002]. HERMIT implements rewrites to support fold/unfold reasoning,

175

but sidesteps termination issues by relying on the user to direct application of the rewrites and to

ensure termination.

HERMIT uses the Kansas University Rewrite Engine (KURE) [Sculthorpe et al., 2014] as its

language for specifying transformations on GHC Core. Other strategic programming languages

include Stratego [Bravenboer et al., 2008], which grew out of work on a strategy language to

translate RML [Visser et al., 1998], and drew inspiration from ELAN [Borovanský et al., 2001].

StrategyLib [Lämmel and Visser, 2002] is the system most similar to KURE, and many aspects of

the KURE design were drawn from it. Visser [2005] surveys the strategic programming discipline.

The combinators of Ltac [Delahaye, 2000], the tactics language used by the proof assistant Coq

[Bertot and Castéran, 2004], are reminiscent of KURE’s strategic programming combinators. The

key differences are that Ltac tactics operate on proof obligations rather than tree-structured data,

and that they return a set of sub-goals.

There has been significant work in safely handling bindings while working with abstract-syntax

trees, a notoriously thorny problem. Unbound [Weirich et al., 2011], a Haskell-hosted DSL for

specifying binding structure, is a possible solution. HERMIT uses congruence combinators for this

task, which are a general mechanism for encapsulating the maintenance of any sort of contextual

information, including bindings.

176

Chapter 11

Conclusion

Writing a program which is both correct and fast is difficult. One approach is to actually write two

programs: one which is correct, the other which is fast, and then prove that they are equivalent.

Establishing this equivalence formally requires considerable effort and expertise, meaning it is not

appropriate for most projects. However, at least when both programs are written in functional

languages, this equivalence can be established semi-formally by reasoning about the properties of

pure functions. In some cases, the second program does not need to be written explicitly, and can

be derived from the first, via program transformation.

While this workflow is popular in the functional languages community, it is typically performed

manually, either by modifying the source code or by using pen and paper. This can be tedious

and error-prone, resulting in obfuscated code or separate proof artifacts which must be manually

updated as the program changes over time. This dissertation investigates the idea of mechanizing

semi-formal reasoning during compilation as a means of addressing these concerns. It does so

by developing such a system, called HERMIT, and evaluating its effectiveness on reasoning tasks

which are actually performed by the Haskell community.

HERMIT is built to enable programmers to reason about their programs in a familiar, semi-

formal style. It is important that reasoning in HERMIT can be performed at a similar level of

abstraction to pen-and-paper reasoning, because semi-formal reasoning’s simplicity is a large part

177

of its appeal. HERMIT succeeds on this point, as the first and third case studies, along with other

examples in this dissertation, demonstrate. Scripts in HERMIT closely correspond to their pen-

and-paper counterparts in both form and length.

The individual steps in a script also closely resemble those of by-hand reasoning. The primary

difference is that the HERMIT script must specify where to apply the transformation, in addition to

what the transformation is. This may at first appear to be more work, but it can be argued that not

doing so is just passing this work onto the reader. Experience refactoring examples as HERMIT

developed shows that explicitly targeting transformations leads to scripts which are more legible

and easier to update when the program changes.

Mechanical support unburdens the programmer from handling the details of large syntactic ma-

nipulations, which in turn allows semi-formal reasoning to be applied to real programs. HERMIT’s

composite rewrites are effective at performing many tedious reductions automatically, allowing the

user to focus on key steps such as whether and when to fold or unfold a particular definition.

The fact that this mechanically supported reasoning occurs at compile time is what enables

HERMIT’s support for the entire Haskell language, including language extensions. HERMIT is

the first such system to do so. Other benefits of reasoning at compile time include access to

explicit, accurate, and local information about types; a syntactically smaller and more stable target

language; and integration with the existing Haskell tool ecosystem.

With access to GHC internals, HERMIT is also an effective tool for prototyping domain-

specific optimizations. Using domain-specific knowledge which the compiler is unable to discover

on its own, such optimizations improve the performance of code written at a high level of abstrac-

tion. Such code is generally more concise, and more likely to be “obviously correct”. The second

case study uses HERMIT to develop one such optimization, leveraging HERMIT’s interactive

mode to gain intuition about the optimization by applying it to examples.

178

11.1 Reflections

Access to typing information was the original motivation for the decision to operate during com-

pilation. This was largely due to Gill’s experience while implementing HERA [Gill, 2006], the

predecessor to HERMIT which operated on Haskell source code. Transforming at the source level

required a large amount of syntactic transformation and a correspondingly large dictionary of trans-

formations. One of HERA’s goals was to mechanize the Worker/Wrapper transformation, which

needs access to typing information. This information was difficult to gather at the source level,

relying on type inference and type ascription.

That HERMIT benefits from GHC’s election to use a small, strongly-typed intermediate lan-

guage such as GHC Core should not be overlooked. The decision to structure GHC’s optimizer

around GHC Core was fortuitous, and in large part motivated by the desire that GHC’s optimizer

itself be series of program transformations. In a way, HERMIT is a natural extension of this think-

ing, allowing the programmer to direct transformation of GHC Core, rather than relying only on

what can be done automatically.

