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ABSTRACT

Data-intensive science applications in fields such as e.g., bioinformatics, health sci-
ences, and material discovery are becoming increasingly dynamic and demanding with
resource requirements. Researchers using these applications which are based on ad-
vanced scientific workflows frequently require a diverse set of resources that are often
not available within private servers or a single Cloud Service Provider (CSP). For exam-
ple, a user working with Precision Medicine applications would prefer only those CSPs
who follow guidelines from HIPAA (Health Insurance Portability and Accountability
Act) for implementing their data services and might want services from other CSPs for
economic viability. With the generation of more and more data these workflows often
require deployment and dynamic scaling of multi-cloud resources in an efficient and
high-performance manner (e.g., quick setup, reduced computation time, and increased
application throughput). At the same time, users seek to minimize the costs of config-
uring the related multi-cloud resources. While performance and cost are among the key
factors to decide upon CSP resource selection, the scientific workflows often process
proprietary/confidential data that introduces additional constraints of security postures.
Thus, users have to make an informed decision on the selection of resources that are
most suited for their applications while trading off between the key factors of resource
selection which are performance, agility, cost, and security (PACS). Furthermore, even
with the most efficient resource allocation across multi-cloud, the cost to solution might
not be economical for all users which have led to the development of new paradigms of
computing such as volunteer computing where users utilize volunteered cyber resources
to meet their computing requirements. For economical and readily available resources,
it is essential that such volunteered resources can integrate well with cloud resources
for providing the most efficient computing infrastructure for users.

In this dissertation, individual stages such as user requirement collection, user’s
resource preferences, resource brokering and task scheduling, in lifecycle of resource
brokering for users are tackled. For collection of user requirements, a novel approach
through an iterative design interface is proposed. In addition, fuzzy interference-based
approach is proposed to capture users’ biases and expertise for guiding their resource se-
lection for their applications. The results showed improvement in performance i.e. time
to execute in 98% of the studied applications. The data collected on user’s requirements
and preferences is later used by optimizer engine and machine learning algorithms for
resource brokering. For resource brokering, a new integer linear programming based
solution (OnTimeURB) is proposed which creates multi-cloud template solutions for
resource allocation while also optimizing performance, agility, cost, and security. The
solution was further improved by the addition of a machine learning model based on
naive bayes classifier which captures the true QoS of cloud resources for guiding tem-

xii



plate solution creation. The proposed solution was able to improve the time to execute
for as much as 96% of the largest applications.

As discussed above, to fulfill necessity of economical computing resources, a new
paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which
reduces cost and improves performance and security by creating edge clusters compris-
ing of volunteered computing resources close to users. The initial results have shown
improved time of execution for application workflows against state-of-the-art solutions
while utilizing only the most secure VEC resources. Consequently, we have utilized
reinforcement learning based solutions to characterize volunteered resources for their
availability and flexibility towards implementation of security policies. The characteri-
zation of volunteered resources facilitates efficient allocation of resources and schedul-
ing of workflows tasks which improves performance and throughput of workflow exe-
cutions. VEC architecture is further validated with state-of-the-art bioinformatics work-
flows and manufacturing workflows.

Keywords: Multi-Cloud Resource Brokering, Scientific Workflow Applications, Volun-

teer Edge Computing, Trusted Resource Allocation.
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CHAPTER 1

Introduction

1.1 Data-intensive and Compute-intensive Applications

Data-intensive science applications in fields such as e.g., bioinformatics, health sci-

ences, and high-energy physics are becoming increasingly dynamic with resource re-

quirements. These applications often require specialized instruments and computing,

networking, and storage resources (e.g., scientific instruments, supercomputers, fed-

erated data repositories, public clouds [1], [2]). Researchers using these applications

which are based on advanced scientific workflows frequently require a diverse set of

resources that is often not available within a single CSP and demands synergy between

multiple CSPs. They seek to create these analytics workflows to frequently utilize cloud

solutions easily, efficiently, and with high performance (e.g., high throughput), while

containing costs and time for configuring the necessary resources. Moreover, workflows

for bioinformatics often process proprietary, private, and confidential pre-publication

data within scaling pipelines. Moreover, most distributed resource management ap-

proaches and tools do not provide user-friendly interfaces and reusable templates for

easy resource provisioning.

1.2 Scientific Workflows

A scientific workflow is the description of a process for accomplishing a scientific ob-

jective, usually expressed in terms of tasks and their dependencies. Typically, scien-

tific workflow tasks are computational steps for scientific simulations or data analysis

steps. Common elements or stages in scientific workflows are acquisition, integration,
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reduction, visualization, and publication (e.g., in a shared database) of scientific data.

The tasks of a scientific workflow are organized (at design time) and orchestrated (at

runtime) according to dataflow and possibly other dependencies as specified by the

workflow designer. Workflows can be designed visually, e.g., using block diagrams, or

textually using a domain-specific language.

1.2.1 Science Gateways

Recent science and engineering research tasks are increasingly becoming data-intensive

and thus relying on workflows to automate integration and analysis of voluminous data

to test hypotheses. For example, research and training in neural science and engineering

increasingly deal with diverse and voluminous multi-parameter data 1, posing unique

challenges outlined in an NSF iNeuro report 2 as limited access to: multi-omics data

archives 3, heterogeneous software 4 and computing resources (Neuroscience Gate-

way5, Amazon Web Services (AWS)), and multi-site interdisciplinary expertise (e.g.,

engineering, biology, and psychology). Existing distributed high-performance com-

puting resources (HPC) and other cyberinfrastructure (CI) tools for data management

support the related data analysis and visualization capabilities. However, to fully uti-

lize such capabilities, neuroscientists (often with limited CI skills) are required to take

valuable time away from the focus of knowledge discovery in neuroscience, in order to

learn about how to use the various technologies. To tackle with these research bottle-

necks scientific gateways have been developed which collects raw data from research

group and process them as per pre-defined workflows. Thus scientific workflows are an

integral part of science gateways.

1.2.2 Bioinformatics Workflows Case Study

In recent years, next-generation sequencing (NGS) technology has improved dramat-

ically, with costs dropping and the number and range of sequencing applications in-

creasing exponentially. A wide variety of types of high-throughput sequencing can

be generated from RNA or DNA molecules through NGS library construction and se-

quencing including techniques such as whole genome sequencing (WGS), RNA-Seq,
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Table 1.1 Bioinformatics Workflow Applications.

Workflow Name Workflow Description
FastQC FastQC Quality Check workflow is used to conduct the

quality control checks on raw sequencing data so that we
can remove some low-score data before the next step of the
analysis.

Alignment Alignment workflow is used to arrange the reads of DNA or
RNA to a reference genome so that we can know which
genes expressed or discovery of new, unannotated tran-
scripts.

RNA-Seq RNA-Seq analysis allow us to identify the differential ex-
pressed genes by performing the pair-wise comparison of
experimental groups/ conditions of sequencing data.

PGen PGen workflow allow users to identify the single nu-
cleotide polymorphisms (SNPs: a substitution of a single
nucleotide that occurs at a specific position in the genome)
and insertion-deletion (indels: an insertion or deletion of
nucleotides from a sequence) and perform SNP annotation.

Copy Number
Variation (CNV)

Copy number variation analysis helps detect the chromo-
somal copy number variation (CNV: is a phenomenon in
which sections of the genome are repeated and the num-
ber of repeats in the genome varies between experimental
groups/conditions) that may cause or may increase risks of
various critical disorders.

Methylation Methylation analysis helps estimated the methylation levels
of each genomics cytosine and identified the differentially
methylated regions between the experimental groups/ con-
ditions.

Single Cell
RNA-Seq

Single-cell RNA-Seq analysis allows users to align single-
cell RNA-Seq read, perform clustering cells and then assign
the cell type identity to clusters via biomarks.

Fig. 1.1 Exemplar RNA-Seq analysis workflow allow us to identify the differential ex-
pressed genes by performing the pair-wise comparison of experimental groups/ condi-
tions of sequencing data.
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ChIP-Seq, DAP-Seq, RIP-Seq, methylation, and more. To efficiently utilize the large-

scale NGS data for analysis, we have developed six bioinformatics workflows as shown

in Table 3.6, and we have further centralized the input data for these workflows using

CyVerse [19]. An exemplar workflow i.e. RNASeq is shown in Figure. 1.1.

1.2.3 Manufacturing Workflow Case Study

Researchers in the manufacturing industry who are working on areas concerning mate-

rial discovery such Carbon Nano Tubes often need assistance when selecting parame-

ters in the event of non-productive growth states. To ensure that synthesis processing

conditions are found in a deliberate manner within time (i.e., Performance factor) or

technology (i.e., Agility factor) or financial (i.e., Cost factor) (PAC) constraints, fun-

damental investigations to develop scientific approaches for progressive scale-up of the

materials discovery is required. In this context, agility refers to the agent performing

increased automation of the cyber-physical components i.e., high agility implies high

levels of control automation. The research goal in this task addresses the current lack of

systematic methods necessary to guide the user in terms of the ‘demand’ factors and the

system’s ‘supply’ operations to sustain a productive system state. It is entirely possible

that a researcher will have little basis for deciding processing parameters in the event

of non-productive system states. In fact, a review of the literature for CNT growth

will find that most research groups find a synthesis procedure that “works” and then

minimally vary these parameters, even for diverse applications. Such users can greatly

benefit from access to a catalog of parameter set templates, predictive models as well

as system resource configurations that were obtained manually. Some of the open re-

search questions for (re)generation of a custom synthesis parameter template as shown

in Figure. 1.2: (i) How can we set up interactions between the users and a catalog for

composing an ‘initial state’ template that: (a) leverages the various synthesis system

components, and (b) best matches requirements? (ii) How can we organize the catalog

with related unstructured data sets or image data sets from successful synthesis con-

figurations, related to user preferences, and benchmarks for future repeatable/reusable

use as custom templates? (iii) What are the relevant heuristics to simplify and speed-up
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candidate custom template solution prescriptions, and also build materials-community

tailored catalog(s) of CNT materials behavior based on analysis of successful synthesis

configurations?

Fig. 1.2 RL agent training methodology followed in simulated growth of CNT tubes
in episodes. At each iteration, the tubes are compressed and a reward is generated
as feedback for the model to learn optimum actions. The model aims to increase the
overall reward in the training.

Two major research thrusts for such manufacturing workflow is: (i) algorithms/-

tools to create a catalog that can store and retrieve custom synthesis parameter tem-

plates with component combinations that match the CNT material goals and consider

user preferences related to performance, agility and cost (PAC) factors, and (ii) Re-

source recommender algorithms that are suitable for a prescriptive catalog that requires

low maintenance and is relevant to a broad range of materials discovery scenarios. To

create the catalog, we first need to address cases where no suitable custom template so-

lutions exist, and when a solution should be composed for future re-use. A ‘cold start’

issue exists in this context, whereby early catalogs have few solutions. Existing knowl-

edge from the users and scientific literature will guide the early formation of parameter

templates.
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1.3 Cloud Computing Requirements

Scientific and technological applications are becoming increasingly data and compute-

intensive. An exemplar case in scientific workflows can be seen in bioinformatics such

as gene sequencing/analytics, where applications frequently require diverse multi-cloud

resources to execute job flows. Researchers who create these workflow pipelines seek

to use large computing and memory resources on a routine basis in an iterative and re-

peatable manner. Since the nature of research is often iterative and requires repeated

workflow execution with varying data, they need to rely on open/commercial cloud re-

sources for their workflows under budget limitations. To optimally fulfill user require-

ments, they seek to seamlessly interoperate with any compute resources they can access.

A potential scenario could involve the utilization of small-scale resources in-house in

conjunction with community cloud resources such as GENI [5] and commercial CSPs

such as Amazon Web Services. However, the diversity in their sources offered from dif-

ferent commercial and community cloud providers and sparsely documented in-house

compute resource configurations can overwhelm users who are not well versed in cy-

berinfrastructure or are not cloud experts.

1.3.1 Multi-Cloud Computing

Users (researchers and educators) use scientific workflows that require a diverse set

of resources available across multiple cloud service providers (CSPs) such as Amazon

Web Services (AWS) [1], GENI [2], Google Cloud Platform [4] and Microsoft Azure

[5]. They create workflows that frequently require deployment and dynamic scaling of

multi-cloud resources in an efficient and high-performance manner (e.g., quick setup,

reduced computation time, and increased application throughput). At the same time,

users seek to minimize the costs of configuring the related multi-cloud resources. While

performance and cost are among the key factors to decide upon CSP resources selec-

tion, the scientific workflows often process proprietary/confidential data that introduces

additional constraints of security postures e.g., compliance with HIPAA (Health In-

surance Portability and Accountability Act) or FISMA (Federal Information Security
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Management Act) guidelines. Further, agility or the ability of a CSP to auto-manage

a diverse set of computing, networking, and storage resources is yet another important

factor to deploy scientific workflows i.e., a higher level of automation capability offered

by a CSP implies higher agility for the users.

Fig. 1.3 Key functional and non-functional criteria for selection of cloud computing
resources. Variations in non-functional criteria preferences from users’ and providers’
perspectives create the problem of excessive choice.

Thus, selection and configuration of multi-cloud resources for modern applications

have become a necessity but it requires careful handling of objective factors such as

performance, agility, cost, security (i.e., PACS factors) as shown in Figure 1.3. This

multi-cloud resource brokering can be formulated as a multi-dimensional optimization

problem in resource selection that is contextually dependent on user preferences and

their application requirements. Moreover, the diversity in the resources and capabili-

ties offered by different CSPs creates a situation of excessive/overwhelming choice for

users. The choice issue is especially significant for users who are not cloud platform

experts and require relevant guidance for multi-cloud resource selection. Often, a CSP

provides a cloud-specific resource configuration and management service suite (e.g.,

AWS OpsWorks [6]) but the users often lack relevant tools to work with multi-cloud

resources. Additional challenges arise due to the fact that the subjective experience of

users can widely fluctuate depending on the network bandwidth, type of applications,

capacity load on the servers, and location of the servers to name a few [7].
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1.3.2 Multi-Edge Computing

Edge computing is computing that’s done at or near the source of the data, instead of

relying on the cloud at one of a dozen data centers to do all the work. It means the

cloud is coming near the end users where all the computing will be performed. Multi-

edge computing (MEC) is becoming a key technology toward “full 5G.” However, as

it gets widely used, a fundamental problem is how to support as many service requests

as possible under stringent Quality-of-Service (QoS) requirements and limited commu-

nications and computing resources. Computation offloading and service migration are

two major research hotspots in the multi-edge computing (MEC) environment. How-

ever, in the existing MEC architecture, as shown in Figure. 1.4, the idle computing

resources of offsite edge servers as well as commercial cloud platforms are not fully

utilized, which leads to the problem of high overall system time and energy costs.

Fig. 1.4 Data processing requirement on multi-edge sites with heterogeneous resources
in collaboration with multi-cloud resource platforms.

1.3.3 Trusted Computing on Edge-Cloud Resources

Edge computing promises to reshape the centralized nature of today’s cloud-based ap-

plications by bringing computing resources, at least in part, closer to the user. Reasons

include the increasing need for real-time (short-delay, reliably-connected) computing

and resource-demanding artificial intelligence (AI) algorithms that overstrain mobile

devices’ batteries or compute power but are too bandwidth-demanding to be offloaded

to a distant cloud. However, users may need to run their protected use case logic on
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(untrusted) third-party edge devices, which can lead to serious issues due to weaker

security measures than in cloud environments [8].

1.4 Dissertation Outline

1.4.1 Significance

Users who rely on multi-cloud resources have to deal with end-to-end resource opti-

mization themselves. Additional challenges arise since the subjective experience of

users can widely fluctuate depending on the network bandwidth, type of applications,

capacity load on the servers, and location of the servers to name a few [7]. Many re-

searchers have proposed approaches to address these challenges in [9] [10] [11]. How-

ever, these works either focus on the optimization of only a single CSP’s resource(s)

or focus on only the cost and/or performance requirements. Several prior works have

addressed related problems in this field of study. The fundamental problem has a scope

of optimization for users as well as providers since the users have their unique require-

ments and resources at different cloud providers are heterogeneous in nature and finite.

For optimizations in the context of the users, approaches proposed in [10] [12] are based

on using cloud platform knowledge bases in recommending solutions. Specifically, the

solutions proposed assume that a knowledge base of resources is already available and

resources are recommended from the knowledge base to optimally fulfill user require-

ments. Although optimization of different criteria such as performance, agility, cost,

and security are crucial individually, joint optimization of these criteria simultaneously,

adds further complexity and variables for optimization. There are multiple factors such

as VM configurations, application workload, network bandwidth, and computation ca-

pabilities that govern the selection of resources, and these factors can vary in real time

within an application deployment. This necessitates leveraging learning-based solu-

tions for improving real-time resource selection. There have also been prior works that

have validated the inconsistencies in Quality of Service (QoS) from resources [13] [14].

With all its benefits, however, cloud computing costs can become a barrier to handling

scientific application workflows, especially when there is a significant amount of data-
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related computation tasks involved.

New paradigms of cloud computing such as volunteer cloud computing (VCC) [74]

are emerging to leverage volunteer contributions of large-scale cloud resources to re-

duce costs. Although VCC provides benefits in terms of cost, the proprietary/sensi-

tive nature of certain scientific applications necessitates partial data processing to be

performed at the edge resources i.e., closer to the application user sites. Leveraging

emerging technologies such as KubeEdge [62], VCC solutions can be extended to on-

demand provision and use an abundance of low-cost edge resources through edge-cloud

collaborative computing on a best-effort basis viz., “volunteer edge-cloud (VEC) com-

puting”. In addition to providing cost benefits similar to VCC, the VEC paradigm is

suitable for the latest generation of compute/data-intensive workflows that use machine

learning (ML) models to perform heavy training on cloud nodes and lightweight infer-

ence on edge nodes. Ensuring trust in VEC allows fulfillment of our goal of utilizing all

available cyber resources for any application workflow while maintaining trust based

on Performance, Agility, Cost, and Security (PACS) which is the significant outcome

of this thesis.

1.4.2 Approach

In order to achieve our goal of democratized use of any available computing resource

in a PACS efficient manner as shown in Figure. 1.5, several smaller but crucial sub-

problems have to be solved i.e., optimized orchestration of diverse ever-growing re-

sources on edge and cloud platforms needs to tackle several challenges which are

• Problem 1: Understanding user’s applications requirements

• Problem 2: Understanding and utilizing user’s expertise in orchestrating cyber

resources

• Problem 3: ML driven Performance, Agility, Cost and Security (PACS) aware

resource allocations for optimized orchestration of resources from multiple cloud

platforms and edge resources
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• Problem 4: AI-driven trusted resource allocation for non-benchmarked voluntary

edge resources and cloud platforms

Fig. 1.5 Workflow of key research problems to be solved towards the goal of utilizing all
available cyber resources for any user-specific application workflow while maintaining
trust based on Performance, Agility, Cost, and Security (PACS).

1.4.2.1 User Engagement

For the ease of non-expert cloud users, who often struggle to deploy cyberinfrastructure

in an efficient manner for data analytics and to gain from the experiences of cyber

expert users, we divide our proposed solutions into four subsections of i) Collection

which comprises a) Knowledge interface system (KIS) and Fuzzy Interface System

(FIS), ii) Composition iii) Consumption iv) Fuzzy Engineering. Detailed discussions

on the proposed solutions are discussed in Chapter 2.

1.4.2.2 PACS optimization in Multi-Cloud

User specification collection is succeeded by composition wherein the requirements are

passed to an optimizer engine (OnTimeURB) to compose template solutions. Custom

template composition essentially can be formulated as a selection of machine configura-

tions from a distributed set of diverse cloud instances under specific constraints, which

is an NP-hard problem. To effectively formulate the problem into a solvable model, we

use CPLEX [17] optimizer to create a relevant optimization model. The objective of

the model is defined in a manner to reduce the cost of the template solution for user
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requirements. The optimization model is constrained by user specification of required

resources and resource thresholds. For example, a user can specify a requirement as

{cpu:8, ram:16Gb, storage: 60Gb} with a threshold of 25% which acts as a constraint

in the model. The below classifications identify potential template responses from the

OnTimeURB middleware

High Performance and Cost: All user-defined resources are amplified in step sizes

up to a user-defined threshold limit. Each step gives an amplified resource constraint

which results in a corresponding solution. Prospective provisioning: minimal configu-

ration {cpu:8, ram:16Gb, storage: 60Gb}, maximum configuration {cpu:10, ram:20Gb,

storage: 75Gb} etc.

Low Performance and Cost: The template is the closest match to user resource

specification with minimal overprovisioning. Prospective provisioning: {cpu:8, ram:16Gb,

storage: 60Gb} OR {{cpu:4, ram:8Gb, storage: 30Gb} and {cpu:4, ram:8Gb, stor-

age: 30Gb}} etc.

Further, the optimizer engine is enhanced with capabilities to recommend cloud

template solutions which enhances the agility requirements of the users. OnTimeURB

is also enhanced with a knowledge engineering method that uses an ML model to aid

the optimizer in OnTimeURB to improve the selection of CSPs for better performance

e.g., the reduced execution time of application workflows while maintaining optimal

cost, security, and agility requirements are implemented. The ML model utilizes a

Naive Bayes classifier to recommend optimal cloud template solutions by weighting

performance, agility, cost, and security (PACS) factors. Validation of OnTimeURB

benefits using a catalog of bioinformatics application workflows integrated within the

KBCommons [18] science gateway. Detailed discussions on the proposed solutions are

discussed in Chapter 3.

