4,153 research outputs found

    Trusted resource allocation in volunteer edge-cloud computing for scientific applications

    Get PDF
    Data-intensive science applications in fields such as e.g., bioinformatics, health sciences, and material discovery are becoming increasingly dynamic and demanding with resource requirements. Researchers using these applications which are based on advanced scientific workflows frequently require a diverse set of resources that are often not available within private servers or a single Cloud Service Provider (CSP). For example, a user working with Precision Medicine applications would prefer only those CSPs who follow guidelines from HIPAA (Health Insurance Portability and Accountability Act) for implementing their data services and might want services from other CSPs for economic viability. With the generation of more and more data these workflows often require deployment and dynamic scaling of multi-cloud resources in an efficient and high-performance manner (e.g., quick setup, reduced computation time, and increased application throughput). At the same time, users seek to minimize the costs of configuring the related multi-cloud resources. While performance and cost are among the key factors to decide upon CSP resource selection, the scientific workflows often process proprietary/confidential data that introduces additional constraints of security postures. Thus, users have to make an informed decision on the selection of resources that are most suited for their applications while trading off between the key factors of resource selection which are performance, agility, cost, and security (PACS). Furthermore, even with the most efficient resource allocation across multi-cloud, the cost to solution might not be economical for all users which have led to the development of new paradigms of computing such as volunteer computing where users utilize volunteered cyber resources to meet their computing requirements. For economical and readily available resources, it is essential that such volunteered resources can integrate well with cloud resources for providing the most efficient computing infrastructure for users. In this dissertation, individual stages such as user requirement collection, user's resource preferences, resource brokering and task scheduling, in lifecycle of resource brokering for users are tackled. For collection of user requirements, a novel approach through an iterative design interface is proposed. In addition, fuzzy interference-based approach is proposed to capture users' biases and expertise for guiding their resource selection for their applications. The results showed improvement in performance i.e. time to execute in 98 percent of the studied applications. The data collected on user's requirements and preferences is later used by optimizer engine and machine learning algorithms for resource brokering. For resource brokering, a new integer linear programming based solution (OnTimeURB) is proposed which creates multi-cloud template solutions for resource allocation while also optimizing performance, agility, cost, and security. The solution was further improved by the addition of a machine learning model based on naive bayes classifier which captures the true QoS of cloud resources for guiding template solution creation. The proposed solution was able to improve the time to execute for as much as 96 percent of the largest applications. As discussed above, to fulfill necessity of economical computing resources, a new paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which reduces cost and improves performance and security by creating edge clusters comprising of volunteered computing resources close to users. The initial results have shown improved time of execution for application workflows against state-of-the-art solutions while utilizing only the most secure VEC resources. Consequently, we have utilized reinforcement learning based solutions to characterize volunteered resources for their availability and flexibility towards implementation of security policies. The characterization of volunteered resources facilitates efficient allocation of resources and scheduling of workflows tasks which improves performance and throughput of workflow executions. VEC architecture is further validated with state-of-the-art bioinformatics workflows and manufacturing workflows.Includes bibliographical references

    Security Enhanced Applications for Information Systems

    Get PDF
    Every day, more users access services and electronically transmit information which is usually disseminated over insecure networks and processed by websites and databases, which lack proper security protection mechanisms and tools. This may have an impact on both the users’ trust as well as the reputation of the system’s stakeholders. Designing and implementing security enhanced systems is of vital importance. Therefore, this book aims to present a number of innovative security enhanced applications. It is titled “Security Enhanced Applications for Information Systems” and includes 11 chapters. This book is a quality guide for teaching purposes as well as for young researchers since it presents leading innovative contributions on security enhanced applications on various Information Systems. It involves cases based on the standalone, network and Cloud environments

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Modeling IoT enablers for humanitarian supply chains coordination

    Get PDF
    Disaster relief operations rely on reliable real-time information sharing during disasters to coordinate scarce resources and save lives. The Internet of Things (IoT) has recently been regarded as an important technology for enhancing information sharing in disaster response operations to achieve effective coordination, accurate situational awareness, and comprehensive visibility of operational resources. Despite its relevance, its adaptation and implementation have been fraught with complexity. This research aims to understand the IoT enablers of humanitarian supply chain coordination. Seven dimensional enablers have been formulated by reviewing the literature and validating with practitioners’ opinions. A structural model is then developed using the Decision-Making Trial and Evaluation Laboratory (DEMATEL) technique that addresses the interdependencies of IoT enablers in humanitarian supply chain coordination. Finding provides insights into the interplay between management support, IT infrastructures, and third-party logistics service providers as key enablers towards adaptation and implementation of IoT in humanitarian supply chains. Results provide important implications and insight to decision-makers in international humanitarian organizations toward adaptation and implementation of IoT systems in humanitarian supply chains

    A framework for QoS driven user-side cloud service management

    Get PDF
    This thesis presents a comprehensive framework that assists the cloud service user in making cloud service management decisions, such as service selection and migration. The proposed framework utilizes the QoS history of the available services for QoS forecasting and multi-criteria decision making. It then integrates all the inherent necessary processes, such as QoS monitoring, forecasting, service comparison and ranking to recommend the best and optimal decision to the user

    A Secure Trust Model Based on Fuzzy Logic in Vehicular Ad Hoc Networks With Fog Computing

    Get PDF
    In vehicular ad hoc networks (VANETs), trust establishment among vehicles is important to secure integrity and reliability of applications. In general, trust and reliability help vehicles to collect correct and credible information from surrounding vehicles. On top of that, a secure trust model can deal with uncertainties and risk taking from unreliable information in vehicular environments. However, inaccurate, incomplete, and imprecise information collected by vehicles as well as movable/immovable obstacles have interrupting effects on VANET. In this paper, a fuzzy trust model based on experience and plausibility is proposed to secure the vehicular network. The proposed trust model executes a series of security checks to ensure the correctness of the information received from authorized vehicles. Moreover, fog nodes are adopted as a facility to evaluate the level of accuracy of event's location. The analyses show that the proposed solution not only detects malicious attackers and faulty nodes, but also overcomes the uncertainty and imprecision of data in vehicular networks in both line of sight and non-line of sight environments
    corecore