There are drawbacks to reasoning at compile-time. Foremost, the programmer must reason

about GHC Core, instead of the Haskell they are already familiar with. GHC Core is generally

more verbose because it is syntactically simpler. It also features concepts, such as explicit type and

dictionary expressions and explicit coercion evidence, which are not part of Haskell. However,

these differences are not extreme, and GHC Core is sufficiently similar to Haskell that the same

general reasoning tactics still apply.

From the beginning, HERMIT’s development has been driven by example. In many cases,

this means capabilities developed to handle one example were later merged with or subsumed by

capabilities developed in the course of another example. In this sense, many aspects of HERMIT’s

design and implementation were discovered, rather than planned.

To provide one example, HERMIT’s structural induction capability was at one point a special

mode of the Shell. Reasoning in the presence of implications required yet another Shell mode,

which assumed the antecedent. Only after the first version of the Century case study in Chapter 8

179

was completed did the (obvious, in retrospect) means of handling these features using KURE

transformations and the context become clear.

One aspect of HERMIT that was definitely planned was the choice to operate during compila-

tion, within GHC. Fortuitously, GHC developed its plugin capability around the time the HERMIT

project got underway. This saved valuable time, allowing an early version of HERMIT to appear

quickly. It also shaped HERMIT’s architecture, determining the context in which HERMIT runs.

Early on, it was not clear whether targeting GHC Core, instead of Haskell directly, would be

problematic. The worry was that GHC Core’s additional syntactic verbosity would make visu-

alizing and rewriting large programs difficult. Additionally, it was feared that GHC Core would

constrain reasoning at a low level, filled with too many operational details. So far, this has not

proved to be the case. The ability to control information displayed by the pretty-printer, combined

with HERMIT’s suite of transformations for focusing on bindings, applications, and other expres-

sions, has mitigated the worry about verbosity. Composite rewrites, such as bash and smash, and

KURE’s library of traversal strategies have raised the level of abstraction during transformation.

Another concern was that HERMIT’s dictionary would be ever-growing, requiring a KURE

transformation to be defined for every new task. This too has, so far, not been the case. The

dictionary grew rapidly during the first third of the project, but has been relatively stable since

then. This is due to the development of lemmas, and specifically two features of lemmas. First,

lemmas can be used as bidirectional rewrites, meaning a large class of local transformations can

be recast as equational lemmas, assumed if necessary, and applied as transformations. Second,

lemmas can be generated by other transformations as proof obligations to be proven post-hoc.

This was particularly beneficial for the Worker/Wrapper transformations, which had been im-

plemented to that point as a large suite of specialized KURE transformations. The pre-conditions

necessary to apply Worker/Wrapper vary based on the problem at hand, and the original system

required them to be proven up-front, using rewrites-over-lemmas which were passed in as argu-

ments. This meant that performing the Worker/Wrapper factorization required selecting from a

large number of slightly different transformations, then providing a rewrite to prove the generated

180

pre-condition non-interactively. The current means of factorization, described in Section 9.1 is

much simpler.

The ability to fold expressions, as outlined in Section 4.4, went through several iterations. The

initial implementation was an ad-hoc twin traversal of two expressions which was both slow and

had several subtle bugs which resulted in ill-typed expressions. Fixing these bugs only worsened

performance, to the point that running the SYB optimization discussed in Section 9.2 on large

examples took weeks.

Early in HERMIT’s development, Peyton Jones pointed out GHC’s TrieMaps as a fast means of

comparing expressions [Peyton Jones, 2013]. Extending them to support matching in the presence

of holes (that is, to be a fast means of comparing expression contexts) paid off immediately in terms

of performance. The SYB optimizations which were taking weeks could now complete in less than

eight hours. This is largely due to the fact that multiple patterns can be checked simultaneously.

The surprising consequence of this fold implementation was that it provided the key functionality

needed to rewrite lemmas using other lemmas, which enables HERMIT’s natural deduction style

of proof.

As a means of interfacing with GHC’s optimizer, HERMIT is a valuable means of prototyping

new optimization techniques. This use case was not an original motivation for HERMIT, but

became apparent as HERMIT developed. The interactive interface allows for rapid design iteration

based on observing the optimization as it happens, rather than working out behavior post-mortem.

The effectiveness of these prototypes can be evaluated on real Haskell programs without many of

the burdens of modifying the compiler itself, including both the typical long build times inherent in

a piece of software as large as a compiler and the need to ensure internal invariants are respected.

Some of the features required by HERMIT were not present in GHC because there was no need

for them. This includes running the typechecker from within the optimization pipeline to gener-

ate dictionary expressions and declaring GHC rewrite rules which are not automatically applied.

Thankfully, in these cases the GHC developers were kind enough to answer questions and accept

patches. HERMIT also uses many GHC features in ways very different to how they are used in the

181

compiler. This has led to the discovery of memory leaks and other subtle bugs which only manifest

in HERMIT’s use cases.

11.2 Future Work

HERMIT presents many avenues for possible future work. In general these fall into two categories:

improving HERMIT itself and applying HERMIT to interesting reasoning tasks.