1.4.2.3 PACS based Trust in voluntary edge cloud

A VEC system is comprised of multiple geographically distributed clusters, with each

cluster having a set of co-located voluntary diverse edge resources. However, a major

challenge for wider adoption of the VEC computing paradigm in scientific applica-
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tion workflows relates to ensuring that the volunteer edge resources can be trusted in

terms of the performance, agility, cost, and security (PACS) factors, on par with nodes

within public clouds. The proposed solution to tackle trust in VEC builds on prior

probability-based trust models and presents a novel probability-based trust modeling

scheme for resource allocation in a VEC system for scientific application workflow

management. Specifically, the approach uses a Dirichlet-based probability distribution

which can model multiple variables simultaneously. A novel two-stage distribution

model allows us to characterize edge node metrics such as CPU/RAM utilization, net-

work interfaces, TCP/FTP connections dynamically as well as provide a framework

to use both intra-cluster and inter-cluster PACS factors for trust assessment. In order

to improve the PACS satisfaction of users on the volunteered cloud, the VEC system

is further improvised and integrated with reinforcement learning algorithms which are

oriented towards characterizing volunteered resources for their performance and relia-

bility. Detailed discussions on the proposed solutions are discussed in Chapter 3.

1.4.2.4 VEC Resource Brokering Guided Applications

VEC architecture of computing can be integrated with various workflows and appli-

cations which can leverage edge resources to offload computing requirements. In this

thesis two case studies are done wherein VEC can potentially improve the performance

of the application. These studies are

• Carbon Nano Tube (CNT) growth automation through reinforcement learning

• Data Analytics pipeline for real-time image analytics

1.4.3 Conclusion

In this thesis, several of the smaller challenges have been tackled towards the final goal

of utilizing any available computing resources in a PACS efficient manner. Towards

this goal firstly, a novel middleware (i.e., OnTimeFLC) based on fuzzy engineering is

proposed to utilize the expertise of users for better cloud resource selection. The method

is composed of a multi-level fuzzy model based on factors of performance, agility, cost,

and security (PACS) which aids a resource broker based on integer linear programming
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(i.e., OnTimeURB) in composing multi-cloud solution templates. We validated that the

proposed fuzzy engineering approach by simulating decision-making and utilization of

expertise from users in improving the selection of appropriate CSPs. We also showed

how OnTimeFLC and OnTimeURB can help with resource management in a science

gateway deployment viz., KBCommons to help bioinformatics researchers/educators.

Secondly, a knowledge-engineered approach is proposed which used machine learning

models to understand workflow and application requirements to guide the optimizer

engine of OnTimeURB for improved performance. The applied ML model is designed

to learn the bias of expert users towards cloud platforms for different requirements of

functional criteria and workflow sizes. Finally, a new architecture of computing i.e.,

VEC is proposed which aims to utilize voluntary edge resources to reduce cost and

improve the performance of applications by reducing latency for data transfers. Further,

the challenges of trust based on PACS within VEC computing are addressed through

probabilistic models. Artificial intelligence methods such as reinforcement learning

models are developed to learn the behavior of volunteer edge clouds which is used to

fulfill PACS requirements of user application workflows.
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CHAPTER 2

User Engagement with Cloud Platforms

2.1 Overview

To mitigate the problem of ill-advised resource allocation certain key factors can be

identified that strongly govern the selection of optimal cloud resources for maximum

resource usage and user satisfaction. These factors are performance, agility, cost, and

security offered by the CSPs [20]. Since selection and configuration of multi-cloud

resources for modern applications requires handling objective factors such as perfor-

mance, agility, cost, and security (i.e., PACS factors), the multi-cloud resource bro-

kering involves a multi-dimensional optimization problem in resource selection. Apart

from these functional and objective factors, the users often gain expertise towards cer-

tain CSPs creating inherent biases in CSP selection depending on the functional re-

quirements of PACS, business, or geographical constraints to name a few. Moreover,

PACS factors are subjective factors that can have varying metrics for evaluation for dif-

ferent cloud service users (CSUs). For example, performance can be evaluated based on

sub-factors of availability, reliability, response time, and throughput. The measurement

of these sub-factors influences the evaluation of PACS factors and ultimately the CSP

selection.

CSPs often provide cloud-specific resource configuration and management service

suite (e.g., AWS OpsWorks [6]) which gives insight into trade-offs among its services

in the context of PACS criteria. But since these tools focus on a single cloud platform, it

lacks the vision of services from other CSPs and thus fails to give insights and trade-off

with services from other platforms. Moreover, the subjective factors arising from users’

bias toward certain cloud platforms or perceived performance of the cloud resource by
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users also need to be considered in the multi-cloud resource brokering which are not

addressed with these tools.

2.2 User Engagement

For the ease of non-expert cloud users, who often struggle to deploy cyberinfrastruc-

ture in an efficient manner for data analytics and to gain from the experiences of cy-

ber expert users, we divide our OnTimeURB into four subsections of i) Collection a)

knowledge interface system (KIS) and Fuzzy Interface System (FIS), ii) Composition

iii) Consumption iv) Fuzzy Engineering.

2.2.1 Graphical user interface for resource selection

2.2.1.1 Knowledge Interface System

We leverage KBCommons [18] web portal to collect user resource requirements via

a KIS module. KBCommons portal provides a comprehensive web resource for stor-

ing, sharing, analyzing, exploring, and visualizing multi-organism genomics and multi-

omics data. It provides information for several entities including genes/proteins, mi-

croRNAs/sRNAs, metabolites, SNP, traits, etc. A suite of interactive web-based tools

for bioinformatics analysis and data visualization is available via this dedicated web re-

source. It also has a suite of tools for differential expression analysis of transcriptomics

data, genomics variation single nucleotide polymorphism (SNP) and insertion-deletion

(Indel) data, as well as other multi-omics datasets providing access to Venn diagrams,

volcano plots, function enrichment, and gene modules for easy user interpretation.

We implemented and integrated our KIS module as shown in Figure. 2.1 with bioin-

formatics analytics workflows user interface (UI) deployed within the KBCommons

portal to collect user-specific resource constraints and criteria to execute user work-

flows. The KIS presents users with a set of questions (e.g.,vCPU/RAM required ) to

capture their requirements. Additionally, users can provide a threshold maximum on

the requested resources, for example, a 10% threshold on 10Gb RAM memory require-

ment will allow the OnTimeURB optimizer to compose solutions with RAM memory

up to 11Gb.
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Fig. 2.1 Screenshot of the webpage of creating workflow request in Prototype 1 of KB
Commons (Improved System) which shows layout issues and too many instructions for
users to read

2.2.1.2 Fuzzy Interface System

The fuzzy interface system is designed to collect and understand users’ experience with

using CSPs based on PACS factors. The user is provided with an interface to rate

their experiences towards different CSPs on a specified scale. The users are also given

the option to create rules to quantify their experiences. The format of rule creation is

governed by If, Then, PACS, and scaling tags as shown in Table. 2.5.

Below is a sample rule.

[{IF Performance is Good AND IF Agility is Good

AND Security is Good THEN CSP is AWS},

{IF Performance is Bad AND IF Agility is Bad

AND Security is Good THEN CSP is MU},

{IF Performance is Good AND IF Agility is Bad

AND Security is Good THEN CSP is GENI}]

Listing 2.1: Sample fuzzy rule format
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2.2.2 Significance and Related Works

While the challenge of scalability and response time for visualizing big data persists [21],

there are also usability issues with data analytic systems [23]. Data visualization is cre-

ated or delivered by machine learning models [24]. Usability studies need to address

whether the critical user population understands the data visualization as well as the

complexity of underlying analytic process i.e., how the visualized outcome was created

with its underlying calculations [23]. With prescriptive systems, the issue becomes fur-

ther complicated. Advancement of tools and applications for big data analytics have

focused more on providing scalable techniques and less on facilitating easy access of

these applications for users [22]. For prescriptive systems, efficient decision-making

involves users choosing right parameters for computing their data, which if not per-

formed in a well-informed manner may lead to misinterpretation of results or failed

experiments [22].

2.2.3 Approach

We applied multiple research methods. For iteration 1 conducted in the summer 2019,

we applied methods to understand the work processes of users with the Baseline System

and potential challenges in completing the tasks. We adopted the Sociotechnical Walk-

through (STWT) methodology [25] that is useful for an integrated view of the multiple

perspectives of human work procedures related to the technical system. We developed

a semi-structured interview protocol [26] using open-ended questions and prompts for

elicitation of details organized in four parts: a) current user interaction and task flow, b)

user experience, c) participant opinion and reflection, and d) additional comments. We

also observed the interaction of the participants with the Baseline System. Each session

lasted for 40 to 60 minutes and was conducted by a lead interviewer in presence of an

observer.

For iterations 2, 3, and 4, we conducted usability studies with the three prototypes

of the Improved System [27]. Methods included a semi-structured interview protocol,

a usability task-based performance test [27] with Think-Aloud [28], Single Ease Ques-

tionnaire (SEQ) [29], participant observation (recorded data and observer notes), and
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the System Usability Scale (SUS) survey [30]. The interviews gathered demographics,

experience with genomic data analysis and prompts such as overall experience with

the system, user thoughts about the specific functions, and likes/dislikes. Users chose

one of the predicted recommendations for cloud solutions, and we asked them to justify

their choice. For the usability test, the participants were asked to think aloud [28], while

independently completing the tasks with the prototypes. The tasks included: logging

into the system and opening the data request form, creating a data workflow request,

and reviewing the status of the submitted request. Sessions were administered using

Morae software [31], recorded and transcribed via Zoom. Each session was conducted

in the presence of at least two researchers and lasted for 60 to 75 minutes. With multi-

ple methods and multiple data sets, a robust set of triangulated data was used to identify

maximum usability problems with certainty.

Fig. 2.2 Screenshot of optimum cloud solution provider in Prototype 2. Users enter their
preferences in the form and get Gold/Green/Red Templates of cloud solutions. Users
are expected to choose a predicted template based on the given cost and available cloud
service providers.

We measured usability in terms of its effectiveness i.e., users being able to complete

the task with or without difficulty, and efficiency i.e., time taken by the users to com-

plete the task [32]. Descriptive statistics were used to calculate mean and range values.
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We analyzed quantitative data for each prototype separately as there were significant

changes in functions and the user interface (UI). We performed a two-tailed t-test to

compare the SUS scores of the three prototypes.

Qualitative data collected in iterations 2, 3, and 4 included observation data and

participants’ responses to open-ended questions. We used the van den Haak et al. [28]

method to thematically analyze qualitative data and identify layout, terminology, data

entry, and comprehensive feedback problems. The final interpretation of qualitative

results was reviewed by the research method expert to ensure interrater reliability. For

iteration 1, interview data for the Baseline System was analyzed through a semi-formal

modeling notation, known as SeeMe [25]. SeeMe was used to graphically represent the

communication and coordination between the multiple stakeholders and the technical

system by visualizing human work procedures, related technology functionalities, and

social structures of their interaction [25]. Interview transcripts were analyzed by two

researchers, including a research method expert. Final results were reviewed through

Intermittent meetings between the researchers until a consensus was reached.

We used a multiple-method approach in each iteration to address the validity and

reliability of the results. Qualitative data from the think-aloud protocol, participant ob-

servation, and interviews were supported with quantitative data collected from surveys,

questionnaires, and task performances.

2.2.4 Evaluation

User satisfaction: With an average SUS score of 73.86, Prototype 3 was rated ‘accept-

able’ [30]. In all, 64 percent (7/11) rated Prototype 3 as ‘acceptable’ (SUS range: 97.5

to 75.0), 27 percent (3/11) as ‘marginally acceptable’ (SUS range: 67.5 to 60), and

9 percent (1/11) as ‘not acceptable’ (SUS score: 40). The two-tailed t-test for SUS

scores obtained for the prototypes compared Prototype 1 and Prototype 3, and SUS

significantly improved from 58.2 to 73.86 (p < .05). Participants appreciated the use-

fulness of Prototype 3 for novice and expert biological researchers. According to the

participants, the instructions were easy to follow, and they were able to understand the

data analysis process as well as the working of the application. Participants found the
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Gold/Silver/Bronze color categorization of cloud solution templates to be more intuitive

and spent time reading the instructions to make an informed decision.

Table 2.1 User needs and choices they have made

Participant responses in Iteration 4: Prototype 3 of KBC
Sr.
No.

Preferences for big data
analysis)

Option selected
by user User rationale

P1 Shorter execution
time; Low cost or free

Gold
“I choose Gold for relatively lesser time

(15 days) and high computing power”

P2 Ease of use; Shorter
execution time; Free of cost

Silver
“I choose Silver because it matches my choice of estimated time. Given storage
is same for all so it does not make a difference.”

P3 Shorter execution
time; Low cost

Bronze

“Because my input data is not very big and I don’t want to spend much money
on this, I will choose Bronze because the pipeline I am working on, I can wait for
a day. But if I do not have to pay then I will choose Gold because of the shortest
amount of time it takes.”

P4
System efficiency;
Shorter execution
time; Free of cost

Gold

“Because I am not an expert, I will choose Gold - I don’t have to put the time into it.
I am a beginner and it is fully automatic. It is quick and easy. If I have

some experience, then I would want to cut down costs and choose Silver. Or Bronze
if I am an expert.”

The central feature of Prototype 3 as shown in Figure. 2.3 was the prescriptive sys-

tem recommending the optimum set of cloud solutions to the users based on their pref-

erence of time, cost, and agility. Users chose a Gold/Silver/Bronze solution to compute

their data analysis. While Prototype 2 shown in Figure 2.2 still had usability issues with

the predicted recommendations, Prototype 3 indicates the users’ preferences and the de-

cision they made were aligned, meaning they picked the decision that was best suited

for their needs. This shows the improved accuracy of the newly developed prescriptive

system. Table 2.1 lists the data sample of users’ preferences and the option they picked

based on the prescriptive system.

Fig. 2.3 Screenshot of optimum cloud solution provider in Prototype 3 named as ‘Ideal
Cloud Solution Provider.’ Users enter the size of their raw data files and how soon they
need the results. New users have the option to select ‘Recommended’ settings. Users
are expected to choose one of the predicted cloud solution templates categorized as
Gold/Silver/Bronze based on time, cost, and agility.
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2.3 User Preferences

Resource configuration and management service suites such as AWS OpsWorks [6] give

insight into trade-offs among its services in the context of PACS criteria, but these tools

generally focus on brokering a single cloud platform pool of resources. Moreover, the

tools do not consider subjective factors arising from users’ bias toward certain cloud

platforms or perceived performance of the cloud resource by users, which also needs to

be considered in multi-cloud resource brokering.

2.3.1 Fuzzy Engineering for User Preferences

The subjective experience of users towards cloud services can fluctuate depending on

the quality of service (QoS), type of applications, capacity load on the servers, and

location of the servers to name a few, and thus can not be quantified. As shown in

Figure. 2.4 to gain meaningful insights into the bias towards cloud providers which is

affected by PACS criteria, fuzzy logic can potentially be promising [33]. Fuzzy logic

theory gives tools and methodologies to study uncertainty in a system or a situation

and provides flexibility in reasoning. The idea behind fuzzy logic is to imitate human

behavior and logical reasoning for deducing conclusions for vague problems in a non-

linearly weighted manner [34].

Fig. 2.4 OnTimeFLC’s core optimizer engine uses an integer linear programming based optimizer and
fuzzy engineering augmented with a knowledge base from different cloud providers: (i) Amazon Web
Services (AWS) [1] - public cloud, (ii) GENI - community cloud [2], (iii) MU Data Center - private
cloud [3].
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2.3.2 Significance and Related Works

Fuzzy logic in user cloud selection: There have been comprehensive studies on the

behavior and utilities of fuzzy models in simulating decision making [35] [36] which

can be simulated for cloud service selection decision. Specifically, fuzzy logic can

be used to complement multi-cloud resource brokering methods that take into account

quantitative user resource specifications [20]. These methods can leverage fuzzy logic

modeling to consider the user’s expertise and biases in cloud selection using the integer

linear optimization approaches. Since fuzzy logic can be used in decision-making, it

has also been used by researchers in modeling optimal scheduling of resources on cloud

infrastructure on data centers.

Fuzzy logic has also been used in the domain of quantifying resource selection.

Exemplar efforts in characterizing cloud resources can be seen in [33]. The authors

emphasize that there is a need of measuring and evaluating cloud performance to help

users in making their decisions. The researcher primarily aimed to develop a model

to evaluate the performance of the cloud based on factors such as workload, storage,

hypervisor, and network devices. Their proposed model clarifies how the infrastructure

and applications on a cloud platform can play an important role in application perfor-

mance delivery. However, the study is focused only on performance benchmarking for

a single cloud platform.

Fig. 2.5 A standard fuzzy inference system comprising of: (a) Input/Output variables, (b) Rule Base,
(c) Inference Engine and, (d) Membership functions for variables.

Fuzzy logic in Cloud platforms: Many researchers have attempted in using fuzzy

logic for scheduling resources [37] [38] [39]. Amin et. al. [37] have presented and

23



evaluated a new scheduling algorithm that is an efficient technique for scheduling vir-

tual machines between data centers using fuzzy logic. A similar work [38] focuses on

the allocation and scheduling of resources as well as improving the reliability of cloud

computing. The typical fuzzy model as shown in Figure. 2.5 is customized to be based

on the governing rules which consider factors of cost, trust, length of processes, and pri-

ority. Further, the authors showed that their output resulted in lower cost and increased

reliability of cloud resources compared to the scheduling techniques such as FIFO (first

in first out) and Min-Max (min requirement task first). Toosi et. al. [40] extended

fuzzy logic into a load-balancing algorithm. Their approach helps cloud providers with

multiple geo-distributed data centers in a region by evaluating the temporal variations

in on-site power and grid power price. It then optimizes by routing the demand to a

suitable data center in order to reduce cost and improve energy utilization. A similar

work [39] proposes a multi-objective best-fit-decreasing (BFD) solution to the virtual

machine reallocation problem. The authors consider a multi-objective formulation ac-

counting for power costs and resource utilization. Although the methodologies followed

in the above works give better insights into the research domain and utility, the user’s

experience with cloud service providers has not been considered in the decision-making

progress of resource selection as we do in our work in this paper.

A recent work by Rizvi et al. [41] sought to evaluate the security of CSPs through

a fuzzy inference system. The authors used several sub-factors modeled with a fuzzy

inference model for measuring the security readiness of cloud providers from a cloud

service users’ (CSUs) perspective. Our work is inspired by this prior effort and we

further characterize cloud platforms based on performance, agility, cost, and security

(PACS) factors from a user’s perspective of non-functional requirements. Our proposed

model is unique compared to other related works because we consider the input from

CSUs and their convoluted definition of PACS to then synthesize the information into a

quantitative form, and finally evaluate cloud service provider selection. We further use

the results to create optimal cloud templates customized to user preferences through a

novel OnTimeFLC optimizer augmented with a fuzzy logic model.
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2.3.3 Approach

To ease the process of multi-cloud resource brokering for non-expert cloud users we

have proposed OnTimeFLC which is further divided into four steps: (i) Collection, (ii)

Composition, (iii) Consumption, and (iv) Fuzzy Engineering.

To guide non-expert users with resource allocation for application workflows, we

deploy a fuzzy engineering model and utilize user’s expertise along with a knowledge

base of benchmark rules for assessing PACS criteria of CSPs. Fuzzy logic is used

to model uncertainty in unquantifiable variables of a system which are the true PACS

offered from different CSP resources. The architecture of our implementation is shown

in Figure. 2.6.

Fig. 2.6 Brokering lifecycle comprising of a) Collection - Knowledge Interface System (KIS) and Fuzzy
Interface System (FIS) deployed in KBCommons portal [18] to collect user specification; b) Composition
- Templates are composed and classified by optimizer into Red, Green, and Gold templates which are
presented in the KIS for selection; c) Consumption: Pegasus, HTCondor, and workflows are configured in
a GENI [2] node machine, and HTCondor as per cloud template schedules tasks in resources of Amazon
web services (AWS), GENI or MU and d) Fuzzy Engineering - Rules and ratings on PACS criteria are
collected and inferred, the results are passed to optimizer.

2.3.3.1 Fuzzification:

This is a process of converting “crisp values” (i.e., a user-specified input or approval on

a pre-defined scale) into linguistic fuzzy values. The crisp data provided by the CSUs

are mapped to a fuzzy set that contains the membership functions and linguistic values

corresponding to the input as shown in Table 2.2. A fuzzy set is defined by the members
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it contains as shown in x ϵ X where x is the element. In particular, a fuzzy set is defined

by ordered pairs as shown below:

A = {(x,A(x)) | x ϵ U} (2.1)

where U is the universe of discourse which contains all of the elements that may be

used in fuzzy set A. The membership functions are read as A(x) wherein a membership

value ranges between interval [0,1] to each element in U. In our proposed approach,

the linguistic values represent the fuzzy sets fs (i = b, p, a, g, e) which consists of bad,

poor, average, great, and exceptional. Each of these variables can be interpreted differ-

ently by CSUs. Therefore, to standardize the fuzzification the membership functions are

used within in the fuzzy sets to define the variation in interpretation. In our approach,

CSUs can utilize linguistic values as shown in Table 2.2 in order to make a decision as

to which CSP would better fit their needs.

