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Abstract 
Machine learning (ML) modelling techniques are promising approaches in 

technology acceptance modelling research. Among other capabilities, ML can be 

used to advance and validate theories and evaluate their underlying methodologies 

and predictive power. This research applies linear and non-linear ML supervised 

regression techniques to formulate a predictive personal technology acceptance 

model (PTAM) that avoids the drawbacks and limitations of current technology 

acceptance models, namely the technology acceptance model (TAM) and the 

unified theory of acceptance and use of technology (UTAUT). 

We followed the CRoss-Industry Standard Process for Data Mining (CRISP-

DM) to build a novel technology acceptance model that is more generic and 

predictive than either TAM or UTAUT. We collected data from the technology 

acceptance literature, tweets (using the Twitter API), interviews and surveys. We 

used five linear and non-linear regression algorithms to formulate PTAM, which 

includes thirty-seven features, and applied partial-derivatives sensitivity analysis to 

rank these features. We also applied Mamdani fuzzy inference to create a fuzzy 

inference PTAM (FIPTAM) capable of defuzzifying PTAM’s output (use behaviour) 

values to improve the model’s practicality. We used Bayesian networks to formulate 

a structured PTAM and create a personal technology acceptance index (PTAI). We 

then applied data mining techniques to discover new relationship patterns between 

PTAM’s features and target use behaviour. 

The resulting PTAM, following CRISP-DM, had better predictive power (R² = 

0.97) than either TAM or UTAUT (R² = 0.67 and 0.73, respectively). Past behaviour 

was found to be the best predictor in PTAM. FIPTAM showed acceptable predictive 

power (R² = 0.41) and Bayesian networks achieved acceptable accuracy (49.13%). 

Three types of relationship patterns (non-linear, monotonic and non-monotonic) 

were discovered among PTAM’s features and target use behaviour. This research 

demonstrates the capacity of ML techniques to advance technology acceptance 

frameworks by enhancing their performance, expanding their models and 

evaluating the relevance of their features. 
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فوَ’
َ

( قَوْ
*

لعِ يذِ ِّل
2

 مFGHلا نآرقلا -فسوي ﴾٧٦﴿‘م5ٌلِعَ مٍ

“Above every knowing one is a Knower”  
Yusuf 12:76 - Noble Quran 
 

 

RSر ءادردلا LMNأ ىور
N T نلا عمس هنأ هنعZMN ص\ T ةكئلاملا نإ’:لوق[ ه5لع ملسو  

 .))يذمtuلاو دواد وبأ ەاور(( .‘عنص[ امRS nر ملعلا بلاطل اهتحنجأ عضتل

 

Abu Dardā (may Allah be pleased with him) narrated that the 

prophet (peace and mercy of Allah be upon him) said: ‘The 
angels lower their wings over the seeker of knowledge, 
being pleased with what he does.’ [Abu Dawud and At- 

Tirmidhi], Riyad as-Salihin 1388 
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Chapter 1: 
Introduction 
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1.1 Motivation 
Investigating the features that shape technology adoption, acceptance, 

usability and use decisions is of paramount importance for technology practitioners 

and manufacturers alike. Three elements are typically considered when analysing 

these decisions: users, technology and the environment in which the technology is 

used. Over the last three decades, technology adoption researchers have 

investigated these features through the lens of the technology acceptance model 

(TAM) and the unified theory of acceptance and use of technology (UTAUT). 

Although these two models and their extensions have made great strides in 

shaping understandings of technology use behaviour, both have several 

limitations. Namely, they were developed using explanatory and causal modelling 

techniques such as structural equation modelling (SEM) and partial least squares–

SEM (PLS-SEM), which were confused with predictive approaches, such as 

machine learning (ML). These explanatory approaches have been criticised for 

hindering the development of technology acceptance models and for overlooking 

the non-linearity of the influences of various technology features. We find it an 

interesting and challenging task to examine the impact of ML techniques and their 

underlying data-driven methodology on technology acceptance frameworks. We 

sought to analyse whether ML techniques could revive the development of 

technology acceptance models – specifically, whether the use of ML can eliminate 

the limitations of TAM and UTAUT, open their ‘black boxes’ and advance their 

frameworks by improving their predictive accuracy, expanding their scope and 

evaluating the relevance of their features. 

1.2 Problem Statement 
The current models of technology acceptance (i.e. TAM and UTAUT) lack 

several features relevant to human behaviour and technology design. Both models 

follow a theory-driven methodology that applies explanatory linear algorithms, such 

as multiple linear regression (MLR), SEM and PLS-SEM. These algorithms require 

that new features have linear relationships with the existing features of TAM and 

UTAUT. When these models are expanded, new features are discarded if they do 
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not have linear relationships with existing features. Moreover, both models confuse 

these explanatory-oriented algorithms with predictive techniques in that they use 

explanatory approaches to predict technology use and acceptance. Furthermore, 

the development processes of both TAM and UTAUT suffered from several 

limitations: a single explanatory linear algorithm was used to evaluate their 

modelling power; both models’ powers were measured applying a single metric (i.e. 

R²); and both models were tested with groups of homogenous subjects in 

nonvoluntary settings and applying a single technology. As a result, both models 

can rarely – if ever – be expanded with new features, have low linear modelling 

power, are not structurally predictive, are not generic and had a non-objective 

development process. 

Both TAM and UTAUT postulate that the relationships among the existing 

features of both models are only linear and nonmonotonic. This assumption was 

made because both models were developed applying linear algorithms, such as 

MLR, SEM and PLS-SEM. However, we believe that other relationship patterns 

exist and can be revealed if we combine data mining (DM) and ML techniques to 

extract knowledge from both models. 

We believe that there is a need in technology acceptance research to 

introduce an objective modelling process, such as ML, that can eliminate the 

above-described limitations of TAM and UTAUT. This process would allow for the 

examination of linear and nonlinear influences of technology acceptance features 

and enable the introduction of new features, regardless of whether they constitute 

relationships with the existent features of both models. Additionally, such a process 

should examine the predictive power of technology acceptance frameworks using 

more than one prediction evaluation metric and multiple linear and non-linear 

algorithms. The process should also test these frameworks with heterogenous 

subjects, in a voluntary setting and applying several technologies. 

Additionally, both TAM and UTAUT produce meaningless output values (R²) 

ranging from +1 to −1 inclusive. Consequently, neither model can be used in 

decision-making processes to support end users’ technology use decisions. Thus, 

there is a need to create a predictive model of technology acceptance that 
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defuzzifies these output values and labels a technology as usable, likely usable or 

unusable. 

The current TAM and UTAUT are limited in that they are structurally linearly 

explanatory and exclude many important features of technology acceptance. This 

undermines their effectiveness and affects their practicality. Therefore, there is a 

need to create a structurally explanatory and predictive model of technology 

acceptance that covers both the linear and non-linear influences of current 

technology acceptance features. Such a model should enable the inclusion of new 

features of technology acceptance and be aligned with the current TAM and 

UTAUT. 

1.3 Research Questions 
Our research investigated the development of the technology acceptance 

literature and the methodologies followed in previous work. In this process, we 

identified several gaps and limitations in the existing literature. We aimed to answer 

four  research questions (RQs). Our first RQ involved whether the identified gaps 

and limitations could be addressed and whether solutions could be provided to 

avoid them. Our first RQ is as follows: 

RQ1: Can ML techniques and their under-basis methodology present 

compelling solutions for advancing the development of technology 

acceptance and enriching the related literature? 

To answer RQ1, we used a data-driven methodology, explained in Chapter 2, that 

utilises linear and non-linear ML algorithms to develop a personal technology 

acceptance model (PTAM). In Chapters 5, 6 and 7, we provide three solutions that 

can advance the development of technology acceptance models. Additionally, in 

Chapter 5, we use DM techniques to search for new relationship patterns between 

PTAM’s features and target use behaviour. 

Since we decided to develop a data-driven PTAM, we considered whether 

PTAM’s performance would vary based on the algorithms used. The following RQ 

resulted from this consideration: 

RQ2: Will the proposed PTAM’s predictive power vary depending on the 

measurement algorithm and its linearity? 
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We address in Chapter 5. We used linear and non-linear algorithms to measure the 

performance of PTAM and compared its performance with different algorithms and 

predictive functions. 

In our review of the technology acceptance literature, we found that the 

current models (i.e. TAM and UTAUT) do not guide practitioners with regard to how 

to embed the models into technology use decisions. We investigated whether 

PTAM had similar problems and whether we could find a solution that could 

improve the practicality of TAM, UTAUT and PTAM and enable practitioners to use 

PTAM to predict end users’ technology use decisions. Our third RQ is as follows: 

RQ3 How can practitioners use PTAM to drive their decisions with regard to 

the usability of a given technology? 

We address RQ3 in Chapter 6, where we use principal component analysis (PCA) 

to decompose PTAM and formulate FIPTAM. 

While reviewing the literature, we found that the current explanatory 

approaches (SEM and PLS-SEM) have hindered the development of technology 

acceptance modelling due to restrictions tied to the underlying methodologies of 

both approaches. Therefore, we sought to determine whether ML techniques could 

provide a solution that avoided this limitation of SEM and PLS-SEM. We also 

wondered whether ML techniques could be used to develop an explanatory and 

predictive model of technology acceptance. Moreover, we sought to determine 

whether such an explanatory and predictive model would perform better than 

PTAM. We therefore developed the following RQ: 

RQ4: Can ML techniques provide an explanatory and predictive structure 

for a technology acceptance model that can outperform PTAM, and, if so, 

why? 

To address this question, we used Bayesian networks to formulate a personal 

technology acceptance index (PTAI), described in Chapter 7. We also tested the 

network-based model to compare its efficacy with that of PTAM. 

1.4 Research Objectives 
The thesis aimed to achieve the following objectives: 
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1. To propose a predictive PTAM capable of estimating a technology’s usability 

better than TAM or UTAUT and to link PTAM to both models to highlight 

their similarities and differences. 

2. To use several linear and non-linear ML algorithms according to a data-

driven methodology that avoids the limitations of the currently applied 

theory-based statistical methodology of TAM and UTAUT and can offer the 

following benefits to both models: improving the predictive power of 

modelling, introducing new features and evaluating existing features. 

3. To identify the best predictor of PTAM’s features by applying partial-

derivatives sensitivity analysis. 

4. To explore the linear and non-linear relationships between PTAM’s features 

and use behaviour and to discover new relationship patterns. 

5. To decompose PTAM into DPTAM applying PCA and to use fuzzy inference 

modelling to build FIPTAM, which improves the practicality of TAM, UTAUT 

and PTAM by supporting and automating the technology use decision-

making process. 

6. To use Bayesian networks to develop an explanatory and predictive 

structure of PTAM, formulate PTAI and benchmark the network model’s 

performance against PTAM’s. 

1.5 Thesis Structure 
This thesis is composed of 8 chapters and an appendix. Figure 1.5 shows the 

purpose of each chapter. In Chapter 2, we present our research methodology. In 

Chapter 3, we discuss the literature, review its development and identify the 

research gaps addressed in Chapters 6 through 7. In Chapter 4, we provide the 

theoretical framework on the basis of which PTAM, the decomposed PTAM 

(DPTAM), FIPTAM and PTAI were formulated. Also, we explain the sources of the 

data used in this research and clarify how we validated and prepared the data for 

modelling. Chapters 5 through 7 each have a similar structure comprising six 

sections: an introduction, objectives, modelling, evaluation, findings and 

conclusion. The introduction and objectives sections explain our goals, while the 

modelling and evaluation sections highlight the approach and computations that 
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we applied to achieve those goals. The findings sections connect the results 

presented in the modelling and evaluation sections with prior literature and explain 

the impact of our results on the literature. The conclusion sections summarise each 

chapter’s analysis and briefly reiterate our contributions. Chapters 6 and 7 each 

have an additional limitations section that addresses the shortcomings of their 

respective analyses. We model and evaluate PTAM in Chapter 5 and apply DM 

technique to PTAM’s features. In Chapters 6 and 7 we model and evaluate FIPTAM 

and PTAI, respectively. Chapter 8 summarises the thesis and proposes future 

research directions. The appendix contains tables and figures. 

1.6 Contributions 
The main contributions of this thesis to the technology acceptance literature 

are as follows: 

1.6.1 Chapter 5 
1. A novel PTAM was formulated using linear and non-linear ML algorithms and 

a data-driven approach. A total of thirteen new features were introduced to 

the literature, and four current features were reinstated after having previously 

been excluded in the literature. 

Figure 1.5 Thesis Structure 

 



30 
 

2. Partial-derivatives sensitivity analysis was applied to rank the thirty-seven 

features of PTAM and contrast those rankings with the rankings in previous 

literature. In contrast with the existing literature, we found the most important 

feature of use behaviour to be past behaviour, rather than behavioural 

intention of technology use. Several other features were also ranked 

differently than hypothesised in the literature. 

3. The use of linear and non-linear algorithms to formulate personal technology 

acceptance proved to be a better approach than PLS-SEM, which is currently 

widely applied in the literature. 

4. Three new relationship patterns were discovered (non-linear, monotonic and 

non-monotonic) by using DM techniques to examine the relationships 

between the determinants of PTAM and use behaviour 

1.6.2 Chapter 6 
1. A unique approach to modelling PTAM using Mamdani fuzzy inference was 

introduced. The resulting FIPTAM avoids the limitations of TAM, UTAUT and 

PTAM, enabling practitioners to use PTAM to support their decision-making 

processes. 

2. An automated process for predicting personal technology acceptance was 

presented to enable practitioners to easily use PTAM in decision-making 

processes. 

1.6.3 Chapter 7 
Bayesian networks were used to formulate PTAI. This approach avoids the 

limitations of TAM, UTAUT and PTAM by developing a structured framework of 

personal technology acceptance. 
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Chapter 2: 
Methodology 
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2.1 Introduction 
Our research follows an iterative and inductive methodology that applies ML 

techniques to use data to find the best structure for technology acceptance models. 

This structure need not be linear, and the modelling approach is not restricted to 

MLR. Several linear and non-linear modelling techniques can be applied before the 

best structure is chosen on the basis of its predictive power. Our research 

methodology departs from the current technology acceptance literature. 

Specifically, the existing literature has applied a theoretical-based methodology 

that hypothesises a certain structure of linear interactions among models’ features 

and applies linear-regression–based statistical analysis of significance (using t-

statistics and p-values) to measure the validity of such a structure. The collected 

data are used to test the hypothesised structure. This methodology is known as 

deductive, as it intends to use observations to verify theoretical views rather than 

seeking new patterns in the interactions among technology acceptance models’ 

features. However, our approach relies on data to formulate models, which results 

in better modelling compared with the current literature and is capable of identifying 

new relationship patterns among the features of technology acceptance models. 

Our proposed approach, following an inductive methodology, uses data to 

build a novel PTAM that is more generic and effective than the current TAM or 

UTAUT. Our research adapts the CRoss-Industry Standard Process for Data 

Mining (CRISP-DM) methodology (Kelleher et al., 2015), which is widely used in 

ML research. Therefore, we seek to collect data on the research problem 

(formulation of personal technology acceptance models) and use these data to 

design and formulate a predictive model capable of anticipating technology use that 

avoids the drawbacks of the current TAM and UTAUT. As shown in Figure 2.1, the 

first step involves understanding the research problem and its data source. 

Relevant data are then collected and prepared. Subsequently, in the modelling and 

evaluation steps, our proposed solutions are designed and evaluated, applying 

supervised ML techniques. The following step is to use the formulated PTAM to 

discover knowledge before the final implementation step. 
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In the following sections we elaborate on each of the seven steps that our 

proposed methodology included. 

2.2 Understanding the Research Problem 
In this step, we searched the technology acceptance literature with the aim of 

creating a complete picture of the literature’s development and visualising the 

current directions in which lead researchers’ interests are shifting. We also 

identified critics’ views and recommendations to determine the current gaps in the 

literature that could be filled by our research. Accordingly, we specified the 

problems in the current literature and our research objectives, described in Section 

1.4 of Chapter 1. We cover the current state of the literature, including critics’ views, 

in Chapter 3. 

At this stage, and after understanding the limitations of the current technology 

acceptance models, we applied a data-driven methodology and determined our 

Figure 2.1 Steps of Methodology 
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proposed solutions by formulating PTAM, DPTAM, FIPTAM and PTAI. In Chapter 

4, we discuss why we proposed these four models; their components, theories, 

modelling and evaluation techniques; and the types of technology whose use they 

predict. 

2.3 Understanding the Data 
In this step, we identified the sources from which we collected our research 

data. In total, there were four data sources: the technology acceptance literature, 

tweets, interviews and surveys. We extracted the features of PTAM based on the 

technology acceptance literature. Before we collected the survey data, we used the 

Twitter and interview data to examine the relevance of these features, provide 

unique definitions of them and design survey statements for each. After analysing 

the Twitter and interview data, we designed the survey and launched it on a 

specially designed website. We used only the survey data for modelling. We 

describe the collected features and our procedure for collecting the Twitter, 

interview and survey data in Chapter 4. 

2.4 Data Preparation 
This step involved cleaning the survey data and verifying their validity in 

preparation for formulating the models. This step is described in Chapter 5. 

Because PTAM, DPTAM, FIPTAM and PTAI were tested using survey data, we 

used validation analysis (Section 4.13) to verify this type of data. The validity of the 

collected tweets and interviews was verified following a procedural (rather than 

statistical) approach, detailed in Sections 4.11.1 and 4.11.2. 

After collecting the survey data, we restructured the data and verified their 

validity by applying the following analyses: content validity, features reliability, and 

convergent and discriminant validity. The content validity analysis included three 

sub-analyses: common method bias, multicollinearity and normality. The features 

reliability analysis relied on Cronbach’s alpha (Cronbach, 1951). The convergent 

validity analysis examined the interrelationships between the statements of a 

feature. The discriminant validity analysis applied the Fornell–Larcker criterion, 
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which evaluates the statements of a feature with other statements of other features 

(Fornell & Larcker, 1981). 

2.5 Modelling 
In this step, we created four models of personal technology acceptance: 

PTAM, DPTAM, FIPTAM and PTAI. We discuss the framework and features of 

PTAM in Chapter 4 and explain its modelling and evaluation in Chapter 5. In 

Chapter 6, we explain the approach we followed to decompose PTAM using PCA 

into two versions of DPTAM: a six-feature decomposed model (SFPTAM) and a 

three-feature decomposed model (TFPTAM). Next, after we determined that 

TFPTAM was the better-performing decomposed model, we used its structure to 

create FIPTAM. We used the SPSS software and Python for PCA modelling. 

The modelling of FIPTAM involved creating the following components: inputs, 

rules, outputs, linguistic memberships of inputs and outputs and their data ranges. 

Inputs were three variables adopted from TFPTAM: human beliefs, cognitive 

thinking and technology characteristics. We used a decision tree classifier (DTC) 

to determine the inputs’ data ranges and decided the outputs’ data ranges 

manually. The FIPTAM output data were classified as unusable, likely usable or 

usable. The DTC was constructed in Python, and MATLAB’s Fuzzy Logic Designer 

was used to draw the components of FIPTAM.  

Our aim in formulating PTAI was to create an explanatory and predictive 

structure for PTAM. This structure was designed to enable end users of a given 

technology to understand how each feature of PTAM affects the other features and 

results in end users’ use decisions. We accomplished this applying Bayesian 

networks, a technique that relies on probability tables (on the basis of which PTAI 

was created). Chapter 7 describes our modelling and evaluation of these Bayesian 

networks. We created the network diagram using Tetrad (2020) version 6.8.0, a 

computer program developed by the Center for Causal Discovery at the University 

of Pittsburgh. We estimated probability tables using Microsoft Excel. The PTAM 

inferences were obtained by computing joint and conditional probability tables 

using the survey dataset. Table 2.5 summarises the modelling process. 
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Table 2.5 Summary of Modelling Process 

Model PTAM 
DPTAM 

FIPTAM PTAI 
TFPTAM SFPTAM 

Objective Generic model 
of personal 
technology 
acceptance  

Decomposition 
of PTAM 

Decomposition 
of PTAM 

Decision tool 
for PTAM 

Understanding 
interactions 
among PTAM 
features 

Number  
of Features 

37 3 6 3 37 

Software 
Used for 
Modelling 

None Python and 
SPSS 

Python and 
SPSS 

MATLAB 
(Fuzzy Logic 

Designer) 

Tetrad and 
Excel 

2.6 Evaluation 
This step involved evaluating the learning processes of PTAM, DPTAM 

(including SFPTAM and TFPTAM), FIPTAM and PTAI mentioned in the previous 

step. Since our research problem involves designing personal technology 

acceptance models with a set of input variables and we sought to find a predefined 

output variable (i.e. use of technology), it can be considered a supervised learning 

problem. Overall, we used two supervised learning techniques: regression and 

classification. PTAM, DPTAM and FIPTAM were evaluated using regression 

algorithms, whereas PTAI was evaluated using classification algorithms.  

To measure each algorithm’s performance, the modelling data (i.e. survey 

data) were divided into training and validation sets using 10-fold cross-validation. 

Each model was first trained on nine sets and then validated on the remaining set, 

whose size was 10% of the entire dataset. All four models were evaluated using 

both linear and non-linear algorithms to ensure objective comparisons across 

algorithms for each modelling task. 

2.6.1 Regression Learning 
2.6.1.1 Regression Evaluation Models 

As the target variables of PTAM, DPTAM and FIPTAM are numerical, they 

were evaluated using regression algorithms. The evaluation metrics selected for 

these three models were R2 for prediction power and mean absolute percentage 

error (MAPE) for prediction accuracy (see Formula 2.6.1.1). The advantage of 

MAPE is that it measures quality of prediction on a scale ranging from 0% to 
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100%. MAPE thus enables more accurate estimation of prediction accuracy 

compared with metrics such as mean square error (MSE) and root MSE (RMSE), 

neither of which has this range of scale; neither RMSE nor MSE has lower or 

upper limits, which makes evaluation using these metrics confusing and 

inconclusive. 

MAPE	 = !
"
	∑ (#!$	&!

#!
("

'(! 		(2.6.1.1) 

where	n:	total	number	of	observations, A":	actual	value, F":	forecasted	value 

We followed two steps to ensure an unbiased decision with regard to 

evaluating model performance and to facilitate comparison of the applied linear 

and non-linear algorithms for each of the three models (PTAM, DPTAM and 

FIPTAM). First, we considered the R2 value obtained on the training set to 

estimate the modelling power of the model and compare the applied algorithms. 

The best algorithm was the one that achieved the highest R2 value. Second, we 

considered the MAPE values obtained on the training and validation sets to 

examine the accuracy of the algorithm that achieved the highest R2 value. The 

computed values of these metrics were averaged over different dataset sizes. 

When evaluating PTAM and DPTAM, each epoch’s performance was plotted on 

a learning curve with MAPE on the y-axis and dataset size on the x-axis to 

demonstrate the performance of each regression model. 

2.6.1.2 Regression Evaluation Software 
MLR, k-nearest neighbours regression (KNNR), decision tree regression 

(DTR), multilayer perceptron regression (MLPR) and support vector regression 

(SVR) algorithms were executed in Python using the scikit-learn library, following 

Pedregosa et al. (2011). PCA was performed using SPSS and Python packages. 

FIPTAM was created using MATLAB’s Fuzzy Logic Designer application. Using 

a programming language like Python to compute the five models’ performance 

offered two advantages that could not have been attained using a statistical 

software like SPSS. First, the use of Python enabled us to monitor and control 

the algorithms’ underfitting and overfitting. Second, we were able to customise 

algorithms’ parameters and functions to optimise their performance. 
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2.6.1.3 Regression Evaluation Algorithms 
PTAM was evaluated using five algorithms: MLR, MLPR, DTR, KNNR and 

SVR. We also used partial-derivatives sensitivity analysis to rank PTAM’s 

features. We provide an expanded discussion of the application of these 

algorithms in Chapter 4 and discuss the evaluation of PTAM in Chapter 5.  

DPTAM was evaluated using two decomposed models (TFPTAM and 

SFPTAM). We compared each decomposed model’s predictive power applying 

three linear and non-linear algorithms (MLR, MLPR and SVR). We discuss the 

evaluation of DPTAM in Chapter 6. We used five algorithms to evaluate the 

modelling of FIPTAM: triangular, trapezoidal, Gaussian, sigmoidal and 

generalised bell-shaped (‘g-bell’) algorithms. We provide additional details about 

the application of these five algorithms in Chapter 4 and discuss their evaluation 

in Chapter 6. 

2.6.2 Classification Learning 
2.6.2.1 Classification Evaluation Model 

PTAI was evaluated using Bayesian networks. As the target variable for 

the Bayesian networks was categorical, we applied classification algorithms to 

evaluate the performance of the networks (discussed in Chapter 7). As the 

proposed networks classify the target feature as either unusable or usable 

technology, we assessed the model using three classification metrics: accuracy, 

precision and recall. Accuracy measures the number of correct predictions 

compared with overall predictions and incorrect predictions. Precision measures 

whether the algorithm correctly labels usable technology as usable and avoids 

labelling unusable samples as usable. Recall measures the algorithm’s ability to 

find all usable technology samples. We averaged these three metrics to make 

decisions about the accuracy of the networks. 

2.6.2.2 Classification Evaluation Software 
We used Bayes Server (2020) version 9.3 to evaluate the performance of 

the Bayesian networks. Bayes Server is an artificial intelligence software 

capable of modelling problems using Bayesian networks for reasoning, 

detection, diagnostics, automated decision-making and causal inference. 
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2.6.2.3 Classification Evaluation Algorithms 
We used relevance tree and likelihood sampling algorithms (the only 

classification modelling algorithms available in Bayes Server) to measure 

prediction accuracy. 

Table 2.6 summarises the evaluation of the proposed models (PTAM, 

DPTAM, FIPTAM and PTAI). 

 

2.7 Knowledge Discovery 

In this step, we used the best-performing algorithm (i.e. SVR) in the PTAM 

modelling for knowledge discovery. We applied a gradient formula to uncover three 

new relationship patterns between each feature of PTAM and the target output (i.e. 

use behaviour). This step is described in Chapter 5. 

2.8 Deployment 
This step was not actually performed, as the scope of our research was limited 

to formulating PTAM and testing its predictive power and accuracy. However, we 

list this step in our proposed methodology because it is part of CRISP-DM, from 

which we adapted our research methodology. 

 

Table 2.6 Summary of the Evaluation of PTAM, TFPTAM, SFPTAM, FIPTAM and PTAI 
Model PTAM TFPTAM SFPTAM FITAM PTAI 

Learning Technique Supervised regression 
Supervised 

classification 

Evaluation Algorithms 

MLR, MLPR, 

DTR, KNNR, 

SVR, 

sensitivity 

analysis 

 

MLR, MLPR, 

SVR 

 

MLR, MLPR, 

SVR 

 

DTR and 

Mamdani 

approach with 

triangular, 

trapezoidal, 

Gaussian, 

sigmoidal and 

g-bell 

algorithms 

Bayesian 

networks 

applying 

relevance tree 

and likelihood 

sampling 

Evaluation Metrics R² and MAPE R² and MAPE R² and MAPE R² and MAPE 
Accuracy, 

precision, recall 

Evaluation Software Python 
SPSS and 

Python 

SPSS and 

Python 

Python and 

MATLAB 
Bayes Server 
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3.1 Introduction 
In this chapter, which addresses the first step of the methodology proposed 

in Chapter 2, we explore technology adoption modelling frameworks to understand 

our research problem and identify gaps in the literature. Specifically, we examine 

the two most prominent models of technology acceptance: TAM, developed by 

Davis (1989), and UTAUT, developed by Venkatesh et al. (2003). We explain the 

importance of technology acceptance modelling and review the current technology 

acceptance literature, focusing in particular on TAM, UTAUT, hybrid models of 

technology acceptance and technology acceptance modelling using fuzzy logic and 

Bayesian networks. We evaluate the current literature on TAM and UTAUT by 

critically examining the limitations noted by the models’ critics (Section 3.6.1). We 

evaluate the other areas by providing our own assessments of their development 

processes (Sections 3.6.2–3.6.4). We then identify the gaps that our research 

addresses by applying the methodology proposed in Chapter 2 to formulate and 

evaluate PTAM, DPTAM, FIPTAM and PTAI. 

3.2 Technology Acceptance Models 
3.2.1 Technology Acceptance Model (TAM) 

Davis (1989) developed TAM after examining Fishbein and Ajzen’s (1975) 

expectancy–value theory, Ajzen’s (1985, 1991) theory of planned behaviour 

(TPB) and Ajzen and Fishbein’s (1980) theory of reasoned action (TRA). 

Expectancy–value theory explains why individuals accept or reject performing a 

certain action or obtaining a certain object (Fishbein & Ajzen, 1975). TRA specifies 

the determinants of consciously intended behaviours and postulates that an 

individual’s behavioural intention serves to predict that individual’s specific 

behaviour; TPB is an extension of TRA (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 

1975). Ajzen (1991) later extended TPB by introducing the feature of perceived 

behavioural control. 

TAM was formulated based on TRA with the aim of ‘provid[ing] an 

explanation of the determinants of computer acceptance that is general, capable 

of explaining user behaviour across a broad range of end-user computing 
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technologies and user populations, while at the same time being both 

parsimonious and theoretically justified’ (Davis et al., 1989, p. 985). In TAM, an 

individual’s motivation to use a particular technology is explained by their 

behaviour and intentions regarding its use. User intention is determined by two 

main beliefs, namely the technology’s perceived ease of use and its perceived 

usefulness, with the former directly influencing the latter (Davis, 1989; Davis et 

al., 1989). 

Although TAM was an extension of TRA, the original TAM did not contain 

the subjective norm feature that was part of TRA, as ‘it was difficult to disentangle 

the direct effects of the subjective norm on behavioural intention from indirect 

effects via the attitude [feature]’ (Davis et al., 1989, p. 986). TAM was updated in 

two subsequent models, known as TAM2 and TAM3, respectively. Davis and 

Venkatesh (1996, p. 21) chose to exclude attitude from TAM because it ‘did not 

fully mediate the effect of perceived usefulness on behavioural intention’. In 

TAM2, Venkatesh and Davis (2000) extended the original TAM by theorising and 

validating the determinants of perceived usefulness. The extended model 

includes ‘theoretical features related to social influence processes (subjective 

norm, voluntariness and image) and cognitive instrumental processes (job 

relevance, output quality and result demonstrability), as well as experience’ 

(Venkatesh & Davis, 2000, p.186). In sum, Venkatesh and Davis (2000) found 

that perceived usefulness is influenced by subjective norm, image, job relevance, 

output quality and result demonstrability. Perceived usefulness further includes 

two moderating features – voluntariness and experience – which affect subjective 

norm. The relationship between intention and subjective norm is moderated by 

both experience and voluntariness, whereas the relationship between subjective 

norm and usefulness is moderated only by experience (Venkatesh & Davis, 

2000). 

Venkatesh (2000) added the following determinants of perceived ease of 

use to TAM2: computer self-efficacy, perception of external control, computer 

anxiety, computer playfulness, perceived enjoyment and objective usability. 

Venkatesh and Bala (2008) then combined TAM2 and the determinants of 
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perceived ease of use to develop an integrated model called TAM3. TAM3 makes 

three additional theoretical extensions: the moderating effect of experience on the 

relationships between computer anxiety and perceived ease of use, perceived 

ease of use and perceived usefulness, and perceived ease of use and behavioural 

intention (Venkatesh & Bala, 2008). 

TAM has been widely adopted and has received broad support in the 

literature. The framework’s prominence is evident in the vast body of published 

research on its validations, applications, extensions and replications (see e.g. 

Adams et al., 1992; Chin & Gopal, 1993; Chin & Todd, 1995; Davis, 1993; Davis 

& Venkatesh, 1996; Gefen & Straup, 1997; Hendrickson et al., 1993; Igbaria et 

al., 1997; Mathieson, 1991; Segars & Grover, 1993; Subramanian, 1994; Szajna, 

1994, 1996; Taylor & Todd, 1995a, 1995b; Venkatesh, 1999, 2000; Venkatesh & 

Bala, 2008; Venkatesh & Morris, 2000). Al-Gahtani (2008) evaluated TAM’s 

applicability in a voluntary setting and an Arabic environment (i.e. Saudi Arabia) 

and found that workers’ use of personal computers in non-Western culture 

affected the original TAM. As a result, he added gender, age and education as 

moderators of the original TAM (Al-Gahtani, 2008). Baker et al. (2010) compared 

the explanatory power of TAM2 in the US versus Saudi Arabia and assessed the 

applicability of TAM in Arabic cultures. They found that, in an Arabic environment, 

workers adopted technology whose adoption was imposed by their superiors – 

that is, employees were required to use the technology deemed necessary by 

their managers (Baker et al., 2010). Al-Gahtani (2016) tested the most recent 

version of TAM in Saudi Arabia. He validated the model, identified insignificant 

relationships among several features and suggested post-implementation 

interventions. In particular, he found that the relationships between computer 

playfulness and perceived ease of use, result demonstrability and perceived 

usefulness, experience and computer anxiety, and experience and playfulness 

had no significant effects with regard to their respective hypotheses (Al-Gahtani, 

2016). Alwabel et al. (2020) extended TAM3 to address the effects of design 

aesthetics on perceived enjoyment, perceived ease of use and perceived 

usefulness and found that design aesthetics influenced only perceived enjoyment. 
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TAM has been extended to explain the use of various technologies, including 

personal computers (Al-Gahtani, 2008, 2016), information systems (ISs) (Baker 

et al., 2010), tap-and-go mobile payment or ‘m-payment’ (Bailey et al., 2017), 

mobile-based assessment (Nikou & Economides, 2017), social media (Hansen et 

al., 2018), augmented reality (Jetter et al., 2018), the Uber mobile application (Min 

et al., 2018), mobile shopping applications (Natarajan et al., 2018), e-services 

(Taherdoost, 2018), mobile social media (Tan et al., 2018), online learning 

(Estriegana et al., 2019), mobile banking or ‘m-banking’ (Foroughi et al., 2019), 

virtual reality (Lee et al., 2019), in-home voice assistant technology (McLean & 

Osei-Frimpong, 2019), autonomous vehicles (Zhang et al., 2019), mobile 

programming (Alwabel et al., 2020), mobile libraries (Rafique et al., 2020) and 

artificial intelligence (Sohn & Kwon, 2020). Table 3.2.1 summarises the TAM 

literature. 
Table 3.2.1 Summary of Literature on TAM 
Reference Classification Role 

Davis (1989)  Original TAM 

Proposing original TAM determinants 
(perceived ease of use and perceived 
usefulness) to explain use behaviour through 
behavioural intention 

Mathieson (1991) Validation Comparing TAM1 with TPB to clarify 
differences and similarities 

Adams et al. (1992) Replication Replicating TAM1 to verify its determinants 

Chin and Gopal (1993) Application Applying TAM to examine decisions to adopt 
group decision support systems 

Davis (1993) Replication 
Replicating TAM1 and discussing its impact on 
addressing system characteristics and users’ 
perceptions and behaviours 

Hendrickson et al. (1993) Validation 
Validating TAM1 by assessing scales 
measuring perceived ease of use and 
perceived usefulness 

Segars and Grover (1993) Validation Re-examining TAM1 by applying confirmatory 
factor analysis 

Subramanian (1994) Replication Evaluating TAM1 measurement 

Szajna (1994, 1996) Validation and evaluation 
Evaluating and validating instruments 
measuring perceived ease of use and 
perceived usefulness 

Chin and Todd (1995) Evaluation Evaluating TAM1 and underestimating its 
effectiveness 

Taylor and Todd (1995a, 
1995b) Evaluation 

Assessing the role of experience with regard to 
the features of TAM1 and testing its competitor 
models 

Davis and Venkatesh (1996) Validation Validating TAM against measurement bias and 
justifying exclusion of attitude feature 

Gefen and Straup (1997) Extension and application Extending TAM1 and evaluating use of email 
systems 

Igbaria et al. (1997) Application Applying TAM1 to address use of information 
systems in small firms 

Venkatesh (1999) Extension Introducing intrinsic motivation feature to 
TAM1 

Venkatesh and Davis (2000)  TAM2 
Extending TAM1 by adding determinants of 
perceived usefulness (i.e. subjective norm, 
image, job relevance, output quality and result 
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demonstrability), with voluntariness and 
experience as moderators 

Venkatesh (2000)  Extension of TAM2 
Extending TAM2 by adding determinants of 
perceived ease of use (i.e. computer anxiety 
and computer playfulness) 

Venkatesh and Morris (2000) Extension Introducing gender and social influence 
features to TAM1 

Venkatesh and Bala (2008)  TAM3 

Making three theoretical extensions to TAM2 
(moderating effect of experience on the 
relationships between computer anxiety and 
perceived ease of use, perceived ease of use 
and perceived usefulness, and perceived ease 
of use and behavioural intention) 

Al-Gahtani (2008)  Evaluation Evaluating applicability of TAM1 in Saudi 
Arabia 

Baker et al. (2010)  Evaluation Comparing applicability of TAM1 in the US 
versus Saudi Arabia 

Al-Gahtani (2016)  Evaluation Evaluating applicability of TAM3 in Saudi 
Arabia 

Bailey et al. (2017) Application Explaining use of tap-and-go mobile payment 
Nikou and Economides (2017) Application Explaining use of mobile-based assessments 
Hansen et al. (2018) Application Explaining use of social media 
Jetter et al. (2018) Application Explaining use of augmented reality 
Min et al. (2018) Application Explaining use of Uber mobile application 
Natarajan et al. (2018) Application Explaining use of mobile shopping applications 
Taherdoost (2018) Application Explaining use of e-services 
Tan et al. (2018) Application Explaining use of mobile social media 
Estriegana et al. (2019) Application Explaining use of online learning 
Foroughi et al. (2019) Application Explaining use of mobile banking 
Lee et al. (2019) Application Explaining use of virtual reality 
McLean and Osei-Frimpong 
(2019) Application Explaining use of in-home voice assistant 

technology 
Zhang et al. (2019) Application Explaining use of autonomous vehicles 
Rafique et al. (2020) Application Explaining use of mobile libraries 
Sohn and Kwon (2020) Application Explaining use of artificial intelligence 

Alwabel et al. (2020) Extension and evaluation 
Introducing design aesthetics features to 
TAM3 and evaluating the model’s applicability 
to the use of smartphones for programming 

3.2.2 Unified Theory of Acceptance and Use of Technology 
(UTAUT) 

Venkatesh et al. (2003, 2012) combined TAM with seven competing models 

to form UTAUT. Venkatesh et al. (2003) formulated UTAUT after assessing the 

features of TRA (Ajzen & Fishbein, 1980), TAM (Davis, 1989; Venkatesh & Davis, 

2000), Davis et al.’s (1992) motivational model, TPB (Ajzen, 1985, 1991), the 

combination of TAM and TPB (Taylor & Todd, 1995a), the model of utilisation 

(Thompson et al., 1991), innovation diffusion theory (Rogers, 1983) and social 

cognitive theory (Compeau & Higgins, 1995a, 1995b). Venkatesh et al. (2003) 

included all of these models’ features in UTAUT in order to examine their 

influences on behavioural intention and the features of use behaviour. The 
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moderating effects of voluntariness, age, gender and experience were also 

examined in Venkatesh et al. (2003) to evaluate their impact on the features of 

the eight models. 

Since there were similarities among some of the models’ features, 

Venkatesh et al. (2003) consolidated them into four groups: performance 

expectancy, effort expectancy, social influence and facilitating conditions. The first 

three were found to affect behavioural intention, while the last (facilitating 

conditions) was found to affect use behaviour (Venkatesh et al., 2003). 

Performance expectancy – defined as the degree to which use of a technology 

improves job performance – encompasses perceived usefulness (Davis, 1989; 

Davis et al., 1989), extrinsic motivation (Davis et al., 1992), job fit (Thompson et 

al., 1991), relative advantage (Moore & Benbasat, 1991) and outcome 

expectations (Compeau & Higgins, 1995a, 1995b). Effort expectancy – defined 

as the degree to which a technology is easy to use – encompasses perceived 

ease of use (Davis, 1989; Davis et al., 1989), complexity (Thompson et al., 1991) 

and actual ease of use (Moore & Benbasat, 1991). Social influence – defined as 

the degree to which the use of a technology is influenced by others’ beliefs – 

encompasses subjective norm (Ajzen, 1991; Davis et al., 1989; Fishbein & Ajzen, 

1975; Mathieson, 1991; Taylor & Todd, 1995a, 1995b), social features 

(Thompson et al., 1991) and image (Moore & Benbasat, 1991). Facilitating 

conditions describes the extent to which all organisationally and technically 

necessary facilities are in place to enable the use of a technology and 

encompasses perceived behavioural control (Ajzen, 1991; Taylor & Todd, 1995a, 

1995b), facilitating conditions (Thompson et al., 1991) and compatibility (Moore & 

Benbasat, 1991). 

In testing UTAUT, Venkatesh et al. (2003) found that some of the model’s 

features had no direct effect on behavioural intention, namely attitude toward 

behaviour (Ajzen, 1991; Fishbein & Ajzen, 1975; Mathieson, 1991; Taylor & Todd, 

1995a, 1995b), intrinsic motivation (Davis et al., 1992), affect toward use 

(Thompson et al., 1991) and general affect (Compeau & Higgins, 1995b; 

Compeau et al., 1999). These features were therefore excluded from UTAUT. 
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According to Venkatesh et al. (2003), UTAUT has four moderators, each of 

which plays a vital role in increasing or decreasing the effects of the model 

features. The moderator of age has been found to affect all four UTAUT1 features 

through their respective relationships with behavioural intention and use 

behaviour. Gender has been found to affect performance expectancy, effort 

expectancy and social influence. Voluntariness has been found to affect social 

influence, while experience has been found to affect effort expectancy, social 

influence and facilitating conditions. For performance expectancy, the effect of 

age is stronger for men and young users. For effort expectancy, the effect of age 

is stronger for women, older users and limited-experience users. The effect of 

social influence increases with mandatory use for female, older and limited-

experience users. Facilitating conditions demonstrate a stronger effect for 

experienced older users (Venkatesh et al., 2003). 

UTAUT1 and all three versions of TAM focus on the organisational use of 

technology, wherein the use of technology occurs within an organisational context 

and not all consequences of technology use are end users’ responsibility 

(Venkatesh et al., 2012). Venkatesh et al. (2012) then developed UTAUT2 to 

assess end consumers’ use of technology. In such cases, the technology’s users 

bear all the consequences of its use. Therefore, Venkatesh et al. (2012) extended 

UTAUT1 by adding features that address end consumers’ decision-making 

determinants: price value, habit and hedonic motivation. Price value and hedonic 

motivation have relationships with behavioural intention, whereas habit has 

relationships with both behavioural intention and use behaviour. In UTAUT2, 

facilitating conditions have a relationship with behavioural intention, in addition to 

maintaining their original relationship with use behaviour found in UTAUT1 

(Venkatesh et al., 2012). 

Just as UTAUT2 extends UTAUT1’s main features, it also extends the 

effects of its moderators. According to Venkatesh et al. (2012), age, gender and 

experience affect facilitating conditions only through the focal feature’s 

relationship with behavioural intention and demonstrate a stronger effect among 

older, female and limited-experience users. Age and gender have moderating 
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effects on price value, whereas age, gender and experience have similar effects 

on habit and hedonic motivation. The effects of age and gender on price value 

are particularly strong among older women. For habit, the effects of moderators 

on both of the feature’s relationships are stronger for older, experienced male 

consumers. The moderators of hedonic motivation have stronger effects among 

younger men of limited experience. Experience also moderates the effect of 

behavioural intention on use behaviour such that its influence is stronger for less 

experienced users. Since end consumers are ultimately responsible for deciding 

whether to use a given technology in this context, the moderating effect of 

voluntariness was excluded in UTAUT2 (Venkatesh et al., 2012). 

UTAUT1 has been extended to include new features and has been applied 

in non-Western cultures. Al-Gahtani et al. (2007) were the first to assess the 

impact of cultural differences on UTAUT1 through their study in an Arabic 

environment (i.e. Saudi Arabia), which empirically tested UTAUT1 in a non-

Western cultural context. The study analysed worker-user behavioural intention 

and personal computer use behaviour in a voluntary setting and identified 

similarities and differences between Arabic and Western cultures (Al-Gahtani et 

al., 2007). Alaiad and Zhou (2013) extended UTAUT1 to understand the features 

influencing patients’ use of robots in healthcare facilities, finding that trust was 

among the numerous features affecting patients’ behavioural intentions and had 

a direct influence on intention to use technology. Patients were more likely to 

intend to use robots when they had established trust in the robots and their 

capabilities (Alaiad & Zhou, 2013). Carter and Schaupp (2008) extended UTAUT1 

to assess the features influencing citizens’ use of electronic filing systems. Self-

efficacy and trust, among other features, significantly influenced citizens’ 

intentions to use such systems (Carter & Schaupp, 2008). Brown et al. (2010) 

presented a model integrating UTAUT with theories from collaboration research 

to explain the adoption and use of collaboration technology. They found that the 

characteristics of the focal collaboration technology, individual, group, task and 

situation predicted performance expectancy, effort expectancy, social influence 

and facilitating conditions in UTAUT1 (Brown et al., 2010). Casey and Wilson-
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Evered (2012) evaluated UTAUT1 in the context of an online family dispute 

resolution system in Australia and extended the model to include trust and 

personal web innovativeness. Effort expectancy mediated the effects of trust in 

technology on behavioural intention (Casey & Wilson-Evered, 2012). Chiu and 

Wang (2008) introduced computer self-efficacy, attainment value, utility value, 

intrinsic value and anxiety to UTAUT1 in order to understand end users’ intentions 

to use web-based learning systems. Self-efficacy and value-related features had 

positive effects in the model, whereas anxiety had a negative effect, as expected 

(Chiu & Wang, 2008). 

Dasgupta and Gupta (2011) assessed UTAUT1’s applicability in a 

developing country (India) and evaluated the impact of organisational culture on 

the acceptance of newly introduced technology. They proved that UTAUT1 could 

elucidate and assess the effects of organisational culture on the use of internet-

based technology (Dasgupta & Gupta, 2011). Im et al. (2011) assessed the impact 

of culture on UTAUT1 by comparing the use of MP3 players and internet banking 

in the US versus South Korea. The comparison revealed that the effects of effort 

expectancy on behavioural intention and behavioural intention on use behaviour 

were greater in the US sample (Im et al., 2011). Lallmahomed et al. (2013) studied 

the influence of hedonic performance expectancy on UTAUT1 and found that it 

had a significant influence on behavioural intention and use behaviour. Liang et 

al. (2010) extended UTAUT1 to explain the effect of features related to team 

climate on performance expectancy, effort expectancy, facilitating conditions and 

social influence. The team climate features were found to be antecedents of all 

UTAUT1 features except effort expectancy (Liang et al., 2010). Liew et al. (2014) 

extended UTAUT1 to examine the environmental features supporting Facebook 

adoption and found that users’ perceived socioeconomic benefits, information 

seeking, socialisation, entertainment and business development mediated 

adoption and actual use behaviour. Their findings also indicated that religion, 

ethnicity, language, gender and education significantly moderated Facebook use 

behaviour (Liew et al., 2014). Loose et al. (2013) assessed the potential of the 

‘bring-your-own-devices’ strategy in organisations by using UTAUT1 to examine 
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the determinants of this strategy with regard to end users’ adoption behaviour. 

Performance expectancy was the strongest determinant of behavioural intention 

to use their own devices. The perceived threats feature was also found to be of 

significant explanatory value, thereby extending UTAUT1. Loose et al.’s (2013) 

main conclusion was that employees’ behavioural intentions to use their own 

devices had a significant impact on employer attractiveness and could thus be an 

effective means of recruiting future employees (Loose et al., 2013). 

Lu et al. (2009) extended UTAUT1 to evaluate the moderating effects of 

personal characteristics on decision patterns in 3G mobile data service (MDS) 

acceptance in China. They found that age, experience and location had strong 

moderating effects on the MDS acceptance model in urban China. Their analysis 

also revealed that gender and income had confounding effects on MDS 

acceptance decisions (Lu et al., 2009). Martins et al. (2014) developed a 

conceptual model that combined UTAUT1 with perceived risk to explain 

behavioural intention and use behaviour with regard to internet banking in 

Portugal. Their results supported some of the relationships found in UTAUT1, 

such as that among performance expectancy, effort expectancy and social 

influence and the role of risk as a predictor of intention. The most important feature 

explaining internet banking use behaviour was behavioural intention to use such 

technology (Martins et al., 2014). McKenna et al. (2013) assessed the adoption 

of information services by developing a conceptual model based on the theory of 

organisational information services and UTAUT1. They found that individual 

features could be linked to service components, yielding a deeper understanding 

of how consumers adopt information services and how this adoption affects the 

development of such services and the systems that support them (McKenna et 

al., 2013). 

McLeod et al. (2009) used UTAUT1 to explore how performance 

expectancy, effort expectancy, social influence, privacy concerns and risk 

affected individuals’ behavioural intentions to use tax preparation software. The 

study of McLeod et al. (2009) extended UTAUT1 by examining it in the novel 

context of individuals’ use of tax preparation software, confirming its validity 
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outside the traditional environment of business organisations. McLeod et al. 

(2009) also investigated whether technology acceptance differed for experts 

versus novices in the complex domain of US tax law. Their study introduced 

features to UTAUT1 related to privacy and risk. Their findings showed differences 

between beginners and experienced users, suggesting that UTAUT may not be 

equally applicable to professionals and novices (McLeod et al., 2009). Neufeld et 

al. (2007) combined UTAUT1 with charismatic leadership theory and examined 

charismatic leaders’ influence on user adoption. Their analysis revealed that the 

charisma of a project champion explained performance expectancy, effort 

expectancy, social influence and perceptions of facilitating conditions among 

users (Neufeld et al., 2007). 

Niehaves and Plattfaut (2010) conducted a thorough analysis of the potential 

determinants of private internet use. They identified the influencing features 

explaining senior citizens’ private internet use and developed a model based on 

UTAUT1 and digital divide research (Niehaves & Plattfaut, 2010). Oh and Yoon 

(2014) proposed a modified model of technology acceptance by adding the 

concepts of trust and flow experience to UTAUT1. They investigated how the 

model’s explanatory power changed for different types of internet services, 

namely e-learning versus online gaming. Their proposed model explained 

behavioural intention to use internet services better than the original UTAUT1. 

The two added features (i.e. flow experience and trust) contributed to the overall 

significance of the extended model. Type of internet service moderated the effects 

of the independent feature on behavioural intentions and use behaviour (Oh & 

Yoon, 2014). Park et al. (2011) addressed the conjoint effects of group-level 

features on individual technology acceptance by proposing features for 

organisational-level and individual-level facilitating conditions and examining their 

effects on UTAUT1. They found that the two features were distinct and that 

organisational-level facilitating conditions explained greater variance than 

individual facilitating conditions with regard to individual acceptance behaviour. 

The resulting model offered a multilevel perspective on technology acceptance 



52 
 

research and provided an augmented method for evaluating facilitating conditions 

capable of providing prescriptive guidance for managers (Park et al., 2011). 

Saeed (2013) assessed users’ perceptions of using technology to control 

activities they performed regularly. Applying UTAUT1, the author proposed 

perceived financial control as the main value driver and examined its relationships 

with channel preference and ease of navigation in m-banking. The results showed 

that individual perceptions of financial control significantly influenced behavioural 

intention. This study also identified several differences in terms of acceptance for 

adopters versus non-adopters of m-banking services and confirmed the proposed 

relationship between channel preference and ease of navigation (Saeed, 2013). 

Schaupp et al. (2010) combined UTAUT1, online trust, perceived risk and 

optimism bias into a comprehensive model of US taxpayers’ adoption of e-filing 

systems. The results indicated that performance expectancy, social influence, 

facilitating conditions and optimism bias all had significant impacts on e-filing 

behavioural intention. Moreover, trust in the internet and e-filing provider 

significantly influenced perceived risk (Schaupp et al., 2010). Shibl et al. (2013) 

developed and explored a UTAUT1-based model of how and why general 

practitioners accept decision support systems (DSSs). Their model indicated that 

four main features influenced DSS acceptance: usefulness (comprising 

consultation issues, professional development and patient presence), facilitating 

conditions (comprising workflow, training and integration), ease of use and trust 

in the knowledge base (Shibl et al., 2013). 

Sun et al. (2014) explored users’ continuance intentions in the context of 

online social networks by combining IS continuance theory with flow theory, social 

capital theory and UTAUT1. They analysed hedonic, social and utilitarian features 

specific to the online social network environment in China and found that 

continuance intentions were substantially explained by all hypothesised 

antecedents: perceived enjoyment, perceived usefulness, use satisfaction, effort 

expectancy, social influence, tie strength, shared norms and trust (Sun et al., 

2014). Thong et al. (2011) extended UTAUT1 to the information and 

communication technology (ICT) services context by examining the moderating 
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role of ICT service type. Their model was tested in a large-scale study of both 

potential and current MDS consumers. The study included two types of MDS: 

communication and infotainment services (Thong et al., 2011). Venkatesh and 

Zhang (2010) contributed to UTAUT1 by examining culture as a boundary 

condition and identifying the bounds of the model’s generalisability. They 

assessed the influence of culture on UTAUT1 by comparing the use of technology 

in the US and China and testing which technologies were used by employees of 

multinational organisations operating in both countries. Their research confirmed 

that social influence was uniformly important among employees in both cultures. 

However, contingencies related to gender, age and voluntariness were found only 

among US users, while all other UTAUT1 determinants were influential in both 

the US and China (Venkatesh & Zhang, 2010). 

Venkatesh et al. (2008) addressed UTAUT1’s limitations with regard to 

predicting individual-level use of systems. This study presented an extended 

version of UTAUT1 that introduced behavioural expectation as a predictor that 

addressed these limitations and provided a better understanding of system use. 

The extended model of Venkatesh et al. (2008) employed behavioural intention, 

facilitating conditions and behavioural expectation as predictors of three 

conceptualisations of system use: duration, frequency and intensity. The study 

results indicated that the three determinants played different roles in predicting 

the three conceptualisations of system use. Specifically, behavioural intention 

strongly affected duration of use, whereas behavioural expectation strongly 

affected frequency and intensity of use (Venkatesh et al., 2008). Wang et al. 

(2012) applied UTAUT1 to investigate how consumers assessed the quality of 

two types of recommender systems (collaborative filtering and content-based) in 

the e-commerce context. The proposed model of this study sought to explain 

which features contribute to the use of recommender systems, with the aim of 

providing designers with a better understanding of how to provide more effective 

recommender systems. In an attempt to present a comprehensive evaluation of 

acceptance of recommender systems, the study adopted the feature of trust in 

technological artefacts and considered hedonic and utilitarian product 
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characteristics. The results confirmed that behavioural intention to use the target 

recommender system differed depending on the type of system and product 

(Wang et al., 2012). Wang et al. (2014) applied UTAUT1 to propose a research 

model incorporating context-specific features as enhancing features to predict 

individuals’ intentions to adopt Enterprise 2.0 applications within seven Chinese 

companies. The study categorised Enterprise 2.0 users as either ‘silent’ or ‘social’ 

and conducted a comparative analysis to detect differences among the features 

predicting users’ adoption intentions with regard to Enterprise 2.0 applications 

(Wang et al., 2014). 

Weerakkody et al. (2014) developed an extended UTAUT1 model, which 

they used to investigate the adoption of video-to-video communication for 

educational purposes in Ireland and Greece. The proposed model showed that 

trust was among the most critical features supporting the use of such technologies 

in online learning (Weerakkody et al., 2014). Xiong et al. (2013) investigated the 

features affecting ICT acceptance among small business owners in two Chinese 

provinces. Of the tested features (perceived usefulness, job fit, perceived ease of 

use, social influence, facilitating conditions, attitude toward using technology, self-

efficacy and anxiety), only perceived usefulness and facilitating conditions had 

significant effects on ICT acceptance (Xiong et al., 2013). Yuen et al. (2010) 

examined and compared the crucial features affecting consumer acceptance of 

internet banking services (IBS) in two culturally distinct settings: developed 

countries (the US and Australia) and a developing country (Malaysia). This study’s 

extended model introduced anxiety, attitude toward using technology, perceived 

credibility and self-efficacy and compared the use of IBS in the three countries. 

Attitude toward using technology and performance expectancy were significant 

predictors of behavioural intention in both the developed and developing 

countries, whereas perceived credibility was a significant predictor only in the 

developed countries (Yuen et al., 2010).  

UTAUT has also been extended to analyse the adoption of various 

technologies. For example, Morosan and DeFranco (2016) studied acceptance of 

communication-based m-payments, while Alalwan et al. (2017) analysed the use 
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of m-banking services in Jordan. Khalilzadeh et al. (2017) extended UTAUT1 to 

understand m-payment based on near-field communication technology, and 

Kurfali et al. (2017) used UTAUT1 to study the adoption of e-government services 

payment in Turkey. Macedo (2017) applied UTAUT2 to evaluate ICT adoption. 

Queiroz and Wamba (2018) used UTAUT1 to identify the features influencing use 

of blockchain technology. Baabdullah et al. (2019) extended UTAUT2 to examine 

m-banking adoption in Saudi Arabia, and Shaw and Sergueeva (2019) applied it 

to assess the use of mobile commerce (‘m-commerce’). Sun et al. (2014) used 

UTAUT1 to examine adoption of online social networks in China. Alam et al. 

(2020) extended UTAUT1 to identify features influencing the use of mobile health 

services. Lastly, Patil et al. (2020) used UTAUT1 to evaluate m-payment adoption 

in India. A summary of the UTAUT literature is provided in Table 3.2.2. 

 
Table 3.2.2 Summary of Literature on UTAUT 
Reference Classification Role 

Venkatesh et al. (2003)  Original UTAUT 

Formulating determinants of technology use 
(performance expectancy, effort expectancy, social 
influence and facilitating conditions) and their 
moderators (age, experience, gender and voluntariness) 

Al-Gahtani et al. (2007)  Evaluation Assessing the applicability of UTAUT1 in Saudi Arabia 
Neufeld et al. (2007)  Extension Introducing project champion charisma 
Carter and Schaupp (2008)  Extension Introducing self-efficacy and trust 

Chiu and Wang (2008) Extension Introducing computer self-efficacy, attainment value, 
utility value, intrinsic value and anxiety 

Venkatesh et al. (2008)  Extension Introducing behavioural expectation 
Lu et al. (2009)  Extension Introducing personal characteristics 
McLeod et al. (2009)  Application Understanding usability of tax preparation software 

Sun et al. (2009)  Extension Synthesising information systems continuance theory 
with flow theory, social capital theory and UTAUT1 

Brown et al. (2010)  Application Understanding usability of collaboration technology 
Liang et al. (2010)  Extension Introducing features related to team climate 
Niehaves and Plattfaut (2010) Application Assessing usability of private internet services 

Schaupp et al. (2010)  Extension Combining UTAUT1 with online trust, perceived risk and 
optimism bias 

Venkatesh and Zhang (2010)  Evaluation Examining impact of Chinese culture on UTAUT1 

Yuen et al. (2010)  Extension Introducing anxiety, attitude toward technology, 
perceived credibility and self-efficacy  

Park et al. (2011)  Extension Introducing features related to organisational-level 
facilitating conditions 

Dasgupta and Gupta (2011)  Evaluation Assessing applicability of UTAUT1 in India 
Im et al. (2011)  Evaluation Examining impact of culture on UTAUT1 

Thong et al. (2011)  Extension Extending UTAUT to the information and communication 
technology (ICT) services context 

Venkatesh et al. (2012)  Extension 

Adding determinants of end consumers' technology 
decisions to UTAUT1 (habit, hedonic motivation and 
price value) along with the moderators of age, gender 
and experience 
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Casey and Wilson-Evered (2012) Extension Assessing usability of family dispute resolution system 
Wang et al. (2012)  Application Assessing usability of recommender systems 
Alaiad and Zhou (2013)  Extension Examining usability of robots in healthcare facilities 
Lallmahomed et al. (2013)  Extension Introducing hedonic performance expectancy 
Loose et al. (2013)  Application Evaluating managerial strategy 

McKenna et al. (2013)  Extension Combining theory of organisational information services 
with UTAUT 

Saeed (2013) Extension Introducing perceived financial controls to UTAUT 
Shibl et al. (2013) Application Assessing usability of decision support systems 

Weerakkody et al. (2014)  Application Assessing adoption of video-to-video communication in 
Ireland and Greece 

Xiong et al. (2013)  Application Evaluating usability of ICT among small business 
owners in China 

Liew et al. (2014)  Extension Introducing perceived socioeconomic benefits to 
UTAUT1 in understanding usability of Facebook 

Martins et al. (2014)  Extension Introducing perceived risk to UTAUT1 
Oh and Yoon (2014)  Extension Introducing trust and flow experience to UTAUT1 

Wang et al. (2014) Application Evaluating individuals’ intentions to adopt Enterprise 2.0 
applications in China 

Morosan and DeFranco (2016)  Application Applying UTAUT2 to examine adoption of various 
technologies 

Alalwan et al. (2017) Application Applying UTAUT2 to understand adoption of mobile 
banking services in Jordan 

Khalilzadeh et al. (2017) Application 
Applying UTAUT1 to understand adoption of mobile 
payments based on near-field communication 
technology 

Kurfali et al. (2017) Application Applying UTAUT1 to understand adoption of e-
government service payments in Turkey 

Macedo (2017) Application Applying UTAUT2 to understand adoption of ICT 

Queiroz and Wamba (2018) Application Applying UTAUT1 to understand adoption of blockchain 
technology 

Baabdullah et al. (2019) Application Applying UTAUT2 to understand adoption of mobile 
banking in Saudi Arabia 

Shaw and Sergueeva (2019) Application Applying UTAUT2 to understand the adoption of mobile 
commerce 

Sun et al. (2014) Application Applying UTAUT1 to understand adoption of online 
social networks in China 

Alam et al. (2020) Application Applying UTAUT1 to understand adoption of mobile 
health services 

Patil et al. (2020) Application Applying UTAUT1 to understand adoption of mobile 
payments in India 

3.2.3 Methodology of Formulating TAM and UTAUT Models 
According to (Hair et al., 2010; 2011), in formulating models of technology 

acceptance, previous work has used quantitative research approaches to 

evaluate unobserved features whose introduction was supported by social-

behavioural theories. Each feature was operationalised by creating a set of 

observed variables, which were evaluated with a group of statements. The 

relationships among independent and dependent features were analysed using 

null-hypothesis significance testing. To test the hypotheses, the statements were 

organised as a survey with questions related to each feature. Participants were 

solicited randomly or purposively. Participants’ responses were then quantified 
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and evaluated on a specific scale. Targeted respondents have included 

professional, academic and student end users. After data were collected via 

surveys, they were quantified to ensure suitability for statistical analysis in 

measurement and structural models. The validity and reliability of the observed 

variables were established in the measurement model, while the relationships 

among features were evaluated in the structural model, which tested those 

relationships by comparing the ratio of regression coefficients and their 

bootstrapped standard errors against Student’s t distribution (Hair et al., 2010, 

2011). The scales and items provided by Davis (1986, 1989, 1993) have been 

used for TAM-related research and extensions, whereas the scales and items 

provided by Venkatesh et al. (2003, 2012) have been used for UTAUT research. 

Both TAM and UTAUT were statistically analysed using PLS path modelling, 

which is based on SEM, a modelling procedure that performs path-analysis 

modelling with latent factors. SEM overcomes the limitations of standard 

regression analyses such as multiple regression, discriminant analysis, logistic 

regression and analysis of variance (Chin, 1998; Fornell, 1982). It can also 

evaluate the reliability and validity of proposed determinants and help estimate 

their relationships and interrelationships (Barclay et al., 1995). LISREL and 

SmartPLS are two tools that have been used to test TAM and UTAUT. 