Improving HERMIT In terms of usability, the single biggest improvement that could be made

to HERMIT would be to implement a proper parser for both GHC Core and HERMIT’s lem-

mas. As GHC rewrite rules are the primary means of introducing lemmas, properties that do

not conform to the syntactic restrictions on RULES pragmas must be constructed directly using

special-purpose KURE transformations. This includes lemmas featuring expressions which are

not function applications, and all composite lemmas. Lifting this restriction would allow many

of the transformations in the HERMIT Dictionary to be recast as lemmas. It would also allow

lemmas to be stated in scripts, and potentially alongside Haskell code, rather than riding on the

coattails of RULES. Attempts have been made by others to provide a parser for GHC Core in the

past [Tolmach et al., 2009], but this capability has since been removed from GHC because it was

not maintained. Ideally, this parser would accept output produced by HERMIT’s pretty printer.

The dynamic language for specifying commands in the HERMIT Shell is also creaking under

its own weight. The requirement that types in the Shell be monomorphic clashes with KURE’s

flexibility regarding multiple universe types and traversal strategies, but is necessary due to the re-

liance on Haskell’s Dynamic type. Other features not present in the language, such as abstraction,

limit the ability to reuse or programmatically direct transformations in the Shell. Replacing the

Shell with a Haskell interpreter, akin to GHCi, is planned, but itself is a substantial project.

HERMIT’s principle of structural induction is limited to data types where the recursion is only

one level deep. This is not a fundamental limitation, and generalizing induction to arbitrarily-

nested recursion would usefully extend the number of proofs that could be performed in practice.

182

To adhere to the idea of induction-as-a-rewrite, this likely requires enriching the data type used to

represent lemmas.

Lemma libraries are a feature that allow HERMIT to import lemmas which have been packaged

as an independent Haskell library. This allows proof efforts in HERMIT to be shared and reused,

though so far this potential remains mostly untapped. HERMIT includes a library of assumed

lemmas about basic types such as integers mostly as a proof-of-concept. Enriching these libraries

is a possible future project. More interesting would be to use this feature to generate lemmas from

an external source, such as the OpenTheory Project.

Proof in HERMIT occurs by rewriting lemmas, in the style of natural deduction. HERMIT is

designed for rewriting, and this style of proof has proven effective thus far, but the goal of HERMIT

is not to implement yet another theorem prover. Connecting HERMIT to existing provers, either

for performing interactive proof or by treating them as decision procedures, would fruitfully ex-

pand HERMIT’s proof capabilities without duplicating effort. Integration with HipSpec [Claessen

et al., 2013] sounds especially promising, and would allow HERMIT to discharge many obligations

automatically.

Applying HERMIT The rewrites for performing the Worker/Wrapper factorization presented in

Section 9.1 have been used to mechanize most of the known Worker/Wrapper derivations found in

the literature [Jones and Partain, 1993, Launchbury and Sheard, 1995, Peyton Jones, 2007, Michie,

1968, Sussman and Steele, 1975, Appel, 1992] as well as a large case study [Torrence, 2015].

These derivations are included as examples in the HERMIT software distribution. However, the

simplification steps required to eliminate the representation-changing functions after the factoriza-

tion step must still be worked out manually. This has been found to often be more difficult than

proving the precondition for factorization. Devising a means of automating this simplification, or

at least directing it at higher level, would allow Worker/Wrapper to be applied to ever-larger pro-

grams. HERMIT is certainly an appropriate tool for such a project. Indeed, Worker/Wrapper was

the original motivating example for HERMIT.

183

HERMIT’s TrieMaps, developed to implement the fold operation in Section 4.4, could be ap-

plied to other pattern matching problems. Their ability to check multiple patterns simultaneously

yielded orders of magnitude speedup on the SYB optimization in Section 9.2. They could, for

instance, be used to encode a route matcher for a web application framework, pattern matching

incoming request URIs, extracting URI components using holes, and passing the matches to an

appropriate handler.

HERMIT is potentially a valuable tool for teaching students equational reasoning techniques.

Mechanization would lower the burden of missteps while the student is exploring a transformation

or proof. The dictionary of existing rewrites would allow the student to focus on the strategy of

the transformation, rather than the tedious details. This would likely require a richer user-interface

than the current Shell; one that includes better guidance on the large collection of commands,

or allows transformations to be expressed by direct manipulation, such as dragging expressions

around with a mouse.

HERMIT’s value for prototyping compiler optimizations stems from its interactive capabilities

and its assistance for constructing compiler plugins. There are likely many potential domain-

specific optimizations which cannot currently be expressed to GHC but could be implemented

using HERMIT. Even general purpose optimizations can benefit from this approach, allowing their

effectiveness on real programs to be tested before investing effort in modifying the compiler itself.

That interactivity is a selling point of a system named HERMIT is certainly ironic.

184

References

A. Adamatzky. Game of Life Cellular Automata. Springer Publishing Company, Incorporated, 1st

edition, 2010. ISBN 1849962162, 9781849962162.

M. D. Adams and T. M. DuBuisson. Template your boilerplate: Using template haskell for efficient

generic programming. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 13–

24, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1574-6. doi: 10.1145/2364506.

2364509. URL http://doi.acm.org/10.1145/2364506.2364509.

M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing SYB Is Easy! In Proceedings of the

2014 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM ’14.

ACM, 2014.

A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

J. R. Armstrong and F. G. Gray. Structured Logic Design with VHDL. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1993. ISBN 0-13-855206-1.