Fig. 2.7 Multi-Level fuzzy inference model with: (i) Red-box representing base fuzzy inference model
for measuring PACS from sub-factors, and (ii) Green box representing fuzzy inference model for evalu-
ating CSPs from PACS factors.

There are multiple factors that affect individual criteria of PACS evaluation of a

CSP. We identify four sub-factors for each of the PACS criteria used in our multi-stage

fuzzy-logic approach as shown in Figure 2.7.
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Table 2.2 Fuzzy model linguistic terms descriptions.

Linguistic
Terms

Membership
Degree

Membership Description

Exceptional (e) 80-100 Near Flawless (Generally Cheap)
Great (g) 60-80 Better than most (Often Cheap)
Average (a) 40-60 Not Sure (Infrequently Cheap)
Poor (p) 20-40 Sometime fails (Frequently Costly)
Bad (b) 0-20 Frequent failures (Generally Costly)

2.3.3.2 Membership Function:

Membership function grades the association of a value to a set. Different criteria or

variables can follow different type of membership depending on their actual distribution

of effectiveness in a metric scale.

µAi(x) = e−(x−µ)
2/2σ2

(2.2)

where µ and σ are center and width of the ith fuzzy set Ai

For our problem domain, we assumed that each of the PACS criteria and sub-factors

will have a gaussian membership function. We also control the gaussian curve parame-

ters depending on CSUs feedback to create a custom membership function.

Table 2.3 Centers and Sigma values of membership functions for sub-factors of PACS.

Criteria µ σ
Exceptional(e) 83.3 5
Great(g) 66.64 5
Average(a) 49.98 5
Poor(p) 33.32 5
Bad(b) 16.66 5

2.3.3.3 Inference Engines:

The inference engine is the core of fuzzy logic where the inference rules are applied to

the fuzzy input in order to generate the fuzzy output. Essentially, the inference rules are

used to evaluate the linguistic values generated from crisp fuzzy input and map them

to a fuzzy set. These fuzzy sets are then transformed into resulting output crisp values

using a defuzzification process. Inference engines are superficially classified into two

types: (i) Mamdani inference system: This inference system is intuitive and well-suited
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to human input and is based on an interpretable rule base. Due to its application in

simulating human-like thoughts based on constraints, we have utilized it to learn about

user biases towards different CSPs. Each of these inference rules is composed of if-

then statements wrapped around linguistic terms (Table 2.4). The if-then rules contain

the antecedents (i.e., linguistic input terms) and the consequence(i.e., linguistic output).

When fabricating an inference rule, operators such as “and,” “or,” and sometimes “not”

are used [41]. For our proposed model, we have used primarily the “and” operator

which is defined as below.

µA ∩B(x) = min[µA(x), µB(x)] (2.3)

This rule extracts the minimum number of the membership values of the fuzzy sets to

compute the “and” operation

(ii) Sugeno inference system: This inference uses singleton output membership

functions that are either constant or a linear function of the input values. The defuzzifi-

cation process for a Sugeno system is more computationally efficient compared to that

of a Mamdani system since it uses a weighted average or weighted sum of a few data

points rather than computing a centroid or center of gravity of a two-dimensional area.

We used the Mamdani inference system since we primarily aim to assess CSU’s cloud

platform preferences by translating and validating their intuition and human reasoning

with the knowledge of experts as discussed in [34][42].

2.3.3.4 Defuzzification

During defuzzification, the fuzzy output from the inference engine is mapped to a

crisp value that provides the most accurate representation of the fuzzy set [34]. The

fuzzy outputs are represented as Fo1 (o1 = b, p, a, g, e) for the first level and Fo2

(o2 = AWS,GENI,MU) for the second level and, they share the same gaussian

membership function. The system involves five types of defuzzification methods for

interpretations of rules namely: a) centroid, b) center of gravity, c) bisector of the area,

d) largest of maximum, and e) smallest of maximum. We use the centroid method to

obtain the crisp outputs from our fuzzy inference engine [43] which is represented in
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the below equation -

Crisp Fuzzy Output =

∑P
p=1 zp · uc(zp)∑P

p=1 uc(zp)
(2.4)

Fig. 2.8 Sample process showing multiple rule interpretations using mamdani inference system; The
input PACS variables are assumed to follow gaussian membership function and the CSPs membership
function is shown on a trapezoidal function.

The centroid method as shown in Equation 2.4 and Figure ?? uses the center of

mass, which is represented as z, in a fuzzy output distribution to determine a single

scalar value. The membership of the fuzzy sets is presented in uc, whereas the value

of the membership is represented as zp. Finally, the crisp output from the defuzzifier

is an approximation that is used to represent the PACS index of a CSP based on the

evaluation of the first-level factors by the CSU. The CSUs can then use these indexes

of a CSP to review if the PACS of the CSP is sufficient enough for their needs through

the second level of fuzzy inference.

2.3.3.5 Creating Rule knowledge Base:

Fuzzy logic inference works in synchronization with rules given by users as well as a

base set of rules. To collect a base set of rules, we created an online real-time data

collection approach following below methodologies:

• User identifies themselves as expert or non-expert workflow users.

• Rule data is collected only for expert users.

• Rules are created to assess different available CSPs on a predefined scale e.g.,

1-100, for non-functional PACS criteria as well as sub-factors affecting them.
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Two sets of rules used in our evaluation of cloud PACS in linguistic terms are listed

in Table 2.5. One of these rule sets is applied at the first level of inference, while

the second set is applied at the second level of inference. The full abbreviation of

each variable used in established rules is presented in Table 2.4. Figure. 2.8 shows the

process of inference of rules for creating rankings of CSPs in terms of PACS criteria.

Table 2.4 Abbreviations used in fuzzy rules.

Parameter Abbreviation Parameter Abbreviation
Performance P Auto-Scaling AS
Agility A Capacity CT
Cost C Compute CC
Security S GPU GC
Availability AV Storage SC
Reliability RL RAM RC
Response Time RT Compliance CE
Throughput TP Access Controls AC
Automation AN Auditability AY
Flexibility FY Encryption EN

2.3.3.6 Validating Gaussian Membership with CSUs Rule Base:

Through validation from multiple iterations from users, we consider that the member-

ship function for CSPs follows the Gaussian membership function. For simplicity, we

assume that the sub-factors contributing to PACS criteria of any CSP follow gaussian

membership which is justified as most of the human intuitions when validated for a

large number of people follow gaussian distribution [45]. We then aggregate the distri-

bution of the fuzzy output from 1000 CSUs from PACS subfactors to extract the per-

formance, agility, cost, and security index score that we term as “PACS-index” for each

CSP. This simulation process for 1000 CSUs generates PACS-index values for each of

the candidate CSPs and approximately fits into gaussian models. Thus, we get gaussian

membership functions for each of the PACS criteria with different ci and σi distribute

on a scale from 1-100. We repeat the simulation again in the second stage of the Fuzzy

modeling where the output is a CSP. The membership function for the input variable in

the second stage i.e., PACS is aggregated from the previous step.
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Table 2.5 Rules for evaluating the CSPs’ PACS using a Linguistic Form.

Rule No. Rules description for CSP inference
1 IF (P ≈ e) → CSP ∼= AWS
2 IF (P ≈ g) → CSP ∼= GENI
3 IF (P ≈ p) → CSP ∼= MU
4 IF (A ≈ e) → CSP ∼= AWS
5 IF (A ≈ g) → CSP ∼= GENI
6 IF (A ≈ p) → CSP ∼= MU
7 IF (C ≈ p) → CSP ∼= AWS
8 IF (C ≈ a) → CSP ∼= GENI
9 IF (C ≈ e) → CSP ∼= MU
10 IF (S ≈ e) → CSP ∼= AWS
11 IF (S ≈ a) → CSP ∼= MU
12 IF (S ≈ a) → CSP ∼= GENI
Rule No. Rules description for CSPs PACS inference

from subfactors
1 IF (AV ≈ e) ∧ (TP ≈ g) → P ∼= e
2 IF (RL ≈ e) ∧ (RT ≈ g) → P ∼= e
3 IF (RT ≈ p) ∧ (AV ≈ e) → P ∼= g
4 IF (AN ≈ e) ∧ (FY ≈ g) → A ∼= e
5 IF (FY ≈ g) ∧ (AS ≈ g → A ∼= g
5 IF (AS ≈ p) ∧ (CT ≈ p) → A ∼= p
6 IF (CC ≈ p) ∧ (GC ≈ a) → C ∼= e
7 IF (GC ≈ a) ∧ (RC ≈ a) → C ∼= a
8 IF (SC ≈ g) ∧ (CC ≈ b) → C ∼= p
9 IF (CE ≈ e) ∧ (AY ≈ a) → S ∼= g
10 IF (AC ≈ a) ∧ (EN ≈ a) → S ∼= a
11 IF (AY ≈ b) ∧ (EN ≈ p) → S ∼= b

2.3.3.7 Membership distribution

Once the fuzzy engineering model shown in Figure 2.5 is trained, the model returns a

membership distribution for the selection of CSPs for specific expert user inputs. To

bias the optimizer’s objective function toward a CSP using membership distribution,

we formulate the below formula -

Membership Factor (mp) = (1−Mp) (2.5)

where, M p is the membership value of pth platform obtained from the fuzzy en-

gineering model. This formulation ensures that the effective cost of instances from a

platform with higher membership distribution is reduced in the objective function rep-

resented in Equation 3.6. Since the maximum value of membership distribution for
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any CSP is 1, hence CSPs with lower membership value will have a lower reduction in

effective price, and thus this formulation holds validity for different distributions.

Table 2.6 Application workflows used in evaluation experiments.

Workflow
Name

Workflow Description Resources Data(Gb), vCPU,
RAM(Gb), Network(Gbps),
Clock

FastQC FastQC Quality Check workflow is used to conduct
the quality control checks on raw sequencing data so
that we can remove some low-score data before the
next step of analysis.

{3, 4, 5, 0.5, 1}; {4, 8, 10, 1,
1.2}

RNA-Seq RNA-Seq analysis allow us to identify the differential
expressed genes by performing the pair-wise compar-
ison of experimental groups/ conditions of sequenc-
ing data.

{10, 12, 20, 2, 1.2}; {10, 16,
25, 4, 1.4}

PGen PGen workflow [44] allow users to identify the sin-
gle nucleotide polymorphisms (SNPs: substitution of
a single nucleotide that occurs at a specific position in
the genome) and insertion-deletion (indels: insertion
or deletion of nucleotides from a sequence) and per-
form SNP annotation.

{20, 20, 50, 8, 1.4};
{20, 24, 100, 12, 2}; {30, 28,
120, 16, 2.2}

2.3.4 Evaluation

We evaluate the accuracy of the multi-level fuzzy engineering model and its ability in

evaluating cloud platforms from the user’s perspective by validations. For the evaluation

of the fuzzy model, we assume that the user is an expert user. We create the fuzzy model

system and create rules defining behaviors of our three base cloud service providers i.e.,

MU (private cloud), GENI (community cloud), AWS (public cloud). The PACS index

of CSPs can be calculated based on the level of satisfaction a CSU receives from a given

CSP. More specifically, we ensure the validity for each of these PACS-index for CSPs

by applying the theorem as given by [41]. As per the theorem suggested in [41], we

sample inputs from only those CSUs who are experts i.e., their crisp input for cloud

platform services aligns with true service level agreements from cloud platforms. Such

a process of identifying expert CSUs needs external independent third-party validation.

For our solution, we verify expert users by cross-checking their choices to align with a

large number of CSUs. To validate the effectivity of our proposed solution, we simulate

1000 CSUs iteratively 10 times with inherent biases for subfactors as shown in Table 2.4

towards three CSPs namely AWS, GENI, and MU.
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(a) Average performance measurement for
CSPs using the fuzzy model with simulation on
1000 CSUs for 10 iterations
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the fuzzy model with simulation on 1000 CSUs
for 10 iterations

Fig. 2.9 Efficiency of our fuzzy inference engine in quantifying the performance , agility and cost
metric for various CSPs

Figures 2.9a, 2.9b, and 2.9c show our simulation towards Performance, Agility, and

Cost benchmarking of three concerned CSPs. Each data point in Figures 2.9a, 2.9b, and

2.9c represent the average approval in % towards a specific sub-factor of the CSPs. We

simulate the process 10 times, and we find the fuzzy output distribution toward PACS

of CSPs from the fuzzy inputs in each iteration. For example, considering only perfor-

mance, each CSU in each iteration results in one fuzzy output so we get 1000 perfor-

mance fuzzy values using centroid defuzzification (note that the membership functions

are gaussian) for each CSP. We remark that we have created the fuzzy models to simu-

late defuzzification methods using the Matlab Fuzzy Toolbox [46]. When this process

is iterated 10 times, we get 10000 performance fuzzy values for each CSP. The average

of these fuzzy values for these three CSPs is shown in Figures 2.9a, 2.9b, and 2.9c as

straight horizontal lines. Note that these fuzzy values have a range of 1 to 100. When
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this scale is divided into 5 subdivisions as mentioned in Table 2.3, it provides intuition

for rule creation in the second level of fuzzy inference as shown in Table 2.5. Based on

these results, we prove the validity of our proposed fuzzy inference system which can

guide a new user towards CSPs based on their preferences towards sub-factors.
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Fig. 2.10 Percentage of workflows with improved execution time (i.e., lesser time) when fuzzy engi-
neering was used ‘with’ OnTimeFLC resource broker vs. OnTimeFLC was used ‘without’ fuzzy infer-
ence inputs.

Performance Evaluation: We now describe the evaluation results of our proposed

framework OnTimeFLC’s efficiency in composing cost-effective template solutions for

any given user requirements and preferences. We evaluate the efficiency of the fuzzy

model to improve application workflow execution time performance at different re-

source specifications as shown in Table 3.6. We compose, allocate, and compare tem-

plate solution performance for the user specifications for two cases:(i) Fuzzy model

with the expert user was considered to improve the execution performance of work-

flows by selection of CSPs using OnTimeFLC and, (ii) Only OnTimeFLC’s core ILP

optimizer engine. The experiments were repeated (10 times) iteratively for each speci-

fication to calculate the average execution time for workflows. Figure 3.12 corresponds

to our experimental results that show the time to execute the workflow reduced in 98%

of the cases with OnTimeFLC including fuzzy engineering. We remark that the rate of

improvement in efficiency is highly dependent on the expertise of the user as the fuzzy

model suggests CSPs considering users’ PACS rating of CSPs.
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2.4 Summary

In this chapter we discuss our work done toward understanding and capturing effectively

user requirements for their applications through intuitive GUI designs and studying the

relevance of the structure of the data required to understand true QoS expected by the

use. We also discuss potential approaches to effectively capture users’ biases, experi-

ences, and expertise with cloud service providers to improve resource recommendations

for their applications. Through this combination of capturing user engagement and user

preferences, we were able to truly capture user’s perspectives and needs from the cy-

berinfrastructure which is then transferred to the recommender engines of the resource

broker in a structured format so as to create the best resource recommendation for the

users.
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CHAPTER 3

Multi-Cloud Optimization for Resource Selection

3.1 Overview

Data-intensive science applications in fields such as e.g., bioinformatics, health sci-

ences and high-energy physics are becoming increasingly dynamic with resource re-

quirements. These applications often require specialized instruments and computing,

networking and storage resources (e.g., scientific instruments, supercomputers, feder-

ated data repositories, public clouds [1], [2]). Researchers using these applications

which are based on advanced scientific workflows frequently require a diverse set of

resources that are often not available within a single CSP. They also demand synergistic

multiple CSP resources. They seek to create analytics workflows to utilize cloud so-

lutions easily, efficiently and with high performance, while containing costs and time

for configuring the necessary resources. As a result, the selection and configuration of

multi-cloud resources for modern applications requires handling of cost-performance

trade-offs as well as intra-CSPs operability which could be based on factors of CSP

usability, policies, and security guidelines. Thus, selection and configuration of multi-

cloud resources for modern applications requires handling objective factors such as

performance, agility, cost, security (i.e., PACS factors) as discussed in Chapter 1.

3.2 Optimization for Resource Selection

We propose a novel multi-objective optimization model integrated within a novel re-

source brokering middleware viz., OnTimeURB in order to meet KBCommons biolog-

ical user-defined constraints of bioinformatics application workflow performance, cost,
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and CSPs interoperabilities. The research problem we are trying to address is to ease

the process of maximizing cloud resource utilization for non-cloud expert users while at

the same time respecting constraints from these users. Our target user being a non-cloud

expert, we prescriptively recommend an intelligent set of custom solutions optimized

based on different criteria of performance and cost so as to facilitate users to compare

and select the best-suited solution template to deploy a given workflow. For evalua-

tion of our OnTimeURB middleware implementation, we conduct experiments with a

catalog of bioinformatics application workflows developed within KBCommons frame-

work, over varying next-generation sequencing (NGS) data types and sizes of datasets

for various organisms. We consider four CSP resources (i.e., Amazon Web Services [1],

GENI [2], XSEDE [47] and local MU [3]) featuring more than 300 different machine

configuration instances in our experiments. User data to be processed with the work-

flow is stored in CyVerse [19] infrastructure. We use the Pegasus workflow management

system [48] for the creation and maintenance of the workflow’s pipelines. Further, HT-

Condor [49] and pyGlidein [50] tools are used to automate the distribution of sub-tasks

from the workflows to resources distributed across CSPs deployed using cloud template

solutions generated from our middleware. We compare our OnTimeURB middleware

results with a state-of-the-art k-nearest neighbors (k-NN) approach [12] in order to eval-

uate OnTimeURB’s ability to consistently create cost and performance-efficient optimal

solutions. Further, we show the detrimental effect of increasing cloud interoperability

constraints on the cost of a cloud solution template composition.

3.2.1 Significance and Related Works

In this section, we discuss some of the related works for cloud solution composition

based on single and multiple CSPs.

Deelman et al [9] highlights a comprehensive description of the Pegasus Workflow

Management System which helps in the execution of large-scale, multi-stage simulation

and data analysis pipelines to enable the study of complex systems. Pegasus can jointly

be used with HT Condor [49] a framework to set up high throughput computing sys-

tem, for the creation of scientific workflows. However neither Pegasus nor HTCondor
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helps users in cloud resource allocation, rather they focus on scheduling and handling

communication within subtasks of workflows.

Mireslami et. al. [10] propose an optimizer based on geometric programming which

minimizes deployment costs while fulfilling user requirements and Quality of Service

(QoS). In follow-on work, they propose an algorithm based on the Branch-and-Bound

technique which refines the optimizer by adding constraints. Given that the CSPs in

reality offer a discrete number of machine instances, their proposed optimizer based

on geometric programming disregards the granularity of instances. Moreover, their

optimization considers only a single CSP.

Zou et. al. [51] has proposed an Artificial Intelligence (AI) based cloud template

composition. Their work differentiates CSPs into different domains each having sub-

domains such as computing or storage, with each subdomain identifying a set of ser-

vice files. Further OWLS-Xplan [52] is used for composing services based on user

requirements. However, their work assumes that inter-cloud communication is time-

consuming, and costly and tries to minimize the number of CSPs in the solution with-

out considering performance, cost, and inter-cloud incompatibility factors. Kurdi et.

al. [53] again assume similar inter-cloud communication limitations, and propose a

COM2 algorithm that creates multi-CSPs based solutions. This algorithm ensures that

the clouds with maximum services are selected, thus increasing service robustness but

again does not consider performance, cost, or inter-cloud incompatibility. An algorithm

to solve the multi-objective task scheduling problem is proposed by Panda et. al. [54] by

considering the minimization of makespan and the total cost in a multi-cloud environ-

ment. However, their algorithm assumes unlimited resources on all CSPs and focuses

on scheduling tasks of the application, without considering user-defined constraints on

resources and multi-cloud compatibilities.

Antequera et. al. [12] provide users with custom template solution recommenda-

tions based on heterogeneous CSPs. The recommended templates are based on the

well-recognized k-nearest neighbor’s algorithm (k-NN) algorithm. Predefined template

solutions are created and stored in a catalog, and a template solution with the closest

match to user specification is suggested to the user. Nevertheless, the approach fails
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to consider inter-cloud operability and is less cost-efficient compared to our proposed

OnTimeURB middleware.

3.2.2 Multi-Cloud Resource Allocation

We divide our middleware’s control flow into three logical sub-divisions to help non-

expert cloud users, namely: i) Knowledge Interface System (KIS), ii) Template Com-

position iii) Template Deployment and Utilization.

3.2.2.1 Knowledge Interface System

We leverage KBCommons [18] web portal to collect user resource requirements via

a KIS module. KBCommons portal provides a comprehensive web resource for stor-

ing, sharing, analyzing, exploring, and visualizing multi-organism genomics and multi-

omics data. We implemented and integrated our KIS module with bioinformatics an-

alytics workflows user interface (UI) deployed within the KBCommons portal to col-

lect user-specific resource constraints and criteria to execute user workflows. The KIS

presents users with a set of questions (e.g.,vCPU/RAM required ) to capture their re-

quirements. Additionally, users can provide a threshold maximum on the requested

resources, for example, a 10% threshold on 10Gb RAM memory requirement will al-

low the OnTimeURB optimizer to compose solutions with RAM memory up to 11Gb.

3.2.2.2 Template Composition

User specification collection is succeeded by composition wherein the requirements are

passed to the OnTimeURB optimizer engine to compose template solutions similar to

the composition by Antequera et. al. [12]. Each template solution in the catalog is

formatted as a JSON object comprising of a set of distinct machine node instances.