3.3 Machine Learning in Technology Acceptance 
ML-based approaches are not completely new in the field of technology 

acceptance. Several studies have used artificial neural networks (ANNs) – an ML 

technique – to evaluate the adoption of various technologies. Chong (2013a) 

examined an ANN’s capability to explain the use of mobile devices in e-commerce 

and found that the ANN achieved higher accuracy than MLR. Other studies have 

applied ANNs in combination with SEM to understand technology use, creating a 

hybrid modelling technique in which SEM is used to verify linear relationships while 

the ANN is used to examine non-linear relationships. Chong (2013b) was the first 

to formulate a two-stage SEM-ANN approach, which was applied to understand the 

determinants of m-commerce adoption by using an ANN to identify non-linear 

relationships and rank the relative importance of determinants. Leong et al. (2013) 
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applied a similar SEM-ANN approach but used the ANN to assess non-linear 

interactions among the SEM-based significant variables in three sub-models. 

Chong and Bai (2014) likewise used a hybrid SEM-ANN model to evaluate 

the features influencing the adoption of open interorganisational systems. Chong 

et al. (2015) followed Chong’s (2013b) approach to assess the use of RFID in the 

healthcare supply chain, exploring non-linear interactions among features and 

demonstrating their relative importance. Hew et al. (2016) used a SEM-ANN model 

to understand end users’ motivations for adopting mobile devices for entertainment. 

SEM was able to capture the variables’ linear relationships, while the ANN was 

used to model their non-linear relationships in three sub-models (Hew et al., 2016). 

Kalinić et al. (2021) used an integrated SEM-ANN model to understand the features 

driving consumer satisfaction in the m-commerce context. Lee et al. (2020) 

formulated a SEM-ANN model to examine the features affecting users’ intentions 

to accept wearable payment technology. Leong et al. (2018) used an ANN to 

analyse the features influencing Facebook-based commerce and estimate their 

relative importance. Leong et al. (2019) created a hybrid SEM-ANN model to 

understand and predict social media use. Leong et al. (2020) formulated SEM-ANN 

framework to understand and predict the features shaping users’ trust in online 

advertising. Liébana-Cabanillas et al. (2017) used SEM to identify determinants of 

m-commerce adoption and used an ANN to detect non-linear relationships and 

rank the relative importance of those features. Ooi and Tan (2016) and Hew et al. 

(2017) applied similar approaches to examine the use of smartphone-based credit 

cards and repurchasing of smartphones, respectively. Ooi et al. (2018) created a 

SEM-ANN model to examine the features driving innovativeness and performance 

resulting from using cloud computing in organisations. Priyadarshinee et al. (2017) 

integrated SEM into an ANN to explore the determinants of cloud computing 

adoption. 

Sharma et al. (2016a, 2016b) and Yadav et al. (2016) used the hybrid SEM-

ANN modelling technique suggested by Chong (2013b) to examine the features 

that explained cloud computing acceptance in Oman, Facebook use in higher 

education and m-commerce adoption, respectively. Singh et al. (2021) created a 
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SEM-ANN model to understand and predict the features affecting continued use of 

live-streaming services. The model of this study was able to accurately capture the 

non-linear relationships of their proposed model (Singh et al., 2021). Similar to 

Leong et al. (2013), Tan et al. (2014) employed a SEM-ANN model to understand 

the use of mobile learning, ranking the model’s determinants using the ANN. Teo 

et al. (2015) applied Leong et al.’s (2013) technique to determine the relationships 

among the adoption variables of internet-based m-payment technology. The study 

characterised linear relationships using SEM and non-linear relationships using an 

ANN in multiple sub-models (Teo et al., 2015). Zabukovšek et al. (2018) modelled 

the extended use of an enterprise resource planning (ERP) system in a SEM-ANN 

model, applying the ANN to configure the dependent features of the ERP model in 

five sub-models to capture non-linear relationships among features. In all of these 

works, the estimation of the ANN-based models was achieved using a software 

such as SPSS, which speeds up computation. A summary of this literature is 

provided in Table 3.3. 

 
 

Table 3.3 Summary of Literature on Machine Learning in Technology Acceptance 
Reference Approach Role 
Chong (2013a)  ANN Predicting use of mobile e-commerce 
Leong et al. (2018)  ANN Identifying features of Facebook-based commerce 

Chong (2013b)  SEM-ANN Explaining linear and non-linear interactions among 
determinants of mobile e-commerce use 

Leong et al. (2013)  SEM-ANN Assessing non-linear interactions among SEM-based 
significant variables in three sub-models 

Chong and Bai (2014) SEM-ANN Evaluating features influencing adoption of open 
interorganisational systems 

Tan et al. (2014)  SEM-ANN Evaluating use of mobile learning and ranking determinants 
of mobile learning technology use 

Chong et al. (2015) SEM-ANN Predicting non-linear interactions among determinants of 
RFID usability 

Teo et al. (2015) SEM-ANN Determining linear and non-linear relationships of variables 
in internet-based mobile payment adoption  

Hew et al. (2016)  SEM-ANN Understanding users’ motivations for adopting mobile 
entertainment 

Ooi and Tan (2016) SEM-ANN Understanding use of smartphone-based credit cards 

Sharma et al. (2016a) SEM-ANN Examining features explaining cloud computing acceptance 
in Oman 

Sharma et al. (2016b)  SEM-ANN Understanding Facebook usage in higher education 
Yadav et al. (2016)  SEM-ANN Assessing mobile commerce adoption 
Hew et al. (2017)  SEM-ANN Understanding drivers of smartphone repurchasing 
Liébana-Cabanillas et al. 
(2017)  SEM-ANN Explaining determinants of e-commerce and ranking their 

importance 
Priyadarshinee et al. (2017) SEM-ANN Exploring determinants of cloud computing adoption 

Ooi et al. (2018) SEM-ANN Finding features driving innovativeness and performance as 
a result of using cloud computing in organisations 
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Zabukovšek et al. (2018) SEM-ANN Linearly and non-linearly modelling determinants of ERP 
system use 

Leong et al. (2019) SEM-ANN Understanding and predicting use of social media 

Lee et al. (2020) SEM-ANN Examining features affecting users’ intentions to accept 
wearable payment technology 

Leong et al. (2020) SEM-ANN Understanding and predicting features shaping users’ trust in 
online advertising 

Kalinić et al. (2021) SEM-ANN Understanding features driving consumer satisfaction with 
mobile commerce 

Singh et al. (2021) SEM-ANN Understanding and predicting features affecting continued 
use of live-streaming services 

 

 

3.4 Fuzzy Logic in Technology Acceptance Modelling 
Fuzzy logic has its roots in engineering science developments during the 

1960s. The fuzzy logic technique was invented by Zadeh (1965, 1968) to model 

problems by transforming imprecise and obscure values between 0 and 1 into 

meaningful expressions understandable by human subjects. Fuzzy logic 

incorporates subjectivity and imprecision into model design, facilitating the 

evaluation of phenomena such as technology acceptance adoption. The ability of 

fuzzy logic to aid research in constrained dynamic environments makes it a popular 

method for qualitatively and quantitatively modelling vague problems.  

Among the many variants of fuzzy logic algorithms, the Mamdani approach 

(Mamdani, 1977; Mamdani & Assilian, 1975) and Sugeno approach (Sugeno, 

1985) are the most applicable to our research problem.  

Both algorithms rely on sets of inputs, rules and outputs to model a 

phenomenon. As illustrated in Figure 3.4, inputs and outputs are mapped against 

membership functions, and rules are defuzzified from these functions. The 

membership functions take various shapes: they may be triangular, trapezoidal, 

Gaussian, g-bell, sigmoidal, S-shaped or Z-shaped. Each membership function 

type has certain parameters that are used to establish the range of data for inputs 

and outputs. 
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The Mamdani and Sugeno algorithms take different approaches to handling 

the process of generating crisp outputs from fuzzy inputs. The Mamdani approach 

defuzzifies outputs by mapping inputs against a predetermined set of rules, 

whereas the Sugeno approach uses a weighted average to compute outputs when 

applying the rules. In the latter case, the outputs are indecipherable because the 

consequents of the rules are not fuzzy. In other words, the Sugeno algorithm maps 

inputs to output values that are estimated using a linear equation consisting of the 

input variables and their weights. The resulting set of equations is difficult to 

decipher because the inputs are mapped to equations that estimate certain values 

for outputs. In contrast, the Mamdani algorithm enables the inclusion of expert 

knowledge, which is reflected in the predefined rules (Hamam & Georganas, 2008). 

The core differences between the Mamdani and Sugeno algorithms are 

rooted in their approaches to converting inputs into crisp outputs. The former 

requires membership functions for the outputs and computes a centroid of the two-

dimensional area to process inputs into outputs. In contrast, the latter uses 

singleton output membership functions and computes a weighted average or 

weighted sum of the input data points. The Sugeno algorithm also assumes that 

the output variable is continuous rather than categorical (Hamam & Georganas, 

2008). 

The application of fuzzy logic methods to evaluate technology use is very rare 

in technology acceptance research. To date, research applying fuzzy logic has 

mainly combined the fuzzy decision-making trial and evaluation laboratory 

(DEMATEL) approach introduced by Gabus and Fontela (1973) and Fontela and 

Gabus (1976) with TAM or UTAUT. Lee et al. (2011) developed a hybrid model 

Figure 3.4 General Framework of the Fuzzy Inference System 
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combining DEMATEL and TAM2 to evaluate end users’ technology use 

behaviours, in which fuzzy DEMATEL was used to convert qualitative analyses into 

quantitative analyses. The integrated model applied DEMATEL to explore direct 

and indirect causal relationships among TAM2’s features. Their model used fuzzy 

logic to convert the values of fuzzy relationships generated by the DEMATEL-TAM2 

model into crisp scores. To optimise their defuzzification approach, Lee et al. 

(2011) applied the converting fuzzy data into crisp scores method designed by 

Opricovic and Tzeng (2003) to obtain the total crisp relation effects between 

features, whose fuzzy total relation matrix was created with DEMATEL-TAM2 (Lee 

et al., 2011).  

The DEMATEL-TAM2 and fuzzy logic approach avoids two limitations 

common to TAM research. First, the underlying methodology of TAM creates an 

inference bias in that the sampling data and proposed variables must comply with 

the assumptions of PLS-SEM. PLS-SEM requires a minimum sample size and 

assumes that all proposed model features are independent. If these assumptions 

are violated, the resulting model will not have effects similar to those of TAM’s 

determinants. Second, using TAM to investigate the usability of emerging 

technologies assumes that end users are already knowledgeable about the 

technology and its use. Thus, models for technology that has yet to be or is not fully 

used will suffer from users’ inference bias. TAM research has historically relied on 

research subjects to accurately report their own technology use. Therefore, when 

the adoption of the target technology is evaluated, end users’ reported use may be 

subjective and inaccurate, since users may have not used such emerging 

technologies (Lee et al., 2011). 

Zargar et al. (2011) used TAM2 and fuzzy DEMATEL to investigate features 

affecting the use of an emerging technology (namely, electroslag remelting 

technology) and found that perceived ease of use was the most determinant TAM2 

variable. Jeng and Tzeng (2012) adopted Lee et al.’s (2011) approach of combining 

DEMATEL with UTAUT to explore the relationships among technology use 

features. Jeng and Tzeng found that social influence had no effect on medical 

doctors’ behavioural intentions to use clinical DSSs (Jeng & Tzeng, 2012). Javidnia 
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et al. (2012) also applied Lee et al.’s (2011) model to evaluate features affecting 

the use of electroslag remelting in the steel industry using UTAUT. Performance 

and effort expectancy were determinants of social influence, facilitating conditions 

and voluntariness. Voluntariness was the most important variable in the model 

(Javidnia et al., 2012). 

Huang and Kao (2012) applied fuzzy DEMATEL and TAM3 to investigate the 

features shaping the use of PadFone smartphones and found that perceived 

usefulness, perceived ease of use and technology playfulness were the 

determinants affecting end users’ use decisions. Ho et al. (2015) used fuzzy 

DEMATEL and eleven control items from International Organization for 

Standardization (ISO) standard 27001 to investigate the features influencing 

information security management systems. Security policy, access control and 

human resource security were found to influence system controls (Ho et al., 2015). 

Hsu and Yeh (2017) used a hybrid model combining fuzzy DEMATEL with 

technological, organisational and environmental features to analyse the features 

affecting the use of the Internet of Things (IoT). Among the technology, 

organisation and environment features, environment was found to be the most 

influential determinant of IoT adoption (Hsu & Yeh, 2017). 

Hsu and Yeh (2018) combined fuzzy DEMATEL and TAM to examine the 

features affecting m-commerce adoption. They found that perceived usefulness, 

perceived ease of use, value added and service functionality influenced m-

commerce adoption (Hsu & Yeh, 2018). Chang and Chen (2018) combined 

DEMATEL and TAM to examine the features influencing use of social games and 

found that social norm was the most important feature in users’ decisions to use 

social games. Pleasure and sociability were also determinants of perceived 

enjoyment (Chang & Chen, 2018). 

3.5 Bayesian Networks in Technology Acceptance 
Modelling 

Bayesian networks have been used to guide decision-making processes in 

many fields, including finance and marketing (Neapolitan, 2004), bankruptcy 
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prediction (Sun & Shenoy, 2007), financial analysis (Gemela, 2001), improvement 

of portfolio risk analysis (Demirer et al., 2006) and modelling of operational risk 

(Cowell et al., 2007). Bayesian networks have also been used to manage 

engineering project risk (Lee et al., 2009) and to analyse performance and risk-

taking among mutual fund managers (Ammann & Verhofen, 2007). In the risk 

management context, Bayesian networks have been used in the analysis of 

software development (Hu et al., 2013) and the assessment of project failure (Song 

et al., 2013). 

The literature’s approach to formulating models in the social and behavioural 

sciences has generally followed methodologies other than Bayesian networks. To 

date, research on technology acceptance has relied on PLS-SEM to quantitatively 

evaluate relationships among model constructs (latent variables). PLS-SEM 

evaluates relationships among independent and dependent variables on the basis 

of variance and requires the specification of a theoretical framework that defines 

and justifies interactions among variables. To establish validity, PLS-SEM requires 

the evaluation of two types of models: measurement and structural. In the 

measurement model, the psychometric properties of a measure (e.g. a 

questionnaire) are evaluated per the steps recommended by Straub (1989). This 

evaluation investigates five aspects of the data: content validity, internal 

consistency reliability, feature validity, convergent validity and discriminant validity. 

In structural models, the validity of the hypothesised structure is calculated by 

applying statistical significance tests to assess the path coefficients of the 

relationships between the independent and dependent features. This involves 

using p-values (p ≤ 0.05) and two-tailed t-tests to reject the null hypotheses of the 

theorised relationships among features (Hair et al., 2010, 2011). Thus, the 

structures of relationships built on the basis of PLS-SEM may not hold if new data 

are used to test the original structure. Moreover, adding new constructs to pre-

extended model constructs may not be possible unless the original model is 

rearranged or one or more original constructs is omitted, which changes the original 

model’s structure (Pearl, 1998). 
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In contrast, Bayesian networks can identify linear and non-linear interactions 

among model variables. As these networks assume the independence of variables, 

conditional probabilities are used to associate variables with one another (Etz & 

Vandekerckhove, 2018). Bayesian networks can both predict target variables and 

explain relationships among interactive variables. In addition, the general structure 

of models formulated using Bayesian networks can hold when new data are added 

to the model (Pearl, 1998). Nonetheless, from a socio-behavioural sciences 

perspective, Bayesian networks are inefficient in that the interactions among 

related variables are inferred from the data alone; ideally, such interactions should 

be theoretically justified and verified by applying a statistical significance test that 

uses p-values and two-tailed t-tests to reject the null hypotheses (Gupta & Kim, 

2008; Heckerman, 1999; Wu, 2010). 

Despite PLS-SEM’s inability to predict the usability of technology and its 

limited capability to extend modelling by introducing new constructs and 

generalising to new data, the technology acceptance field still largely relies on this 

technique. Like ML techniques, Bayesian networks have only rarely been applied 

in the technology acceptance field. The validity and capability of Bayesian networks 

remain underappreciated by researchers in this area, and the technique’s potential 

to change understandings of the features that shape usability has largely been 

overlooked. Table 3.5 summarises the differences between Bayesian networks and 

PLS-SEM. 
Table 3.5 Comparison of Bayesian Networks and Partial Least Squares–Structural 
Equation Modelling (PLS-SEM) 
Criterion Bayesian Networks PLS-SEM 

Methodology Driven by data, theory or domain 
knowledge Driven by theory 

Statistical significance testing (p-values and 
t-statistics) Not required Required 

Theoretical foundation for interactions 
among variables Not required Required 

Predictive ability Strong Non-existent 

Ability to explain variables’ interactions Strong Dependent on theoretical 
justification 

Ability to generalise on new data Strong Poor 
Popularity in social science and technology 
acceptance fields Scarce Pervasive 

Representation of relationships among 
variables Linear and non-linear Linear 
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Bayesian networks use probability to elucidate the relationships among a 

model’s variables. There are two related essential conceptions of probability that 

are of interest to our research. First, probability can be understood as a belief 

illustrating the extent to which a person believes that an event may occur. In this 

way, probability can be used to measure the uncertainty regarding an event’s 

occurrence. This understanding renders probability subjective in the sense that it 

is specified by an individual and may differ from one person to another (Lindley, 

2000). Second, probability can be considered as the frequency of occurrence, 

measuring the number of times that a given event occurs out of a total number of 

events. This understanding of probability requires repeated occurrences of an 

event, the independence of those repeated occurrences and well-specified 

processes (Neyman, 1977). Our proposed PTAM deals with an event that does not 

repeat – namely, technology acceptance – and involves features that have fixed 

states (e.g. true or false, present or absent). Making a distinction between the two 

above-described concepts of probability is essential in justifying the inferred 

relationships among PTAM’s features and their implications. Thus, in this study, we 

apply the definition of probability that focuses on the uncertainty of events’ 

occurrence and adopt this concept to formulate the proposed structural model of 

PTAM by applying Bayesian networks (also known as belief networks), as 

technology acceptance is a one-time event that does not reoccur. 

There are two possible types of inference in Bayesian networks: backward 

and top-down. Backward inference is used to diagnose the relationships among 

variables and find the most influential variable, whereas top-down inference can 

estimate the probability of observations given assumptions about variables’ 

interactions. This can help identify the most important variable and the impact of 

different scenarios on the target variable. Bayesian networks can contribute to the 

decision-making process with regard to technology acceptance by estimating an 

index of indicators (Jensen & Nielson, 2007).  

The Bayesian networks technique has two components, one qualitative and 

the other quantitative. The qualitative component involves creating a direct acyclic 

graph (DAG) to depict the relationships among independent and dependent 
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features. The DAG does not allow looping between features and can be drawn 

based on data observations, domain knowledge, theoretical understandings or 

experts’ views regarding variables’ interactions. The DAG has nodes and edges: 

each node represents a variable and each edge represents a relationship between 

two variables. The affected feature is called the parent, and the affecting feature is 

called the child. The quantitative component involves applying probability to 

quantify the relationships among features. Independent features are associated 

with dependent features by estimating (as a percentage) the extent to which the 

occurrence of independent features is correlated with the occurrence of dependent 

features (Heckerman, 1999).  

For example, we assume that, when a person has a 60% desire to use a 

technology, the person is likely to use that technology. Desire (an independent 

feature) is correlated with use behaviour (a dependent feature). This indicates that, 

if a person desires to use a particular technology, there is a 60% likelihood that that 

person will use the technology. Although we apply probability tables to represent 

relationships and utilise conditional probability to infer relationships between the 

independent and dependent features, this oversimplified example represents a 

general understanding of our proposed approach. It is important to note that, in 

applying probability tables, we do not arbitrarily identify the probability of the 

features’ occurrences. Rather, our approach involves a more objective technique, 

in which we utilise the observed data to identify the probability of features’ 

occurrences. 

Models of technology adoption applying Bayesian networks are almost non-

existent in the technology acceptance field. Only two works to date have attempted 

to evaluate the ability of such networks to explain technology use decisions. First, 

Bae and Chang (2012) used Bayesian networks to identify relationships between 

determinants of behavioural intention to use smart TVs. The configuration of the 

variables was based on domain knowledge, rather than observed data. 

Interdependence between variables was identified via correlation analysis, and 

relationships were considered significant only for coefficients greater than or equal 

to 0.3 at the 0.01 statistical significance level. Prior probabilities produced by 
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Bayesian networks were used to determine the most influential feature in the 

adoption of smart TVs (namely, relative advantage). The extracted relationships 

were non-linear, and the authors referred to the relationships as causal rather than 

correlative. The testing of the network’s performance and predictive power was 

overlooked (Bae & Chang, 2012). 

Second, Garces et al. (2016) used Bayesian networks to model the 

relationships among variables determining end users’ decisions to use technology. 

Garces et al.’s (2016) proposed model combined TAM and UTAUT to demonstrate 

the advantages of the probability-based approach in modelling end users’ 

behavioural intentions. The expectation maximisation algorithm was applied to 

gauge the performance of the proposed model, and its accuracy was attained by 

applying a precision classification metric (Garces et al., 2016). 

3.6 Literature Review 
3.6.1 Assessment of Technology Acceptance Models 

Despite TAM’s popularity in the IS literature, researchers have reported that 

the model has several limitations. Lee et al. (2003) claimed that TAM lacks 

actionable guidance for practitioners. One limitation of TAM-based studies is their 

reliance on self-reported technology use, rather than measuring use directly. 

Another limitation is that TAM was verified using a single IS, limiting its 

generalisability. In addition, some extensions of TAM have relied heavily on 

student rather than professional samples, limiting their ability to represent real 

workplace environments. Other issues in TAM applications include the use of 

single subjects, one-time cross-sectional study designs, statistical measurement 

problems, inclusion of single tasks, low explained variance scores and focus on 

mandatory settings (Lee et al., 2003). 

Legris et al. (2003) examined TAM research and concluded that the field’s 

empirical analyses were inconsistent and unclear. Given that it has been found to 

explain as little as 40% of variance, the authors claimed that TAM excludes critical 

features and recommended extending it to include more effective determinants. 

They also noted that TAM lacks features to explain innovation modes and the 

processes of human and social change and argued that such features are 
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necessary to enrich the model and improve its explanatory capacity (Legris et al., 

2003) 

Bagozzi (2007) offered a more profound criticism of TAM. After examining 

TAM and its subsequent versions, he concluded that it had a number of 

fundamental shortcomings and inherent limitations and suggested a paradigm 

shift, recommending the inclusion of the determinants of self-regulation, desire 

and goals. For instance, the introduction of many moderators and the 

determinants of perceived ease of use and perceived usefulness yielded few 

theoretical insights. He also argued that TAM has two critical gaps that reduce its 

efficacy. First, TAM overlooks the gap between use and goal attainment. 

Specifically, linking intention and use implies that use is the ultimate goal of an 

individual technology user; however, decision-makers take actions as a means of 

attaining goals, rather than simply for the sake of performing the actions. 

Moreover, in the time that elapses between behavioural intention formation and 

action initiation, various psychological and instrumental intervening steps could 

occur that hamper individuals’ decisions to adopt technology (Bagozzi, 2007). 

Second, TAM also overlooks the gap between beliefs and behavioural 

intention. Beliefs do not necessarily create behavioural intention, and how they 

motivate intention remains unexplained (Bagozzi, 1992, 2007). TAM inherits this 

issue from TRA, the framework on which TAM was based (Bagozzi, 2007). TAM 

also treats emotions in an ad hoc manner, rather than following a theoretically 

supported approach (Bagozzi, 2007). In TAM, Venkatesh (2000) conceptualised 

emotions in the context of computer anxiety and considered them as indirect 

determinants of behavioural intention. However, emotions should be treated as 

pre-factual appraisals of achieving technology use, rather than indicative of actual 

use (Bagozzi, 1992; Carver & Scheier, 1990, 1998). 

Further research is needed to extend TAM to cover features associated with 

the design and implementation of ISs (Benbasat & Barki, 2007). A recommended 

approach is to return to TRA and TPB to ‘provide the theoretical green light for 

going beyond TAM and allow for novelty and discovery’ (Benbasat & Barki, 2007, 

p. 215). Beaurdy and Pinsonnault (2010) have argued that, although emotions are 
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important drivers of behaviour, the research on user acceptance of technology 

has paid them little attention. The authors provided a framework classifying 

emotions into four distinct types: challenge, achievement, loss and deterrence. 

They then studied the direct and indirect relationships of these four emotion types 

with technology use and found that excitement and happiness had positive 

relationships with use behaviour (Beaurdy & Pinsonnault, 2010). 

Venkatesh et al. (2016) reviewed the progress of UTAUT from 2003 through 

2014. They suggested two future frameworks: an individual framework and a 

higher-level framework. The former focuses on user, technology and task 

attributes and event time, whereas the latter comprises environmental, 

organisational and locational attributes (Venkatesh et al., 2016). Venkatesh et al. 

(2016) called for future researchers to follow this approach to expand the original 

model. 

All research on TAM and UTAUT has used SEM and PLS-SEM approaches 

to formulate, analyse and test features and their interactions. Both of these 

approaches are explanatory in nature. The studied interactions are 

compensatory, as explained by Johnson et al. (1989), Payne et al. (1993) and 

Chiang et al. (2006) – that is, one feature’s minimal or non-existent influence on 

a model is presumed to be compensated for by the influence of another feature. 

These approaches have mistakenly been treated as predictive in the majority of 

TAM and UTAUT research. However, PLS-SEM is not a prediction-oriented 

approach but rather an explanatory modelling technique that describes 

interactions among independent variables and their relationships with their 

respective dependent variables (Forster & Sober, 1994; Shmueli, 2010; Shmueli 

& Koppius, 2010). Therefore, the vast majority of TAM and UTAUT research, 

despite concentrating on explanatory modelling, has incorrectly utilised this 

approach to examine the predictive power of technology acceptance models. 

Predictive modelling follows a data-driven methodology and does not necessarily 

take into account model variables’ correlations with one another (Breiman, 2001; 

Shmueli & Koppius, 2010). 
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Both TAM and UTAUT were formulated using PLS-SEM, which restricts the 

introduction of new features to a model’s hypothesised structure. The structure of 

relationships built using PLS-SEM may not hold if new data and features are 

introduced to the original structure. Adding new features to a model may not be 

possible unless the original model is rearranged or one or more original features 

is omitted, which changes its original structure. When PLS-SEM is applied, the 

underlying mechanism is strictly controlled by certain hypothesised interactions 

among the original features of TAM and UTAUT. In attempts to extend either 

model, therefore, newly suggested features are often disregarded on the grounds 

that they do not exhibit significant relationships with the features of the current 

model. However, the influences of these new features on technology use 

behaviour may have been statistically significant had the hypothesised 

interactions of the original features of TAM and UTAUT been different or non-

existent (Pearl, 1998). Table 3.6.1 outlines the limitations of both TAM and 

UTAUT.  

Table 3.6.1 Limitations of TAM and UTAUT 
Reference Limitations 

Lee et al. (2003) 

• TAM and UTAUT do not guide practitioners in how to use them to make precise 
usability decisions 
• TAM was developed, extended, evaluated and replicated using a single 

technology 
• TAM research has relied heavily on academic subjects 
• The formulation of TAM involved homogenous subjects 
• Studies applying TAM have used one-time cross-sectional designs 
• TAM research has tested models with low variance 
• Applications of TAM have focused on mandatory settings, which affect users' 

actual use intentions 

Bagozzi (2007) 

• TAM and UTAUT do not explain how beliefs are converted to actions 
• TAM does not incorporate the self-regulation, desire and goal features 
• TAM lacks theoretical insights that can justify the inclusion of the perceived 

ease of use and perceived usefulness determinants 
• TAM assumes that the ultimate aim of technology use is the user’s behaviour, 

rather than the user’s goal 
• Emotions are presented in an ad hoc manner 
• TAM overlooks several positive and negative emotions 

Benbasat and Barki (2007) Existing technology acceptance models lack features of systems design and 
implementation 

Beaurdy and Pinsonnault (2010)  TAM research has paid little attention to emotions and important drivers of use 
behaviour 

Pearl (1998) 
Both TAM and UTAUT have utilised PLS-SEM, which restricts the inclusion of 
many influential features whose effects could have been statistically significant 
had the structure of the original models been different 
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3.6.2 Assessment of Applications of Machine Learning in the 
Technology Acceptance Literature 

We believe that the current literature has demonstrated four limitations with 

regard to utilising ANNs (with a sigmoid function) to understand technology use. 

First, ANNs have been used to model non-linear relationships among features 

whose statistical significances have not been established – not to mention that 

ANNs did not estimate the predictive power of linear features. Moreover, ANNs 

and SEM have distinct orientations: ANNs are essentially predictive, whereas 

SEM is fundamentally explanatory. In a SEM-ANN hybrid model, SEM is used to 

assess linear structural interactions while the ANN estimates the non-linear 

interactions. However, the decision to integrate ANNs and SEM is questionable, 

since the latter evaluates linear explanatory interactions among features while the 

former estimates features’ non-linear predictive power. Moreover, in such 

frameworks, SEM-based statistical analysis can only verify the significance of 

linear relationships among features. In other words, the explanation-oriented 

modelling is based on verified linear relationships, whereas the prediction-

oriented modelling is based on non-linear relationships whose statistical 

significance has not been verified. As a result, in a SEM-ANN model, the verified 

linear relationships cannot play a role in predicting technology use. Therefore, 

SEM-ANN hybrids do not predict technology use: only the non-linear, non-

validated relationships found among the proposed model features play a role in 

prediction. This is not the intention of the SEM-ANN technique, which specifies 

that both linear and non-linear features should determine the hybrid model’s 

predictions. 

Second, ANNs have been used to justify relationships identified using 

theory-driven approaches such as PLS-SEM. However, ANNs, which take a data-

driven approach, are oriented toward measuring the predictive power of data-

driven features. There is no mechanism for employing ANNs in a theory-driven 

context, since they are not a statistical method for testing hypotheses with 

techniques such as t-tests and metrics such as p-values. 
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Third, in an ANN, a single algorithm (sigmoid) is used to predict non-linear 

relationships. Typically, predictive modelling involves using multiple linear and 

non-linear algorithms to verify that the final model has the best possible 

performance. Using only one prediction technique effectively postulates that the 

technique in question is the best available (without providing any empirical 

justification). A truly objective approach must compare multiple linear and non-

linear algorithms to determine which performs best. 

Fourth, the predictive performance of ANNs has historically been examined 

using RMSE, which is an unscaled measure of a model’s predictive power. RMSE 

measures the distance of residuals from the regression-based line of best fit but 

does not provide a percentage describing the extent to which the predicted values 

differ from the actual values. RMSE values are not controlled by a certain 

limitation and can be large or small, with meaningless valuation. The predictive 

power of a model can be better understood if prediction quality is measured on a 

scale ranging from 0% to 100%, which can be obtained through MAPE. 

Fifth, the sensitivity analysis approach commonly applied in the literature is 

limited in that it only assesses each feature’s individual influence on predicting the 

target (see e.g. Chong, 2013a, 2013b; Chong et al., 2015; Hew et al., 2016, 2017; 

Leong et al., 2013, 2018; Liébana-Cabanillas et al., 2017; Ooi & Tan, 2016; 

Sharma et al., 2016a, 2016b; Tan et al., 2014; Teo et al., 2015; Yadav et al., 2016; 

Zabukovšek et al., 2018). Consequently, the combined effects of all other features 

are ignored when measuring the target’s sensitivity to each feature. In other 

words, the presence of interactions among model features is not detected when 

evaluating each feature’s importance and sensitivity (Czitrom, 1999). Indeed, the 

current literature’s method of gauging one feature at a time in evaluating each 

feature’s contribution to the model’s explanatory power is inaccurate, as it isolates 

the measured variable from other variables whose combined effects contribute to 

the model under investigation. That is, the dominant approach in the literature 

measures each feature’s influence on the model’s R2 value by individually 

computing each variable’s effect in terms of increasing or decreasing that value. 
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Table 3.6.2 outlines the shortcomings of the literature on using ML in technology 

acceptance modelling. 

Table 3.6.2 Limitations of Literature on Machine Learning in Technology Acceptance 
ANNs have been used to model non-linear relationships among features whose statistical significance has not been 
established 
ANNs do not estimate the predictive power of linear features 

ANNs have been treated as a statistical technique to justify theory-based relationships 

Modelling performance has been evaluated using a single algorithm 

RMSE (which has no upper limit, unlike MAPE) has been used to evaluate the predictive power of ANNs 
Applied sensitivity analysis measures each feature’s influence on a model’s R2 value by individually computing each 
variable’s effect with regard to increasing or decreasing that value 

3.6.3 Assessment of Applications of Fuzzy Logic in the 
Technology Acceptance Literature 

Hybrid approaches that combine fuzzy DEMATEL with TAM or UTAUT face 

two limitations. First, DEMATEL’s predictive power has not yet been evaluated. A 

basic but sound principle for modelling techniques is to assess a model before 

explaining its implications. As previous technology acceptance studies (see 

Section 3.4) employing fuzzy DEMATEL did not evaluate their models’ 

performance, the utility of those models is unclear. Second, and more importantly, 

DEMATEL was developed to measure direct and indirect relationships among 

interactive features. Therefore, it cannot provide decision-makers with guidance 

as to whether a given technology is usable. Fuzzy DEMATEL concentrates on 

exploring explanatory and interactive features, rather than unambiguously judging 

the usability of technology. The fuzzy logic component of the DEMATEL approach 

is used to convert (i.e. defuzzify) relationship values to obtain the crisp total 

relation effects between variables. Unfortunately, this technique cannot interpret 

the target value (i.e. use behaviour) of either TAM or UTAUT. 

3.6.4 Assessment of Applications of Bayesian Networks in 
the Technology Acceptance Literature 

The application of Bayesian networks in the field of technology acceptance 

is very rare. Only Bae and Chang (2012) and Garces et al. (2016) have attempted 

to model technology usability using Bayesian networks. This paucity of research 

indicates the unpopularity of Bayesian networks in the field and may reflect a 

misunderstanding of their utility. As explained earlier, PLS-SEM requires the 



75 
 

articulation of a theoretical background as well as statistical significance testing 

(p-values and two-tailed t-tests) before any conclusions can be drawn regarding 

interactions among variables. Bayesian networks, in contrast, do not rely on 

hypothesis or statistical significance testing, nor do they require the existence of 

theoretical foundations that describe the model’s features. The technology 

acceptance field has yet to appreciate this technique, explaining the scarcity of 

existing models that employ Bayesian networks. 

Bae and Chang (2012) and Garces et al. (2016) described their variables’ 

relationships as causal, as is common in studies applying PLS-SEM. Referring to 

the relationships among variables in PLS-SEM as causal is incorrect, given that 

a relation does not in itself indicate causality. PLS-SEM assumes that the 

correlation coefficient between observed variables is not perfect (i.e. does not 

amount to 1.0) and that there is a percentage of error in relating observed 

variables to one another (i.e. the difference between 1.0 and the correlation 

coefficient), termed ‘measurement error’. The presence of measurement error 

means that referring to relationships between variables in PLS-SEM as causal is 

inaccurate (Gupta & Kim, 2008; Heckerman, 1999; Wu, 2010). Bae and Chang 

(2012) and Garces et al. (2016) inherited this notion of causality from the 

technology acceptance literature and attempted to apply it when employing 

Bayesian networks. However, when modelling technology acceptance with 

Bayesian networks, the relationships among variables should be referred to as 

correlative rather than causal. 

Garces et al. (2016) used only a single algorithm and a single metric to 

evaluate the performance of the resulting networks. This indicates the inadequacy 

of the modelling evaluation process and raises questions regarding the 

robustness of their subsequent conclusions, as the assessment of the model’s 

performance should have involved more than one algorithm and metric. 

3.7 Research Gaps 
3.7.1 Gaps Related to the Methodologies of TAM and UTAUT 
1. TAM research has used a single IS to verify the model, which limits its 

generalisability (Lee et al., 2003).  
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2. Some extensions of TAM have relied heavily on student samples (Lee et al., 

2003).  

3. TAM applications have included single subjects, one-time cross-sectional 

studies, statistical measurement problems, single tasks, low explained 

variance scores and mandatory settings (Lee et al., 2003).  

4. With values of explained variance as low as 40%, TAM excludes critical 

features and effective determinants (Legris et al., 2003).  

5. TAM lacks features to explain innovation modes and the processes of human 

and social change, which are necessary to enrich the model and improve its 

capability to explain use of technology (Legris et al., 2003).  

6. TAM lacks the determinants of self-regulation, desire and goals, and the 

introduction of many moderators as well as the determinants of perceived ease 

of use and perceived usefulness has yielded few theoretical insights (Bagozzi, 

2007).  

7. TAM has two critical gaps that reduce its efficacy. First, it overlooks the gap 

between use and goal attainment. By linking intention and use, it implies that 

use is an individual technology user’s ultimate goal; however, decision-makers 

take actions as a means of attaining goals, rather than simply for the sake of 

performing the action in question. Moreover, in the time that elapses between 

behavioural intention formation and action initiation, various psychological and 

instrumental intervening steps could occur that hamper individuals’ decisions 

to adopt a given technology. Second, there is a gap between belief and 

behavioural intention. Beliefs do not necessarily create behavioural intention, 

and it remains unexplained how they motivate such intention (Bagozzi, 1992, 

2007). 

8. TAM treats emotions in an ad hoc manner, rather than following a theoretically 

supported approach (Bagozzi, 2007).  

9. In TAM, Venkatesh (2000) conceptualised emotions in the context of computer 

anxiety and considered them indirect determinants of behavioural intention. 

However, emotions should be treated as pre-factual appraisals of achieving 
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technology use, not actual achievement of use (Bagozzi, 1992; Carver & 

Scheier, 1990, 1998). 

10. TAM and UTAUT have a shortage of features associated with the design and 

implementation of ISs (Benbasat & Barki, 2007).  

11.  All research on TAM and UTAUT to date has used SEM and PLS-SEM – 

both of which are explanatory in nature – to formulate, analyse and test features 

and their interactions (Breiman, 2001; Forster & Sober, 1994; Pearl, 1998; 

Shmueli, 2010; Shmueli & Koppius, 2010). Although prior research has 

incorrectly treated SEM and PLS-SEM as predictive techniques, there is a gap 

in the literature with regard to a predictive modelling approach that can evaluate 

the predictive power of technology acceptance models.  

12. SEM and PLS-SEM assume linear relationships among current TAM and 

UTAUT features and fail to address non-linear relationships. Moreover, the 

current literature does not address whether such relationships are monotonic 

or non-monotonic. 

3.7.2 Gaps Related to Use of Machine Learning Modelling in 
Technology Acceptance Modelling 

1. ANNs have not been accurately applied in technology acceptance modelling. 

They have been used to model non-linear relationships among features whose 

statistical significance has not been established and have not been used to 

estimate the predictive power of linear features. ANNs have been treated as a 

statistical technique that can be used to justify theory-based relationships, 

despite that they follow a data-driven modelling approach that cannot be used 

to explain theoretical relationships. Therefore, there is a gap in the literature 

regarding the more accurate application of ML modelling techniques such as 

ANNs.  

2. A single algorithm (i.e. sigmoid) has been used in ANN research to predict non-

linear relationships. Therefore, there is a gap in the literature regarding the 

combination of ML algorithms (including sigmoid in ANNs) to objectively model 

technology acceptance.  
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3. The error rate metric that has traditionally been applied to measure modelling 

performance (RMSE) has no scaled measure of a model’s predictive power. 

Therefore, a gap in the literature remains regarding the use of a different error 

rate that offers a scaled measure of predictive power. 

3.7.3 Gaps Related to Use of Fuzzy Logic Modelling in 
Technology Acceptance Modelling 
1. In all articles to date using DEMATEL, the quality and predictive power of 

models have been overlooked. A basic yet sound principle for modelling 

techniques is to assess and test a proposed model before explaining its 

implications. As previous technology acceptance studies employing fuzzy 

DEMATEL did not evaluate their models’ performance, those models’ utility is 

unfounded.  

2. DEMATEL was developed to measure direct and indirect relationships among 

interactive features. Therefore, it cannot provide decision-makers with 

guidance as to whether a technology is usable. Fuzzy DEMATEL concentrates 

on exploring explanatory and interactive features but does not unambiguously 

judge the usability of a technology. The fuzzy logic component of DEMATEL 

can convert (i.e. defuzzify) relationship values to obtain the crisp total relation 

effects between variables. Unfortunately, this technique does not interpret the 

target value (i.e. use behaviour) of either TAM or UTAUT. 

3.7.4 Gaps Related to Use of Bayesian Network Modelling in 
Technology Acceptance Modelling 

PLS-SEM requires a theoretical basis and statistical significance to 

understand the interactions among features. Although Bayesian networks do not 

rely on statistical significance testing (via p-values and two-tailed t-tests) or 

require theoretical foundations that describe model features, the field of 

technology acceptance has yet to appreciate the technique, explaining the 

scarcity of models employing Bayesian networks. Therefore, there is a gap in the 

literature with regard to more accurate application of Bayesian networks to 

evaluate technology acceptance models. 
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The application of Bayesian networks by the current literature is inadequate 

for evaluating technology usability decisions and raises questions as to the 

robustness of subsequent conclusions of such an application. Thus, there is a gap 

in the literature regarding the use of Bayesian networks to develop a technology 

acceptance index that can explain the interactions among these models’ features 

and enhance the decision-making process. 

3.8 Summary 
In this chapter, we explored the technology adoption modelling frameworks in 

the literature to understand our research problem and identify research gaps. We 

evaluated the frameworks by examining the limitations of the current literature. In 

the following chapter, we discuss the framework of PTAM, DPTAM, FIPTAM, and 

PTAI. 
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4.1 Introduction 
As explained in Chapter 3, the current technology acceptance literature 

contains several research gaps that our proposed research addresses by applying 

a data-driven methodology and formulating PTAM, DPTAM, FIPTAM and PTAI. In 

this chapter, applying steps 1, 2 and 3 of our proposed methodology we discuss 

the underlying framework of these proposed four models; their components, 

theories, modelling and evaluation techniques and the type of technology whose 

use they predict. Also, we define our data sources and explain how and why we 

collected our data as well as what kinds of data we used to test PTAM, DMPTA, 

FIPTAM and PTAI. 

4.2 Targeted Technology 
Since DPTAM, FIPTAM and PTAI were developed on the basis of PTAM, we 

refer only to PTAM in this section, which addresses the type of technology whose 

use the four proposed models predict. In diffusion of innovation (DOI) theory, 

technology is defined as ‘an innovation communicated through certain channels 

over time among the members of a social system. An innovation is an idea, 

practice, or object that is perceived as new by an individual or other unit of adoption’ 

(Rogers, 1983, pp. 10–11). Thus, a technology is distinguished by the class of its 

users and the context in which it is used. Hong et al. (2014) asserted the importance 

of context in IS research and theory development. Johns (2006, p. 386) defined 

context as the ‘situational opportunities and constraints that affect the occurrence 

and meaning of organisational behaviour as well as functional relationships 

between variables’. Weber (2003) observed that the best way to deepen a theory 

is to contextualise it by identifying related phenomena and observing the factors 

associated with them. Rousseau and Fried (2001, p. 1) affirmed that ‘linking 

observations to a set of relevant facts forming a theory improves its accuracy and 

robustness’, while Bamberger (2008) noted that contextualisation improves the 

ability of a theory to explain phenomena.  

TAM (Davis, 1986, 1989, 1993; Davis et al., 1989; Venkatesh, 2000; 

Venkatesh & Bala, 2008; Venkatesh & Davis, 2000) and UTAUT1 (Venkatesh et 
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al., 2003) were designed to model organisations’ technology adoption decisions in 

the context of organisational use. Despite this, both TAM and UTAUT1 have been 

successfully utilised to examine the potential of technologies in non-organisational 

settings, such as Facebook adoption (Sharma et al., 2016b), smartphone use 

(Alwabel et al., 2020), m-commerce (Chong et al., 2013a, 2013b), mobile learning 

(Briz-Ponce et al., 2017; Tan et al., 2014), self-service technology (Jeon et al., 

2020), m-payment (Teo et al., 2015) and smartphone-based credit cards (Ooi & 

Tan, 2016). UTAUT2 addressed the modelling of e-commerce technology adoption 

in the context of individual use in a non-organisational setting (Venkatesh et al., 

2012). UTAUT2 was developed to tailor UTAUT by identifying the determinants of 

use for e-commerce technology and addressing concerns regarding 

contextualisation by Bamberger (2008), Hong et al. (2014), Rousseau and Fried 

(2001) and Weber (2003). 

Alvesson and Kärreman (2007) and Johns (2006) asserted the importance of 

considering context when improving theories, recognising that changing the 

context to which a theory extends results in changing the theory’s implications and 

factors, as well as the relationships among factors. According to Hong et al. (2014, 

p. 116), ‘one of three approaches to contextualis[ing] an information technology 

theory is to incorporate context-specific features that are relevant to the 

characteristics of technologies, users and use-context’. PTAM is an extension of 

UTAUT2 that predicts (rather than explains) the use of personal technology in non-

organisational settings. Drawing on Alvesson and Kärreman (2007), Johns (2006), 

and Hong et al. (2014), we expect PTAM to deepen UTAUT2 because it can be 

applied in a broader context that extends beyond the context of e-commerce 

covered by UTAUT2. More importantly, in this broader context, end users are 

responsible for all potential consequences of their use decisions. One of the three 

approaches described by Whetten (2009) for tailoring a theory to account for a 

specific context is the development of context-sensitive versions of the independent 

factors that fits the new context. PTAM adopts this approach and seeks to formulate 

a technology acceptance model that utilises UTAUT2 as a foundation to predict 

end users’ use of personal technology. In sum, the proposed PTAM addresses the 
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use of personal technology by end users in a non-organisational setting where 

solely users are responsible for their use decisions. 

4.3 Feature Size of Personal Technology Acceptance 
Model 

In this section, we explain why PTAM has thirty-seven features. The 

abstraction and generalisation of a theory are essential elements of its 

development (Gregor, 2006; Lee & Baskerville, 2003; Weber, 2003). Weber (2003) 

further claimed that a parsimonious theory is more favourable than a complex 

theory. Past research (e.g. Davis (1989), Davis et al. (1989) and Venkatesh et al. 

(2003)) has formulated parsimonious technology acceptance models that have 

received wide appreciation in most IS research. In contrast, Benbasat and Zmud 

(1999), Chiasson and Davison (2005), Orlikowski and Iacono (2001), Plouffe et al. 

(2001) and Rosemann and Vessy (2008) encouraged richness and 

contextualisation in IS theory development. Hevner et al. (2004) called for 

behavioural science research to improve theory by theorising the artefact. Orman 

(2002) criticised IS research for overlooking the capabilities of technologies and the 

contexts in which they are used. Perugini and Conner (2000) and Perugini and 

Bagozzi (2001) recognised that one approach to deepening TPB, on the basis of 

which TAM was formulated, is to add more features that shape the behaviour under 

investigation. Bagozzi (2007) criticised TAM and UTAUT for excluding the features 

of past behaviour, desire, and positive and negative emotions. Legris et al. (2003) 

promoted the inclusion of features related to innovation modes and the processes 

of human and social change in TAM research.  

Our research takes into consideration the views that encourage the 

formulation of a non-parsimonious model in an attempt to overcome a limitation of 

the current literature: namely, the inadequacy of technology acceptance modelling 

with regard to accounting for context. Specifically, to enrich UTAUT2 and improve 

its generalisability, we took into account the limitations of technology acceptance 

models set forth by Bagozzi (2007), Beaurdy and Pinsonneault (2010), Benbasat 

and Barki (2007) and Legris et al. (2003) and the calls for contextualisation and 

enrichment of both TAM and UTAUT made by Benbasat and Zmud (1999), 
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Chaisson and Davison (2005), Hevner et al. (2004), Orlikowski and Iacono (2001), 

Orman (2002), Plouffe et al. (2001) and Rosemann and Vessy (2008). We 

synthesised thirty-seven features comprising technology design and human 

behaviour characteristics and contextualised them for consumer use. Our approach 

expects that many characteristics of different technologies used in various contexts 

can be contextualised to fit personal technology use in a non-organisational setting. 

We expect PTAM to address the personal technology use decisions undertaken by 

end consumers in non-organisational settings. We use the terms ‘consumer 

technology’, ‘consumer use technology’ and ‘personal technology’ interchangeably 

in this research to refer to the context to which PTAM is applicable. 

4.4 Relationships Among Personal Technology 
Acceptance Model’s Features 

As our aim was to create a predictive model, we treated the interactions 

between the proposed features as unknown but formulated them through ML 

modelling when developed PTAM, DPTAM and FIPTAM. These three models 

examine the influences of features on use behaviour and, from a theoretical 

perspective, expand on these potential influences. This enables the formulation of 

strongly predictive models of personal technology acceptance that consider the 

maximum predictive power of the proposed features. Consequently, PTAM is 

designed to represent as many features as possible, so long as they demonstrate 

considerable and direct influences (which may be linear, non-linear or both linear 

and non-linear) on use behaviour and are theoretically justified. The same applies 

to the features of DPTAM and FIPTAM. In contrast to the linear explanatory power 

of the current models of technology acceptance, PTAM, DPTAM and FIPTAM are 

expected to achieve a high predictive power that reflects the linear and non-linear 

influences of the examined features. As shown in Chapter 7, PTAI takes into 

consideration the interactions among the proposed features, as it is formulated 

applying an explanatory and predictive technique (namely, Bayesian networks). 

Formulating predictive models to explain how features interact fails to take 

advantage of such models’ predictive power (Shmueli, 2010). A successful 

explanatory model is not necessarily the best predictive one. Explanatory and 
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predictive models are distinct, with different theoretical and methodological 

foundations and understandings (Shmueli & Koppius, 2010). In technical terms, a 

prediction-oriented model seeks to estimate the model’s performance on future 

data not yet learned by the modelling algorithm, whereas an explanatory model 

evaluates modelling performance by measuring interactions among the current 

data. A researcher must choose to build either a complex model that can make 

robust predictions or a theory-based, explanatory and parsimonious model 

(Yarkoni & Westfall, 2017). As we take the former approach, the relationships 

among PTAM’s various features are treated as a black box, and PTAM, DPTAM 

and FIPTAM focus on predicting personal technology use behaviour, rather than 

explaining how the proposed features interact to make predictions. Nonetheless, 

these models can help expand our understandings of different features’ 

contributions to each model. As we show in Chapters 5 and 6, because PTAM, 

DPTAM and FIPTAM are evaluated using both linear and non-linear algorithms, 

they can clarify each feature’s role by demonstrating its contribution to the 

estimation of the target behaviour. This determines whether certain features are 

more influential than others and which features are relevant to these models’ 

estimations. More importantly, by demonstrating each feature’s contribution to the 

predictive power of the models, we can illustrate how these models are expected 

to differ from both TAM and UTAUT. 

4.5 Personal Technology Acceptance Model 
PTAM was designed to provide a generic and predictive model of technology 

acceptance. Table 4.5 lists the thirty-seven features of PTAM along with their 

sources and definitions. 

 
Table 4.5 Personal Technology Acceptance Model Features and Definitions 
Feature Adopted or Adapted From Definition 

Behavioural intention of technology use 
Ajzen (1985, 1991), Ajzen and 
Fishbein (1980), Fishbein and 
Ajzen (1975) 

End users’ preparedness and 
likelihood to use a technology 

Perceived usefulness 

Compeau et al. (1995a, 1995b), 
Davis (1986, 1989), Davis et al. 
(1989, 1992),  Moore and 
Benbasat (1991), Thompson et al. 
(1991) 

Degree to which end users believe 
that using a technology will lead to 
gains in job performance 
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Perceived ease of use Davis (1986, 1989) 
Degree to which end users believe 
that using a technology is free of 
effort 

Subjective norm Ajzen (1991) Perceived social pressure to use or 
not use a technology 

Image Davis et al. (1992) 
Degree to which use of technology 
is perceived to enhance end users’ 
status in their social group 

Results demonstrability Moore and Benbasat (1991) Tangibility of the results of using a 
technology  

Perceived enjoyment Davis et al. (1992) 

Degree to which the activity of 
using a technology is perceived as 
enjoyable in its own right, separate 
from any performance 
consequences resulting from the 
technology’s use 

Technology playfulness Webster and Martocchio (1992) 
Degree of cognitive spontaneity in 
users’ interactions with a 
technology 

Perception of external control Ajzen (1985), Taylor and Todd 
(1995a, 1995b) 

End users’ perceptions of the 
availability of knowledge, resources 
and opportunities required to use a 
technology 

Technology self-efficacy Compeau and Higgins (1995b) 

Degree to which end users believe 
they have the ability to perform a 
specific task or job using a 
technology 

Voluntariness Venkatesh (2000) Degree to which technology use is 
perceived as voluntary 

Habit Aarts and Dijksterhuis (2000), 
Limayem et al. (2007) 

Extent to which end users tend to 
use a technology automatically and 
because of learning 

Financial consequences Dodds et al. (1991) 

End users’ cognitive trade-off 
between the perceived benefits and 
financial consequences of 
technology use, including but not 
limited to purchase, insurance, 
maintenance and repair costs and 
loss of monetary value 

Goal Perugini and Bagozzi (2001), 
Perugini and Conner (2000) 

What end users seek to achieve if 
they use a technology 

Desire Perugini and Bagozzi (2001), 
Perugini and Conner (2000) 

End users’ wish and willingness to 
use a technology  

Past behaviour Perugini and Bagozzi (2001), 
Perugini and Conner (2000) 

How many times end users have 
used similar technologies 

Positive anticipated emotions Perugini and Bagozzi (2001), 
Perugini and Conner (2000) 

End users’ feelings of gladness, 
self-assurance, pride, delight, 
satisfaction, happiness and 
excitement resulting from 
technology use 

Attitude toward technology use  Ajzen (1991), Davis (1986, 1993) 

Degree to which end users have a 
favourable or unfavourable 
evaluation or appraisal of 
technology use 

Attitude toward technology Keen (1980) Degree to which end users possess 
a favourable view of technology 

Attitude toward change brought by 
technology use Keen (1980) 

Degree to which end users possess 
a favourable feeling about change 
occurring as a result of using 
technology 

Visibility Moore and Benbasat (1991) Degree to which end users can see 
others using a technology 

Consistency Moore and Benbasat (1991) 

Degree to which a technology is 
perceived as consistent with end 
users’ values, needs and past 
experiences 

Trust 
Carter and Schaupp (2008), 
Gefen (2000), Gefen and Straub 
(1997), Gefen et al. (2003, 2005) 

Extent to which end users expect 
that a technology and its vendor or 
supplier will deliver on their 
promises 
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Personal innovativeness Lu et al. (2005) Willingness of end users to try any 
new technology 

Perceived novelty Wells et al. (2010) 

A technology’s novel attributes, 
features, unmatched design or 
optimal services compared with 
other technologies admired by end 
users  

Functionality Goodwin (1987), ISO 25010:2011 
(ISO & IEC, 2011) 

Extent to which a technology fulfils 
end users’ requirements by suiting 
their needs, working correctly and 
operating in compliance with 
regulations 

Service quality 
Delone and McLean (1992, 2002, 
2003), Kettinger and Lee (2005), 
Petter et al. (2013) 

Provision of prompt, dependable, 
timely and reliable sales, after-
sales, maintenance and repair 
services by technology vendors 

Information quality 
Delone and McLean (1992, 2002, 
2003), Petter et al. (2013), 
Venkatesh (2000)  

How well a technology performs the 
tasks that end users expect it to 
perform 

Technology quality Delone and McLean (1992, 2002, 
2003), Petter et al. (2013) 

Technology hardware and software 
reliability, expected features, 
response timeliness and effective 
recovery after sudden stoppage 

Privacy McLeod et al. (2009) 
Extent to which end users of a 
technology believe that technology 
will not invade their privacy 

Security 
Etezadi-Amoli and Farhoomand 
(1996), Seffah et al. (2006), Wang 
et al. (2014)  

A technology’s capability to protect 
against viruses, hackers and 
unauthorised access 

Safety Seffah et al. (2006) 
A technology’s capability to not 
jeopardise end users’ personal 
safety 

Design aesthetics Cyr et al. (2006), Kim and 
Fesenmaier (2008) 

Balance, emotional appeal or 
aesthetics of a technology and its 
interface, which may be expressed 
through the elements of colour, 
shapes, language, music or 
animation 

Mobility Seffah et al. (2006) 
A technology’s capability to allow 
end users to easily move it from 
one place to another 

Flexibility Seffah et al. (2006) 
A technology’s capability to enable 
end users to tailor its interface to fit 
their personal preferences 

Compatibility Seffah et al. (2006) 
A technology’s capability to display 
and work properly with different 
platforms and other technologies 

Navigability Seffah et al. (2006) 

A technology’s capability to enable 
end users to move around it 
efficiently and easily and 
experience all of its features 

The following sections discuss the theory and foundation underlying the 

selection of PTAM’s features. 

4.5.1 Behavioural Intention of Technology Use 
TRA and TPB postulate that individuals’ conscious behaviours are 

determined by their intentions to execute those behaviours; intentions, in turn, are 

determined by individuals’ attitudes and the social influence of their environment 

(Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975). That is, actions (i.e. 

behaviours) are controlled by intentions, which are the best determinants of 
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behaviours (Ajzen, 1985). Behavioural intentions constitute individuals’ positive 

or negative evaluations of target behaviours (Fishbein & Ajzen, 1975). TAM and 

UTAUT adapted TRA and TPB and applied them in the context of computer use 

behaviour to explain drivers of technology use. Use intention has been empirically 

demonstrated to be a significant determinant of technology use (see e.g. Davis & 

Venkatesh, 1996; Davis et al., 1989; Venkatesh, 2000; Venkatesh & Bala, 2008; 

Venkatesh & Davis, 2000; Venkatesh et al., 2003, 2012). Similar to UTAUT2, we 

expect intention to have a considerable influence on personal technology use 

within the context of PTAM. 

4.5.2 Perceived Usefulness  
Usefulness has been theorised as one of the two fundamental beliefs 

underlying technology acceptance. In TAM1, Davis (1986, 1989, 1993) adapted 

TRA (Ajzen & Fishbein, 1980) and TPB (Ajzen, 1985) and incorporated perceived 

usefulness as a feature of use behaviour. The concept underlying TAM is that 

users will accept to use a given technology if it performs well (in terms of enabling 

them to do their jobs better) and leads to certain benefits, such as a promotion or 

higher pay. These benefits are considered extrinsic motivations that are perceived 

as valued outcomes obtained as a result of using the technology. Potential users 

perceive technology use favourably when they achieve the expected benefits 

(Davis, 1989). In the context of personal technology, users expect to benefit from 

using a technology through (for example) improved welfare, social life or financial 

status. This belief that technology is beneficial is an impetus for behavioural 

intention, as end users evaluate technology by assessing the benefits it can offer 

them. Thus, we expect that the perceived usefulness of personal technology will 

predict use behaviour. Venkatesh and Davis (2000) found that the belief of 

usefulness is influenced by subjective norm, image, results demonstrability, 

output quality and job relevance, each of which is described later. 

4.5.3 Perceived Ease of Use 
Perceived ease of use – considered the second fundamental belief that 

determines behavioural intention toward technology acceptance – was 

incorporated into TAM to account for end users’ considerations of a technology’s 



89 
 

complexity and difficulty. This feature evaluates whether technology use involves 

effort. When deciding whether to use a technology, users compare the complexity 

of technologies when forming their perceptions of ease of use. In addition to 

directly influencing behavioural intention, perceived ease of use was later found 

to mediate the effect of perceived usefulness on behavioural intention. This is 

because the influence of perceived ease of use on behavioural intention 

decreases substantially when controlling for the effect of perceived usefulness 

(Davis, 1986, 1989, 1993). When using technology in an organisational context, 

users are supported by facilitating conditions that reduce difficulty of use 

(Venkatesh et al., 2003). In PTAM, we expect that users will consider whether a 

personal technology is easy to use when they make their use decisions. In the 

context of personal technology use (as opposed to technology use in 

organisational settings), we expect that users will weight this feature heavily 

because the assistance or facilitating conditions supporting use are not perceived 

as freely provided. Venkatesh (2000) found that perceived ease of use is 

determined by perceived enjoyment, technology playfulness, anxiety, perception 

of external control and technology self-efficacy. 

4.5.4 Subjective Norm  
Perceived ease of use – considered the second fundamental belief that 

determines behavioural intention toward technology acceptance – was 

incorporated into TAM to account for end users’ considerations of a technology’s 

complexity and difficulty. This feature evaluates whether technology use involves 

effort. When deciding whether to use a technology, users compare the complexity 

of technologies when forming their perceptions of ease of use. In addition to 

directly influencing behavioural intention, perceived ease of use was later found 

to mediate the effect of perceived usefulness on behavioural intention. This is 

because the influence of perceived ease of use on behavioural intention 

decreases substantially when controlling for the effect of perceived usefulness 

(Davis, 1986, 1989, 1993). Venkatesh (2000) found that perceived ease of use is 

determined by perceived enjoyment, technology playfulness, anxiety, perception 

of external control and technology self-efficacy. When using technology in an 
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organisational context, users are supported by facilitating conditions that reduce 

difficulty of use (Venkatesh et al., 2003). In PTAM, we expect that users will 

consider whether a personal technology is easy to use when they make their use 

decisions. In the context of personal technology use (as opposed to technology 

use in organisational settings), we expect that users will weight this feature heavily 

because the assistance or facilitating conditions supporting use are not perceived 

as freely provided.  

4.5.5 Image 
Moore and Benbasat (1991) argued that people are influenced by the social 

relationships that connect them to a particular social group. Image is defined as 

‘the degree to which the use of an innovation is perceived to enhance one’s status 

in a social system’ (Moore & Benbasat, 1991, p. 195). TAM builds on this claim, 

maintaining that users are inclined to use technology if doing so makes them part 

of such a group (Venkatesh & Davis, 2000). Moreover, users’ status is enhanced 

if they use a technology that their group admires. End users perceive this 

improvement to be a benefit of using technology because their standing in their 

social system is elevated (Venkatesh & Davis, 2000). In justifying the influences 

of subjective norm on image and of image on perceived usefulness, Venkatesh 

and Davis (2000) adopted the user status effect and combined it with the concept 

of identification suggested by Kelman (1958). Drawing on Kelman (1958), in 

complying (implicitly or explicitly) with their social group, users are identified by 

their use of technologies that are admired by their group. In turn, users obtain the 

power of the group, which they consider beneficial. Similar to the influence of 

subjective norm, in the context of consumer use, we expect that this identification 

effect of image on users’ decisions will be considerable, as users are more 

exposed to their society than they are in the context of organisational use. 

4.5.6 Result Demonstrability 
An important aspect of job motivation is the level of knowledge that workers 

obtain from job tasks. Workers may not be motivated to perform a certain task if 

they do not achieve beneficial information as a result of performing that task 

(Hackman & Oldham, 1976; Loher et al., 1985). Moore and Benbasat (1991) 
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addressed users’ capabilities to describe to others how well a technology 

operates. This indicates that, if potential users are not able to attribute the benefits 

that they gain to the use of the technology, their use decisions will be adversely 

affected. Moore and Benbasat (1991) argued that the judgement of a technology’s 

benefits must be associated with users’ ability to distinguish among the 

technology’s output quality, job relevance and result clarity. Venkatesh and Davis 

(2000) extended this notion and maintained that, even if use of a technology 

produces effective results that please users, end users are unlikely to find the 

technology useful if they do not know how it produces such results. When using 

personal technology, users are also expected to be influenced by the effect of 

result demonstrability. Users expect to understand how tangible, communicable 

and discernible the result of using the technology is in order to make their use 

decisions. When users perceive that the benefits of using a technology are 

uncertain, they will be unwilling to use it. Thus, result demonstrability was selected 

as a feature of PTAM. 

