12 research outputs found

    Optimization of multi-electrode implant configurations and programming for the delivery of non-ablative electric fields in intratumoral modulation therapy.

    Get PDF
    PURPOSE: Application of low intensity electric fields to interfere with tumor growth is being increasingly recognized as a promising new cancer treatment modality. Intratumoral modulation therapy (IMT) is a developing technology that uses multiple electrodes implanted within or adjacent tumor regions to deliver electric fields to treat cancer. In this study, the determination of optimal IMT parameters was cast as a mathematical optimization problem, and electrode configurations, programming, optimization, and maximum treatable tumor size were evaluated in the simplest and easiest to understand spherical tumor model. The establishment of electrode placement and programming rules to maximize electric field tumor coverage designed specifically for IMT is the first step in developing an effective IMT treatment planning system. METHODS: Finite element method electric field computer simulations for tumor models with 2 to 7 implanted electrodes were performed to quantify the electric field over time with various parameters, including number of electrodes (2 to 7), number of contacts per electrode (1 to 3), location within tumor volume, and input waveform with relative phase shift between 0 and 2Ď€ radians. Homogeneous tissue specific conductivity and dielectric values were assigned to the spherical tumor and surrounding tissue volume. In order to achieve the goal of covering the tumor volume with a uniform threshold of 1 V/cm electric field, a custom least square objective function was used to maximize the tumor volume covered by 1 V/cm time averaged field, while maximizing the electric field in voxels receiving less than this threshold. An additional term in the objective function was investigated with a weighted tissue sparing term, to minimize the field to surrounding tissues. The positions of the electrodes were also optimized to maximize target coverage with the fewest number of electrodes. The complexity of this optimization problem including its non-convexity, the presence of many local minima, and the computational load associated with these stochastic based optimizations led to the use of a custom pattern search algorithm. Optimization parameters were bounded between 0 and 2Ď€ radians for phase shift, and anywhere within the tumor volume for location. The robustness of the pattern search method was then evaluated with 50 random initial parameter values. RESULTS: The optimization algorithm was successfully implemented, and for 2 to 4 electrodes, equally spaced relative phase shifts and electrodes placed equidistant from each other was optimal. For 5 electrodes, up to 2.5 cm diameter tumors with 2.0 V, and 4.1 cm with 4.0 V could be treated with the optimal configuration of a centrally placed electrode and 4 surrounding electrodes. The use of 7 electrodes allow for 3.4 cm diameter coverage at 2.0 V and 5.5 cm at 4.0 V. The evaluation of the optimization method using 50 random initial parameter values found the method to be robust in finding the optimal solution. CONCLUSIONS: This study has established a robust optimization method for temporally optimizing electric field tumor coverage for IMT, with the adaptability to optimize a variety of parameters including geometrical and relative phase shift configurations

    Spatiotemporal Optimization of Intratumoural Electric Field Modulation for Cancer Therapy

    Get PDF
    The use of anti-cancer non-ablative electric fields is an expanding area of research that includes clinically available external devices for the treatment of glioblastoma (GBM), and a pre-clinical internal system called Intratumoural Modulation Therapy (IMT). IMT uses multiple electrodes implanted within the tumour to apply low intensity electric fields (~1 V/cm) focused on the target region, anywhere in the brain, with no externally visible devices. In this thesis, multi-electrode spatiotemporally dynamic IMT is investigated through computer simulation, numerical optimization, brain phantom and in vitro validation methods. These planning and validation strategies are hypothesized to improve tumour coverage with the necessary electric field and improving treatment efficiency through minimizing number of electrodes, power consumption, and manual planning time. The development of an IMT optimization algorithm that considers the placement of multiple electrodes, voltage amplitude and phase shift of input waveforms showed that human scale tumours are coverable with anti-cancer electric fields. Additionally, maximally separating the relative phase shifts of sinusoidal voltage waveforms applied to the electrodes, induces rotating electric fields that cover the tumour over time, with spatially homogeneous time averaged fields. A treatment planning system designed specifically for IMT considered optimizable electrode trajectories and patient images to create custom field plans for each patient, which was validated using robotic electrode implantation on a brain phantom. These custom fields can be optimized to conform to patient-specific tumour size, shape, or location. The efficacy of spatiotemporally dynamic fields was validated by developing a purpose-built in vitro device to deliver multi-electrode IMT to patient derived GBM cells. Cell viability was reduced when subjected to these rotating electric fields, supporting the optimality criteria derived analytically. The IMT optimization algorithm and planning system, supporting phantom validation and in vitro data, together with an accompanying planning system user guide support the move to clinical trials in the future. Overall, IMT technology has been advanced in this thesis to include patient-specific treatment planning optimization, a development that holds significance towards the future clinical implementation of IMT and treatment goals

    Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations

    Get PDF
    <div><p>Tumor treating fields (TTFields) is a new modality used for the treatment of glioblastoma. It is based on antineoplastic low-intensity electric fields induced by two pairs of electrode arrays placed on the patient’s scalp. The layout of the arrays greatly impacts the intensity (dose) of TTFields in the pathology. The present study systematically characterizes the impact of array position on the TTFields distribution calculated in a realistic human head model using finite element methods. We investigate systematic rotations of arrays around a central craniocaudal axis of the head and identify optimal layouts for a large range of (nineteen) different frontoparietal tumor positions. In addition, we present comprehensive graphical representations and animations to support the users’ understanding of TTFields. For most tumors, we identified two optimal array positions. These positions varied with the translation of the tumor in the anterior-posterior direction but not in the left-right direction. The two optimal directions were oriented approximately orthogonally and when combining two pairs of orthogonal arrays, equivalent to clinical TTFields therapy, we correspondingly found a single optimum position. In most cases, an oblique layout with the fields oriented at forty-five degrees to the sagittal plane was superior to the commonly used anterior-posterior and left-right combinations of arrays. The oblique configuration may be used as an effective and viable configuration for most frontoparietal tumors. Our results may be applied to assist clinical decision-making in various challenging situations associated with TTFields. This includes situations in which circumstances, such as therapy-induced skin rash, scar tissue or shunt therapy, etc., require layouts alternative to the prescribed. More accurate distributions should, however, be based on patient-specific models. Future work is needed to assess the robustness of the presented results towards variations in conductivity.</p></div

    Enhancing predicted efficacy of tumor treating fields therapy of glioblastoma using targeted surgical craniectomy: A computer modeling study

    Get PDF
    OBJECTIVE:The present work proposes a new clinical approach to TTFields therapy of glioblastoma. The approach combines targeted surgical skull removal (craniectomy) with TTFields therapy to enhance the induced electrical field in the underlying tumor tissue. Using computer simulations, we explore the potential of the intervention to improve the clinical efficacy of TTFields therapy of brain cancer. METHODS:We used finite element analysis to calculate the electrical field distribution in realistic head models based on MRI data from two patients: One with left cortical/subcortical glioblastoma and one with deeply seated right thalamic anaplastic astrocytoma. Field strength was assessed in the tumor regions before and after virtual removal of bone areas of varying shape and size (10 to 100 mm) immediately above the tumor. Field strength was evaluated before and after tumor resection to assess realistic clinical scenarios. RESULTS:For the superficial tumor, removal of a standard craniotomy bone flap increased the electrical field strength by 60-70% in the tumor. The percentage of tissue in expected growth arrest or regression was increased from negligible values to 30-50%. The observed effects were highly focal and targeted at the regions of pathology underlying the craniectomy. No significant changes were observed in surrounding healthy tissues. Median field strengths in tumor tissue increased with increasing craniectomy diameter up to 50-70 mm. Multiple smaller burr holes were more efficient than single craniectomies of equivalent area. Craniectomy caused no significant field enhancement in the deeply seated tumor, but rather a focal enhancement in the brain tissue underlying the skull defect. CONCLUSIONS:Our results provide theoretical evidence that small and clinically feasible craniectomies may provide significant enhancement of TTFields intensity in cerebral hemispheric tumors without severely compromising brain protection or causing unacceptable heating in healthy tissues. A clinical trial is being planned to validate safety and efficacy

    Tumor Treating Fields (TTFields) demonstrate antiviral functions in vitro, and safety for application to COVID-19 patients in a pilot clinical study

    Get PDF
    Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage

    Aurora B Kinase-Inhibitor und Therapie mit elektrischen Feldern als neues adjuvantes Therapiekonzept in der Behandlung maligner Gliome