Machine node instance refers to machine configuration in terms of available processing

units(CPUs), memory, bandwidth, etc. For example, a1.medium is one of the machine

instances provided by AWS [1].
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3.2.2.3 Template Deployment and Utilization

Once the user selects a recommended template solution by OnTimeURB, the resources

are deployed following the template specification. Fig 3.1 shows the control flow be-

tween OnTimeURB components that we have designed and implemented for biological

researchers. The bioinformatics workflows are created based on the Pegasus workflow

management system [48]. Pegasus, HTCondor, pyGlidein, and iRODS [19] tools are

configured to run the workflows on the deployed cloud resources. Pegasus breaks the

workflow’s pipeline into subtasks which are further scheduled on different cloud ma-

chines by HTCondor and pyGlidein. Subsequently, the performance monitoring of ap-

plications and deployed resources can be done via the KBCommons portal, which helps

users in making better resource specifications in future interactions with OnTimeURB.

Fig. 3.1 Application control flow comprising of a) Collection: KBCommons Knowl-
edge Interface System (KIS) to collect user specification. CyVerse data portal is used
wherein user can keep their data to be processed b) Template Composition: multiple
templates are composed and classified by the optimizer, c) Deployment: Tools namely,
Pegasus WMS, HTCondor, Pyglidein, iRODS configured and integrated with KBCom-
mons, utilize the selected template for execution of bioinformatics workflows.
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3.2.3 Approach

3.2.3.1 Integer Linear Programming Based Optimization

Custom template composition essentially can be formulated as a selection of machine

configurations from a distributed set of diverse cloud instances under specific con-

straints, which is an NP-hard problem. To effectively formulate the problem into a

solvable model, we use CPLEX [17] optimizer to create a relevant optimization model.

The objective of the model is defined in a manner to reduce the cost of the template

solution for user requirements. The optimization model is constrained by user specifi-

cation of required resources and resource thresholds. For example, a user can specify

a requirement as {cpu:8, ram:16Gb, storage: 60Gb} with a threshold of 25% which

acts as a constraint in the model. The below classifications identify potential template

responses from the OnTimeURB middleware

High Performance and Cost: All user-defined resources are amplified in step sizes

up to a user-defined threshold limit. Each step gives an amplified resource constraint

which results in a corresponding solution. Prospective provisioning: minimal configu-

ration {cpu:8, ram:16Gb, storage: 60Gb}, maximum configuration {cpu:10, ram:20Gb,

storage: 75Gb} etc.

Low Performance and Cost: The template is the closest match to user resource

specification with minimal overprovisioning. Prospective provisioning: {cpu:8, ram:16Gb,

storage: 60Gb} OR {{cpu:4, ram:8Gb, storage: 30Gb} and {cpu:4, ram:8Gb, stor-

age: 30Gb}} etc.

We base our model on only the resources that can be considered as a joint selection

from multiple cloud instances such as e.g., the number of CPU cores, RAM memory,

Storage, etc. for optimization. The allocation of such resources can be optimized us-

ing our OnTimeURB engine. Our OnTimeURB optimizer engine uses combinatorial

optimization with Integer Programming (IP) to return an integral number of machine

instances from CSPs.

To effectively consider different machine configurations from different CSPs, we

formatted the configurations into JSON objects as detailed in Listing 3.1. Real machine
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instance configurations were extracted from more than 300 physical instance types from

different CSPs. Since our middleware focuses on non-frequent cloud service users

hence cost for a pay-as-you-go basis was referred from the CSPs. This formatting

allows users to add more instances from varying CSPs in the knowledge base as per

availability and thus can effectively be used by the optimizer for template composition.

[{ "csp":"AWS",

"OS":"LINUX",

"name":"a1.large",

"vCPU":"2",

"ram":"4",

"price":"0.051",

"network":"10",

"clock":"2.3",

"pricing_ssd":"0.10",

},{...} ]

Listing 3.1: JSON formatted machine instances provided to optimizer engine

To ensure hardware granularities are available as instances from CSPs, the opti-

mization problem is formulated as an integer linear programming (ILP) model which

is convex and guarantees the best possible solution. Equation 3.6 ensures the objec-

tive to minimize the cost of template solution creation. The number of instances (xp
i)

are calculated subject to the constraints deployed in the model referenced in Equa-

tion 3.7. Constraints are created on instances such that the resources contributed from

the deployed instances should satisfy user-specified requirements (St). Templates are

obtained by varying thresholds (Sth
t) on resources. Equation 3.8 adds constraints on

instances that belong to incompatible CSPs using ∆p1p2.

Table 3.5 summarizes parameters and variables pertaining to our modeling Equa-

tions 3.6,3.7,3.8.

minimize

P∑
p=1

Ip∑
i=1

cpi
wp

i

· xp
i (3.1)
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Table 3.1 Parameters, Sets and Variables for Problem Formulation

Parameter
Symbol

Parameter Description

cpi cost of renting ith instance at Pth service provider
wp user defined factor ranging (0-1] for Pth

provider to assign preference to CSPs
Ap

i max number of instances of type i available at
provider p

Rp
it resource tth available with ith instance of Pth re-

source
St specification requirement of type t
Sth
t threshold on resource of type t

∆p1p2 binary number indicating compatibility be-
tween CSPs

M large integer number
Set Symbol Set Description
IP total number of instances in Pth provider
P total number of providers
T total type of resources
Variable
Symbol

Variable Description

xp
i ∈ [0, Ap

i ] is an integer variable denoting the number of
instances of type i at provider p

δP1P2 ∈
{0, 1}

is a binary variable ensuring only one of incom-
patible P1, P2 is selected

subject to:
P∑

p=1

Ip∑
i=1

Rp
it · x

p
i ≥ St + Sth

t ,∀t ∈ T (3.2)

Ip1∑
i=1

xp1
i ≤ M · δp1p2

Ip2∑
i=1

xp2
i ≤ M · (1− δp1p2)

,∀p1, p2 ∈ P : ∆p1p2 = 0 (3.3)

3.2.3.2 Interoperability

Researchers may have a personal bias towards certain CSPs due to specific services,

policies, or security requirements unique to users’ workflow applications. Since these

requirements vary with users, we implemented an interoperability matrix within On-

TimeURB middleware to allow users to be able to custom-define CSP selection as per
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their expertise and preferences. The matrix is illustrated in Table 3.4, where “1” indi-

cates that corresponding row and column CSPs are operable with each other, while “0”

indicates that the CSPs are not operable simultaneously. As per the implementation of

the matrix, diagonal elements are always “1” because we assume instances of a cloud

provider will always be operable with each other. As an example Table 3.4 suggests

AWS [1] and GENI [2] can not operate together. Hence, machine instances from both

of these CSPs will not be taken in the template composition simultaneously, however,

these CSPs can compose templates by combining with other CSPs.

Table 3.2 Interoperability matrix

CSPs PLSCI2 AWS GENI XSEDE local MU
PLSCI2 1 1 1 1 1
AWS 1 1 0 1 1
GENI 1 0 1 1 1
XSEDE 1 1 1 1 1
local MU 1 1 1 1 1

NOTE: Rows and column represent CSPs. PLSCI2 is the local host
machine containing the workflow application.

3.2.4 Evaluation

In this section, we show how the proposed OnTimeURB performs consistently better in

composing cost-effective template solutions for user requirements as compared to the

state-of-the-art k-NN approach [12] for custom template composition. We also evaluate

the impact of the interoperability matrix on cost-to-solution for templates.

3.2.4.1 Tools and Configurations

OnTimeURB template recommendations are evaluated using the implemented control

flow as shown in Fig. 4.4. KIS module was integrated into the KBCommons science

gateway portal to collect user specifications. The OnTimeURB optimizer engine was

hosted on an independent GENI [2] node machine as a web service. Pegasus [48],

HTCondor [49], pyGlidein [50], and CyVerse iCommand [19] were installed and con-

figured on the independent local machine (PLSCI2) and they interact with the optimizer

via REST web service calls. Bioinformatics application workflows were created using

Pegasus and configured in the node machine (PLSCI2). Workflow-specific tools are
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packaged along with the workflow for ease of distribution on different cloud platforms.

The workflow accesses user data located at CyVerse using the iCommand in real-time

for the processing steps.

3.2.4.2 Bioinformatics Workflow Description

In recent years, next-generation sequencing (NGS) technology has improved dramati-

cally, with costs dropping and the number and range of sequencing applications increas-

ing exponentially. A wide variety of types of high-throughput sequencing can be gen-

erated from RNA or DNA molecules through NGS library construction and sequencing

including techniques such as whole genome sequencing (WGS), RNA-Seq, ChIP-Seq,

DAP-Seq, RIP-Seq, methylation and more. To efficiently utilize the large-scale NGS

data for analysis, we have developed six bioinformatics workflows, and we have further

centralized the input data for these workflows using CyVerse [19]. CyVerse data stor-

age was used as the cloud storage infrastructure and all raw data and final results are

stored and managed therein. The Pegasus workflow system is used to define and control

the required computational tasks of workflows. These tasks include user-defined tasks

as well as Pegasus-added tasks such as data staging between the CyVerse data storage

and cloud computing infrastructure’s file system such as XSEDE [47], PLSCI2 and

AWS [1]. Pegasus also adds data cleanup tasks to maintain and minimize the workflow

footprint on the file system as the workflow progresses.

We have split the analysis pipeline into multi-step and parallel processes to gain

the most efficiency. The workflow describes the dependencies among the tasks as a

directed acyclic graph (DAG), where the nodes are tasks and the edges denote the task

dependencies. And each computing task can optionally be assigned a proper number of

cores and memory that they can efficiently utilize to run on the cloud computing site.

We made the bioinformatics workflows available via a web-based implementation in-

tegrated with KBCommons. The workflow submission within KBCommons is mainly

intended for biological researchers and guides them through five steps for workflow cre-

ation and submission, which allows them to access the results within the KBCommons

as well.
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Fig. 3.2 Bioinformatics Workflow which shares tasks and tools for their execution.

Table 3.3 Increasing User Specifications for the Workflows

User Cases Data Size (Gb) vCPUs RAM(Gb) Network(Gbps) Clock(Ghz)
Fastqc
User 1 3 4 8 0.5 1
User 2 4 4 15 2 1.2
User 3 6 6 15 4 1.4
User 4 8 6 25 8 1.4
RNASeq
User 5 10 12 25 4 1.4
User 6 10 14 30 10 1.4
User 7 20 14 50 10 1.4
User 8 20 16 60 10 2
Pgen
User 9 20 20 30 10 1.4
User 10 20 22 40 10 1.4
User 11 30 24 60 12 1.4
User 12 35 26 60 16 2

3.2.4.3 Cost to Custom Template Efficiency

To evaluate the efficiency of OnTimeURB to suggest cost-effective solutions, we con-

sidered three of the implemented workflows based on their resource requirement from

lower to higher scale (size of NGS data and workflow pipeline), namely, Fastqc (low

scale), RNASeq (medium scale), PGen (high scale). Note that the Alignment work-

flow is a sub-workflow of RNASeq and Pgen refer Fig. 3.2. Further, we assessed

resource requirements for these workflows for different sizes of data, based on our per-

ceived performance requirements. Table 3.10 summarizes these user specifications for
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the workflows. To assess the benchmark efficiency of the optimizer we did not apply

interoperability constraints between the four candidate CSPs-that is to say AWS [1],

GENI [2], XSEDE [47], local MU [3].
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Fig. 3.3 Template resource suggestions comparison using k-NN and OnTimeURB, when partial (only
CPU) and full specifications (all requirements) are provided with partial (only AWS) and full (i.e., all
CSPs) knowledge base. The resource allocations closest to the specified specifications are better.

Fig. 3.3a compares OnTimeURB’s cost to the template solution for the user specifi-

cations from Table 3.10 with only AWS [1] as candidate CSP against the well-recognized

k-NN approach suggested in [12], while Fig 3.3b compares the cost to a solution consid-

ering all four CSPs. From the cost comparisons, it is evident that OnTimeURB outper-

forms kNN for all user’s requirements specified in Table 3.10 for composing template

solution in a single CSP as well as the multi-cloud base. We acknowledge that the cost

to template largely depends on the size of CSPs instance knowledge base considered

within the optimizer, nevertheless, OnTimeURB is expected to outperform kNN with
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all size of instance knowledge base because kNN searches for a single machine instance

matching closest to user requirement while OnTimeURB composes template solution

by combining multiple machine instances, thus OnTimeURB is leveraging the instance

granularities from CSPs in a better manner.

3.2.4.4 Interoperability cost repercussions

The interoperability matrix is incorporated within OnTimeURB to allow users to add

restrictions on simultaneous CSP selection of incompatible CSPs. Since the matrix

can be filled in numerous ways by users, we identify the matrix representing the least

and maximal compatibility between CSPs. Further, we evaluate the maximum cost to

template repercussions caused due to user-identified interoperability matrix. Fig. 3.3c

summarizes the cost of template composition for user specifications from Table 3.10,

for minimum and maximum user-defined intra-CSPs compatibility. The results suggest

an increase in cost for template composition when intra-CSPs constraints are applied.

However at higher scales of user specification cost to compose solutions is the same,

this is due to the fact that at higher scales OnTimeURB composed templates consisted

of only a single CSP thus nullifying the effect of intra-CSP constraints.

3.3 Machine Learning Based Resource Allocation

Selection and configuration of multi-cloud resources for modern applications requires

handling objective factors such as performance, agility, cost, security (i.e., PACS fac-

tors) as shown in Figure 1.3. This multi-cloud resource brokering can be formulated

as a multi-dimensional optimization problem in resource selection that is contextually

dependent on user preferences and their application requirements. Moreover, the di-

versity in the resources and capabilities offered by different CSPs creates a situation of

excessive/overwhelming choice for users. The choice issue is especially significant for

users who are not cloud platform experts and require relevant guidance for multi-cloud

resource selection. In this paper, we present a novel multi-objective optimization al-

gorithm that powers a multi-cloud resource broker middleware viz., OnTimeURB that
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considers objective PACS factors in the brokering process. The algorithm is aided with

an ML model in order to additionally account for user-centered subjective factors for

workflow executions. The ML model is designed to learn the bias of expert users to-

wards cloud platforms for different requirements of functional criteria and workflow

sizes.

Fig. 3.4 Brokering lifecycle comprising of a) Collection - Knowledge Interface System (KIS) deployed
in KBCommons portal [18] to collect user specification; b) Composition - Templates are composed and
classified by optimizer into Red, Green, and Gold templates which are presented in the KIS for selection;
c) Consumption: Pegasus, HTCondor and workflows are configured in a GENI [2] node machine, and
HTCondor as per cloud template schedules tasks in resources of AWS, GENI or GCP and d) Knowledge
Engineering - Performance metadata such as execution time, success rate are collected from the con-
sumption step and stored in a central repository, which is used to train a machine learning model.

3.3.1 Significance and Related Works

For the providers, the placement of heterogeneous VMs on their infrastructure poses a

key optimization challenge. One of the contributions given in [55] involves a heuris-

tic backtracking algorithm for VM placement while considering inter-VM interactions

in heterogeneous data centers. Their algorithm aims to increase the performance of

a chosen infrastructure by optimizing the placement of VMs. In a similar work, au-

thors in [56] consider a service level agreement-based resource allocation problem for

multi-tier cloud-hosted applications. Their work is mainly focused on the optimization

of multi-dimensional resource allocations in data centers using an algorithm based on

force-directed search. In contrast, our work focuses on using the context of users’ func-
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tional and non-functional requirements. In another recent related work [57], authors

proposed a multicriteria optimization approach for CSP selection in a multi-cloud set-

ting. The analytic hierarchy process (AHP) was used for the assessment and assignment

of priorities to the CSPs, which was further optimized by using three metaheuristic al-

gorithms viz., simulated annealing, genetic algorithm, and particle swarm optimization.

Note that their optimizations were focused on the selection of a single CSP for fulfill-

ing a service requirement. We have used a similar AHP-based solution to compare and

evaluate our ML-guided template solution.

As discussed previously, provisioned cloud resources do not always meet QoS ex-

pectations. There have been attempts to understand this fluctuation of QoS levels

through learning-based approaches, which has motivated our use of a knowledge en-

gineering approach in OnTimeURB.

There are multiple factors such as VM configurations, application workload, net-

work bandwidth, and computation capabilities that govern the selection of resources,

and these factors can vary in real time within an application deployment. This neces-

sitates leveraging learning-based solutions for improving real-time resource selection.

An interesting result can be seen in the observation from [58] which proposed PARIS, a

Performance-Aware Resource Inference System. They noted that bigger machine con-

figurations are not always better, and similar machine configurations can provide dif-

ferent performances. They used opaque workload resource requirements to benchmark

testbed machines (VMs) and a random forest model was found to be effective for allo-

cating VMs. Although the approach considers the subjectively perceived performance

of machines and assumes a static system of VMs, it can be further generalized so that

dynamic resource allocations can be fulfilled. While the approach in [58] successfully

studies the QoS fluctuations, large applications such as bioinformatics workflows fea-

ture diverse pipelines with different processes. Typically, every workflow process has

unique resource requirements, hence resource optimization has to be effective to fulfill

requirements from all these processes. Consequently, the problem also needs to opti-

mize cloud resource allocations while also ensuring optimal resource scheduling. For

optimizations of task scheduling and management, learning-based models have been
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proposed. In an exemplar work on optimal task scheduling, a learning model viz., Dec-

ima based on graphical neural network (GNN) and reinforcement learning (RNN) [59]

was detailed. GNN is used for organizing the application job metadata, while RNN is

used for learning the parallelism level of job execution. The objective is on improv-

ing average job completion time over state-of-the-art scheduling algorithms. Given that

these approaches use learning-based algorithms, they are dependent on training method-

ologies which can pose adaptability problems for changing user resource requirements

of applications. Nonetheless, the above works motivate our approach to utilize ML

models for aiding optimization through knowledge engineering.

In our previous work [20], we provided a brokering approach that takes into account

user PACS factors for the allocation of multi-cloud resources using ILP. In this work, we

extend our prior work by modeling agility and its implications for multi-cloud resource

brokering. More importantly, we introduce a novel knowledge engineering approach

to better understand and utilize true QoS values from cloud resources contextually for

applications. The knowledge engineering approach involves iterative execution of ap-

plications at varying workloads, metadata data collections for successful executions,

and performance benchmarking of data using expertise from expert knowledge engi-

neers. This information is used for creating training data for an ML model to learn the

QoS behavior of cloud resources. This information also helps in the further integration

of results from knowledge engineering with the ILP model for cloud template solution

recommendations that improve the performance of data-intensive scientific workflows.

3.3.2 LifeCycle for Resource Allocation

Figure 3.4 shows the brokering lifecycle of OnTimeURB for KBCommons that in-

cludes: i) Collection, ii) Composition, iii) Consumption, and iv) Knowledge Engineer-

ing. These steps are designed to help non-expert cloud users of KBCommons working

on bioinformatics workflow applications to leverage experiences from expert users and

increase the efficiency of their infrastructure resources. The steps specifically leverage

the OnTimeURB orchestrated components of ILP-based optimizer, ML-based knowl-

edge engineering, and multi-cloud resource task schedulers.
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3.3.2.1 Collection

The resource brokering involves collecting user resource requirements through a Knowl-

edge Interface System (KIS) integrated in the KBCommons web portal [18] as shown in

Figure 3.4. KIS purpose in KBCommons is to collect user-specific resource constraints

and criteria to execute bioinformatics workflows hosted on private cloud resources. The

KIS presents KBCommons users with a set of questions (e.g., number of vCPU/RAM

required) organized into functional groups such as storage, networking, computation,

and software requirements. Additionally, users can provide a upper bound on the re-

quested resources e.g., 20% threshold on 200 Mbps of network bandwidth. This input

indicates to the optimizer that up to 240 Mbps of network bandwidth may be required

by the user, and thus the optimizer may also generate templates with 240 Mbps net-

work interfaces. The collection process also requires users to identify themselves as

expert/non-expert cyber users. This data allows us to record the choices and feedback

of the expert knowledge users on the performance and efficacy of recommended cloud

template solutions. The data is further used to train an ML model, which can help in

making better and more intelligent choices for non-expert users.

3.3.2.2 Composition

Once the user-specified requirements for the application workflow are collected, they

are input to the OnTimeURB optimizer to create template solutions forming a catalog.

Each template solution in the catalog is formatted as a JSON object comprising of a set

of distinct machine node instances. Each node instance represents a machine configura-

tion in terms of the available processing units (i.e., CPUs, memory, network bandwidth,

storage). For example, a1.medium is one of the machine instances available from

AWS. A sample representation of the template is provided as shown in Listing 3.2. We

can see that three distinct types of AWS instances are used to compose the template.

We categorize the compositions of templates into three distinct types: i) Red, ii) Green

and iii) Gold template solutions.

[{csp:AWS,name:t3.nano,count:2},

{csp:AWS,name:t3.micro,count:1},
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{csp:AWS,name:t3.small,count:1}]

Listing 3.2: Sample template format consisting of three type of instance machines from AWS.

Red Solution: Strict user-defined resource constraints are considered. This is the

most cost-effective optimal solution. The template is the closest match to the user re-

source specification with minimal over provisioning. Potential resource provisioning:

{cpu:4, ram:8Gb, network: 200Mbps, storage: 30Gb} OR {{cpu:2, ram:4Gb, net-

work: 200Mbps, storage: 15Gb} and {cpu:2, ram:4Gb, network: 200Mbps, storage:

15Gb}}.