4.5.7 Perceived Enjoyment 
When deciding whether to use a technology, prospective users consider the 

stimuli that motivate technology use (Moore & Benbasat, 1991). Two types of 

motivations – extrinsic and intrinsic – are related to the performance of certain 

behaviours. Extrinsic motivations involve the achievement of valued outcomes, 

such as goals and plans, by executing a certain behaviour, whereas intrinsic 

motivations comprise the pleasure and satisfaction resulting from performing that 

behaviour (Vallerand, 1997). Extrinsic and intrinsic motivation are conceptualised 

as perceived usefulness and perceived ease of use, respectively (Davis, 1989; 

Venkatesh, 2000). Feelings of fun, joy and happiness resulting from using 

technology are theorised to influence intrinsic motivation for technology use 

(Venkatesh, 2000). Perceived enjoyment is distinct from perceived usefulness: the 

latter is an outcome that results from using technology, while the former is a 

consequence of use performance, regardless of whether that use is beneficial. In 

other words, the feeling of joy occurs because of using the technology per se, 

whereas the feeling of usefulness occurs only if the perceived benefit is attained 
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(Davis et al., 1992). In a comparison of the explanatory power of technology use in 

TAM, TPB and decomposed TPB, Taylor and Todd (1995a, 1995b) illustrated the 

importance of perceived enjoyment in changing technology use behaviour. 

Drawing on these studies, we expect the use of personal technology in the 

proposed context to be influenced by the feeling of enjoyment. 

4.5.8 Technology Playfulness 
Computer playfulness was first theorised by Webster and Martocchio (1992, 

p. 204), who defined it as ‘the degree of cognitive spontaneity in microcomputer 

interactions’. Webster and Martocchio (1992) established that computer 

playfulness influences intrinsic motivations such as perceived ease of use. Davis 

et al. (1992) argued that, in the workplace, technology use is enhanced by 

promoting end users’ internal motivation. Drawing on both of these works, 

Venkatesh (2000) theorised that the influence of computer playfulness could be 

extended to TAM and that this feeling of spontaneity positively affects internal 

motivation and varies depending on users’ experiences. This indicates that the 

more playful users are when using a certain technology, the more willing they are 

to use that technology, regardless of whether the technology use achieves certain 

outcomes. The feeling of playfulness is triggered not only when using a 

technology encourages users to be playful but also if the technology use is 

perceived as challenging and likely to stimulate curiosity, exploration and 

discovery. With increased feelings of playfulness, users perceive the technology 

as less difficult to use and consequently form a positive view of using it. Because 

playfulness enhances users’ internal motivation, they spend more time exploring 

the technology, which drives them to use it (Venkatesh, 2000). Drawing on the 

definition of innovation proposed by Rogers (1983), we perceive computers as 

innovations. Thus, what influences the use of innovations applies to personal 

technology. Accordingly, when users of personal technology feel spontaneous 

and unoriginal because of their use of technology, their use decisions will be 

favourably affected. 
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4.5.9 Perception of External Control 
Technology acceptance research (Venkatesh, 2000; Venkatesh & Bala, 

2008; Venkatesh et al., 2003, 2012) introduced the term ‘external control’ to TAM 

and UTAUT after Ajzen (1991) presented the theoretical background of 

behavioural control when extending TPB. According to Ajzen (1991), external 

control refers to the availability of psychological and physical resources and 

conditions that drive individuals to execute a behaviour. Individuals’ perceptions 

of this availability directly affect their perceptions of the ease or difficulty of 

performing the action in question. The unavailability of such environmental 

resources and conditions represents a barrier to users’ formation of a perception 

of a technology as easy to use (Venkatesh, 2000). Taylor and Todd (1995a) 

argued that this understanding of external control creates a basis for individuals’ 

perceptions of the facilitating conditions for technology use, which in turn 

enhances their perceptions of ease of use. Bergeron et al. (1990) argued that 

organisational support for technology users could help avoid acceptance barriers 

in the early stages of use. In the context of consumer use technology, we expect 

users to consider the availability of support when deciding to use technology. This 

support could be provided by (but is not limited to) the provision of facilitating 

conditions such as use manuals, training or even other technology whose 

availability is necessary to enable the focal technology’s use. Because not all 

facilitating conditions are freely provided, we expect personal technology users to 

value this feature highly, considering that they alone bear the consequences of 

use. Thus, PTAM considers end users’ perceptions of external control as a 

determinant of their use decisions. 

4.5.10 Technology Self-Efficacy 
To achieve self-efficacy, people rely on their own direct experiences when 

attempting to perform a certain action (Bandura, 1977). In the TPB framework, 

Ajzen (1985, 1991) addressed the issue of individuals’ perceptions of control as 

a determinant of planned behavioural intention, postulating that there are two 

types of control, external and internal, which comprise the constraints affecting 

individuals’ planned behaviour. According to Terry (1993), internal control of 
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behaviour is conceptualised as a person’s self-efficacy or knowledge, whereas 

external control is related to forces in the environment. Gist (1987) argued that 

self-efficacy plays an important role in organisational behaviour and that end 

users’ perceptions of certain technologies are dependent on their self-efficacy. 

Compeau and Higgins (1995a, 1995b) maintained that an individual’s ability to 

perform a certain behaviour is dependent on that individual’s capacity to learn to 

perform the behaviour without others’ help. Drawing on the research of Compeau 

and Higgins (1995a, 1995b), Venkatesh and Davis (1996) provided an empirical 

foundation for the notion that self-efficacy influences perceived ease of use. They 

argued that, in the absence of experience, end users judge a technology’s ease 

of use on the basis of their own knowledge and skills. They concluded that users 

perceive a technology as easy to use if they can use it without help or with only a 

little help from others. Computer self-efficacy was shown to be an explanatory 

feature of perceived ease of use in TAM2 and TAM3 by Venkatesh (2000) and 

Venkatesh and Bala (2008), respectively. Venkatesh et al. (2003) excluded 

computer self-efficacy from UTAUT on the grounds that it had an insignificant 

linear relationship with behavioural intention. Self-efficacy has been 

contextualised in terms of non–computer-related use, such as internet use (Eastin 

& LaRose, 2000) and web-specific self-efficacy (Hsu & Chiu, 2004). In the context 

of PTAM, we believe that self-efficacy extends to personal technology use and 

define it as the degree to which users are capable of using a technology without 

or with only a little help from others. Users find it necessary to be knowledgeable 

about using a personal technology in order to use it. For these reasons, we expect 

that, in the context of PTAM, users’ technology self-efficacy will be an important 

feature in determining personal technology use. 

4.5.11 Voluntariness 
Moore and Benbasat (1991) postulated that investigations of the initial 

adoption of ISs within organisations should consider the compulsory versus 

voluntary use of the studied IS. Venkatesh and Davis (2000) incorporated the 

concept of voluntariness into TAM and UTAUT and maintained that voluntariness 

only moderates the effect of subjective norm on behavioural intention in voluntary 
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settings. In PTAM, voluntariness is considered an independent feature influencing 

the use of technology. This contrasts with its previous role as a mere moderating 

feature with a minor influence on the effect of subjective norm on behavioural 

intention (see Venkatesh & Davis, 2000). Drawing on Bagozzi’s (2007) argument 

that the use of moderators in TAM and UTAUT has no theoretical basis, we 

conclude that the direct influence of voluntariness can be revealed as a separate 

feature. While voluntariness was only included in TAM and UTAUT in the context 

of organisational adoption, PTAM proposes a potential effect of voluntariness on 

individuals’ use of technology in a consumer use context. This is inspired by the 

notion that end users may be compelled by law or a similar enforcement 

mechanism to use certain technologies they would not use otherwise. A case in 

point raised during the development of this model – and noted by Asthana and 

Taylor (2017) – was the UK government’s announcement that it would ban petrol 

and diesel vehicles by 2040. In this situation, motorists will be compelled to 

replace petrol- and diesel-powered vehicles with electric vehicles (EVs) even 

though these are personal technologies, demonstrating the relevance of the 

voluntariness feature to individual technology adoption. Moreover, due to 

pressure by powerful individuals or the society to which they belong, end users 

may unwillingly use personal technology to avoid being excluded from society or 

their social system. Therefore, voluntariness is expected to play a role in the 

personal technology use decisions evaluated by PTAM. 

4.5.12 Habit 
The habit of performing a certain behaviour has been described as the 

automatic execution of that behaviour as a result of the performance of prior 

behaviours or because of learning (Venkatesh et al., 2012). Over time, individuals 

perceive that the past performance of a certain behaviour may lead them to 

unconsciously repeat that behaviour – that is, prior behaviour causes the 

formation of the target behaviour (Kim & Malhotra, 2005). Continually performing 

a behaviour may lead individuals to learn its consequences, which in turn drives 

them to form a habit of frequently performing the behaviour. Habits are not formed 

quickly but rather require a long period during which the individual repeats the 
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original behaviour (Aarts & Dijksterhuis, 2000; Limayem et al., 2007). Although 

habit is often confused with experience, the former is distinct from the latter for 

two reasons. First, habit is formed with or without experience (conceptualised as 

the number of times a behaviour is performed). Second, multiple levels of habit 

may be formed as experience grows. Habit was introduced to UTAUT2 to evaluate 

end consumers’ use of e-commerce technology and was found to have a 

significant influence on use behaviour. Therefore, habit is conceptualised as 

individuals’ beliefs that they will perform a certain behaviour automatically as a 

result of learning the advantages and disadvantages of that behaviour (Venkatesh 

et al., 2012). In the context of technology use, habit is conceived as end users’ 

tendency to use technology automatically. Thus, because PTAM is an extension 

of UTAUT2, which showed the significant influence of habit on behavioural 

intention, PTAM considers habit a determinant of technology use behaviour in the 

consumer use context. 

4.5.13 Financial Consequences 
Dodds et al. (1991) postulated that people decide whether to buy a product 

based on its price. This indicates the influence of the direct cost of purchase on 

the decisions made by buyers. Venkatesh et al. (2012) extended UTAUT to 

consider the consumer context of technology adoption by adding the feature of 

price value on the grounds that consumers bear the costs of buying technology 

and cognitively associate these costs with a technology’s potential usefulness. In 

UTAUT2, price value was operationalised using three statements, each of which 

covers users’ evaluations of the price (cost) and monetary value incurred as a 

result of the use decision. This supports our claim that the price value feature of 

UTAUT2 only considers purchase cost. However, in evaluating the potential of 

EVs (a personal use technology), Al-Alawi and Bradley (2013) argued that 

prospective buyers face several financial costs, such as after-sales, maintenance 

and insurance costs. Drawing on Al-Alawi and Bradley’s (2013) analysis of buying 

EVs, the purchase cost of technology can be viewed as one of several direct 

financial consequences that technology consumers consider before making 

adoption decisions. Operation, insurance and maintenance costs are among the 
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many other costs that potential adopters of a technology consider when deciding 

whether to use that technology. Additionally, there are potential indirect financial 

consequences that result from using personal technology and that affect users’ 

use decisions. For instance, while the initial use of a technology may be free of 

financial costs during a trial period, its continued use after the trial period ends will 

not be. Another example is when the use of a technology is completely free but 

financial consequences are incurred in enabling the use of the technology. For 

example, while using the internet is free, users need to pay for a personal 

computer and an internet service provider in order to browse the internet and use 

software, applications and websites. To take another example, the use of some 

mobile applications is free, but users first need to buy a mobile device and pay for 

internet service in order to use such applications. Likewise, the use of some 

personal technologies is free in a financial sense, but there may be legal 

consequences that result from such free use that in turn incur financial 

consequences for which users are responsible. Thus, end users are responsible 

for both the direct and indirect financial consequences of technology use, which 

affects their use decisions. These direct and indirect financial consequences 

include (but are not limited to) the price of purchasing technology; the financial 

costs of maintenance, insurance, repair and depreciation; the financial costs 

incurred in facilitating the use of technology; and the financial consequences 

incurred as a result of free use. Thus, financial consequences are deemed an 

important feature that shapes technology use decisions in the context of PTAM. 

4.5.14 Goal, Desire, Past Behaviour and Positive Anticipated 
Emotions 

The selection of these four features is supported by Perugini and Conner’s 

(2000) and Perugini and Bagozzi’s (2001) propositions to extend the TPB 

developed by Ajzen (1985, 1991). TPB is an action-oriented model that assumes 

an action is the referent of the model’s features, rather than a means of achieving 

a certain goal. Indeed, TPB postulates that the terminal goal of performing a 

behaviour is the action itself, wherein the actor performs the behaviour to achieve 

a predetermined goal (Bagozzi, 2007). Moreover, as TAM and UTAUT were 
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adapted from TPB, Bagozzi (2007) criticised them for being action-oriented 

models that assume technology use is the ultimate goal of performing a 

behaviour. However, individuals base their planned behaviour on attaining a 

certain result perceived as the goal. Similarly, end users decide to use a 

technology if doing so can help them achieve their goals. Individuals do not adopt 

a technology merely because its adoption is desirable but rather because they 

plan to use it to attain an explicitly or implicitly predetermined goal (Perugini & 

Bagozzi, 2001; Perugini & Conner, 2000). Venkatesh and Davis (2000) restricted 

this goal to job relevance, arguing that end users accept the use of technology if 

it is relevant to their jobs. However, the present analysis argues that end users 

may also use technology that is relevant to their job or to achieve any other 

sought-after goal whose achievement requires the use of the technology. 

Because PTAM evaluates the use of non-organisational technology, the goal of 

consumers’ technology use in this context may not be job related. We use the 

term ‘goal’ to make the model as general as possible, rather than employing 

another term that would narrow the focus of the model. The goal feature was 

operationalised with three statements that refer to users’ goals, plans and 

objectives (shown in Table 4.11.3). Thus, goals are expected to be a determining 

feature of technology use in PTAM. 

Bagozzi (1992, 2007) criticised TAM for failing to elucidate how beliefs 

regarding ease of use and usefulness motivate decision-makers’ intentions and 

use behaviour with regard to technology adoption. Bagozzi (1992) argued that 

TAM postulates that use intention is explained by perceived usefulness and 

perceived ease of use but does not explain how these two beliefs motivate 

behavioural intention. ‘[A]n intention is perceived as a self-described and self-

fulfilling representation that is partly caused by a desire for its fulfilment’ 

(Velleman, 1997, p. 36). Intentions and desires can be distinguished as follows: 

‘Intentions always have as their object a doable action, whereas desires 
can take any outcome as their object (even impossible states of the 
world). Anne may intend to buy a used car even though she wishes she 
had the money to buy a new one. Moreover, verbs of intention (to intend, 
plan, and try) require an action verb in the infinitive that refers to the same 
agent as the one who has the intention. Ben may wish that his wife were 
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less busy, but he cannot intend that she be less busy. According to 
people’s folk conception, then, intentions are controllable by the agent 
whereas desires are not (D’Andrade, 1987).’ (Malle & Knobe, 1997, p. 
105). 

While beliefs provide reasons for performing actions, they do not energise 

the intention to perform those actions, as an actor could have a belief but 

nevertheless decide not to intend to act. Rather, an actor’s desire to perform an 

action is what leads that actor to intend to perform that action while holding a 

particular belief. That is, desire forms an impetus for the intention to act, and 

desire is indeed a proximal determinant that translates beliefs to intention 

(Bagozzi, 1992, 2000, 2006, 2007; Perugini & Bagozzi, 2001). It follows from 

these arguments that, when users perceive a technology as easy to use and 

useful, these two beliefs alone do not motivate their intentions to use that 

technology unless they also have the desire to use it.  

According to Perugini and Conner (2000) and Perugini and Bagozzi (2001), 

desires convert beliefs into intentions; beliefs themselves are not indicators of 

willingness. In the event that users believe in a technology’s ease of use and 

usefulness, there are two possibilities: either users are likely to form use 

intentions, or they are unlikely to form such intentions. This is because holding 

these two beliefs does not in itself guarantee that users will intend to perform the 

use behaviour, as beliefs (ease of use and usefulness) do not always motivate 

intent. These beliefs only stimulate intent if users also have the associated desire. 

Hence, desire is an influential predictor of technology use, since end users’ 

willingness (intention) to use a technology is only triggered if they have a desire 

to use that technology. Perugini and Conner (2000) and Perugini and Bagozzi 

(2001) found that desire significantly mediated the relationship between reasons 

for action (such as beliefs) and behavioural intention and that the extended model 

of TPB explained a greater proportion of variance than TPB. Desire was defined 

as an individual’s wish and willingness to perform a behaviour, which is the 

definition we adopt for our model (Perugini & Conner, 2000; Perugini & Bagozzi, 

2001). Therefore, because these previous studies determined the importance of 
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desire in predicting behaviour, we expect desire to play an important role in 

determining personal technology use behaviour within the context of PTAM. 

Ouellette and Wood (1998) examined sixty-four behavioural studies and 

concluded that past behaviour was a considerable predictor of intention and future 

behaviour. They established that past behaviour guides future behaviour in that 

the frequency and recency of a well-practised behaviour give rise to habitual 

behaviour (habit) and the unconscious performance of future behaviours. Ajzen 

and Driver (1992), Bagozzi and Kimmel (1995), Beck and Ajzen (1991), Leone et 

al. (1999), Norman and Conner (1996) and Norman and Smith (1995) tested the 

effect of past behaviour on TPB and concluded that it was a strong determinant 

of behavioural intention. Venkatesh et al. (2012) concluded that habit has a 

significant influence on behavioural intention and argued that it is a result of the 

frequency of past behaviour, which indicates that past behaviour is essential in 

explaining the influence of habitual behaviour. Perugini and Conner (2000) and 

Perugini and Bagozzi (2001) extended TPB by including past behaviour and found 

it to be a significant determinant of planned behaviour. Bagozzi (2007) asserted 

that TAM and UTAUT fail to consider past behaviour in predicting use behaviour. 

Ajzen (2011) observed that past behaviour is considered the best predictor of 

planned behaviour but was excluded from TPB (from which TAM and UTAUT 

were adapted) because it did not exhibit a significant linear relationship with 

behavioural intention. Past behaviour, in this context, is defined as the number of 

times end users have used technologies similar to the focal technology (Perugini 

& Bagozzi, 2001; Perugini & Conner, 2000). We expect PTAM to reveal the 

influence of past behaviour because the model examines features’ linear and non-

linear influences. Thus, past behaviour is expected to be a strong predictor of 

technology use within the context of consumer use technology. 

TAM and UTAUT treat the effect of emotions in an ad hoc way. Both models 

include only joy, playfulness and anxiety as emotional features, failing to account 

for the feelings of gladness, self-assurance, pride, delight, satisfaction, happiness 

and excitement that may result from using technology (Bagozzi, 2007). Perugini 

and Conner (2000) and Perugini and Bagozzi (2001) examined the influences of 
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positive and negative anticipated emotions on TPB (Ajzen, 1985, 1991). They 

concluded that positive and negative anticipated emotions could improve TPB by 

enabling consideration of the emotional consequences of achieving or not 

achieving a sought-after goal. Drawing on Perugini and Conner (2000) and 

Perugini and Bagozzi (2001), we perceive that considering only the emotions of 

joy, playfulness and anxiety in TAM and UTAUT research incorrectly implies that 

these three emotions are the only potential emotions considered by technology 

users. Several other important emotions should be included in both models to 

enrich the influence of emotions on users’ use decisions. We perceive that 

emotions influence technology users in both organisational and non-

organisational settings. However, considering users’ perceptions of their use 

decisions, we expect emotions to have a stronger effect in the consumer use 

context than the organisational use context. PTAM considers only positive 

anticipated emotions as determinants of technology use; negative anticipated 

emotions such as anxiety are excluded due to their uncontrolled effects on 

estimating PTAM. This is because a variable with a negative effect may be 

equalised by a variable with a positive effect, thus diminishing or eliminating both 

variables’ influences on the model. As this effect is uncontrollable, PTAM covers 

only positive emotions to avoid eliminating both types’ effects. PTAM’s proposed 

emotions, which we adopted from Perugini and Conner (2000) and Perugini and 

Bagozzi (2001), are excitement, delight, gladness, happiness and satisfaction. 

4.5.15 Attitude Toward Technology Use 
TRA and TPB postulate that attitude, along with subjective norm, is a direct 

determinant of behavioural intention. Attitudinal behaviour represents individuals’ 

appraisals of their feelings toward an action. These feelings include consideration 

of the outcomes of performing the behaviour (Ajzen, 1985). Eagly and Chaiken 

(2007, p. 1) defined attitude as ‘a psychological tendency that is expressed by 

evaluating a particular entity with some degree of favour or disfavour’. Attitude is 

distinct from beliefs (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975). 

Specifically, ‘attitude is [a] self-stated evaluation term applied to allow for the 

assessment of an object (such as use behaviour) whereas the beliefs are 
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subjective likelihood that the performance of behaviour produces a specified 

outcome (such as joy, promotions, wealth, etc.)’ (Fishbein & Ajzen, 1975, p. 233). 

Attitude toward use behaviour was included in the original TAM by Davis (1986, 

1989, 1993), who assessed its linear influence on TAM. Davis et al. (1989) 

theorised that attitude influences technology use through directly affecting 

behavioural intention. Attitude was postulated to mediate the influence of beliefs 

(e.g. perceived usefulness and perceived ease of use) on technology use before 

it was removed by Davis and Venkatesh (1996). PTAM takes into consideration 

the linear and non-linear influences of the proposed features, including attitude, 

which justifies the re-examination of attitude’s influence on technology 

acceptance. Therefore, attitude is expected to influence technology use behaviour 

in PTAM. 

4.5.16 Attitude Toward Technology and Toward Change 
Brought by Technology Use 

Keen (1980) assessed how technology transforms organisations and 

examined the changes organisations face after adopting new technologies. 

Among the many features that Keen (1980) found to influence the potential use 

of the investigated technology were end users’ attitudes toward technology and 

the change brought by using it. Generally, a technology is designed to fulfil the 

needs of potential users, who find that it satisfies their needs. Several reasons 

may drive users to resist the adoption of technology (Keen, 1980). Although these 

reasons may be related to attitude and the other belief-based features of TAM 

and UTAUT, attitude is distinct from beliefs (Ajzen & Fishbein, 1980; Fishbein & 

Ajzen, 1975). Keen (1980) recommended tackling such features to successfully 

adopt targeted technologies. Therefore, although it is anticipated that new 

technologies will have more potential than legacy technologies, end users may 

not understand the consequences of using a new technology and may decide to 

return to using an old one. Additionally, evaluating users’ attitudes toward 

technology is a necessary part of ensuring a smooth transition to new technology. 

Attitude toward technology has often been overlooked in the technology 

acceptance literature. In the context of PTAM, we define attitude toward 
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technology as the extent to which users form favourable perceptions of the 

evaluated technology. 

This argument also applies to the evaluation of users’ attitudes toward the 

change brought by technology use. According to Thompson et al. (1991), 

decisions about choosing a more effective and efficient technology should 

consider the long-term consequences of its use. Among these consequences are 

the impact of technology use on users’ lifestyles in general. This kind of attitude 

feature allows for users’ self-evaluations of the impact of technology use on their 

lives in both the short and long term. We expect that users will perceive 

technology favourably in the short term but that their perceptions may differ when 

they consider the long-term potential consequences of using the technology. 

Again, although Davis and Venkatesh (1996) excluded attitude from TAM on the 

grounds that it had a weak linear influence on the model, end users’ attitudes 

toward technology and the change brought by using it are expected to show 

strong linear and non-linear influences in PTAM. Therefore, PTAM accounts for 

end users’ considerations of their general evaluations of technology as well as the 

potential consequences of using it, especially those consequences that have 

long-term effects with regard to deciding to use personal technology. Neither 

attitude has been introduced to the literature on technology acceptance and, 

therefore, their explanatory influences have not yet been explored. 

4.5.17 Visibility and Perceived Consistency 
Moore and Benbasat (1991) developed an instrument for measuring end 

users’ perceptions of technology adoption. They found that visibility and 

compatibility were among several features identified as characteristics of 

innovation in the DOI theory developed by Rogers (1983). The visibility feature 

emerges from the notion that an observable innovation has higher potential for 

adoption than an unobservable innovation. A user’s liking of a particular 

innovation may increase with greater exposure to that innovation (Moore & 

Benbasat, 1991). In formulating UTAUT, visibility was examined in order to 

assess its potential linear influence on behavioural intention and use behaviour, 

but it was excluded because the result was insignificant (Venkatesh et al., 2003). 
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Although UTAUT theorised a linear influence of visibility in an organisational 

context, we expect its influence to extend to the consumer use context. We expect 

that visibility will have a considerable influence on users’ decisions because users 

are affected by the observability of personal technology. In fact, we expect that 

users are more influenced by visibility in the context of personal technology use 

than in the context of organisational technology use. This is because, in non-

organisational contexts, users are more exposed to the pressure of their social 

system and are influenced by the observability of the technology in that system. 

Despite the insignificant linear influence of visibility demonstrated in Venkatesh et 

al. (2003), visibility is expected to have a considerable impact in PTAM because 

it examines the linear and non-linear influences of visibility. Visibility is 

conceptualised as end users’ capability to see other users of the targeted personal 

technology. It is postulated that, when end users feel that few or no other users 

are using a technology, they may not use that technology. 

End users need to verify whether the use of a technology affects their 

subjective views, which are formed as a result of their lifestyles. People of different 

cultures and religions have different views on social issues. For example, urban 

societies are less conservative than suburban societies. People living in such 

societies are influenced by the cultural, religious and social views of those 

societies (Rogers, 1983). Users of technology become largely controlled – 

consciously and unconsciously – by these views, which form their values, needs, 

understandings and behaviours. In organisational settings, the use of technology 

is shaped by these views (Moore & Benbasat, 1991). Drawing on this argument, 

the use of technology should be no different in a non-organisational setting than 

in an organisational setting with regard to the influence of these three sources of 

users’ views. Therefore, like organisational technology users, the perceptions of 

personal technology users are influenced by their values, needs, understandings 

and behaviours. The compatibility feature addresses the influences of these views 

on technology users. Moore and Benbasat (1991) defined compatibility as a 

technology’s ability to respect end users’ beliefs and values, fulfil their needs and 

align with their past experiences. For the sake of clarity, we refer to this sense of 
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compatibility as ‘consistency’ to distinguish it from the concept of compatibility that 

is widely used in the information technology (IT) domain to describe a 

technology’s capacity to be combined with other technologies for the benefit of 

end users. More importantly, drawing on Moore and Benbasat’s (1991) remarks 

that the views formed by people’s values, beliefs and past experiences are 

considered subjectively, we refer to this feature as ‘perceived consistency’ to 

account for the subjective nature of the views evaluated by this feature. As with 

visibility, Venkatesh et al. (2003) excluded compatibility from UTAUT because it 

had an insignificant linear influence on behavioural intention and use behaviour. 

As PTAM addresses the linear and non-linear influences of features, we expect 

PTAM to capture the influence of perceived consistency on personal technology 

use. 

4.5.18 Trust 
There is some confusion regarding how trust is understood and perceived 

by technology end users. The concept of trust and its implications differ depending 

on the environment in which the technology in question is used. Users’ 

perceptions of trust in technology associated with the internet are conceptualised 

as the creditability of shared information and the security of the medium in which 

information is exchanged. In using technology that is not associated with internet 

use, trust is conceptualised as the ability of technology vendors to deliver on their 

promises, which is related to their reputations (McKnight et al., 2002). Related 

studies of trust and its relationship with behavioural intention and use behaviour 

have largely limited the influence of trust to applications involving internet use in 

e-commerce and e-government (Carter & Belanger, 2005; Carter & Schaupp, 

2008; Gefen, 2000; Gefen et al., 2003, 2005; Jarvenpaa et al., 2000; McKnight et 

al., 2002; Pavlou, 2003; Slyke et al., 2004; Warkentin & Gefen, 2002; Welch et 

al., 2005). Drawing on the remarks of McKnight et al. (2002), potential technology 

users’ trust can be associated with the use of technology, associated or not 

associated with internet use and in both organisational and non-organisational 

settings. When associated with internet use, the concept of trust refers to the 

capability of a technology to protect users’ shared data and privacy, which is 
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addressed by the privacy and security features (see Sections 3.2.21.3 and 

3.2.21.4). Therefore, building on Rotter’s (1967) definition of trust in the consumer 

use context, we define trust as end users’ beliefs that a technology will perform 

as they expect. This includes users’ beliefs that the technology and its vendors, 

suppliers, designers, providers or manufacturers will fulfil their promises. Although 

we contextualise the definition of trust to personal technology use, the proposed 

concept applies to end users’ decisions concerning the use of all kinds of 

technologies. 

4.5.19 Personal Innovativeness 
DOI recognises that a certain class of people are driven by curiosity and 

exploration to seek knowledge and discover new innovations. These knowledge 

seekers are eager to experiment, apply new ideas and accept emergent 

inventions (Rogers, 1983). Agarwal and Prasad (1998) argued that, with 

continuous exposure to new information, people form general and favourable 

perceptions of new innovations. Highly curious individuals become accustomed 

to trying new technologies despite unfavourable consequences. Agarwal and 

Prasad (1998, p. 206) named this personal trait of voluntarily trying new 

innovations ‘personal innovativeness’ and defined it as ‘the willingness of 

individuals to try out new information technology’. Lewis et al. (2003) examined 

the influence of personal innovativeness on explaining technology use and found 

that it had a significant influence on perceived ease of use and perceived 

usefulness in university workers’ adoption of internet technologies. In 

understanding the adoption of mobile-based wireless internet service, Lu et al. 

(2003) found that personal innovativeness significantly influenced the perceived 

ease of use and perceived usefulness features in TAM. Lu et al. (2005) found that 

personal innovativeness was a significant determinant of both perceived ease of 

use and perceived usefulness in the adoption of mobile-based services. Following 

Rogers (1983) and Agarwal and Prasad (1998), Lu et al. (2005) argued that 

personal innovativeness was an imperative stimulus in the process of technology 

adoption assessment. Additionally, personal innovativeness is expected to 

present a considerable influence in non-organisational settings (Lu et al., 2005). 
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Following this view, PTAM assumes that personal innovativeness is a catalyst 

that drives users to adopt technology, despite the potentially unfavourable views 

of the consequences of using the technology that users may receive from various 

information sources. 

4.5.20 Perceived Novelty 
Novelty is widely associated with technical innovations and has been 

recognised in the empirical literature. However, novelty must be associated with 

end users’ subjective views of technology. In addition to creating technological 

innovations, novelty must be conceived as a distinct experience that users enjoy 

when adopting, trying out or experimenting with technology. In testing the usability 

of biometric hand scanner technology, perceived novelty was found to be a 

significant determinant from a risk–reward perspective (Wells et al., 2010). PTAM 

views novelty from a broader perspective, linking the term with competitive 

advantage (see Barney, 1991) – that is, manufacturers or vendors add novelty to 

a certain technology to distinguish it from competitors. Competitive advantage is 

a quality that drives customers to favour one organisation’s products over 

another’s (Barney, 1991). This conceptualisation covers end users’ 

considerations of a tested technology as well as their views of competing 

technologies in the market. Furthermore, in addition to evaluating the 

innovativeness of a technology, the proposed feature accounts for the conditions 

(e.g. after-sales, maintenance and warranty services) provided by the 

technology’s vendors, suppliers, designers, providers or manufacturers, as these 

also affect end users’ perceptions when making adoption decisions. In the context 

of consumer use technology, we expect that perceived novelty will be a 

considerable determinant of technology use, as users in this setting are more 

prone to trying out new technology compared with users in organisational settings. 

This is because, in non-organisational settings, users have complete discretion 

over their use decisions and are not subject to external pressure from their 

superiors that may limit their choice of technologies. Therefore, non-

organisational users can freely evaluate the novelty of technology, separate from 
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any organisational bias. Therefore, PTAM argues that perceived novelty is a 

feature affecting decisions about personal technology use. 

4.5.21 System Design Features 
Following the recommendations of Benbasat and Barki (2007), Legris et al. 

(2003) and Orman (2002) to extend technology acceptance research by adding 

system design features, PTAM regards functionality, quality, privacy, security, 

safety, design aesthetics, mobility, flexibility, compatibility and navigability as 

potential system design determinants. As described by Davis et al. (1989), these 

features are treated as external determinants, which comprise the attributes and 

qualities of technology and influence the internal determinants postulated by TAM 

(Davis, 1989; Venkatesh, 2000; Venkatesh & Bala, 2008; Venkatesh & Davis, 

2000) and UTAUT (Venkatesh et al., 2003, 2012). 

4.5.21.1 Functionality 
Usability and functionality are distinct concepts that are often confused. 

Functionality deals with the requirements of end users and describes whether 

and to what extent these requirements are met. Usability is defined in terms of 

end users’ perceptions and levels of satisfaction and experience; technology 

type; number of requirements; requirement controls provided by the designer; 

and the design functions provided to meet task requirements (Goodwin, 1987). 

As there is at present only a vague understanding of how functionality should be 

addressed in order to improve technology use, PTAM adheres to the ISO 

25010:2011 standard for functionality (ISO & International Electrotechnical 

Commission [IEC], 2011) and adapts it to fit technology use modelling. ISO 

25010:2011 defines functionality along five dimensions: suitability, accuracy, 

interoperability, compliance and security (ISO & IEC, 2011). Interoperability and 

security have already been considered by Seffah et al. (2006), Etezadi-Amoli 

and Farhoomand (1996) and Wang et al. (2014). Therefore, PTAM adopts the 

remaining three dimensions – suitability, correctness and compliance with laws 

and regulations (Goodwin, 1987; ISO & IEC, 2011) – with the expectation that 

they will influence technology use decisions. Suitability is defined as a 

technology’s capability to function suitably compared with similar technologies. 
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Accuracy is defined as a technology’s capability to function correctly compared 

with similar technologies. Compliance is defined as a technology’s ability to 

function in compliance with laws and regulations (Goodwin, 1987; ISO & IEC, 

2011). To improve the effectiveness of the evaluation of these three dimensions, 

we allow evaluators to compare the technology in question with other similar 

technologies on each dimension. The feature of functionality is new to the 

literature, and its explanatory influence has yet to be examined. 

4.5.21.2 Quality: Output, Service and Technology 
Quality was first addressed by Venkatesh and Davis (2000) in terms of the 

feature of output quality. Output quality was theorised as a determinant of 

perceived usefulness in TAM (Venkatesh & Davis, 2000). By measuring output 

quality, TAM considers the performance of a technology and accounts for 

evaluating it in accordance with users’ expectations. TAM defines output quality 

as the degree to which a technology performs the tasks of which it is capable. 

Venkatesh and Davis (2000) operationalised output quality using two 

statements, without specifying the evaluated output. Although this makes the 

statement more generic, we added a third statement to allow the statement 

evaluator to assess the results of using the technology (i.e. the results of the 

tasks of which the technology is capable). This ensures that the evaluator can 

specifically examine the results of using the technology along with other outputs, 

which are assessed by the other two statements in the questionnaire. 

Existing technology acceptance models have not considered service 

quality or the physical aspect of technology quality. Drawing on Venkatesh and 

Davis (2000), and given the importance of measuring technology output quality, 

we expect service quality and technology quality to exert an influence similar to 

that of output quality. The extent to which the service and physical components 

of technology meet users’ expectations is conceived as a crucial predictor of use 

behaviour. Therefore, PTAM adapts the service quality and technology quality 

features from the IS success model (Delone & McLean, 1992, 2002, 2003; Petter 

et al., 2013) and introduces them to the technology acceptance literature. 

Drawing on Delone and McLean (1992, 2002, 2003) and Petter et al. (2013) our 
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research considers technology quality in the context of the quality of hardware 

and software. Although the concept of technology quality may be perceived as 

implicitly embedded in the output quality, service quality, perceived usefulness 

and perceived ease of use features, we refer to another dimension – namely, 

the physical structure of technology, including software and hardware. Neither 

of these components is explicitly covered by other features, and we find them to 

be essential aspects of technology that have yet to be included in the technology 

acceptance literature. The performance of a technology’s software and 

hardware with regard to meeting users’ needs is an imperative determinant of 

use decisions in the context of consumer use. Our conception of service quality 

is adopted from Kettinger and Lee (2005), who conceptualised quality in terms 

of five dimensions: reliability, responsiveness, assurance, rapport and tangibility. 

Service quality feature is operationalised in the context of examining the services 

provided by technology vendors, providers, manufacturers, designers and 

suppliers along these five dimensions. Because they are new to the literature, 

the interaction of service quality and technology quality with other features has 

yet to be examined. 

4.5.21.3 Privacy 
McLeod et al. (2009) utilised UTAUT (Venkatesh et al., 2003) to formulate 

a model that addressed the adoption of tax preparation software. In their model, 

privacy (i.e. end users’ perceptions that the information they share via 

technology remains private) was hypothesised to predict use intention through 

perceived risk. In PTAM, we assume that the different tested technologies offer 

personal privacy (including, but not limited to, information privacy) to the different 

parties. According to Vijayasarathy (2004) and Wang et al. (2014), the threat of 

privacy invasion is associated with internet use. However, we do not believe that 

such a threat is related only to the use of internet-based technologies. With the 

rapid development of technology, the threat of privacy invasion has expanded to 

include the use of technologies in non-internet environments. Therefore, PTAM 

considers end users’ awareness and perceptions of the impact of this exposure 

on their decisions to accept the tested technologies in any technology. We 
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conceptualise privacy as the extent to which technology use may invade 

personal privacy or enable unauthorised access to personal information. This 

understanding does not require that a technology be equipped with a means of 

protecting users’ personal privacy, but it does assume that technology use may 

affect users’ personal privacy. This conceptualisation ensures that, when a 

technology is operating as a closed system that does not interact with other 

technologies and there is no threat of personal privacy invasion, that technology 

is deemed usable from a privacy perspective. That is, the privacy feature 

examines the potential for personal privacy invasion that occurs as a result of 

technology use, regardless of whether the technology in question is capable of 

protecting personal privacy. We believe that this understanding ensures the 

generalisability of the privacy feature. Although the literature has considered 

privacy in organisational settings, we expect the consideration of privacy 

invasion in a consumer use context to exert a considerable influence on users’ 

use decisions. 

4.5.21.4 Security 
Vijayasarathy (2004) applied TAM to address features that affect online 

shopping, identifying a significant relationship between security and attitude. He 

defined security in the context of the insecure use of technology that results in 

the exposure of personal data to hackers. Wang et al. (2014) found that security 

was a determinant of individuals’ motivations to participate in Enterprise 2.0 

activities, such as sharing knowledge on social media. As with trust, 

Vijayasarathy (2004) and Wang et al. (2014) restricted the context of security to 

the use of internet-based technologies. In the context of user satisfaction, 

Etezadi-Amoli and Farhoomand (1996) found that security and five other 

attitudinal dimensions influenced end users’ computing satisfaction. Wang et al. 

(2014) and Etezadi-Amoli and Farhoomand (1996) also provided other 

definitions of security. The former conceptualised security as end users’ 

perceptions of risk and the potential for technology to jeopardise their personal 

data or information shared or exchanged on the internet, while the latter 

considered security as the degree to which a technology protects end users’ 
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personal data against loss and unauthorised access. The concept of security in 

Etezadi-Amoli and Farhoomand (1996), Vijayasarathy (2004) and Wang et al. 

(2014) is addressed by the privacy feature of PTAM. Therefore, in PTAM, 

security encompasses the capabilities of a technology to protect against sharing 

of end users’ data during use of the technology, physical loss and damage 

resulting from unauthorised alteration. Such a definition of security does not limit 

the security feature’s coverage to the use of internet-based technologies. We 

expect this understanding to improve the generalisability of the application of the 

security feature within the context of consumer use technology. 

4.5.21.5 Safety 
Seffah et al. (2006) discussed safety in the context of the evaluation of 

technology use in software usability modelling. They described safety as the 

level of protection that a technology can provide with regard to eliminating or 

mitigating the potential harm that it may impose on end users’ personal safety, 

which goes beyond data loss or data breaches. An example could be whether 

the use of a technology could result in physically harming end users (Seffah et 

al., 2006). PTAM adopts this conceptualisation and evaluates whether the use 

of a technology could affect end users physically, rather than intangibly. We 

expect this conceptualisation to be distinct from the security and privacy 

features. Therefore, PTAM assumes that safety influences personal technology 

use and helps predict its users’ use decisions. The safety feature has not yet 

been introduced to the literature, and its power to explain with which features in 

TAM and UTAUT it is associated has yet to be addressed. 

4.5.21.6 Design Aesthetics 
The proposition to include design aesthetics in PTAM is supported by 

several studies. Zettl (1998) argued that a website’s productivity and 

communication with users are reflected in its design. A website designer must 

ensure visual appeal to end users. Attractive websites are those that possess 

an aesthetically pleasing appearance. Karvonen (2000) associated e-trust with 

aesthetic beauty and argued that aesthetically pleasing websites are more 

trustworthy from an end user perspective. Agarwal and Venkatesh (2002) 
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perceived that end users’ experiences and use are enhanced by carefully 

designed interfaces. Lavie and Tractinsky (2004) observed that website users 

found visually appealing websites more attractive and usable. They claimed that 

the elements of colour, shape, language, music and animation in technology 

interfaces involving image headers, decorative fonts and colourful graphic 

buttons made technology more interesting to end users. 

Cyr et al. (2006) empirically tested the influence of design aesthetics in 

TAM with regard to m-commerce adoption and concluded that design aesthetics 

significantly explained usefulness, ease of use and enjoyment. Kim and 

Fesenmaier (2008) observed that design aesthetics played an increasingly 

important role in persuasiveness and argued that they improved the appeal and 

attractiveness of technology features. Li and Yeh (2010) built a model to test the 

influence of design aesthetics on customisation, perceived ease of use and 

perceived usefulness. When validating their model, they observed a significant 

influence of design aesthetics. Alwabel et al. (2020) examined the effects of 

design aesthetics on perceived enjoyment, perceived ease of use and perceived 

usefulness in TAM3. They found that design aesthetics significantly influenced 

only perceived enjoyment. Therefore, design aesthetics are expected to 

influence the use of personal technology in PTAM. 

4.5.21.7 Mobility, Flexibility, Compatibility and Navigability 
Seffah et al. (2006) created a consolidated model of software usability and 

combined a large number of features to understand why certain technologies 

are perceived as usable. Unlike TAM and UTAUT, which concentrate on the 

determinants of human behaviour, Seffah et al.’s (2006) consolidated model 

addressed a technology’s usability by investigating the influence of both 

technology and human behaviour. Their model covered several features 

addressed in the technology acceptance literature and added four new features: 

mobility, flexibility, compatibility and navigability.  

Mobility is defined as a technology’s capability to enable end users to easily 

move it from one place to another (Seffah et al., 2006). It is expected that end 

users’ use decisions take into account whether a personal technology can be 
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easily moved from one place to another and whether its removal damages or 

disrupts end users’ businesses or goal achievement. In the consumer use 

context, the mobility feature is operationalised by examining a personal 

technology’s removability, disposability and replaceability (Seffah et al., 2006). 

Flexibility is defined as a technology’s capability to enable end users to tailor its 

interface to fit their personal preferences. Seffah et al., (2006) argued that 

technology is more interesting to users when it is convenient to modify in 

accordance with their desires. In the consumer use context, flexibility is 

operationalised by evaluating whether a technology and its interface are 

adjustable to fit the user’s personal preference. Compatibility is defined as a 

technology’s capability to work with different platforms and other technologies. 

End users favour technologies that are easily connected with other technologies 

that they use. In the consumer use context, compatibility is operationalised by 

examining whether a technology can easily operate and connect with other 

technologies and whether it works on different platforms. Lastly, navigability is 

defined as a technology’s capability to enable end users to use it efficiently and 

easily and experience all of its features. Here, we expect that end users may not 

adopt a technology if they find it difficult to experience all of its features. In the 

consumer use context, the navigability feature is operationalised by examining 

whether users can move around technology and navigate and experience all its 

features efficiently (Seffah et al., 2006). Hence, PTAM expects end users’ 

perceptions of a personal technology’s mobility, flexibility, compatibility and 

navigability to influence their decisions to use that technology. As these four 

features have not yet been introduced to the literature on technology 

acceptance, their explanatory influences have not been associated with any of 

the determinants in TAM and UTAUT. 

4.6 Decomposed Personal Technology Acceptance Model 
This model was designed in order to create FIPTAM, which was formulated 

to provide a handy decision-making tool that would enable the use of PTAM in 

technology use decisions. To design FIPTAM, we applied PCA to decompose 

PTAM into two models: SFPTAM and TFPTAM. After we determined that TFPTAM 
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was the better-performing decomposed model, we used it to create FIPTAM. We 

explain the application of PCA and the modelling and formulation of FIPTAM in 

Chapter 6. 

4.6.1 Six-Feature Personal Technology Acceptance Model 
The general structure of SFPTAM is shown in Formula 4.6.1 and the process 

of formulating this structure is explained in Chapter 6. 

Z = 0.7 × Y! + 0.09 × Y) + 0.05 × Y* + 0.05 × Y+ + 0.06 × Y, + 0.05 × Y- (4.6.1) 
Where	𝐘𝟏: PC1, 𝐘𝟐: PC2, 𝐘𝟑: PC3, 𝐘𝟒: PC4, 𝐘𝟓: PC5, 𝐘𝟔: PC6, 𝐙: Use	Behaviour 

4.6.2 Three-Feature Personal Technology Acceptance Model 
The general structure of TFPTAM is shown in Formula 4.6.2. The process 

of formulating this structure is explained in Chapter 7. 

Z = 	0.4	 × Y! +	0.47 × 	Y) +	0.13 × Y* (4.6.2) 
where	𝐘𝟏:	Human	Beliefs, 𝐘𝟐:	Cognitive	Thinking, 𝐘𝟑:	Technology	Characteristics, 𝐙: Use	Behaviour 

4.7 Fuzzy Inference Personal Technology Acceptance 
Model 

The formulation of FIPTAM involved creating the following components: 

inputs, rules, outputs, inputs’ and outputs’ linguistic memberships, and their data 

ranges. Figure 4.7 illustrates an abstraction of the proposed fuzzy logic inference 

system. Inputs were three variables adopted from TFPTAM because – as we justify 

in Chapter 6 – it was more convenient than SFPTAM. These inputs are human 

beliefs, cognitive thinking and technology characteristics. Each of these inputs has 

five linguistic memberships (‘very low’, ‘low’, ‘medium’, ‘high’ and ‘very high’), each 

of which in turn has a defined data range. The data ranges of the inputs’ linguistic 

memberships were determined using DTC. Since we aimed to classify FIPTAM’s 

output values into meaningful classes of technology usability, we applied the 

Mamdani algorithm to model FIPTAM. The output data ranges were classified into 

linguistic memberships: unusable (values equal to 0), likely usable (values between 

0 and 1) and usable (values equal to 1). 
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A fuzzy set of inputs and outputs applied in fuzzy logic systems can be defined 

mathematically, as follows: 

Suppose that X is a finite set of objects: 

X = x! +	…+	x" (4.7.1) 
where	X:	a	set	of	variables, x&:	a	variable, n:	number	of	variables, i = 1,… , n.	 

Let 𝐘 denote the output variable and 𝐀𝐢 denote a fuzzy set that can be 

described using the linguistic terms (very low, low, medium, high and very 

high)	representing each variable in 𝐀. Each variable in the fuzzy set has a 

membership function denoted as µ. The fuzzy set can be denoted as follows 

(Zadeh, 1965): 

A = µ!x!, … , µ"x"	 (4.7.2) 

where	x&:	a	variable, n:	number	of	variables	and	i = 1,… , n  
The fuzzy rules are if-then rules with either ’and’, ’or’ or both as connectors. 

For example, a fuzzy rule can be written as follows (Zadeh, 1965): 

Rule # If 𝐱𝟏 is 𝐀𝟏 and 𝐱𝟐 is 𝐀𝟐, Then 𝐲 is 𝐃 

where	D	is	a	fuzzy	value, and	x', x(	and	y	are	input	and	output	variables. 

𝛍𝐀(𝐱) is a value on the unit interval ∀	x ∈ A, \ ∀	x ∈ 	X 

µX(x) = 1	 
A ⊆ µ∅(x) ≤ 	µA(x) ≤ 	µX(x) 

µ∅(x) = 0 

Figure 4.7 Fuzzy Inference Personal Technology Acceptance Model 

 Personal Technology Acceptance 
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4.8 Personal Technology Acceptance Index 
The fourth model was designed to create PTAI. Our aim in formulating this 

index was to enable technology end users to understand how each feature of 

PTAM affects the other features and results in use decisions. We accomplished 

this using Bayesian networks (described in Chapter 7), which rely on probability 

tables, on the basis of which PTAI was created. To create our Bayesian networks, 

we used probability (i.e. the measure of the uncertainty of the occurrence of an 

event, such as technology acceptance) to formulate a structural PTAM. The 

structural framework was designed in accordance with the literature and our 

knowledge. We used conditional probability to quantify the relationships among 

PTAM’s features and develop PTAI. The general framework of PTAI relies on the 

following foundational definitions of probability, which we applied to configure 

associations between features. 

Let 𝐀 be an event. Then, 𝐏(𝐀) denotes the probability that event 𝐀 occurs. 

𝐁	is another event. 𝐏(𝐁, 𝐀) denotes the probability that both 𝐁 and 𝐀 occur at the 

same time, known as the joint probability of 𝐁 and 𝐀. 𝐏(𝐁	|	𝐀) denotes the 

probability that 𝐁 occurs given that 𝐀 occurs. Mathematically, 𝐏(𝐀)	is computed 

as in Formula 4.8.1, 𝐏(𝐁, 𝐀) is computed as in Formula 4.8.2 and 𝐏(𝐁|𝐀) is 

computed as in Formula 4.8.3. 

P(A) 	∈ [0, 1]   (4.8.1) 

P(B, A) = P(A) × P(B|A)      (4.8.2) 

P(B|A) = .(0	Ո	1)
.(0)

  (4.8.3) 

If 𝐀 and 𝐁 are independent events, then 𝐏(𝐁, 𝐀) is given by Formulas 4.8.4 

and 4.8.5. 

P(B, A) = P(B) × 	P(B|A) = 	P(A) × P(B)      (4.8.4) 

P(A ∩ B) = P(A) × P(B)        (4.8.5) 

Also, when the occurrence of an event 𝐀 has no influence on the occurrence 

of 𝐁, 𝐏(𝐁|𝐀) is calculated using Formula 4.8.6. 

P(B|A) = P(B)  (4.8.6) 
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If 𝐂 is a third event, then 𝐏(𝐂|𝐀,	𝐁) can be found by applying Formula 4.8.7. 

P(C|A,	B) = P(C|	A) ×  P(	C|	B)	 (4.8.7) 

If 𝐗𝟏, 𝐗𝟐, 𝐗𝟑 and 𝐗𝐍 are events, P(𝐗𝟏	| 𝐗𝟐, 𝐗𝟑	,…., 𝐗𝐍) is given by 

Formula 4.8.8. 

P(X!	| X), X*	,…., X3) = ∏ P(X4	|3
5(! X4	, … , 	X5$!), = ∏ P(3

5(! X5|	Parent	(X5)) (4.8.8) 
Where	Parent	(X&):	a	dependent	feature	of	X&, and	X&:	an	independent	feature		 

Following Heckerman (1999), we used two steps to model a Bayesian 

network: drawing its structural design (DAG) and estimating conditional 

probabilities. PTAM includes thirty-seven features and one target feature (i.e. 

technology use). The inferences of PTAM were obtained by computing joint 

probability and conditional probability tables using the survey dataset. That is, the 

probabilities of features’ occurrences were not arbitrarily designated but rather 

extracted from the observed data. 

4.9 Regression Evaluation Algorithms 
PTAM was evaluated applying five algorithms: MLR, MLPR, DTR, KNNR and 

SVR. We also used partial derivatives sensitivity analysis to rank PTAM’s features. 

We discuss the modelling and evaluation of PTAM in Chapter 6. DPTAM was 

evaluated as two decomposed models (TFPTAM and SFPTAM). We compared 

each decomposed model’s predictive power using three linear and non-linear 

algorithms (MLR, MLPR and SVR). We discuss the formulation and evaluation of 

DPTAM in Chapter 6. To evaluate FIPTAM, we used five algorithms: triangular, 

trapezoidal, Gaussian, sigmoidal and g-bell. The modelling and evaluation process 

of FIPTAM is explained in Chapter 6. 

4.9.1 Multiple Linear Regression 
MLR is considered the simplest statistical modelling approach for predicting 

a target value (here, technology use). This approach has been widely adopted to 

explain causal relationships between inputs and outputs and assumes linear 

interactions between targeted variables (Hastie et al., 2009). 
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4.9.2 K Nearest Neighbour Regression 
KNNR is a non-parametric, non-linear algorithm used in classification and 

regression, where K refers to the number of neighbours. This technique assumes 

that similar variables exist in close proximity. KNNR aims to explore similarities 

between variables to predict the targeted continuous value. The algorithm 

assumes that similar data points for a certain variable are close to one another. 

To predict an instance of a feature’s observation value, KNNR searches the entire 

dataset for the K most similar neighbours of that instance and summarises the 

mean target values for those K neighbours (Cover & Hart, 1967; Hastie et al., 

2009). In estimating PTAM’s performance, we considered two parameters: the 

value of K and the weights-based function, which was either uniform or distance. 

In the uniform function, all points in each neighbour are weighted equally, whereas 

in the distance function, points are weighted by the inverse of their distance. 

4.9.3 Decision Tree Regression 
DTR creates a hierarchically structured tree in multiple stages. The tree finds 

a starting node (called the ‘root’ node), then incrementally creates internal nodes 

(or ‘splits’) and finishes with terminal nodes (or ‘leaves’), thereby representing all 

data in the dataset. Nodes are created by making binary decisions based on if–

then rules. The root node is assumed to be the best predictor of the tree and is 

chosen based on predefined criteria for making the first split. The tree can 

continue to split until all data are evaluated by the algorithm, which indicates that 

the resulting model may not have optimal performance (Breiman et al., 1984; 

Hastie et al., 2009). DTR is a non-linear algorithm capable of modelling complex 

relationships among the variables of PTAM. To improve the performance of the 

model, the tree must be pruned by controlling its maximum depth and monitoring 

the resulting model’s performance according to the aforementioned metrics (i.e. 

R2 and MAPE) (Hastie et al., 2009). Safavian and Landgrebe (1991) noted that, 

despite the utility of DTR, it affects the comprehension of the predictive model, 

since not all variables are necessarily included in the best resulting model. In 

employing DTR to structure a proposed model, the splitting of the tree is controlled 

by specifying two measures: (1) maximum number of splits and (2) either best 
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mean absolute error (MAE) or best MSE. The first parameter was set to none to 

ensure that the tree continued to split until all leaves were pure, ensuring the 

coverage of all variables’ effects in estimating the model. The second measure 

maintains the best-performing model and tests all the variables before the first 

split is chosen (Hastie et al., 2009). 

4.9.4 Multilayer Perceptron Regression 
MLPR, a type of ANN, applies linear and non-linear algorithms to evaluate 

the predictive power of a model. Although MLPR enjoys various modelling 

functions, it is generally recognised as a parallel distributed system comprising 

neurons positioned into three layers – input, hidden and output – with hidden 

layers containing one or more layers (Hastie et al., 2009; Haykin, 1994). The 

network operates by computing certain weights using different activation functions 

for each independent feature of the input. The weighted values are then sent to 

the hidden layer(s) and to the output (or dependent variable) neuron(s). The 

hidden neurons are trained by the backpropagation algorithm, which propagates 

the output error layer by layer and changes the weights at each hidden layer 

applying the training rate coefficient. The change in weights is computed by 

comparing the output value with the actual target value, and the difference (i.e. 

error) between the two values is propagated backward to calculate the new 

weight. The performance of an MLPR model varies depending on its activation 

function, numbers of hidden neurons and layers, weight optimiser and training 

rate, which typically ranges from 0.01 to 1.0 (Lippmann, 1987). The complexity of 

the hidden nodes depends on the number of nodes and hidden layers. There is 

no silver bullet solution for defining the optimal number of hidden neurons or 

hidden layers (Blum, 1992). However, several studies have shown that adding 

more than one hidden layer does not enhance the performance of neurons (Jain 

& Nag, 1997). Nonetheless, the studies described in Section 2.2.1 (e.g. Chong, 

2013a, 2013b; Chong et al., 2015; Hew et al., 2016; Leong et al., 2013, 2018; 

Liébana-Cabanillas et al., 2017; Sharma et al., 2016a, 2016b; Tan et al., 2014; 

Teo et al., 2015; Yadav et al., 2016; Zabukovšek et al., 2018) applied ANNs with 

a single hidden layer of 1 to 10 neurons. In estimating PTAM, the following 
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parameters were applied, with alpha set to 0.001 and one hidden layer of 1 to 10 

neurons: 

• Activation function: identity (linear function); logistic (logistic sigmoid 

function); tanh (hyperbolic tan function); ReLU (rectified linear unit 

function) (Kingma & Ba, 2015). 

• Weight optimiser: limited memory Broyden–Fletchen–Goldfarb–Shanno 

(LBFGS); stochastic gradient descent (SGD); adaptive moment 

estimation function (Adam) (Kingma & Ba, 2015). 

4.9.5 Support Vector Regression 
Support vector machines were developed by Vapnik (1995) to find an 

optimal hyperplane lying close to as many data points as possible. In comparison 

with MLPR, SVR is well known for applying the structural risk minimisation 

principle. This principle outperforms the empirical risk minimisation principle of 

MLP by minimising the upper bound of the generalisation error, combining training 

error and Vapnik–Chervonenkis dimension confidence level. In SVR, the input 

space is mapped into high-dimensional variable space using non-linear mapping. 

Linear regression is then employed in this space (Hastie et al., 2009). When 

performing SVR with k-fold cross-validation, the aim is to choose the best linear 

or non-linear hyperplane to minimise the sum of the distances from the data points 

to the hyperplane kernel functions. Our analysis focused on the linear, polynomial 

(POLY) and radial basis (RBF) functions, following Vapnik (1995). When 

employed for modelling, the algorithm’s performance was compared over these 

different parameters, with the error penalty parameter C ranging from 1 to 10 and 

the value of epsilon set to 0.1. 

4.9.6 Partial Derivatives Sensitivity Analysis 
Sensitivity analysis was used to measure each input variable’s influence on 

PTAM’s target variable (see Saltelli, 2002). This approach serves as a gross 

indicator of key variables by measuring the effect of altering an input value on the 

output (Tsaih, 1999). To measure each variable’s influence on the model, we 

computed each variable’s partial derivative, following Chiang (1984) and 

Griewank and Walther (2008). As the approach of computing each variable’s 
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partial derivative has not yet been applied in the literature, we believe that the 

amount of knowledge discovered through the use of this technique is unique and 

invaluable. 

Our approach can be illustrated as follows. Let 𝐟(𝐱𝟏, 𝐱𝟐, 𝐱𝟑, … , 𝐱𝐧) be a 

function of the thirty-seven variables of PTAM. The partial derivative of 𝐟 with 

respect to 𝐱𝟏 gives the rate of change of 𝐟 with respect to 𝐱𝟏. It is computed by 

taking the first derivative of 𝐟 with respect to 𝐱𝟏 while holding all other variables 

𝐱𝟐,…,	𝐱𝐧 fixed at a certain value. We set this value as the average of each 

variable’s data points, thus treating variables other than 𝐱𝟏 as constants. To 

compute the partial derivative of 𝐱𝟏, we fixed the values of all other variables at 

their averages and employed SVR-POLY (the best performing algorithm in 

modelling PTAM) for PTAM using the following parameters: degree = 3, C= 1–10, 

epsilon = 0.4. We then computed the partial derivative of 𝐱𝟏 using the following 

formula: 

%&
%'!

=	 lim
(→*

;&	('-()/&(')
(

< (4.9.6.1) 

𝑤ℎ𝑒𝑟𝑒	𝑥*	: 𝑎𝑛𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑡ℎ𝑖𝑟𝑡𝑦 − 𝑠𝑒𝑣𝑒𝑛	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

Next, we computed the sum of all variables’ partial derivatives: 

∑ %&
%'!

"
!01 	 (4.9.6.2) 

𝑤ℎ𝑒𝑟𝑒	𝑛 = 37		 

To find each variable’s coefficient, we divided each variable’s partial 

derivative by the sum of all variables’ partial derivatives: 
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  (4.9.6.3) 
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𝑤ℎ𝑒𝑟𝑒	𝑛 = 37		 
4.9.7 Triangular Membership Algorithm 

The triangular membership function (Pedrycz, 1994) is defined by three 

parameters: a minimum value (a), a peak value (c) and a maximum value (b), 

where a ≤ c ≤ b. The triangular membership function can be modelled by using 

Formula 4.9.7 as follows: 

f(x|a, b, c)	

⎩
⎪
⎨

⎪
⎧
0	, 																																x ≤ a 
6$7
8$7

	 , 																	a	 ≤ x	 ≤ c 
9$6
9$8

	, 																			c ≤ x ≤ b 
0	, 																															b ≤ x  

 (4.9.7) 

4.9.8 Trapezoidal Membership Algorithm 
The trapezoidal membership function (Atkinson, 1989) is defined by four 

parameters: a lower limit (a), an upper limit (d), a lower support limit (b) and an 

upper support limit (c), where a ≤ b ≤ c	 ≤ d. This function is given by Formula 

4.9.8: 

f(x|a, b, c, d)	

⎩
⎪
⎨

⎪
⎧
			0	, 	(x < a)	or	(x > d)		 
	6$7
9$7

	 , 										a	 ≤ x	 ≤ b 
1				,												b ≤ x ≤ c
:$6
:$8

	,											c ≤ x ≤ d

     (4.9.8) 

4.9.9 Gaussian Membership Algorithm 
The gaussian membership function (Squires, 2001) is defined by two 

parameters: a central value (m) and a standard deviation	k	(> 0). The gaussian 

function is given by Formula 4.9.9: 

f(x|m, k) = 	 e
,(.,/)²

23²                  (4.9.9) 

4.9.10 Sigmoidal Membership Algorithm 
The sigmoidal membership function (Han & Morag, 1995) is an S-shaped 

function defined by two parameters: the magnitude controlling the width of the S-
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shape (a), which can be positive or negative, and a value for the centre of the 

shape (c). The sigmoidal function is given by Formula 4.9.10: 

f(x|a, c) = 	 !
!;	<,4(5,6)

               (4.9.10) 

4.9.11 Generalised Bell-Shaped Membership Algorithm 
The g-bell membership function (Bracewell, 2000) has a symmetrical shape 

that resembles a bell. The function is defined by three parameters: the width of 

the function (a), the shape of the curve on either side of the central plateau (b), 

where a larger value creates a steeper shape, and the centre of the function (c). 

The g-bell function is given by Formula 4.9.11: 

f(x|a, b, c) = 	 !

!$	=5,64 =
27              (4.9.11) 

4.10 Classification Evaluation Algorithms 
We used relevance tree and likelihood sampling algorithms to measure the 

prediction accuracy of the Bayesian networks on the basis of which PTAI was 

formulated. The core difference between these algorithms is that relevance trees 

examine networks without sampling data, whereas likelihood sampling evaluates 

networks based upon random samples of the dataset. 