T. Arts and L. M. Castro. Model-based testing of data types with side effects. In Proceedings

of the 10th ACM SIGPLAN Workshop on Erlang, Erlang ’11, pages 30–38, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0859-5. doi: 10.1145/2034654.2034662. URL http:

//doi.acm.org/10.1145/2034654.2034662.

T. Arts, L. M. Castro, and J. Hughes. Testing erlang data types with quviq quickcheck. In Pro-

ceedings of the 7th ACM SIGPLAN Workshop on ERLANG, ERLANG ’08, pages 1–8, New

185

http://doi.acm.org/10.1145/2364506.2364509
http://doi.acm.org/10.1145/2034654.2034662
http://doi.acm.org/10.1145/2034654.2034662

York, NY, USA, 2008. ACM. ISBN 978-1-60558-065-4. doi: 10.1145/1411273.1411275. URL

http://doi.acm.org/10.1145/1411273.1411275.

E. Austin. HaskHOL: A Haskell Hosted Domain Specific Language for Higher-Order Logic The-

orem Proving. Master’s thesis, University of Kansas, 2011.

F. L. Bauer, H. Ehler, A. Horsch, B. Moeller, H. Partsch, O. Paukner, and P. Pepper. The Munich

Project CIP. Springer-Verlag, 1988.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Springer,

2004.

R. Bird. Pearls of Functional Algorithm Design. Cambridge University Press, 2010.

R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

R. S. Bird and L. G. L. T. Meertens. Nested datatypes. In Proceedings of the Mathematics of

Program Construction, MPC ’98, pages 52–67, London, UK, UK, 1998. Springer-Verlag. ISBN

3-540-64591-8. URL http://dl.acm.org/citation.cfm?id=648084.747162.

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design in haskell. In Proceedings

of the third ACM SIGPLAN international conference on Functional programming, pages 174–

184, Baltimore, Maryland, United States, 1998.

P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen. Rewriting with strategies in ELAN: a

functional semantics. International Journal of Foundations of Computer Science, 12(1):69–98,

2001.

T. Braibant and D. Pous. Tactics for reasoning modulo AC in Coq. In International Conference

on Certified Programs and Proofs, volume 7086 of Lecture Notes in Computer Science, pages

167–182. Springer, 2011.

M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language and

toolset for program transformation. Science of Computer Programming, 72(1–2):52–70, 2008.

186

http://doi.acm.org/10.1145/1411273.1411275
http://dl.acm.org/citation.cfm?id=648084.747162

J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-cost coercions for haskell.

In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Program-

ming, ICFP ’14, pages 189–202, New York, NY, USA, 2014a. ACM. ISBN 978-1-4503-2873-

9. doi: 10.1145/2628136.2628141. URL http://doi.acm.org/10.1145/2628136.

2628141.

J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-cost coercions for Haskell.

In International Conference on Functional Programming, pages 189–202. ACM, 2014b.

C. M. Brown. Tool Support for Refactoring Haskell Programs. PhD thesis, University of Kent,

2008.

D. Burkett, J. Blitzer, and D. Klein. Joint Parsing and Alignment with Weakly Synchronized Gram-

mars. In Human Language Technologies: The 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics, pages 127–135. Association for Com-

putational Linguistics, 2010.

R. M. Burstall and J. Darlington. A transformation system for developing recursive programs.

Journal of the ACM, 24(1):44–67, 1977.

M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type synonyms. In Proceedings of the

Tenth ACM SIGPLAN International Conference on Functional Programming, ICFP ’05, pages

241–253, New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7. doi: 10.1145/1086365.

1086397. URL http://doi.acm.org/10.1145/1086365.1086397.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell pro-

grams. In International Conference on Functional Programming, pages 268–279. ACM, 2000.

K. Claessen, N. Smallbone, and J. Hughes. Quickspec: Guessing formal specifications using

testing. In Proceedings of the 4th International Conference on Tests and Proofs, TAP’10, pages

6–21, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13976-0, 978-3-642-13976-5.

URL http://dl.acm.org/citation.cfm?id=1894403.1894408.

187

http://doi.acm.org/10.1145/2628136.2628141
http://doi.acm.org/10.1145/2628136.2628141
http://doi.acm.org/10.1145/1086365.1086397
http://dl.acm.org/citation.cfm?id=1894403.1894408

K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive proofs using the-

ory exploration. In International Conference on Automated Deduction, volume 7898 of Lecture

Notes in Computer Science, pages 392–406. Springer, 2013.

D. Coutts. Stream Fusion: Practical Shortcut Fusion for Coinductive Sequence Types. PhD thesis,

University of Oxford, 2010.

D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams to nothing at all.

In Proceedings of the 12th ACM SIGPLAN International Conference on Functional Program-

ming, pages 315–326, Freiburg, Germany, 2007. ACM.

D. Coutts, I. Potoczny-Jones, and D. Stewart. Haskell: Batteries included. In Proceedings of

the First ACM SIGPLAN Symposium on Haskell, Haskell ’08, pages 125–126, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-064-7. doi: 10.1145/1411286.1411303. URL http:

//doi.acm.org/10.1145/1411286.1411303.

N. A. Danielsson and P. Jansson. Chasing bottoms: A case study in program verification in the

presence of partial and infinite values. In International Conference on Mathematics of Program

Construction, volume 3125 of Lecture Notes in Computer Science, pages 85–109. Springer,

2004.