Green Solution: All user-defined resources are amplified in step sizes up to a user-

defined threshold limit. The agility of all the CSPs is considered to be the same for

this recommendation. Each step gives an amplified resource constraint which results

in a corresponding over-provisioned solution. The number of steps up to the thresh-

old decides the number of solutions generated in this template solution recommenda-

tion category. Potential resource provisioning: a) minimal {cpu:4, ram:8Gb, network:

200Mbps, storage: 30Gb}, b) maximum {cpu:5, ram:10Gb, network: 250Mbps, stor-

age: 37Gb}.

Gold Solution: All user-defined resources are amplified in step sizes up to a set

threshold limit. Hence the templates lie between a minimal and maximum configuration

similar to the Green solution, however, the agility of the CSPs is applied as per the user

preferences. Considering the user will give more preference to agile platforms while

defining agility factors, OnTimeURB will prefer more agile CSPs to compose template

solutions. We provide more details about the agility factor in Section IV-A.

3.3.2.3 Consumption

Once a cloud template is selected and initialized, the resources as per the template

specification are automatically deployed. Figure 4.4 illustrates the detailed steps of

the template consumption and monitoring that we have designed and implemented for

a set of custom scientific workflows in KBCommons based on the Pegasus workflow

management system [48] and HTCondor job scheduler [49]. Pegasus and HTCondor

are configured to run a given application workflow on the deployed cloud resources
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recommended by a solution template. Pegasus breaks the workflow tasks into subtasks

framed into a directed acyclic graph with edges representing dependencies, which are

further scheduled on different cloud instances by HTCondor scheduler and pyGlidein

glidein service [50].

3.3.2.4 Knowledge Engineering

To guide non-expert users with resource allocation for application workflows, we de-

ploy an ML model for knowledge engineering i.e., to learn from the resource allocation

patterns of expert users for varying applications. The essence of the ML model lies

in the process of learning about performances in terms of the time metric of sub-tasks

within workflows. The iterative execution of varied workflows at different workloads

by expert users and their feedback helps in creating the benchmark records shown in

Figure 3.4.

3.3.3 Approach: Key Optimizations

3.3.3.1 Security

We consider security policy incompatibilities between CSPs as a constraint to multi-

cloud resource selection for users. Security requirements are unique to groups of users

and can range from authentication, access control, sensitive data storage, administrative

privileges, location of CSP and communication link between nodes, and more. For

example, GCP [4] provides encrypted storage by default while AWS [1] and Azure [5]

do not support default support. Consequently, the users processing data that requires

file encryption by default would want to choose processing resources from GCP [4]. To

mitigate such security policy issues, OnTimeURB allows users to be able to custom-

define an interoperability matrix as per their expertise and preferences. For the matrix

illustrated in Table 3.4, “1” indicates that corresponding row and column CSPs are

compatible with each other, while “0” indicates that the corresponding CSPs are not

compatible.
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Table 3.4 Interoperability matrix.

CSP LOCAL AWS GENI GCP AZURE
LOCAL 1 1 1 1 1
AWS - 1 1 0 1
GENI - - 1 1 1
GCP - - - 1 0
AZURE - - - - 1

NOTE: Rows and column represent CSPs. Matrix suggests GCP [4]
and AZURE [5] are incompatible. Consequently, machine instances from

both of these CSPs will not be taken in the template composition
simultaneously. LOCAL is the user host machine containing the application.

3.3.3.2 Agility

Since our proposed optimizer design assumes multi-cloud resources, it considers the

availability of diverse resources from compatible CSPs while optimizing the cost. More-

over, to ensure the agility of the template solutions, we use a parameter wp that includes

a weight on the cost of instances of the CSPs. The wp will be a number between 1

to 10, and represents a global view of services and features provided from individual

CSPs. A smaller wp suggests a fewer number of services from a CSP. The optimizer

will also track the increase in cost-to-agility ratio in the inclusion of instances from a

CSP as per Equation 3.6. Weights wp for the agility of cloud providers can be assessed

by the number of agile services provided by the provider (f p) against a combined set

of all agile services (F) offered from all providers assessed by the user as formulated in

Equation 3.4, and normalized between 1 to 10. These services can be e.g., ‘Locations

of servers’, ‘Available Security Protocol’, ‘Available Networking Options’, and ‘Reli-

ability and Failover’. User discretion is used to identify agile services from CSPs as

users will have varying standards in terms of agility expectations. We use Cloudarado

[99] as a reference data source to identify a set of agile services required by a specific

user. Some of the agile features can be recognized as cloud features and management,

cloud servers, images and licenses, networking, security, and reliability and failover.

We further define an Agility Index to compare agility of individual template solutions

generated from the middleware optimizer as given by –
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AgilityFactor(wp) =
fp

F
(3.4)

AgilityIndex: Compute power (up) weighted mean of agility factor (wp) of CSPs

involved in template composition. These parameters, as summarized in the definitions

Table 3.5, are inputs for Equation 3.5. We assume the compute power as the primary

criteria to assign weights due to the fact that - performance for data processing work-

flows highly depends on compute power and network interface bandwidth of a resource

node. A CSP which is assigned a larger fraction of computing power and network inter-

face bandwidth requirement from a user will have a larger impact on the overall agility

of the template. Hence, we define –

AgilityIndex =

∑P
p=1 u

p · wp∑P
p=1 u

p
(3.5)

3.3.3.3 Optimizer

To ensure that granular instances from CSPs are considered, the optimization problem

in Figure 3.4 is formulated as an integer linear programming (ILP) model, which is

convex and guarantees the best possible solution. Equation 3.6 ensures the objective to

minimize the cost of template solution creation, while also selecting better performing

CSPs represented by the probability factor dp. The value of wp for CSPs is normalized

between 1 to 10 for our study. The selection of the normalization scale is dependent on

the user preferences and related resource requirements in absolute values. We choose

this normalization scale because the individual resources in our evaluation from differ-

ent CSPs have resources e.g., CPU cores and RAM on a scale of 10s. This selection

of the normalization scale prevents unbalanced normalization of cost values in Equa-

tion 3.6. The probability factor is elaborated more in the next section. The number of

instances (xp
i) are calculated subject to the constraints deployed in the model referenced

in Equation 3.7. Constraints are created on instances such that the resources contributed

from the deployed instances should satisfy user-specified requirements (S t). Equation

3.8 adds constraints on instances that belong to incompatible CSPs using ∆p1p2.

The parameters, as summarized in definitions Table 3.5, are inputs for our model
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Fig. 3.5 OnTimeURB’s core optimizer engine is based on integer linear programming and a knowledge
base featuring three different cloud providers: (a) AWS (public cloud), (b) GENI (community cloud),
and (c) MU Data Center (private cloud).

described with Equations 3.6, 3.7, and 3.8.

minimize
P∑

p=1

Ip∑
i=1

cpi
wp

i

· xp
i · dp (3.6)

subject to: P∑
p=1

Ip∑
i=1

Rp
it · x

p
i ≥ St + Sth

t ,∀t ∈ T (3.7)

Ip1∑
i=1

xp1
i ≤ M · δp1p2

Ip2∑
i=1

xp2
i ≤ M · (1− δp1p2)

,∀p1, p2 ∈ P : ∆p1p2 = 0 (3.8)

3.3.3.4 ML Model Algorithms:

We design our data model to collect workflow execution metadata and label the iteration

with a CSP, based on user feedback for the execution. Inherently, every application

execution will have its own configuration footprint feature which uniquely defines it.

Depending on user feedback, application workflow executions with the same features

might be tagged with different CSP labels, while executions with different features

can share same label. To effectively acknowledge this observation for guiding resource
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Table 3.5 List of Parameters, Sets and Variables.

Parameter
Symbol

Parameter Description

fp Number of agile services from the Pth CSP
cpi cost of renting ith instance at Pth CSP
wp agility factor of Pth CSP
up number of CPUs assigned with Pth CSP by optimizer

in a template composition
dp probability factor for pth platform
F Super set of all agile services identified by the user
Ap

i max number of instances of type i available at CSP p
Rp

it resource tth available with ith instance of Pth resource
St specification requirement of type t
Sth
t threshold on resource of type t

∆p1p2 binary number indicating compatibility between
CSPs

M large integer number
Set Symbol Set Description
IP total number of instances in Pth provider
P total number of provider
T total type of resources
Variable
Symbol

Variable Description

xp
i ∈ [0, Ap

i ] is an integer variable denoting the number of in-
stances of type i at provider p

δP1P2

∈ {0, 1}
is a binary variable ensuring only one of incompatible
P1, P2 is selected

allocation optimization, we use a probabilistic classification technique because absolute

classification cannot model subjective user preferences. Towards this goal, we employ a

Naive Bayes classification algorithm as shown in Figure 3.6. We specifically use Naive

Bayes classifier as it converges quicker than other machine learning models such as

logistic regression and requires fewer data points for convergence. Moreover, we use

the ML model as a guide for CSP selection in the ILP model due to which, a highly

precise/overfitted ML model is not required. The fundamental Naive Bayes assumption

is that each feature should be: (a) independent, and (b) equal. We ensure that both these

prerequisites are met while we train the model.

Generating Training Data: It is a well-established fact [60] that data modeling for

machine learning is a very crucial step for avoiding under-fitting or over-fitting. Figure

3.6 presents our workflow orchestration process that involves training an ML model
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Fig. 3.6 OnTimeURB’s core components: a) OnTimeURB optimizer engine, b) Naive bayes based
machine learning model.

using diverse workflows and integration of expert user feedback. The optimizer engine

uses the pre-trained ML model in the process to inform non-expert users with recom-

mended template solutions for their workflow execution demands. Details of the ML

model training are as follows: expert user provides feedback on the execution of the

workflows which is further used to evaluate the performance of a template solution in

the workflow execution. The ML model is trained with the workflow requirements, tem-

plate solution, and feedback provided by the expert user. The new workflows submitted

by non-expert users are added to the workflow training pool as well for improving the

ML model training. For the new workflow, the optimizer engine takes workflow re-

quirements as input and uses CSP recommendations from the pre-trained ML model to

create a customized template solution for the non-expert user’s workflow execution. To

avoid related pitfalls and to collect workflow execution data to train the ML model in

Figure 3.6, we created an online real-time data collection approach following the below

steps:

• Users identify themselves as expert or non-expert workflow users.

• Metadata is collected only for expert users for considering positive cases of cloud

platform selection.

• Workflow execution iteration is done by varying potential decisive factors such
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as application workflow, type of data, quantity, and fragmentation of data, time

taken by sub-tasks of the applications, and type of computing resources suggested

in template solutions.

• Feedback from expert users is collected for the overall performance of the execu-

tion of application workflow as either: satisfied or unsatisfied.

• For positive feedback which is represented by success and lesser time for ex-

ecution, workflow configuration is tagged with the cloud platform having the

highest ratio of computing power in the selected template solution. Workflow

configuration is represented by the type of workflow, size of data to process, and

fragmentation of data files.

• Iteration of workflow execution is done to collect data.

• Model is trained with all the application workflows.

• Model is trained with an equal number of executions of each application work-

flow; for our experiments, we trained the model with 20 executions of each work-

flow for a given data size. Since we executed each workflow with 5 different input

data sizes, there were cumulative 100 executions performed for each workflow.

• Model is trained with a similar size of input data for each application workflow.

Probability Factor Calculation: Once the ML model shown in Figure 3.6 is trained,

the model returns probabilistic distribution of the selection of CSPs for a specific work-

flow execution configuration. To bias the optimizer’s objective function toward a CSP

that has higher probabilistic classification, we formulate the below formula –

ProbabilityFactor(dp) = (1− P p) (3.9)

where Pp is the probabilistic classification of pth platform obtained from the ML

model. This formulation ensures that the effective cost of instances from the platform

with higher probabilistic classification is reduced in the objective function represented

in Equation 3.6. Given that the summation of probabilities for all CSPs is 1, other
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CSPs with lower probabilistic classification values will have a lower reduction in ef-

fective price. Consequently, this formulation holds validity in all cases of probability

distribution among CSPs.

3.3.4 Evaluation

In this section, we evaluate our OnTimeURB multi-cloud resource broker’s efficiency

in composing cost-effective template solutions for user requirements as compared to

the state-of-the-art k-NN approach used by Antequera et. al. [12] for custom template

composition. We also show the impact of security considerations (i.e., the interoper-

ability matrix) on the cost to solution for the recommended templates and the ability of

our OnTimeURB middleware in composing more agile solutions. Lastly, we describe

our evaluations to show the ability to use an ML model in enhancing the ability of

OnTimeURB for recommending template solutions with better runtime performance.

3.3.4.1 Bioinformatics Workflow Applications

To demonstrate OnTimeURB’s ability to efficiently utilize the large-scale NGS data for

analysis, we use seven bioinformatics workflows as described in Table 3.6. Elaborate

details of workflow implementation are available in our previous work [20]. We have

centralized the input data for these workflows using CyVerse [19], which is used as

the cloud storage infrastructure that manages raw data as well as final results. The

Pegasus workflow system is used to define and control the required computational tasks

of workflows. These tasks encompass user-defined tasks as well as Pegasus-added tasks

such as data staging between the CyVerse data storage and computing infrastructure’s

file system such as AWS [1] (public cloud), GENI [2] (community cloud) and MU

Data Center [3] (private cloud). Pegasus also adds data cleanup tasks to maintain and

minimize the workflow footprint on the file system as the workflow progresses.

3.3.4.2 Evaluation of Cost to Template Solution

We consider three of the implemented workflows based on their resource requirement

from lower to higher scale (size of NGS data and workflow pipeline complexity in terms
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Table 3.6 Bioinformatics Workflow Applications.

Workflow
Name

Workflow Description

FactQC FastQC Quality Check workflow is used to conduct the quality
control checks on raw sequencing data so that we can remove
some low-score data before the next step of analysis.

Alignment Alignment workflow is used to arrange the reads of DNA or RNA
to a reference genome so that we can know which genes expressed
or discover of new, unannotated transcripts.

RNA-Seq RNA-Seq analysis allow us to identify the differential expressed
genes by performing the pair-wise comparison of experimental
groups/ conditions of sequencing data.

PGen PGen workflow allow users to identify the single nucleotide poly-
morphisms (SNPs: substitution of a single nucleotide that occurs
at a specific position in the genome) and insertion-deletion (in-
dels: insertion or deletion of nucleotides from a sequence) and
perform SNP annotation.

Copy
Number
Variation
(CNV)

Copy number variation analysis helps detect the chromosomal
copy number variation (CNV: is a phenomenon in which sec-
tions of the genome are repeated and the number of repeats in
the genome varies between experimental groups/conditions) that
may cause or may increase risks of various critical disorders.

Methyla-
tion

Methylation analysis helps estimated the methylation levels of
each genomics cytosine and identified the differentially methy-
lated regions between the experimental groups/ conditions.

Single Cell
RNA-Seq

Single-cell RNA-Seq analysis allows users to align single-cell
RNA-Seq read, perform clustering cells and then assign the cell
type identity to clusters via biomarks.

of the number of tools used), namely, FastQC (low scale), RNASeq (medium scale),

PGen (high scale). In addition, we assess resource requirements for these workflows

for different sizes of data, based on common performance requirements summarized in

Table 3.10. Only the Red category template from the optimizer is compared because of

its design to perform a resource allocation that is closest to a user’s requirement. For

multiple CSP cases, we do not consider an interoperability constraint i.e., all elements

in the interoperability matrix are set to 1, and all CSPs are considered as being equally

agile.

Below are the descriptions of base categories considered for evaluation results in

Figures 3.7 and 3.8:

• AWS-KNN: Knowledge base consisting of resources from only AWS [1], and
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Table 3.7 Increasing User Specifications for the Workflows.

User Cases Data Size (Gb) vCPUs RAM (Gb) Network (Gbps) Clock (Ghz)
FastQC
Case 1 3 4 5 0.5 1
Case 2 4 8 10 1 1.2
RNASeq
Case 3 10 12 20 2 1.2
Case 4 10 16 25 4 1.4
PGen
Case 5 20 20 50 8 1.4
Case 6 20 24 100 12 2
Case 7 30 28 120 16 2.2

k-NN was used to get the template.

• AWS-OnTimeURB: Knowledge base consisting of resources from only AWS [1],

and OnTimeURB was used to get the template.

• GENI-KNN: Knowledge base consisting of resources from only GENI [2], and

k-NN was used to get the template.

• GENI-OnTimeURB: Knowledge base consisting of resources from only GENI [2],

and OnTimeURB was used to get the template.

• GCP-KNN: Knowledge base consisting of resources from only GCP [4], and

k-NN was used to get the template.

• GCP-OnTimeURB: Knowledge base consisting of resources from only GCP [4],

and OnTimeURB was used to get the template.

• Multi-KNN: Knowledge base consisting of resources from all four CSPs, and

k-NN was used to get the template.

• Multi-OnTimeURB: Knowledge base consisting of resources from all four CSPs,

and OnTimeURB was used to get the template.

In Figure 3.8, we compare resource allocations with k-NN and our OnTimeURB

optimizer for Cases 4 and 7, when either partial (i.e., novice user case) or full user

(i.e., expert user case) specifications are provided. For both Case 4 and Case 7, when

full specifications are provided, our OnTimeURB optimizer with multiple CSP resource

options gives better solutions (i.e., provides a closer match to use case specifications).
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Fig. 3.7 Cost analysis of template solutions showing cost benefits of OnTimeURB compared to k-NN
over different cloud providers: (top, left) Amazon Web Services (AWS), (top, right) GENI community
cloud, (bottom, left) Google Cloud Platform (GCP), and (bottom, right) all of four CSPs.

We remark that similar behavior seen in Cases 4 and 7 is also observed in other cases,

and the benefits of OnTimeURB become more evident depending on the size and diver-

sity of the knowledge base and user specifications. In contrast, the k-NN recommends

an over-provisioned template solution for the same case. The results also illustrate how

we can obtain better solutions with multiple CSP resource options compared to e.g.,

only AWS [1] dataset owing to more cloud resource diversity. Both k-NN and our op-

timizer perform poorly when only the CPU is specified. This can be attributed to the

fact that both methods optimize cost by considering only CPU while disregarding other

resources.

The above finding from Figure 3.8 shows the ability of our OnTimeURB optimizer

in harnessing the multi-cloud dataset for generating better-matched solutions given a

set of user preferences, as opposed to the k-NN solution approach. We remark that our
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Fig. 3.8 Template resource suggestions comparison using k-NN and OnTimeURB, when partial (only
CPU) and full specifications (all requirements) are provided with partial (only AWS) and full (i.e., all
CSPs) knowledge base. The resource allocations closest to the specified specifications are better.
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OnTimeURB optimizer performs better for template composition as it fulfills user re-

quirements by composing templates featuring instances from multiple providers, while

k-NN searches for a single instance amongst the providers to match the user require-

ments. Essentially, our approach optimizes at a more granular level in contrast to k-NN,

and thus gives more cost-optimized solutions.
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Fig. 3.9 Comparison of gold and green templates against red templates when comparing increment in
cost to templates and increment in resource allocations.

3.3.4.3 Evaluation of Template Solution Choices

We compare Green and Gold template solutions with Red for % increment in cost vs.

the % increment in threshold on resources. In the following, we describe the base

categories considered for evaluation results in Figure 3.9:

• Red-Gold maximum cost increment: maximum cost increment observed from

red to gold templates for all seven specifications.

• Red-Green maximum cost increment: maximum cost increment observed from

red to green templates for all seven specifications.

• Red-Gold resource increment: average resource increment observed from red

to gold templates for each specification.
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• Red-Green resource increment: average resource increment observed from red

to green templates for each specification.

3.3.4.4 Evaluation of User Security Requirement Overhead

We evaluate the effect of the interoperability matrix on template solution composition

by considering both the minimum and maximum compatibility matrices. As per our

definition of interoperability, a minimum compatibility matrix will have only diago-

nal elements of the matrix as ‘1’ while a maximum compatibility matrix will have all

elements of the matrix as ‘1’. A diagonal element with value ‘0’ implies that ma-

chine instances from that CSP are not compatible amongst themselves. In such cases,

that corresponding CSP will be auto-removed from consideration of our OnTimeURB

optimizer. Table 3.8 summarizes the cost of template solution composition for user

specifications from Table 3.10, considering the minimum and maximum user-defined

intra-CSPs compatibility constraints.

Table 3.8 Cost comparison of templates generated with minimum and maximum compatibility.

Templates Max. Matrix
Cost ($/hrs)

Min. Matrix
Cost ($/hrs)

% increase

Case 1 0.0403 0.052 29.03
Case 2 0.0741 0.104 40.35
Case 3 0.1377 0.2076 50.76
Case 4 0.1768 0.26 47.05
Case 5 0.60549 0.60549 0
Case 6 1.5144 1.5144 0
Case 7 1.7072 1.7072 0

3.3.4.5 Evaluation of User Agility Requirement Overhead

For evaluation of the impact of the agility factor on the composition of templates, we use

OnTimeURB to create red and green templates for user specifications from Table 3.10.