4.11 Data Collection 
In this section, applying step 3 of the proposed methodology, we define the 

data sources and explain how and why we collected our data as well as what kinds 

of data we used to test PTAM, DMPTA, FIPTAM and PTAI. As we briefly discussed 

in Chapter 2, we used four data sources: the technology acceptance literature, 

tweets, interviews and surveys. We used the technology acceptance literature to 

formulate PTAM’s features. As in Section 4.5, we demonstrated how we collected 

the thirty-seven features of technology acceptance from the literature. As we show 

in the following sections, we used tweets and interviews to evaluate the relevance 

of these features to technology use decisions of end users, provide unique 

definitions of these features and design survey statements for each feature.  As we 

explained in Section 4.11.3, the survey data were the only data used to evaluate 
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the four models. In the following sections, we discuss each data source, why we 

chose it and the procedure we followed to verify its validity. We also explain our 

process of restructuring the data used to evaluate the four models and explain our 

validation and preparation of the survey data. 

4.11.1 Streaming Tweets and Text-Mining Technique 
Tweets were treated as an unobtrusive data measure that could enable an 

objective review of technologies’ potential use. Tweets were examined to help 

determine the language to use in the definitions of each of the proposed features 

(discussed in Section 4.5). Using the Twitter API, we filtered approximately five 

thousand tweets using the names of the following technologies: iPhone, Galaxy, 

Tesla EV, iPad, internet browsers (Google, Firefox, Safari and Internet Explorer), 

Snapchat and Instagram. Next, the tweets were parsed in JSON format. Text-

mining techniques were then applied to the streamed tweets to find keywords 

describing why end users appreciate certain technologies. The frequency of 

words with three or more letters was computed to detect keywords in tweets and 

associate them with the thirty-seven features identified based on the literature 

(see Section 4.5). Figure 4.11.1 highlights the steps we followed and provides 

examples of streamed tweets and extracted keywords for the term ‘iPhone’. 

We used the following procedure to improve the validity of this data 

collection approach. To ensure objectivity and mitigate human bias in tweet 

collection and text mining, we used keywords adapted from Davis (1989), Davis 

et al. (1989), Venkatesh (2000), Venkatesh and Davis (2000), Venkatesh et al. 

(2003, 2012) and Venkatesh and Bala (2008). These words were extracted from 

the definitions of the features of the current TAM and UTAUT specified in those 

seven articles. 
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4.11.2 Interviews and Survey Development 

Interviews were conducted to examine the relevance of the identified 

features, provide unique definitions of those features and design survey 

statements for each feature. Before contacting interview participants, ethical 

approval was obtained from the Computer Science School (now the Computer 

Science Department) at the University of Manchester (see Figures 9.2 and 9.3 in 

the Appendix). Interviews were conducted with thirteen IT experts and 

professionals, who answered open-ended questions and reviewed sixty-four 

statements related to the thirty-seven features listed in Table 4.5. Interviews were 

conducted in person as well as online (via email). Participants’ answers were 

Figure 4.11.1 Steps of Streaming and Text Mining Tweets 
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analysed to inform the design of the survey statements and the definitions of the 

features. Participants demographics are illustrated in Figure 4.11.2. The assessed 

features represent attributes adopted from the IS literature. Participants ranked 

the statements for each feature on scales ranging from 0 to 10 to indicate their 

relevance and importance to participants’ adoption decisions. The ranking results 

are shown in Table 4.11.2. The full interview questions and ranked statements 

are provided in Section 4.11.2.2. 

We followed this procedure to improve the validity of the interviews. We 

obtained ethical approval from the designated department at the University of 

Manchester. Moreover, we did not contact interviewees directly but rather asked 

a marketing organisation to identify participants. Interviewees were told that their 

participation was voluntary and that they could withdraw from the interview at any 

time. They were also assured that their personal information would be kept private 

and that their answers would be reported anonymously. During the interviews, we 

asked interviewees open-ended questions to ensure that they were not influenced 

to answer in a certain way, which could introduce bias. Moreover, we asked 

interviewees to freely rank the statements (see Section 4.11.2.2). This procedure 

helps enhance the validity of the rankings. Although the number of interviewees 

was limited, their data were not used for modelling but rather for designing the 

survey and defining its features. As we show in the Data Validation section 

(Section 4.13), the survey data are adequate and were validated in accordance 

with the standards commonly accepted in the literature. 
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Table 4.11.2 Interviewees’ Rankings of Features (Descending Order) 
Feature Ranking (0–10) 
Voluntariness 8.08 
Perceived ease of use 7.79 
Desire 7.74 
Technology quality 7.70 
Attitude toward technology 7.64 
Goal 7.53 
Perceived usefulness 7.51 
Mobility 7.47 
Perception of external control 7.46 
Output quality 7.45 
Past behaviour 7.41 
Navigability 7.39 
Security 7.38 
Personal innovativeness 7.36 
Trust 7.31 
Compatibility 7.27 
Design aesthetics 7.25 
Behavioural Intention of technology use  7.23 
Privacy 7.06 
Service quality 7.05 
Technology self-efficacy 7.03 
Flexibility 7.02 
Functionality 7.02 
Perceived novelty 7.00 
Financial consequences 6.97 
Safety 6.97 

Figure 4.11.2 Demographics of Interview Participants 
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Attitude toward technology use 6.90 
Perceived enjoyment 6.79 
Perceived consistency 6.73 
Visibility 6.48 
Positive anticipated emotions 6.42 
Result demonstrability 6.35 
Attitude toward change brought by technology use 6.31 
Habit 5.94 
Subjective norm 5.65 
Technology playfulness 5.49 
Image 5.36 

 

4.11.2.1 Interview Questions 
Question1: If you have sufficient money to buy a new tablet, such as an 

iPad, Samsung tablet or any other similar tablet, what possible reasons may 

affect your decision to buy it? Please be specific and give details. 

Question 2: Are there any particular features, qualities or characteristics 

of the tablet that would affect your decision to buy it? 

Question 3: Do you think that there are environmental features that might 

affect your decision to buy the new tablet? Why? Give examples.  

Question 4: Do you think that your age, lifestyle, education, culture, 

beliefs, marital status, social status or employment might affect your decision to 

buy and use the new tablet? 
 

4.11.2.2 Statements Ranking Form 
Name: 
Email: 
Date:  
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The list of statements below represents potential reasons affecting your 
decision to use/adopt/buy a tablet. Please read every statement and choose a 
value on the Weight column from '0-10', with '0' referring to not considerable at 
all and '10' referring to very highly important: 

My decision to use the tablet will be depending on: Weight  
(0-10)  

Whether using the tablet helps me achieve a certain goal(s)   
Whether I like the tablet, generally speaking   
Whether I trust in the tablet, its performance, or its designing company   
Whether I like the change on my life/lifestyle resulting from using the 
tablet 

 

Whether I find using the tablet useful  
Whether I intend to use the tablet   
Whether the tablet improves my chances to achieve my goal(s)   
Whether I find the tablet easy to use and understandable   
Whether people who are important to me think I should use the tablet   
Whether the use of the tablet improves my social image in the society to 
whom I belong 

 

Whether I have the knowledge necessary to use the tablet  
Whether learning to operate the tablet is easy to me  
Whether someone will be always available for assistance with the tablet  
Whether I can use the tablet if no one is around to help me use it  
Whether I have experienced using similar tablets in the past  
Whether I believe that the tablet will not invade my privacy   
Whether the use of the tablet will be fun, enjoyable, and entertaining  
Whether I expect someone to reward me if I use the tablet   
Whether I expect to be satisfied and pleased after using the tablet   
Whether I may have problems telling others how beneficial the tablet is  
Whether the tablet's output quality is as I expect  
Whether I will feel happy, confident, satisfied, comfortable, excited, and 
energetic after I use the tablet 

 

Whether I may feel anxious from using the tablet  
Whether I can see others using the tablet  
Whether using the tablet will be relevant to my study/work/business   
Whether the tablet is complex to deal with   
Whether the tablet is consistent with my values, beliefs, and needs  
Whether I can afford the financial consequences resulting from using the 
tablet such as cost of insurance, cost of having to use anti-virus, cost of 
having to download software...etc 

 

Whether using the tablet becomes a habit for me  
Whether I expect myself to be playful, unoriginal, and creative when I 
use the tablet 
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Whether I have fun using the tablet   
Whether the use of the tablet is pleasant to me  
Whether the tablet has something novel either with the service, with the 
design, with the quality, with the after sales services, with the warranty, 
or with the technical features.  

 

Whether there is something new in the tablet attracts me  
Whether there is something new in the tablet comparing with other 
tablets from other companies 

 

Whether the after-sale services of the tablet are as I expect them  
Whether the tablet’s quality is as I expect it  
Whether the tablet’s design looks professional  
Whether the tablet has beautiful design, appealing features, and cute 
colours  

Whether the overall look of the tablet is visually appealing  
Whether the tablet can be easily moved from one place to another 
without difficulties  

Whether the tablet has some features that will not invade my privacy  
Whether the tablet has some features that will not expose my personal 
information to unauthorized people  

Whether the use of the tablet will result in affecting my safety  
Whether the tablet is capable of working with some other technologies 
that I have  

Whether the tablet  is functioning accuracy  
Whether the  tablet is safeguarded from physical loss or damage  
Whether the  tablet can be used without causing harm or danger to 
myself 

 

Whether in case of fault  the  tablet can maintain a safe level of 
operation  

 

Whether the use of   the  tablet will not result in jeopardising my safety  
Whether  I can customize the technology to fit my personal preference  

Whether  I can adjust  Whether interface  
Whether  I can adjust  Whether features  
Whether  I can move around  Whether efficiently and easily  
Whether I can experience all of  the tablet features  
Whether I can effectively navigate around  the tablet interface  
Whether it is easy to make  the tablet work with other technologies I 
have  

Whether the tablet can be connected with other technologies  
Whether I can make  the tablet work on different platforms  
Whether I can easily move  the tablet from one place to another  
Whether it is easy to replace  the tablet  
Whether the tablet suitably functions comparing to similar technologies  
Whether the tablet correctly functions comparing to similar technologies  
Whether the tablet functions in compliance with laws and regulations  



132 
 

4.11.3 Survey 
After designing the survey statements, we posted them on a special website 

to enable survey participants to voluntarily take part in the survey. With the 

exception of the features of use, desire, past behaviour and voluntariness, all the 

features were associated with three statements (i.e. variables). The features 

represent unmeasurable concepts and were operationalised in the survey by a 

set of statements (variables) that were evaluated by survey respondents. The 

statements were modified to fit each of the thirty-two technologies. The survey 

statements are shown in Table 4.11.3. 
Table 4.11.3 Survey Statements 
Features and Statements Scales 
Use 
I use the technology 

Never (0), Rarely (1), 
A few times (2), Several times (3), Many times (4), 

Always (5) 
Intention of technology use 
Assuming I have access to the technology, I intend to 
use it 
Given that I had access to the technology, I predict that 
I would use it 
I plan on using the technology in the next months 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Perceived usefulness 
Using the technology is beneficial to me 
Using the technology enhances my effectiveness 
I find the technology to be useful 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Perceived ease of use 
My interaction with the technology is clear and 
understandable 
Interacting with the technology does not require a lot 
of my mental effort 
I find the technology to be easy to use 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Subjective norm 
People who influence my behaviour think that I should 
use the technology 
People who are important to me think that I should use 
the technology 
In general, the people who influence me support the 
use of the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Image 
People who use the technology have more prestige 
than those who do not 
People who use the technology have a high profile 
Having the technology is a status symbol in my society 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Result demonstrability 
I have no difficulty telling others about the results of 
using the technology 
I believe I could communicate to others the 
consequence of using the technology 
The results of using the technology are apparent to me 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Perceived enjoyment 
I find using the technology to be enjoyable 
The actual process of using the technology is pleasant 
I have fun using the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Technology playfulness 
When I use the technology I think of myself as 
spontaneous 
When I use the technology I think of myself as creative 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 
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When I use the technology I think of myself as playful 
and unoriginal 

Perception of external control 
I have control over using the technology 
I have the resources necessary to use the technology 
The technology is not compatible with other 
technologies I use 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Technology self-efficacy 
I could use the technology if there was no one around 
to tell me what to do as I go 
I could use the technology if I had just the built-in help 
facility for assistance 
I could the technology if someone showed me how to 
do it first 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Voluntariness 
My use of and interaction with the technology is 
voluntary 

Yes (0), No (1) 

Habit 
The use of the technology has become a habit for me 
I am addicted to the use of the technology 
Using the technology has become natural to me 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Privacy 
The technology will not divulge my personal 
information to unauthorised persons 
I believe that, when using the technology, my personal 
information will be held private 
I can rely on the technology to keep my personal 
information private 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Financial consequences 
I can afford the cost of purchasing the technology  
I can afford the cost of insuring, maintaining and 
repairing the technology 
I can afford the cost of monetary loss of the value of 
the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Goal 
I use the technology to achieve my goal 
When I use the technology, I believe it is effective in 
making me attain what I want 
The technology supports achievement of my plans and 
objectives 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Desire 
My desire to use the technology in the next 4 weeks 
can be described as: 

No desire (0), Very weak (1), Weak (2), 
Intermediate (3), Strong (4), Very strong (5) 

Past behaviour 
How many times have you used the technology in the 
past? 

Never (0), Almost never (1), A few times (2), 
Sometimes (3), Several times (4), Quite often (5), 

Many times (6) 
Positive anticipated emotions 
If I succeed in using the technology I will feel excited 
If I succeed in using the technology I will feel 
delighted, glad and happy 
If I succeed in using the technology I will feel satisfied 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Attitude toward technology use 
I think that to use the technology is useful 
I think that to use the technology is effective 
I think that to use the technology is wise 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Attitude toward technology 
I like the technology 
The technology is my favourite 
The technology is amazing 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Attitude toward change brought by technology use 
The change in my life resulting from using the 
technology is effective 
The change in my life resulting from using the 
technology is desirable 
The change in my life resulting from using the 
technology is supportive 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Visibility 
I think I am not the only one who has the technology 
I can see other people using the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 
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It is easy for me to observe people using the 
technology 

Perceived consistency 
The technology is consistent with my values 
The technology is consistent with my needs 
The technology is consistent with my past experience 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Trust 
The technology vendor gives the impression that it 
keeps its promises and commitments 
I believe that this technology has my best interests in 
mind 
The technology is trustworthy 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Personal innovativeness 
If I heard about this technology, I would look for ways 
to experiment with it 
Among my peers, I am usually the first to explore this 
technology 
I like to experiment with this technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Perceived novelty 
When I compare the technology with similar 
technologies in the market, I am attracted by this 
technology’s novel attributes, features, design or after-
sales services 
The technology has new features compared with 
similar technologies I know 
I enjoy new experiences when I use the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Functionality 
The technology functions suitably compared with 
similar technologies 
The technology functions correctly compared with 
similar technologies 
The technology functions in compliance with laws and 
regulations 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Service quality 
The technology vendor provides prompt, dependable, 
timely and reliable sales, after-sales, maintenance and 
repair services 
The technology vendor is willing and ready to help 
customers and answer my requests 
The technology vendors are courteous, knowledgeable 
and provide safe transactions 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Output quality 
The quality of the information I get from the technology 
is high 
I have no problem with the quality of the technology 
information 
I rate the results of using the technology to be 
excellent 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Technology quality 
The technology quality is as I expected 
I have no problem with the technology quality 
The technology’s quality achieves my objectives 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Privacy 
The technology will not divulge my personal 
information to unauthorised persons 
I believe that, when using the technology, my personal 
information will be held private 
I can rely on the technology to keep my personal 
information private 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Security 
The technology is safeguarded from physical loss or 
damage 
The data processed by the technology are safeguarded 
from physical loss or damage 
The technology and its data are safeguarded from 
unauthorised alteration 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Safety 
The technology can be used without causing harm or 
danger to myself 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 
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In case of fault, the technology can maintain a safe 
level of operation 
The use of the technology will not result in 
jeopardising my safety 

Design aesthetics 
The screen design (i.e. colours, boxes, menus, etc.) is 
attractive 
This technology looks professionally designed 
The overall look and feel of the technology is visually 
appealing 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Mobility 
I can easily move the technology from one place to 
another 
I can dispose of the technology after I finish using it 
It is easy to replace the technology 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Flexibility 
I can customise the technology to fit my personal 
preference 
I can adjust the technology’s interface 
I can adjust the technology’s features 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Compatibility 
It is easy to make the technology work with other 
technologies I have 
The technology can be connected with other 
technologies 
I can make the technology work on different platforms 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

Navigability 
I can move around the technology efficiently and 
easily  
I can experience all of the technology’s features 
I can effectively navigate around the technology’s 
interface 

Strongly agree (5), Agree (4), Neutral (3), Disagree 
(2), Strongly disagree (1) 

 

The survey was conducted in English and posted on a dedicated website. 

Respondents were solicited randomly through a marketing research company. 

When the website was launched, each participant freely selected one or more of 

thirty-two possible technologies, completed a consent form and filled out the 

survey for a chosen technology. In the consent form, respondents agreed to the 

anonymous use of their responses and agreed to provide their demographic data 

(Image 4.11.3.1). The survey design combined the current questionnaire 

statements used in TAM and UTAUT research with the items of the new features, 

in accordance with their proposed definitions (Table 4.5). 

Except for the items measuring voluntariness, desire, past behaviour and 

use, all features’ statements were measured on five-point Likert scales (1 = 

‘strongly disagree’, 5 = ‘strongly agree’). Voluntariness was measured on a two-

point scale (0 = ‘yes’, 1 = ‘no’). Desire was measured on a six-point scale (0 = ‘no 

desire’, 5 = ‘very strong desire’). A seven-point scale was used to measure past 

behaviour (0 = ‘never’, 6 = ‘many times’). Use was measured on a six-point scale 

(0 = ‘never’, 5 = ‘always’). An importance column was also added to the survey to 
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increase the objectivity of the collected data. This column allowed participants to 

weight their responses to each statement: a weight of 0 indicated that the 

statement was not considered at all, and a weight of 10 indicated that the 

statement was strongly considered. Before evaluating the items, each participant 

was presented with an image of the evaluated technology. After viewing the 

image, they were asked to assess how likely they were to use the technology by 

evaluating a decision statement on a scale ranging from 0 (‘never’) to 10 

(‘certain’). 

Of the 821 initial responses, 514 responses were deemed valid and were 

included in the final research analysis. This sample size achieves the minimum 

requirements set by Chin (1998), Gefen et al. (2000) and Hair et al. (2010), as it 

is greater than ten times the most complex feature’s number of items (i.e. 

variables) and at least ten times the largest number of independent features 

affecting a dependent feature. Additionally, the sample size follows the rule of 

thumb that the minimum sample size should be more than ten times the total 

number of features. Since there are thirty-seven features, the sample size of 514 

meets this requirement, ensuring that the dataset is adequate for analysis. 

Moreover, the sufficiency of the data samples is reflected in the modelling of each 

algorithm. In some algorithms, a learning curve may be deemed underfitted as a 

result of inadequate data samples; that is, if the sample is insufficient, the 

algorithm will estimate the model poorly and incorrectly, regardless of whether an 

acceptable R2 value is achieved. 

Data were collected from respondents for seven types of personal 

technologies: computer-based devices, computer software, e-commerce, home 

technologies, mobile phones, social media and EVs. Figures 4.11.3.1 and 

4.11.3.2 illustrate the demographics of the respondents and their distribution 

among the thirty-two technologies. Respondents were solicited by a marketing 

company via emails sent to potential professional and non-professional 

participants. Respondents were asked to freely choose to fill out the survey for 

one of the listed technology types. Participants were from different countries and 



137 
 

represented a variety of education levels, genders, ages, marital statuses and 

jobs. We verified respondents’ locations by examining their IP addresses. 

To ensure the validity of survey responses, maintain control of the collected 

survey data and prevent missing data and reckless responses, we implemented 

the following procedures. Once participants launched the website, they were 

provided with a consent form (Image 4.11.3.1) which assured that their 

participation was voluntary and that their answers to the survey would be reported 

anonymously. Respondents were given the freedom to answer the survey for any 

subset of the thirty-two technologies. All respondents were required to read a 

disclaimer message stating clearly that their participation was free of coercion and 

that they were free to withdraw from the survey at any time. Before participants 

filled out the survey, they were presented with an image of the evaluated 

technology and the associated decision statement (for an example, see Image 

4.11.3.2) to ensure the relevance of their responses. All fields of the survey were 

required. A screening statement (‘I do not understand this survey and my 

responses do not represent my real feelings and views’) was also used to identify 

inaccurately answered questionnaires to exclude carelessly answered 

statements. This statement was placed randomly in each survey. A survey was 

deemed valid if the respondent’s response to the decision statement was more 

than 0 and if the response to the screening statement was either ‘strongly 

disagree’ or ‘disagree’ with a value of more than 0 in the importance column (for 

the decision statement, see Image 4.11.3.2).  
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Image 4.11.3.1 Consent Form 
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Image 4.11.3.2 Illustration of Survey 
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4.12 Data Restructuring 

In the evaluation of the four models (PTAM, DPTAM, FIPTAM and PTAI), we 

took three restructuring approaches for the survey data. First, we rescaled the data 

to the range 0 to 5. Second, we computed the average data values of features 

Figure 4.11.3.1 Demographics of Survey Respondents 
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Figure 4.11.3.2 Distribution of Survey Respondents per Technology 
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associated with more than one statement in the survey. For example, for 

behavioural intention, there were values ranging from 0 to 5 representing five 

variables (‘strongly disagree’, ‘disagree’, ‘neutral’, ‘agree’ and ‘strongly agree’). The 

‘strongly disagree’ category contained values ranging from 0 to 1. To obtain a single 

value for the data value of ‘strongly disagree’, we computed the means of values 

between 0 and 1. We followed a similar approach to assign a single value to each 

of the other four variables of the behavioural intention feature (i.e. ‘disagree’, 

‘neutral’, ‘agree’ and ‘strongly agree’). Third, we rescaled the target feature’s data 

values to avoid division by 0. 

When evaluating FIPTAM specifically, we restructured the target features’ 

data values by rescaling them to a range of 0 to 1. In evaluating Bayesian networks, 

each feature had five categories (1, 2, 3, 4 and 5 after normalisation) with the 

exception of the voluntariness feature, which had four categories (1, 2, 4 and 5). 

We reduced the number of categories for all features to two (0 and 1) to reduce 

network complexity. For all features except voluntariness, 0 was assigned to values 

less than 4 and 1 was assigned to values greater than or equal to 4. For 

voluntariness, 0 was assigned to values of 1 or 2 and 1 was assigned to values of 

4 or 5. For all features, 0 indicates the absence of any effect and 1 indicates the 

presence of an effect. In the case of the target feature (i.e. use of technology), 0 

refers to an unusable technology and 1 refers to a usable technology. 

4.13 Data Validation 
Survey data were assessed following the steps recommended by Straub 

(1989). Multi-trait–multi-method analysis (Campbell & Fisk, 1959) was undertaken 

to evaluate the psychometric properties of the survey. This analysis investigated 

five aspects of the collected data: content validity, internal consistency reliability, 

factor validity, convergent validity and discriminant validity. 

4.13.1 Content Validity 
This analysis evaluated whether the instrument’s statements were good 

representatives of the model’s features (Straub, 1989) and were drawn from a 

universal pool (Cronbach, 1971). There is no single method by which the content 

of features can be validated, but it is necessary to ensure that statements’ 



142 
 

contents are considerable from the perspective of respondents before they are 

included in a study. For example, Davis (1989) designed multiple statements 

representing perceived ease of use and perceived usefulness and consulted 15 

computer users to rank the statements’ relevance to the measured features. Since 

the content of some of PTAM’s features has been validated in previous research, 

definitions, statements and scales were adapted from prior works when possible. 

Table 4.13.1 lists the studies in which each such feature was previously validated 

and the studies from which the statements for those features were adapted. 
Table 4.13.1 Content Validation 
Feature Content Validation Statement 
Intention of technology use 

Davis (1989), Venkatesh 
(2000),Venkatesh and Bala (2008), 

Venkatesh and Davis (2000) 

Davis (1989),Venkatesh (2000), 
Venkatesh and Bala 

(2008),Venkatesh and Davis 
(2000) 

Perceived usefulness 
Perceived ease of use 
Subjective norm 
Voluntariness 
Image 
Result demonstrability 
Perceived enjoyment 
Technology playfulness 
Technology self-efficacy 
Perception of external  
control 

Ajzen (1985),Taylor and Todd (1995a, 
1995b) 

Ajzen (1985),Taylor and Todd 
(1995a, 1995b) 

Output quality Venkatesh and Davis (2000) 

Delone and McLean (1992, 2002, 
2003), Petter et al. (2013), 

Venkatesh and Davis 
(2000),Venkatesh et al. (2012), 

Habit Venkatesh et al. (2003) Venkatesh et al. (2003) 
Goal 

Perugini and Bagozzi (2001), Perugini 
and Conner (2000) 

Perugini and Bagozzi (2001), 
Perugini and Conner (2000) 

Desire 
Positive anticipated emotions 
Past behaviour 
Perceived consistency Moore and Benbasat (1991), Rogers 

(1983) 
Moore and Benbasat (1991), 

Rogers (1983) Visibility 
Privacy McLeod et al. (2009) McLeod et al. (2009) 
Trust Gefen et al. (2003) Gefen et al. (2003) 

Security Etezadi-Amoli and 
Farhoomand (1996) 

Etezadi-Amoli and 
Farhoomand (1996) 

Perceived novelty Wells et al. (2010) Wells et al. (2010) 
Personal innovativeness Lu et al. (2005) Lu et al. (2005) 
Design aesthetics Cyr et al. (2006) Cyr et al. (2006) 
Financial consequences Venkatesh et al. (2012) Venkatesh et al. (2012) 
Attitude toward technology Ajzen (1985) Ajzen (1985) 

Attitude toward technology use Ajzen (1985) Ajzen (1985), Eagly and Chaiken 
(2007) 

Attitude toward change brought by 
technology use Keen (1980) Ajzen (1985) 
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In order to validate the new features and confirm the validation of the 

adapted features, all measures were included in the interviews with thirteen 

experts and professionals described in Section 4.11.2. Participants were asked to 

rank sixty-four statements describing the model’s thirty-seven features by their 

relevance to the interviewees’ decisions regarding technology adoption. Table 

4.11.2 illustrates the ranking of these features. The lowest score is 5.36 (out of 

10), indicating that the selected features are considerable for end users in terms 

of their definitions and language. The approach of using discussions with experts 

and end users to evaluate the relevance of features’ statements to technology use 

decisions was adopted from Davis (1989). 

4.13.1.1 Common Method Bias 
We investigated common method bias using procedural and statistical 

approaches, as suggested by Podsakoff et al. (2003). From a procedural 

perspective, survey respondents were assured that their participation was 

voluntary and that their answers to the survey would be reported anonymously. 

Moreover, respondents were given the option to answer a survey about any 

subset of thirty-two technologies. All respondents were required to read a 

disclaimer message stating clearly that their participation was free of coercion 

and that they were free to withdraw from the survey at any time. Before 

participants filled out the survey, they were presented with an image of the 

evaluated technology and a decision statement (for an example, see Image 

4.11.3.2) to ensure the relevance of their responses. In addition, a screening 

statement was utilised to identify inaccurately answered questionnaires to 

exclude carelessly answered statements. 

We applied Harman’s single-factor test to test for common method bias, as 

recommended by Podsakoff et al. (2003). This test is intended to evaluate the 

loadings of all the statements of the features included in PTAM on a single 

feature. Table 4.13.1.1 shows the results of Harman’s single-factor test, which 

illustrate that the loadings of all measures on a single factor did not exhibit high 

covariance (defined as ≥ 0.5). This confirms that the survey did not suffer from 

common method bias. 
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4.13.1.2 Multicollinearity 
We used variance inflation factors (VIFs) to test features for potential 

multicollinearity, as recommended by Hair et al. (2011). Table 4.13.1.2 lists the 

VIF values for each feature. These values indicate no multicollinearity, as all 

features had VIF values below 5 and tolerance values above 0.10, as 

recommended by Hair et al. (2011).  

Both Harman’s single-factor test and VIF analysis were conducted using 

SPSS. 

 
Table 4.13.1.2 Multicollinearity Statistics 
Feature Tolerance  Variance Inflation Factor 
Behavioural Intention of Technology Use 0.311 3.22 
Perceived Usefulness 0.38 2.631 
Perceived Ease of Use 0.411 2.432 
Subjective Norm 0.356 2.807 
Image 0.341 2.929 
Result Demonstrability 0.458 2.183 
Perceived Enjoyment 0.395 2.532 
Technology Playfulness 0.323 3.092 
Perception of External Control 0.42 2.384 
Technology Self-Efficacy 0.54 1.851 
Voluntariness 0.835 1.197 
Habit 0.406 2.465 
Financial Consequences 0.531 1.882 
Goal 0.391 2.557 
Desire 0.33 3.035 
Past Behaviour 0.459 2.18 
Positive Anticipated Emotions 0.383 2.612 
Attitude Toward Technology Use 0.388 2.576 
Attitude Toward Technology 0.447 2.237 
Attitude Toward Change Brought by Technology Use 0.403 2.479 
Visibility 0.57 1.756 
Perceived Consistency 0.475 2.107 
Trust 0.348 2.871 
Personal Innovativeness 0.373 2.68 
Perceived Novelty 0.503 1.989 
Functionality 0.395 2.531 
Service Quality 0.425 2.353 
Output Quality 0.408 2.453 
Technology Quality 0.439 2.278 
Privacy 0.508 1.97 
Security 0.413 2.422 
Safety 0.489 2.045 

Table 4.13.1.1 Harman’s Single Factor Test 

Component 
1 

Extraction Sums of Squared Loadings 
Total Percentage of Variance Cumulative Percentage 

16.496 44.583 44.583 
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Design Aesthetics 0.406 2.465 
Mobility 0.491 2.037 
Flexibility 0.478 2.091 
Compatibility 0.497 2.011 
Navigability 0.338 2.96 

4.13.1.3 Normality and Goodness-of-Fit 
Technology acceptance research has typically used PLS-SEM, with an 

assumption of normally distributed data. Similarly, our research assumes the 

normality of the collected data, but to verify the normality of the distribution, we 

applied a skewness test using SPSS. According to Hair et al. (2010) and Byrne 

(2010), data are considered normally distributed if skewness is between −2 and 

+2 and kurtosis is between −7 and +7. We found that our data were not skewed, 

as shown in Table 4.13.1.3. 

 
Table 4.13.1.3 Test of Normality and Goodness of Fit (Ascending Order by Skewness) 
Feature Skewness Kurtosis 
Perception of External Control -0.553 -0.423 

Attitude Toward Technology -0.521 -0.572 
Voluntariness -0.517 -0.571 
Goal -0.502 -0.375 

Mobility -0.474 -0.549 

Perceived Usefulness -0.429 -0.511 
Perceived Novelty -0.400 -0.733 
Desire -0.366 -0.929 
Past Behaviour -0.356 -0.817 

Output Quality -0.309 -0.581 

Perceived Ease of Use -0.301 -0.685 

Technology Self-efficacy -0.283 -0.942 

Navigability -0.274 -0.629 
Design Aesthetics -0.269 -0.798 
Behavioural Intention of Technology Use -0.256 -0.603 
Compatibility -0.251 -0.650 

Technology Quality -0.216 -0.755 

Flexibility -0.205 -0.664 

Perceived Enjoyment -0.192 -0.923 

Functionality -0.183 -0.684 

Attitude Toward Technology Use -0.177 -0.841 

Visibility -0.141 -1.030 
Trust -0.137 -0.767 
Result Demonstrability -0.133 -0.960 

Service Quality -0.124 -0.650 

Security -0.092 -0.844 



146 
 

Perceived Consistency -0.087 -0.735 
Positive Anticipated Emotions -0.078 -1.010 
Financial Consequences -0.055 -0.563 

Safety 0.031 -0.614 
Privacy 0.038 -0.915 

Attitude Toward Change Brought by Technology Use 0.044 -0.771 

Subjective Norm 0.153 -1.012 
Habit 0.169 -1.052 
Technology Playfulness 0.199 -0.972 
Image 0.220 -1.061 

Personal Innovativeness 0.440 1.947 

4.13.2 Feature Reliability 
We conducted factor reliability analysis to examine the quality of the survey 

instrument using Cronbach’s alpha, a measure of internal consistency (Cronbach, 

1951). A feature must attain a Cronbach’s alpha value of 0.7 or higher to be 

considered reliable (Hair et al., 2011). Table 4.13.2 shows Cronbach’s alpha 

values for the listed features, indicating their reliability; the lowest value is 0.921 

(for perceived usefulness). It should be noted that this statistical analysis is 

applicable only to features with more than one statement. 
Table 4.13.2 Feature Reliability, Cronbach’s Alpha (Descending Order) 
Feature Cronbach’s Alpha 
Habit 0.977 
Visibility 0.976 
Perceived Ease of Use 0.975 
Behavioural Intention of Technology Use 0.975 
Image 0.974 
Technology Self-Efficacy 0.974 
Personal Innovativeness 0.973 
Perceived Enjoyment 0.973 
Attitude Toward Technology 0.973 
Design Aesthetics 0.973 
Privacy 0.972 
Perceived Consistency 0.972 
Attitude Toward Use 0.972 
Perception of External Control 0.971 
Subjective Norm 0.971 
Results Demonstrability 0.971 
Positive Anticipated Emotions 0.971 
Flexibility 0.971 
Compatibility 0.971 
Attitude Toward Change Brought by Technology Use 0.971 
Perceived Novelty 0.970 
Functionality 0.970 
Technology Quality 0.970 
Trust 0.970 
Mobility 0.969 
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Service Quality 0.969 
Security 0.969 
Safety 0.969 
Financial Consequences 0.969 
Output Quality 0.968 
Navigability 0.968 
Goal 0.967 
Perceived Playfulness 0.928 
Perceived Usefulness 0.921 

4.13.3 Convergent and Discriminant Validity 
In tests of convergent validity, items are examined to evaluate the 

interrelationships among the statements (variables) of a feature. Validity is 

established when the square root of the shared variance between variables and 

their relative feature is higher than the shared variance of other features 

(Campbell & Fisk, 1959). The variable of a feature should present a loading value 

of 0.7 or higher on its respective feature (Hair et al., 2011). Table 4.13.3.1 

presents the coefficients of the variables’ loadings on their respective features, 

indicating that this criterion is met.  

In tests of discriminant validity, items are examined to verify whether they 

load higher on their respective feature than on other features (Campbell & Fiske, 

1959). As a result of these tests, two variables (one from the perceived ease of 

use feature, the other from the technology playfulness feature) were removed for 

violating the discriminant validity criterion (for an extension of Table 4.13.3.1 that 

lists the loadings of all features’ variables, see Table 9.1 in the Appendix). We 

also used the Fornell–Larcker criterion to assess features’ discriminant validity. 

To attain validity, the square root of a feature’s average variance extracted (AVE) 

must be higher than the correlation coefficients of other features (Fornell & 

Larcker, 1981). Table 4.13.3.2 lists square roots of AVE and correlation 

coefficients for the model’s features. The results indicate that this criterion was 

met. 

 
Table 4.13.3.1 Verifying Convergent and Discriminant Validity 
Feature Variable Loadings 

Behavioural Intention of Technology Use 
0.97 
0.92 
0.94 

Perceived Usefulness 0.91 
0.93 
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0.92 

Perceived Ease of Use 0.99 
0.99 

Subjective Norm 
0.97 
0.88 
0.99 

Image 
0.96 
0.89 
0.74 

Result Demonstrability 
0.93 
0.86 
0.98 

Perceived Enjoyment 
0.97 
0.93 
0.94 

Technology Playfulness 0.97 
0.96 

Perception of External Control 
0.97 
0.99 
0.95 

Technology Self-Efficacy 
0.97 
0.99 
0.96 

Habit 
0.98 
0.89 
0.97 

Financial Consequences 
0.96 
0.95 
0.96 

Goal 
0.96 
0.92 
0.95 

Positive Anticipated Emotions 
0.97 
0.92 
0.90 

Attitude Toward Technology Use 
0.97 
0.94 
0.99 

Attitude Toward Technology 
0.97 
0.96 
0.95 

Attitude Toward Change Brought by 
Technology Use 

0.97 
0.94 
0.96 

Visibility 
0.96 
0.95 
0.97 

Perceived Consistency 
0.97 
0.94 
0.93 

Trust 
0.95 
0.89 
0.96 

Personal Innovativeness 
0.97 
0.99 
0.96 

Perceived Novelty 
0.96 
0.92 
0.95 

Functionality 
0.97 
0.99 
0.96 

Service Quality 
0.96 
0.89 
0.88 

Output Quality 
0.97 
0.98 
0.95 

Technology Quality 0.97 
0.99 
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0.89 

Privacy 
0.97 
0.98 
0.96 

Security 
0.96 
0.91 
0.93 

Safety 
0.96 
0.91 
0.93 

Design Aesthetics 
0.97 
0.94 
0.95 

Mobility 
0.96 
0.99 
0.91 

Flexibility 
0.96 
0.94 
0.93 

Compatibility 
0.96 
0.99 
0.97 

Navigability 
0.96 
0.89 
0.88 

 

Table 4.13.3.2 Discriminant Validity Analysis Applying Fornell and Larcker Criterion* 
 GOL USFL EOU SN RD IMG PLY ENJ SELF PEC PAE ATUS ATTC VSBL CONS HBT PRVSY TRST SCUR ATTT SFTY FCON DA FLX NAV COMP MOB FUNC SQLT

Y BINT OQLT
Y 

TQLT
Y NOVL INOV VOL DSR PSTB 

GOL 0.94                                      
USFL 0.67 0.92                                     
EOU 0.55 0.57 0.98                                    
SN 0.39 0.31 0.27 0.95                                   
RD 0.43 0.42 0.38 0.54 0.92                                  
IMG 0.35 0.28 0.22 0.69 0.49 0.87                                 
PLY 0.41 0.28 0.24 0.69 0.53 0.63 0.79                                
ENJ 0.47 0.49 0.50 0.41 0.52 0.44 0.48 0.95                               
SELF 0.43 0.44 0.48 0.24 0.41 0.25 0.25 0.39 0.97                              
PEC 0.48 0.52 0.60 0.15 0.38 0.20 0.22 0.50 0.54 0.97                             
PAE 0.51 0.43 0.41 0.51 0.54 0.56 0.61 0.61 0.36 0.41 0.93                            
ATUS 0.53 0.56 0.49 0.44 0.53 0.44 0.46 0.61 0.34 0.45 0.57 0.97                           
ATTC 0.50 0.41 0.34 0.54 0.56 0.53 0.58 0.55 0.37 0.34 0.61 0.58 0.96                          
VSBL 0.34 0.33 0.34 0.43 0.46 0.44 0.44 0.42 0.34 0.33 0.50 0.42 0.42 0.96                         
CONS 0.50 0.49 0.45 0.43 0.47 0.40 0.39 0.53 0.35 0.39 0.48 0.56 0.55 0.43 0.95                        
HBT 0.40 0.36 0.27 0.60 0.51 0.57 0.61 0.52 0.34 0.28 0.53 0.49 0.57 0.51 0.45 0.95                       
PRVSY 0.36 0.33 0.36 0.23 0.28 0.17 0.23 0.30 0.23 0.24 0.25 0.36 0.27 0.20 0.35 0.21 0.97                      
TRST 0.45 0.45 0.51 0.34 0.29 0.24 0.31 0.40 0.25 0.34 0.36 0.45 0.34 0.34 0.48 0.29 0.56 0.95                     
SCUR 0.33 0.37 0.39 0.22 0.29 0.20 0.25 0.34 0.20 0.31 0.29 0.39 0.26 0.22 0.40 0.21 0.61 0.65 0.93                    
ATTT 0.46 0.52 0.51 0.23 0.35 0.25 0.23 0.44 0.36 0.45 0.40 0.51 0.33 0.40 0.41 0.36 0.36 0.45 0.42 0.96                   
SFTY 0.40 0.41 0.44 0.19 0.31 0.18 0.23 0.38 0.33 0.37 0.32 0.40 0.35 0.24 0.42 0.20 0.54 0.55 0.57 0.37 0.93                  
FCON 0.48 0.45 0.44 0.28 0.31 0.28 0.29 0.38 0.40 0.39 0.34 0.39 0.40 0.28 0.41 0.31 0.40 0.48 0.41 0.37 0.49 0.96                 
DA 0.46 0.46 0.50 0.39 0.46 0.41 0.45 0.62 0.43 0.51 0.52 0.51 0.43 0.40 0.49 0.45 0.33 0.46 0.40 0.44 0.43 0.43 0.95                
FLX 0.40 0.51 0.47 0.30 0.40 0.35 0.38 0.52 0.42 0.45 0.43 0.46 0.33 0.32 0.43 0.37 0.31 0.43 0.35 0.45 0.35 0.41 0.56 0.94               
NAV 0.48 0.53 0.57 0.23 0.32 0.16 0.22 0.52 0.48 0.60 0.41 0.46 0.33 0.32 0.45 0.33 0.37 0.46 0.42 0.48 0.40 0.50 0.59 0.58 0.94              
COMP 0.39 0.43 0.49 0.21 0.32 0.17 0.21 0.43 0.34 0.39 0.27 0.39 0.28 0.28 0.44 0.24 0.32 0.44 0.37 0.48 0.35 0.39 0.48 0.50 0.56 0.97             
MOB 0.36 0.46 0.50 0.24 0.31 0.18 0.20 0.37 0.37 0.46 0.30 0.40 0.25 0.26 0.42 0.21 0.41 0.49 0.35 0.43 0.40 0.41 0.43 0.46 0.55 0.52 0.96            
FUNC 0.51 0.51 0.54 0.35 0.43 0.35 0.39 0.51 0.41 0.52 0.47 0.56 0.46 0.44 0.52 0.39 0.40 0.57 0.46 0.50 0.49 0.53 0.54 0.47 0.55 0.51 0.51 0.97           
SQLTY 0.49 0.51 0.54 0.39 0.46 0.40 0.40 0.48 0.45 0.47 0.45 0.44 0.40 0.38 0.50 0.35 0.36 0.55 0.45 0.46 0.42 0.52 0.51 0.53 0.56 0.48 0.45 0.56 0.91          
BINT 0.51 0.55 0.57 0.28 0.42 0.24 0.25 0.51 0.43 0.56 0.40 0.51 0.38 0.35 0.46 0.35 0.39 0.49 0.43 0.54 0.45 0.49 0.56 0.50 0.63 0.45 0.50 0.57 0.53 0.94         
OQLTY 0.44 0.50 0.53 0.12 0.28 0.15 0.18 0.44 0.41 0.51 0.32 0.46 0.32 0.30 0.45 0.22 0.39 0.46 0.44 0.53 0.47 0.48 0.49 0.46 0.59 0.49 0.46 0.56 0.49 0.58 0.97        
TQLTY 0.40 0.40 0.39 0.33 0.37 0.33 0.39 0.49 0.30 0.35 0.46 0.40 0.38 0.36 0.42 0.37 0.33 0.41 0.33 0.43 0.40 0.45 0.55 0.43 0.47 0.47 0.37 0.53 0.51 0.45 0.48 0.95       
NOVL 0.48 0.59 0.50 0.32 0.45 0.31 0.37 0.53 0.39 0.50 0.50 0.56 0.44 0.45 0.48 0.42 0.31 0.46 0.38 0.51 0.38 0.41 0.55 0.49 0.53 0.46 0.44 0.53 0.52 0.56 0.52 0.52 0.94      
INOV 0.10 0.12 0.08 0.04 0.08 0.12 0.06 0.03 0.05 0.14 0.02 0.15 0.04 0.03 0.11 0.04 0.20 0.20 0.24 0.09 0.18 0.10 0.07 0.11 0.14 0.15 0.22 0.17 0.15 0.15 0.12 0.02 0.08 0.97     
VOL 0.57 0.56 0.46 0.42 0.49 0.39 0.46 0.55 0.40 0.40 0.53 0.62 0.53 0.45 0.53 0.55 0.30 0.40 0.32 0.55 0.35 0.37 0.51 0.42 0.44 0.40 0.36 0.48 0.46 0.49 0.43 0.46 0.64 0.08 1.00    
DSR 0.44 0.47 0.44 0.38 0.45 0.32 0.32 0.42 0.31 0.36 0.38 0.47 0.39 0.37 0.42 0.47 0.22 0.32 0.23 0.51 0.27 0.28 0.40 0.38 0.36 0.31 0.39 0.38 0.39 0.46 0.35 0.31 0.43 0.11 0.65 1.00   
PSTB 0.56 0.61 0.52 0.26 0.42 0.27 0.33 0.54 0.49 0.55 0.49 0.55 0.42 0.37 0.46 0.37 0.33 0.37 0.38 0.59 0.45 0.44 0.57 0.49 0.57 0.46 0.46 0.58 0.52 0.59 0.56 0.50 0.67 0.09 0.61 0.46 1.00 
*Diagonal values are the square root of average variance extracted of each feature. Other values are correlation 
coefficients 
ATTC: Attitude toward change brought by technology use, ATTT: Attitude toward technology, ATUS: Attitude 
toward technology use, BINT: Behavioural intention of technology use, COMP: Compatibility, CONS: Perceived 
Consistency, DA: Design aesthetics, DSR: Desire, ENJ: Perceived enjoyment, EOU: Perceived ease of use, FCON: 
Financial consequences, FLX: Flexibility, FUNC: Functionality, GOL: Goal, HBT: Habit, IMG: Image, INOV: 
Personal innovativeness, MOB: Mobility, NAV: Navigability, NOVL: Perceived novelty, OQLTY: Output quality, 
PAE: Positive anticipated emotions, PEC: Perception of external control, PLY: Technology playfulness, PRVSY: 
Privacy, PSTB: Past behaviour, RD: Result demonstrability, SCUR: Security, SELF: Technology self-efficacy, 
SFTY: Safety, SN: Subjective norm, SQLTY: Service quality, TQLTY: Technology quality, TRST: Trust, USFL: 
Perceived usefulness, VOL: Voluntariness, VSBL: Visibility. 
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4.14 Data Preparation 
The input and output values of the thirty-seven features (for a list, see Table 

4.5) and the target (i.e. use behaviour) were rescaled to the range 0 to 5. Since 

some features were evaluated using three statements, the averages of these 

statements’ values were considered when evaluating the performance of PTAM, 

DPTAM, FIPTAM and PTAI. When computing MAPE, we rescaled the data to avoid 

division by 0. 

4.15 Summary 
In this chapter we explained the contexts that PTAM, DPTAM, FIPTAM and 

PTAI cover, the kind of technology whose use the models predict, the features of 

PTAM and the sources from which these features were adapted. We also explained 

the theories, models, techniques and algorithms used to model and evaluate these 

four models. Additionally, we defined our data sources and explained how and why 

we collected data from them. We discussed each data source and why we chose 

it and explained the data validation and preparation process. In the following 

chapter, we discuss the modelling and evaluation of PTAM and present our findings 

and conclusions. 

 

 
 



151 
 

Chapter 5: Personal 
Technology 
Acceptance Model and 
Knowledge Discovery 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

5.1 Introduction 
In this chapter we apply steps 4 and 5 of the methodology proposed in 

Chapter 2 to model and evaluate a predictive and unstructured PTAM. We also 

apply step 6 to use mathematical technique for the knowledge discovery analysis. 

In the following sections, we cover our objectives in modelling PTAM, its 

components and our modelling techniques and evaluation metrics and elaborate 

on our findings by connecting our objectives with the achieved results. Additionally, 

we cover the approach we followed to discover knowledge, the application of this 

approach to discover new information, the findings of this approach by connecting 

the new information with the literature. In the last section, we summarise the 

chapter’s findings and explain its contributions to the technology acceptance 

literature. 

5.2 Objectives in Modelling Personal Technology 
Acceptance Model 

Addressing the gaps identified in Sections 3.7.1 and 3.7.2, our work in this 

chapter achieves the following objectives: 

1. To formulate a non-parsimonious and unstructured PTAM that predicts 

technology acceptance better than the current TAM and UTAUT. 

2. To introduce thirteen new features (attitude toward change brought by 

technology use, attitude toward technology, compatibility, desire, flexibility, 

functionality, mobility, navigability, past behaviour, positive anticipated 

emotions, safety, service quality and technology quality) to the technology 

acceptance literature and reinstate four previously rejected features (attitude 

toward technology use, perceived consistency, technology self-efficacy and 

visibility). 

3. To test and illustrate the influence of the data-driven methodology proposed 

in Chapter 2 on the current technology acceptance literature. 

4. To assess the performance of PTAM using several algorithms and multiple 

metrics before choosing the best-performing algorithm. 
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5. To evaluate the influences of PTAM’s features on predicting use behaviour 

and compare them with the current TAM and UTAUT literature. 

6. To identify the best predictor of PTAM’s features by applying partial 

derivatives sensitivity analysis. 

7. To analyse PTAM and apply partial derivatives to explore new relationship 

patterns between the thirty-seven features of PTAM and the target use 

behaviour.  

5.3 Modelling of Personal Technology Acceptance Model 
Table 4.5 lists the components of PTAM, which includes thirty-seven features 

comprising attributes related to human behaviour as well as technology design 

qualities.  

5.4 Evaluation of Personal Technology Acceptance Model 
As explained in Chapters 2 and 4, to test PTAM, we employed five algorithms: 

MLR, KNNR, DTR, MLPR and SVR. 

5.4.1 Multiple Linear Regression 
As depicted in Chart 5.4.1, we controlled for underfitting and overfitting in 

PTAM’s performance, which were eliminated. As shown in Table 5.4.1, with a 

MAPE value of 0.26, the training set learnt most of the data patterns and achieved 

acceptable accuracy (74%). PTAM achieved the best accuracy when applying 

MLR at a value of 66% (MAPE − 1) on the validation set. 

 

Table 5.4.1 Multiple Linear Regression Modelling of Personal Technology Acceptance 
Model 
𝑹²  Data set MAPE Accuracy 

(1-MAPE) 

0.603 
Training 0.26 0.74 

Validation 0.34 0.66 
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5.4.2 K-Nearest Neighbour Regression 
Table 5.4.2 demonstrates the average performance of KNNR based on 

these parameters. KNNR achieved the best performance using the distance 

function, with an R2 value of 0.99 and an accuracy of 64%. Given the MAPE value 

of 0.002 for the training set, it is safe to conclude that the distance algorithm learnt 

almost all the data patterns in the training set and consequently showed very high 

accuracy. Charts 5.4.2.1 and 5.4.2.2 illustrate the performance of the KNNR 

model for the two weight functions for the range of 1 to 100 neighbours. Note that 

MAPE values are averaged over this range of neighbours and the dataset. 
Table 5.4.2 K-Nearest Neighbours Regression Modelling of Personal Technology 
Acceptance Model 
No. of Nearest 
Neighbour  Weights 𝑹² Data Set MAPE Accuracy 

(1-MAPE) 

1–100 

Uniform 0.47 
Training 0.30 0.70 

Validation 0.36 0.64 

Distance 0.99 
Training 0.002 0.99 

Validation 0.36 0.64 

 

  Chart 5.4.1 Learning Curve of MLR 
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5.4.3 Decision Tree Regression 
Table 5.4.3 shows the performance of DTR in predicting technology use 

when applying PTAM according to the MAE and MSE parameters. DTR achieved 

the best performance in terms of MSE, with an R2 value of 0.99 and an accuracy 

of 63% on the validation set. The high MAPE value (0.004) makes it reasonable 

to conclude that DTR learnt almost all the data patterns of the training set. Charts 

Chart 5.4.2.1 Learning Curve of KNNR Uniform 

 

Chart 5.4.2.2 Learning Curve of KNNR Distance 
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5.4.3.1 and 5.4.3.2 depict the performance of DTR in terms of the best MAE and 

MSE criteria, respectively. Both charts show that the underfitting and overfitting of 

the model were controlled. 
Table 5.4.3 Decision Tree Regression Modelling of Personal Technology Acceptance 
Model 
Criterion 𝑹² Data Set MAPE Accuracy 

(1-MAPE) 

Best MAE 0.98 
Training 0.005 0.995 
Validation 0.39 0.61 

Best MSE 0.99 
Training 0.004 0.996 
Validation 0.37 0.63 

 

 
 

Chart 5.4.3.1 Learning Curve of DTR Best MAE 
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5.4.4 Multilayer Perceptron Regression 

The performance of MLPR according to various parameters is shown in 

Table 5.4.4. The best-performing algorithm is the logistic function with the LBFGS 

optimiser, as it has the highest R2 value (0.83) and an accuracy of 49%. With an 

MAPE value of 0.15 on the training set, the algorithm was deemed to have learnt 

most of the data patterns, indicating that it can be used to make predictions with 

the validation set. Chart 5.4.4illustrates the performance of MLPR using the 

logistic function and LBFGS optimiser and indicates that underfitting and 

overfitting were controlled in the modelling of PTAM. For the sake of brevity, the 

learning curves of the other algorithms are not presented. 
Table 5.4.4 Multilayer Perceptron Regression Modelling of Personal 
Technology Acceptance Model with One Hidden Layer, Alpha = 0.001 

Function Optimiser 𝑹² Data Set Neurons MAPE Accuracy 
(1-MAPE) 

TANH LBFGS 0.78 
Training average 1–10 0.16 0.84 

Validation average 1–10 0.43 0.57 

TANH SGD 0.57 
Training average 1–10 0.40 0.60 

Validation average 1–10 0.42 0.58 

TANH ADAM 0.70 
Training average 1–10 0.29 0.71 

Validation average 1–10 0.50 0.50 

Identity LBFGS 0.60 
Training average 1–10 0.26 0.74 

Validation average 1–10 0.38 0.62 

Identity SGD 0.59 
Training average 1–10 0.30 0.70 

Validation average 1–10 0.34 0.66 

Chart 5.4.3.2 Learning Curve of DTR Best MSE 
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Identity ADAM 0.59 
Training average 1–10 0.44 0.56 
Validation average 1–10 0.44 0.56 

Logistic LBFGS 0.83 
Training average 1–10 0.15 0.85 
Validation average 1–10 0.51 0.49 

Logistic SGD 0.55 
Training average 1–10 0.36 0.64 
Validation average 1–10 0.38 0.62 

Logistic ADAM 0.68 
Training average 1–10 0.24 0.76 
Validation average 1–10 0.36 0.64 

ReLU LBFGS 0.56 
Training average 1–10 0.25 0.75 
Validation average 1–10 0.41 0.59 

ReLU SGD 0.55 
Training average 1–10 0.28 0.72 
Validation average 1–10 0.35 0.65 

ReLU ADAM 0.49 
Training average 1–10 0.35 0.65 
Validation average 1–10 0.39 0.61 

 

 

5.4.5 Support Vector Regression 
SVR’s performance in modelling PTAM was compared using various 

parameters, with the error penalty parameter C ranging from 1 to 10 and the 

epsilon value set to 0.1. Table 5.4.5 shows the performance of SVR. SVR 

achieved the best performance using the POLY function, with an R2 value of 0.97 

and an accuracy of 50%. Since the MAPE value achieved on the training set was 

0.04, with an accuracy of 96%, the model was deemed acceptable for use in 

learning on new data in the validation set. Since SVR obtained the best R2 value 

Chart 5.4.4 Learning Curve of MLPR Logistic  
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when using the POLY function, the model’s performance is shown for only this 

function in Chart 5.4.5. 

 

 

 

5.4.6 Ranking of Personal Technology Acceptance Model’s 
Features Using Sensitivity Analysis 

Each of PTAM’s features contributes differently to the prediction of the target 

output (i.e. technology use) depending on the tool used. In comparing the five 

models’ performances, we focused on finding the algorithm that achieved the 

highest R2 value, the highest accuracy and the lowest MAPE on the training set. 

Although the linear estimation of PTAM in MLR had an acceptable R2 (0.603), the 

other algorithms performed better. Despite higher R2 values compared with SVR 

Table 5.4.5 Support Vector Regression Modelling of Personal Technology Acceptance Model 
Function 𝑹² Data Set Degree C Epsilon MAPE 

Accuracy 
(1-MAPE) 

Linear 0.575 Training 1 1–10 0.1 0.25 0.75 
Validation 1 1–10 0.1 0.37 0.63 

POLY 0.97 Training 3 1–10 0.4 0.04 0.96 
Validation 3 1–10 0.4 0.5 0.5 

RBF 0.847 Training 1 1–10 0.1 0.14 0.86 
Validation 1 1–10 0.1 0.26 0.74 

Chart 5.4.5 Learning Curve of SVR Polynomial 

 



160 
 

and MLPR, DTR and KNNR were excluded from the comparison for the following 

reasons. First, the structure of the tree produced by DTR differed for each iteration 

of the test (called an epoch) despite consistent modelling performance. When we 

applied cross-validation, we ran DTR with a different mixture of data across the 

training and validation sets in each epoch. We found different tree structures in 

each epoch, although the epochs had the same R2 and accuracy values. These 

differing tree structures indicate the inconsistency of the model upon which the 

algorithm’s computations are based. Each tree structure assigns certain ratios to 

variables, indicating different formulations of the model. This inconsistency led us 

to question the algorithm’s performance and, consequently, to exclude it. Second, 

we found that KNNR’s performance changed when we changed the order of the 

data. This is because KNNR found two neighbours with identical distances but 

different labels, which is justified by scikit-learn (Pedregosa et al., 2011). 

Therefore, we concluded that it would be more practical to exclude the DTR and 

KNNR results to avoid undermining the findings of our proposed model. 

The evaluation of the contributions of PTAM’s various features to the model 

was based on SVR-POLY, which was found to be the best predictive modelling 

algorithm. Sensitivity analysis was applied to measure each input variable’s 

influence on the target variable, following Saltelli (2002). According to Tsaih 

(1999), this approach serves as a gross indicator of key variables by measuring 

the effect that altering an input value has on the output. To measure each 

variable’s influence on the model, we computed its partial derivative, following 

Chiang (1984) and Griewank and Walther (2008). As the approach of computing 

each variable’s partial derivative has not yet been applied in the literature, we 

believe that the amount of knowledge discovered by using this technique is unique 

and invaluable.  

After finding all variables’ coefficients, we listed them in descending order 

(Table 5.4.6). Past behaviour was the most influential feature predicting 

technology use, and voluntariness was the least influential. The coefficient column 

represents each variable’s contribution to predicting the output value (i.e. use 

behaviour). The normalised coefficient column is computed by dividing each 
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variable’s coefficient by the total coefficients of the thirty-seven variables. In this 

way, each variable’s influence on the model is accurately clarified. 

Table 5.4.6 SVR-POLY Ranking of PTAM’s Features 
Feature Ranking Coefficient Normalised 

Coefficient 
Past Behaviour 1 24.47% 4.46% 
Desire 2 22.09% 4.03% 
Perceived Ease of Use 3 20.94% 3.82% 
Habit 4 20.11% 3.67% 
Self-Efficacy 5 18.49% 3.37% 
Visibility 6 18.29% 3.34% 
Perceived Enjoyment 7 18.27% 3.33% 
Result Demonstrability 8 18.26% 3.33% 
Technology Playfulness 9 17.32% 3.16% 
Privacy 10 17.30% 3.15% 
Attitude Toward Technology Use 11 17.28% 3.15% 
Financial Consequences 12 17.27% 3.15% 
Security 13 16.05% 2.93% 
Service Quality 14 16.04% 2.93% 
Safety 15 16.03% 2.92% 
Attitude Toward Change Brought by Technology Use 16 16.03% 2.92% 
Perceived Consistency 17 16.03% 2.92% 
Image 18 16.02% 2.92% 
Behavioural Intention of Technology Use 19 16.02% 2.92% 
Positive Anticipated Emotions 20 13.70% 2.50% 
Goal 21 13.68% 2.49% 
Perceived Usefulness 22 13.62% 2.48% 
Output Quality 23 13.61% 2.48% 
Navigability 24 13.61% 2.48% 
Personal Innovativeness 25 13.60% 2.48% 
Flexibility 26 13.46% 2.45% 
Design Aesthetics 27 13.31% 2.43% 
Mobility 28 12.12% 2.21% 
Perception of External Control 29 12.10% 2.21% 
Functionality 30 12.07% 2.20% 
Technology Quality 31 12.07% 2.20% 
Subjective Norm 32 12.06% 2.20% 
Trust 33 11.48% 2.09% 
Attitude Toward Technology 34 10.12% 1.85% 
Compatibility 35 10.09% 1.84% 
Perceived Novelty 36 9.35% 1.70% 
Voluntariness 37 -3.99% -0.73% 

 

5.5 Approach of Knowledge Discovery 
As shown in Section 5.4,, PTAM performed best with the SVR-POLY function. 

Here, we utilised the partial derivatives’ coefficients, computed using partial 

derivative formulas (Formulas 4.9.6.1–4.9.6.3) to discover knowledge and broaden 

our understandings of the influence of each feature on predicting use behaviour. 

Moreover, by drawing an XY chart of each feature’s values and the corresponding 
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predicted values of the target feature, we can identify the relationships between 

each input variable and the output variable. We used the gradient formula (Formula 

5.5.1) to find the predictive lines representing the relationships between each input 

and the output. Because the target variable was computed after using SVR-POLY 

to estimate PTAM, this target value reflects the collective effects of all variables. 

Our approach addresses other features’ interactions and influences on 

predicting the target variable when measuring one variable’s effect, as 

recommended by Griewank and Walther (2008). We created an XY chart with each 

variable’s values on the x-axis and the predicted target’s values on the y-axis. The 

target variable is the predicted value, computed by applying SVR-POLY to all the 

variables. In other words, the predicted value of the target was computed using this 

algorithm after assessing all of PTAM’s variables together. The drawn two-

dimensional chart thus illustrates each variable’s relationship with the predicted 

target variable, whose value was computed using all the variables. 

To compute the influence of each feature on the predicted target we 

considered the following. Suppose the prediction function (SVR-POLY) of PTAM is 

given as: 

y = f(x!, X!) (5.5.1) 
where 𝑦 is the output value estimated by employing SVR, xh is one variable of the 

thirty-seven variables and Xh is the vector representing the other thirty-six variables. 

To find the influence of each of PTAM’s features, we took  the following steps 

1- Fix the value of Xh  

2- Plot Formula 5.5.1 to understand how changes in values of xh will lead to 

changes in 𝑦’s values. 

In this way, we can understand whether xh’s impact on y is linear or nonlinear. 

Moreover, we can observe the impact of the strengths of the various impacts of xh 

on y in the different regions in which the value of xh may be located. 

Since PTAM performed best when employing SVR-POLY, the predictive line 

is expected to be either linear or non-linear. Based on this line, we can determine 
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the impact of changes in input on output and decide whether the relationship 

between each variable and the target variable is monotonic or non-monotonic. The 

inputs have five data points: 1, 2, 3, 4 and 5 (representing ‘very unlikely’, ‘unlikely’, 

‘neutral’, ‘likely’ and ‘very likely’, respectively). The outputs also have five data 

points: 1, 2, 3, 4 and 5 (representing ‘very likely unusable’, ‘unlikely to be usable’, 

‘neutral’, ‘likely usable’ and ‘very likely usable’, respectively). 

5.6 Application of Knowledge Discovery Approach 
In this section, we apply the approach described in the previous section to 

demonstrate the knowledge obtained about each feature. The analyses are 

ordered according to the ranking of features shown in Table 5.4.6. Charts were 

created by applying Formula 5.5.1 and following the steps described in the previous 

section. 

5.6.1 Past Behaviour 
Past behaviour was shown to be the best predictor of PTAM (see Table 

5.4.6). This feature was adapted from Perugini and Conner (2000), Perugini and 

Bagozzi (2001) and Bagozzi (2007). The sensitivity analysis in Section 5.4.6 

concluded that past behaviour was the most predictive feature of technology use. 