    Get PDF
    Das Glioblastom ist der häufigste hirneigene Tumor des Erwachsenen und mit einer 5-Jahres-Überlebensrate von weniger als 5 % eine der aggressivsten Hirntumorerkrankungen (Batash et al., 2017). Verbunden mit einer schlechten Prognose und geringen Remissionsraten ergibt sich die Notwendigkeit, bestehende Therapieoptionen zu optimieren und zu erweitern. Im Rahmen dieser Arbeit wurde das vor einigen Jahren entwickelte und aktuell in klinischen Studien angewandte Konzept der Therapie von Malignomen mit elektrischen Wechselfeldern, den sog. Tumor Treating Fields (TTFields), aufgegriffen. Basis der anti-tumoralen Wirkung der im Rahmen von Glioblastom-Studien applizierten TTFields bildet eine Tumor-spezifische Frequenz von 200 kHz sowie geringe Intensitäten, die einen nebenwirkungsarmen anti-mitotischen Effekt erzielen (Kirson et al., 2004; Kirson et al., 2007; Clark et al., 2017; Porat et al., 2017). Dieser resultiert sowohl aus alternierenden elektrischen Feldern, die während der Metaphase über eine Irritation des Dipolmoments von Tubulin-Untereinheiten die Assemblierung des Spindelapparates inhibieren, als auch aus inhomogenen elektrischen Feldern, die während der Telophase die Trennung der Tochterzellen behindern. Mit dieser Behandlungsoption konnten schon einige gute Ergebnisse für die Behandlung von Glioblastomen in klinischen Studien erreicht werden (Stupp et al., 2017). Eine weitere anti-mitotische Therapieoption stellt die Inhibierung der Aurora B Kinase mittels AZD1152 dar. Die Aurora B Kinase ist Teil des Chromosomal Passenger Complex (CPC), der bei Inhibierung der Kinase seine Kontrollfunktionen während der Mitose und Zytokinese nicht wahrnehmen kann. Diese fehlende Kontrolle führt zu Polyploidie, die einen Zelltod verursachen kann (Wiedemuth et al., 2016). Aufgrund dieses ähnlichen biologischen Hintergrundes wurde zu Beginn dieser Arbeit die Hypothese aufgestellt, dass eine kombinierte Therapie mittels TTFields und AZD1152 einen additiven zytotoxischen Effekt im Vergleich zur Monotherapie mit TTFields erzielen kann. Es konnte zunächst für die etablierte Zelllinie U87-MG ein signifikanter additiver Effekt in der Kombinationstherapie der TTFields mit AZD1152 im Vergleich zur alleinigen Therapie mittels TTFields nachgewiesen werden. Die mediane Tumorzellzahl konnte hierbei in der Kombinationstherapie um 60 % reduziert werden. Dieser additive Effekt konnte ebenfalls an zwei Primärkulturen reproduziert werden. Hierbei konnte die relative mediane Tumorzellzahl der Primärkultur HT18584 ebenfalls um 60 % in der Kombinationstherapie gesenkt werden. Diese tetraploide Zellreihe zeigte außerdem einen außergewöhnlich großen zytotoxischen Effekt bei der Behandlung mit AZD1152. Signifikant zeigte ebenso die Primärkultur HT12347 einen medianen Verlust von 56 % der Tumorzellen nach einer kombinierten Behandlung. Qualitativ und zellmorphologisch konnte mittels konfokaler Laser-Scanning- sowie Lichtmikroskopie die Akkumulation von mitotischen Defekten detektiert werden, die auch in den Monotherapien aber vor allem in der Kombinationstherapie zu finden waren. Die in der quantitativen Analyse gezeigte additive Zytotoxizität der Kombinationstherapie konnte hier nochmals visualisiert und bestätigt werden. Für eine klinische Phase I-Studie zur Überprüfung der Effektivität sollten zunächst weitere zellkulturtechnische Daten erfasst werden, um die Universalität der kombinierten Behandlung zu überprüfen. Weiterhin wäre die Entwicklung einer selektiven/lokalen Therapie mittels AZD1152 wünschenswert, um die Nebenwirkungen des Medikamentes abzumildern. Es sollte außerdem das im Rahmen dieser Arbeit detektierte sensitivere Ansprechen der tetraploiden Zelllinie