L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings of the Theory and

Practice of Software, 14th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008.

Springer-Verlag. ISBN 3-540-78799-2, 978-3-540-78799-0. URL http://dl.acm.org/

citation.cfm?id=1792734.1792766.

D. Delahaye. A tactic language for the system Coq. In Logic for Programming and Automated

Reasoning, pages 85–95. Springer, 2000.

188

http://doi.acm.org/10.1145/1411286.1411303
http://doi.acm.org/10.1145/1411286.1411303
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766

N. Dershowitz, J. Hsiang, N. A. Josephson, and D. A. Plaisted. Associative-commutative rewriting.

In International Joint Conference on Artificial Intelligence, volume 2, pages 940–944. Morgan

Kaufmann, 1983.

C. Elliott. personal communication, 2015.

A. Farmer, C. Höner zu Siederdissen, and A. Gill. The HERMIT in the stream: Fusing Stream

Fusion’s concatMap. In Workshop on Partial Evaluation and Program Manipulation, pages

97–108. ACM, 2014.

A. Farmer, N. Sculthorpe, and A. Gill. Hermit case studies: Proving Type-Class Laws &

Making a Century, 2015. URL http://ku-fpg.github.io/research/HERMIT/

case-studies.

GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.4,

2014. URL http://downloads.haskell.org/~ghc/7.8.4/docs/html.

J. Gibbons and G. Hutton. Proof methods for corecursive programs. Fundamenta Informaticae,

66(4):353–366, 2005.

A. Gill. Cheap deforestation for non-strict functional languages. PhD thesis, The University of

Glasgow, January 1996.

A. Gill. Introducing the Haskell equational reasoning assistant. In Haskell Workshop, pages 108–

109. ACM, 2006.

A. Gill and G. Hutton. The worker/wrapper transformation. Journal of Functional Programming,

19(2):227–251, 2009.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. pages 223–232. ACM

Press, 1993.

A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp. Types and associated type families for

hardware simulation and synthesis: The internals and externals of Kansas Lava. Journal of

189

http://ku-fpg.github.io/research/HERMIT/case-studies
http://ku-fpg.github.io/research/HERMIT/case-studies
http://downloads.haskell.org/~ghc/7.8.4/docs/html

Higher-Order and Symbolic Computation, pages 1–20, 2013. ISSN 1388-3690. doi: 10.1007/

s10990-013-9098-7. URL http://dx.doi.org/10.1007/s10990-013-9098-7.

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, New York,

NY, USA, 1989. ISBN 0-521-37181-3.

D. Grune and C. J. Jacobs. Parsing Techniques: A Practical Guide. Springer-Verlag New York

Inc, 2008.

W. Guttmann, H. Partsch, W. Schulte, and T. Vullinghs. Tool support for the interactive derivation

of formally correct functional programs. Journal of Universal Computer Science, 9(2):173–188,

2003.

J. J. Hallett and A. J. Kfoury. Programming examples needing polymorphic recursion. Electron.

Notes Theor. Comput. Sci., 136:57–102, July 2005. ISSN 1571-0661. doi: 10.1016/j.entcs.2005.

06.014. URL http://dx.doi.org/10.1016/j.entcs.2005.06.014.

T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview of the Programatica toolset. In

High Confidence Software and Systems, 2004.

R. Hinze. Generalizing generalized tries. J. Funct. Program., 10(4):327–351, July 2000. ISSN

0956-7968. doi: 10.1017/S0956796800003713. URL http://dx.doi.org/10.1017/

S0956796800003713.

R. Hinze, T. Harper, and D. W. James. Theory and Practice of Fusion. Implementation and

Application of Functional Languages, pages 19–37, 2011.

C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–

281, 1972. ISSN 0001-5903. URL http://dx.doi.org/10.1007/BF00289507.

10.1007/BF00289507.

K. Hoder, L. Kovács, and A. Voronkov. Interpolation and symbol elimination in vampire.

In Proceedings of the 5th International Conference on Automated Reasoning, IJCAR’10,

190

http://dx.doi.org/10.1007/s10990-013-9098-7
http://dx.doi.org/10.1016/j.entcs.2005.06.014
http://dx.doi.org/10.1017/S0956796800003713
http://dx.doi.org/10.1017/S0956796800003713
http://dx.doi.org/10.1007/BF00289507

pages 188–195, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-14202-8, 978-3-642-

14202-4. doi: 10.1007/978-3-642-14203-1_16. URL http://dx.doi.org/10.1007/

978-3-642-14203-1_16.

C. Höner zu Siederdissen. Sneaking around concatMap: Efficient combinators for dynamic pro-

gramming. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional

Programming, pages 215–226, Copenhagen, Denmark, 2012. ACM.

C. Höner zu Siederdissen, I. L. Hofacker, and P. F. Stadler. How to Multiply Dynamic Program-

ming Algorithms. In Brazilian Symposium on Bioinformatics (BSB 2013), Lecture Notes in

Bioinformatics, volume 8213. Springer, Heidelberg, 2013.