Ajzen (2011) also observed that past behaviour is the best predictor of planned 

behaviour. Chart 5.6.1 shows the positive relationship between past behaviour (X) 

and use behaviour (Y). The straight line clearly indicates that this relationship is 

linear and monotonic. 
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The linear relationship visualised in the chart indicates that, if end users of 

a technology have used that technology (or a similar technology) in the past, they 

will be more likely to use the technology in question. The monotonic nature of the 

relationship indicates that the more positive this previous behaviour is, the more 

willing users will be to use the new technology. This conclusion is in line with Ajzen 

and Driver (1992), Bagozzi and Kimmel (1995), Beck and Ajzen (1991), Leone et 

al. (1999), Norman and Conner (1996), Norman and Smith (1995), Perugini and 

Conner (2000) and Perugini and Bagozzi (2001), who all posited the positive 

influence of past behaviour on explaining a planned behaviour such as technology 

use. 

5.6.2 Desire 
Velleman (1997) and Malle and Knobe (1997) asserted that desire is distinct 

from intention and that the two have separate implications. In extending TPB, 

Perugini and Conner (2000) and Perugini and Bagozzi (2001) suggested including 

desire as a mediator of the effects of beliefs on behavioural intention. In other 

words, desire plays an indirect role in predicting planned behaviour (Bagozzi, 

1992, 2007). Chart 5.6.2 shows the influence of desire (X) on technology use (Y). 

The slightly curved line demonstrates that the relationship is non-linear and 

monotonic. 

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0 1 2 3 4 5 6

Y

X

Chart 5.6.1 Relationship of Past Behaviour and Predicted Use 
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As shown in the chart, an increase in the desire to use a technology will also 

increase end users’ willingness to use that technology: the stronger a user’s 

desire to use a technology, the more willing they are to use it. This conclusion is 

consistent with Perugini and Conner (2000) and Perugini and Bagozzi (2001), 

who demonstrated the positive influence of desire on planned behaviour. 

5.6.3 Perceived Ease of Use 
TAM (Davis, 1986, 1989, 1993; Davis et al., 1989) and UTAUT (Venkatesh et al., 

2003, 2012) proved that perceived ease of use is a determinant of behavioural intention 

and an indirect determinant of use behaviour. Chart 5.6.3 demonstrates the 

relationship between perceived ease of use (X) and use behaviour (Y). The curved 

line demonstrates that this relationship is non-linear and non-monotonic. 
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Chart 5.6.3 reveals that perceived ease of use has a positive influence on 

the predicted value of technology use. An increase in users’ perceptions of a 

technology’s ease of use increases their willingness to use it. This finding is in 

accordance with previous research (e.g. Davis, 1986, 1989, 1993; Davis et al., 

1989; Venkatesh et al., 2003, 2012). However, the influence of perceived ease of 

use subsides after a certain limit; beyond that point, increases in users’ 

perceptions of ease of use do not increase their willingness to use a technology. 

This has not been indicated in previous research. As demonstrated in Chart 5.6.3, 

increasing the input value from 4 to 5 only slightly increases the output value. This 

reveals that designing a slightly easy to use technology will improve its usability, 

but further improving this quality will not make users more likely to use it. 

5.6.4 Habit 
End users’ decisions to use technology are influenced by their habits: the 

automatically executed behaviours resulting from learning or performance of prior 

behaviours (Venkatesh et al., 2012). In this study, habit was shown to exert a 

direct positive influence on behavioural intention of technology use and an indirect 

influence on use itself. Chart 5.6.4 demonstrates the relationship between habit 

(X) and use behaviour (Y). The curved line illustrates that this relationship is non-

linear and non-monotonic. 
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When end users use a technology habitually, their willingness to use that 

technology increases. This supports Venkatesh et al.’s (2012) finding that habit 

positively influences technology use. However, our observation that habit’s 

influence on end users’ use decisions reverses once the habit becomes extremely 

familiar is new to the literature. We can infer from the non-monotonic relationship 

that excessive repeated and habitual use of a current technology is associated 

with aversion to using a new technology, leading end users to reduce their 

willingness to use the new technology. 

5.6.5 Technology Self-Efficacy 
End users judge a technology’s ease of use based on their own knowledge 

and skills. When users perceive that they can use a technology without others’ 

help or with little help, they perceive it as easy to use. Venkatesh and Davis (1996) 

and Venkatesh (2000) found that users’ self-efficacy directly influenced perceived 

ease of use and indirectly influenced technology use. Chart 5.6.5 demonstrates 

the relationship between technology self-efficacy (X) and use behaviour (Y). The 

straight line demonstrates that this relationship is linear and monotonic. 
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There is a positive relationship between technology self-efficacy and use of 

technology. An increase in end users’ perceptions of their self-efficacy increases 

their use behaviour. This increase in self-efficacy promotes users’ perception of 

the technology’s ease of use, which increases their willingness to use it. This 

conclusion supports the findings of Venkatesh and Davis (1996) and Venkatesh 

(2000). 

5.6.6 Visibility 
Drawing on Rogers’s (1983) DOI theory, Moore and Benbasat (1991) found 

that, when end users of a technology see others using it, their willingness to use 

it increases – that is, visibility has a positive influence on technology use. Although 

Venkatesh et al. (2003) found no direct or indirect influence of visibility on 

behavioural intention or use behaviour, our research found that visibility strongly 

predicted technology use behaviour, supporting Moore and Benbasat (1991). 

Moreover, we found that the predictive effect of visibility on use behaviour was 

stronger than its effect on behavioural intention. Chart 5.6.6 depicts the 

relationship between visibility (X) and use behaviour (Y). The slightly curved line 

demonstrates that this relationship is non-linear and monotonic. 
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The chart above clearly supports the conclusion that visibility directly 

influences use behaviour of technology. More importantly, the chart indicates that 

the more the end-users see others using technology, the more the users are 

willing to use it. Apparently the potential users are influenced by the views of 

current users and when the number of current users increases, the potential users 

are encouraged to use it. This finding supports the outcome of Moore and 

Benbasat (1991). 

5.6.7 Perceived Enjoyment 
Feelings of fun, joy and happiness that result from using technology are 

theorised to determine perceived ease of use and, indirectly, technology use 

behaviour. Venkatesh (2000) proved these effects of perceived enjoyment. Chart 

5.6.7 shows the relationship between perceived enjoyment (X) and use behaviour 

(Y). The slightly curved line demonstrates that this relationship is non-linear and 

monotonic. 
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The findings illustrated in the chart support Venkatesh (2000) and indicate 

that perceived enjoyment has a positive relationship with technology use: users 

are more willing to use a technology if they enjoy it. 

5.6.8 Result Demonstrability 
When users find that they can demonstrate the results they obtain from using 

a technology, the quality of such results and their relevance to the users’ tasks, 

the users are more likely to use the technology. Venkatesh and Davis (2000) 

found that result demonstrability has a significant and positive effect on perceived 

usefulness and, consequently, technology use. Chart 5.6.8 demonstrates the 

relationship between result demonstrability (X) and use behaviour (Y). The slightly 

curved line demonstrates that this relationship is non-linear and monotonic 
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Supporting Venkatesh and Davis (2000), the chart indicates a continuously 

increasing positive relationship between result demonstrability and use behaviour. 

End users are more likely to use technology that they perceive as producing 

tangible, discernible and conveyable results. This increase in result 

demonstrability tends to stimulate users’ perceptions of the technology’s 

usefulness, which in turn drives them to use it. 

5.6.9 Technology Playfulness 
End users’ feelings of spontaneity, creativeness, playfulness and originality 

when using a technology influence their motivation to use a technology (Webster 

& Martocchio, 1992). Technology playfulness has been demonstrated to exert a 

significant influence on users’ perceptions of a technology’s ease of use 

(Venkatesh, 2000). Chart 5.6.9 shows a similar effect for the relationship between 

perceived playfulness (X) and use behaviour (Y). The curved line demonstrates 

that this relationship is non-linear and monotonic. 
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As the chart indicates, users are more willing to use technology that they 

perceive as playful. Increases in users’ feelings of technology playfulness 

reinforce their perceptions of a technology’s ease of use, which increases their 

willingness to use it. This supports Venkatesh (2000), as it indicates that 

technology playfulness predicts use behaviour. 

5.6.10 Privacy 
Technology’s capability to protect users’ privacy and privately shared data 

plays a vital role in end users’ decisions to use technology. McLeod et al. (2009) 

found that privacy indirectly influences behavioural intention through risk and, in 

turn, affects technology use. Chart 5.6.10 illustrates the relationship between 

privacy (X) and use behaviour (Y). The curved line demonstrates that this 

relationship is non-linear and monotonic. 
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Supporting McLeod et al. (2009), the chart indicates a positive relationship 

between privacy and use behaviour. The more that end users perceive a 

technology as capable of protecting their privacy and shared data and information, 

the more likely they are to use it. Increases in a technology’s ability to protect 

users’ data stimulates users’ perceptions of that technology’s usefulness and 

ease of use, which drives them to use it. 

5.6.11 Attitude Toward Technology Use 
In the earliest version of TAM, Davis et al. (1989) postulated that attitude 

significantly affected behavioural intention. Attitude was then removed in the 

subsequent versions of the model. However, PTAM proved the influence of 

attitude in predicting use behaviour. Chart 5.6.11 shows the relationship between 

attitude (X) and use behaviour (Y). The curved line demonstrates that this 

relationship is non-linear and monotonic. 
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As the chart indicates, attitude has a positive relationship with technology 

use, supporting TAM1 (Davis et al., 1989). This relationship is continuously 

increasing, meaning that improvements in end users’ attitudes toward a 

technology increase the likelihood that they will decide to use that technology. 

5.6.12 Financial Consequences 
The financial consequences feature was adapted from the price value 

feature postulated by Venkatesh et al. (2012), which was proven to exert an effect 

on behavioural intention in UTAUT. In PTAM, price value was conceptualised as 

the more general feature of financial consequences, which includes several costs 

that end users incur as a result of using technology. Chart 5.6.12 illustrates the 

relationship between financial consequences (X) and use behaviour (Y).  The 

curved line demonstrates that this relationship is non-linear and monotonic. 
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Supporting Venkatesh et al. (2012), the chart indicates a positive 

relationship between financial consequences and technology use. If end users 

can bear the financial consequences of using a technology, they are more willing 

to use it. Other features associated with users’ ability to afford financial 

consequences play a role in this increasing relationship between financial 

consequences and use behaviour. For example, increases in a user’s income can 

increase that user’s willingness to use a technology. 

5.6.13 Security 
Etezadi-Amoli and Farhoomand (1996), Vijayasarathy (2004) and Wang et 

al. (2014) introduced the security feature to modelling use of technology. 

Vijayasarathy (2004) found security to be a significant determinant of behavioural 

intention and, in turn, technology use. Here, security is conceptualised as the 

protection of end users’ data and information from security breaches, viruses, 

hackers and other unauthorised access. Chart 5.6.13 shows the positive 

relationship between security (X) and technology use (Y). The straight line 

demonstrates that this relationship is linear and monotonic. 
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As the chart indicates, the more that end users perceive a technology as 

secure, the more usable they perceive that technology to be. This conclusion 

supports Etezadi-Amoli and Farhoomand (1996), Vijayasarathy (2004) and Wang 

et al. (2014) by showing that security is a direct and indirect determinant of end 

users’ technology use decisions. 

5.6.14 Service Quality 
Delone and McLean (2002) introduced service quality as a feature for 

evaluating the success of ISs. Here, quality was proven to have an influence on 

systems’ success, implying that service quality has a positive effect on technology 

use. Service quality entails the reliability, responsiveness, assurance, rapport and 

tangibleness of a service. Chart 5.6.14 demonstrates the relationship between 

service quality (X) and use behaviour (Y). The straight line indicates that this 

relationship is linear and monotonic. 
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No previous studies have assessed the direct influence of service quality on 

behavioural intention or use behaviour. However, Delone and McLean (2002) 

found that the influence of service quality was positive, at least on use behaviour. 

The result shown in Chart 5.6.14 supports and reinforces this assumption and 

indicates that the relationship between service quality and use behaviour is 

continuously positive. That is, users are more likely to use a technology if they 

perceive the associated service to be reliable, responsive, assured, tangible and 

delivered by providers with whom they have a good rapport. 

5.6.15 Safety 
Drawing on Seffah et al. (2006), safety is defined as a technology’s capability 

to avoid jeopardising end users’ personal safety, beyond data loss or a data 

breach. Previous research on technology acceptance has not included safety 

when explaining or predicting the behavioural intention of use behaviour. 

Therefore, the current research is the first to study safety’s effect in this regard. 

Chart 5.6.15 shows the relationship between safety (X) and use behaviour (Y). 

The curved line indicates that this relationship is non-linear and monotonic. 
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As the chart illustrates, the monotonic relationship indicates that increasing 

a technology’s capability to promote end users’ safety will increase users’ 

willingness to use that technology. 

5.6.16 Attitude Toward Change Brought by Technology Use 
Like safety, the feature of attitude toward change brought by technology use 

was first introduced to technology acceptance models in PTAM. Therefore, the 

present study is the first to evaluate its effect. Drawing on Keen (1980) and 

Thompson et al. (1991), we define attitude as the favourable feelings end users 

have with regard to the change that occurs as a result of using a technology. Chart 

5.6.16 illustrates the positive relationship between attitude toward change brought 

by technology use (X) and use behaviour (Y). The curved line indicates that this 

relationship is non-linear and non-monotonic. 
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Users’ willingness to use a technology increases with their approval of the 

consequences of using that technology. After a certain point, however, this 

approval does not further promote use behaviour. This indicates that the change 

brought about by the use of technology can be accepted with little improvement 

in users’ conditions. 

5.6.17 Perceived Consistency 
Venkatesh et al. (2003) excluded consistency from UTAUT because it had 

no significant linear relationship with behavioural intention. Following Moore and 

Benbasat (1991), consistency refers to a technology’s ability to avoid violating end 

users’ beliefs and values, fulfil their needs and align with their past experiences.  

Chart 5.6.17 illustrates the positive relationship between perceived consistency 

(X) and use behaviour (Y). The straight line indicates that this relationship is linear 

and monotonic. 
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In sum, the more that a technology is perceived by end users as consistent 

with their beliefs and values, able to fulfil their needs and compliant with their past 

experiences, the more willing they are to use it. 

5.6.18 Image 
The influence of social image on technology end users is another vital 

catalyst of their decisions about technology use. According to Venkatesh and 

Davis (2000), how technology use enhances users’ images in their social systems 

has a significant and positive impact on their perceptions of the technology’s 

usefulness and, subsequently, on their behavioural intention to use the 

technology. Chart 5.6.18 illustrates the relationship between image (X) and use 

behaviour (Y). The straight line demonstrates that this relationship is linear and 

monotonic. 

 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5 6

Y

X

Chart 5.6.17 Relationship of Perceived Consistency and 
Predicted Use Behaviour



181 
 

 

Increasing end users’ perceptions that using a technology will reinforce their 

status in their society increases their willingness to use that technology. 

Supporting Venkatesh and Davis (2000), this relationship is monotonic: the more 

users feel that using a technology improves their image, the more willing they are 

to use it.  

5.6.19 Behavioural Intention 
In TAM and UTAUT research, intention has been found to be the most 

important feature in determining technology use. Davis et al. (1989) were the first 

to prove the significant influence of behavioural intention in explaining use 

behaviour. Chart 5.6.19 shows the positive relationship between behavioural 

intention (X) and use behaviour (Y). The straight line demonstrates that this 

relationship is linear and monotonic. 
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Intention is a predictor of use behaviour, and increasing users’ intention to 

use a technology makes them more likely to use it. This relationship is in line with 

Davis (1993), Davis et al. (1989), Davis and Venkatesh (1996), Venkatesh (2000), 

Venkatesh and Davis (2000), Venkatesh and Bala (2008) and Venkatesh et al. 

(2003, 2012). As it is linearly monotonic, further increases in users’ intentions 

result in additional increases in their use behaviour. 

5.6.20 Positive Anticipated Emotions 
In extending TPB, Perugini and Conner (2000) and Perugini and Bagozzi 

(2001) found that positive anticipated emotions indirectly predicted planned 

behaviour. Chart 5.6.20 shows the positive relationship between positive 

anticipated emotions (X) and use behaviour (Y). The curved line illustrates that 

this relationship is non-linear and monotonic. 
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Supporting Perugini and Conner (2000), Perugini and Bagozzi (2001) and 

Bagozzi (2007), an increase in end users’ positive emotions – such as excitement, 

delight, gladness, happiness and satisfaction – results in a greater likelihood that 

they will use the technology. 

5.6.21 Goal 
Although previous research has not evaluated the influence of goal on either 

TAM or UTAUT, Venkatesh and Davis (2000) conceptualised the cognitive 

evaluation of whether using a technology achieves the end user’s goal as job 

relevance. They found that job relevance significantly affected perceived 

usefulness and, in turn, use behaviour. Perugini and Conner (2000) and Perugini 

and Bagozzi (2001) created the goal-oriented model of behaviour and found it to 

be more explanatory than TPB, reinforcing the influence of goal in predicting use 

behaviour. Chart 5.6.21 demonstrates the positive relationship between goal (X) 

and use behaviour (Y). The curved line indicates that this relationship is non-linear 

and monotonic. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 1 2 3 4 5 6

Y

X

Chart 5.6.20 Relationship of Positive Anticipated Emotions and 
Predicted Use Behaviour



184 
 

 

Users are more willing to use technology that leads to the achievement of 

their goals. This conclusion supports previous research that has suggested that 

goal is a crucial predictor of use behaviour (e.g. Bagozzi, 2007; Perugini & 

Bagozzi, 2001; Perugini & Conner, 2000; Venkatesh & Davis, 2000). 

5.6.22 Perceived Usefulness 
When formulating TAM, Davis (1989) postulated that end users’ perceptions 

of a technology’s utility directly influenced their behavioural intentions. TAM 

(Davis, 1986, 1989, 1993; Davis & Venkatesh, 1996; Davis et al., 1989; 

Venkatesh & Bala, 2008; Venkatesh & Davis, 2000) and UTAUT (Venkatesh et 

al., 2003, 2012) proved this influence and found that perceived usefulness had a 

direct effect on behavioural intention. Chart 5.6.22 illustrates the positive 

relationship between perceived usefulness (X) and use behaviour (Y). The curved 

line indicates that this relationship is non-linear and non-monotonic. 
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When end users’ perceptions of a technology’s usefulness increase, their 

use behaviours also increase. However, after a certain point, the effect of this 

usefulness belief diminishes. This conclusion is affirmed by the slight increase in 

the line in the chart above, supporting Davis (1986, 1989, 1993), Davis et al. 

(1989), Davis and Venkatesh (1996), Venkatesh (2000), Venkatesh and Davis 

(2000), Venkatesh et al. (2003, 2012) and Venkatesh and Bala (2008). 

5.6.23 Output Quality 
Navigability, adapted from Seffah et al. (2006), was proposed in PTAM as 

an addition to TAM and UTAUT and was proven to have an effect on predicting 

use behaviour. Chart 5.6.23 shows the positive relationship between navigability 

(X) and use behaviour (Y). The curved line indicates that this relationship is 

monotonic and non-linear. 
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This indicates that improving a technology’s ability to enable end users to 

efficiently and easily move around it and experience all its features increases their 

willingness to use it. 

5.6.24 Navigability 
Personal innovativeness, described as end users’ ability to try out new 

technologies, has been proven to influence perceived ease of use and perceived 

usefulness and, indirectly, behavioural intention and use behaviour (Lu et al., 

2005). Chart 5.6.24 illustrates the relationship between personal innovativeness 

(X) and use behaviour (Y). The curved line indicates that this relationship is 

monotonic and non-linear. 
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This relationship demonstrates that an increase in end users’ personal 

innovativeness increases their willingness to use technology. In other words, the 

relationship is increasingly positive, supporting Lu et al.’s (2005) conclusion that 

personal innovativeness plays a positive role in end users’ decisions to use 

technology. 

5.6.25 Personal Innovativeness 
Flexibility, which we adapted from Seffah et al. (2006), was proven to predict 

use behaviour in the evaluation of PTAM. Chart 5.6.25 illustrates the relationship 

between personal innovativeness (X) and use behaviour (Y). The curved line 

indicates that this relationship is monotonic and non-linear. 
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This relationship demonstrates that an increase in end users’ personal 

innovativeness increases their willingness to use technology. In other words, the 

relationship is increasingly positive, supporting Lu et al.’s (2005) conclusion that 

personal innovativeness plays a positive role in end users’ decisions to use 

technology. 

5.6.26 Flexibility 
Flexibility, which we adapted from Seffah et al. (2006), was proven to predict 

use behaviour in the evaluation of PTAM. Chart 5.6.26 shows the relationship 

between flexibility (X) and use behaviour (Y). The curved line indicates that this 

relationship is monotonic and non-linear. 
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Chart 5.6.26 illustrates that an increase in a technology’s ability for end users 

to tailor its interface to fit their personal preferences increases users’ willingness 

to use it. This relationship is positively increasing: when flexibility increases, use 

behaviour increases. Our research is the first to prove the positive influence of 

flexibility on use behaviour. 

5.6.27 Design Aesthetics 
Drawing on the research of Cyr et al. (2006), Li and Yeh (2010) and Alwabel 

et al. (2020), we introduced the design aesthetics feature to PTAM. Previous 

research has demonstrated the influence of design aesthetics on perceived 

enjoyment, perceived ease of use, perceived usefulness and, indirectly, 

behavioural intention and use behaviour. Chart 5.6.27 illustrates the relationship 

between design aesthetics (X) and use behaviour (Y). The curved line indicates 

that this relationship is non-linear and monotonic. 
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Supporting Cyr et al. (2006), Li and Yeh (2010) and Alwabel et al. (2020), 

this relationship demonstrates that good aesthetic design positively influences 

technology use behaviour. This relationship is not monotonic: further increases in 

design aesthetics do not continue to increase use behaviour. The chart also 

reveals crucial information that has not been discovered in previous research: 

very high levels of design aesthetics have a negative effect on technology use 

behaviour. This conclusion is supported by the decrease in the use behaviour 

value when the design aesthetics value increases from 4 to 5. 

5.6.28 Mobility 
Mobility, which we adapted from Seffah et al. (2006), was proven to predict 

use behaviour in the evaluation of PTAM. Chart 5.6.28 illustrates the relationship 

between mobility (X) and use behaviour (Y). The curved line indicates that this 

relationship is non-monotonic and non-linear. 
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An increase in a technology’s mobility increases users’ willingness to use it. 

However, increasing a technology’s mobility beyond a certain point does not make 

users more likely to use it – a new finding in the literature. 

5.6.29 Perception of External Control 
End users’ perceptions of the availability of the knowledge, resources and 

opportunities required to use a technology influence their motivation to use it. 

Venkatesh (2000) demonstrated that the perception of external control exerts a 

significant influence on users’ perceptions of the ease of use of a technology. 

Chart 5.6.29 demonstrates the relationship between the perception of external 

control (X) and use behaviour (Y), which is similar to the effect observed for 

technology playfulness. The curved line demonstrates that this relationship is non-

linear and non-monotonic. 
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Supporting Venkatesh (2000), when end users feel that there are adequate 

resources to enable them to access a technology, they decide to use it. The new 

information presented in Chart 5.6.29 is that increasing these resources beyond 

a certain point does not further improve use decisions. This conclusion is 

supported by the unchanged value of use behaviour when the input value 

increases from 4 to 5. 

5.6.30 Functionality 
Drawing on Goodwin (1987) and ISO 25010:2011 (ISO & IEC, 2011), we 

introduced technology functionality to PTAM. Chart 5.6.30 indicates the 

relationship between functionality (X) and use behaviour (Y). The curved line 

indicates that this relationship is non-monotonic and non-linear 
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End users’ decisions to use a technology are positively influenced by its 

functionality. Ensuring that a technology complies with users’ requirements by 

suiting their needs, working correctly and operating in compliance with regulations 

will encourage its use. However, use decisions are not improved if the technology 

becomes highly functional. This conclusion is supported by the unchanged value 

of the output when the input value increases from 4 to 5. 

5.6.31 Technology Quality 
PTAM introduced the feature of technology quality to TAM and UTAUT. 

Technology quality has been proven to positively influence the success of ISs in 

previous research (e.g. Delone & McLean, 1992, 2002, 2003; Petter et al., 2013). 

Chart 5.6.31 indicates the positive relationship between technology quality (X) and 

use behaviour (Y). The curved line indicates that this relationship is non-

monotonic and non-linear. 
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Increasing technology quality by ensuring the reliability of hardware and 

software, availability of expected features, timely responsiveness and effective 

recovery after sudden stoppages increases users’ willingness to use it. This is 

consistent with the findings of Delone and McLean (1992, 2002, 2003) and Petter 

et al. (2013). Interestingly, this increase in technology quality is limited: further 

improvement to high levels of quality does not further enhance the likelihood that 

users will use a technology. This conclusion is supported by the unchanged output 

value when the input value increases from 4 to 5. 

5.6.32 Subjective Norm 
The influence of subjective norm on end users plays a role in their decisions 

about technology use. According to Venkatesh and Davis (2000), end users’ 

perceptions of the social pressure to use a technology have a significant and 

positive impact on their perceptions of its usefulness and, consequently, 

behavioural intention to use it. Chart 5.6.32 illustrates the positive relationship 

between subjective norm (X) and use behaviour (Y). The curved line demonstrates 

that the relationship is non-linear and non-monotonic. 
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Supporting Venkatesh and Davis (2000), an increase in subjective norm 

increases users’ willingness to use a technology. After a certain point, however, 

this increase in subjective norm does not continue to promote users’ use 

decisions; the value of the output remains unchanged when the input value 

increases from 4 to 5. 

5.6.33 Trust 
Trust – defined as the extent to which end users expect that a technology 

and its vendor and supplier will fulfil their promises – has been proven to influence 

perceived ease of use, perceived usefulness and behavioural intention and, in 

turn, to indirectly influence use behaviour (Carter & Belanger, 2005; Carter & 

Schaupp, 2008; Gefen, 2000; Gefen et al., 2003; Jarvenpaa et al., 2000; Pavlou, 

2003; Slyke et al., 2004; Warkentin & Gefen, 2002; Welch et al., 2005). Chart 

5.6.33 illustrates the relationship between trust (X) and use behaviour (Y). The 

curved line indicates that this relationship is monotonic and non-linear. In line with 

previous work, the more that end users trust a technology, the more willing they 

are to use it. 
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5.6.34 Attitude Toward Technology 
Attitude toward technology, which was first suggested by Keen (1980), was 

found by Davis (1989) to directly influence behavioural intention before Davis and 

Venkatesh (1996) later removed it. PTAM was able to capture attitude’s influence 

on use behaviour. Chart 5.6.34 shows the relationship between attitude toward 

technology (X) and use behaviour (Y). The curved line indicates that this 

relationship is non-monotonic and non-linear. 
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continuously increasing: an increase in attitude does not improve users’ 

willingness to use it after a certain point, as indicated in Chart 5.6.34.  

5.6.35 Compatibility 
Compatibility, which we adapted from Seffah et al. (2006), was proven to 

predict use behaviour in the evaluation of PTAM. Chart 5.6.35 illustrates the 

relationship between compatibility (X) and use behaviour (Y). The curved line 

indicates that this relationship is non-monotonic and non-linear. 

 
End users’ decisions to use a technology are positively influenced by its 

compatibility. A technology’s capability to display correctly and work with different 

platforms and other technologies encourages users to use it. However, their use 
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This conclusion is supported by the unchanged value of the output when the input 
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use behaviour (Wells et al., 2010). Chart 5.6.36 illustrates the relationship 
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between perceived novelty (X) and use behaviour (Y). The curved line indicates 

that this relationship is non-monotonic and non-linear. 

 

Supporting Wells et al. (2010), users’ admiration of a novel technology 

encourages them to use it, which indicates that their use behaviour is stimulated 

by using novel technology. The chart also illustrates the new finding that this 

relationship is not sustainable. That is, when an already novel technology is 

equipped with additional novel attributes, features, unmatched design or optimal 

services, the likelihood that users will use it does not increase further. 

5.6.37 Voluntariness 
Voluntariness, which Venkatesh and Davis (2000) introduced to TAM as a 

moderating feature, influences the relationship between subjective norm and 

behavioural intention and, in turn, affects use behaviour. The effect of subjective 

norm on behavioural intention is insignificant if the use of a technology is voluntary 

(Venkatesh & Bala, 2008; Venkatesh & Davis, 2000). Chart 5.6.37 presents the 

relationship between voluntariness (X) and use behaviour (Y). The curved line 

indicates that this relationship is non-monotonic and non-linear. The values 

representing voluntariness are 1–2, indicating voluntary use, and 4–5, indicating 

mandatory use. 
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When end users perceive the use of a technology as voluntary, they are 

more likely to use it. On the other hand, when the use of a technology is perceived 

as non-voluntary, users are less likely to use it. The illustrated relationship reflects 

the postulations of Venkatesh and Davis (2000) and Venkatesh and Bala (2008) 

that users’ behavioural intentions and use behaviour are stimulated in voluntary 

settings. 

In summary, as Table 5.6 outlines, the relationships between each of the 

thirty-seven features and the target (i.e. use behaviour) can be classified into one 

of four categories: 

1- Linear, positive and monotonic; 

2- Non-linear, positive and monotonic; 

3- Non-linear, positive and non-monotonic; or 

4- Non-linear, positive and negative, and non-monotonic. 
Table 5.6 Summary of Relationships Between Each Feature of Proposed Technology 
Acceptance Model and Use Behaviour 
Category Features Linear / 

Non-linear 
Positive/ 
Negative 

Monotonic/ 
Non-monotonic 

1 

Past Behaviour Linear Positive Monotonic 

Technology Self-Efficacy Linear Positive Monotonic 

Security Linear Positive Monotonic 

Service Quality Linear Positive Monotonic 

Perceived Consistency Linear Positive Monotonic 

Image Linear Positive Monotonic 

Behavioural Intention Linear Positive Monotonic 
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2 

Desire Non-linear Positive Monotonic 

Visibility Non-linear Positive Monotonic 

Perceived Enjoyment Non-linear Positive Monotonic 

Result Demonstrability Non-linear Positive Monotonic 

Technology Playfulness Non-linear Positive Monotonic 

Privacy Non-linear Positive Monotonic 
Attitude Toward Use of 
Technology Non-linear Positive Monotonic 

Financial Consequences Non-linear Positive Monotonic 

Safety Non-linear Positive Monotonic 
Positive Anticipated 
Emotions Non-linear Positive Monotonic 

Goal Non-linear Positive Monotonic 

Output Quality Non-linear Positive Monotonic 

Navigability Non-linear Positive Monotonic 

Personal Innovativeness Non-linear Positive Monotonic 

Flexibility Non-linear Positive Monotonic 

Trust Non-linear Positive Monotonic 

3 

Perceived Ease of Use Non-linear Positive Non-monotonic 
Attitude Toward Change 
Brought by Technology Use Non-linear Positive Non-monotonic 

Perceived Usefulness Non-linear Positive Non-monotonic 

Mobility Non-linear Positive Non-monotonic 
Perception of External 
Control Non-linear Positive Non-monotonic 

Functionality Non-linear Positive Non-monotonic 

Technology Quality Non-linear Positive Non-monotonic 

Subjective Norm Non-linear Positive Non-monotonic 

Attitude Toward Technology Non-linear Positive Non-monotonic 

Compatibility Non-linear Positive Non-monotonic 

Perceived Novelty Non-linear Positive Non-monotonic 

4 

Habit Non-linear Positive then 
negative Non-monotonic 

Design Aesthetics Non-linear Positive then 
negative Non-monotonic 

Voluntariness Non-linear 

Positive or 
negative, 

depending on 
setting 

Non-monotonic 

5.7 Findings 
With very limited exceptions, the vast majority of the TAM and UTAUT 

literature has applied SEM to predict the use of various technologies. However, as 

SEM is an explanatory modelling approach, it should instead be used to examine 

interactions among the various determinants of use behaviour. In the present 

chapter, data-driven ML-based modelling was used to develop a predictive (rather 



201 
 

than explanatory) PTAM. Since the current explanatory modelling of technology 

acceptance is theory driven, as explained in Section 3.2.3, ML-based modelling is 

expected to be unique in its ability to reflect the underlying data. In practice, optimal 

performance may not be revealed without examining using different linear and non-

linear algorithms for PTAM. Therefore, we employed multiple algorithms to assess 

PTAM’s performance and find the best-performing model. 

Each of the five tested algorithms (MLR, KNNR, DTR, MLPR and SVR) 

produced a different estimation of PTAM, as the listed parameters demonstrate. 

Table 5.7 and Chart 5.7 summarise the best-performing algorithms. 
Table 5.7 Summary of Best-Performing Algorithms for Personal Technology Acceptance 
Model 
Algorithm Function 𝑹² Data Set Accuracy 

(1-MAPE) 

MLR Linear 0.603 Training 0.74 
Validation 0.66 

KNNR Distance 0.99 Training 0.99 
Validation 0.64 

DTR Best MSE 0.99 Training 0.996 
Validation 0.63 

MLPR Logistic 
(LBFGS) 0.83 

Training 
average 0.85 

Validation 
average 0.49 

SVR POLY 0.97 Training 0.96 
Validation 0.5 

 

  
 

 

Chart 5.7 Summary of Best-Performing Algorithms for PTAM 

 



202 
 

SVR was found to be the best-performing algorithm, as it attained a higher R2 

value than MLR or MLPR. As SVR estimated PTAM using the POLY function, it is 

safe to conclude that not all interactions among model variables are linear. 

Compared with the R2 value for MLR, the higher R2 value for SVR-POLY is a clear 

indication that PTAM is better estimated using the POLY algorithm. Unsurprisingly, 

the estimated R2 value of SVR-POLY is higher than those of TAM3 (Venkatesh & 

Bala, 2008) and UTAUT (Venkatesh et al., 2003, 2012), indicating the superiority 

of the proposed PTAM and achieving the first objective (see Section 5.2). More 

importantly, contradicting the conclusions of Chong (2013a) and Leong et al. (2018) 

that technology acceptance is best estimated using an ANN, this chapter 

demonstrates that SVR-POLY is more predictive than ANNs. 

Moreover, the average accuracy of SVR-POLY is lower than that of MLR, 

implying that SVR-POLY estimated PTAM with low parameter error. This reinforces 

the conclusion that PTAM is better estimated by applying both linear and non-linear 

algorithms, which achieves the first objective (see Section 5.2). A similar result was 

highlighted by Venkatesh and Goyal (2010), who observed that linear models 

oversimplify the performance of technology adoption models. More importantly, this 

finding supports the observation of Chiang et al. (2006) that not all interactions 

among the variables of linear regression models are compensatory – that is, in 

PTAM, a feature’s small or non-existent influence is not compensated for by the 

effect of another feature. The present finding, obtained by applying SVR-POLY, 

entails assessing a mixture of linear and non-linear interactions among PTAM’s 

variables. 

Since none of the features had a weight of 0 (see the rankings provided in 

Table 5.4.6), all features can be deemed relevant to the proposed PTAM, which 

achieves the first, second, third and fifth objectives (see Section 5.2). As SVR-

POLY produced the best predictions, the following analysis uses its ranking of 

variables (shown in Table 5.4.6). Among the thirty-seven features predicting 

technology use, the most important is past behaviour. This result reflects the impact 

of a data-driven methodology on the current literature, which achieves the third and 

sixth objectives (see Section 5.2). Such a result contrasts with the existing research 
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on TAM and UTAUT, which maintains that behavioural intention of technology use 

is the most influential determinant of use behaviour (Davis et al., 1989; Venkatesh 

et al., 2003). Moreover, this finding opposes Davis and Venkatesh’s (1996) claim 

that research in psychology and TAM supports the conclusion that behavioural 

intention is the single best predictor of technology use. The finding that past 

behaviour is the most important predictor is supported by Ajzen (2011); although 

past behaviour is considered the best predictor of planned behaviour, it was 

excluded from TPB (from which TAM was adapted) because it did not exhibit a 

significant linear relationship with behavioural intention. By utilising linear and non-

linear algorithms such as SVR-POLY, our research reveals past behaviour’s 

influence on predicting technology use, which prior research based on TAM and 

UTAUT has overlooked. 

Despite the postulated influence of behavioural intention in TAM and UTAUT 

in explaining end users’ motivation to use technology, the intention feature was 

ranked nineteenth  in importance. As shown in Table 5.4.6, the rankings of some 

other features also differ from their rankings in the literature, indicating the impact 

of the proposed data-driven methodology on the technology acceptance literature 

and thus achieving the third objective (see Section 5.2). Desire, perceived ease of 

use, habit, technology self-efficacy, visibility, perceived enjoyment, result 

demonstrability, technology playfulness, privacy, attitude toward use of technology, 

financial consequences, security, service quality, safety, attitude toward change 

brought by technology use, perceived consistency and image were ranked higher 

than behavioural intention, indicating their greater importance in predicting 

technology use. The positioning of these seventeen features immediately after past 

behaviour reinforces the finding that end users’ behavioural intentions to use 

technology are less important than previous research would suggest. 

Another key finding of our sensitivity analysis is the ranking of five features: 

attitude toward technology, attitude toward technology use, visibility, perceived 

consistency and technology self-efficacy. Despite having been only recently 

introduced to the literature, attitude toward technology was found to influence 

prediction of technology use in PTAM. Although attitude toward technology use 
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was removed from TAM because it was difficult to disentangle subjective norm’s 

direct effects on intention from its indirect effects via attitude (Davis & Venkatesh, 

1996), we found – using SVR-POLY – that attitude toward technology use and 

subjective norm have strong and separate effects on predicting technology use. 

Additionally, attitude toward technology use, visibility, perceived consistency and 

technology self-efficacy were excluded from UTAUT because they showed no 

significant linear relationships with behavioural intention (Venkatesh et al., 2003). 

Nonetheless, SVR-POLY was able to capture these four features’ influences on 

technology use and ranked them even higher than the intention feature. This result 

achieves the second objective (see Section 5.2). 

In TAM, perceived ease of use and perceived usefulness combine to form the 

second most important predictor of technology use after behavioural intention 

(Davis, 1989; Venkatesh & Bala, 2008; Venkatesh & Davis, 2000). However, as 

shown in Table 5.4.6, these two features are ranked third and 22nd, respectively, 

highlighting that their roles in explaining technology use are smaller than expected. 

Nonetheless, subjective norm is ranked lower than perceived usefulness and 

perceived ease of use, implying that it is less influential, supporting the 

assumptions of TAM and UTAUT. In other words, in deciding to use technology, 

end users consider the social pressure to use certain technology as less important 

than their perceptions of its ease of use and utility. This finding is consistent with 

Venkatesh and Davis’s (2000) treatment of subjective norm as a determinant of 

perceived usefulness, which implies that the former is less important than the latter. 

The rankings of the result demonstrability and image features imply that they 

are more important than the features that they explain. Their rankings demonstrate 

their superiority over perceived usefulness in explaining use behaviour, implying 

that they are direct determinants of technology use. This opposes Venkatesh and 

Davis’s (2000) claim that these features affect technology use only indirectly 

(through the usefulness–intention relationship). Goal (referred to in TAM as job 

relevance) is also positioned differently in PTAM than in TAM. In TAM, goal is 

assumed to be one of the determinants of perceived usefulness and is ranked 

higher than usefulness, implying that usefulness is less influential than goal; in 
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other words, in making their technology adoption decisions, end users regard the 

achievement of their goals as more important than the benefits of using the 

technology. We found that only output quality and subjective norm were ranked 

below perceived usefulness, supporting Venkatesh and Davis (2000). Additionally, 

the ranking of subjective norm below image agrees with Venkatesh and Davis’s 

(2000) claim that subjective norm influences image. 

The ranking  (Table 5.4.6) supports Venkatesh (2000) in that the four 

determinants of perceived ease of use (technology self-efficacy, perceived 

enjoyment, technology playfulness and perception of external control) are less 

important than perceived ease of use. This implies that these factors explain 

perceived ease of use and indirectly influence technology use. The ranking of 

personal innovativeness (twenty-fifth) indicates its lesser influence on predicting 

technology use compared with behavioural intention, perceived ease of use and 

perceived usefulness. As this ranking places personal innovativeness below its 

dependent features, this outcome is consistent with Lu et al.’s (2005) conclusion 

that personal innovativeness determines perceived ease of use and perceived 

usefulness. 

As shown in Table 5.4.6, emotions are ranked as less important than the 

feature that they explain, which supports previous research. As explained in 

Section 4.5.14, the emotions feature comprises perceived enjoyment, perceived 

playfulness and positive anticipated emotions. This result is in line with TAM’s 

treatment of these three features as determinants of perceived ease of use. 

However, habit is ranked very highly compared with behavioural intention, which 

runs counter to the findings of Venkatesh et al. (2012). Habit is ranked higher than 

the feature it determines, which likewise opposes Venkatesh et al.’s (2012) 

postulation that habit is a determinant of behavioural intention.  

Cyr et al. (2006) introduced the design aesthetics feature and found it to be a 

determinant of perceived usefulness, perceived ease of use and perceived 

enjoyment. Li and Yeh (2010) found that the design aesthetics feature was only a 

determinant of perceived usefulness and perceived ease of use. Moreover, in 

testing the influence of design aesthetics on TAM3, Alwabel et al. (2020) found that 
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this feature had a significant relationship only with perceived enjoyment. When 

using SVR-POLY, the design aesthetics feature was ranked lower than these three 

features, implying that design aesthetics have a strong influence on perceived 

usefulness, perceived ease of use and perceived enjoyment. This supports the 

findings of Cyr et al. (2006), Li and Yeh (2010) and Alwabel et al. (2020). 

Perceived novelty was associated with experience of technology use and was 

shown to significantly influence behavioural intention through attitude toward 

technology use (Wells et al., 2010). Its ranking demonstrates that this feature has 

an influence on technology use and positions it below attitude toward technology 

use, supporting Wells et al.’s (2010) conclusion that novelty influences attitude. 

Financial consequences (termed price value in UTAUT2) are positioned higher 

than behavioural intention, opposing Venkatesh et al. (2012) by indicating that 

financial consequences are more influential than intention in predicting use 

behaviour. Although trust was hypothesised in the context of internet-based 

technology adoption, the ranking of SVR-POLY successfully captured its influence 

on both internet- and non–internet-based technologies. The placement of trust 

below intention toward technology use, perceived usefulness and perceived ease 

of use supports previous research with regard to two relationships. First, this 

ranking supports trust’s direct relationship with behavioural intention, aligning with 

Carter and Belanger (2005), Carter and Schaupp (2008), Gefen (2000), Gefen et 

al. (2003), Jarvenpaa et al. (2000), Slyke et al. (2004), Warkentin and Gefen (2002) 

and Welch et al. (2005). Second, this positioning supports the direct effect of trust 

on perceived usefulness and perceived ease of use, which is in line with the 

findings of Pavlou (2003). 

The position of voluntariness as the lowest-ranked feature has three 

implications. First, end users experience low social pressure to use technology. 

Second, the use of the tested technologies is free of – or at least not strongly 

affected by – use enforcement. This may be attributed to the fact that the use of 

the tested technologies was classified here as personal rather than professional, 

which supports Venkatesh’s (2000) observation that end users experience feelings 

of enforced use primarily in organisational settings. Nonetheless, it is too early to 
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make such a judgement, as only two participants chose the Tesla EV (the only 

technology in the study whose use could be enforced). This may explain why the 

influence of voluntariness on the use of personal technologies is ranked lowest 

according to SVR-POLY; that is, the feature of voluntariness might have been 

ranked higher had more participants evaluated their use of the Tesla EV. Third, the 

negative value of the ranking is indicative of the negative relationship between 

voluntariness and the target value: end users are less willing to use technology 

when use is non-voluntary. This supports Venkatesh and Davis’s (2000) statement 

that, when use is mandatory, subjective norm positively affects intention, implying 

that the influence of voluntariness is positive when technology use is enforced. 

Privacy and security are ranked tenth and thirteenth, respectively (see Table 

5.4.6). This demonstrates end users’ awareness of security breaches, data misuse 

and privacy invasions involving technology, especially technology that can 

communicate via the internet. Placing security below and privacy higher than 

attitude toward technology use supports Vijayasarathy’s (2004) finding that security 

influences attitude but privacy does not. However, ranking security and privacy 

higher than behavioural intention indicates that they are more influential than 

intention, which opposes the findings of Vijayasarathy (2004) and McLeod et al. 

(2009). Moreover, the placement of security above perceived usefulness and 

behavioural intention contradicts Wang et al. (2014), who found that security 

influenced usefulness and behavioural intention. 

The SVR-POLY model proved successful in demonstrating the predictive 

power of the newly introduced features, achieving the second objective (see 

Section 5.2). The influences of attitude toward change brought by technology use, 

attitude toward technology, compatibility, desire, flexibility, functionality, mobility, 

navigability, past behaviour, positive anticipated emotions, safety, service quality 

and technology quality were captured by the algorithm, supporting their relevance 

to PTAM’s predictive power. 

Applying the gradient formula (Formula 5.5.1) and creating XY charts (as 

explained in Section 5.6) yielded crucial findings concerning the influence of each 

feature in predicting technology use behaviour, including useful knowledge that had 
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previously not been discovered in the literature. As the approach that we followed 

has never before been considered in the literature, the information that we 

discovered is unique. Each of PTAM’s thirty-seven features influenced use 

behaviour. This influence was collective in the sense that our approach considered 

other features’ interactions and influences on the predicted behaviour when 

investigating each feature’s impact on the output. This is because the predicted 

target value (on the y-axis) was produced using SVR-POLY with all thirty-seven 

variables combined. Therefore, the knowledge produced by our analysis is 

authentic and reliable and can guide our understanding of each feature’s role in 

forecasting end users’ use decisions. 

The relationships between each feature and the predicted use behaviour fall 

into four categories (see Table 5.6). The current TAM and UTAUT assume that 

their features have linear relationships and do not clarify whether such relationships 

are monotonic. The present chapter demonstrated that not all studied features have 

linear relationships. Moreover, some have monotonic relationships while others 

have non-monotonic relationships. This has not been discovered before, which 

achieves the objective of this chapter (see Section 5.2). The first twenty-three 

features in the table (past behaviour, technology self-efficacy, security, service 

quality, perceived consistency, image, behavioural intention, desire, visibility, 

perceived enjoyment, result demonstrability, technology playfulness, privacy, 

attitude toward technology use, financial consequences, safety, positive 

anticipated emotions, goal, output quality, navigability, personal innovativeness, 

flexibility and trust) each have a monotonic influence on use behaviour. Therefore, 

it is more important that technology manufacturers consider these features than 

features with non-monotonic influences. The features that manufacturers are most 

able to control are those related to a technology’s capabilities, such as security, 

service quality, privacy, safety, output quality, navigability and flexibility. We thus 

strongly recommend that manufacturers consider improving these five attributes to 

increase technology use.  

Of the remaining sixteen features, past behaviour, perceived consistency, 

result demonstrability, financial consequences and trust are the next most 
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controllable. Past behaviour’s monotonic influence on predicting the target value 

indicates that end users’ positive or negative use experiences with technologies 

similar to the focal technology will make them more likely to use the new 

technology. Technology manufacturers should seriously consider the impact of this 

feature when producing new technologies and should strive to create a good 

impression in the eyes of their customers. This may be accomplished by improving 

utility, ease of use, customer service, service quality, output quality, technology 

quality, security, privacy, safety, navigability, flexibility, mobility, functionality, 

design aesthetics and compatibility and by reducing the financial consequences for 

users. Drawing on Perugini and Bagozzi (2001), the frequency of past behaviour 

determines planned behaviour. Therefore, manufacturers must ensure that their 

users increase their use of current technology by improving the aforementioned 

features of the new technology. 

With regard to perceived consistency, producing a technology that aligns with 

(rather than contradicts) end users’ beliefs, values, needs and past experiences 

increases the likelihood that users will make positive use decisions. Manufacturers 

are encouraged to design technologies that are compliant with these four important 

aspects of perceived consistency. In the case of result demonstrability, drawing on 

Venkatesh and Bala (2008), we infer that providing a means for users to achieve 

tangible results with a technology will increase their feelings of result 

demonstrability and, in turn, enhance their use of the technology. This may include 

providing training and supporting end users in their initial use of the technology. 

Moreover, end users’ use decisions are strongly determined by whether they can 

afford the subsequent costs of technology use. Therefore, we recommend that 

manufacturers either reduce costs by improving the supply chain or alleviate the 

impact of costs on users’ decisions by creating sustainable technology that remains 

in good condition for a long time, exceeding users’ expectations. Furthermore, 

manufacturers can improve end users’ trust in technology by ensuring that 

manufacturers and vendors fulfil the promises they make to consumers. 

Certain other studied features (technology self-efficacy, image, behavioural 

intention, desire, visibility, perceived enjoyment, technology playfulness, attitude 



210 
 

toward technology use, positive anticipated emotions, goal and personal 

innovativeness) are more difficult for technology manufacturers to control, although 

they also have monotonic relationships with use behaviour. Our view is that, as 

these features are shaped by the environment, it would be difficult for 

manufacturers to address them. 

On the other hand, referring to Table 5.6, the fourteen remaining features with 

non-monotonic relationships are worth limited attention from manufacturers. These 

features’ influences initially stimulate the end-users’ use decisions of technology, 

but they fail to sustain this effect. The unsustainability of these features’ effects may 

be attributed to their limited implications from the users’ perspectives. For example, 

perceived ease of use includes other features that the users perceive the 

technology to lack, and so users may find that the inexistence of such features 

limits the influence of ease of use on their use decisions. Nonetheless, the non-

monotonic relationship of perceived ease of use reveals that small improvements 

in technology’s ease of use make the users willing to use it, but further improvement 

may not increase their willingness. Another example is perceived usefulness, which 

has a limited effect similar to that of ease of use. This could be attributed to the 

broad interpretation of usefulness from the users’ perspectives and to the users’ 

different understandings of technology utility. Assessing the technological utility 

apart from the interpretations of utility drives end-users to deem usefulness of 

limited (as opposed to unlimited) effect on their decisions. Some users perceive 

technology utility in terms of quality, while others conceptualise it as involving social 

attributes. These different interpretations of perceived usefulness may explain the 

unsustainable influence of perceived usefulness on the target variable. That is, 

from the perspective of end-users, a technology’s usefulness is not always 

adequate to make it usable unless it improves their social image, has optimum 

quality or produces tangible results. 

Mobility, functionality, technology quality, compatibility, perceived novelty and 

design aesthetics are also in the hands of technology manufacturers and thus 

controllable, despite their non-monotonic influence. However, these features 

deserve little attention from manufacturers, as they will not substantially improve 
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end users’ decisions about technology use. In particular, design aesthetics should 

be handled prudently, as an excess of beauty or an ad hoc approach to improving 

aesthetics may in fact negatively affect end users’ decisions, as indicated by the 

curved line in Chart 5.6.27; at first, use behaviour increases with design aesthetics, 

but (as the slope becomes negative) use behaviour decreases as design aesthetics 

improve further. 

Other features that demonstrate non-monotonic relationships – such as 

attitude toward change brought by technology use, attitude toward technology and 

subjective norm – are rarely under the control of manufacturers. Rather, technology 

practitioners are in control of these features. The influences of the two attitude 

features and subjective norm on use behaviour almost vanish at higher levels of 

experience with technology. This explains the disappearance of their continuous 

influences. Therefore, it is recommended that manufacturers dedicate little effort to 

addressing these features. 

Despite the non-monotonic effect of perception of external control on 

predicting use behaviour, practitioners should make only minor efforts to make 

technology accessible to end users. This is because – as Chart 5.6.29 indicates – 

providing resources in excess of what is needed for end users to use a technology 

will not increase their willingness to use the technology. In the case of habit (Chart 

5.6.4), an inverse relationship occurs: with an increase in the repetition of 

technology use, users may discover certain disadvantages that decrease their 

willingness to use it. In the case of voluntariness, the positive-then-negative 

relationship shown in Chart 5.6.37 indicates the setting in which the technology is 

used. If technology use is perceived as voluntary, end users’ use decisions are 

positively affected, whereas if use is deemed mandatory or otherwise occurs in a 

non-voluntary setting, users feel reluctant to use the technology. 

5.8 Conclusion 
In this chapter, we modelled and evaluated the thirty-seven features of PTAM 

that shape end users’ decisions with regard to using personal technology. Although 

features related to human behaviour have dominated research on TAM and 

UTAUT, the current literature still lacks clear determinants from the perspectives of 
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human behaviour and technology design. To enhance both models’ ability to 

predict human behaviour, we successfully incorporated the following features into 

the technology acceptance literature: attitude toward change brought by 

technology use, attitude toward technology, desire, financial consequences, goal, 

past behaviour, perceived consistency, positive anticipated emotions and visibility. 

Additionally, PTAM advances TAM and UTAUT by introducing the features of 

compatibility, flexibility, functionality, mobility, navigability, safety, service quality 

and technology quality, all of which are external features that describe attributes of 

desirable technology design. ML-based modelling can, among other functionalities, 

improve existing explanatory statistical models (TAM and UTAUT) by capturing 

complex underlying patterns and relationships among the current features of TAM 

and UTAUT. This technique can also enable the introduction of new features. 

Applying ML can help assess the potential effectiveness of novel 

technologies. By analysing end users’ perceptions of technology, which are 

pervasively disseminated on social media, the future of such technologies can be 

predicted. Supervised and unsupervised ML modelling can be used to classify end 

users’ views and estimate their acceptance of such technologies. For instance, ML-

based classification techniques can address obstacles that hamper the usability of 

autonomous cars and estimate their potential. This can enhance understandings 

of such vehicles in a way that could not have been achieved applying the current 

PLS-SEM approach, which requires the collection of data from actual end users to 

estimate the future of never-used cars. In short, ML algorithms can model the 

acceptance of cutting-edge technologies such as autonomous vehicles and 

disruptive technologies such as big data analytics, artificial intelligence and 

robotics, whose perceived benefits may not be captured by surveys. 

The current literature on TAM and UTAUT is limited, as it assumes that all 

features of both models have linear influences. However, the results presented in 

Section 5.6 refute this conclusion and demonstrate that not all features have linear 

relationships with use behaviour. Moreover, the findings show that some of these 

features’ relationships are monotonic and others are non-monotonic. This 

discovery was made possible by combining conventional (survey) and 
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unconventional (Twitter) data sources to study human behaviour with regard to 

technology acceptance. The use of heterogenous subjects and application of the 

Twitter API and DM techniques resulted in the discovery of these new classes of 

relationships (non-linear, monotonic and non-monotonic). 

Our analysis proves that the influences of perceived ease of use, perceived 

usefulness, perception of external control, subjective norm and perceived novelty 

are non-monotonic. Departing from the current literature on technology 

acceptance, the effects of habit and design aesthetics do not appear to be 

monotonic and in fact become negative after a certain point. Drawing on Shmueli 

and Koppius (2010) and Shmueli (2010), these findings confirm that DM and ML 

techniques are promising approaches that are capable of enriching technology 

acceptance research by reinforcing, validating or verifying many aspects of the 

current literature. 

Although the main determinants of TAM (i.e. perceived usefulness and 

perceived ease of use) have been considered the cornerstones of behavioural 

intention by TAM’s practitioners, their influences are limited, as they both have non-

monotonic effects. It appears that, although practitioners of TAM and UTAUT have 

focused on improving these two determinants when attempting to increase 

technology use, further improvement of both features will not further enhance use 

behaviour (as discussed in the Findings section of the current chapter). On the 

other hand, we found that other features that have previously been considered to 

have limited impact are, in fact, worthy of practitioners’ attention. These include 

past behaviour, technology self-efficacy, security, service quality, perceived 

consistency, image, desire, visibility, privacy, attitude toward technology use, 

financial consequences, safety, positive anticipated emotions, goal, output quality, 

navigability, personal innovativeness, flexibility and trust. Their influences on 

predicting technology use behaviour are monotonic, and even slight improvements 

in these determinants will increase technology use. 

It would be wise for technology manufacturers to expend effort and resources 

on improving features under their control, such as security, service quality, privacy, 

safety, output quality, navigability, flexibility, past behaviour, perceived 
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consistency, result demonstrability, financial consequences and trust. While 

features like mobility, functionality, quality, compatibility, perceived novelty and 

design aesthetics are also under the control of manufacturers, they merit little effort 

from manufacturers regarding improvement. 

In addition to enriching the technology acceptance field, the use of DM and 

ML techniques unveiled new phenomena whose development had yet to be 

discovered. The presented analysis revealed new relationships (non-linear, 

monotonic and non-monotonic) among PTAM’s features. The current literature 

does not explain why these new relationships were formulated, nor does it 

elaborate on the implications of their formation with regard to use behaviour. We 

believe that this is an opportunity for future research to investigate how end users’ 

views change and form such phenomena. 

PTAM, which was developed with an ML modelling approach, makes several 

enhancements to the current literature on TAM and UTAUT, as follows: 

• Presentation of a highly accurate predictive model, addressing the failure of the 

current explanatory models (TAM and UTAUT) to predict personal technology 

use.  

• Introduction of thirteen new features and reinstation of four others, as 

demonstrated in the sensitivity analysis (Table 5.4.6).  

• Application of SVR-POLY, which captured more accurate and objective 

influences of technology acceptance features compared with PLS-SEM and 

similar MLR-based techniques; the R2 value achieved by SVR-POLY was 

higher than that for MLR. 

• Introduction of the features of goal, desire and positive anticipated emotions, 

improving the theoretical foundation of TAM and UTAUT. 

• Inclusion of design-related features of personal technology acceptance and 

external features that influence the current internal features, substantially 

improving the technical side of TAM and UTAUT.  

• Ranking of PTAM’s features (Table 5.4.6) and provision of a validation 

measure that verified previous research and clarified the distance between 

theory and practice. 
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• Application of SVR-POLY, representing a paradigm shift, opening the black 

boxes of TAM and UTAUT and avoiding the limitations of PLS-SEM discussed 

in Section 3.6.1. 

• Application of ML-based modelling (as demonstrated in the current chapter), 

an objective approach that allows the environment to drive understandings of 

how end users realistically make their technology adoption decisions. 

• Application of SVR-POLY, an approach that addresses both linear and non-

linear relationships among PTAM’s features; the results indicate the superiority 

of SVR-POLY compared with PLS-SEM, SEM and MLR. 

• Modelling of PTAM using diverse data collected from multiple sources, 

including Twitter (big data), and for multiple technologies tested by 

heterogenous subjects (Figures 4.11.3.1 and 4.11.3.2 ), creating a more 

objective model that is applicable to several kinds of personal use technologies. 

• Combination of R2 and MAPE as evaluation metrics of PTAM, providing 

insights into how realistically the ML-based algorithms estimated the target 

value and enabling better interpretation of PTAM’s performance and more 

accurate comparisons between algorithms. 

• Use of learning curves to evaluate PTAM’s predictions, which helped to control 

the underfitting and overfitting of the algorithms. 

• Discovering new relationship patterns (non-linear, monotonic and non-

monotonic) between features of PTAM and use behaviour. 
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6.1 Introduction 
In this chapter, we apply steps 4 and 5 of the methodology proposed in 

Chapter 2 to model and evaluate FIPTAM. In the following sections, we cover our 

objectives in formulating FIPTAM, the PCA technique used to formulate DPTAM 

(including SFPTAM and TFPTAM), the modelling and evaluation of the two 

decomposed models (i.e. SFPTAM and TFPTAM) and the components, modelling 

and evaluation of FIPTAM. We elaborate our findings by connecting our objectives 

with the achieved results. In the last section, we summarise the chapter’s findings, 

explain its contribution to the technology acceptance literature and address the 

limitations of our proposed approach.  

Figure 6.1 illustrates the steps we took to formulate FIPTAM. First, we 

checked the validity of PTAM’s features for PCA. Second, we used PCA to create 

and evaluate two decomposed models based on PTAM: SFPTAM and TFPTAM. 

Third, because we determined that TFPTAM was more appropriate for representing 

PTAM, we used TFPTAM’s structure to model and evaluate FIPTAM. 
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6.2 Objectives 
Addressing the gaps identified in Section 3.7.3, we aim to achieve the 

following two objectives in this chapter: 

1. To decompose PTAM into a comparable and parsimonious framework 

(DPTAM) by applying PCA. 

2. To apply fuzzy inference modelling to build FIPTAM, thus improving the 

practicality of TAM, UTAUT and PTAM in supporting and automating the 

technology use decision-making process. 

Figure 6.1 Steps of Formulating Fuzzy Inference Personal Technology Acceptance 
Model 
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6.3 Decomposed Personal Technology Acceptance Model 
Due to the high number of features in PTAM, applying the model to build 

FIPTAM was computationally difficult. Therefore, we proposed decomposing 

PTAM into sub-groups of features. According to Davis et al. (1989), the formulation 

of TAM aimed to create a robust model of technology acceptance that was 

parsimonious and effective. Gregor (2006), Lee and Baskerville (2003) and Weber 

(2003) have argued that abstraction and generalisation are essential elements of 

theory development. Moreover, Weber (2003) has claimed that a parsimonious 

theory is more favourable than a complex theory. Past research has formulated 

parsimonious technology acceptance models, which have received widespread 

appreciation in most IS research. Drawing on this, we sought to decompose PTAM 

by applying PCA, a dimensionality reduction technique, as in Jolliffe (2002).  

The process of formulating the two decomposed models (SFPTAM and 

TFPTAM) before choosing the better of the two involved the following steps: 

1. Testing the features’ validity for PCA using SPSS.  

2. Using PCA to analyse the principal components (PCs) and select six PCs 

for SFPTAM and three PCs for TFPTAM. 

3. Selecting the factor loadings for each PC for both SFPTAM and TFPTAM. 

4. Reconstructing PTAM’s data in preparation for modelling SFPTAM and 

TFPTAM. 

5. Evaluating the prediction performance of SFPTAM and TFPTAM and 

choosing the best-performing DPTAM using several ML techniques.   

6.3.1 Principal Component Analysis of Six-Feature Personal 
Technology Acceptance Model 

Before applying PCA as in Leskovec et al. (2020), it is necessary to 

determine whether the variables’ variances are equal (Jolliffe, 2002). To 

accomplish this, we employed Bartlett’s test, which evaluates each variable’s 

variance against those of the other variables. As explained in Section 4.11.3 , 

most features had three statements (i.e. variables) because they were 

operationalised by three statements (assessed by survey participants on Likert 
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scales). To assign each feature’s variables a single value in preparation for 

conducting Bartlett’s test, we averaged the values of each feature’s variables. 

Bartlett’s test evaluates whether the variances of variables are not equal to 

establish the validity of the variables for PCA. In other words, it establishes 

whether the variables are different from one another. Therefore, the following 

hypotheses were formulated to investigate the similarity of the variables’ 

variances: 

H0: All variables’ variances are equal. 

H1: Not all variables’ variances are equal. 