Equation 3.5 is used to calculate the Agility Index for the templates. The templates are

generated by: (a) considering no agility factor i.e., all CSPs have equal agility factor

(wp) of ‘1’, (b) considering an agility factor, for which we refer to the Cloudarado [99]

to assess the value of wp for CSPs, normalized between 1 to 10. Figure 3.10 summarizes
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agility index values for templates generated for user specifications from Table 3.10. It

can be observed from the Figure 3.10, that the agility index is maximum for solution

templates when an agility factor is considered.
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Fig. 3.10 Agility index comparison of red and green templates generated for increasing user specifica-
tions a) without agility factor, b) with agility factor.

3.3.4.6 Evaluation of Model-Based Template Solutions

To measure the efficacy of our ML model in guiding the OnTimeURB optimizer engine

to create optimum cloud template solutions, we use the time to complete workflow as

the user satisfaction metric. We assume that successful and lower workflow execution

time implies better performance and higher user satisfaction. Towards this goal, we

execute workflows with red cloud solution templates ‘with’ and ‘without’ with the aid

of the ML model in our experiments.

Using the above methodology, the average time taken without the ML model (t1)

when greater than the average time taken with the ML model (t2) implies that the ML

model helps in better cloud solution template selections. We further validate this as-

sumption with experimental results shown in Figure 3.12. For the experiments, we

considered four workflows with increasing complexity involving: FastQC, Alignment,

RNASeq and, PGen. The workflows were executed with different sizes of raw data in-
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put ‘with’ and ‘without’ with the aid of the ML model. We assess the accuracy of the

OnTimeURB optimizer using ML methods in suggesting resources that result in a bet-

ter time of execution for similar configurations of workflows. As shown in Figure 3.12

we can notice improved accuracy in workflow executions for larger data sizes. This ob-

servation can be attributed to the fact that larger data sizes and complex workflows have

more intermediate steps. Consequently, they require more time to execute and com-

pensate for minor fluctuations in the performance of nodes in terms of computational

resources available to the workflows.

Fig. 3.11 Decision model for creating a priority list for CSP selection using the Analytic Hierarchy
Process. The decision model on the left represents the priority order for each of PACS criteria contributing
towards the CSP selection for the user application workflows shown in Table 3.6.

The PACS criteria based on CSP rankings derived using analytical hierarchy process[61]

as shown in Figure.3.11 are further used as the dp factor along with our ILP optimizer

(ILPAHP) for governing the creation of template solutions. A direct comparison of

our OnTimeURB with ILPAHP shows the true potential of our learning-based resource

characterization of CSPs in comparison to resource characterization based on QoS met-

rics as claimed by each of the CSPs.

To compare OnTimeURB with ILPAHP, the average time taken without the ML

model (i.e., only considering the ILP optimizer) was compared with the time taken

when the ILP optimizer was guided with the AHP. Comparison results of ILPAHP and

OnTimeURB for the different workflow executions are shown in Table 3.9. We can

observe that the improvement in performance is seen more with OnTimeURB at two

different raw data sizes. However, it can be noticed that ILPAHP shows very similar
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Fig. 3.12 Percentage of workflow with improved execution time performance with aid of machine
learning model.

results at different raw data sizes for different workflows, while performance improves

more with OnTimeURB for larger workflows involving relatively larger data process-

ing. These results demonstrate the ability of our OnTimeURB to assess the actual per-

formance of the CSP infrastructure dynamically to select a better template solution and

obtain better performance in comparison with ILPAHP, which is based on using static

priorities for a given set of CSPs.

Table 3.9 Percentage of workflows with improved execution time. ILPAHP and OnTimeURB are
compared when workflows are executed with different sizes of raw data.

Workflow ILPAHP OnTimeURB ILPAHP OnTimeURB
Data Size 28 MB 28 MB 224 MB 224 MB
FactQC 79% 87% 81% 92%
Alignment 78% 88% 79% 94%
RNA-Seq 84% 91% 84% 95%
PGen 83% 92% 86% 96%

We further characterize the utility of our OnTimeURB in generating optimal re-

source allocations using image processing workflows. These workflows are listed below

in Table 3.10 and are created using the ‘ImageMagick’ command line tools [100]. The

workflows are executed on the same testbed as KBCommons. Our machine learning

model is first trained with these workflows. The workflows are then scheduled on the

testbed similar to the bioinformatics workflows. As shown in Figure 3.13, the workflow

execution is improved when using OnTimeURB similar to the case of the bioinformat-

ics workflows. The workflows that involve the processing of larger data sets perform
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well with OnTimeURB, even without machine learning similar to bioinformatics work-

flows. Based on the above observations, we can generalize that our OnTimeURB can

learn features of tasks within new workflows and can improve the execution time of

the workflows by allocating optimal resources for them, especially for larger tasks with

larger data sets.

Table 3.10 User Specifications with increasing resource requirements in the image processing work-
flows.

Workflow Name Workflow Description vCPUs RAM (Gb)
IM-1 Single intermediate processing step 2 4
IM-2 Two intermediate processing steps 3 6
IM-3 Three intermediate processing steps 4 6
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Fig. 3.13 Percentage of workflows with improved execution time performance with aid of machine
learning model.

3.4 Summary

In this chapter, we have discussed architectures recommender engines for cloud re-

source brokers. We have first developed a recommender engine based on integer linear

programming i.e., OnTimeURB which can effectively pick resources to create cloud

template solutions from multi-cloud platforms while optimizing PACS of the overall so-

lutions. The recommender also allocates resources for the user based on their selection

of cloud template solutions. We further improve the recommender engine by guiding it

with improved security and agility considerations as well as naive bayes based machine
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learning model that characterizes the performance of underlying multi-cloud resources

based on expert user feedback. The machine learning model trained with expert user

inputs is unbiased from the claims made by individual cloud resource providers claims

and relies on expert users’ recommendations for the composition of cloud templates for

non-expert cloud users. The implemented algorithms improve the performance of as

much as 96% workflow applications.
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CHAPTER 4

Trusted Resource Selection in Volunteer Edge Computing

4.1 Overview

The unprecedented growth in edge resources (e.g., scientific instruments, edge servers,

sensors) and related data sources has caused a data deluge in scientific application com-

munities. Data processing is increasingly relying on algorithms that utilize machine

learning to cope with the heterogeneity, scale, and velocity of the data. At the same

time, there is an abundance of low-cost computation resources that can be used for edge-

cloud collaborative computing viz., “volunteer edge-cloud (VEC) computing”. How-

ever, lack of trust in terms of performance, agility, cost, and security (PACS) factors in

edge resources is proving to be a barrier to the wider adoption of VEC. In this chapter,

we propose a novel “VECTrust” model [94, 95] for support of trusted resource allo-

cation algorithms in VEC computing environments for scientific data-intensive work-

flows. Our VECTrust features a two-stage probabilistic model that defines the trust

of VEC computing cluster resources by considering trustworthiness in metrics relevant

to PACS factors. We evaluate our VECTrust model’s ability to provide dynamic re-

source allocation based on PACS factors, while also enhancing edge-cloud trust in a

VEC computing testbed. Further, we show that VECTrust is able to create a uniform

and robust probability distribution of salient PACS factor-related metrics within diverse

bioinformatics workflow execution over batches of workflows.
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Fig. 4.1 KubeEdge-based architecture for the orchestration of edge and cloud nodes, where the cloud
nodes are used for ML model training and edge nodes are used for ML model inference in the scientific
application data processing.

4.2 Background and Relevance

A VEC system is comprised of multiple geographically distributed clusters, with each

cluster having a set of co-located voluntary diverse edge resources. As shown in Fig-

ure 4.2, the VEC clusters interact with public cloud resources through KubeEdge [62]

for the management of resource-intensive stages of the scientific workflows. The sys-

tem leverages VEC edge resources for the execution of small workflows and for initial

data quality checks or privacy-preservation stages of large workflows that are to be

scheduled overcloud nodes to incorporate user workflow preferences. KubeEdge is an

ideal technology for integrating edge resources and in particular VEC resources. Char-

acteristics of VEC resources that distinguishes them from commercial cloud platform

resources are

• voluntary in nature i.e., the availability of resources is not guaranteed.

• heterogeneous in nature.

• limited in size.

• can be geographically distributed.

• can change behavior in respect to PACS dynamically.
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Fig. 4.2 VEC system overview showing scientific workflows being submitted to a cluster of edge-cloud
resources. Edge clusters are created using resources from individual edge node servers. Workflows are
transferred to public or private cloud nodes as per the trade-off between the requirement of trust and
compute resources on the edge and cloud node sides.

However, a major challenge for wider adoption of the VEC computing paradigm

in scientific application workflows relates to ensuring that the volunteer edge resources

can be trusted in terms of the performance, agility, cost, and security (PACS) factors, on

par with nodes within public clouds. A suitable VEC architecture should present well-

defined security protocols, policies, and orchestration mechanisms similar to those in

public cloud resources to meet application requirements. It also has to deal with the dy-

namic and unwarranted nature (i.e., volunteer edge resources can be withdrawn or face

availability issues routinely) of VEC resources that disrupt the trust (e.g., in terms of the

cost or scalability of edge resources) in the execution of time-critical scientific applica-

tions. While trust modeling in cloud computing is a well-researched topic [63] [64],

there are limited works on trust modeling in a VEC context. In the VCC context,

reputation-based trust is considered to assume capable/homogeneous resources, and

resource characterization is performed for extended time periods. In contrast, an ef-

fective VEC trust model uniquely needs to: (a) obtain a wide range of data about the

containerized edge resources or virtual machines (VMs), and (b) use model-based deci-

sions based on a quick analysis of edge nodes (that can sometimes be austere) resource

characterization data – to select trustworthy VEC resources and optimize edge-cloud
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configurations based on PACS factors.

4.3 Probabilistic Models for Trusted Resource Selection in VEC

We address the above VEC trust model development challenges by proposing a “VEC-

Trust model” for enabling trusted and optimized resource allocation algorithms in VEC

computing for data/compute-intensive scientific application workflows. Our VECTrust

features a two-stage probabilistic model that defines the trust of VEC computing re-

sources in terms of PACS factors. A probabilistic model is an ideal choice for modeling

trust because edge resources can have dynamic behavior towards PACS factors given

their voluntary nature and may not exclusively be dedicated to VEC cluster computing.

Since the edge resources are voluntary, the edge node provider can alter configurations

(increase/decrease capacity or remove availability) on resources by chance. Moreover,

geographically distributed VEC resources can fail due to latency issues which can be

random in nature and can only be characterized probabilistically. Our two-stage model

helps in capturing randomness in PACS factors at geographically co-located VEC re-

sources and also helps in comparing different VEC clusters. We leverage Dirichlet [65]

distribution because we need multivariate probabilistic distribution of trust towards

PACS at the local intra-cluster stage (i.e., when selecting edge nodes in a single lo-

cation) and a global inter-cluster stage (i.e., when selecting edge nodes at same or dif-

ferent locations) for dynamic selection of most suited edge/cloud resources to increase

the trust levels.

4.3.1 Significance and Related Works

In cloud environments, trust between individual entities is typically facilitated by rep-

utation management based on various parameters such as e.g., history, context, collec-

tion, representation, and aggregation [66, 67]. Focus typically is on single-source trust

quantification, where policies such as QoS parameters and audit assessment and/or ac-

countability factors such as security, reliability, and availability are used as fundamental

variables. Other studies such as [64] used ML models to predict reputation primarily

based on QoS, and use QoS-based trust values in cloud resource brokering. Trust and
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reputation modeling under scenarios with incomplete information has also been an area

of research. For example, authors in [68] developed a multi-dimensional framework

viz., PeerTrust for classifying and comparing trust and reputation systems, and their

suitability for a given application even when adequate information is unavailable about

a target peer.

However, For reputation values to hold for a longer time, probabilistic-based trust

models have been explored in the context of data-intensive workload management within

cloud federations [69, 70]. Among these works, the work in [69] is notable because

it is applicable for the efficient allocation of federated resources without considering

the trust/reputation of the underlying resources. However, such trust-agnostic resource

management is not suitable for a VEC system due to the unique challenges such as

heterogeneity of volunteer edge resources, and uncertainty of their resource availabil-

ity due to possible alternations in configurations (increase/decrease capacity or remove

availability) on resources by chance. The work in [70] assumes that resource trustwor-

thiness is subjective and proposes a framework based on Analytic Hierarchy Process

(AHP) and Fuzzy Simple Additive Weighting (FSAW) to determine trust between ser-

vice providers and users based on the users’ perception. However, their approach relies

entirely on the application requirement parameters considered by the users and thus ig-

nores the uncertain or unknown factors of the resource provider, which is commonly

the case in a VEC system.

Other notable works such as [71] and [72] propose a collaborative trust model based

on the Beta distribution [73] and compare their model against random and deterministic

resource selection strategies. Other probabilistic approaches such as [74] propose VCC

trust by using the priority of tasks and behavioral changes as trustworthiness metrics.

In addition, prior works [65] and [73] have shown that both conservative and optimistic

probabilistic strategies are efficient for trust assessment in VCC, respectively. Thus,

probabilistic trust models are promising for efficient VEC resource provisioning with

an edge-cloud federated environment.
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4.3.2 Approach

Dirichlet Distribution Background: The Dirichlet distribution defines a probability

density function (i.e., PDF) for a vector input having the same characteristics as the

multinomial parameter θ of which the density needs to be computed. The distribution

has the support (the set of points where it has non-zero values) over the parameters of θ

i.e., xk such that the elements are:

x1.....xk, where xi ϵ (0, 1) and
K∑
i=1

xi = 1

where K is the number of elements in θ. Its probability density function is defined as:

Dir(θ|α) = 1

Beta(α)

K∏
i=1

θαi−1
i

where Beta(α) =

∏K
i=1(αi)

Γ(
∑K

i=1 αi)
and α = (α1, .....αk)

Fig. 4.3 Sample Dirichlet distribution for a system with three parameters {x1, x2, x3} at different pa-
rameterized values of α. The distribution in the figures shows variation in probability distribution across
the parameters as their corresponding α varies.

In the context of our work, θ and its elements correspond to either the number of
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VMs within a cluster or the number of clusters within a VEC depending on the stage of

the solution. The Dirichlet distribution is parameterized by a vector α, which has the

same number of K elements as our multinomial parameter θ. So Dir(θ|α) can be inter-

preted as the PDF associated with multinomial distribution θ, given that the distribution

has parameter α. For example, as shown in Figure 4.3, the distribution is uniform (rep-

resented by color shades) across the defined three parameters {x1, x2, x3} when the α

parameters for the distribution are uniform and comparable. It can also be verified that

the distribution tends to concentrate toward the parameters having a higher α value. The

probability density (PD) is concentrated and larger when the α values are larger, which

indicates a more probabilistically deterministic solution. The distributions in Figure 4.3

showcase the spread of PD getting concentrated as α navigates from {1,1,1} through

{5, 5, 5} to {10, 10, 10} suggesting that [x1, x2, x3] are increasingly having the same

probability of occurrence. While α of {1,2,4} suggests the probability biasing towards

x3. Hence if θ multinomial shown in Figure 4.3 represented by [x1, x2, x3] is considered

as three virtual machines in a VEC cluster, then α of {10, 10, 10} suggests the highest

confidence that the machines show equal PD; while α of {1, 1, 1} also means the ma-

chines have equal PD but there is less confidence on this equal distribution. In contrast,

α of {1, 2, 4} suggests x3 has the highest probability distribution with a good level of

confidence.

Solution Approach: Our proposed VECTrust uses a cloud resource broker model

that orchestrates VEC resources based on a centralized probability-based trust propa-

gation model. We utilize the Dirichlet distribution across the edge computing resources

to create PDFs while considering PACS factors. As shown in Figure 4.4, the PDFs are

generated at the intra-cluster stage and then again at the inter-cluster stage to guide a

resource allocator for scheduling workflows at the most suitable VMs. Note that we

adapt the popular K nearest neighbor (KNN) based resource allocation in VECTrust for

mapping tasks to optimal resources. At the intra-cluster stage, the VMs within a cluster

act as the parameter (θ) of that cluster for PDF generation. At the inter-cluster stage,

the number of clusters in the VEC resources acts as the primary parameter for the PDF

generation.
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Fig. 4.4 Logical stages of Dirichlet probability distribution applied at intra-cluster and inter-cluster
stages. Blocks in black color identify with factors at intra-cluster stage, while blocks in green relate to
factors for inter-cluster stage for probabilistic distribution.

The first stage of our proposed VECTrust model evaluates the trustworthiness of

resources (i.e., VMs within a cluster) through direct interactions between VMs and the

dedicated local cluster management server (LCMS). Each of the LCMS contributes to

the cluster’s PACS factors data that is collected at a central cluster management server

(CCMS). Hence, the trustworthiness of resources is assessed at a local cluster level

as well as at a more global level when compared with other clusters amongst VEC

resources. This approach in VECTrust is different from the traditional trust frame-

works [71], where reputation and trustworthiness are evaluated through direct and in-

direct interactions between two volunteer hosts within a community. In VECTrust, the

interaction or feedback between any VM and the LCMS is direct. The LCMS collects

data about a VM only from that VM, unlike other methods. However, the collected data

from each VM informs the LCMS about its interactions with other VMs based on their

shared bandwidth. This process consolidates the responsibility of trust assessment at

the LCMS. It then shares the generated PDFs and raw data of VMs within its cluster

with the CCMS for further processing at the global level. This multi-stage hierarchi-

cal architecture of the VECTrust model allows easy integration of new layers of edge

devices such that any LCMS can act as the CCMS for the layers below, thus providing

seamless scalability to our solution.

The approach of assessing VEC resources using probabilistic modeling using Dirich-
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let distribution can dynamically capture dynamic resource behavior. However, different

workflows might have their individual functional requirements specified by the user in

terms of e.g., the number of vCPUs, RAM, and disk drive space. Such requirements

need to be met explicitly for the workflows to perform on par with user expectations.

This is an optimization problem of resource selection from available resources in order

to fulfill workflow requirements and foster the execution of the maximum number of

workflows possible. One of our prior works [20] towards such an optimization uses

integer linear programming and the popular KNN for heuristic optimization of resource

selection for executing workflows. We have thus used the KNN algorithm to select spe-

cific VM from the clusters which match the requirements of a given scientific workflow

to be executed. The application of this algorithm ensures that the quantitative require-

ments for the workflows as stated by the users are necessarily fulfilled. Following this,

trusted scheduling of these workflows is performed on the VEC clusters based on the

user PACS factor priorities as explained in Algorithm 1.

Algorithm 1: Trust-driven resource selection algorithm based on PACS fac-
tors

Result: VEC edge node resource on a trusted cluster
while true do

Periodic incoming workflow execution request;
factor ← Get workflow factor optimization;
i is the required VM configuration;
if factor then

i← KNN to find eligible VMs;
if i ̸= null then

PDFs at LCMSs for factor;
PDFs transfer from LCMSs to CCMS;
cPDF ← PDF at CCMS for factor;
cluster ← highest distribution from cPDF ;
if i ϵ cluster then

Execute the worklfow on cluster at i VM node
end

else
PDFs at LCMSs for factor;
PDFs transfer from LCMSs to CCMS;
cPDF ← PDF at CCMS for factor;
cluster ← highest distribution from cPDF ;
Request new VM with i configuration on cluster;

end
else

defaults to ‘Performance’ factor-based trust;
end

end

81



4.3.3 Evaluation

Testbed: For the scientific workload on the VEC computing resources, we have used

the three bioinformatics workflows: (a) FastQC, (b) Alignment, and (c) RNA-Seq work-

flows listed in Table 4.1. Each workflow requires a diverse amount of resources, which

are provisioned in the testbed environment for the corresponding expected execution.

The testbed resources for evaluation of our proposed VECTrust model are obtained

from the NSF-funded GENI [2] infrastructure and the GCP [4], similar to the archi-

tecture described in Figure 4.1. As shown in Figure 4.5, three clusters of resources

are created across three geographically different locations (RENCI, NCSU and Texas

AandM), which are controlled via KubeEdge instance in GCP. Each edge cluster con-

tains three different VM configurations namely: (a) XOLarge, (b) XOMeduim and (c)

XOSmall as shown in shown in Figure 4.5. All VMs which are part of the VEC testbed

have public IPs as they host RESTful web services via Docker containers for commu-

nication and data transfer tasks.

The XOLarge VMs within the cluster act as LCMS for the cluster. The CCMS is

created on an independent GCP VM instance having 2 cores and 4GB RAM. KubeEdge

is installed on all the nodes such that the CCMS acts as the master node and the 9 VMs

across the GENI cloud infrastructure act as worker nodes. Each VM has a web ser-

vice that reports PACS factors information relevant to a VM to its LCMS and CCMS.

This information is utilized to create Dirichlet distributions which govern trust calcu-

lations that direct the scheduling of workflows on a worker node over VEC computing

resources.

Evaluation Methodology: Our experiments’ goal is to evaluate the VECTrust

model’s effectiveness and efficiency by measuring its impact in terms of PACS fac-

tors during repeated and pre-determined orders of execution of workflows on the VEC

testbed. Towards this goal, workflows are submitted with one of the PACS factor in-

tents related to trust. The trusted resource allocation for cost is not considered for the

purposes of this work because: (a) we consider voluntary edge resources that do not

incur any cost, and (b) the cost quantitatively depends on the price of cloud resources,

which can be easily determined and varies depending on the cloud platform our VEC-
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Trust is deployed. We compare VECTrust’s efficiency in trusted resource allocation

for workflow execution on VEC resources by executing different number of workflows

against three competing resource provisioning strategies: (i) Random selection of VM

resources, which represents the most common resource selection as per availability, (ii)

KNN algorithm used for selection, which is a popular algorithm for recommendation

systems [20], and (iii) Unobtrusive utilization-reliability aware scheduling algorithm

(U2Trust) [75], which uses a semi-markov process [76] for reliability-based trust pre-

diction of voluntary nodes and is based on formulating the resource scheduling problem

as a knapsack problem.