Z. Hu, T. Yokoyama, and M. Takeichi. Program optimizations and transformations in calcula-

tion form. In Proceedings of the 2005 International Conference on Generative and Transfor-

mational Techniques in Software Engineering, GTTSE’05, pages 144–168, Berlin, Heidelberg,

2006. Springer-Verlag. ISBN 3-540-45778-X, 978-3-540-45778-7. doi: 10.1007/11877028_5.

URL http://dx.doi.org/10.1007/11877028_5.

F. W. Huang, J. Qin, C. M. Reidys, and P. F. Stadler. Partition function and base pairing probabili-

ties for RNA–RNA interaction prediction. Bioinformatics, 25(20):2646–2654, 2009.

P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of haskell: Being lazy with class. In

Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages,

HOPL III, pages 12–1–12–55, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-766-

7. doi: 10.1145/1238844.1238856. URL http://doi.acm.org/10.1145/1238844.

1238856.

J. Hughes. Why functional programming matters. In The Computer Journal, volume 32, pages

98–107, 1989.

G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

191

http://dx.doi.org/10.1007/978-3-642-14203-1_16
http://dx.doi.org/10.1007/978-3-642-14203-1_16
http://dx.doi.org/10.1007/11877028_5
http://doi.acm.org/10.1145/1238844.1238856
http://doi.acm.org/10.1145/1238844.1238856

J. Jeuring, S. Leather, J. Magalhães, and A. Rodriguez Yakushev. Libraries for generic program-

ming in Haskell. In P. Koopman, R. Plasmeijer, and D. Swierstra, editors, Advanced Functional

Programming, 6th International School, AFP 2008, Revised Lectures, volume 5832 of Lecture

Notes in Computer Science, pages 165–229. Springer, 2009. ISBN 978-3-642-04651-3.

J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell Symposium, pages 49–60.

ACM, 2012.

T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In Proc. Of a Con-

ference on Functional Programming Languages and Computer Architecture, pages 190–203,

New York, NY, USA, 1985. Springer-Verlag New York, Inc. ISBN 3-387-15975-4. URL

http://dl.acm.org/citation.cfm?id=5280.5292.

I. Jones. The Haskell Cabal: a common architecture for building applications and libraries. pages

340–354, 2005. URL http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc/

24num.pdf.

M. P. Jones. Dictionary-free overloading by partial evaluation. Lisp Symb. Comput., 8(3):229–248,

Sept. 1995. ISSN 0892-4635. doi: 10.1007/BF01019005. URL http://dx.doi.org/10.

1007/BF01019005.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. ISBN 0-13-020249-5.

S. P. Jones and W. Partain. Measuring the effectiveness of a simple strictness analyser. In Ham-

mond and O’Donnell, editors, Functional Programming, Springer Verlag Workshops in Com-

puting, pages 201–220, 1993.

H. Kirchner and P.-E. Moreau. Promoting rewriting to a programming language: A compiler for

non-deterministic rewrite programs in associative-commutative theories. Journal of Functional

Programming, 11(2):207–251, 2001.

192

http://dl.acm.org/citation.cfm?id=5280.5292
http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc/24num.pdf
http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc/24num.pdf
http://dx.doi.org/10.1007/BF01019005
http://dx.doi.org/10.1007/BF01019005

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal verification of an os

kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,

SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for generic

programming. In Types in Languages Design and Implementation, pages 26–37. ACM, 2003.

R. Lämmel and J. Visser. Typed combinators for generic traversal. In Practical Aspects of Declar-

ative Programming, pages 137–154. Springer, 2002.

J. Launchbury and T. Sheard. Warm fusion: deriving build-catas from recursive definitions. In

FPCA ’95: Proceedings of the 7th international conference on Functional programming lan-

guages and computer architecture, pages 314–323. ACM Press, 1995.

H. Li and S. Thompson. Tool support for refactoring functional programs. In Partial evaluation

and semantics-based program manipulation, pages 199–203. ACM, 2008a.

H. Li and S. Thompson. Tool support for refactoring functional programs. In Proceedings of the

2Nd Workshop on Refactoring Tools, WRT ’08, pages 2:1–2:4, New York, NY, USA, 2008b.

ACM. ISBN 978-1-60558-339-6. doi: 10.1145/1636642.1636644. URL http://doi.acm.

org/10.1145/1636642.1636644.

H. Li and S. Thompson. A domain-specific language for scripting refactorings in erlang. In

Proceedings of the 15th International Conference on Fundamental Approaches to Software En-

gineering, FASE’12, pages 501–515, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-

3-642-28871-5. doi: 10.1007/978-3-642-28872-2_34. URL http://dx.doi.org/10.

1007/978-3-642-28872-2_34.

H. Li, S. Thompson, and C. Reinke. The Haskell refactorer, HaRe, and its API. In Workshop on

Language Descriptions, Tools, and Applications, volume 141 of Electronic Notes in Theoretical

Computer Science, pages 29–34. Elsevier, 2005.

193

http://doi.acm.org/10.1145/1636642.1636644
http://doi.acm.org/10.1145/1636642.1636644
http://dx.doi.org/10.1007/978-3-642-28872-2_34
http://dx.doi.org/10.1007/978-3-642-28872-2_34

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In Proceedings

of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi:

10.1145/199448.199528. URL http://doi.acm.org/10.1145/199448.199528.