When applying Bartlett’s test, the chi-squared test of independence was 

used to verify the variables’ goodness of fit. As shown in Table 6.3.1, the resulting 

chi-squared value was 12,099.746. The p-value was less than 0.00, indicating 

that the null hypothesis (H0) can be rejected and that the variables are suitable 

for PCA. 
Table 6.3.1 Bartlett’s Test 

Bartlett's Test 
Approximate 𝜒2 12099.746 
df 666 
Sign 0.000 

 

After employing PCA, the selection of the best number of PCs can be made 

on the basis of any of the following criteria (Jolliffe, 2002): 

1. The accumulative explained variance; 

2. The eigenvalues of each PC; 

3. A scree plot drawn to demonstrate the singular value for each PC and using 

a rule of thumb; or 

4. A combination of two or all of the previous options. 

Figure 6.3.1.1 illustrates the explained variance of each PC. In the literature, 

the choice of the best number of PCs is related to the accepted level of 

accumulative explained variance. The best accumulative variance is more than or 

equal to 0.6 (Hair et al., 2010, 2011). Therefore, the best number of PCs here is 

six. Applying the second criterion, the best number of PCs is fourteen, as indicated 

in Figure 6.3.1.2. The rule of thumb is to keep PCs that have eigenvalues greater 

than or equal to one. In Figure 6.3.1.3, the scree plot of the singular value for each 
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PC is shown. The rule of thumb here is to keep all PCs prior to the elbow shape, 

such that it is steep to the left and shallow to the right. Therefore, nine PCs are 

considered (Figure 6.3.1.3). Ultimately, we chose to use six PCs, since this was 

the lowest number of PCs and complied with the accepted level of accumulative 

explained variance in the literature. 

 

 
 

Figure 6.3.1.1 Explained Variance per PC 
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After determining the best number of PCs, we selected the number of 

variables to load on each of the six PCs. According to Jolliffe (2002), the variables 

of each PC should be chosen based upon their highest loadings on each of the 

six PCs. All variables’ loadings on the six PCs are shown in Table 9.2 (in the 

Appendix). We applied the following four steps (as an example, for PC1) to 

normalise the loadings (see Figure 6.3.1.4 to see an example for PC1): 

1. Find each variable’s loading on PC1 by identifying the singular value of PC1 

with all variables, including unselected variables. 

2. Multiply each variable’s loading by the singular value of PC1 to find each 

variable’s portion of PC1’s singular value. 

Figure 6.3.1.2 Eigen Value per PC 
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3. Sum the portions of the chosen variables to find PC1’s actual singular value. 

4. Divide each chosen variable’s portion by PC1’s actual singular value to find 

each chosen variable’s normalised loading. 

 
Before using ML to model SFPTAM’s performance, we refactored the data 

by creating six input variables  each of the six chosen PCs. Each data 

point of each variable was then multiplied by its normalised loading, and the 

resulting values were summed to find the refactored data points for each input. 

Next, the target variable data point was included as in the original dataset. We 

performed these steps to prepare the original dataset for testing SFPTAM (for an 

illustration of preparing data for PC1, see Figure 6.3.1.5). 

Figure 6.3.1.4 Steps of Normalising Weight of Chosen Variables (Principal 
Component 1)* 

 
* The green variables are the selected variables and the red variables are the excluded variables 
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6.3.2 Modelling of  Six-Feature Personal Technology 
Acceptance Model  

Building on the analysis in the previous section SFPTAM can be written 

algebraically, as in Formulas 6.3.2.1, 6.3.2.2, 6.3.2.3, 6.3.2.4, 6.3.2.5, 6.3.2.6 and 

6.3.2.7: 

Z = 0.7 × Y! + 0.09 × Y) + 0.05 × Y* + 0.05 × Y+ + 0.06 × Y, + 0.05 × Y- (6.3.2.1) 

Y! = 	0.22 × X, + 0.18 × X- + 0.06 × X> + 0.48 × X!, + 0.06 × X)* (6.3.2.2) 

Y) = 0.04 × X+ + 0.13 × X!* + 	0.07 × X!+ + 0.12 × X!? + 0.12 × X)) +

0.12 × X), + 0.1 × X)? + 0.2 × X*! + 0.1 × X*+ (6.3.2.3) 

Y* = 	0.2 × X!) + 0.34 × X!> + 0.11 × X*, + 0.16 × X*@ + 0.19 × X)+ (6.3.2.4) 

Y+ = 	0.1 × X* + 0.15 × X!- + 0.19 × X)! + 0.26 × X)> + 0.16 × X** + 0.14 × X*- 

(6.3.2.5) 

Y, = 	0.26 × X! + 0.21 × X) + 0.1 × X? + 0.3 × X!! + 0.21 × X)- + 0.1 × X)@ +

0.05 × X*A + 0.04 × X*) (6.3.2.6) 

Y- = 	0.18 × X@ + 0.08 × X!A + 0.24 × X!@ + 0.5 × X)A (6.3.2.7) 
Where	𝐗!: Behavioural	Intention, 𝐗𝟐: Perceived	Usefulness, 𝐗𝟑: Perceived	Ease	of	Use, 𝐗𝟒: Subjective	Norm, 𝐗𝟓:	Image,	 

𝐗𝟔: Result	Demonstrability, 𝐗𝟕: Perceived	Enjoyment, 𝐗𝟖:	Technology	Playfulness, 𝐗𝟗: Perception	of	External	Control 

		𝐗𝟏𝟎: Technology	Self − Efficacy, 𝐗𝟏𝟏: Voluntariness, 𝐗𝟏𝟐:	Habit, 𝐗𝟏𝟑: Financial	Consequences, 𝐗𝟏𝟒: Goal, 𝐗𝟏𝟓: Desire,	 

𝐗𝟏𝟔: Past	Behaviour, 𝐗𝟏𝟕: Positive	Anticipated	Emotions, 𝐗𝟏𝟖: Attitude	Toward	Use	of	Technology,	 

𝐗𝟏𝟗:	Attitude	Toward	Technology, 𝐗𝟐𝟎:	Attitude	Toward	Change	Brought	by	Technology, 𝐗𝟐𝟏: Visibility, 

	𝐗𝟐𝟐: Perceived	Consistency, 𝐗𝟐𝟑: Trust, 𝐗𝟐𝟒: Personal	Innovativeness, 𝐗𝟐𝟓: Perceived	Novelty, 𝐗𝟐𝟔: Functionality, 

Figure 6.3.1.5 Data Set Reconstruction for Testing Decomposed 
Model 
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𝐗𝟐𝟕: Service	Quality, 𝐗𝟐𝟖: Output	Quality, 𝐗𝟐𝟗: Technology	Quality, 𝐗𝟑𝟎: Privacy, 𝐗𝟑𝟏: Security, 𝐗𝟑𝟐: Safety, 𝐗𝟑𝟑: Design	 

Aesthetics, 𝐗𝟑𝟒: Mobility, 𝐗𝟑𝟓: Flexibility, 𝐗𝟑𝟔: Compatibility, 𝐗𝟑𝟕: Navigatibility, 𝐘𝟏: PC1, 𝐘𝟐: PC2, 𝐘𝟑: PC3, 𝐘𝟒: PC4,		 

𝐘𝟓: PC5, 𝐘𝟔: PC6, 𝐙: Use	Behaviour 

6.3.3 Evaluation of Six-Feature Personal Technology 
Acceptance Model 

6.3.3.1 Multiple Linear Regression 
The performance of MLR in SFPTAM is illustrated in Table 6.3.3.1 (R2 = 

0.37). Chart 6.3.3.1 shows the performance of SFPTAM with MLR. With an 

approximate MAPE value of 0.37, SFPTAM achieved an accuracy of 63% 

(MAPE − 1) when applying MLR, as the validation set had an error rate of 

approximately 0.37. 

 
 

 
 

 
 

 
6.3.3.2 Multilayer Perceptron Regression 

SFPTAM’s performance when applying MLPR according to various 

parameters is demonstrated in Table 6.3.3.2. The best-performing algorithm was 

Table 6.3.3.1 Multiple Linear Regression Modelling of SFPTAM 

𝑹² Data Set MAPE Accuracy 
(1- MAPE) 

0.37 
Training 0.3616 0.6384 

Validation 0.36641 0.63359 

Chart 6.3.3.1 Learning Curve of MLR for SFPTAM 
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the tanh function with the LBFGS optimiser, which achieved the highest R2 value 

(0.99) and an accuracy of 28.1%. With a MAPE value of 0.002 for the training 

dataset, this algorithm was deemed to have learnt most of the data patterns, 

indicating that it could be used for prediction with the validation data. Chart 

6.3.3.2 illustrates the performance of MLPR with the tanh function and the 

LBFGS optimiser. For the sake of brevity, the learning curves of the other 

algorithms are not presented. 

Table 6.3.3.2 MLPR Modelling of SFPTAM with Two Hidden Layers, (Alpha = 0.001) 
Function Optimiser 𝑹² Data Set Neurons MAPE Accuracy 

(1-MAPE) 

TANH LBFGS 0.99 
Training average 100, 50 0.002 0.998 
Validation average 100, 50 0.719 0.281 

TANH SGD 0.28 
Training average 100, 50 0.39 0.61 
Validation average 100, 50 0.40 0.6 

TANH ADAM 0.28 
Training average 100, 50 0.39 0.61 
Validation average 100, 50 0.4 0.6 

Identity LBFGS 0.28 
Training average 100, 50 0.38 0.62 
Validation average 100, 50 0.395 0.605 

Identity SGD 0.27 
Training average 100, 50 0.3868 0.6111 
Validation average 100, 50 0.39 0606 

Identity ADAM 0.28 
Training average 100, 50 0.402 0.59 
Validation average 100, 50 0.409 0.59 

Logistic LBFGS 0.99 
Training average 100, 50 0.02 0.98 
Validation average 100, 50 0.81 0.21 

Logistic SGD 0.28 
Training average 100, 50 0.4225 0.5775 
Validation average 100, 50 0.4246 0.5754 

Logistic ADAM 0.27 
Training average 100, 50 0.4 0.6 
Validation average 100, 50 0.406 0.594 

ReLU LBFGS 0.75 
Training average 100, 50 0.17 0.83 
Validation average 100, 50 0.53 0.47 

ReLU SGD 0.288 
Training average 100, 50 0.38 0.62 
Validation average 100, 50 0.39 0.61 

ReLU ADAM 0.38 
Training average 100, 50 0.37 0.63 
Validation average 100, 50 0.4 0.6 
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6.3.3.3 Support Vector Regression 
SFPTAM’s performance when applying SVR is shown in Table 63.3.3. SVR 

achieved the best performance using the RBF function, with an R2 value of 0.41 

and an accuracy of 64%. Since SVR obtained the best R2 value with the RBF 

function, Chart 6.3.3.3 shows the model’s performance only for this function. 

 
Table 6.3.3.3 Support Vector Regression Modelling of SFPTAM 

Function 𝑹² Data Set Degree C Epsilon MAPE Accuracy 
(1-MAPE) 

Linear 0.37 
Training 1 1–10 0.8 0.362 0.638 
Validation 1 1–10 0.8 0.367 0.633 

POLY 0.37 
Training 3 1–10 0.4 0.36 0.63 

Validation 3 1–10 0.4 0.4 0.6 

RBF 0.41 
Training 1 1–10 0.6 0.34 0.66 

Validation 1 1–10 0.6 0.36 0.64 

 

Chart 6.3.3.2 Learning Curve of MLPR for SFPTAM 
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Based on the results presented in Sections 6.3.3.1 through 6.3.3.3, we 

conclude that SFPTAM can be best modelled applying MLPR with the TANH-

LBFGS function and six variables. 

6.3.4 Principal Component Analysis of Three-Feature 
Personal Technology Acceptance Model 

We found it practical to classify PTAM’s features into certain groups that 

describe those features’ relevance, thus clarifying their role in PTAM without 

compromising its predictive power. SFPTAM, which was produced using PCA, 

does not reflect any meaningful organisation of the thirty-seven features of PTAM. 

Each of the six PCs had a mixture of features that could be classified into 

irrelevant categories. Therefore, we decomposed PTAM’s features into three 

groups that reflect a meaningful and understandable structure. 

6.3.5 Modelling of Three Features Personal Technology 
Acceptance Model 

According to our knowledge and experience and the features’ definitions 

(see Table 4.5), we classified PTAM’s features into three groups: human beliefs, 

cognitive thinking and technology characteristics. Cognitive thinking features are 

Chart 6.3.3.3 Learning Curve of SVR for SFPTAM 
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those involving users’ cognitive evaluations of technology use decisions, including 

the user’s ability to afford use-related financial consequences and past 

experience. The formation of such assessments is based upon end users’ 

individual observations of the consequences of technology use. More precisely, 

users evaluate their decisions to use a technology based on their own knowledge 

and reviews of similar technologies. This is accomplished in isolation from other 

users’ beliefs and subjective views. The variables in this category are past 

behaviour, goal and financial consequences. Technology characteristics features 

are those related to a technology’s capabilities. These features include 

functionality, output quality, service quality, technology quality, privacy, security, 

safety, design aesthetics, perceived novelty, mobility, flexibility, compatibility and 

navigability. Human beliefs features are those that neither describe a technology’s 

capabilities nor involve cognitive thinking to achieve a certain goal or evaluate the 

circumstances that shape such a goal (e.g. past experience and financial 

affordability considerations). These features include behavioural intention, desire, 

perceived usefulness, perceived ease of use, attitude toward technology use, 

attitude toward change brought by technology use, attitude toward technology, 

subjective norm, voluntariness, image, result demonstrability, technology 

playfulness, perceived enjoyment, technology self-efficacy, perception of external 

control, visibility, perceived consistency, habit, personal innovativeness, positive 

anticipated emotions and trust. 

After classifying the features, we created three PCs using PCA (previously 

applied to decompose PTAM into six PCs – see Section 6.3.1). We sought to find 

the highest loadings of each group’s variables on a certain PC. Consequently, we 

chose the second PC for the human beliefs features, the first PC for the cognitive 

thinking features and the 24th PC for the technology characteristics features. 

Table 9.3 (in the Appendix) shows these three chosen PCs and the loadings of 

the thirty-seven variables on each. 

Similar to the approach we followed to create SFPTAM in Section 6.3.2, to 

find each variable ratio in TFPTAM, we applied four steps to normalise the 

loadings of the three features of TFPTAM (for an example demonstrating PC1 of 
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SFPTAM, see Figure 6.3.1.4). Before employing ML techniques to model 

TFPTAM’s performance, we refactored the data by creating three input variables 

representing each of the three chosen PCs (i.e. PC1, PC2 and PC24). We 

followed the same steps shown in Figure 6.3.1.5 that we followed to prepare data 

for PC1 of SFPTAM. 

Therefore, we extracted the thirty-seven variables’ loadings and created the 

following structure of TFPTAM, written algebraically in Formulas 6.3.5.1, 6.3.5.2, 

6.3.5.3 and 6.3.5.4: 

Z = 	0.4	 × Y! +	0.47 × 	Y) +	0.13 × Y* (6.3.5.1) 

Y!	 = 0.01 × X! + 0.01 × X) + 0.03 × X* + 0.01 × X+ + 0.06 × X, + 0.17 × X- +

0.17 × X@ +0.16 × X? + 0.01 × X> + 0.02 × X!A + 0.01 × X!! + 0.01 × X!) 

+0.03 × X!, +0.03 × X!@ +0.08 × X!? +0.03 × X!> +0.02 × X)A +0.07 × X)! 

+0.03 × X)) +0.03 × X)* +0.01 × X)+ (6.3.5.2) 
Y) = 0.26 × X!* +0.38 × X!+ +0.36 × X!- (6.3.5.3) 
Y* = 0.03 × X), +0.03 × X)- +0.03 × X)@ +0.15 × X)? +0.38 × X)> +0.02 × X*A 

+0.05 × X*! +0.02 × X*) +0.04 × X** +0.02 × X*+ +0.08 × X*, +0.05 × X*- 

+0.1 × X*@ (6.3.5.4) 
Where	𝐗!:	Behavioural	Intention, 𝐗𝟐:	Perceived	Usefulness, 𝐗𝟑:	Perceived	Ease	of	Use, 𝐗𝟒:	Subjective	Norm, 𝐗𝟓:	Image,	 

𝐗𝟔:	Result	Demonstrability, 𝐗𝟕:	Perceived	Enjoyment, 𝐗𝟖:	Technology	Playfulness, 𝐗𝟗:	Perception	of	External	Control,

𝐗𝟏𝟎:	Technology	Self − Efficacy, 𝐗𝟏𝟏:	Voluntariness, 𝐗𝟏𝟐:	Habit, 𝐗𝟏𝟑:	Financial	Consequences, 𝐗𝟏𝟒:	Goal, 𝐗𝟏𝟓:	Desire,	 

𝐗𝟏𝟔:	Past	Behaviour, 𝐗𝟏𝟕:	Positive	Anticipated	Emotions, 𝐗𝟏𝟖:	Attitude	Toward	Use	of	Technology,	 

𝐗𝟏𝟗:	Attitude	Toward	Technology, 𝐗𝟐𝟎:	Attitude	Toward	Change	Brought	by	Technology, 𝐗𝟐𝟏:	Visibility, 

	𝐗𝟐𝟐:	Perceived	Consistency, 𝐗𝟐𝟑:	Trust, 𝐗𝟐𝟒:	Personal	Innovativeness, 𝐗𝟐𝟓:	Perceived	Novelty, 𝐗𝟐𝟔:	Functionality, 

𝐗𝟐𝟕:	Service	Quality, 𝐗𝟐𝟖:	Output	Quality, 𝐗𝟐𝟗:	Technology	Quality, 𝐗𝟑𝟎:	Privacy, 𝐗𝟑𝟏:	Security, 𝐗𝟑𝟐:	Safety,	 

𝐗𝟑𝟑:	Design	Aesthetics, 𝐗𝟑𝟒:	Mobility, 𝐗𝟑𝟓:	Flexibility, 𝐗𝟑𝟔:	Compatibility, 𝐗𝟑𝟕:	Navigability, 𝐘𝟏:	Human	Beliefs, 𝐘𝟐:	Cognitive 

Thinking, 𝐘𝟑:	Technology	Characteristics, 𝐙: Use	Behaviour	 

6.3.6 Evaluation of Three-Feature Personal Technology 
Acceptance Model 

6.3.6.1 Multiple Linear Regression 
Testing TFPTAM using MLR shows a lower R2 value compared with PTAM. 

However, this value is higher compared with SFPTAM. With an error rate of 

0.343 on the training set, MLR achieved acceptable learning performance and 

attained an overall accuracy of 65.5% on the validation set (Table 6.3.6.1). Chart 
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6.3.6.1 demonstrates the learning curve of MLR for the three-category model. 

We conclude that overfitting and underfitting have been controlled. 
 

 
 

 
 

6.3.6.2 Multilayer Perceptron Regression 
MLPR performed better than MLR (R2 = 0.99) when applying the tanh 

function and LBFGS optimiser. The accuracy was 19%, which is within the 

acceptable range. The performance of the various functions and optimisers is 

shown in Table 6.3.6.2, and the best-performing algorithm’s learning curve is 

shown in Chart 6.3.6.2. 

Table 6.3.6.2 Multilayer Perceptron Regression Modelling of TFPTAM with Two Hidden 
Layers, (Alpha = 0.001) 

Function Optimiser 𝑹² Data Set Neurons MAPE Accuracy 
(1-MAPE) 

TANH LBFGS 0.99 
Training average 100, 50 0.004 0.99 
Validation average 100, 50 0.81 0.19 

TANH SGD 0.4244 Training average 100, 50 0.35 0.65 

Table 6.3.6.1 Multiple Linear Regression Modelling of TFPTAM 

𝑹² Data Set MAPE Accuracy 
(1- MAPE) 

0.42 
Training 0.343 65.7% 
Validation 0.345 65.5% 

Chart 6.3.6.1 MLR Learning Curve of TFPTAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 



232 
 

Validation average 100, 50 0.352 0.648 

TANH ADAM 0.429 
Training average 100, 50 0.344 0.656 
Validation average 100, 50 0.345 0.655 

Identity LBFGS 0.425 
Training average 100, 50 0.344 0.656 
Validation average 100, 50 0.345 0.655 

Identity SGD 0.42 
Training average 100, 50 0.344 0.656 
Validation average 100, 50 0.345 0.655 

Identity ADAM 0.42 
Training average 100, 50 0.344 0.656 
Validation average 100,50 0.345 0.655 

Logistic LBFGS 0.425 
Training average 100, 50 0.344 0.656 
Validation average 100, 50 0.345 0.655 

Logistic SGD 0.41 
Training average 100, 50 0.403 0.597 
Validation average 100, 50 0.405 0.595 

Logistic ADAM 0.42 
Training average 100, 50 0.357 0.643 
Validation average 100, 50 0.359 0.641 

RELU LBFGS 0.6 
Training average 100, 50 0.22 0.88 
Validation average 100, 50 0.4 0.6 

RELU SGD 0.429 
Training average 100, 50 0.3433 0.6567 
Validation average 100, 50 0.345 0.655 

RELU ADAM 0.45 
Training average 100, 50 0.34 0.34 
Validation average 100, 50 0.345 0.345 

 

 
 

6.3.6.3 Support Vector Regression 
As with SFPTAM, SVR attained the best performance for TFPTAM when 

applying RBF, with an R2 value of 0.45 and 66% accuracy. Table 6.3.6.3 shows 

Chart 6.3.6.2 MLPR Learning Curve of TFPTAM 
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the linear, POLY and RBF function performances, and Chart 6.3.6.3 illustrates 

the learning curve of SVR-RBF for TFPTAM. 

Table 6.3.6.3 Support Vector Regression Modelling of TFPTAM 
Function 𝑹² Data Set Degree C Epsilon MAPE Accuracy 

(1-MAPE) 

Linear 0.42 
Training 1 1–10 0.9 0.3466 0.65 
Validation 1 1–10 0.9 0.3496 0.65 

POLY 0.38 
Training 3 1–10 0.4 0.36 0.64 

Validation 3 1–10 0.4 0.37 0.63 

RBF 0.45 
Training 1 1–10 0.6 0.33 0.67 
Validation 1 1–10 0.6 0.34 0.66 

 

 

In summary, TFPTAM achieved optimal performance when applying MLPR, 

with an R2 value of 0.99 and an accuracy rate of 19%. 

6.4 Fuzzy Inference Personal Technology Acceptance 
Model 

6.4.1 Modelling of Fuzzy Inference Personal Technology 
Acceptance Model 

As explained in Chapter 2, modelling FIPTAM required identifying the 

following components: inputs, rules, outputs, inputs’ and outputs’ linguistic 

memberships, and their data ranges. A fuzzy inference system’s complexity is 

Chart 6.3.6.3 SVR Learning Curve of TFPTAM 
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determined by the number of linguistic memberships for each variable and the 

total number of variables (inputs and outputs). Therefore, FIPTAM’s complexity 

increases with increases in number of variables, number of linguistic 

memberships and number of relationships among these variables. To mitigate 

such complexity, we reduced the number of PTAM’s features utilising Formula 

6.3.5.1. TFPTAM was formulated applying PCA, as described in Section 6.3.5. 

Therefore, FIPTAM has three inputs (human beliefs, cognitive thinking and 

technology characteristics) and a single output (use behaviour). In Sections 

6.4.1.1 through 6.4.1.3, we explain the components of FIPTAM. 

6.4.1.1 Inputs 
We decided to classify inputs into five linguistic memberships: very low, 

low, medium, high and very high. We rescaled the survey data to values between 

0 and 5. The literature’s approach to identifying the data ranges for linguistic 

memberships has been ad hoc, with data ranges specified randomly. That is, 

researchers have historically identified these ranges depending on their 

subjective knowledge. Our approach to finding these data ranges was more 

objective, as we used an ML technique that relies on the collected data to find 

the linguistic memberships’ data ranges. We employed DTC (Hastie et al., 2009) 

to build a tree of the three inputs (human beliefs, cognitive thinking and 

technology characteristics) and the single output, as indicated in Formula 

6.3.5.1. The output values were rescaled to values between 0 and 1 (inclusive). 

These values were labelled UN (unusable, representing values equal to 0), LU 

(likely usable, representing values greater than 0 and less than 1) and U (usable, 

representing values equal to 1). We allowed the DTC to structure the decision 

tree with all leaves at the maximum depth. The DTC determined whether to split 

each node by making a binary if–then decision. We evaluated the tree’s 

performance by applying the following accuracy measure (Kelleher et al., 2015): 

Accuracy	(y, y\) = 	 !
B89/:;<8

		∑ 1	(y\5 =	y5)
B89/:;<8$!
5(!        (6.4.1.1) 

where	𝐲	is	the	output, 𝐲\	is	the	predicted	output		and	i	is	a	data	point. 
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The highest accuracy achieved was 79%. After finding the best accuracy, 

the tree with all leaves (maximum depth) was structured to find the ranges of the 

data for the five linguistic memberships of each input. Figure 6.4.1.1 shows a 

section of the tree structure obtained after tuning the tree. 

 
The entire tree structure is shown in Figure 9.1 (in the Appendix). The 

process of extracting the data ranges for each input linguistic membership 

involved tracking all of the rules. As shown in Figure 6.4.1.1, the first rule is ‘If 

CT (Cognitive Thinking) ≤ 4.49, then UN (UNusable technology)’; the second is 

‘If CT > 4.49 and HB (Human Beliefs) ≤ 2.029, then UN’; the third is ‘If CT > 4.49 

and HB > 2.029 and TC (Technology Characteristics) ≤ 3.542 and TC ≤ 2.757, 

then LU (Likely Usable technology)’; the fourth is ‘If CT > 4.49 and HB > 2.029 

and TC ≤ 3.542 and TC > 2.757 and HB ≤ 3.724, then UN’; and the fifth is ‘If CT 

> 4.49 and HB > 2.029 and TC ≤ 3.542 and TC > 2.757 and HB > 3.724, then 

LU’ (and so on). After listing all the rules, we sorted them by outputs (UN, LU 

and U).  

Table 6.4.1.1.1 shows an example set of extracted rules. Table 6.4.1.1.2 

lists the extracted data ranges for the linguistic memberships of the human 

beliefs variable. Not all rules were included in the data range designation for 

each linguistic membership, as some covered only one variable and others were 

contradictory. For example, an extracted rule states that ‘If CT ≤ 4.49, then UN’. 

This rule was excluded because it covers only one variable and does not specify 

Figure 6.4.1.1 Section of Decision Tree with Three Inputs and Usability Output 
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a lower limit of more than 0. Another example is a rule stating ‘If CT ≤ 4.49 and 

CT ≤ 3.798 and HB ≤ 1.006, then U’. This rule was excluded as well, as CT can 

be any value from 4.49 to 0, CT can be any value from 3.798 to 0 and HB can 

be any value from 1.006 to 0. Moreover, this rule does not specify the upper and 

lower bounds for each feature and contradicts other rules that provide maximum 

and minimum limits on each feature’s data points. Table 9.4 (in the Appendix) 

lists all 108 rules extracted from the DTC. 

 
 

Table 6.4.1.1.2 Extracted Data Ranges of Human Beliefs’ Linguistic Memberships 

Linguistic Membership Range Minimum Range Maximum Applied Range 

Very Low 0 1.006 0–1.006 

Low 

1.007 1.928 

1.007–4.129 

1.562 3.142 

1.929 2.452 

1.929 2.986 

1.929 2.993 

1.929 2.998 

1.929 4.129 

Table 6.4.1.1.1 Example Rules Extracted from Decision Tree Classifier 
If 
CT≤4.49 

and 
CT≤3.798 

and 
HB≤1.006 Then U        

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC≤1.968 

and 
HB≤1.572 

and 
TC≤1.486 

and 
CT≤1.131 Then UN  

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC≤1.968 

and 
HB≤1.572 

and 
TC≤1.486 

and 
CT>1.131 Then UN  

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC≤1.968 

and 
HB≤1.572 

and 
TC>1.486 Then UN   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC≤1.968 

and 
HB>1.572 

and 
HB≤1.825 Then U   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC≤1.968 

and 
HB>1.572 

an 
HB>1.825 Then UN   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT≤1.454 

and 
TC≤2.813 Then UN   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT≤1.454 

and 
TC>2.813 Then U   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT>1.454 

and 
CT ≤1.631 

and 
TC≤2.422 

and 
TC≤2.195 

Then 
U 

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT>1.454 

and 
CT≤1.631 

and 
TC≤2.422 

and 
TC>2.195 

Then 
UN 

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT>1.454 

and 
CT ≤1.631 

and 
TC>2.422 Then U  

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT≤1.691 

and 
TC>1.968 

and 
CT>1.454 

and 
CT>1.631 Then U   

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT>1.691 

and 
TC≤2.614 

and 
HB≤1.913 

and 
TC≤1.244 

and 
TC≤1.15 Then UN  

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT>1.691 

and 
TC≤2.614 

and 
HB≤1.913 

and 
TC≤1.244 

and 
TC>1.15 Then LU  

If 
CT≤4.49 

and 
CT≤3.798 

and 
HB>1.006 

and 
HB≤1.928 

and 
CT>1.691 

and 
TC≤2.614 

and 
HB≤1.913 

and 
TC>1.244 

and 
CT≤2.074 

and 
TC≤1.986 

Then 
UN 

HB: Human Beliefs, CT: Cognitive Thinking, TC: Technology Characteristics, UN: Unusable Technology, LU: 
Likely Usable Technology, U: Usable Technology 
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Medium  

2.03 2.536 

2.03–5 

2.03 3.724 

2.03 5 

2.23 3.142 

2.372 3.142 

2.453 5 

2.537 5 

2.65 3.142 

2.669 3.142 

2.776 2.998 

2.839 4.129 

2.878 4.129 

2.878 4.129 

2.878 4.129 

2.987 2.993 

2.997 5 

High 

3.063 4.129 

3.063–5 

3.143 3.452 

3.669 5 

3.143 3.698 

3.143 5 

3.1718 3.452 

3.364 3.491 

3.453 5 

3.492 5 

3.725 5 

Very High 4.13 5 4.13–5 

 

Table 6.4.1.1.3 lists the data ranges extracted from the DTC for each 

linguistic membership of each input. 

Table 6.4.1.1.3 Data Ranges for Each Linguistic Memberships of Three Inputs 
Input Linguistic Membership Data Range 

Human Beliefs 

Very Low 0–1.006 

Low 1.007–4.129 

Medium 2.03–5 

High 3.063–5 

Very High 4.13–5 

Cognitive Thinking 

Very Low 0–1.691 

Low 1.132–4.49 

Medium 2.015–4.49 

High 3.104–4.49 

Very High 4.168–5 
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Technology Characteristics 

Very Low 0–2.83 

Low 1.16–5 

Medium 2.196–5 

High 3.008–5 

Very High 4.054–5 
 

6.4.1.2 Outputs 
Use behaviour (the target of PTAM) was measured in the survey on a six-

point scale where 0 indicated ‘never’ and 5 ‘always’ (see Section 4.11.3 ). As 

FIPTAM is designed to defuzzify output values between 0 and 1, use behaviour 

values were rescaled from 0 to 1. This range was classified intuitively into three 

linguistic memberships: unusable technology (values between 0 and 0.5 

inclusive), likely usable technology (values between 0.51 and 0.75 inclusive) and 

usable technology (values between 0.76 and 1 inclusive). The means and 

standard deviations of the three input features and the output feature are 

provided in Figure 6.4.1.2. 

 
6.4.1.3 Rules Database 

The formulation of the rules involved the following considerations. Drawing 

on Formula 6.3.5.1, the summation of the three input variables’ values results in 

a value of either 0, between 0 and 1, or 1. As indicated in Section 6.4.1.1, each 

input variable has five linguistic memberships: very low, low, medium, high and 

very high. The highest possible values for each linguistic membership are 1 for 

Figure 6.4.1.2 General Statistics of Fuzzy Inference Personal Technology 
Acceptance Model Inputs and Output 
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very low, 2 for low, 3 for medium, 4 for high and 5 for very high. Per Formula 

6.3.5.1, the human beliefs variable has a weight of 0.4. Therefore, the five 

linguistic memberships of the human beliefs variable take the weights 0.08 

(!
,
	× 0.4), 0.16 ()

,
	× 0.4), 0.24 (*

,
	× 0.4), 	0.32 (+

,
	× 0.4) and 0.4 (,

,
	× 0.4), 

respectively. This is because each of the five linguistic memberships’ highest 

values forms a portion of the weight of the variable it represents (i.e. human 

beliefs). Since the highest possible value of the very low linguistic membership 

is 1, it represents !
,
 of 0.4 (the weight of human beliefs). Similarly, the low 

linguistic membership represents )
,
 of 0.4 because its highest possible value is 

2. The medium, high and very high linguistic memberships represent *
,
, +
,
  and ,

,
 

of 0.4, respectively, because these three linguistic memberships have 3, 4 and 

5 as their highest possible values. 

Similarly, per Formula 6.3.5.1, the cognitive thinking variable has a weight 

of 0.47, and its linguistic memberships (very low, low, medium, high and very 

high) take the weights 0.094 (!
,
	× 0.47), 0.188 ()

,
	× 0.47), 0.282 (*

,
	× 0.47), 0.376 

(+
,
	× 0.47) and 0.47 (,

,
	× 0.47), respectively. Per Formula 6.3.5.1, the technology 

characteristics variable has a weight of 0.13. Therefore, its linguistic 

memberships (very low, low, medium, high and very high) take the weights 0.026 

(!
,
	× 0.026), 0.052 ()

,
	× 0.052), 0.078 (*

,
	× 0.078), 0.104 (+

,
	× 0.026)	and 0.13 

(,
,
	× 0.026), respectively. As there are five linguistic memberships and three 

input variables, the total number of possible rules is 125 (listed in Table 6.4.1.3). 

Table 6.4.1.3 Rules of Fuzzy Inference Personal Technology Acceptance Model 
Rule #1 If X1 is VL and X2 is VL and X3 is VL Then UN 
Rule #2 If X1 is VL and X2 is VL and X3 is L Then UN 
Rule #3 If X1 is VL and X2 is VL and X3 is M Then UN 
Rule #4 If X1 is VL and X2 is VL and X3 is H Then UN 
Rule #5 If X1 is VL and X2 is VL and X3 is VH Then LU 
Rule #6 If X1 is VL and X2 is L and X3 is VL Then UN 
Rule #7 If X1 is VL and X2 is L and X3 is L Then UN 
Rule #8 If X1 is VL and X2 is L and X3 is M Then UN 
Rule #9 If X1 is VL and X2 is L and X3 is H Then LU 
Rule #10 If X1 is VL and X2 is L and X3 is VH Then LU 
Rule #11 If X1 is VL and X2 is M and X3 is VL Then UN 
Rule #12 If X1 is VL and X2 is M and X3 is L Then UN 
Rule #13 If X1 is VL and X2 is M and X3 is M Then LU 
Rule #14 If X1 is VL and X2 is M and X3 is H Then LU 
Rule #15 If X1 is VL and X2 is M and X3 is VH Then LU 
Rule #16 If X1 is VL and X2 is H and X3 is VL Then LU 
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Rule #17 If X1 is VL and X2 is H and X3 is L Then LU 
Rule #18 If X1 is VL and X2 is H and X3 is M Then LU 
Rule #19 If X1 is VL and X2 is H and X3 is H Then LU 
Rule #20 If X1 is VL and X2 is H and X3 is VH Then U 
Rule #21 If X1 is VL and X2 is VH and X3 is VL Then LU 
Rule #22 If X1 is VL and X2 is VH and X3 is L Then LU 
Rule #23 If X1 is VL and X2 is VH and X3 is M Then LU 
Rule #24 If X1 is VL and X2 is VH and X3 is H Then U 
Rule #25 If X1 is VL and X2 is VH and X3 is VH Then U 
Rule #26 If X1 is L and X2 is VL and X3 is VL Then UN 
Rule #27 If X1 is L and X2 is VL and X3 is L Then UN 
Rule #28 If X1 is L and X2 is VL and X3 is M Then UN 
Rule #29 If X1 is L and X2 is VL and X3 is H Then LU 
Rule #30 If X1 is L and X2 is VL and X3 is VH Then LU 
Rule #31 If X1 is L and X2 is L and X3 is VL Then UN 
Rule #32 If X1 is L and X2 is L and X3 is L Then UN 
Rule #33 If X1 is L and X2 is L and X3 is M Then LU 
Rule #34 If X1 is L and X2 is L and X3 is H Then LU 
Rule #35 If X1 is L and X2 is L and X3 is VH Then LU 
Rule #36 If X1 is L and X2 is M and X3 is VL Then LU 
Rule #37 If X1 is L and X2 is M and X3 is L Then LU 
Rule #38 If X1 is L and X2 is M and X3 is M Then LU 
Rule #39 If X1 is L and X2 is M and X3 is H Then LU 
Rule #40 If X1 is L and X2 is M and X3 is VH Then U 
Rule #41 If X1 is L and X2 is H and X3 is VL Then LU 
Rule #42 If X1 is L and X2 is H and X3 is L Then LU 
Rule #43 If X1 is L and X2 is H and X3 is M Then LU 
Rule #44 If X1 is L and X2 is H and X3 is H Then U 
Rule #45 If X1 is L and X2 is H and X3 is VH Then U 
Rule #46 If X1 is L and X2 is VH and X3 is VL Then LU 
Rule #47 If X1 is L and X2 is VH and X3 is L Then U 
Rule #48 If X1 is L and X2 is VH and X3 is M Then U 
Rule #49 If X1 is L and X2 is VH and X3 is H Then U 
Rule #50 If X1 is L and X2 is VH and X3 is VH Then U 
Rule #51 If X1 is M and X2 is VL and X3 is VL Then UN 
Rule #52 If X1 is M and X2 is VL and X3 is L Then UN 
Rule #53 If X1 is M and X2 is VL and X3 is M Then LU 
Rule #54 If X1 is M and X2 is VL and X3 is H Then LU 
Rule #55 If X1 is M and X2 is VL and X3 is VH Then LU 
Rule #56 If X1 is M and X2 is L and X3 is VL Then UN 
Rule #57 If X1 is M and X2 is L and X3 is L Then LU 
Rule #58 If X1 is M and X2 is L and X3 is M Then LU 
Rule #59 If X1 is M and X2 is L and X3 is H Then LU 
Rule #60 If X1 is M and X2 is L and X3 is VH Then LU 
Rule #61 If X1 is M and X2 is M and X3 is VL Then LU 
Rule #62 If X1 is M and X2 is M and X3 is L Then LU 
Rule #63 If X1 is M and X2 is M and X3 is M Then LU 
Rule #64 If X1 is M and X2 is M and X3 is H Then U 
Rule #65 If X1 is M and X2 is M and X3 is VH Then U 
Rule #66 If X1 is M and X2 is H and X3 is VL Then LU 
Rule #67 If X1 is M and X2 is H and X3 is L Then LU 
Rule #68 If X1 is M and X2 is H and X3 is M Then U 
Rule #69 If X1 is M and X2 is H and X3 is H Then U 
Rule #70 If X1 is M and X2 is H and X3 is VH Then U 
Rule #71 If X1 is M and X2 is VH and X3 is VL Then U 
Rule #72 If X1 is M and X2 is VH and X3 is L Then U 
Rule #73 If X1 is M and X2 is VH and X3 is M Then U 
Rule #74 If X1 is M and X2 is VH and X3 is H Then U 
Rule #75 If X1 is M and X2 is VH and X3 is VH Then U 
Rule #76 If X1 is H and X2 is VL and X3 is VL Then UN 
Rule #77 If X1 is H and X2 is VL and X3 is L Then LU 
Rule #78 If X1 is H and X2 is VL and X3 is M Then LU 
Rule #79 If X1 is H and X2 is VL and X3 is H Then LU 
Rule #80 If X1 is H and X2 is VL and X3 is VH Then LU 
Rule #81 If X1 is H and X2 is L and X3 is VL Then LU 
Rule #82 If X1 is H and X2 is L and X3 is L Then LU 
Rule #83 If X1 is H and X2 is L and X3 is M Then LU 
Rule #84 If X1 is H and X2 is L and X3 is H Then U 
Rule #85 If X1 is H and X2 is L and X3 is VH Then U 
Rule #86 If X1 is H and X2 is M and X3 is VL Then LU 
Rule #87 If X1 is H and X2 is M and X3 is L Then LU 
Rule #88 If X1 is H and X2 is M and X3 is M Then U 
Rule #89 If X1 is H and X2 is M and X3 is H Then U 
Rule #90 If X1 is H and X2 is M and X3 is VH Then U 
Rule #91 If X1 is H and X2 is H and X3 is VL Then U 
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Rule #92 If X1 is H and X2 is H and X3 is L Then U 
Rule #93 If X1 is H and X2 is H and X3 is M Then U 
Rule #94 If X1 is H and X2 is H and X3 is H Then U 
Rule #95 If X1 is H and X2 is H and X3 is VH Then U 
Rule #96 If X1 is H and X2 is VH and X3 is VL Then U 
Rule #97 If X1 is H and X2 is VH and X3 is L Then U 
Rule #98 If X1 is H and X2 is VH and X3 is M Then U 
Rule #99 If X1 is H and X2 is VH and X3 is H Then U 
Rule #100 If X1 is H and X2 is VH and X3 is VH Then U 
Rule #101 If X1 is VH and X2 is VL and X3 is VL Then LU 
Rule #102 If X1 is VH and X2 is VL and X3 is L Then LU 
Rule #103 If X1 is VH and X2 is VL and X3 is M Then LU 
Rule #104 If X1 is VH and X2 is VL and X3 is H Then LU 
Rule #105 If X1 is VH and X2 is VL and X3 is VH Then U 
Rule #106 If X1 is VH and X2 is L and X3 is VL Then LU 
Rule #107 If X1 is VH and X2 is L and X3 is L Then LU 
Rule #108 If X1 is VH and X2 is L and X3 is M Then U 
Rule #109 If X1 is VH and X2 is L and X3 is H Then U 
Rule #110 If X1 is VH and X2 is L and X3 is VH Then U 
Rule #111 If X1 is VH and X2 is M and X3 is VL Then LU 
Rule #112 If X1 is VH and X2 is M and X3 is L Then U 
Rule #113 If X1 is VH and X2 is M and X3 is M Then U 
Rule #114 If X1 is VH and X2 is M and X3 is H Then U 
Rule #115 If X1 is VH and X2 is M and X3 is VH Then U 
Rule #116 If X1 is VH and X2 is H and X3 is VL Then U 
Rule #117 If X1 is VH and X2 is H and X3 is L Then U 
Rule #118 If X1 is VH and X2 is H and X3 is M Then U 
Rule #119 If X1 is VH and X2 is H and X3 is H Then U 
Rule #120 If X1 is VH and X2 is H and X3 is VH Then U 
Rule #121 If X1 is VH and X2 is VH and X3 is VL Then U 
Rule #122 If X1 is VH and X2 is VH and X3 is L Then U 
Rule #123 If X1 is VH and X2 is VH and X3 is M Then U 
Rule #124 If X1 is VH and X2 is VH and X3 is H Then U 
Rule #125 If X1 is VH and X2 is VH and X3 is VH Then U 
X1: Human Beliefs, X2: Cognitive Thinking, X3: Technology Characteristics, VL: Very Low,  
L: Low,  M: Medium, H: High, VH: Very High, UN: Unusable Technology, LU: Likely Usable Technology, U: 
Usable Technology 

 

6.4.2 Evaluation of Fuzzy Inference Personal Technology 
Acceptance Model 

To evaluate FIPTAM, we employed five algorithms: triangular, trapezoidal, 

gaussian, sigmoidal and g-bell. Table 6.4.2.1 illustrates the performance of these 

algorithms. 

Table 6.4.2.1 Performance of Fuzzy Inference Personal Technology Acceptance Model 
Membership Algorithm 𝑹² MAPE Accuracy 

(1-MAPE) 
Triangular 0.38 0.28 0.72 

Trapezoidal 0.39 0.28 0.72 

Gaussian 0.39 0.29 0.71 

Sigmoidal 0.26 0.35 0.65 

G-bell Shaped 0.41 0.28 0.72 

The best performance was achieved using the g-bell membership function 

(R2 = 0.41; accuracy = 72%). Tables 6.4.2.2 and 6.4.2.3 show each membership 

function’s parameters for the inputs and outputs of the best-performing function 

(g-bell), respectively. Figures 6.4.2.1 through 6.4.2.5 display MATLAB’s 
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illustrative drawings of FIPTAM and the membership functions of the inputs and 

outputs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4.2.2 Parameters of Generalised Bell-Shaped Membership Function for Three 
Inputs of Fuzzy Inference Personal Technology Acceptance Model 
  Very Low Low Medium High Very High 

Human Beliefs 
a 0.94 0.9 1.261 1.2 0.94 
b 3.278 4 3.278 3.278 3.275 
c 0.1 1 2.5 3.5 5 

Cognitive Thinking 
a 0.94 0.1 0.71 1.158 1.875 
b 3.278 3.3 3.4 3.278 3.278 
c 0.16 1.5 2 3.6169 5 

Technology 
Characteristics 

a 1.1 0.8 1.2 0.85 1.875 
b 3.278 3.3 3.278 3.278 3.278 
c 0.5 1.8 2.7 3.5 5 

 

Table 6.4.2.3 Parameters of Generalised Bell-Shaped Membership Function for Output 
of Fuzzy Inference Personal Technology Acceptance Model 

  Unusable Likely Usable Usable 

Usability Decision 

a 0.3 0.16 0.2 

b 5 9 2.5 

c 0.15 0.65 1 

 

Figure 6.4.2.1 Fuzzy Inference Personal Technology Acceptance Model 
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Figure 6.4.2.2 Human Beliefs Membership Function 

 

Figure 6.4.2.3 Cognitive Thinking Membership Function 
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Table 6.4.2.4 lists five examples of how FIPTAM can be used to help 

decision-makers in their use decisions. FIPTAM’s users can enter values for 

human beliefs, cognitive thinking and technology characteristics. The model then 

produces an output, which labels the technology as unusable, likely usable or 

usable. 
Table 6.4.2.4 Example Applications of Fuzzy Inference Personal Technology Acceptance 
Model 

End-Users’ Evaluation of Input Variables FIS Crisp Output: 
Usability Decision Human Beliefs Cognitive Thinking Technology 

Characteristics 
0 0 0 Unusable Technology 

Figure 6.4.2.4 Technology Characteristics Membership Function 

 
 Figure 6.4.2.5 Usability Decision Membership Function 
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4.6 3 2 Likely Usable 
0.2 5 1.5 Unusable Technology 
1.8 2.7 4.02 Likely Usable 
3.5 5 5 Usable Technology 

 

6.5 Findings 
Although the testing of PTAM achieved very high performance in terms of R2 

value, applying PCA to decompose the model resulted in similar performance. 

SFPTAM had a slightly better R2 value (0.99) and lower accuracy (28.1%) 

compared with PTAM (0.97 and 50%, respectively). This demonstrates that PTAM 

can be dimensionally reduced without sacrificing its performance. However, this 

decomposition does not improve our understanding of the features shaping PTAM, 

nor does it present a meaningful division of the model. Therefore, we sought a 

better decomposition that would both preserve PTAM’s performance and clarify the 

role of the features in the model. We used the same PCA approach that we applied 

to decompose SFPTAM to produce a meaningful and understandable 

decomposition of PTAM’s features. The resulting TFPTAM performed comparably 

to the other two models (PTAM and SFPTAM). TFPTAM’s performance was slightly 

lower than that of TFPTAM. With an R2 value of 0.99 and an accuracy rate of 19%, 

the MLPR-tanh algorithm enabled us to create a model that was comparable to 

PTAM with fewer dimensions, achieving the first objective (see Section 6.2). 

The classification of PTAM’s features applying TFPTAM respects several 

important considerations. The approach we applied to classify the features does 

not affect the concepts firmly embedded in the literature. We termed the three 

categories human beliefs, cognitive thinking and technology capabilities, reflecting 

the definitions of the features in each of these categories. This terminology does 

not impose new conceptualisations that may oppose the current literature or appear 

bizarre and contradictory. More importantly, our approach considered the 

classification proposed by Venkatesh and Davis (2000) and Venkatesh (2000), 

which distinguishes between beliefs and features related to cognitive assessment. 

The former variables are shaped by the environment in which technology end users 

are influenced by others’ beliefs, regardless of whether these beliefs are in line with 

users’ purposes of use. The latter variables are formed by end users’ individual 
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evaluations of the consequences of technology use. This is accomplished in 

isolation from other users’ beliefs and biased observations. Users make their 

decisions to use a technology based on their knowledge, reviews of similar 

technologies and observations. The formulated TFPTAM had comparable 

performance to that of PTAM, indicating the suitability of the classification. 

Technology acceptance models are insufficient for guiding practitioners in the 

decision-making process of technology acceptance. The outputs of TAM and 

UTAUT are confusing and do not provide decisive answers as to whether a 

technology is usable. The R2 values output by these models cannot be used by 

practitioners to support the decision-making process, as these unlabelled output 

values do not help practitioners make decisions as to whether the technology in 

question is usable. The current technology acceptance literature also lacks an 

automated process for accurately and independently assigning a meaningful label 

to the output values of TAM and UTAUT. These observations also apply PTAM, 

SFPTAM and TFPTAM. However, the presented Mamdani-based FIPTAM 

provides a robust solution that addresses this limitation. Unlike TAM, UTAUT, 

PTAM, SFPTAM and TFPTAM, FIPTAM can convert input variables into 

defuzzified (labelled) outputs by processing 125 rules. This process clarifies the 

vagueness of the outputs of TAM, UTAUT, PTAM, SFPTAM and TFPTAM. 

Additionally, as demonstrated in Table 6.4.2.4, FIPTAM provides an automated 

process according to which practitioners can arrive at a usability decision for an 

under-investigation technology, which achieves the second objective (Section 6.2). 

TFPTAM, which was designed using PCA, provides an appropriate structure 

for the development of FIPTAM. With an R2 value of 0.99, TFPTAM was utilised as 

a foundation for FIPTAM. The R2 value achieved by FIPTAM	(0.41) demonstrates 

acceptable modelling power in the social sciences, the field to which the present 

research belongs. With an accuracy of 72%, FIPTAM also exhibits an acceptable 

predictive power. Finally, the resulting R2 values were compared for different 

membership function types, indicating that this value was rigorously (rather than 

arbitrarily) obtained. In other words, although FIPTAM’s R2 (0.41) was lower than 
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expected, it was obtained after considering different algorithms, which justifies its 

low value. 

In comparison with previous literature that has applied fuzzy DEMATEL to 

model technology acceptance (see e.g. Chang & Chen, 2018; Ho et al., 2015; Hsu 

& Yeh, 2017, 2018; Huang & Kao, 2012; Javidnia et al., 2012; Jeng & Tzeng, 2012; 

Lee et al., 2011; Zargar et al., 2011), the present approach used to formulate 

FIPTAM is superior for two reasons. First, previous studies (for an assessment of 

the literature, see Sections 3.4 and 3.6.3) have overlooked the evaluation of fuzzy 

DEMATEL-based models by failing to apply modelling power and prediction 

metrics. Since such measures have been overlooked, it is impossible to gauge the 

models’ ability to explain the relationships among the proposed features. In 

contrast, we evaluated FIPTAM before considering it for further analysis. In fact, 

we assessed several algorithms’ performance before reaching a conclusion about 

FIPTAM’s performance. Therefore, the approach taken in the present study is more 

objective than the approaches in prior literature. 

Second, DEMATEL-related modelling has focused solely on gauging the 

interactions among proposed features (for an assessment of the literature, see 

Section 3.6.3). The fuzzy component of DEMATEL covers the conversion of fuzzy 

values from ambiguous relationship values to the total relation crisp effects 

between variables. This approach does not evaluate a target value such as 

technology adoption – it merely explains why certain variables affect or are affected 

by others. However, the purpose of FIPTAM is to remove ambiguity, not explain 

the reasons behind variables’ interactions. Moreover, the explanatory role of the 

DEMATEL approach is in itself inefficient. DEMATEL does not produce completely 

unambiguous crisp values that humans can clearly understand because the crisp 

values require practitioners’ involvement with regard to determining a threshold 

value based upon which the insignificant relationships can be excluded. This 

creates further confusion from the practitioners’ perspective, as they are left to 

decide whether crisp relationship values are significant. In short, the fuzzy 

DEMATEL approach ignores the necessity of completely eliminating ambiguity, not 

to mention that it does not measure usability as a target value. As a result, 
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DEMATEL compounds the issue of ambiguity and exacerbates the utility problem 

of TAM and UTAUT. On the other hand, our approach clearly combines the 

proposed input variables, specifies rules governing the relationship between the 

inputs and target output and processes the inputs into a single unambiguous value 

(unusable, likely usable or usable). In this way, the vagueness of the target value 

is eliminated, and the rules specified by experts are incorporated into the 

determination of the crisp value. 

The presented approach for FIPTAM is scientifically rigorous, as we followed 

key steps before judging usability. First, the development of FIPTAM involved 

applying PCA (see Sections 6.3.1 and 6.3.4) to decompose PTAM. The resulting 

FIPTAM was evaluated using multiple ML algorithms to measure its predictive 

power. Second, we examined the best algorithms in the literature, choosing 

between the Mamdani and Sugeno approaches to develop FIPTAM. Third, we 

formulated FIPTAM applying the Mamdani approach with five membership 

functions (triangular, trapezoidal, Gaussian, sigmoidal and g-bell), which improves 

the objectivity of our decision. Fourth, the performances of each of these functions 

were compared to determine the best-performing Mamdani fuzzy inference system. 

Fifth, FIPTAM was applied to demonstrate its functionality and utility (see Table 

6.4.2.4). 

The performance of fuzzy inference systems varies depending on the number 

of input and output variables, the number of linguistic memberships and the nature 

of the membership functions. The decomposition of PTAM reinforces the 

effectiveness of FIPTAM from an understandability perspective. Although 

increasing the number of variables might have improved FIPTAM’s predictive 

power, its complexity would also have increased, which goes against the essential 

objective of a fuzzy inference system. 

The choice of Mamdani over Sugeno to formulate FIPTAM was justified on 

the basis of their underlying mechanisms. In addition to the previously discussed 

differences between the two algorithms, Sugeno quickly formulates its fuzzy 

system, whereas Mamdani is computationally expensive. However, Mamdani’s 



249 
 

ability to incorporate expert knowledge into the process of transforming rules into 

crisp outputs outweighs this disadvantage. 

Per Formula 6.3.5.1, the most influential input variable is cognitive thinking, 

which had the highest weight at 0.47. This ranking of the cognitive thinking feature 

should draw the attention of technology acceptance modelling practitioners to the 

importance of the determinants shaping cognitive thinking. To improve a 

technology’s usability, decision-makers should devote considerable effort to 

understanding end users’ goals and past experiences. Decision-makers should 

also take into consideration the financial costs incurred as a result of using the 

technology. 

The input data ranges were specified using DTC. This approach reinforces 

the objectivity of the data ranges for each of the five linguistic memberships (very 

low, low, middle, high and very high). Under this approach, data ranges were 

determined according to the predictiveness of each range for the usability output, 

supporting the credibility of FIPTAM. 

6.6 Conclusion 
Extending current technology acceptance models by adding more 

determinants may not be the best approach to improving model predictions. Our 

analysis using PCA as a dimensionality reduction technique illustrates how we 

decomposed PTAM without compromising its performance. Despite attaining a 

lower accuracy rate, the resulting TFPTAM performed comparably to PTAM. 

This chapter showcases another example of how applying ML techniques can 

improve technology acceptance modelling. FIPTAM provides a compelling solution 

to avoiding the decision-making limitations of TAM, UTAUT, PTAM, SFPTAM and 

TFPTAM. FIPTAM can be utilised to automatically understand the output of TAM 

and UTAUT and facilitate decision-making with regard to technology usability. The 

approach to formulating FIPTAM presented in this chapter enriches the technology 

acceptance literature by demonstrating how technology usability decisions can be 

automated. 

Technology acceptance research has been criticised for reaching a level of 

stagnation. However, the fuzzy logic inference approach in the present study opens 



250 
 

the door to considerable advancement in the literature. Technology acceptance 

research should address not only users and technology but also the technical 

structure of the models employed. 

6.7 Limitations 
FIPTAM has several limitations. First, for both inputs and outputs, similar 

types of membership functions were applied to different classes. Mixing different 

membership functions across classes, inputs and outputs may improve FIPTAM’s 

performance. However, as achieving acceptable performance when combining 

membership function types requires extra time, we applied only a single type of 

membership function across all categories and variables. 

Second, the resulting R2 value is low compared with that generated by 

applying ML techniques to PTAM. This value might be improved by increasing the 

number of input variables. Although the goal of reducing complexity led to the 

choice of three input variables, there is still an opportunity to improve performance 

by increasing the number of variables. 

Third, involving experts in deciding the data ranges for the inputs and output 

could have provided a more objective judgement regarding these ranges. The input 

data ranges were specified after applying the DTC, which demonstrated sufficient 

exploration of the data and showed the ranges’ contributions in predicting each 

output class. However, asking human experts to determine each of the five 

categories of inputs and the three classes of the output would have produced a 

more robust judgement. 

Although the example of applying FIPTAM shown in Table 6.4.2.4 

demonstrates that the proposed system can be very helpful to decision-makers, 

there is still a need to design software that is accessible for practitioners. Such 

software would make the model easier and faster to use. Although MATLAB can 

be used to operate FIPTAM, not all practitioners are familiar with its functionalities, 

and MATLAB lacks a user interface that could facilitate this operation. 
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7.1 Introduction 
In this chapter, we apply steps 4 and 5 of the methodology proposed in 

Chapter 2 to model and evaluate PTAI. In the following sections, we cover our 

objectives in modelling PTAI, the components of PTAI and our modelling 

techniques and evaluation metrics. We elaborate our findings by connecting our 

objectives with the achieved results. In the last section, we summarise the chapter’s 

findings, explain its contributions to the technology acceptance literature and 

address the limitations of our proposed approach. 

7.2 Objectives 
Addressing the gaps identified in Section 3.7.4, we aim to achieve two 

objectives in this chapter: 

1. To use Bayesian networks to develop an explanatory and predictive 

structure of PTAM. 

2. To formulate PTAI and benchmark its performance against PTAM. 

7.3 Modelling of Personal Technology Acceptance Index 
The general framework of PTAI was modelled using Bayesian networks, 

which rely on probabilities. Modelling using the Bayesian networks technique 

includes two parts: a DAG and probability tables, which represent the associations 

among PTAM’s features. 

7.3.1 Direct Acyclic Graph of Personal Technology 
Acceptance Model 

The proposed network is illustrated in Figure 7.3.1. It comprises 40 features 

and a single target (i.e. use behaviour). In Figure 7.3.1, each edge represents a 

conditional dependency, and each node represents a distinctive random feature. 
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The relationships among features are inferred from conditional probability 

tables, as shown in the following section. The complexity of computing the tables 

depends on the number of child features affecting parent features and the number 

of states for each feature. For example, to compute the probability of a parent 

feature with five states (categories) that is affected by ten child features which 

also have five states, it is necessary to calculate 9.7 million probabilities. Even 

when using software, the process of computing a probability of such complexity 

is time consuming and the necessary hardware is cost prohibitive. This problem 

is compounded when the network is tested to assess its performance and make 

Figure 7.3.1 Bayesian Networks of Personal Technology Acceptance Model 

ATTC: Attitude toward change brought by technology use, ATTT: Attitude toward technology, ATUS: Attitude 
toward technology use, BINT: Behavioural intention of technology use, COMP: Compatibility, CONS: Perceived 
consistency, DA: Design aesthetics, DSR: Desire, ENJ: Perceived enjoyment, EOU: Perceived ease of use, FCON: 
Financial consequences, FLX: Flexibility, FUNC: Functionality, GOL: Goal, HBT: Habit, IMG: Image, INOV: 
Personal innovativeness, MOB: Mobility, NAV: Navigability, NOVL: Perceived novelty, OQLTY: Output quality, 
PAE: Positive anticipated emotions, PEC: Perception of external control, PLY: Technology playfulness, PRVSY: 
Privacy, PSBH: Past behaviour, QLTY: Quality, RD: Result demonstrability, SCUR: Security, SELF: Technology 
self-efficacy, SI: Social influence, SQLTY: Service quality, SFTY: Safety, SN: Subjective norm, TC: Technology 
characteristics, TQLTY: Technology quality, TRST: trust, USE: Use behaviour, USFL: Perceived usefulness, VOL: 
Voluntariness, VSBL: Visibility.
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inferences. Therefore, it was convenient to reduce the complexity of the 

probability computation by reducing both the number of child features affecting 

parents and the number of states for each feature without compromising PTAM’s 

structure. This was accomplished by creating three new features to consolidate 

the influence of the original features. As shown in Figure 7.3.1, these new features 

are technology characteristics (TC), social influence (SI) and quality (QLTY). TC 

consolidates the effects of safety (SFTY), flexibility (FLX), compatibility (COMP), 

functionality (FUNC), navigability (NAV), mobility (MOB) and design aesthetics 

(DA). SI consolidates the effects of perceived consistency (CONS), image (IMG), 

subjective norm (SN), voluntariness (VOL) and visibility (VSBL). QLTY 

consolidates the effects of technology quality (TQLTY), service quality (SQLTY) 

and output quality (OQLTY). To achieve this consolidation, the average of each 

variable’s 514 values was calculated and divided by the total number of 

observations (i.e. 514). The resulting ratio was multiplied by the value of each 

consolidating feature. We then calculated the sum of these weighted values for 

each observation to find the total weighted values for each observation of the 

consolidating features (TC, SI and QLTY). 

We designed the network visualised in Figure 7.3.1 based on the literature. 

For features that had not yet been introduced in the literature, we relied on our 

knowledge to design their relationships. We explain our approach as follows. 

According to Davis et al. (1989), Venkatesh and Davis (2000) and Venkatesh et 

al. (2003), perceived ease of use and perceived usefulness mediate the effects of 

system design characteristics and behavioural intention. System design 

characteristics include six variables (among many others) that have not been 

previously introduced to the literature: , flexibility, compatibility, functionality, 

navigability and mobility. Their influences have not yet been analysed using PLS-

SEM. We assumed that they have relationships with both perceived ease of use 

and perceived usefulness via technology characteristics. The design aesthetics 

feature has been examined by Cyr et al. (2006), Li and Yeh (2010) and Alwabel 

et al. (2020). Cyr et al. (2006) found that design aesthetics significantly affected 

perceived ease of use, perceived enjoyment and perceived usefulness. Li and 
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Yeh (2010) found that design aesthetics influenced only perceived ease of use 

and perceived usefulness, while Alwabel et al. (2020) observed an influence only 

on perceived enjoyment. Thus, we assume that the design aesthetics feature 

affects perceived usefulness and perceived ease of use through technology 

characteristics and directly affects perceived enjoyment. 

With regard to the quality consolidating feature, output quality was found to 

exert an influence on perceived usefulness, consistent with the results of 

Venkatesh and Davis (2000). However, the influences of service quality and 

technology quality have not previously been studied in the literature. Therefore, 

drawing on the findings of Venkatesh and Davis (2000) concerning output quality, 

we assume that service quality and technology quality influence perceived 

usefulness via quality.  

Venkatesh and Davis (2000) studied subjective norm, image and 

voluntariness and theorised them as social influences that technology users 

experience when using a technology. Venkatesh and Davis (2000) found these 

influences to significantly affect perceived usefulness. Similarly, the definitions of 

visibility and perceived consistency suggest that they are both related to social 

pressure felt by technology users. Therefore, we assumed these two features to 

have relationships with perceived usefulness. Accordingly, these five features 

were consolidated into the social influence variable, which is related to perceived 

usefulness. Venkatesh and Davis (2000) introduced the goal feature to TAM, 

conceptualising it as job relevance and confirming its influence on perceived 

usefulness. Similarly, Venkatesh and Davis (2000) postulated result 

demonstrability and demonstrated that it significantly affected perceived 

usefulness. Hence, goal and result demonstrability are associated with perceived 

usefulness. 