Table 4.1 Exemplar bioinformatics workflows used in our VEC system implementation.

Workflow
Name

Workflow Description {vCPU, RAM(GB),
Data(GB)} Re-
quirements

FactQC FastQC Quality Check workflow is used to conduct the quality
control checks on raw sequencing data so that we can remove
some low score data before the next step of analysis.

{1, 0.8, 5}

Alignment Alignment workflow is used to arrange the reads of DNA or RNA
to a reference genome so that we can know which genes expressed
or discovered new, unannotated transcripts.

{1, 1.2, 10}

RNA-Seq RNA-Seq analysis allow us to identify the differential expressed
genes by performing the pair-wise comparison of experimental
groups/ conditions of sequencing data.

{2, 1.5, 10}

Fig. 4.5 VECTrust testbed using a GCPs’ VM instance acting as the CCMS, and GENI nodes acting as
smaller remote edge clusters.

For evaluating trusted workflow execution based on performance in VEC resources,

we create 12 workflow batches as shown in Figure 4.6 with a different number of work-
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flows mentioned in Table 4.1. Each batch comprises of a set of workflows (e.g., 5, 10,

15, and so on) in a fixed order. This implies that - when a batch is executed, the same

workflow is added to the testbed at any time t, irrespective of the scheduling algorithm.

This ensures the same arrival pattern or intervals between workloads on the testbed for a

fair comparison between the resource allocation algorithms. A new workflow is added

in 5 minute intervals, which is the average execution time for our slowest workflow

i.e., FastQC. The results in Figure 4.6(a) show that U2Trust performs better than KNN

since it uses reliability as well as knapsack formulation to find nodes, while KNN only

uses mapping of resources required compared with resources available in nodes.
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Fig. 4.6 (a) Performance comparison when workflows are executed with different batch sizes on the
same VEC resources with: (i) VECTrust, (ii) KNN, and (iii) Random selection algorithms; (b) Security
risk comparison with a 20 workflow batch that is used to execute on the VEC computing resources; the
average security risk is calculated at 5 minute time intervals; (c) Cluster utilization efficiency comparison
using the standard deviation of resource utilization PDs for the scenarios: (i) VECTrust, (ii) KNN (iii)
Random selection (iv) and U2Trust .

In order to compare security based on trusted execution between the competing al-

gorithms, we use the NIST guidelines [77] to evaluate the risk of scheduling workflows.

The NIST guidelines help us to quantitatively evaluate the security of individual edge
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nodes on a scale of 1 to 10 in terms of their vulnerabilities during workflow execution in

the VEC system. Using these quantitative values, we correspondingly generate security

PDs for each cluster for different baselines and compare them to assess resulting dif-

ferential security postures. To calculate the security risk in the three competing model

cases, a batch of 20 workflows is executed. When new workflows are added with 5 min-

utes intervals to the VEC system, the security PD of the identified VM for execution is

considered as the security risk for the competing baselines. As shown in Figure 4.6(b),

the average security risk for scheduling with VECTrust is less compared to other ap-

proaches as the VECTrust model assigns workflows on relatively more secure VMs.

We also measure the efficiency of the effective cluster utilization by comparing the

Dirichlet distributions of resource utilization periodically (i.e., at 10-minute intervals)

while a batch of 20 workflows is added to the VEC system at 5-minute intervals. As

shown in Figure 4.6(c), the standard deviation of the PDFs for VECTrust is lower and

has minor variations at all times measured. In contrast, the random selection algorithm

shows the maximum standard deviation and has relatively more variance at all times.

This is because the VECTrust model identifies better-performing VEC edge nodes and

schedules more workflows on those nodes repeatedly, thus reducing risks of failures

and delays in workflow execution.

In order to evaluate trusted workflow execution based on agility, we add workflows

with relatively higher resource requirements which trigger the CCMS to add new VMs

in one of the VEC clusters. We iterate this process multiple times (i.e., 5 times) for

each of the workflows using VECTrust and three other competing approaches: (i) KNN

(cluster with VMs closest to the workflow requirement is selected for adding a new

VM), (ii) Random and, (iii) U2Trust. As shown in Table 4.2, the average time to

add a VM in the VEC cluster suggested by VECTrust is lesser compared to the other

competing approaches. The best drop in time from the second-best competing solution

was for RNASeq at 79%. This is because of the VECTrust use of the PD for agility

during the identification of the VEC cluster where a new VM can be added faster. Note

that the VECTrust consistently outperforms U2Trust since the latter estimates trust

of resources using a large history of workflow execution, which is not available in the
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voluntary edge cluster resources that can be intermittent in availability, and subject to

possible alternations in configurations.

Table 4.2 Agility comparison between different trust models for different workflows with new VM
additions, averaged over 5 repetitions.

Workflow VECTrust KNN Random U2Trust % Drop
FastQC(small)
time in secs.

125 144 175 150 86%

Alignment
(medium) time in
secs.

140 172 185 165 84%

RNASeq (large)
time in secs.

154 193 210 197 79%

4.4 Learning-based Models for Trusted Resource Selection in VEC

Recent technological improvements have modernized research methodologies. These

improvements range from autonomous to automation of data capturing and analytics

processes. Often these applications require all the processes to be accomplished locally

because of security and delay constraints. To accomplish the goal, edge/fog is a possible

middleware between a cloud and a local research environment. Edge nodes provided

through VEC architecture can provide processing with acceptable security and latency

to robots, sensors, actuators, etc. The applications need to configure various services

at the edge nodes to enhance and automate the performance of the system. Our current

work [95] considers an important but less investigated service hosting problem, where

the edge nodes are dynamically reconfigured through a learning-based reconfigurable

security framework to host possibly the most recently requested workflow execution

services from the application users. Because of the limited storage and computational

resource at the edge nodes along with the dynamic and volatile nature of VEC resources,

the problem of reconfiguration is important, which can increase the number and types

of workflow tasks hosted by the edge node as well as improve the trust on the VEC ar-

chitecture. We extend our earlier work on trusted VEC environment [94] by proposing

the “VECFlex” framework that employs flexible security reconfiguration, behavioral

trust modeling, and scalable scheduling mechanisms. This framework addresses the

aforementioned trust, security reconfiguration, and scalability challenges by adopting a
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two-tier mechanism that: i) addresses the trust and security configuration issues by ap-

plying a Reinforcement Learning (RL), viz., Q-learning driven trust rank classifier that

dynamically updates the trust rank of VENs based on their behavior and ii) addresses

the scalability issues by applying a security-aware modified Particle Swarm Optimiza-

tion (PSO) scheduler to allocate the most suitable resources to execute incoming and

outstanding tasks.

4.4.1 Significance and Related Works

One of the recent works [85] has used a similar approach of reconfigurable security

to create an edge computing framework for IoT devices. The proposed framework is

designed to overcome the challenges including high computation costs, low flexibil-

ity in key management, and low compatibility in deploying new security algorithms in

IoT, especially when adopting advanced cryptographic primitives. A similar work [86]

also focuses on reconfiguring edge nodes in industrial settings. The work primarily

focuses on scheduling when a sensor node is within the transmission range of multi-

ple fog nodes, to efficiently select the most appropriate fog node for data transmission,

different types of fog node selection methods, random selection, shortest estimated la-

tency first, and shortest estimated buffer first, have been considered and evaluated in

this paper with satisfactory results. Characterizing the behavior of dynamic environ-

ments has been challenging in edge systems. Authors in [96] address the trust issue in

mobile edge computing (MEC) environments by using RL-based CPU resource alloca-

tion in conjunction with a blockchain-based trust mechanism. Authors in [97] propose

an RL-based trust model to observe and learn about the behavior of user nodes within a

cluster to optimize the usage of resources. To establish trust established between edge

environments with mobile ad-hoc network (MANET) nodes authors in [98] propose a

self-adaptive trust-based associative based routing protocol using Q-Learning. The re-

sults from these works suggest that applying RL-based modeling on resource behavior

could effectively predict the reliability of such resources.
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4.4.2 Approach

To improve the trust on VEC resources performance, agility, affordability, and security

(PACS) features need to improve so that the user’s confidence in volunteer edge nodes

increases. This information is analyzed, and if any PACS factors exceed a threshold,

we can conclude that the node is unsafe. To decide if a node is safe or not, we plan to

utilize a reinforcement model called Q learning. As a result, any node with a particular

security configuration at the time of the scheduling of the decision will be rewarded.

That reward is determined by several parameters, including whether a node is accessible

for executing a workflow and, if not, how long it takes to complete a workflow on

average. If a node is under attack i.e., if it takes a longer time for executing workflows,

then it will adversely affect the reward value. Other criteria such as the amount of Dos

attacks and the performance of a node for a specific workflow are also considered. This

model is always being refined, with the reward function values for each node changing

with each workflow execution. As a result, it checks for every node that has the same

security configuration as a given workflow. Only the node with the greatest reward value

for that configuration is assigned the workflow. The potential trust model based on

Fig. 4.7 Reconfigurable security on VEC resources based on reinforcement learning model built to
improve trust on the resources by improving PACS on the edge resources.

reinforcement learning as shown in Figure. 4.7 will use change in pre-defined security

levels of the edge nodes as action space.
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Fig. 4.8 VEC system model with VEC clusters, VENs, and VEC users

4.4.2.1 Behavioral Modeling And Optimization

Figure 4.8 shows a typical VEC system model divided into two parts, i.e., VEC users

and VEC infrastructure. As illustrated, the VEC users, i.e., researchers in the need

for on-demand and low-cost computation and storage resources are connected to the

VEC ecosystem through Federated Identity and Access Management (FIAM) where

they submit their pool of workflows and corresponding performance and security re-

quirements. Meanwhile, the VEC infrastructure consists of volunteer edge clusters;

each cluster consists of a supernode or local controller and multiple VENs for process-

ing workflows. These VENs can vary from rack servers to desktop computers, to IoT

devices based on the contributing researchers’ (i.e., volunteers’) lab hardware.

Resource behavioral analysis model:

Our behavioral model uses the historical availability of resources and a set of minimal

required security policies to decide an initial trustworthiness rank of the VENs.The ini-

tial “Assigned Trust Rank” indicated in the Resource Parameters Table is based merely

on an offline evaluation of resources and expected performance. With the initial trust

rank, the current status of resources, and expected performance, an on-demand analysis

is applied by the RL-driven agent to evaluate the reliability of the node based on previ-

ous results under similar conditions. The target of the RL-based approach is to measure

the consistency of the VENs on executing previous tasks and then to determine the ex-
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Fig. 4.9 VEC Architecture: The Resource Controller implements the RL-based resource
behavioral analysis model with modules (1), and (2). The Workflow Manager imple-
ments the PSO-based workflow scheduling model with modules (3) and (4).

pected execution time of the next task. Identifying VENs whose execution times are

consistent with the predicted execution times gives a level of certainty to those nodes

on coming task assignments, and a new “Learned Trust Rank” is then determined. Us-

ing the most trusted nodes, determined by our RL approach, will make good use of

resources and hence minimize the overall execution time. Our proposed RL-driven

approach uses a Q-Learning model with a learning agent

Our Q-learning-based behavioral analysis follows the process executed by modules

(1) and (2) under ‘Recourse Controller’ as described in Figure 4.9. In the initialization

phase, VEN information is collected by the global controller (through local controllers),

and an initial trust rank is assigned based on the number of CPUs, RAM Size, and the

number of security policies configured. All parameters are stored in the Resources

Parameters Table, which represents the state space of the VEC environment. Then,

any update on the state space triggers a new evaluation of the Q value for all idle VEN

nodes, which is a measure of the level of trust for each node. Busy VEN nodes are not

updated as a new Q value makes sense only when the nodes have completed a task and

an actual execution time spent on processing the last task has been provided. The new

Q values calculated for the relevant VENs define the action to update the trust rank of

each node. The learned rank will be used by our PSO-based optimization to perform

resource allocation and task scheduling, as explained by Algo. 2.

Workflow scheduling model:
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Algorithm 2: VEN rank update based on the learnt Q-value
Input: Table state parameters, each record contains the parameters for each VEN
Output: Table state parameters with the learned rank field updated based on the result of the learned Q-value
for each idle node n in state parameters do

Calculate actual execution time Xa
n expended on the last task;

Calculate the variance between the predicted execution time Xp
n and the actual execution time Xa

n;
Calculate the reward value Rn;
Calculate the new Q-value Update the learned rank field for node n in the state parameters table;

return state parameters;

For workflow scheduling, we use a security-aware modified PSO algorithm, and fol-

low the process executed by modules (3) and (4) as described in Figure 4.9. PSO is a

heuristic algorithm that improves the optimal solution within its large population (called

a swarm) of candidate solutions (called particles) over time. The biggest advantage of

PSO is that it can help find the near-optimal solution for a problem within a large so-

lution space. In our problem, we have a large swarm of workflows and a large pool of

volunteer nodes; the objective is to find the best node/VEN (position) for each workflow

(particle). Each workflow is an object that includes CPU requirement (cpu), memory

requirement (mem), security requirement (sec), best-known position (best), and veloc-

ity (vel) of the swarm’s members; best-known position and velocity will be initialized

in a uniformly distributed random manner beforehand. Meanwhile, the object consists

of CPU availability (cpu), memory availability (mem), security level (sec), security

flag (sec flag, a Boolean variable indicating whether that node can adjust its security

level or not), and node’s rank (rank, based on the outcome of the RL-driven behavioral

modeling algorithm and used for a final decision if there are multiple satisfied nodes for

one workflow). These member variables will help define the cost function of assigning

a task to a particular VEN within a VEC cluster for the main PSO algorithm. Firstly,

we need to check if the node’s security level satisfies the workflow’s minimum set of

security requirements or if the node can adjust/reconfigure its security level to match

that requirement. Next, it will check if the VEN has enough resources to process the

workflow by comparing the node’s CPU and memory availability with the workflow’s

CPU and memory requirements.

In the proposed security-aware modified PSO algorithm (Algo. 3), we scan the en-

tire workflow space and VEN space to compute the optimal node for all workflows.

For each workflow, we update its velocity based on the current velocity, current posi-
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Algorithm 3: Security-aware modified PSO
Input: Workflow list w list = {wi} and VEN list n list = {nj}
Output: A matrix node mat, each row is a list of near-optimal nodes for each workflow
weight = 0.3; cp = 1.5; cg = 1.3;
node mat = [];
for i ∈ [0, len(w list)) do

node list = [];
curr pos = 0;
for j ∈ [0, len(n list)) do

rp = rand(0, 1); rg = rand(0, 1);
w list[i].vel =
weight∗w list[i].vel+ cp∗ rp∗ (w list[i].best− curr pos)+ cg ∗ rg ∗ (swarm best− curr pos);

curr pos += w list[i].vel;

if n list[curr pos] is available or almost available then
if cost(w list[i], n list[curr pos]) > cost(w list[i], n list[w list[i].best]) then

w list[i].best = curr pos;

if cost(w list[i], n list[swarm best]) < cost(w list[i], n list[w list[i].best]) then
swarm best = w list[i].best;

node list.append(curr pos);

node mat.append(node list);

return node mat;

tion, best known node of that workflow, known swarm’s best, and parameters including

rp, rg, cp, cg and weight. Parameters rp and rg are uniformly distributed random vari-

ables between [0, 1]. Parameters cp (cognitive coefficient) and cg (social coefficient)

are acceleration coefficients and are selected based on each scenario with typical values

ranging between [1, 3]. The parameter weight is also selected based on each design

but must be smaller than 1 to prevent divergence. Overall, the selection of cp, cg, and

weight is usually based on multiple runs for the best estimation. After the new veloc-

ity is calculated, a new position of the workflow is updated based on the new velocity.

Moreover, we need to make sure that the new position (i.e., VEN) is available to process

the workflow. Upon that, we start updating the workflow’s best position and swarm’s

best if this new position is more optimal and append the feasible positions to a list.

When the inner for loop is completed, we append the feasible positions list to the ma-

trix. Finally, a matrix that contains the lists of feasible positions for each workflow is

returned. Based on this matrix and the RL-based rank of nodes (calculated in Algo. 2),

we can choose the most optimal node for each workflow.

The overall resource optimization follows the process described in Figure 4.10. The

steps in green correspond to the behavioral analysis process and the steps in blue corre-

spond to the modified PSO-based task scheduling process.
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Fig. 4.10 Overall resource optimization process flowchart

4.4.3 Evaluation

We discuss below the testbed design, implementation, experiment setup, and results to

evaluate the performance of our proposed VECFlex framework.

4.4.3.1 Testbed setup and VECFlex implementation

For VECFlex framework evaluation, we set up a virtual VEC testbed topology using

Amazon Web Service (AWS) [1] followed the model presented in Fig. 4.8. We create a

virtual machine (VM) to be configured as the VEC global controller that hosts all work-
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flows, related data, tasks, and their requirements. The global controller site communi-

cates with individual VEC cluster sites via public IP addresses. The global controller

also hosts the RL-driven behavioral modeling and modified PSO-based scheduling al-

gorithms (i.e., Algo. 2 and Algo. 3). The algorithms are run with data collected from

local controllers belonging to individual VEC cluster sites. To simulate the VEC cluster

sites, we deploy 10 VMs. Each of these VMs also play roles of local controller and re-

ports directly to the global controller with necessary information. On each VM, we run

5 Docker containers to mimic the VENs. Thus, overall the testbed setup simulates 10

VEC cluster sites, each with 5 containers as VENs for a total of 50 VENs. The resource

configuration such as memory and processor speed assigned to each VEN is different

to mimic a heterogeneous resource environment.

4.4.3.2 Evaluating the impact of PSO and RL

Here we assess the impact of our proposed modified PSO and RL-driven methods by

demonstrating their improvement over Random selection. First, to illustrate the effec-

tiveness of the proposed PSO algorithm in handling workflow scheduling, we compare

the performance of our proposed VECFlex which combines PSO-based resource selec-

tion with RL-driven modeling (RL+PSO) against a Random resource selection scheme

with RL-driven behavioral modeling (RL+Random). The comparison is carried out for

four different scalability scenarios in terms of the number of workflows. The metric

we use for this evaluation is ‘Average workflow processing time’. Here, the processing

time of a workflow depends on the allocated VEN resources, e.g., for a workflow that

requires 2 CPUs and 2 Gb of memory, a VEN resource of 2 CPUs (up to 3.3 GHz) and

8 GB of memory can process in 2 minutes 11 seconds while a VEN resource of 1 CPU

and 1 GB memory takes 4 minutes 34 seconds to process. As mentioned before, the

VENs are assigned different amounts of resources to mimic a heterogeneous environ-

ment. We run the experiment 15 times with a different set of workflows and VENs to

calculate the average processing time. As shown in Fig. 4.11, we observe that for differ-

ent workflow scenarios, VECFlex outperforms the RL+Random scheme by allocating

close to optimal resources from VENs that help quicker processing of the workflows.
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For evaluating the utility of RL-driven behavioral modeling, we conduct a similar

comparison of our proposed VECFlex scheme against only the Security-driven scheme

(i.e., without any behavioral modeling) for four different scalability scenarios in terms

of the number of VENs. As RL updates the rank of the VENs periodically based on the

historical behavior of the node and then selects the nodes with the highest rank, we want

to identify if by using RL we will have more VENs available than only the Security-

driven scheme. As for the only Security-driven scheme, it selects the top VENs with

the highest number of security policies enabled regardless of the CPU and memory.

For each case, we determine the total amount of CPU and memory resources that the

selected VENs provide, i.e., we determine the total computation power that each option

provides. The idea is to determine how effective is VECFlex in selecting the required

top VENs with the highest computation capacity while keeping the environment safe.

For this evaluation, we run the experiment 15 times and plot the mean value. As il-

lustrated in Fig. 4.11, VECFlex is more effective in selecting the best VENs, with

the highest computation capacity and satisfactory security, in comparison with the just

security-based approach.

[ PSO effectiveness]

[ RL effectiveness]

Fig. 4.11 Evaluation of the impact of modified PSO and RL-driven approaches
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Fig. 4.12 Security update allowance evaluation

4.4.3.3 Security Reconfigurability

In order to satisfy the minimum security requirements of tasks during scheduling, a

task can only be executed on a VEN that has the minimum set of security policies

implemented. As a solution to this problem, our approach relies on VENs that allow

security policies to be reconfigured. In our testbed implementation that can happen

only if that VEN has the ‘Security Update Allowed?’ field of the VEN set to ‘YES’.

If so, we change the ‘Security Policies’ parameter to meet the needs of the workflow.

In this final evaluation, we disable that option in order to stop security reconfiguration.