HT18584 genauer untersucht werden, um eine potentiell prognostisch günstige Verbindung zwischen der Behandlung mit AZD1152 und tetraploiden Zellen herstellen zu können.:1 EINLEITUNG 1 1.1 Glioblastoma multiforme – Definition, Inzidenz und Ätiologie 1 1.1.1 Symptomatik und Diagnostik des Glioblastoms 2 1.2 Molekulare Klassifizierung 3 1.2.1 Primäre und sekundäre Glioblastome und einige allgemeine Marker 3 1.2.2 Der MGMT-Status 5 1.3 Der eukaryotische Zellzyklus und sequentielle Kontrollpunkte 6 1.3.1 Der Chromosomal Passenger Complex (CPC) 8 1.3.2 Die Familie der Aurorakinasen 9 1.4 Therapie maligner Gliome 10 1.4.1 Standardtherapie eines Glioblastoms 10 1.4.2 Tumor Treating Fields (TTFields) – Biologischer Effekt und Studienlage 11 1.4.3 Aurora Kinase-Inhibitoren 14 1.5 Zielstellung der Arbeit 15 2 METHODEN UND MATERIALIEN 17 2.1 Methoden 17 2.1.1 Zellkultivierung allgemein 17 2.1.2 Passagieren adhärenter Zellen 17 2.1.3 Kultivierung von primärem Patientenmaterial 18 2.1.4 Kryokonservierung und Rekultivierung eukaryotischer Zelllinien 18 2.1.5 Bestimmung der Lebendzellzahl mittels Neubauer-Zählkammer 19 2.1.6 Durchflusszytometrische Analyse 19 2.1.7 Bestimmung der Lebendzellzahl mittels Propidiumiodid (PI) 20 2.1.8 Durchflusszytometrische Immunphänotypisierung von Glioblastomzellen 20 2.1.9 In vitro-Applikation der Tumor Treating Fields (TTFields) 21 2.1.10 Titration der effektiven Aurora B Kinase-Inhibitorkonzentrationen mittels PI 22 2.1.11 Titration inhibitorischer Temozolomidkonzen-trationen mittels AlamarBlue-Assay 23 2.1.12 Konfokale Laser-Scanning-Mikroskopie 23 2.2. Materialien 25 2.2.1 Geräte 25 2.2.2 Chemikalien und Reagenzien 25 2.2.3 Lösungen 26 2.2.4 Medien 27 2.2.5 Kommerzielle Kits 28 2.2.6 Antikörper 28 2.2.7 Software 28 2.2.8 Statistik 29 2.2.9 Zelllinien 29 3 ERGEBNISSE 30 3.1 Wahl des Designs der Kontrollgruppen 30 3.2 Typisierung der verwendeten Primärkulturen 32 3.2.1 Befunde der Pathologie des Universitätsklinikums Dresden 33 3.2.2 Immunphänotypisierung der Primärkultur HT18584 34 3.2.3 Immunphänotypisierung der Primärkultur HT12347 35 3.3 Titrationen mit AZD1152 36 3.3.1 Titration mit AZD1152 für die Primärkultur HT18584 36 3.3.2 Titration mit AZD1152 für die Primärkultur HT12347 37 3.4 Kombinationstherapie mittels AZD1152 und TTFields 38 3.4.1 Quantitativer Effekt der Kombinationstherapie an U87-MG 39 3.4.2 Quantitativer Effekt der Kombinationstherapie an HT18584 40 3.4.3 Quantitativer Effekt der Kombinationstherapie an HT12347 41 3.4.4 Qualitativer Effekt der Kombinationstherapien 42 3.4.4.1 Die Kombinationstherapie mit U87-MG 43 3.4.4.2 Die Kombinationstherapie mit HT18584 44 3.4.5 Zytotoxischer Effekt der Kombinationstherapie an HT12347 45 3.5 Titrationen mit Temozolomid 47 3.5.1 Therapie mit Temozolomid an U87-MG 48 3.5.2 Therapie mit Temozolomid an Primärkulturen 48 4 DISKUSSION 52 4.1 Vorversuche 52 4.1.1 Wachstumsanalyse der Kontrollgruppen 52 4.1.2 Charakterisierung der Primärkulturen 53 4.2 Die neuen Behandlungsoptionen 54 4.2.1 Applikation der TTFields 54 4.2.2 Die Behandlung mit AZD1152 55 4.2.3 Die Kombinationstherapie 57 4.3. Die Behandlung mit Temozolomid (TMZ) 59 5 ZUSAMMENFASSUNG 62 LITERATURVERZEICHNIS 64 TABELLENVERZEICHNIS 73 ABBILDUNGSVERZEICHNIS 74 ABKÜRZUNGSVERZEICHNIS 75 ANHANG 77 Anhang 1: Einverständniserklärung der Patienten 77 Anhang 2: Erlaubnis zur Nutzung der Patientendaten der Pathologie 78 Anhang 3: Erklärungen zur Eröffnung des Promotionsverfahrens 79 Anhang 4: Erklärung über die Einhaltung gesetzlicher Vorgaben 8

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields

    Brain and Human Body Modeling

    Get PDF
    This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields
    corecore