G. Mainland and G. Morrisett. Nikola: Embedding compiled gpu functions in haskell. In Pro-

ceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10, pages 67–78, New

York, NY, USA, 2010. ACM. ISBN 978-1-4503-0252-4. doi: 10.1145/1863523.1863533. URL

http://doi.acm.org/10.1145/1863523.1863533.

S. Marlow. Haskell 2010 Language Report, 2009.

S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler. In A. Brown and G. Wilson,

editors, The Architecture of Open Source Applications, volume II. 2012.

E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, en-

velopes and barbed wire. In Conference on Functional Programming Languages and Computer

Architecture, volume 523 of Lecture Notes in Computer Science, pages 124–144. Springer, 1991.

D. Michie. Memo Functions and Machine Learning. Nature, 218:19–22, 1968.

U. Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD

thesis, Chalmers University of Technology, 2007.

B. O’Sullivan. http://hackage.haskell.org/package/criterion.

W. Partain. The nofib Benchmark Suite of Haskell Programs. In Proceedings of the 1992 Glasgow

Workshop on Functional Programming, pages 195–202, 1993.

L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning, 5

(3):363–397, 1989.

J. Peterson. Dynamic Typing in Haskell. Technical Report YALEU/DCS/RR-1022, Department of

Computer Science, Yale University, New Haven, Connecticut.

194

http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/1863523.1863533
http://hackage.haskell.org/package/criterion

S. Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised Report. Cambridge

University Press, Cambridge, England, 2003.

S. Peyton Jones. Call-pattern Specialisation for Haskell Programs. In Proceedings of the 12th

ACM SIGPLAN International Conference on Functional Programming, ICFP ’07, pages 327–

337. ACM, 2007.

S. Peyton Jones. personal communication, 2013.

S. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-strict functional

language. In Functional Programming Languages and Computer Architecture, pages 636–666.

Springer, 1991.

S. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler inliner. Journal of

Functional Programming, 12(4&5):393–433, 2002.

S. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for Haskell. Science of

Computer Programming, 32(1–3):3–47, 1998.

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a practical optimi-

sation technique in GHC. In Haskell Workshop, pages 203–233. ACM, 2001.

S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proceedings of the

20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’93, pages 71–84, New York, NY, USA, 1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/

158511.158524. URL http://doi.acm.org/10.1145/158511.158524.

A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent tries with efficient non-

blocking snapshots. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’12, pages 151–160, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1160-1. doi: 10.1145/2145816.2145836. URL http://doi.acm.

org/10.1145/2145816.2145836.

195

http://doi.acm.org/10.1145/158511.158524
http://doi.acm.org/10.1145/2145816.2145836
http://doi.acm.org/10.1145/2145816.2145836

J. S. Reich, M. Naylor, and C. Runciman. Advances in lazy smallcheck. In International Sym-

posium on Implementation and Application of Functional Languages, volume 8241 of Lecture

Notes in Computer Science, pages 53–70. Springer, 2013.

D. Rosén. Proving equational Haskell properties using automated theorem provers. Master’s thesis,

University of Gothenburg, 2012.

C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and Lazy Smallcheck: Automatic exhaus-

tive testing for small values. In Haskell Symposium, pages 37–48. ACM, 2008.

D. Sands. Higher-order expression procedures. In Partial evaluation and semantics-based program

manipulation, pages 178–189. ACM, 1995.

A. Santos. Compilation by Transformation in Non-Strict Functional Languages. PhD thesis,

University of Glasgow, 1995.

W. L. Scherlis. Expression procedures and program derivation. PhD thesis, Stanford University,

1980.

D. A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and

Bacon, 1986.

T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Complete and decidable type

inference for gadts. In Proceedings of the 14th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’09, pages 341–352, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-332-7. doi: 10.1145/1596550.1596599. URL http://doi.acm.org/10.

1145/1596550.1596599.

N. Sculthorpe and G. Hutton. Work It, Wrap It, Fix It, Fold It. Journal of Functional Programming,

24(1):113–127, Jan. 2014.

196

http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599

N. Sculthorpe, N. Frisby, and A. Gill. The Kansas University Rewrite Engine: A Haskell-

embedded strategic programming language with custom closed universes. Journal of Functional

Programming, 24(4):434–473, 2014.

T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In Haskell Workshop,

pages 1–16. ACM, 2002.

N. J. J. Smith. Logic: The Laws of Truth. Princeton University Press, Princeton, NJ, USA, 2012.

ISBN 0691151636, 9780691151632.

W. Sonnex, S. Drossopoulou, and S. Eisenbach. Zeno: An automated prover for properties of

recursive data structures. In International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, volume 7214 of Lecture Notes in Computer Science, pages

407–421. Springer, 2012.

C. Strachey. Fundamental concepts in programming languages. Lecture Notes, International Sum-

mer School in Computer Programming, Copenhagen, Aug. 1967. Reprinted in Higher-Order

and Symbolic Computation, 13(1/2), pp. 1–49, 2000.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type

equality coercions. In Types in Language Design and Implementaion, pages 53–66. ACM, 2007.

G. J. Sussman and G. L. Steele, Jr. An interpreter for extended lambda calculus. Technical report,

Cambridge, MA, USA, 1975.

J. Svenningsson. Shortcut Fusion for Accumulating Parameters Zip-like Functions. PhD thesis,

2002.