This triggers the scheduling mechanism to suspend task scheduling until VENs with the

minimal required security policies become available. As can be seen from Fig. 4.12,

with this modified setting, the scheduling takes on average 1.5− 2x the processing time

for the workflows to finish (in comparison to VECFlex), hence demonstrating the utility

of VECFlex’s proposed security reconfiguration.
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4.5 Summary

In this chapter, we have built upon the last chapter on multi-cloud resource selection

and have further proposed a novel VEC architecture for computing. This architecture

focuses on improving the PACS for the workflow applications which helps in reducing

cost and improves performance for applications. The proposed solution aims to utilize

any available edge resource for the execution of any workflow, we further delineate

the fundamental trust problems arising from using any edge resources for the execu-

tion of the workflow and suggest solutions to improve trust in edge resources. With

a better trust model in place, the proposed solution allows using of methodologies of

utilizing edge resources more effectively which has been the main bottleneck in their

widespread adoption. We have also shown the application of reinforcement learning

algorithms in the assessment and improvement of trust in the context of PACS factors

in VEC resources by characterizing volunteered resources and their dynamic behav-

ior to workloads. The initial results show significant improvement in trust factors of

performance, agility, cost, and security while utilizing the VEC cloud.
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CHAPTER 5

VEC Resource Brokering Guided Applications

5.1 Introduction

The unprecedented growth in edge resources (e.g., scientific instruments, edge servers,

sensors) and related data sources has caused a data deluge in scientific application com-

munities. Data processing is increasingly relying on algorithms that utilize machine

learning to cope with the heterogeneity, scale, and velocity of the data. At the same

time, there is an abundance of low-cost computation resources that can be used for

edge-cloud collaborative computing viz., “volunteer edge-cloud (VEC) computing”.

These VEC resources in collaboration with cloud platforms can be potential cyber re-

sources that could reduce the cost as well as potentially improve performance for these

applications by reducing the latency of data transfers. Below we discuss case studies of

applications that can use VEC architecture for workflow execution and data analytics

pipelines.

5.2 Manufacturing: Carbon Nanotube Case Study

Experimental research such as cell cultures and carbon nanotube (CNT) growth are

largely governed by following predefined execution protocols with fine-tuned control

of parameters. There are promising opportunities to apply reinforcement learning (RL),

which is an established learning technique in the area of general artificial intelligence,

in order to automate the CNT growth process and accelerate related scientific break-

throughs in material discovery. Although there are RL techniques’ strengths in ex-

ploration and exploitation methodologies, there are challenges in developing relevant
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learning policies in experimental research settings. In this paper, we present a novel

data-driven reinforcement learning solution for assisting CNT growth. Our approach

is focused on developing RL models to learn the characteristics of CNT growth tem-

porally while varying parameters that affect growth. Enabling automation through our

RL model in CNT growth experiments allows for exploring a wider range of growth

conditions. The ultimate goal of our RL model is to reach desired CNT growth while

dynamically controlling growth parameters throughout a sequence of experiments.

5.2.1 Significance and Related Works

CNT growth under electron microscopy by different groups suggests that the mecha-

nism is extremely sensitive to each parameter such as carbon precursor, metal catalyst,

particle size, temperature, and pressure. Even a minor change in any of these parameters

leads the growth in critically different directions. Since there are so many variables in-

volved in synthesizing CNT forests reliably, it is our belief that automating the process

of CNT growth would help constrain them. Not only would automating help provide re-

liable and reproducible growth by controlling variables it would also reduce the chance

of human errors

Researchers have recently constructed a high-throughput, autonomous research robot

to synthesize isolated single walled nanotubes (SWNTs), to efficiently navigate within

a high-dimensional synthesis space. The Autonomous Research Systems (ARES) uses

a Raman spectrometer laser to provide heat and simultaneously characterize growing

SWNTs in situ [78], [79]. The ARES system utilizes machine learning algorithms

to learn from previous experimental results and uses a planner to conduct experiments

to reach an objective. In one demonstration, the ARES system autonomously deter-

mined experimental parameter sets required to achieve specified SWNT growth rates

in fewer than 100 iterations [79]. The ARES approach shows that integrating artifi-

cial intelligence, with high-throughput experimentation can allow experimental param-

eter space navigation within a process–structure domain that is not well understood

by researchers. The interactions between large populations of concurrently growing

CNTs in forests add complexity, which is not present during the synthesis of isolated
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SWNTs. In this study, a time-resolved finite element method (FEM) CNT forest sim-

ulation tool [80], [81] is used as a high-throughput virtual laboratory to examine the

synthesis–structure–property design loop of CNT forests. Images of each CNT forest

morphology were obtained at the end of their simulated synthesis. A mechanical com-

pression simulation was used to obtain mechanical properties [81], [82], [83]. One of

the recent works [84] has shown an exemplary study where RL was leveraged. In the

applied approach authors have trained RL models in simulation and then implemented

it successfully into the physical world scenarios. Data for RL is collected via running an

agent in the desired environment, but for applications like robotics, running a robot in

the real world may be extremely costly and time-consuming. In this paper, authors have

introduced the RL-scene consistency loss for image translation, which ensures that the

translation operation is invariant with respect to the Q-values associated with the im-

age. This allows the model to learn a task-aware translation. Incorporating this loss

into unsupervised domain translation, the RL-CycleGAN which is based of the deep

neural network, a new approach for simulation-to-real-world transfer for reinforcement

learning was proposed.

5.2.2 Approach

Experimental data often takes days to be produced and relies on the skill of the operator

to produce SEM images with high detail and low noise, this often causes a deficit of

physical CNT forest experimental data. To supplement this lack of data, a physics-

based finite-element simulation is used to obtain CNT forest images at different stages

of growth. Simulation parameters such as density, plot area, and standard deviation of

rate and angle will be used for the study, these parameters can be modified to produce

images analogous to physical CNT forest growths. A test agent will be validated using

the synthetic data from the simulation and will then be applied to the experimental

data to test the CNT forests’ physical properties. Another simulation was developed

to measure the compressive strength of individual CNTs and is used to obtain physical

properties that can be associated with the synthetic images being generated by the.

Figure. 5.1 shows the images representing the sequential growth of the CNTs being
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developed through our simulation framework.

(a) Initial growth (b) Half of the growth (c) CNT growth last stage (d) Final CNT growth

Fig. 5.1 Our simulated CNT forest growths as shown at different stages of their growth (a) growth
pattern at height of 5uM, (b) growth pattern at height of 10uM, (c) growth pattern at height of 15uM, (d)
growth pattern at height of 20uM

Drawing inspiration from the recent works with reinforcement learning which has

the potential to create end-to-end autonomy. We have developed first of it’s kind smart

RL agent to regulate CNT growth by regulating synthesis parameters so as to achieve a

growth that maps to a desired mechanical property. Through a simulation-based study,

our RL agent helps to overcome difficulty in controlling parameters of growth in real

experimental setup as well as reduces manual time thus enabling faster and better se-

quential growth of CNT tubes with regulated parameters for desired properties. In our

proposed RL model the agent learns from CNT growth variation in a simulation-based

environment where the critical parameters of density, growth rate, tube radius, tube

stiffness as well as Van der Waals forces are used as control parameters. Enabling au-

tomation through our RL model in CNT growth experiments allows for exploring a

wider range of growth conditions. We have specifically used two kinds of actions to

control simulated CNT growths which are a)change in standard deviation in angular

deviation of CNT tubes while they are growing and, b) change in the rate of growth of

tubes. Consequently, two models are generated based on these action controls. How-

ever, the goal of both agents is to learn optimal growth policies to improve the maximum

compression load capacity of the CNT tubes. A simulation-based learning environment

is necessary to utilize RL because all learning-based methods need,

• large iterations of similar and dis-similar situations to learn.

• it is time and resource-consuming to perform CNT growth experiments for all
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permutations of the value of controlling parameters.

Fig. 5.2 RL agent training methodology followed in simulated growth of CNT tubes in episodes. Each
episode contains N=30 simulation growth. A total of 10 episodes was used for learning the growth
policies. At each iteration, the tubes are compressed and a reward is generated as feedback for the model
to learn optimum actions. The model aims to increase the overall reward in the training.

More specifically the goal of our learning base solution is to create a smart learning

agent which can dynamically regulate parameters affecting CNT growth to improve its

ability to take the compressive load. We detail below the definition of the key sub-

components which are used to create our RL model.

• Agent: The ‘q’ in q-learning stands for quality. Quality in this case represents

how useful a given action is in gaining some future reward. When q-learning is

performed we create what’s called a q-table or matrix that follows the shape of

[state, action] and we initialize our values to zero. We then update and store our

q-values after an episode. This q-table becomes a reference table for our agent

to select the best action based on the q-value. It does not require a model of the

environment (hence ”model-free”), and it can handle problems with stochastic

transitions and rewards without requiring adaptations.

• Actions: We have developed two different models based on the actions performed

on the growth environment to characterize CNT compression. These actions are

i) regulating the waviness of the tube getting generated. That is the average an-

gular deviation of the tubes from straight growth. It is essentially the degree of
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tortuousness in the CNT tubes. ii) The average rate of tube growth which can

lead to adding defects in the tube growth due to the breaking of the tubes.

• Observations: Total maximum compression load that can be withstood by tubes

at different heights of compression is measured and compared to assess improve-

ment in the load capacity of the grown tubes. These observations are used to

generate suitable rewards for the model at different steps of measurement.

• Reward: The agent is rewarded for the selection of growth parameters which

leads to improvement of the maximum capacity of compression load of the CNTs

and it is penalized when the compression load capacity decreases after a certain

parameter of growth is applied in the growth environment. The action applied at

each step is governed by the assessed reward measured by the model.

5.2.3 Evaluation

In this section, we evaluate our RL model in it’s ability to regulate growth parameters

to improve the maximum compression load capacity of the CNT tubes.

Evaluation of model based on angular deviation: Our Q-learning-based RL agent

was able to learn the growth parameter “wave” temporally to create CNT tubes with

the ability to withstand more compressive forces. The maximum compressive load of

3.59e-05 N was achieved at the “wave” parameter configuration of [3,4,5] in steps of

growth within 1-33, 33-66, and 66-100 steps when the CNTs were compressed to 95%

of their initial height. As shown in Table 5.1 maximum compression load is observed

at 90% of the maximum height of the tubes.

Table 5.1 Comparison of maximum load capacity of CNTs at different height with and without RL
model when based on angular deviations where H is the initial height of tubes before compression

Height after
Compression

Max. Load
without model

Max. Load
with RL model

Optimal ’wave‘
Configuration

95% of H 01.43e-05 3.59e-05 [3,4,5]
90% of H 4.61e-05 6.43e-05 [4,4,5]
80% of H 2.1e-05 4.2e-05 [3,4,5]

Evaluation of model based on the rate of growth: The maximum compressive

load of 6.98e-05 N was achieved at the growth rate parameter configuration of 65e-
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9 meters/sec when compression was done to 90% of tubes initial height. The agent

improved the rate of growth parameter from 60e-9 to 65e-9 after the final iteration

when the angular “wave” parameter was fixed at the value of 3. The rate of growth

parameter theoretically can take any value within simulation experiments but the agent

suggests values of 65e-9 m/sec for growth which improves compression load capacity.

As shown in Table 5.2 the average improvement in the load capacity increased by 183%

at different heights of compression.

Table 5.2 Comparison of maximum load capacity of CNTs at different heights with and without RL
model where H is the initial height of tubes before compression

Height after
Compression

Max. Load
without model

Max. Load
with RL model

Optimal Average
Growth Rate

95% of H 2.56e-05 4.71e-05 65 e-9 m/sec
90% of H 3.58e-05 6.98e-05 65 e-9 m/sec
80% of H 2.81e-05 4.86e-05 60 e-9 m/sec

5.2.4 Manufacturing: Automation pipeline on VEC

For experimental research such as material discovery, a large number of parameters

govern the outcome of the experiments. These parameters are tough to control and

convolute the final result. In our exemplar study of CNT growths which also have a

large number of parameters affecting its growth, essentially NextGen instruments such

as for imaging are utilized. With these new generations of instrumentation, it is often

difficult to predict the types of data to be collected tailored toward understanding the

experimental problem at hand. These instruments are characterized by the generation

of large volumes of data which often needs more processing. Regardless, they are in

high demand and are available for a limited time.

Hence it becomes critical to use them as efficiently as possible. These requirements

necessitate development of an intelligent algorithm and cohesive data pipelines to gen-

erate insights faster and correctly as shown in Figure 5.3 Through our current work,

we have shown the utility of reinforcement learning for predicting and controlling the

growth of CNT tubes with the goal to move toward a fully autonomous intelligent sys-

tem that can grow CNTs of desired properties by utilizing image data in synergy with
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Fig. 5.3 Data analytics pipeline leveraging the VEC architecture and multi-cloud platform for analytics
of the raw CNT image data generated from next generation of scientific instruments

other governing control parameters. Note that such fully autonomous system will re-

quire extensive data collection and potentially large-scale cloud computing to process

huge data quicker so as to make an informed decision on time-sensitive CNT growth

and we estimate that these kinds of workflows processes other experimental researchers

as well.

5.3 Healthcare: Protected Data Analytics Case Study

Accessing massive collections of prior medical literature and handling the on-going

data deluge creates challenges for healthcare data consumers (e.g., clinicians and re-

searchers) who need to make timely data-driven decisions related to the COVID-19

pandemic response. The current practice still heavily relies on time-consuming and

onerous manual methods to search, compile and select the articles that are relevant for

gaining insights to shape outcomes. The COVID-19 pandemic demands swift actions

from researchers and clinicians, and there is a dire need for robust tools to help them

manage the data sets in research tasks, and also to enable them to collaborate with other

experts based on critical evidence. The tools also need to be integrated within unified

data-sharing platforms that increase accessibility to specialized literature and support

data analytics automation to expedite e.g., search and analysis processes. Even more

importantly, the tools need to be accessible in a flexible and scalable manner by utiliz-

ing cloud-based deployments with necessary interfaces to integrate open-source tools
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and healthcare social networks.

5.3.1 Significance and Related Works

The OHDSI program is committed to promote the importance of health data analytics

through the development and release of open-source data analytics tools (i.e., ATLAS,

ACHILLES, ATHENA) [101]. These tools have common features which allow them to

interact with a CDM [102] that can be implemented using multiple database manage-

ment systems (e.g., Postgresql, Redshift). Through proper extraction, transformation,

and loading (ETL) processes, disparate structured and unstructured data sources can

be integrated into the CDM repository under a well-defined data structure that will al-

low the analytic tools to utilize templates to run standardized data analytic processes

and generate insightful results. Multiple solutions have been developed to store and

share health-care data in cloud environments, keep those records secure in such envi-

ronments, provide analytic services related to health big data, and preserve data privacy.

In the context of data accessibility, the work in Health-care Data Gateway [103] aims

to securely store Electronic Health Record (EHR) data in a cloud-based platform and

uses a Blockchain-based secure storage layer. Data sharing is supported among multi-

ple users (i.e., physicians, researchers, government institutions, private organizations)

based on role assignments. Similarly, in their work, [104] proposed a system to store

EHR in a public cloud, and their focus was on ensuring data confidentiality and integrity

by using an access control mechanism based on the lattice model

5.3.2 Approach

The core component of the data pipeline orchestration in OnTimeEvidence is built on

top of the open-source OHDSI on AWS. The AWS CloudFormation is used to deploy

OnTimeEvidence along with the data access and process management module, entitle-

ment database, and access admin console. We leverage the JupyterLab included with

OHDSI on AWS to facilitate users’ data access and interaction, and create extensions

such as the user data request forms and the data processing models in order to pro-

vide the analytic workspace for health-care data and COVID19 publications analysis
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Fig. 5.4 COVID-19 literature selection and analysis workflow process in OnTimeEvidence for knowl-
edge discovery leveraging the VEC architecture and multi-cloud platform.

as well as result sharing. We have uploaded the SynPUF Medicare and the CORD-19

datasets to a relational repository on the OHDSI Red-shift data warehouse service, and

the related health-care data and COVID-19-related literature information are available

for process testing and validation of user utility.

To facilitate these tools into a unified unit we have developed a data discovery plat-

form viz-a-viz “OnTimeEvidence” as shown in Figure. 5.4. The platforms was de-

veloped with the capability to enhance scalability. However, extensive use of cloud

computing resources is not economically feasible. For such platforms which need to fa-

cilitate smaller applications at a higher frequency and large applications intermittently.

A combination of edge and cloud services which is the promise of VEC is the most

optimal computing architecture. VEC architecture in these platforms ensures cheaper

solutions and reduced maintenance costs while at the same time enabling applications

to maintain performance by leveraging multi-cloud platforms if required.
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5.4 Summary

In this chapter, we discuss potential applications which can benefit from VEC archi-

tecture of computing. Specifically, we discuss the manufacturing use case of carbon

nanotube (CNT) growth and ways to improve the CNT growth by learning its optimal

growth parameters through a RL model. We further plan on integrating the RL solu-

tion and new data analytics pipelines and workflows with VEC clusters and multi-cloud

platforms. Such integration will act as an exemplar use case that will guide and mo-

tivate the integration of more data analytics pipelines to adapt the VEC architecture

of computing. We also describe the utility of VEC architecture in a healthcare data

analytics pipeline i.e., “OnTimeEvidence” where smaller analytics and queries can be

handled through voluntary edge resources while the larger compute-intensive tasks can

be managed through cloud platforms. Moreover, VEC computing architecture can find

its utility in many scientific as well as commercial applications such as IoT devices,

since it focuses on the economical availability of computing resources. Rapid avail-

ability of these volunteered resources is critical for financially constrained projects and

users.
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CHAPTER 6

Conclusions and Future Works

In this thesis, we have presented a novel solution for improving cloud resource allo-

cation for workflows and applications. We solve the problem of provisioning opti-

mal cyber resources for users by diving the large problem into smaller problems that

can be solved sequentially toward the final solution. More specifically we presented a

novel multi-cloud resource recommender that focuses on improving PACS criteria for

resource selection and allocation. We have also presented a novel architecture of com-

puting i.e. VEC which aims at utilizing all available computing resources for all kinds

of workflows and applications.

6.1 Contributions Summary

User Engagement: For the ease of non-expert cloud users, who often struggle to de-

ploy cyberinfrastructure in an efficient manner for data analytics and to gain from the

experiences of cyber expert users, we developed intuitive GUIs and structure [87][88]

to capture users requirements and expertise effectively within KbCommons portal [18].

User Preferences: To guide non-expert users with resource allocation for application

workflows, we deploy a fuzzy engineering model and utilize users’ expertise along with

a knowledge base of benchmarks rules for assessing PACS criteria of CSPs [89][90].

PACS Optimization: We propose a novel multi-objective (performance, agility, cost

and security) optimization model integrated within a novel resource brokering middle-

ware viz., OnTimeURB in order to meet KBCommons biological user-defined con-

straints of bioinformatics application workflow performance, cost and CSPs interoper-

abilities [91][92].
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ML based Resource Allocation: We present a novel multi-objective optimization al-

gorithm that powers a multi-cloud resource broker middleware viz., OnTimeURB that

considers objective PACS factors in the brokering process [93]. The algorithm is aided

with an ML model in order to additionally account for user-centered subjective factors

for workflow executions. The ML model is designed to learn the bias of expert users

towards cloud platforms for different requirements of functional criteria and workflow

sizes.

Trusted Volunteer Edge Computing: We propose a novel compute methodology

through VEC [94, 95]. A VEC system is comprised of multiple geographically dis-

tributed clusters, with each cluster having a set of co-located voluntary diverse edge

resources. A major challenge for wider adoption of the VEC computing paradigm in

scientific application workflows relates to ensuring that the volunteer edge resources

can be trusted in terms of the performance, agility, cost, and security (PACS) factors, on

par with nodes within public clouds. To solve this problem we have proposed a novel

“VECTrust” model for the support of trusted resource allocation algorithms in VEC

computing environments [94].

6.2 Future Works

Future work could include improving the OnTimeURB by leveraging the expertise of

researchers working with different computing platforms. Specifically, we could take

into account user biases towards computing resources arising due to factors such as

data protection policies, collaboration needs, and availability. This can facilitate op-

timizations by taking into consideration unquantifiable biases from users, while still

accounting for PACS requirements and QoS fluctuations of computing resources. Fur-

ther, OnTimeURB was developed only on the services which are available on a pay-

as-you-go basis from different CSPs. The solution can be further improved upon to

capture more services being offered by different cloud service providers for improving

its recommendations. Since the cost to resources for many of the resources provided by

cloud service providers does not scale linearly, broadening the scope of optimization to

standalone services from cloud providers can improve resource allocation even more.
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6.2.1 Autonomous-VEC

As part of the future work towards improving trust in VEC architecture, one can include

dynamic capture of characteristics of a given set of workflows in terms of PACS fac-

tors for pertinent development of trust models. Particularly, this will help in dynamic

machine learning-based optimization within VEC trust models to cater to diverse work-

flow requirements and, handle diverse job arrival and cluster scheduling patterns in very

large VEC systems. A better and improved architecture to standardize, configure and

orchestrate VEC resources can be created for the mass execution of diverse workflows

from geographically distributed users. Since VEC architecture is driven by the avail-

ability of volunteered resources, an autonomous framework could be developed which

allows volunteer users to contribute their resources and earn compute hours which they

can use in the future when they need more computing resources. This creates incentives

for volunteers to contribute and utilize resources from the VEC pool of resources.

6.2.2 VEC and IoT Devices

VEC architecture of computing is based on volunteered edge resources, therefore IoT

devices are ideal to further expand computing resources. With the tremendous growth

in IoT devices and their capabilities such as smart watches, Nest Thermostat, Amazon

Echo, etc. There is going to be the availability of more and more distributed devices

that are capable of computations. These devices themselves might need computation

capabilities from nearby edge resources to enrich their functionalities. Easy integration

of VEC resources with these IoT devices will foster the growth of both VEC architecture

as well as IoT devices.
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