Some associations of perceived ease of use are supported by Venkatesh’s 

(2000) findings. He demonstrated that perception of external control, perceived 

enjoyment, technology playfulness and technology self-efficacy are determinants 

of perceived ease of use. Perugini and Conner (2000) and Perugini and Bagozzi 

(2001) assessed the influence of positive anticipated emotions on TPB (Ajzen, 
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1985, 1991). They concluded that including positive anticipated emotions 

improved TPB by allowing for the consideration of the emotional consequences 

of achieving or not achieving a sought-after goal. As a result, we introduced the 

positive anticipated emotions feature to PTAM based on the conclusions of 

Perugini and Conner (2000) and Perugini and Bagozzi (2001) that positive 

anticipated emotions positively influence behavioural intention. Based on the 

findings of those works and the role of emotions in TAM and UTAUT, we assumed 

the positive anticipated emotions feature to have a relationship with perceived 

ease of use. 

Adapting TAM from TPB, Davis et al. (1989) empirically (as opposed to 

theoretically) identified a significant effect of perceived ease of use on perceived 

usefulness. Accordingly, we assumed perceived ease of use to directly influence 

perceived usefulness. Trust is associated with three features. Carter and Schaupp 

(2008) and Gefen et al. (2003) found trust to significantly affect behavioural 

intention. Additionally, Pavlou (2003) demonstrated the impact of trust on 

perceived ease of use, perceived usefulness and behavioural intention. 

Therefore, we assumed trust to relate to perceptions of ease of use and 

usefulness as well as behavioural intention. Personal innovativeness has been 

statistically shown to influence perceived ease of use and perceived usefulness 

(Lu et al., 2005). Accordingly, personal innovativeness is assumed to connect to 

both perceived ease of use and perceived usefulness.  

Vijayasarathy (2004) and Wang et al. (2014) studied the influence of security 

on technology adoption. Vijayasarathy (2004) found a significant relationship 

between security and attitude toward technology, and Wang et al. (2014) 

established security’s relationships with perceived usefulness and behavioural 

intention. Therefore, we assumed security to have associations with attitude 

toward technology, perceived usefulness and behavioural intention. 

Bagozzi (1992, 2007) suggested including desire in TAM and stressed its 

role in elucidating how beliefs (i.e. perceptions) about ease of use and usefulness 

motivate decision-makers’ behavioural intentions to adopt technology. Moreover, 

Perugini and Conner (2000) and Perugini and Bagozzi (2001) confirmed the 
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statistically significant mediating impact of desire on the relationship between 

beliefs and behavioural intention. Drawing on this, both perceived ease of use and 

perceived usefulness are associated with desire, which is in turn directly 

associated with behavioural intention. 

In formulating UTAUT2, Venkatesh et al. (2012) postulated the influence of 

habit and price value on behavioural intention. PTAM takes a broad interpretation 

of the financial impact of technology that goes beyond the mere cost of initially 

buying a technology. Rather, PTAM considers all the financial consequences of 

using a technology, including maintenance, insurance and repair and costs 

incurred as a result of technologies’ devaluation. Therefore, the financial 

consequences and habit variables are associated with behavioural intention. 

Vijayasarathy (2004) postulated and assessed the influence of privacy 

(among several other features) on attitude toward technology. Furthermore, 

McLeod et al. (2009) analysed privacy’s indirect effect on behavioural intention 

through its direct relationship with risk. Following Vijayasarathy (2004) and 

McLeod et al. (2009), we associate privacy with attitude toward technology. 

Perceived novelty has a positive and significant effect on attitude toward 

technology (Wells et al., 2010). Therefore, we assume that perceived novelty has 

an association with attitude toward technology in the proposed network. 

We considered several associations with use behaviour. According to TRA 

and TPB, individuals’ conscious behaviour is determined by their intentions to 

execute that behaviour (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975). In other 

words, actions – including behaviours related to technology use – are controlled 

by intentions, which are the best determinants of behaviour (Ajzen, 1985). Keen 

(1980) assessed the impact of technology on transforming organisations and how 

organisations face change after using technology. He found that many features 

influence the potential use of a technology, including end users’ attitudes toward 

both the technology and the change brought about by using it. Furthermore, in 

discussing several features that shape personal computer use, Thompson et al. 

(1991) maintained that the decision to choose more effective and efficient 

technology should include consideration of long-term consequences such as the 
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change resulting from using it. Ouellette and Wood (1998) concluded that past 

behaviour is an accurate predictor of present behaviour. Ajzen and Driver (1992), 

Bagozzi and Kimmel (1995), Beck and Ajzen (1991), Leone et al. (1999), Norman 

and Conner (1996) and Norman and Smith (1995) tested the effect of past 

behaviour on TPB and concluded that it was a strong determinant of planned 

behaviour. Moreover, Perugini and Conner (2000) and Perugini and Bagozzi 

(2001) found past behaviour to be a significant determinant of planned behaviour. 

Ajzen (2011) acknowledged that past behaviour was the feature with the most 

influence on planned behaviours, such as use behaviour. Attitude toward 

technology use was included in the original TAM (Davis, 1986, 1989, 1993), where 

it was postulated to mediate the influence of beliefs (such as perceived usefulness 

and perceived ease of use) on technology use. However, Davis et al. (1989) and 

Davis and Venkatesh (1996, p. 21) later excluded it because the ‘attitude feature 

did not fully mediate the effect of perceived usefulness on intention’. Therefore, 

behavioural intention, past behaviour, attitude toward technology use, attitude 

toward change brought by technology use and attitude toward technology are 

assumed to have relationships with the target variable (i.e. use behaviour). 

7.3.2 Development of Probability Tables 
7.3.2.1 Perceived Enjoyment Association 

Figure 7.3.2.1 shows the association between design aesthetics and 

perceived enjoyment. 

 

Based on Formula 4.8.3, this relationship can be written as in Formula 

7.3.2.1.1: 

Figure 7.3.2.1 Relationship of Design Aesthetics with Perceived Enjoyment 
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P(ENJ|DA) = .(C3D	Ո	E0)
.(E0)

  (7.3.2.1.1) 

Applying the observation data described in the Data Collection section 

(Section 4.11), Table 7.3.2.1 demonstrates the simple, marginal and conditional 

probabilities of design aesthetics and perceived enjoyment. 
Table 7.3.2.1 Joint and Conditional Probabilities of Design Aesthetics and Perceived 
Enjoyment 
Observations Simple and Marginal Probabilities Conditional Probability 

P(ENJ | DA) 
 ENJ   ENJ  ENJ 

  0 1 Total   0 1 Total   0 1 Total 

DA 
0 98 49 147 

DA 
0 0.19 0.1 0.29 

DA 
0 0.67 0.33 1 

1 72 295 367 1 0.14 0.57 0.71 1 0.2 0.8 1 
 Total 170 344 514  Total 0.33 0.67 1  

DA: Design aesthetics, ENJ: Perceived enjoyment, 0: Absent effect, 1: Present effect. 

Therefore, given the conditional probability with ENJ = 1 and DA = 1, the 

inferred relationship between perceived enjoyment and design aesthetics can 

be written as follows: 

ENJ	 = 	0.8	 × 	DA	  (7.3.2.1.2) 

7.3.2.2 Technology Characteristics Associations 

Figure 7.3.2.2 shows the features that shape the relationships of the 

technology characteristics consolidating feature, including compatibility, design 

aesthetics, flexibility, functionality, mobility, navigability and safety. 

 

 

Figure 7.3.2.2 Relationships of Technology Characteristics (TC) with 
Compatibility (COMP), Design Aesthetics (DA), Flexibility (FLX), Functionality 
(FUNC), Mobility (MOB), Navigability (NAV) and Safety (SFTY) 
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Based on Formula 4.8.7, these relationships can be written as follows: 

P(TC|	COMP, DA, FLX, FUNC,MOB, NAV, SFTY) 	= 	P(TC|COMP)	×

	P(TC|DA) 	× 	P(TC|FLX) 	× 	P(TC|FUNC)	× 	P(TC|MOB) 	× 	P(TC|NAV) 	×

	P(TC|SFTY) (7.3.2.2.1) 

Table 7.3.2.2 shows the simple, marginal and conditional probabilities 

representing the relationships of technology characteristics with compatibility, 

design aesthetics, flexibility, functionality, mobility, navigability and safety. 
Table 7.3.2.2 Simple, Marginal and Conditional Probabilities of Technology 
Characteristics Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

COMP 
0 135 1 136 

COMP 
0 0.26 0.001 0.261 

COMP 
0 0.99 0.01 1 

1 311 67 378 1 0.6 0.139 0.739 1 0.82 0.18 1 

 Total 446 68 514  Total 0.86 0.14 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

DA 
0 147 0 147 

DA 
0 0.28 0 0.28 

DA 
0 1 0 1 

1 299 68 367 1 0.58 0.14 0.72 1 0.81 0.19 1 

 Total 446 68 514  Total 0.86 0.14 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

FLX 
0 139 1 140 

FLX 
0 0.27 0.001 0.271 

FLX 
0 1 0 1 

1 307 67 374 1 0.6 0.13 0.729 1 0.82 0.18 1 

 Total 446 68 514  Total 0.87 0.131 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

FUNC 
0 141 3 144 

FUNC 
0 0.28 0.005 0.28 

FUNC 
0 0.98 0.02 1 

1 305 65 370 1 0.59 0.13 0.72 1 0.82 0.18 1 

 Total 446 68 514  Total 0.87 0.135 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

MOB 
0 105 0 105 

MOB 
0 0.21 0 0.21 

MOB 
0 1 0 1 

1 341 68 409 1 0.66 0.13 0.79 1 0.84 0.16 1 

 Total 446 68 514  Total 0.87 0.13 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 



261 
 

NAV 
0 126 0 126 

NAV 
0 0.25 0 0.24 

NAV 
0 1 0 1 

1 320 68 388 1 0.62 0.13 0.75 1 0.82 0.16 1 

 Total 446 68 514  Total 0.87 0.13 1      

               

  TC   TC   TC 

  0 1 Total   0 1 Total   0 1 Total 

SFTY 
0 179 2 181 

SFTY 
0 0.35 0.004 0.352 

SFTY 
0 0.99 0.01 1 

1 267 66 333 1 0.52 0.128 0.648 1 0.8 0.2 1 

 Total 446 68 514  Total 0.87 0.132 1      

               

Simple Probability  
Conditional Probability  
P(TC | COMP, DA, FLX, MOB, 
NAV, SFTY) 

       TC TC 

COMP DA FLX FUNC MOB NAV SFTY 0 1 Total 0 1 Total 

1 1 1 1 1 1 1 0.24 0.11 0.35 0.67 0 1 

COMP: Compatibility, DA: Design aesthetics, FLX: Flexibility, MOB: Mobility, NAV: Navigability, SFTY: Safety, 
TC: Technology characteristics, 0: Absent effect, 1: Present effect. 

 
Given the conditional probability that each feature (COMP, DA, FLEX, 

FUNC, MOB, SFTY and NAV) has a value of 1 while TC has the same value, 

we can infer the relationship between technology characteristics and each 

variable: 

TC	 = 	0.18	 × 	COMP	 + 	0.19	 × 	DA	 + 	0.18	 × 	FLX	 + 	0.18	 × 	FUNC	 +

	0.16	 × 	MOB	 + 	0.16	 × 	NAV + 	0.2	 × 	SFTY	 (7.3.2.2.2) 

7.3.2.3 Social Influence Associations 
Figure 7.3.2.3 shows the features that shape the relationships of the social 

influence consolidating feature, including perceived consistency, image, 

subjective norm, voluntariness and visibility. 

 

Figure 7.3.2.3 Relationships of Social Influence (SI) with Perceived Consistency 
(CONS), Image (IMG), Subjective Norm (SN), Voluntariness (VOL) and Visibility 
(VSBL) 

 



262 
 

Based on Formula 4.8.7, these relationships can be written as follows: 

P(SI	|	CONS, IMG, SN, VOL, VSBL) 	= 	P(SI	|	CONS) 	× 	P(SI	|	IMG) 	× 	P(SI	|	SN) 	×

	P(SI	|	VOL) 	× 	P(SI	|	VSBL) (7.3.2.3.1) 

Table 7.3.2.3 shows the simple, marginal and conditional probabilities 

representing the relationships of social influence with perceived consistency, 

image, subjective norm, voluntariness and visibility. 

Table 7.3.2.3 Simple, Marginal and Conditional Probabilities of Social Influence 
Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  SI   SI   SI 

  0 1 Total   0 1 Total   0 1 Total 

CONS 
0 189 0 189 

CONS 
0 0.36 0 0.36 

CONS 
0 1 0 1 

1 294 31 325 1 0.57 0.07 0.64 1 0.91 0.09 1 

 Total 483 31 514  Total 0.93 0.07 1      

               

  SI   SI   SI 

  0 1 Total   0 1 Total   0 1 Total 

IMG 
0 266 2 268 

IMG 
0 0.52 0.003 0.523 

IMG 
0 0.99 0.01 1 

1 217 29 246 1 0.42 0.057 0.477 1 0.88 0.12 1 

 Total 483 31 514  Total 0.94 0.06 1      

               

  SI   SI   SI 

  0 1 Total   0 1 Total   0 1 Total 

SN 
0 257 0 257 

SN 
0 0.5 0 0.5 

SN 
0 1 0 1 

1 226 31 257 1 0.44 0.06 0.5 1 0.88 0.12 1 

 Total 483 31 514  Total 0.94 0.06 1      

               

  SI   SI   SI 

  0 1 Total   0 1 Total   0 1 Total 

VOL 
0 278 12 290 

VOL 
0 0.54 0.02 0.56 

VOL 
0 0.96 0.04 1 

1 205 19 224 1 0.4 0.04 0.44 1 0.91 0.09 1 

 Total 483 31 514  Total 0.94 0.0603 1      

               

  SI   SI   SI 

  0 1 Total   0 1 Total   0 1 Total 

VSBL 
0 483 0 483 

VSBL 
0 0.94 0 0.94 

VSBL 
0 1 0 1 

1 0 31 31 1 0 0.06 0.06 1 0 1 1 

 Total 483 31 514  Total 0.94 0.06 1      

 

Observations      Conditional Probability P(SI | CONS, IMG, SN, VOL, 
VSBL) 

     SI SI 
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CONS IMG SN VOL VSBL 0 1 Total 0 1 Total 

1 1 1 1 1 0.13 0 0.16 0.78 0.22 1 

CONS: Perceived consistency, IMG: Image, SI: Social influence, SN: Subjective norm, VOL: Voluntariness, 
VSBL: Visibility, 0: Absent effect, 1: Present effect. 

Therefore, given the conditional probability that each feature (CONS, IMG, 

SN, VOL and VSBL) has a value of 1 while SI has the same value, we can infer 

the relationships between social influence and these features as follows (with 

normalised weights): 

SI	 = 	0.09	 × 	CONS	 + 	0.12	 × 	IMG	 + 	0.12	 × 	SN	 + 	0.09	 × 	VOL	 +

	1.0	 × 	VSBL (7.3.2.3.2) 

7.3.2.4 Quality Associations 
Figure 7.3.2.4 shows the features that shape the relationships of the quality 

consolidating feature, including output quality, service quality and technology 

quality. 

 

Based on Formula 4.8.7, these relationships can be written as follows: 

P(QLTY	|	OQLTY, SQLTY, TQLTY) 	= 	P(QLTY	|	OQLTY) 	×

	P(QLTY	|	SQLTY) × P(QLTY	|	TQLTY) (7.3.2.4.1) 

Table 7.3.2.4 shows the simple, marginal and conditional probabilities 

representing the relationships of quality with output quality, service quality and 

technology quality. 

 

 

Figure 7.3.2.4 Relationships of Quality (QLTY) with Output Quality (OQLTY), Service 
Quality (SQLTY) and Technology Quality (TQLTY) 
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Table 7.3.2.4 Simple, Marginal and Conditional Probabilities of Quality Associations 
Observations Simple and Marginal 

Probabilities Conditional Probability 
  QLTY   QLTY   QLTY 

  0 1 Total   0 1 Total   0 1 Total 

OQLTY 
0 108 3 111 

OQLTY 
0 0.21 0.01 0.22 

OQLTY 
0 0.97 0.03 1 

1 338 65 403 1 0.66 0.12 0.78 1 0.84 0.16 1 

 Total 446 68 514  Total 0.87 0.13 1      

               

  QLTY   QLTY   QLTY 

  0 1 Total   0 1 Total   0 1 Total 

SQLTY 
0 149 3 152 

SQLTY 
0 0.29 0.01 0.3 

SQLTY 
0 0.97 0.03 1 

1 297 65 362 1 0.58 0.12 0.7 1 0.82 0.18 1 

 Total 446 68 514  Total 0.87 0.13 1      

               

  QLTY   QLTY   QLTY 

  0 1 Total   0 1 Total   0 1 Total 

TQLTY 
0 118 2 120 

TQLTY 
0 0.23 0 0.23 

TQLTY 
0 0.98 0.02 1 

1 328 66 394 1 0.64 0.13 0.77 1 0.83 0.17 1 

 Total 446 68 514  Total 0.87 0.13 1      

               

Simple Probability Conditional Probability P(QLTY | OQLTY, SQLTY, 
TQLTY) 

   QLTY QLTY 

OQLTY SQLTY TQLTY 0 1 Total 0 1 Total 

1 1 1 0.4 0.12 0.55 0.79 0.21 1 

OQLTY: Output quality, SQLTY: Service quality, TQLTY: Technology quality, QLTY: Quality, 0: Absent 
effect, 1: Present effect. 

Therefore, given the conditional probability that each variable (OQLTY, 

SQLTY or TQLTY) has a value of 1 while QLTY has the same value, we can 

infer the relationships between quality and these variables as follows (with 

normalised weights): 

QLTY	 = 	0.16	 × 	OQLTY	 + 0.18	 × 	SQLTY	 + 	0.17	 × 	TQLTY (7.3.2.4.2) 

7.3.2.5 Perceived Ease of Use Associations 
Figure 7.3.2.5 presents the associations between perceived ease of use 

and perceived enjoyment, positive anticipated emotions, personal 

innovativeness, technology playfulness, technology self-efficacy, technology 

characteristics and trust. 
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Based on Formula 4.8.7, these relationships can be written as follows: 

P(EOU	|	ENJ, PAE, INOV, PLY, SELF, TC, TRST) 	= 	P(EOU	|	ENJ) 	×

	P(EOU	|	PAE) 	× 	P(EOU	|	INOV) 	× 	P(EOU	|	PLY) 	× 	P(EOU	|	SELF) 	×

	P(EOU	|	TC) 	× P(EOU	|	TRST) (7.3.2.5.1) 

Table 7.3.2.5 shows the simple, marginal and conditional probabilities 

representing the relationships of perceived ease of use with perceived 

enjoyment, positive anticipated emotions, perception of external control, 

personal innovativeness, technology characteristics, technology playfulness, 

technology self-efficacy and trust. 
Table 7.3.2.5 Simple, Marginal and Conditional Probabilities of Perceived Ease of Use 
Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

ENJ 
0 64 106 170 

ENJ 
0 0.124 0.2 0.32 

ENJ 
0 0.38 0.6 1 

1 38 306 344 1 0.07 0.595 0.67 1 0.1 0.9 1 

 Total 102 412 514  Total 0.194 0.795 1  
    

   

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

PAE 
0 69 127 196 

PAE 
0 0.13 0.25 0.38 

PAE 
0 0.34 0.7 1 

1 33 285 318 1 0.06 0.56 0.62 1 0.09 0.9 1 

 Total 102 412 514  Total 0.19 0.81 1  
    

   

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

Figure 7.3.2.5 Relationships of Perceived Ease of Use (EOU) with Perceived Enjoyment 
(ENJ), Positive Anticipated Emotions (PAE), Perception of External Control (PEC), 
Personal Innovativeness (INOV), Technology Playfulness (PLY), Technology Self-
Efficacy (SELF), Technology Characteristics (TC) and Trust (TRST) 
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PEC 
0 54 51 105 

PEC 
0 0.1 0.1 0.2 

PEC 
0 0.5 0.5 1 

1 48 361 409 1 0.09 0.71 0.8 1 0.11 0.9 1 

 Total 102 412 514  Total 0.19 0.81 1  
    

   

  EOU   EOU   EOU 

  0 1 Total   0 1 Total   0 1 Total 

INOV 
0 52 64 116 

INOV 
0 0.1 0.13 0.23 

INOV 
0 0.43 0.6 1 

1 50 348 398 1 0.1 0.68 0.78 1 0.13 0.9 1 

 Total 102 412 514  Total 0.2 0.81 1  
    

   

  EOU   EOU   EOU 

  0 1 Total   0 1 Total   0 1 Total 

PLY 
0 70 191 261 

PLY 
0 0.14 0.372 0.51 

PLY 
0 0.27 0.7 1 

1 32 221 253 1 0.06 0.43 0.49 1 0.12 0.9 1 

 Total 102 412 514  Total 0.2 0.802 1  
    

   

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

SELF 
0 62 96 158 

SELF 
0 0.12 0.19 0.31 

SELF 
0 0.38 0.6 1 

1 40 316 356 1 0.07 0.62 0.69 1 0.1 0.9 1 

 Total 102 412 514  Total 0.19 0.81 1  
    

           
    

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

TC 
0 261 185 147 

TC 
0 0.5 0.37 0.87 

TC 
0 0.58 0.4 1 

1 13 55 367 1 0.03 0.1 0.13 1 0.19 0.8 1 

 Total 102 412 514  Total 0.52 0.47 1  
    

   

  EOU   EOU  
 

EOU 

  0 1 Total   0 1 Total   0 1 Total 

TRST 
0 62 96 158 

TRST 
0 0.12 0.19 0.31 

TRST 
0 0.39 0.6 1 

1 40 316 356 1 0.07 0.62 0.69 1 0.11 0.9 1 

 Total 102 412 514  Total 0.19 0.81 1  
    

 

Simple Probability 
Conditional Probability 
P(EOU | ENJ, PAE, PEC, 
INOV, PLY, SELF, TC, 
TRST)        

 EOU EOU 

ENJ PAE PEC INOV PLY SELF TC TRST 0 1 Total 0 1 Total 

1 1 1 1 1 1 1 1 0.02 0.02 0.04 0.5 0.5 1 

ENJ: Enjoyment, EOU: Ease of use, PAE: Positive anticipated emotions, PEC: Perception of external control, 
INOV: Personal innovativeness, PLY: Technology playfulness, SELF: Technology self-efficacy, TC: Technology 
characteristics, TRST: Trust, 0: Absent effect, 1: Present effect 

The relationships between perceived ease of use and its features can be 

written as follows: 
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EOU	 = 	0.9 × 	ENJ	 + 	0.9	 × 	PAE + 		0.9	 × 	PEC	 + 	0.9	 × 	PINV	 + 	0.9	 ×

	PLY	 + 	0.9	 × 	SEFF	 + 0.8	 × 	TC	 + 	0.9	 × 	TRST (7.3.2.5.2) 

7.3.2.6 Perceived Usefulness Associations 
Figure 7.3.2.6 shows the associations between perceived usefulness and 

perceived ease of use, goal, personal innovativeness, quality, result 

demonstrability, security, social influence, technology characteristics and trust. 

 

Based on Formula 4.8.7, these relationships can be written as follows: 

P(USFL	|	RD, EOU, GOL, INOV, QLTY, SCUR, SI, TC, TRST) 	= 	P(USFL	|	RD) 	×

	P(USFL	|	EOU) 	× 	P(USFL|	GOL) 	× 	P(USFL|	INOV) 	× 	P(USFL|	QLTY) 	×

	P(USFL|	SCUR) 	× 	P(USFL|	SI) 	× 	P(USFL|	TC) 	× 	P(USFL|	TRST)	(7.3.2.6.1) 

The simple, marginal and conditional probabilities of perceived usefulness 

with its features are illustrated in Table 7.3.2.6. 
Table 7.3.2.6 Simple, Marginal and Conditional Probabilities of Perceived Usefulness 
Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  USFL  USFL   USFL 
  0 1 Total   0 1 Total   0 1 Total 

EOU 
0 53 49 102 

EOU 
0 0.1 0.1 0.2 

EOU 
0 0.5 0.5 1 

1 51 361 412 1 0.09 0.71 0.8 1 0.11 0.89 1 

 Total 104 410 514  Total 0.19 0.81 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

GOL 
0 56 48 104 

GOL 
0 0.1 0.09 0.19 

GOL 
0 0.52 0.48 1 

1 48 362 410 1 0.1 0.71 0.81 1 0.12 0.88 1 

 Total 104 410 514  Total 0.2 0.8 1      

Figure 7.3.2.6 Relationships of Perceived Usefulness (USFL) with Perceived Ease 
of Use (EOU), Goal (GOL), Personal Innovativeness (INOV), Quality (QLTY), Result 
Demonstrability (RD), Security (SCUR), Social Influence (SI), Technology 
Characteristics (TC) and Trust (TRST) 
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  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

INOV 
0 63 53 116 

INOV 
0 0.12 0.1 0.22 

INOV 
0 0.54 0.46 1 

1 41 357 398 1 0.08 0.7 0.78 1 0.1 0.9 1 

 Total 104 410 514  Total 0.2 0.8 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

QLTY 
0 103 343 446 

QLTY 
0 0.2 0.67 0.87 

QLTY 
0 0.22 0.78 1 

1 1 67 68 1 0.001 0.129 0.13 1 0.007 0.993 1 

 Total 104 410 514  Total 0.201 0.799 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

RD 
0 73 123 196 

RD 
0 0.14 0.24 0.38 

RD 
0 0.36 0.64 1 

1 31 287 318 1 0.06 0.56 0.62 1 0.09 0.91 1 

 Total 104 410 514  Total 0.2 0.8 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

SCUR 
0 62 105 167 

SCUR 
0 0.12 0.2 0.32 

SCUR 
0 0.375 0.625 1 

1 42 305 347 1 0.09 0.59 0.68 1 0.13 0.87 1 

 Total 104 410 514  Total 0.21 0.79 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

SI 
0 104 379 483 

SI 
0 0.2 0.73 0.93 

SI 
0 0.21 0.79 1 

1 0 31 31 1 0 0.07 0.07 1 0 1 1 

 Total 104 410 514  Total 0.2 0.8 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

TC 
0 103 343 446 

TC 
0 0.2 0.67 0.87 

TC 
0 0.22 0.78 1 

1 1 67 68 1 0.002 0.128 0.13 1 0.01 0.99 1 

 Total 104 410 514  Total 0.202 0.798 1      

               

  USFL   USFL   USFL 

  0 1 Total   0 1 Total   0 1 Total 

TRST 
0 64 94 158 

TRST 
0 0.12 0.19 0.31 

TRST 
0 0.39 0.61 1 

1 40 316 356 1 0.07 0.62 0.69 1 0.1 0.9 1 

 Total 104 410 514  Total 0.19 0.81 1      

               

Simple Probability  Conditional 
Probability 
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P(USFL | EOU, GOL, 
INOV, QLTY, RD, 
SCUR, SI, TC, TRST) 

         USFL USFL 

EOU GOL INOV QLTY RD SCUR SI TC TRST 0 1 Total 0 1 Total 

1 1 1 1 1 1 1 1 1 0 0.03 0.03 0 1 1 

EOU: Perceived ease of use, GOL: Goal, INOV: Personal innovativeness, QLTY: Quality, RD: Result 
demonstrability, SCUR: Security, SI: Social influence, TC: Technology characteristics, TRST: Trust, USFL: 
Perceived usefulness, 0: Absent effect, 1: Present effect 

The relationships of perceived usefulness with its features can be 

expressed as follows: 

USFL	 = 	0.89	 × 	EOU	 + 	0.88	 × 	GOL	 + 	0.9	 × 	INOV	 + 	0.99	 × 	QLTY	 +

	0.91	 × 	RD	 + 	0.87	 × SCUR	 + 	1.0	 × 	SI	 + 	0.99	 × 	TC	 + 	0.9	 × 	TRST  (7.3.2.6.2) 

7.3.2.7 Desire Associations 
Figure 7.3.2.7 depicts the relationships of desire with perceived ease of 

use and perceived usefulness. 

 

Based on Formula 4.8.7, these relationships can be written as follows: 

P(DSR	|	EOU, USFL) 	= 	P(DSR	|	EOU) 	× 	P(DSR	|	USFL) (7.3.2.7.1) 

To identify the conditional probability of desire given perceived ease of use 

and perceived usefulness, Table 7.3.2.7 lists the simple, marginal and 

conditional probabilities of the relationships between desire and its features. 

Table 7.3.2.7 Simple, Marginal and Conditional Probabilities of Desire 
Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  DSR   DSR   DSR 

  0 1 Total   0 1 Total   0 1 Total 

EOU 0 51 66 117 EOU 0 0.1 0.12 0.22 EOU 0 0.4 0.56 1 

Figure 7.3.2.7 Relationships of Desire (DSR) with Perceived Usefulness (USFL) 
and Perceived Ease of Use (EOU) 
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1 66 346 412 1 0.12 0.65 0.77 1 0.2 0.84 1 

 Total 117 412 529  Total 0.23 0.77 1      

               

  DSR   DSR   DSR 

  0 1 Total   0 1 Total   0 1 Total 

USFL 
0 58 59 117 

USFL 
0 0.11 0.11 0.22 

USFL 
0 0.5 0.5 1 

1 59 351 410 1 0.11 0.67 0.78 1 0.1 0.86 1 

 Total 117 410 527  Total 0.22 0.78 1      

               

Simple Probability Conditional Probability P(DSR | USFL, EOU) 
 DSR DSR 

EOU USFL 0 1 Total 0 1 Total 

1 1 0.63 0.07 0.7 0.9 0.1 1 

DSR: Desire, EOU: Perceived ease of use, USFL: Perceived usefulness, 0: Absent effect, 1: Present effect. 

As shown in Table 7.3.2.7, the associations between desire and its shaping 

features can be written as follows (with normalised weights): 

DSR	 = 	0.84	 × 	EOU	 + 	0.86	 × 	USFL (7.3.2.7.2) 

7.3.2.8 Behavioural Intention of Technology Use Associations 

Figure 7.3.2.8 shows the associations between behavioural intention and 

its determinants: desire, financial consequences, habit, security and trust. 

 

Based on Formula 4.8.7, these relationships can be written as in Formula 

7.3.2.8.1. 

P(BINT	|DSR, FCON, HBT, SCUR, TRST) 	= 	P(BINT	|	DSR) 	×

	P(BINT	|	FCON) 	× 	P(BINT	|	HBT) × 	P(BINT	|	SCUR) 	× 	P(BINT	|	TRST) 

(7.3.2.8.1) 

Figure 7.3.2.8 Relationships of Behavioural Intention of Technology Use (BINT) 
with Desire (DSR), Financial Consequences (FCON), Habit (HBT), Security 
(SCUR), and Trust (TRST). 
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Table 7.3.2.8 illustrates the simple, marginal and conditional probabilities 

of the relationships between behavioural intention and its features. 
Table 7.3.2.8 Simple, Marginal and Conditional Probabilities of Behavioural Intention 
Associations 
Observations   Simple and Marginal Probabilities Conditional Probability 

  BINT   BINT   BINT 

  0 1 Total  0 1 Total  0 1 Total 

DSR 
0 74 43 117 

DSR 
0 0.14 0.08 0.22 

DSR 
0 0.63 0.37 1 

1 59 338 397 1 0.12 0.66 0.78 1 0.15 0.85 1 

 Total 133 381 514  Total 0.26 0.74 1      

               

  BINT   BINT   BINT 

  0 1 Total   0 1 Total   0 1 Total 

FCON 
0 82 80 162 

FCON 
0 0.16 0.15 0.31 

FCON 
0 0.5 0.5 1 

1 51 301 352 1 0.1 0.58 0.68 1 0.15 0.85 1 

 Total 133 381 514  Total 0.26 0.75 1      

               

  BINT   BINT   BINT 

  0 1 Total   0 1 Total   0 1 Total 

HBT 
0 101 137 238 

HBT 
0 0.2 0.27 0.47 

HBT 
0 0.5 0.5 1 

1 32 244 276 1 0.06 0.47 0.53 1 0.15 0.85 1 

 Total 133 381 514  Total 0.26 0.74 1      

               

  BINT   BINT   BINT 

  0 1 Total   0 1 Total   0 1 Total 

SCUR 
0 73 94 167 

SCUR 
0 0.14 0.18 0.32 

SCUR 
0 0.47 0.53 1 

1 60 287 347 1 0.11 0.56 0.67 1 0.16 0.84 1 

 Total 133 381 514  Total 0.25 0.74 1      

               

  BINT   BINT   BINT 

  0 1 Total   0 1 Total   0 1 Total 

TRST 
0 74 84 158 

TRST 
0 0.14 0.16 0.3 

TRST 
0 0.47 0.53 1 

1 59 297 356 1 0.11 0.58 0.69 1 0.16 0.84 1 

 Total 133 381 514  Total 0.25 0.74 1      

               

Simple Probability Conditional Probability  
P(BINT | DSR, FCON, HBT, SCUR, TRST) 

 BINT BINT 

DSR FOCN HBT SCUR TRST 0 1 Total 0 1 Total 

1 1 1 1 1 0.02 0.3 0.34 0.05 0.95 1 

BINT: Behaviour intention of technology use, DSR: Desire, FCON: Financial consequences, HBT: Habit, SCUR: 
Security, TRST: Trust, 0: Absent effect, 1: Present effect. 
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The relationships between behavioural intention and its shaping features 

can be written as follows: 

BINT	 = 	0.85	 × 	DSR	 + 	0.85 × 	FCON	 + 	0.85	 × 	HBT	 + 	0.84	 × 	SCUR	 +

	0.84	 × 	TRST (7.3.2.8.2) 

7.3.2.9 Attitude Toward Technology Associations 
Figure 7.3.2.9 shows the relationships between attitude toward technology 

and its shaping features. 

 

Based on Formula 4.8.7, these relationships can be written as follows: 

P(ATTT	|	INOV, PRVSY, NOVL, SCUR) 	= 	P(ATTT	|	INOV) 	×

	P(ATTT	|	PRVSY) 	× 	P(ATTT	|	NOVL) 	× 	P(ATTT	|	SCUR) (7.3.2.9.1) 

Table 7.3.2.9 illustrates the simple, marginal and conditional probabilities 

representing the relationships of attitude toward technology with personal 

innovativeness, privacy, novelty and security. 
Table 7.3.2.9 Simple, Marginal and Conditional Probabilities of Attitude Toward 
Technology Associations  
Observations Simple and Marginal 

Probabilities Conditional Probability 
  ATTT   ATTT   ATTT 

  0 1 Total   0 1 Total   0 1 Total 

INOV 
0 66 101 167 

INOV 
0 0.13 0.2 0.32 

INOV 
0 0.4 0.6 1 

1 33 314 347 1 0.06 0.62 0.68 1 0.1 0.9 1 

 Total 99 415 514  Total 0.19 0.81 1      

   

  ATTT   ATTT   ATTT 

  0 1 Total   0 1 Total   0 1 Total 

PRVSY 
0 62 137 199 

PRVSY 
0 0.12 0.27 0.39 

PRVSY 
0 0.31 0.69 1 

1 37 278 315 1 0.07 0.54 0.61 1 0.12 0.88 1 

Figure 7.3.2.9 Relationships of Attitude Toward Technology (ATTT) with Personal 
Innovativeness (INOV), Privacy (PRVSY), Novelty (NOVL) and Security (SCUR) 
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 Total 99 415 514  Total 0.19 0.81 1      

   

 ATTT  ATTT  ATTT     
  0 1 Total   0 1 Total   0 1 Total 

NOVL 
0 58 41 99 

NOVL 
0 0.13 0.09 0.22 

NOVL 
0 0.6 0.4 1 

1 41 320 361 1 0.09 0.69 0.78 1 0.12 0.88 1 

 Total 99 361 460  Total 0.22 0.78 1      

   

  ATTT   ATTT   ATTT 

  0 1 Total   0 1 Total   0 1 Total 

SCUR 
0 66 101 167 

SCUR 
0 0.13 0.2 0.33 

SCUR 
0 0.4 0.6 1 

1 33 314 347 1 0.06 0.61 0.67 1 0.1 0.9 1 

 Total 99 415 514  Total 0.19 0.81 1      

 

Simple Probability Conditional Probability 
P(ATTT | PRVSY, NOVL, SCUR) 

    ATTT ATTT 

PINV PRVSY NOVL SCUR 0 1 Total 0 1 Total 

1 1 1 1 0.006 0.25 0 0 0.997 1 

ATTT: Attitude toward technology, PINV: Personal innovativeness, PRVSY: Privacy, NOVL: Novelty, 
SCUR: Security, 0: Absent effect, 1: Present effect 

Based on Table 7.3.2.9, attitude toward technology can be expressed as 

follows: 

ATTT	 = 	0.9	 × 	INOV	 + 	0.88	 × 	PRVSY	 + 	0.88	 × 	NOVL	 + 	0.9	 × 	SCUR 

(7.3.2.9.2)	

7.3.2.10 Use of Technology Associations 
Figure 7.3.2.10 shows the relationships between use of technology and its 

shaping features. 

 

Figure 7.3.2.10 Relationships of Use of Technology (USE) with Attitude Toward 
Change Brought by Technology Use (ATTC), Attitude Toward Technology 
(ATTT), Attitude Toward Technology Use (ATUS), Behavioural Intentions (BINT) 
and Past Behaviour (PSBH) 
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From Formula 4.8.7, these relationships can be written as follows: 

P(USE	|	ATTC, ATTT, ATUS, BINT, PSBH) 	= 	P(USE	|	ATTC) 	×

	P(USE	|	ATTT) 	× 	P(USE	|	ATUS) 	× 	P(USE	|	BINT) 	× 	P(USE	|	PSBH) 

(7.3.2.10.1) 

Table 7.3.2.10 illustrates the simple, marginal and conditional probabilities 

of the relationships between technology use and attitude toward change brought 

by technology use, attitude toward technology, attitude toward technology use, 

behavioural intention and past behaviour. 

Table 7.3.2.10 Simple, Marginal and Conditional Probabilities of Technology Use 
Associations 
Observations Simple and Marginal Probabilities Conditional Probability 

  USE   USE   USE 

  0 1 Total   0 1 Total   0 1 Total 

ATTC 
0 118 101 219 

ATTC 
0 0.23 0.2 0.43 

ATTC 
0 0.54 0.46 1 

1 68 227 295 1 0.13 0.44 0.57 1 0.23 0.77 1 

 Total 186 328 514  Total 0.36 0.64 1      

   

  USE   USE   USE 

  0 1 Total   0 1 Total   0 1 Total 

ATTT 
0 64 35 99 

ATTT 
0 0.12 0.07 0.19 

ATTT 
0 0.65 0.35 1 

1 122 293 415 1 0.24 0.57 0.81 1 0.3 0.7 1 

 Total 186 328 514  Total 0.36 0.64 1      

   

  USE   USE   USE 

  0 1 Total   0 1 Total   0 1 Total 

ATUS 
0 97 61 158 

ATUS 
0 0.19 0.12 0.31 

ATUS 
0 0.61 0.39 1 

1 89 267 356 1 0.17 0.52 0.69 1 0.25 0.75 1 

 Total 186 328 514  Total 0.36 0.64 1      

   

  USE   USE   USE 

  0 1 Total   0 1 Total   0 1 Total 

BINT 
0 77 56 133 

BINT 
0 0.15 0.1 0.26 

BINT 
0 0.58 0.42 1 

1 109 272 381 1 0.21 0.53 0.74 1 0.29 0.71 1 

 Total 186 328 514  Total 0.36 0.54 1      

   

  USE   USE   USE 

  0 1 Total   0 1 Total   0 1 Total 

PSBH 
0 121 28 149 

PSBH 
0 0.23 0.05 0.28 

PSBH 
0 0.81 0.19 1 

1 65 300 365 1 0.13 0.59 0.72 1 0.18 0.82 1 
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 Total 186 328 514  Total 0.36 0.64 1      
 

Simple Probability Conditional Probability  
P(USE | ATTC, ATTT, ATUS, BINT, PSBH)      

USE USE 

ATTC ATTT ATUS BINT PSBH 0 1 Total 0 1 Total 

1 1 1 1 1 0 0.4 0.38 0.08 0.92 1 

ATTC: Attitude toward change brought by technology Use, ATTT: Attitude toward technology, ATUS: Attitude 
toward technology use, BINT: Behavioural intention of technology use, PSBH: Past behaviour, USE: Use of 
technology, 0: Absent effect, 1: Present effect 

Following Table 7.3.2.10, the associations of the technology use feature 

can be expressed mathematically as in Formula 7.3.2.10.2	

USE	 = 	0.77	 × 	ATTC	 + 	0.7	 × 	ATTT	 + 	0.75	 × 	ATUS	 + 	0.71	 × 	BINT	 +

	0.82	 × 	PSBH (7.3.2.10.2) 

7.3.3 Personal Technology Acceptance Index 
Based on Formula 7.3.2.10.2, the technology usability index can be written 

as in Formula 8.3.3.1 (with normalised ratios): 

USE	 = 	0.20	 × 	ATTC	 + 	0.195	 × 	ATTT	 + 	0.2	 × 	ATUS	 + 	0.195	 ×

	BINT	 + 	0.21	 × 	PSBH (7.3.3.1) 

Substituting ATTT with Formula 7.3.2.9.2 and BINT with Formula 7.3.2.8.2 

gives Formula 7.3.3.2 (with normalised ratios): 

USE	 = 	0.20	 × 	ATTC	 + 	0.195	 × (0.25	 × 	INOV	 + 	0.25		 × 	PRVSY	 +

		0.25		 × 	NOVL	 + 		0.25		 × 	SCUR) 	+ 	0.2	 × 	ATUS	 + 	0.195	 × (0.203 × 	DSR	 +

	0.203	 × 	FCON	 + 0.203	 × 	HBT	 + 	0.195	 × 	SCUR	 + 	0.195	 × 	TRST) 	+ 	0.21	 ×

	PSBH (7.3.3.2) 

Substituting DSR with Formula 7.3.2.7.2 gives Formula 7.3.3.3 (with 

normalised ratios): 

USE	 = 	0.20	 × 	ATTC	 + 	0.195	 × (0.25	 × 	INOV	 + 	0.25		 × 	PRVSY	 +

		0.25		 × 	NOVL	 + 		0.25		 × 	SCUR) 	+ 	0.2	 × 	ATUS	 + (0.195	 × (0.203 × (0.5	 ×

	EOU	 + 	0.5 × 	USFL))) 	+ 	0.203	 × 	FCON	 + 0.203	 × 	HBT	 + 	0.195	 × 	SCUR	 +

	0.195	 × 	TRST) 	+ 	0.21	 × 	PSBH (7.3.3.3) 
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Substituting EOU with Formula 7.3.2.5.2 and USFL with Formula 7.3.2.6.2 

gives Formula 7.3.3.4 (with normalised ratios): 

USE	 = 	0.20	 × 	ATTC	 + 	0.195	 × (0.25	 × INOV	 + 	0.25		 × PRVSY	 +

		0.25		 × 	NOVL	 + 		0.25		 × 	SCUR) + 	0.2	 × 	ATUS	 + [0.195	 × {0.203 × (0.5	 ×

(0.13	 × 	ENJ	 + 		0.13	 × 	PAE + 		0.13	 × 	PEC	 + 0.12	 × 	INOV	 + 0.12 × 	PLY	 +

	0.13	 × 	SELF	 + 	0.11	 ×∗ 	TC	 + 	0.13	 × 	TRST)) + u0.5 × (0.11	 × (0.13	 × ENJ	 +

		0.13	 × 	PAE + 		0.13	 × 	PEC	 + 0.12	 × 	INOV	 + 0.12 × PLY	 + 	0.13	 × SELF	 +

	0.11	 × TC	 + 	0.13	 × TRST) + 	0.11	 × 	GOL	 + 	0.11	 × 	INOV	 + 	0.12	 × 	QLTY	 +

	0.1	 × RD	 + 	0.1	 × SCUR	 + 	0.12	 × 	SI	 + 	0.12	 × 	TC	 + 	0.11	 × 	TRST	)v} +

	0.203	 × 	FCON	 + 0.203	 × 	HBT	 + 	0.195	 × 	SCUR	 + 	0.195	 × 	TRST] 	+ 	0.21	 ×

	PSBH  (7.3.3.4) 

Substituting ENJ, QLTY, SI and TC with Formulas 7.3.2.1.2, 7.3.2.4.2, 

7.3.2.3.2 and 7.3.2.2.2, respectively, gives Formula 7.3.3.5 (with normalised 

ratios): 

USE	 = 	0.20	 × ATTC	 + 	0.195	 × (0.25	 × 	INOV	 + 	0.25	 × 	PRVSY	 +

		0.25	 × 	NOVL	 + 		0.25		 × 	SCUR) + 	0.2	 × 	ATUS	 + [0.195	 × {0.203 × u0.5	 ×

(0.13	 × (1.0 × 	DA)) + 		0.13	 × 	PAE + 		0.13	 × 	PEC	 + 0.12	 × 	INOV	 + 0.12 ×

	PLY	 + 	0.13	 × 	SELF	 + 	0.11	 × (0.14	 × 	COMP	 + 	0.15	 × 		DA	 + 		0.14	 × 	FLX	 +

		0.14	 × 	FUNC	 + 	0.14	 × 	MOB	 + 		0.13	 × 	NAV + 0.16 × SFTY) + 	0.13	 ×

	TRST) + (0.5 × (0.11	 × (0.13	 × (1.0 × DA)) + 		0.13	 × 	PAE + 		0.13	 × 	PE	 +

0.12	 × 	INOV	 + 0.12 × 	PLY	 + 	0.1	 × 	SELF	 + 	0.11	 × (0.14 × 	COMP	 + 	0.15	 ×

	DA	 + 		0.14	 × 	FLX	 + 		0.14	 × 	FUNC	 + 	0.14	 × 	MOB	 + 		0.13 × 	NAV + 0.16 ×

	SFTY) + 	0.13	 × 	TRST)) + 	0.11	 × 	GOL	 + 	0.11	 × 	INOV	 + 	0.12	 × (0.31 ×

	OQLTY	 + 	0.35	 ×	10$, 	× 	SQLTY	 + 	0.34	 × TQLTY) + 	0.1	 × 	RD	 + 	0.1	 ×

	SCUR	 + 	0.12	 × (0.06	 × 	CONS	 + 	0.09	 × 	IMG	 + 	0.09	 × 	SN	 + 	0.06	 × 	VOL	 +

	0.7	 × 	VSBL) + 	0.12	 × (0.14	 × COMP	 + 	0.15	 × 	DA	 + 		0.14		 × 	FLX	 + 		0.14	 ×

	FUNC	 + 	0.14		 × MOB	 + 		0.13	 × NAV + 0.16 × SFTY) + 	0.11	 × 	TRST)v} 	+

	0.203	 × FCON	 + 0.203		 × HBT	 + 	0.195	 × SCUR	 + 	0.195	 × 	TRST] 	+ 	0.21 ×

PSBH (7.3.3.5) 
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Thus, based on Formula 7.3.3.5, PTAI can be rewritten as follows: 

USE	 = 	0.20	 × 	ATTC	 + 	0.04875	 ×	(INOV	 + 	PRVSY	 + 	NOVL + 	SCUR) +

	0.2	 × ATUS	 + 2.5 × 10$* 	× (	DA + 	PAE + 	PEC	 + SELF + TRST) + 2.3 × 10$* 	×

(INOV + PLY) + 3.0 × 10$+ 	× (COMP + DA + FUNC +MOB) + 2.17 × 10$*	FLX +

2.0 × 10$+ 	× NAV + 	3.4 × 10$+ × SFTY + 2.8 × 10$+ 	× (DA + 	PAE + 		PEC	 +

SELF + TRST) + 2.6 × 10$+ 	× INOV + 2.4 × 10$+ 	× PLY + 3.0 × 10$,	(COMP +

DA + FLX + 	FUNC) + 3.0 × 10$+ × (MOB + NAV) + 3.8 × 10$, × SFTY + 2.1 ×

10$* × GOL + 2.1 × 10$* × (INOV + TRST) + 7.3 × 10$+ × OQLTY + 8.3 × 10$+ ×

SQLTY + 8.0 × 10$+ 	× TQLTY + 1.9 × 10$* × (RD + SCUR) + 1.4 × 10$+ 	×

(CONS + VOL) + 2.1 × 10$+ 	× (IMG + SN) + 1.67 × 10$* × VSBL + 3.0 × 10$+ ×

(COMP + 	DA + FUNC + FLX + MOB + NAV) + 3.8 × 10$+ × SFTY + 0.039 ×

(FCON + HBT) + 0.038	 × (SCUR + TRST) + 0.21 × PSBH	(7.3.3.6) 

7.4 Evaluation of Bayesian Networks Modelling of 
Personal Technology Acceptance Index 

Table 7.4 summarises PTAI performance with relevance tree and likelihood 

sampling. 
Table 7.4 Performance of Bayesian Networks Modelling of Personal Technology 
Acceptance Index 
Algorithm Accuracy Precision Recall Accuracy Score 

Relevance Tree 51.10% 21.2% 18.4% 30.2% 

Likelihood Sampling 50.39% 47.8% 49.18% 49.13% 

The best-performing algorithm is likelihood sampling, as it achieved the 

highest accuracy (49.13%). 

7.5 Findings 
In this chapter, we proposed a hierarchical structure representing PTAM. We 

also developed PTAI to explain the interactions among PTAM’s features. The 

proposed structure avoids the limitations and disadvantages of current technology 

adoption models (TAM and UTAUT) as well as PTAM, SFPTAM and TFPAM by 

using Bayesian networks to formulate an explanatory and predictive structural 

framework, which achieves the first objective (see Section 7.2). As indicated by the 
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comparison between PLS-SEM and Bayesian networks made in Table 3.5, 

Bayesian networks follow a more robust methodology than the PLS-SEM approach 

that is currently applied in the literature. Applying Bayesian networks to represent 

the interactions among PTAM’s features as conditional probability tables enables 

the enrichment and expansion of technology acceptance models and avoids the 

limitations of PLS-SEM. The probability calculations in Sections 7.3.2.1 through 

7.3.2.10 demonstrate the capability of belief networks to create associations among 

PTAM’s features.  

The structure presented in Figure 7.3.1 reflects the structure of the current 

models of technology acceptance (i.e. TAM and UTAUT) as well as their critics’ 

views and suggestions. At the same time, these networks of interactions respect 

the features of technology acceptance and their effects and influences found in the 

current literature. The main difference between our proposed interactions and 

previous literature is the positioning of desire as a mediator of beliefs (perceived 

ease of use and perceived usefulness) and behavioural intention. The inclusion of 

this new feature supports the conclusions of Bagozzi (1992, 2007), Perugini and 

Conner (2000) and Perugini and Bagozzi (2001) that desire connects beliefs with 

behavioural intention. The proposed network also considers features that have 

been excluded from TAM and UTAUT, such as attitude toward technology use, 

perceived consistency and visibility. Attitude toward use behaviour was associated 

with technology use, supporting Davis’s (1986, 1989, 1993) assertion that attitude 

affects technology use. The positioning of perceived consistency and visibility as 

predictors of social influence supports Venkatesh and Davis (2000) and Moore and 

Benbasat (1991) in that both variables influence technology use through social 

beliefs. 

Except for the technology characteristics feature, the associations of 

perceptions of ease of use and usefulness align with Davis et al. (1989), Venkatesh 

(2000) and Venkatesh and Davis (2000). As a new feature with no established 

theoretical background, the technology characteristics feature was associated with 

both perceptions, indicating its effects on both features. Similarly, the other two 

consolidating features – social influence and quality – were positioned based on 
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TAM and UTAUT research (Venkatesh & Davis, 2000). The influences of financial 

consequences, novelty, personal innovativeness, positive anticipated emotions, 

privacy, security and trust were related to their dependent features in accordance 

with Venkatesh et al. (2003), Wells et al. (2010), Lu et al. (2005), Perugini and 

Conner (2000), Perugini and Bagozzi (2001), Vijayasarathy (2004), McLeod et al. 

(2009), Vijayasarathy (2004), Wang et al. (2014) and Pavlou (2003). 

Design aesthetics was associated with perceived enjoyment, supporting Cyr 

et al. (2006), Li and Yeh (2010) and Alwabel et al. (2020). The association of past 

behaviour with the target feature was supported by Bagozzi and Kimmel (1995), 

Ouellette and Wood (1998), Leone et al. (1999), Norman and Conner (1996) and 

Norman and Smith (1995). Attitude toward technology and attitude toward change 

brought by technology use were associated with technology use, which is 

supported by Keen (1980) and Thompson et al. (1991). Although they are new to 

the literature, service quality and technology quality were indirectly associated with 

perceived usefulness, following the theoretical justification of the output quality 

feature provided by Venkatesh and Davis (2000). Behavioural intention was 

associated with use behaviour, supporting TAM and UTAUT research; according 

to Fishbein and Ajzen (1975) and Ajzen and Fishbein (1980), intention mediates 

the effect of beliefs such as perceived ease of use and perceived usefulness. 

PTAI, formulated in Section 7.3.3, represents the hierarchical structure of 

PTAM, which achieves the second objective (see Section 7.2). The structure 

elucidates PTAM’s applicability for practitioners, who can use it to predict the 

usability of a technology and explain the interactions among variables. More 

importantly, this structural representation provides a decision-making tool that can 

enable technology manufacturers to examine a newly introduced technology’s 

potential and limitations. Unlike Bae and Chang (2012) and Graces et al. (2016), 

who arbitrarily and randomly assigned probability values to variables’ states, our 

use of probability to build PTAI relied on observed data. As a result, the developed 

index is representative of users’ views and beliefs, which increases its 

generalisability. 



280 
 

The best-performing algorithm for the Bayesian networks was likelihood 

sampling, with an accuracy of 49.13%. We tested the networks by applying two 

algorithms assessing the networks’ ability to make inferences regarding whether a 

technology was usable versus unusable. Evaluating each algorithm’s performance 

over three metrics and computing the average of these metrics is a more objective 

approach than using a single metric. This approach improves on that taken by 

Garces et al. (2016), who tested their models’ performances using a single 

algorithm and a single metric. 

Comparing the predictive power of the Bayesian networks with that of SVR-

POLY for PTAM indicates the superiority of SVR-POLY over Bayesian networks. 

This result comes as no surprise: according to Shmueli (2010), including predefined 

feature interactions in a predictive model sacrifices the model’s predictive power. 

In fact, a robust structural model is not necessarily the best predictive model. 

Structural models are supported by a theoretical foundation that reinforces the 

interactions among a model’s features but adversely impacts the model’s predictive 

power (Shmueli & Koppius, 2010). Therefore, it is difficult for practitioners to build 

a theory-based model that is parsimonious and explanatory and demonstrates 

superior performance (Yarkoni & Westfall, 2017). 

As shown by the conditional probability tables in Sections 7.3.2.1 through 

7.3.2.10 and the resulting PTAI, the best predictor of use behaviour is past 

behaviour. This finding is similar to the result obtained in Chapter 6 by employing 

SVR-POLY and partial derivatives, where past behaviour also had the strongest 

influence on PTAM’s features. This reinforces our conclusions in Chapter 6 and is 

in line with Ajzen (2011), Ajzen and Driver (1992), Beck and Ajzen (1991), Bagozzi 

and Kimmel (1995), Norman and Smith (1995), Norman and Conner (1996) and 

Leone et al. (1999) with regard to the finding that past behaviour is the best 

predictor of planned behaviour. 

The associations shown in Figure 7.3.1 do not reflect causality. While they 

represent relationships among features, they do not imply that child nodes cause 

their parent nodes. From a statistical perspective, a feature causes another feature 

if and only if the causing feature is the sole feature affecting the caused feature, 
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which can only be verified in a controlled environment such as an experimental lab. 

Since the environments in which technology is used are not strictly controlled, it is 

a fallacy to infer causality between features shaping technology use. 

TAM and UTAUT have been criticised as closed black boxes that prevent 

researchers from incorporating systems design and implementation antecedents 

into the perceived ease of use and perceived usefulness features (Benbasat & 

Barki, 2007). Bayesian networks, presented in this chapter, represent an 

instrumental methodology with the potential to create a paradigm shift. This 

technique promises to open the black boxes of TAM and UTAUT and enable the 

introduction of effective technology use determinants whose influences on these 

models may not be revealed through PLS-SEM. This is because the underlying 

mechanism of PLS-SEM is strictly subject to certain hypothesised interactions 

among the variables of TAM and UTAUT. In attempts to extend either TAM or 

UTAUT, newly introduced variables have seldom exhibited significant relationships 

with the models’ existing variables and have consequently been discarded. 

Nevertheless, these new features might have exerted significant influences on one 

of TAM or UTAUT’s current variables had the interactions of either model’s features 

been different or non-existent. Bayesian networks are a unique methodology that 

we consider a compelling solution to the problem of TAM’s and UTAUT’s opacity. 

The underlying mechanism of Bayesian networks allows new features to be 

introduced without disrupting the current structure of TAM and UTAUT. 

Additionally, unlike PLS-SEM, Bayesian networks do not require a certain data 

sample size or the application of a rule of thumb concerning the minimum amount 

of data necessary for a model to employ them. Indeed, the mechanism of Bayesian 

networks liberates both TAM and UTAUT from the constraints of PLS-SEM and 

other regression-based statistical techniques. Thus, Bayesian networks constitute 

a better approach to increasing the predictive power of both models without 

compromising their current features. 

Bayesian networks can be used to verify and validate the relationships among 

the features of TAM and UTAUT. Both models were formulated based on the 

assumption that all their features are independent of one another. However, from 
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a probability perspective (and drawing on Formula 4.8.6), two features A and B are 

independent if either P(B|A) = P(B) or P(A|B) = P(A). We can use this formula to 

verify and validate the dependencies between TAM’s and UTAUT’s features. When 

we applied this formula to PTAM’s variables, which include features from TAM and 

UTAUT, all features were found to be dependent. Although this finding does not 

falsify PTAM, since it was formulated following a regression methodology, it does 

prove the superiority of Bayesian networks over PLS-SEM and other regression-

based methodologies. Bayesian networks consider interdependence among the 

variables of a proposed model and consequently create a more realistic model. In 

other words, unlike PLS-SEM, Bayesian networks do not mandate the 

independence of variables. Moreover, an inevitable drawback of PLS-SEM is that 

it blindly assumes the independence of the features of TAM and UTAUT – an 

assumption disproven by Bayesian networks. 

7.6 Conclusion 
Bayesian networks rely on a data-driven methodology that can be applied to 

verify, validate, extend, update and improve the development of technology 

acceptance models. Compared with PLS-SEM, Bayesian networks have great 

potential and are capable of generating a more realistic and generic model of 

technology acceptance that avoids the limitations of both TAM and UTAUT. 

Although Bayesian networks have not been fully appreciated by socio-behavioural 

scientists, their success in improving our understandings of current models should 

eventually erode this underestimation. This is attainable by applying Bayesian 

networks to the current TAM and UTAUT to validate, verify and improve their 

development without compromising their foundational and original structures.  

The underlying mechanism of Bayesian networks represents a solution that 

can open the black boxes of TAM and UTAUT and promises to enable the further 

development of technology acceptance models. PLS-SEM, based on which TAM 

and UTAUT were developed, is a restrictive methodology in that it requires new 

features to fit into existing theoretical frameworks, which has deterred the 

advancement of both models by causing many new features to be discarded. 

However, the formulation of PTAI proves the ability of Bayesian networks to 
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generate an explanatory and predictive hierarchical structure that connects new 

and existing features without compromising TAM’s and UTAUT’s original 

structures. 

7.7 Limitations 
PTAI’s performance was lower than expected. The structural network built to 

represent the dependencies among PTAM’s variables was rearranged to reduce 

model complexity and evaluation time. This compression affected PTAI by 

shrinking the influences of the consolidating features (i.e. technology 

characteristics, social influence and quality). For example, the effect of the visibility 

feature was originally at a ratio of 0.7, but it was compressed to 1.67 × 10$*. Such 

reductions decreased features’ direct weights on their predicted features, adversely 

affecting PTAI’s performance. 

There were two states for each feature in the Bayesian networks model, 

compared with the five states in the original dataset. To accomplish this reduction, 

we needed to normalise the data to reduce the number of states. Although this step 

was executed to reduce the complexity of evaluating the networks, it negatively 

affected performance with regard to the networks’ predictions. 
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Chapter 8: Summary 
and Future Directions 
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8.1 Comparison 
After modelling PTAM, DPTAM, FIPTAM and PTAI, we highlight the 

differences between these models and TAM3 (the most recent version of TAM) and 

UTAUT (both UTAUT1 and UTAUT2). There are seven categories on the basis of 

which we differentiate among these six models: formulation technique, number of 

features, application, linearity, evaluation power, advantages and disadvantages. 

Table 8.1 illustrates these differences. 

In terms of formulation technique, PTAM, DPTAM and PTAI are predictive 

models, as they were developed using predictive approaches, whereas TAM3, 

UTAUT1 and UTAUT2 are explanatory models, as they were formulated using 

PLS-SEM. PTAI is both predictive and explanatory, as it was created using 

Bayesian networks, a technique capable of building a structural framework that 

explains how each feature affects other features and results in the prediction of use 

behaviour. Regarding number of features, both PTAM and PTAI have thirty-seven 

features; DPTAM has three (for TFPTAM) or six features (for SFPTAM); FIPTAM 

has three features; and TAM3, UTAUT1 and UTAUT2 have sixteen, nine and 

eleven features, respectively. With regard to the application of the model, PTAM, 

DPTAM and FIPTAM are intended to predict use of personal technology. PTAI can 

be applied to understand how features of personal technology affect one another 

and predict personal technology use. TAM3 and UTAUT1 can be applied to 

understand how features of organisational technology affect one another and to 

explain technology use. UTAUT2 can be applied to explain how features of 

personal technology affect one another and to understand personal technology 

use. Regarding linearity, PTAM, DPTAM, FIPTAM and PTAI are polynomial models 

that take into consideration the linear and non-linear effects of a personal 

technology’s features. TAM3, UTAUT1 and UTAUT2 are linear models that only 

take into account the linear effects of a technology’s features. Lastly, regarding 

evaluation power (as measured using R2), DPTAM has the highest R2 value (0.99) 

applying a non-linear modelling technique (i.e. MLPR). The second-highest R2 

model is PTAM, which was modelled using SVR-POLY. UTAUT2, UTAUT1 and 

TAM3 have the third, fourth and fifth highest R2 values, respectively, and FIPTAM 
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has the lowest (0.41). Because PTAI was evaluated using classification algorithms, 

its prediction power was not evaluated in terms of R2. 

PTAM and DPTAM have similar advantages and disadvantages. They are 

both generic (non-parsimonious) models, cover linear and non-linear influences of 

technology features and have high predictive power (R2 = 0.99). They both produce 

unlabelled outputs, are used only for prediction and need to be embedded in user-

friendly software to be directly applied by practitioners. FIPTAM has two 

advantages: it is a generic model and produces labelled output values (usable, 

likely usable or unusable). However, it has low predictive power, cannot be used to 

explain how the features of a technology affect one another to predict usability and 

needs to be embedded in user-friendly software. PTAI has four advantages: it is a 

generic model, considers both the linear and non-linear effects of technology 

features, is both explanatory and predictive and has labelled outputs. On the other 

hand, PTAI also requires a user-friendly software, which is still lacking. 