D. E. Thomas and P. R. Moorby. The Verilog Hardware Description Language (4th Ed.). Kluwer

Academic Publishers, Norwell, MA, USA, 1998. ISBN 0-7923-8166-1.

S. Thompson and H. Li. Refactoring tools for functional languages. Journal of Functional Pro-

gramming, 23(3):293–350, 2013.

197

A. Tolmach, T. Chevalier, and the GHC Team. An External Representation for the GHC Core

Language (For GHC 6.10). Unpublished, 2009.

B. Torrence. The Life Changing HERMIT: A Case Study of the Worker/Wrapper Transformation.

Master’s thesis, University of Kansas, 2015.

M. Tullsen. PATH, A Program Transformation System for Haskell. PhD thesis, Yale University,

2002.

E. Visser. A survey of strategies in rule-based program transformation systems. Journal of Sym-

bolic Computation, 40(1):831–873, 2005.

E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers with rewriting strategies. In

International Conference on Functional Programming, pages 13–26. ACM, 1998.

D. Vytiniotis and S. Peyton Jones. Evidence normalization in System FC. In International Con-

ference on Rewriting Techniques and Applications, pages 20–38. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2013.

D. Vytiniotis, S. Peyton Jones, K. Claessen, and D. Rosén. HALO: Haskell to logic through

denotational semantics. In Symposium on Principles of Programming Languages, pages 431–

442. ACM, 2013.

P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proceedings of the 2nd Eu-

ropean Symposium on Programming, pages 344–358, London, UK, UK, 1988. Springer-Verlag.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the

16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89,

pages 60–76, New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2. doi: 10.1145/75277.

75283. URL http://doi.acm.org/10.1145/75277.75283.

L. Wasserman, 2013. URL http://hackage.haskell.org/package/TrieMap.

198

http://doi.acm.org/10.1145/75277.75283
http://hackage.haskell.org/package/TrieMap

M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM Trans.

Program. Lang. Syst., 13(2):181–210, Apr. 1991. ISSN 0164-0925. doi: 10.1145/103135.

103136. URL http://doi.acm.org/10.1145/103135.103136.

S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In International Conference on Func-

tional Programming, pages 333–345. ACM, 2011.

M. Wenzel and S. Berghofer. The Isabelle System Manual, 2012. URL http://isabelle.

in.tum.de.

B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães. Giving

Haskell a promotion. In Types in Language Design and Implementation, pages 53–66. ACM,

2012.

199

http://doi.acm.org/10.1145/103135.103136
http://isabelle.in.tum.de
http://isabelle.in.tum.de

	Introduction
	Reasoning
	Proving Properties
	Domain-Specific Optimizations
	Calculational Programming

	Contributions
	Organization

	Technical Background
	GHC Plugins
	GHC Core
	Names
	OccName
	RdrName
	Name
	Var

	Dictionaries
	RULES

	KURE
	Transformations
	Monad
	MonadCatch
	Traversal
	Context
	Congruence Combinators

	Summary

	HERMIT Architecture
	Plugin
	Kernel
	Plugin DSL
	Example Plugin
	Pretty Printer

	Shell
	Interpreted Command Language
	Scripts
	Extending HERMIT
	Proving in the Shell

	Invoking HERMIT

	Transformation
	Example
	KURE
	Universes
	Crumbs
	The HERMIT Context
	Recording Bindings
	Accessing Bindings
	In-scope RULES
	Paths

	Congruence Combinators
	The HERMIT Monad
	Conventions

	Names
	Folds
	Definition
	Implementation
	Tries
	TrieMaps
	-equivalence
	Adding Holes
	Implementing Folds

	Applications

	Dictionary
	Fold/Unfold
	Local Transformations
	Creating and Finding Variables
	Constructing Expressions
	Navigation
	Debugging
	Composite Transformations
	Simplify
	Smash and Bash

	Proof
	Example
	Lemmas
	Equivalence
	Creating Lemmas
	Primitive Operations
	Redundant Binder Elimination
	Instantiation

	Lemma Universes
	Pre-conditions
	Lemma Strength
	Lemma Libraries
	Lemma Dictionary
	Lemmas As Rewrites
	Simplification
	Instantiation
	Strengthening
	Structural Induction
	Remembered Definitions

	Case Study: Proving Type-Class Laws
	Example: return-left Monad Law for Lists
	Configuring Cabal
	Proving in GHC Core
	Implications
	Newtypes
	Missing Unfoldings

	Reflections

	Case Study: concatMap
	Introduction
	Stream Fusion
	Fusing Nested Streams
	Transforming concatMap to flatten
	Non-Constant Inner Streams
	Monadic Streams

	Implementation
	Multiple Inner Streams
	List Comprehensions
	Call-Pattern Specialization
	The Plugin

	Performance
	Micro-benchmarks
	Nofib Suite
	Performance Advantages of concatMap

	ADPfusion
	Conclusions and Future Work

	Case Study: Making a Century
	HERMIT Scripts
	Associative Operators
	Assumed Lemmas in the Textbook
	Constructive Calculation
	Calculation Sizes
	Reflections

	Applications
	Worker/Wrapper Transformation
	Optimizing SYB is Easy!
	Haskell-to-Hardware

	Related Work
	Testing
	Automated Proof
	Semi-formal Tools
	Stream Fusion
	Design

	Conclusion
	Reflections
	Future Work