Regarding the advantages of TAM3, UTAUT1 and UTAUT2, they are all 

parsimonious models, as they have fewer numbers of features. They all also have 

acceptable explanatory power. As for their disadvantages, they are only linearly 

explanatory, as they apply PLS-SEM. They also lack many attributes related to 

human behaviour and technology, produce unlabelled outputs and need to be 

embedded in user-friendly software to enable practitioners to use them. Although 

all seven models have pros and cons, the best model is PTAI, as it has the fewest 

disadvantages. 
Table 8.1 Comparison Between PTAM, DPTAM, FIPTAM, PTAI, TAM3 and UTAUT1 and 
UTAUT2 
Model PTAM DPTAM FIPTAM PTAI TAM3 UTAUT1 UTAUT2 
Formulation 
Technique Predictive Predictive Predictive Explanatory 

and Predictive Explanatory Explanatory Explanatory 

Number of 
Features 37 3 or 6 3 37 16 (including 

moderators) 
9 (including 
moderators) 

11 
(including 

moderators) 

Application Use of personal technology Use of organisational technology 
Use of non-

organisational 
technology 

Linearity Polynomial Polynomial Polynomial Polynomial Linear Linear Linear 
Evaluation 
Power (R²) 0.97 0.99 0.41 Not applicable 0.67 0.69 0.73 

Advantages 

• Generic model 
• High predictive power 
• Covers linear and non-

linear effect of technology 
features 

 

• Generic 
model 
• Labelled 
output 
values 

• Generic model 
• Covers linear 

and non-linear 
influences of 
technology 
features 

• Parsimonious models 
• Acceptable explanatory power 
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• Helps 
explaining the 
interaction of 
technology 
features and 
their 
predictability 

• Labelled 
output value 

 

Disadvantages 

• Output value is not 
labelled 

• Cannot be used for 
explanatory modelling 

• Need to be embedded in 
user-friendly software 

• Low 
predictive 
power 

• Cannot be 
used for 
explanatory 
modelling 

• Need to be 
embedded 
in user-
friendly 
software 

• Need to be 
embedded in 
user-friendly 
software 

• Cannot be used for usability prediction 
• Lack many behavioural and technological 

attributes 
• Covers only linear influences of technology 

features 
• Output value is not labelled 
• Need to be embedded in user-friendly software 

  

 

8.2 Lessons Learned 
1. ML techniques can advance technology acceptance modelling. SVR-POLY 

achieved higher predictive power (R2 = 0.97) than PLS-SEM, with which TAM3, 

UTAUT1 and UTAUT2 were formulated. 

2. Technology acceptance is more effectively modelled using polynomial 

algorithms that can capture the predictive power of features. By applying SVR-

POLY, we were able to successfully capture the influence of the four features 

excluded by UTAUT1 (which was formulated using a linear algorithm, PLS-

SEM). 

3. Past behaviour is the best predictor of personal technology acceptance, 

achieving the highest coefficient (0.2474). 

4. ML techniques avoid the limitations of PLS-SEM and enable the introduction of 

many technology features whose predictive power may not be revealed 

through PLS-SEM. 

5. Combining ML and DM techniques can uncover new knowledge (Chapter 5). 

6. FIPTAM (Chapter 6) can be used to automatically understand the output of 

TAM and UTAUT and facilitate decision-making about technology usability. 

7. Bayesian networks (Chapter 7) are a better modelling technique than PLS-

SEM, as they combine explanatory and predictive modelling and enable 

measuring of both linear and non-linear effects of technology features. 
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8.3 Conclusions 
This research demonstrated the positive impact of ML modelling on the 

development of technology acceptance research. Drawing on the six research 

objectives set forth in Section 1.4, our research contributes the following six 

accomplishments to the literature of technology acceptance. We have already 

published accomplishments 1, 2, 3, and 4 (Alwabel & Zeng, 2021). 

1. PTAM predicts technology acceptance better than TAM and UTAUT, as 

shown in Chapter 5. PTAM achieves a higher R2 value, as shown in Section 

10.1, which achieves the first objective. 

2. We compared PTAM, TAM and UTAUT (see Section 5.7), which achieves 

the first objective. 

3. Applying a data-driven methodology including linear and non-linear ML 

algorithms to formulate PTAM avoids the limitations of TAM and UTAUT 

(see Table 3.6.1). PTAM was developed using thirty-two technologies, with 

heterogenous subjects, in a voluntary setting and with new features, which 

achieves the second objective. 

4. Applying partial derivatives sensitivity analysis, we identified the best 

predictor of PTAM (past behaviour) (see Section 5.4.6), which achieves the 

third objective. 

5. We discovered new relationship patterns (non-linear, monotonic and non-

monotonic) among the features of PTAM (Section 5.6), which achieves the 

fourth objective. 

6. We formulated FIPTAM (Chapter 6) to defuzzify PTAM and label its outputs, 

which achieves the fifth objective. 

7. We developed PTAI applying Bayesian networks (Chapter 7), thereby 

creating an explanatory and predictive model that is comparable to PTAM, 

which achieves the sixth objective. 

8.4 Summary  
As shown in Chapters 5 through 7, our use of ML techniques has advanced 

and deepened technology acceptance modelling and improved its efficacy. 
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Although the development of TAM and UTAUT was crippled by their underlying 

methodologies and the regression techniques (SEM and PLS-SEM) used to 

formulate them, ML techniques liberated both models from the restrictions imposed 

by SEM and PLS-SEM. 

In Chapter 5, we formulated PTAM using linear and non-linear ML algorithms. 

We concluded that PTAM was best modelled using linear and non-linear algorithms 

(SVR-POLY). We ranked the proposed thirty-seven features using partial 

derivatives sensitivity analysis. We contrasted our feature rankings with those of 

the current TAM and UTAUT and highlighted similarities and differences. We 

introduced thirteen new features and reinstated four that were previously excluded. 

We decomposed PTAM into TFPTAM using PCA and classified its thirty-seven 

features into informative categories. We validated PTAM by testing thirty-two 

personal technologies in voluntary settings among heterogeneous subjects using 

several ML algorithms and multiple metrics. Furthermore, using partial derivatives 

sensitivity analysis, we verified, validated and corrected the rankings of the current 

TAM’s and UTAUT’s features and refuted the argument that behavioural intention 

is the most important determinant in both models. Moreover, we refuted the 

literature’s conclusion that TAM and UTAUT are best formulated using linear 

modelling techniques like PLS-SEM. Additionally, we used DM techniques to 

discover new relationship patterns among PTAM’s features and use behaviour. We 

concluded that some features were more controllable than others and that only 

some merited additional consideration from technology manufacturers. 

In Chapter 6, we presented an approach capable of labelling the output values 

of technology acceptance models. We formulated FIPTAM, which automatically 

classifies a technology as usable, likely usable or unusable, supporting the 

decision-making process. FIPTAM defuzzifies the output values of PTAM and 

produces meaningful output labels for a technology: unusable, likely usable or 

usable. This labelled output enables practitioners to embed PTAM in the decision-

making process. In Chapter 7, we also presented a process by which technology 

usability decisions can be automated, allowing practitioners to use PTAM to make 

automatic decisions about technology usability via this system engineering method. 
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In Chapter 7, we combined explanatory and predictive modelling of 

technology acceptance into a single approach. Using Bayesian networks, we 

explained and predicted technology use decisions by building a structural 

framework elucidating how the thirty-seven features of PTAM affect one another 

and result in estimations of technology use decisions. More importantly, using 

Bayesian networks, we created PTAI, which can serve as a decision-making tool 

that enables technology manufacturers to examine the potential and limitations of 

a newly introduced technology. 

Through the work presented in Chapters 2 through 7, we found sufficient and 

effective answers to our five RQs. We found that ML techniques are indeed 

compelling solutions capable of advancing the development of technology 

acceptance modelling and enriching its literature, thus answering RQ1. This 

conclusion is proven by the findings of Chapters 5 through 7. More specifically, 

using ML techniques allowed for the inclusion of new determinants of personal 

technology acceptance and the reinstatement of excluded ones; the liberation of 

TAM and UTAUT from the restrictions of their underlying methodologies; and the 

validation, correction and invalidation of both models’ feature rankings. 

Additionally, the application of ML and DM techniques identified new relationship 

patterns in the features of both models. Moreover, the formulation of FIPTAM 

enables practitioners to use the model to automate decision-making processes. 

Furthermore, PTAI, which was formulated using Bayesian networks, is an effective 

approach that combines an explanatory and predictive model of technology 

acceptance. 

Answering RQ2, we conclude that the predictive power of PTAM varies 

depending on the modelling algorithm used. We found that SVR-POLY (with linear 

and non-linear functions) achieved the best performance for PTAM. Contrary to the 

observations in the literature, we found that linear algorithms had inferior predictive 

power compared with non-linear algorithms. Addressing RQ3, we found that 

FIPTAM (formulated in Chapter 6) is an instrumental tool that technology 

practitioners can use to promptly reach conclusions about the usability of a 

particular personal technology. Lastly, answering RQ4, we applied Bayesian 
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networks to model an explanatory and predictive PTAM, tested its performance and 

used the networks to develop PTAI in Chapter 7. Despite the structural model’s 

utility and efficacy, we found that its performance was inferior to PTAM’s. 

8.5 Future Research 
The proposed PTAM, DPTAM, FIPTAM and PTAI (Chapters 5–7) are oriented 

toward addressing the adoption decisions of end users or consumers in non-

organisational settings. These models assume that the final decision to adopt 

technology is undertaken by end users, who bear all the subsequent consequences 

of their use decisions. Therefore, the opportunity remains to formulate a model that 

is similar to our models but is oriented toward addressing technology acceptance 

decisions made by organisations. In such a model, some features are expected to 

differ from PTAM’s features to ensure the shaping of technology use behaviour. 

The data collected to formulate such a model should be collected from employees 

and their superiors, such as top management at organisations. This would ensure 

that the suggested model takes into account the conditions shaping the use of 

organisational (as opposed to personal) technology. 

In Chapter 5, our approach revealed non-linear, monotonic and non-

monotonic relationships for some of PTAM’s features. However, why these 

relationships are formed remains unexplained by the literature. Many technology 

acceptance scholars should find it interesting to explain the formation of such 

relationships and investigate their implications for end users’ use behaviour. 

In Section 3.5, we described the shortcomings of PLS-SEM techniques and 

how Bayesian networks can avoid these drawbacks and create an explanatory and 

predictive PTAM. To stimulate appreciation of Bayesian networks and increase 

their popularity in the literature, we suggest formulating a hybrid model of 

technology acceptance that incorporates SEM into Bayesian networks (SEM-BN). 

In this way, the theoretical foundation required by many IS scholars to justify the 

inclusion of features can be considered at the same time that the limitations of SEM 

are minimised. The resulting hybrid SEM-BN model can be concurrently 

explanatory and predictive, as the SEM component covers the statistical 
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significance of the suggested new features while the Bayesian network component 

models the predictive power of the explanatory model formulated using SEM. 
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Appendix 
 
Table 9.1 Cross Loading: Verifying Convergent and Discriminant Validity 

 ATTC ATTT ATUS CONS DA ENJ EOU FCON FLX FUNC GOL HBT IMG OQLTY BINT MOB NAV NOV PAE 
ATTC1 0.97 0.32 0.56 0.56 0.41 0.52 0.33 0.40 0.33 0.45 0.49 0.56 0.51 0.37 0.42 0.24 0.31 0.37 0.59 

ATTC2 0.94 0.33 0.56 0.54 0.43 0.54 0.34 0.41 0.35 0.46 0.47 0.57 0.51 0.36 0.41 0.27 0.32 0.38 0.60 
ATTC3 0.96 0.32 0.52 0.51 0.44 0.54 0.32 0.40 0.34 0.45 0.43 0.58 0.47 0.38 0.40 0.26 0.34 0.39 0.55 

ATTT1 0.32 0.97 0.50 0.41 0.42 0.43 0.49 0.35 0.45 0.49 0.44 0.35 0.28 0.51 0.57 0.41 0.47 0.43 0.39 

ATTT2 0.33 0.96 0.49 0.40 0.44 0.43 0.51 0.35 0.45 0.50 0.44 0.36 0.28 0.51 0.57 0.43 0.46 0.42 0.38 
ATTT3 0.32 0.95 0.47 0.39 0.41 0.39 0.46 0.31 0.42 0.45 0.41 0.33 0.26 0.46 0.53 0.40 0.41 0.38 0.33 

ATUS1 0.57 0.49 0.97 0.54 0.49 0.58 0.46 0.38 0.43 0.52 0.50 0.50 0.45 0.49 0.51 0.39 0.45 0.39 0.55 

ATUS2 0.57 0.50 0.94 0.55 0.51 0.59 0.48 0.42 0.46 0.52 0.53 0.49 0.45 0.51 0.53 0.39 0.47 0.41 0.59 
ATUS3 0.51 0.47 0.99 0.52 0.51 0.56 0.47 0.39 0.43 0.47 0.51 0.45 0.42 0.46 0.49 0.35 0.44 0.36 0.54 

CONS1 0.54 0.40 0.54 0.97 0.45 0.50 0.43 0.40 0.41 0.49 0.48 0.45 0.40 0.42 0.44 0.41 0.42 0.42 0.48 
CONS2 0.54 0.41 0.55 0.94 0.45 0.51 0.42 0.39 0.41 0.47 0.47 0.44 0.39 0.44 0.44 0.41 0.41 0.41 0.47 

CONS3 0.53 0.38 0.53 0.93 0.43 0.50 0.39 0.38 0.39 0.43 0.45 0.46 0.41 0.42 0.43 0.34 0.37 0.37 0.46 

DA1 0.44 0.43 0.51 0.46 0.97 0.60 0.48 0.43 0.54 0.53 0.45 0.44 0.43 0.52 0.56 0.40 0.57 0.53 0.52 
DA2 0.43 0.43 0.50 0.44 0.94 0.60 0.47 0.43 0.53 0.53 0.43 0.43 0.42 0.53 0.56 0.42 0.56 0.54 0.51 

DA3 0.42 0.41 0.49 0.42 0.95 0.58 0.46 0.44 0.49 0.50 0.41 0.41 0.40 0.50 0.55 0.39 0.54 0.51 0.49 

ENJ1 0.55 0.42 0.60 0.52 0.59 0.97 0.49 0.40 0.51 0.50 0.46 0.53 0.44 0.48 0.54 0.37 0.54 0.49 0.61 
ENJ2 0.55 0.43 0.58 0.52 0.60 0.93 0.48 0.40 0.51 0.50 0.46 0.51 0.44 0.49 0.54 0.38 0.53 0.50 0.61 

ENJ3 0.51 0.41 0.55 0.48 0.58 0.94 0.45 0.39 0.47 0.47 0.44 0.48 0.41 0.45 0.50 0.36 0.47 0.47 0.54 
EOU1 0.33 0.50 0.48 0.43 0.47 0.48 0.99 0.40 0.46 0.51 0.51 0.27 0.25 0.54 0.50 0.46 0.55 0.38 0.39 

EOU2 0.33 0.49 0.47 0.41 0.48 0.47 0.99 0.41 0.48 0.49 0.51 0.28 0.24 0.56 0.49 0.47 0.55 0.37 0.39 

FCON1 0.38 0.34 0.39 0.39 0.43 0.38 0.42 0.96 0.41 0.49 0.46 0.30 0.30 0.47 0.44 0.37 0.49 0.42 0.33 
FCON2 0.41 0.35 0.41 0.40 0.45 0.40 0.42 0.95 0.44 0.50 0.46 0.34 0.31 0.48 0.45 0.39 0.51 0.43 0.35 

FCON3 0.43 0.32 0.39 0.37 0.42 0.40 0.36 0.96 0.42 0.46 0.44 0.36 0.33 0.47 0.42 0.33 0.48 0.40 0.34 

FLX1 0.33 0.43 0.45 0.41 0.52 0.50 0.46 0.42 0.96 0.46 0.38 0.35 0.36 0.48 0.48 0.42 0.57 0.41 0.45 
FLX2 0.34 0.44 0.45 0.41 0.52 0.50 0.46 0.42 0.94 0.44 0.37 0.35 0.33 0.48 0.46 0.45 0.56 0.42 0.43 

FLX3 0.35 0.45 0.43 0.39 0.52 0.49 0.47 0.44 0.93 0.45 0.37 0.35 0.32 0.47 0.46 0.41 0.54 0.41 0.41 
FUNC1 0.45 0.46 0.52 0.48 0.52 0.49 0.51 0.49 0.47 0.97 0.47 0.37 0.35 0.56 0.55 0.47 0.54 0.50 0.46 

FUNC2 0.46 0.50 0.51 0.48 0.52 0.49 0.50 0.49 0.45 0.99 0.46 0.38 0.36 0.56 0.55 0.49 0.53 0.52 0.45 

FUNC3 0.44 0.48 0.47 0.42 0.51 0.48 0.46 0.47 0.42 0.96 0.44 0.38 0.35 0.53 0.52 0.44 0.51 0.49 0.41 
GOL1 0.48 0.42 0.51 0.48 0.42 0.44 0.53 0.45 0.39 0.46 0.96 0.39 0.37 0.45 0.54 0.31 0.44 0.37 0.48 

GOL2 0.48 0.44 0.51 0.47 0.44 0.45 0.51 0.46 0.37 0.47 0.92 0.39 0.37 0.46 0.55 0.33 0.43 0.38 0.48 

GOL3 0.44 0.43 0.50 0.44 0.43 0.46 0.45 0.45 0.36 0.43 0.95 0.37 0.36 0.43 0.51 0.33 0.42 0.36 0.42 
HBT1 0.57 0.35 0.48 0.45 0.43 0.50 0.26 0.32 0.36 0.38 0.38 0.98 0.55 0.35 0.37 0.21 0.32 0.37 0.53 

HBT2 0.57 0.36 0.49 0.45 0.44 0.52 0.29 0.34 0.36 0.38 0.40 0.89 0.54 0.35 0.37 0.23 0.35 0.40 0.53 
HBT3 0.57 0.33 0.48 0.45 0.42 0.51 0.27 0.35 0.33 0.37 0.39 0.97 0.51 0.34 0.37 0.21 0.34 0.39 0.48 

IMG1 0.51 0.26 0.43 0.40 0.41 0.43 0.23 0.30 0.33 0.34 0.36 0.53 0.96 0.25 0.27 0.20 0.17 0.34 0.56 

IMG2 0.50 0.28 0.44 0.41 0.42 0.43 0.24 0.31 0.34 0.36 0.37 0.54 0.89 0.27 0.29 0.20 0.19 0.35 0.56 
IMG3 0.49 0.29 0.44 0.39 0.41 0.42 0.26 0.32 0.35 0.37 0.37 0.53 0.74 0.28 0.30 0.19 0.22 0.35 0.53 

OQLTY1 0.37 0.51 0.48 0.45 0.52 0.49 0.56 0.48 0.48 0.57 0.47 0.34 0.29 0.97 0.57 0.49 0.61 0.43 0.41 

OQLTY2 0.38 0.50 0.49 0.44 0.52 0.48 0.56 0.49 0.49 0.56 0.46 0.36 0.27 0.98 0.58 0.48 0.60 0.43 0.39 
OQLTY3 0.34 0.47 0.47 0.38 0.50 0.44 0.50 0.46 0.45 0.51 0.42 0.34 0.23 0.95 0.55 0.45 0.55 0.40 0.36 

BINT1 0.40 0.56 0.52 0.44 0.54 0.54 0.50 0.43 0.47 0.55 0.53 0.35 0.28 0.55 0.97 0.43 0.56 0.48 0.47 
BINT2 0.42 0.58 0.53 0.45 0.57 0.53 0.50 0.44 0.48 0.56 0.55 0.37 0.28 0.59 0.92 0.46 0.57 0.49 0.48 

BINT3 0.41 0.53 0.50 0.43 0.57 0.53 0.47 0.45 0.45 0.52 0.53 0.40 0.29 0.56 0.94 0.43 0.54 0.47 0.44 

MOB1 0.24 0.42 0.37 0.40 0.40 0.36 0.48 0.37 0.43 0.49 0.35 0.21 0.18 0.48 0.45 0.97 0.51 0.37 0.30 
MOB2 0.24 0.41 0.37 0.39 0.39 0.35 0.45 0.35 0.43 0.47 0.32 0.20 0.20 0.47 0.43 0.99 0.48 0.37 0.29 

MOB3 0.28 0.40 0.39 0.38 0.42 0.39 0.43 0.36 0.42 0.44 0.30 0.23 0.21 0.47 0.43 0.91 0.47 0.38 0.31 

NAV1 0.32 0.44 0.44 0.42 0.56 0.50 0.54 0.48 0.54 0.53 0.44 0.32 0.17 0.59 0.55 0.51 0.96 0.46 0.41 
NAV2 0.33 0.46 0.47 0.41 0.57 0.52 0.56 0.51 0.58 0.54 0.45 0.34 0.20 0.61 0.57 0.50 0.89 0.45 0.41 

NAV3 0.31 0.43 0.44 0.36 0.54 0.52 0.50 0.49 0.55 0.51 0.40 0.34 0.20 0.57 0.55 0.44 0.88 0.41 0.38 
NOVL 0.38 0.41 0.38 0.39 0.53 0.50 0.38 0.41 0.42 0.50 0.39 0.37 0.34 0.42 0.48 0.36 0.43 0.96 0.46 

NOVL 0.38 0.40 0.39 0.41 0.53 0.48 0.36 0.43 0.42 0.50 0.38 0.38 0.35 0.43 0.48 0.38 0.45 0.92 0.45 

NOVL 0.38 0.42 0.39 0.40 0.53 0.48 0.37 0.41 0.40 0.51 0.36 0.40 0.34 0.42 0.48 0.37 0.44 0.95 0.42 
PAE1 0.59 0.37 0.56 0.47 0.51 0.59 0.41 0.33 0.41 0.45 0.49 0.50 0.55 0.38 0.48 0.30 0.41 0.44 0.97 

PAE2 0.60 0.38 0.58 0.48 0.52 0.60 0.39 0.35 0.44 0.44 0.47 0.52 0.57 0.40 0.48 0.31 0.41 0.44 0.92 

PAE3 0.57 0.35 0.54 0.46 0.50 0.56 0.35 0.33 0.42 0.43 0.43 0.50 0.53 0.39 0.44 0.29 0.39 0.45 0.90 
PEC1 0.33 0.44 0.45 0.39 0.48 0.46 0.58 0.38 0.44 0.48 0.44 0.28 0.21 0.52 0.54 0.41 0.58 0.33 0.38 

PEC2 0.33 0.45 0.43 0.40 0.49 0.46 0.57 0.38 0.43 0.49 0.42 0.29 0.23 0.53 0.53 0.43 0.58 0.34 0.39 
PEC3 0.33 0.45 0.40 0.39 0.45 0.43 0.53 0.34 0.42 0.45 0.41 0.27 0.23 0.48 0.48 0.41 0.53 0.34 0.35 

INOV1 0.42 0.47 0.52 0.46 0.54 0.51 0.47 0.40 0.47 0.51 0.42 0.39 0.31 0.54 0.65 0.41 0.52 0.52 0.51 

INOV2 0.44 0.49 0.53 0.47 0.53 0.52 0.47 0.41 0.47 0.50 0.46 0.42 0.32 0.55 0.65 0.42 0.53 0.52 0.51 
INOV3 0.41 0.47 0.51 0.45 0.53 0.50 0.45 0.45 0.47 0.49 0.46 0.42 0.33 0.55 0.62 0.44 0.53 0.53 0.48 

PLY1 0.55 0.22 0.44 0.37 0.43 0.46 0.23 0.29 0.35 0.37 0.38 0.58 0.68 0.22 0.31 0.19 0.22 0.36 0.59 

PLY3 0.57 0.24 0.45 0.38 0.48 0.48 0.23 0.34 0.38 0.38 0.42 0.55 0.66 0.27 0.34 0.16 0.28 0.40 0.55 
COMP1 0.30 0.46 0.37 0.39 0.46 0.41 0.45 0.36 0.45 0.48 0.36 0.24 0.16 0.42 0.45 0.48 0.51 0.47 0.25 

COMP2 0.32 0.49 0.40 0.42 0.48 0.42 0.47 0.37 0.47 0.49 0.38 0.26 0.18 0.45 0.46 0.49 0.55 0.47 0.28 
COMP3 0.31 0.50 0.39 0.39 0.48 0.42 0.47 0.38 0.45 0.48 0.38 0.26 0.19 0.43 0.45 0.48 0.53 0.47 0.26 

PRVSY1 0.28 0.36 0.34 0.34 0.34 0.30 0.34 0.39 0.31 0.41 0.36 0.22 0.19 0.39 0.35 0.41 0.35 0.34 0.26 

PRVSY2 0.28 0.33 0.34 0.34 0.33 0.29 0.32 0.35 0.28 0.37 0.33 0.22 0.18 0.36 0.30 0.41 0.34 0.30 0.24 
PRVSY3 0.27 0.34 0.34 0.32 0.34 0.28 0.31 0.34 0.27 0.38 0.33 0.24 0.19 0.36 0.29 0.38 0.33 0.30 0.26 

RD1 0.53 0.34 0.51 0.45 0.43 0.50 0.36 0.29 0.38 0.40 0.40 0.51 0.47 0.40 0.40 0.30 0.31 0.36 0.54 

RD2 0.54 0.33 0.50 0.45 0.43 0.50 0.36 0.32 0.37 0.40 0.40 0.51 0.46 0.40 0.40 0.31 0.33 0.37 0.53 
RD3 0.50 0.34 0.48 0.39 0.40 0.47 0.33 0.33 0.36 0.40 0.38 0.46 0.44 0.37 0.38 0.29 0.33 0.33 0.48 

SCUR1 0.29 0.42 0.40 0.41 0.43 0.36 0.38 0.41 0.35 0.45 0.34 0.23 0.24 0.42 0.39 0.35 0.44 0.35 0.31 
SCUR2 0.27 0.40 0.38 0.37 0.39 0.33 0.34 0.40 0.32 0.45 0.32 0.22 0.22 0.41 0.36 0.35 0.41 0.34 0.27 

SCUR3 0.28 0.42 0.41 0.34 0.40 0.35 0.34 0.42 0.35 0.46 0.34 0.25 0.24 0.42 0.37 0.33 0.42 0.35 0.29 

SELF1 0.36 0.37 0.33 0.34 0.42 0.40 0.48 0.40 0.42 0.40 0.42 0.32 0.27 0.41 0.48 0.35 0.46 0.28 0.35 
SELF2 0.37 0.38 0.35 0.33 0.42 0.39 0.47 0.39 0.41 0.40 0.42 0.36 0.26 0.41 0.49 0.35 0.46 0.29 0.34 

SELF3 0.39 0.37 0.36 0.32 0.44 0.40 0.43 0.38 0.40 0.41 0.41 0.38 0.27 0.40 0.50 0.33 0.45 0.30 0.34 

SQLTY1 0.39 0.44 0.42 0.47 0.49 0.46 0.51 0.50 0.52 0.52 0.45 0.36 0.41 0.50 0.50 0.41 0.53 0.49 0.44 
SQLTY2 0.39 0.44 0.44 0.48 0.50 0.45 0.53 0.51 0.53 0.52 0.45 0.34 0.38 0.50 0.50 0.44 0.55 0.49 0.42 
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SQLTY3 0.36 0.43 0.43 0.46 0.48 0.44 0.49 0.50 0.52 0.50 0.44 0.35 0.38 0.47 0.46 0.40 0.52 0.47 0.40 
SFTY1 0.33 0.36 0.39 0.38 0.42 0.37 0.42 0.46 0.35 0.46 0.38 0.20 0.18 0.41 0.44 0.39 0.39 0.37 0.29 
SFTY2 0.35 0.37 0.39 0.40 0.43 0.37 0.43 0.48 0.37 0.46 0.37 0.21 0.20 0.42 0.44 0.39 0.41 0.39 0.30 

SFTY3 0.37 0.36 0.40 0.40 0.46 0.40 0.43 0.47 0.37 0.45 0.37 0.25 0.25 0.41 0.44 0.36 0.40 0.42 0.32 
SN1 0.50 0.22 0.42 0.40 0.37 0.39 0.24 0.29 0.27 0.34 0.38 0.58 0.64 0.27 0.26 0.24 0.21 0.34 0.49 
SN2 0.51 0.23 0.44 0.42 0.40 0.41 0.27 0.29 0.29 0.35 0.38 0.59 0.65 0.30 0.29 0.26 0.25 0.36 0.51 

SN3 0.49 0.24 0.41 0.39 0.38 0.37 0.27 0.27 0.26 0.34 0.35 0.57 0.59 0.32 0.30 0.21 0.26 0.37 0.46 
TQLTY1 0.30 0.50 0.44 0.42 0.48 0.45 0.51 0.46 0.44 0.54 0.43 0.21 0.18 0.54 0.55 0.44 0.57 0.47 0.31 

TQLTY2 0.29 0.53 0.41 0.42 0.47 0.42 0.49 0.45 0.44 0.55 0.39 0.21 0.17 0.54 0.52 0.46 0.55 0.47 0.30 
TQLTY3 0.26 0.50 0.39 0.38 0.44 0.38 0.44 0.42 0.40 0.52 0.37 0.21 0.15 0.49 0.49 0.43 0.50 0.44 0.27 

TRST1 0.34 0.43 0.44 0.45 0.45 0.39 0.49 0.46 0.43 0.56 0.43 0.29 0.24 0.47 0.36 0.46 0.44 0.40 0.35 

TRST2 0.35 0.42 0.44 0.45 0.44 0.39 0.48 0.46 0.43 0.56 0.42 0.28 0.24 0.48 0.36 0.48 0.44 0.42 0.34 
TRST3 0.35 0.40 0.43 0.41 0.47 0.39 0.46 0.45 0.41 0.54 0.40 0.30 0.25 0.48 0.36 0.44 0.44 0.45 0.34 

USFL1 0.40 0.50 0.53 0.47 0.44 0.48 0.55 0.43 0.49 0.47 0.65 0.35 0.27 0.52 0.59 0.42 0.51 0.40 0.41 
USFL2 0.35 0.41 0.43 0.35 0.40 0.43 0.48 0.34 0.38 0.38 0.56 0.33 0.22 0.40 0.50 0.28 0.40 0.36 0.41 

USFL3 0.28 0.41 0.38 0.32 0.35 0.38 0.42 0.35 0.38 0.39 0.46 0.27 0.15 0.40 0.47 0.28 0.41 0.34 0.32 

VOL1 0.04 0.08 0.11 0.07 0.05 0.00 0.06 0.07 0.06 0.15 0.08 0.05 0.13 0.11 0.07 0.18 0.10 0.00 -0.01 
VOL2 0.02 0.06 0.12 0.09 0.03 -0.02 0.07 0.10 0.10 0.10 0.05 0.01 0.06 0.12 0.05 0.19 0.14 0.01 -0.03 

VOL3 0.14 0.20 0.26 0.15 0.19 0.14 0.22 0.23 0.22 0.24 0.21 0.14 0.11 0.26 0.23 0.22 0.28 0.12 0.12 

VSBL1 0.40 0.40 0.39 0.39 0.37 0.42 0.32 0.27 0.33 0.44 0.32 0.48 0.40 0.35 0.35 0.26 0.31 0.34 0.49 
VSBL2 0.42 0.43 0.43 0.44 0.40 0.43 0.34 0.30 0.36 0.46 0.33 0.51 0.40 0.38 0.38 0.29 0.33 0.36 0.50 

VSBL3 0.42 0.45 0.43 0.43 0.41 0.42 0.35 0.32 0.37 0.45 0.33 0.49 0.37 0.37 0.38 0.30 0.33 0.35 0.48 
                    
 PEC INOV PLY COMP PRVSY RD SCUR SELF SQLTY SFTY SN TQLTY TRST USFL VSBL     

ATTC1 0.34 0.43 0.57 0.28 0.27 0.52 0.27 0.37 0.38 0.34 0.52 0.29 0.34 0.38 0.41     

ATTC2 0.33 0.42 0.57 0.31 0.27 0.55 0.28 0.37 0.39 0.36 0.50 0.28 0.35 0.38 0.42     

ATTC3 0.32 0.41 0.55 0.35 0.29 0.50 0.30 0.37 0.37 0.35 0.48 0.28 0.36 0.34 0.40     

ATTT1 0.46 0.49 0.24 0.50 0.35 0.35 0.41 0.36 0.45 0.36 0.24 0.52 0.42 0.49 0.42     

ATTT2 0.46 0.49 0.24 0.50 0.35 0.34 0.42 0.37 0.45 0.38 0.24 0.52 0.44 0.48 0.45     

ATTT3 0.43 0.44 0.22 0.46 0.33 0.32 0.40 0.37 0.42 0.36 0.21 0.49 0.39 0.44 0.41     

ATUS1 0.44 0.52 0.46 0.38 0.34 0.52 0.39 0.35 0.44 0.38 0.42 0.42 0.42 0.48 0.43     

ATUS2 0.44 0.54 0.46 0.40 0.35 0.52 0.41 0.36 0.45 0.41 0.44 0.44 0.46 0.50 0.43     

ATUS3 0.41 0.49 0.42 0.37 0.33 0.46 0.39 0.33 0.41 0.39 0.42 0.39 0.43 0.47 0.39     

CONS1 0.39 0.47 0.39 0.41 0.34 0.44 0.39 0.33 0.48 0.40 0.42 0.44 0.45 0.42 0.44     

CONS2 0.39 0.47 0.36 0.42 0.34 0.43 0.39 0.33 0.48 0.41 0.40 0.41 0.45 0.41 0.42     

CONS3 0.41 0.45 0.38 0.37 0.32 0.42 0.35 0.33 0.45 0.38 0.39 0.38 0.41 0.40 0.40     

DA1 0.49 0.54 0.47 0.47 0.33 0.43 0.41 0.43 0.50 0.42 0.40 0.47 0.46 0.44 0.40     

DA2 0.47 0.53 0.45 0.48 0.33 0.43 0.41 0.42 0.49 0.45 0.39 0.47 0.47 0.42 0.40     

DA3 0.45 0.52 0.43 0.46 0.34 0.41 0.40 0.43 0.49 0.44 0.36 0.47 0.44 0.41 0.38     

DSR1 0.38 0.61 0.47 0.41 0.32 0.47 0.33 0.39 0.43 0.36 0.42 0.42 0.39 0.52 0.45     

DSR2 0.39 0.61 0.46 0.42 0.29 0.47 0.31 0.40 0.43 0.35 0.41 0.42 0.39 0.51 0.47     

DSR3 0.37 0.59 0.44 0.43 0.27 0.46 0.29 0.40 0.42 0.32 0.40 0.41 0.38 0.47 0.47     

ENJ1 0.48 0.52 0.49 0.42 0.29 0.52 0.35 0.40 0.47 0.37 0.40 0.43 0.38 0.47 0.43     

ENJ2 0.46 0.51 0.48 0.43 0.29 0.51 0.36 0.40 0.46 0.39 0.40 0.43 0.40 0.46 0.42     

ENJ3 0.42 0.49 0.46 0.40 0.29 0.46 0.34 0.39 0.42 0.39 0.37 0.40 0.39 0.44 0.41     

EOU1 0.58 0.46 0.24 0.46 0.33 0.35 0.36 0.47 0.51 0.44 0.25 0.49 0.48 0.53 0.33     

EOU2 0.56 0.48 0.23 0.48 0.33 0.35 0.36 0.47 0.53 0.43 0.28 0.49 0.49 0.52 0.36     

FCON1 0.37 0.40 0.29 0.38 0.37 0.30 0.40 0.39 0.50 0.47 0.27 0.45 0.46 0.41 0.29     

FCON2 0.37 0.43 0.32 0.39 0.38 0.32 0.43 0.40 0.52 0.49 0.29 0.46 0.47 0.40 0.31     
FCON3 0.36 0.42 0.34 0.35 0.33 0.32 0.41 0.38 0.48 0.44 0.30 0.41 0.42 0.38 0.29     
FLX1 0.41 0.47 0.38 0.45 0.28 0.38 0.34 0.41 0.53 0.34 0.28 0.42 0.42 0.45 0.33     
FLX2 0.42 0.47 0.37 0.47 0.30 0.37 0.35 0.40 0.52 0.38 0.28 0.43 0.43 0.44 0.35     
FLX3 0.46 0.47 0.36 0.45 0.28 0.36 0.32 0.42 0.52 0.37 0.25 0.44 0.43 0.44 0.37     

FUNC1 0.50 0.51 0.37 0.49 0.38 0.41 0.45 0.40 0.53 0.45 0.33 0.55 0.55 0.47 0.44     
FUNC2 0.48 0.51 0.37 0.49 0.40 0.41 0.46 0.41 0.52 0.48 0.35 0.55 0.57 0.44 0.45     
FUNC3 0.45 0.48 0.37 0.47 0.37 0.38 0.44 0.40 0.48 0.44 0.36 0.51 0.55 0.41 0.45     
GOL1 0.45 0.45 0.41 0.37 0.32 0.40 0.31 0.42 0.47 0.36 0.37 0.38 0.40 0.62 0.31     
GOL2 0.43 0.46 0.41 0.39 0.34 0.41 0.33 0.43 0.45 0.37 0.38 0.40 0.42 0.61 0.34     
GOL3 0.38 0.41 0.38 0.37 0.36 0.37 0.37 0.39 0.42 0.38 0.35 0.41 0.43 0.55 0.31     
HBT1 0.26 0.42 0.59 0.25 0.22 0.50 0.23 0.35 0.36 0.20 0.59 0.21 0.28 0.35 0.50     
HBT2 0.29 0.42 0.58 0.27 0.23 0.50 0.24 0.36 0.36 0.22 0.59 0.21 0.30 0.34 0.50     
HBT3 0.30 0.40 0.55 0.25 0.23 0.49 0.24 0.37 0.34 0.24 0.57 0.21 0.29 0.32 0.48     
IMG1 0.21 0.32 0.69 0.17 0.19 0.47 0.23 0.26 0.38 0.21 0.65 0.15 0.25 0.23 0.42     
IMG2 0.23 0.33 0.68 0.17 0.18 0.46 0.24 0.26 0.40 0.21 0.63 0.17 0.25 0.23 0.39     
IMG3 0.23 0.32 0.66 0.19 0.18 0.43 0.24 0.28 0.40 0.21 0.61 0.19 0.24 0.24 0.36     

OQLTY1 0.52 0.54 0.26 0.44 0.37 0.40 0.42 0.41 0.52 0.43 0.30 0.53 0.48 0.48 0.36     
OQLTY2 0.53 0.55 0.25 0.44 0.37 0.40 0.42 0.42 0.51 0.42 0.30 0.54 0.48 0.47 0.37     
OQLTY3 0.49 0.53 0.22 0.41 0.36 0.35 0.40 0.38 0.44 0.38 0.28 0.50 0.46 0.44 0.36     
BINT1 0.53 0.64 0.32 0.45 0.29 0.38 0.36 0.48 0.49 0.44 0.25 0.53 0.35 0.57 0.36     
BINT2 0.53 0.65 0.33 0.46 0.32 0.41 0.38 0.50 0.49 0.45 0.28 0.53 0.38 0.58 0.38     
BINT3 0.50 0.61 0.33 0.46 0.33 0.39 0.39 0.49 0.48 0.44 0.31 0.50 0.36 0.52 0.37     
MOB1 0.44 0.44 0.16 0.50 0.41 0.28 0.35 0.36 0.42 0.37 0.24 0.45 0.48 0.38 0.27     
MOB2 0.42 0.42 0.17 0.49 0.40 0.30 0.34 0.33 0.42 0.38 0.24 0.43 0.46 0.34 0.27     
MOB3 0.39 0.41 0.20 0.47 0.40 0.32 0.34 0.33 0.41 0.39 0.24 0.45 0.43 0.33 0.31     
NAV1 0.56 0.53 0.24 0.53 0.35 0.31 0.41 0.46 0.52 0.39 0.23 0.55 0.45 0.49 0.33     
NAV2 0.58 0.53 0.26 0.54 0.34 0.33 0.43 0.46 0.55 0.42 0.24 0.56 0.45 0.48 0.33     
NAV3 0.54 0.51 0.25 0.51 0.32 0.33 0.44 0.44 0.54 0.39 0.24 0.51 0.42 0.44 0.31     

NOVL1 0.34 0.50 0.39 0.46 0.32 0.35 0.33 0.30 0.48 0.40 0.33 0.45 0.41 0.39 0.36     
NOVL2 0.32 0.52 0.39 0.48 0.32 0.35 0.36 0.29 0.48 0.40 0.36 0.47 0.43 0.39 0.33     
NOVL3 0.34 0.54 0.38 0.47 0.30 0.35 0.35 0.27 0.49 0.39 0.37 0.46 0.43 0.39 0.36     
PAE1 0.38 0.48 0.59 0.26 0.26 0.52 0.29 0.35 0.42 0.32 0.49 0.29 0.36 0.40 0.49     
PAE2 0.40 0.50 0.59 0.27 0.25 0.53 0.29 0.35 0.44 0.30 0.49 0.30 0.35 0.40 0.49     
PAE3 0.34 0.50 0.55 0.26 0.26 0.50 0.29 0.33 0.41 0.29 0.48 0.30 0.33 0.39 0.47     
PEC1 0.97 0.47 0.22 0.38 0.21 0.35 0.29 0.52 0.44 0.35 0.13 0.49 0.31 0.48 0.32     
PEC2 0.99 0.47 0.22 0.39 0.20 0.37 0.28 0.51 0.43 0.35 0.15 0.47 0.33 0.47 0.34     
PEC3 0.95 0.42 0.22 0.38 0.19 0.34 0.29 0.49 0.40 0.34 0.18 0.42 0.33 0.43 0.32     
INOV1 0.47 0.97 0.36 0.44 0.28 0.43 0.37 0.39 0.49 0.38 0.32 0.48 0.44 0.56 0.44     
INOV2 0.47 0.99 0.37 0.44 0.30 0.43 0.38 0.40 0.48 0.38 0.34 0.49 0.46 0.57 0.46     



311 
 

INOV3 0.43 0.96 0.38 0.46 0.31 0.43 0.42 0.41 0.50 0.39 0.37 0.48 0.49 0.55 0.44     
PLY1 0.20 0.37 0.97 0.21 0.22 0.50 0.25 0.25 0.37 0.23 0.65 0.17 0.30 0.23 0.42     
PLY3 0.25 0.37 0.96 0.23 0.25 0.50 0.29 0.29 0.37 0.25 0.60 0.20 0.31 0.28 0.35     

COMP1 0.37 0.45 0.23 0.96 0.31 0.28 0.35 0.34 0.45 0.35 0.22 0.49 0.42 0.36 0.31     
COMP2 0.40 0.45 0.22 0.99 0.32 0.31 0.36 0.34 0.47 0.36 0.24 0.48 0.43 0.38 0.32     
COMP3 0.38 0.44 0.22 0.97 0.32 0.30 0.36 0.34 0.44 0.36 0.25 0.47 0.42 0.37 0.33     
PRVSY1 0.21 0.33 0.23 0.32 0.97 0.26 0.59 0.24 0.34 0.52 0.24 0.39 0.55 0.26 0.25     
PRVSY2 0.19 0.28 0.22 0.32 0.98 0.25 0.58 0.22 0.33 0.51 0.24 0.37 0.54 0.23 0.23     
PRVSY3 0.20 0.28 0.24 0.31 0.96 0.24 0.52 0.24 0.31 0.47 0.24 0.37 0.50 0.26 0.24     

RD1 0.35 0.43 0.52 0.30 0.27 0.93 0.29 0.40 0.43 0.30 0.49 0.26 0.27 0.40 0.45     
RD2 0.37 0.44 0.50 0.29 0.26 0.86 0.30 0.40 0.43 0.31 0.50 0.26 0.29 0.40 0.44     
RD3 0.35 0.43 0.49 0.30 0.21 0.98 0.28 0.38 0.42 0.28 0.47 0.25 0.27 0.41 0.42     

SCUR1 0.31 0.40 0.27 0.35 0.57 0.30 0.96 0.22 0.46 0.55 0.26 0.41 0.64 0.29 0.27     
SCUR2 0.26 0.37 0.26 0.34 0.58 0.28 0.91 0.19 0.43 0.55 0.25 0.42 0.63 0.25 0.23     
SCUR3 0.29 0.40 0.27 0.36 0.53 0.28 0.93 0.23 0.43 0.52 0.27 0.43 0.60 0.30 0.25     
SELF1 0.52 0.40 0.26 0.34 0.22 0.38 0.19 0.97 0.44 0.32 0.21 0.40 0.27 0.44 0.34     
SELF2 0.51 0.41 0.26 0.34 0.24 0.40 0.22 0.99 0.44 0.33 0.25 0.38 0.28 0.43 0.34     
SELF3 0.50 0.40 0.28 0.34 0.24 0.40 0.24 0.96 0.41 0.31 0.26 0.37 0.26 0.44 0.32     

SQLTY1 0.45 0.50 0.39 0.43 0.34 0.45 0.44 0.44 0.96 0.40 0.37 0.44 0.53 0.47 0.38     
SQLTY2 0.44 0.50 0.37 0.47 0.33 0.43 0.43 0.44 0.89 0.42 0.35 0.45 0.53 0.44 0.38     
SQLTY3 0.39 0.47 0.35 0.45 0.31 0.40 0.44 0.41 0.88 0.40 0.38 0.42 0.50 0.42 0.40     
SFTY1 0.35 0.38 0.21 0.35 0.51 0.29 0.54 0.31 0.39 0.96 0.17 0.45 0.54 0.34 0.26     
SFTY2 0.35 0.38 0.22 0.37 0.51 0.29 0.55 0.32 0.42 0.91 0.19 0.46 0.56 0.32 0.26     
SFTY3 0.34 0.39 0.28 0.36 0.48 0.31 0.53 0.32 0.40 0.93 0.26 0.44 0.55 0.34 0.26     

SN1 0.14 0.33 0.65 0.22 0.24 0.50 0.24 0.22 0.38 0.20 0.97 0.12 0.32 0.27 0.41     
SN2 0.16 0.35 0.64 0.24 0.24 0.51 0.27 0.26 0.38 0.21 0.88 0.14 0.33 0.30 0.42     
SN3 0.14 0.35 0.60 0.25 0.24 0.46 0.28 0.25 0.34 0.20 0.99 0.17 0.32 0.30 0.39     

TQLTY1 0.49 0.50 0.19 0.47 0.39 0.27 0.43 0.39 0.45 0.46 0.14 0.97 0.44 0.48 0.30     
TQLTY2 0.47 0.49 0.18 0.49 0.38 0.26 0.43 0.39 0.45 0.47 0.14 0.99 0.46 0.45 0.32     
TQLTY3 0.41 0.47 0.18 0.47 0.36 0.23 0.40 0.36 0.41 0.42 0.14 0.89 0.42 0.43 0.31     
TRST1 0.32 0.46 0.30 0.43 0.54 0.28 0.63 0.25 0.52 0.54 0.34 0.44 0.95 0.37 0.36     
TRST2 0.32 0.45 0.29 0.42 0.54 0.27 0.63 0.26 0.53 0.57 0.32 0.45 0.89 0.36 0.37     
TRST3 0.32 0.46 0.31 0.41 0.50 0.27 0.61 0.29 0.51 0.54 0.31 0.43 0.96 0.38 0.37     
USFL1 0.47 0.57 0.28 0.41 0.31 0.40 0.37 0.44 0.47 0.40 0.30 0.49 0.45 0.91 0.33     
USFL2 0.43 0.53 0.26 0.30 0.19 0.41 0.18 0.43 0.40 0.26 0.30 0.41 0.28 0.93 0.33     
USFL3 0.40 0.48 0.18 0.34 0.19 0.34 0.22 0.37 0.38 0.27 0.22 0.39 0.31 0.92 0.28     
VSBL1 0.31 0.45 0.39 0.30 0.22 0.44 0.23 0.33 0.37 0.24 0.40 0.30 0.36 0.32 0.97     
VSBL2 0.35 0.46 0.40 0.32 0.23 0.45 0.25 0.34 0.39 0.27 0.42 0.33 0.38 0.34 0.95     
VSBL3 0.33 0.43 0.39 0.35 0.26 0.43 0.28 0.33 0.39 0.28 0.40 0.32 0.38 0.33 0.97     

ATTC: Attitude toward change brought by technology use, ATTT: Attitude toward technology, 
ATUS: Attitude toward technology use, BINT: Behavioural intention of technology use, COMP: 
Compatibility, CONS: Perceived Consistency, DA: Design aesthetics, ENJ: Perceived 
enjoyment, EOU: Perceived ease of use, FCON: Financial consequences, FLX: Flexibility, FUNC: 
Functionality, GOL: Goal, HBT: Habit, IMG: Image, INOV: Personal innovativeness, MOB: 
Mobility, NAV: Navigability, NOVL: Perceived novelty, OQLTY: Output quality, PAE: Positive 
anticipated emotions, PEC: Perception of external control, PLY: Technology playfulness, 
PRVSY: Privacy, RD: Result demonstrability, SCUR: Security, SELF: Technology self-efficacy, 
SFTY: Safety, SN: Subjective norm, SQLTY: Service quality, TQLTY: Technology quality, TRST: 
Trust, USFL: Perceived usefulness, VSBL: Visibility. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



312 
 

Table 9.2 PCA Analysis: Loadings of SFPTAM 
Variable PC1 PC2 PC3 PC4 PC5 PC6 

Goal 0.03 0.00 0.01 0.00 0.08 0.10 

Perceived Usefulness 0.03 0.00 0.02 0.02 0.05 0.03 

Perceived Ease of Use 0.03 0.02 0.01 0.00 0.00 0.04 

Subjective Norm 0.03 0.01 0.06 0.00 0.08 0.02 

Result Demonstrability 0.02 0.12 0.03 0.00 0.02 0.01 

Image 0.02 0.04 0.00 0.00 0.02 0.02 

Technology Playfulness 0.02 0.11 0.03 0.04 0.01 0.00 

Perceived Enjoyment 0.02 0.12 0.01 0.04 0.00 0.00 

Technology Self-Efficacy 0.03 0.01 0.01 0.01 0.02 0.02 

Perception of External Control 0.03 0.01 0.08 0.04 0.04 0.19 

Positive Anticipated Emotions 0.03 0.02 0.07 0.00 0.00 0.04 

Attitude Toward Technology Use 0.03 0.05 0.00 0.01 0.02 0.00 

Attitude Toward Change Brought by Technology Use 0.03 0.01 0.00 0.01 0.05 0.00 

Visibility 0.02 0.05 0.00 0.00 0.05 0.01 

Perceived Consistency 0.03 0.02 0.00 0.00 0.21 0.02 

Habit 0.02 0.00 0.01 0.00 0.01 0.00 

Privacy 0.02 0.10 0.00 0.01 0.01 0.00 

Trust 0.02 0.02 0.19 0.01 0.00 0.01 

Security 0.03 0.02 0.14 0.00 0.00 0.00 

Attitude Toward Technology 0.02 0.02 0.16 0.00 0.01 0.00 

Safety 0.04 0.01 0.00 0.07 0.01 0.03 

Financial Consequences 0.02 0.03 0.07 0.00 0.03 0.01 

Design Aesthetics 0.02 0.01 0.01 0.03 0.00 0.04 

Flexibility 0.03 0.00 0.00 0.05 0.00 0.04 

Navigability 0.03 0.00 0.01 0.02 0.03 0.00 

Compatibility 0.03 0.03 0.01 0.03 0.01 0.00 

Mobility 0.03 0.03 0.00 0.00 0.04 0.07 

Functionality 0.03 0.04 0.00 0.02 0.07 0.00 

Service Quality 0.03 0.00 0.00 0.01 0.00 0.00 

Behavioural Intention 0.03 0.00 0.00 0.04 0.02 0.00 

Output Quality 0.03 0.01 0.00 0.00 0.01 0.00 

Technology Quality 0.03 0.04 0.00 0.00 0.01 0.01 

Perceived Novelty 0.03 0.00 0.00 0.04 0.00 0.15 

Personal Innovativeness 0.03 0.00 0.02 0.00 0.02 0.06 

Voluntariness 0.01 0.00 0.01 0.01 0.01 0.01 

Desire 0.03 0.02 0.01 0.10 0.05 0.03 

Past Behaviour 0.03 0.01 0.02 0.37 0.03 0.00 
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Table 9.3 PCA Analysis: Loadings of TFPTAM 
Feature PC1 PC2 PC24 
Goal 0.032905531 0.001762396 0.004453829 

Perceived Usefulness 0.033600059 0.004410655 0.007995525 

Perceived Ease of Use 0.033304996 0.018539631 0.03921684 

Subjective Norm 0.033031532 0.006728295 0.002353789 

Result Demonstrability 0.018660303 0.11869518 0.011520805 

Image 0.023893841 0.040013642 1.88316E-05 

Technology Playfulness 0.017279414 0.109561112 0.01284413 

Perceived Enjoyment 0.01809056 0.118104295 0.028621887 

Technology Self-efficacy 0.027660216 0.011913978 0.093493712 

Perception of External Control 0.029384467 0.005537079 0.006635832 

Positive Anticipated Emotions 0.034726151 0.022593985 0.005090742 

Attitude Toward Technology Use 0.025207893 0.053689644 0.015190891 
Attitude Toward Change Brought by 
Technology Use 0.02822208 0.013150917 0.025788725 

Visibility 0.021042844 0.046160341 0.015553291 

Perceived Consistency 0.025831608 0.023938607 0.009630087 

Habit 0.024269245 0.002379861 0.013032705 

Privacy 0.020181149 0.099389901 0.010902958 
Trust 0.021739144 0.024237184 0.028379587 

Security 0.02707887 0.01649816 0.029723444 
Attitude Toward Technology 0.024538574 0.018121563 0.004793952 

Safety 0.035228787 0.00826645 0.011212143 
Financial Consequences 0.022575 0.02993516 0.000698582 

Design Aesthetics 0.02458269 0.010925377 0.021813418 
Flexibility 0.028006222 0.000397461 0.046580173 
Navigability 0.02788313 0.002145119 0.057303107 
Compatibility 0.030573693 0.032308566 0.031102546 
Mobility 0.029215299 0.027058481 0.011090798 
Functionality 0.032791464 0.040016816 0.012683281 
Service Quality 0.027854984 0.004938938 0.013163229 
Behavioural Intention 0.025366639 0.00082554 0.058878842 

Output Quality 0.032052856 0.010319656 0.083986419 
Technology Quality 0.0304735 0.043483349 0.213039498 
Perceived Novelty 0.025877719 0.000770512 0.018845185 
Personal Innovativeness 0.033538769 0.001062617 0.031166083 

Voluntariness 0.008662887 0.001353476 0.010856371 

Desire 0.034096989 0.019834644 0.006718731 

Past Behaviour 0.030570893 0.010931413 0.005620032 

* The bolded loadings are the selected loadings 
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Table 9.4 One Hundred and Eight Extracted If-Then Rules Applying Decision Tree Classifier 
IF CT 

<=4.26 
and 

CT<=3.798 
and HB 
<=1.006 Then U              

IF CT 
<=4.27 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC<=1.968 

and 
HB<=1.572 

and 
TC<=1.486 

and CT 
<=1.131 Then UN        

IF CT 
<=4.28 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC<=1.968 

and 
HB<=1.572 

and 
TC<=1.486 

and CT 
>1.131 Then UN        

IF CT 
<=4.29 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC<=1.968 

and 
HB<=1.572 

and 
TC>1.486 Then UN         

IF CT 
<=4.30 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC<=1.968 

and 
HB>1.572 

and 
HB<=1.825 Then U         

IF CT 
<=4.31 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC<=1.968 

and 
HB>1.572 

and 
HB>1.825 Then UN         

IF CT 
<=4.32 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT<=1.454 

and 
TC<=2.813 Then UN         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT<=1.454 

and 
TC>2.813 Then U         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT>1.454 

and CT 
<=1.631 

and TC 
<=2.422 

and 
TCH<=2.19

5 
Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT>1.454 

and CT 
<=1.631 

and TC 
<=2.422 

and 
TC>2.195 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT>1.454 

and CT 
<=1.631 

and TCH 
>2.422 Then U        

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
<=1.691 

and 
TC>1.968 

and 
CT>1.454 

and CT 
>1.631 Then U         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC<=1.244 

and TC 
<=1.15 Then UN        

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC<=1.244 

and TC 
>1.15 Then LU        

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT<=2.074 

and TC <= 
1.986 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT<=2.074 

and TC > 
1.986 

and CT 
<=1.986 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT<=2.074 

and TC > 
1.986 

and CT 
>1.986 

and CT<= 
2.014 

and HB <= 
1.839 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT<=2.074 

and TC > 
1.986 

and CT 
>1.986 

and CT<= 
2.014 

and HB> 
1.839 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT<=2.074 

and TC > 
1.986 

and CT 
>1.986 

and CT> 
2.014 Then U     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB<=1.913 

and 
TC>1.244 

and 
CT>2.074 Then UN        

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB>1.913 

and HB<= 
1.918 Then U         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and 
HB>1.913 

and 
HB>1.918 Then UN         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>1.968 

and TC<= 
2.633 Then U          

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC<=3.179 

and 
HB<=1.487 Then U        

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC<=3.179 

and 
HB>1.487 

and 
TC<=3.141 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC<=3.179 

and 
HB>1.487 

and 
TC>3.141 Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC<4.112 

and HB <= 
1.724 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC<4.112 

and HB > 
1.724 

and 
HB<=1.749 Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC<=4.112 

and HB > 
1.724 

and 
HB>1.749 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC>4.112 

and CT 
<=3.216 

and 
HB<=1.792 Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC>4.112 

and CT 
<=3.216 

and 
HB>1.792 UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB<=1.928 

and CT 
>1.691 

and 
TC>2.614 

and TC> 
2.633 

and 
TC>3.179 

and 
TC>4.112 

and CT 
>3.216 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT<=2.191 

and 
CT<=2.134 

and TCH 
<= 2.243 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT<=2.191 

and 
CT<=2.134 

and 
TCH>2.243 

and 
TC<=2.29 Then U     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT<=2.191 

and 
CT<=2.134 

and 
TCH>2.244 

and 
TC>2.29 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT<=2.191 

and 
CT>2.134 Then U      
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IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT>2.191 

and 
CT>2.134 

and 
CT<=2.435 

and 
CT<=2.402 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT>2.191 

and 
CT>2.134 

and 
CT<=2.436 

and 
CT>2.402 Then LU     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC<=3.044 

and 
CT>2.191 

and 
CT>2.134 

and 
CT>2.436 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC<=3.095 

and 
TC<=3.059 Then LU      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC<=3.095 

and 
TC>3.059 

and 
CT<=2.631 Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC<=3.095 

and 
TC>3.059 

and 
CT>2.631 

and 
CT<=3.106 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC<=3.095 

and 
TC>3.059 

and 
CT>2.631 

and 
CT>3.106 Then U     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC<=3.095 

and 
TC<=3.874 

and 
CT<=3.18 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC>3.096 

and 
TC<=3.874 

and 
CT>3.18 

and 
TC<=3.388 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC>3.096 

and 
TC<=3.874 

and 
CT>3.18 

and 
TC>3.388 Then LU     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC>3.096 

and 
TC>3.874 

and 
TCH<=3.94

2 
Then U      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC>3.096 

and 
TC>3.874 

and 
TCH>3.942 

and 
TC<=4.326 

and 
HB<=2.775 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB<=2.986 

and 
TC>3.044 

and 
TC>3.096 

and 
TC>3.874 

and 
TCH>3.942 

and 
TC<=4.326 

and 
HB>2.775 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT < = 
3.322 

and 
HB<=2.993 

and 
HB>2.986 Then LU          

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and CT< = 
3.322 

and 
HB<=2.993 Then UN           

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=2.452 Then LU          

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB>2.452 Then UN          

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT<=3.429 Then UN         

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT<=3.462 

and 
HB<=2.877 Then UN      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT<=3.462 

and 
HB>2.877 TC<=2.837 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT<=3.462 

and 
HB>2.877 

and 
TC>2.837 

and 
TC<=3.26 Then LU     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT<=3.462 

and 
HB>2.877 

and 
TC>2.838 

and 
TC>3.26 Then UN     

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.42

9 

and 
CT>3.462 

and 
TC<=3.007 Then UN 

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC<=3.024 Then LU      

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC>3.024 

and 
TC<=3.155 

and 
HB<=3.838 Then LU    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC>3.024 

and 
TC<=3.155 

and 
HB>2.838 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC>3.024 

and 
TC<=3.155 

and 
TC<=3.61 Then UN    

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC>3.024 

and 
TC<=3.155 

and 
TC>3.61 

and 
TC<=3.742 Then LU   

IF CT <=4.429 and 
CT<=3.798 

and HB 
>1.006 and HB>1.928 and CT>3.322 and 

CT<=3.342 
and 

HB<=4.129 and CT>3.429 and CT>3.462 and TC>3.007 and TC>3.024 and 
TC<=3.155 and TC>3.61 and TC>3.742 and 

CT<=3.514 
and 

HB<=3.062 
Then 
UN 

IF CT <=4.429 and 
CT<=3.798 

and HB 
>1.006 and HB>1.928 and CT>3.322 and 

CT<=3.342 
and 

HB<=4.129 and CT>3.429 and CT>3.462 and TC>3.007 and TC>3.024 and 
TC<=3.155 and TC>3.61 and TC>3.742 and 

CT<=3.514 and HB>3.062   Then 
   LU 

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB<=4.129 

and 
CT>3.429 

and 
CT>3.462 

and 
TC>3.007 

and 
TC>3.024 

and 
TC<=3.155 

and 
TC>3.61 

and 
TC>3.742 

and 
CT>3.514 Then UN  

IF CT 
<=4.429 

and 
CT<=3.798 

and HB 
>1.006 

and 
HB>1.928 

and 
CT>3.322 

and 
CT<=3.342 

and 
HB>4.129 Then LU          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=3.842 

and 
TC<=2.423 Then LU           

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=3.842 

and 
TC<=2.423 

and 
HB<=2.222 Then LU          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=3.842 

and 
TC<=2.423 

and 
HB>2.22 Then UN          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC<=2.423 Then LU           

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC<=3.456 

and 
TCH<=3.25 

and 
CT<=4.167 Then UN     

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC<=3.456 

and 
TCH<=3.25 

and 
CT>4.167 

and 
HB<=2.371 Then U    
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IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC<=3.456 

and 
TCH<=3.25 

and 
CT>4.167 

and 
HB>2.371 Then UN    

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC<=3.456 

and 
TCH<=3.25 Then LU      

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC>3.456 

and 
HB<=1.746 HB<=1.561 Then UN     

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC>3.456 

and 
HB<=1.746 HB>1.561 Then LU     

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB<=2.64 

and 
TC>3.456 

and 
HB>1.746 Then UN     

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB<=2.668 

and 
HB>2.64 Then LU        

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC<=4.485 

and 
HB>2.668 Then UN         

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>3.842 

and 
TC>1.706 

and 
TC>4.485 Then LU          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB<=3.698 Then UN           

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB<=3.452 

and 
TC<=4.37 

and 
HB<=3.718 Then LU        

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB<=3.452 

and 
TC<=4.37 

and 
HB>3.1718 

and 
TC<=3.854 

and 
CT<=3.891 Then UN     

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB<=3.452 

and 
TC<=4.37 

and 
HB>3.1718 

and 
TC<=3.85 

and 
CT>3.891 Then LU      

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB<=3.452 

and 
TC<=4.37 

and 
HB>3.1718 

and 
TC>3.854 Then UN      

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB<=3.452 

and 
TC>4.37 Then LU         

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT<=4.06 

and 
HB>3.698 

and 
HB>3.452 Then UN          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>4.06 

and 
TC<=3.249 Then UN           

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>4.06 

and 
TC<=3.249 

and 
TC<=3.876 Then LU          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>4.06 

and 
TC<=3.249 

and 
TC>3.876 

and 
TC<=4.053 Then UN         

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>4.06 

and 
TC<=3.249 

and 
TC>3.876 

and 
TC>4.053 

and 
CT<=4.167 Then UN        

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT<=4.249 

and 
HB<=3.142 

and 
CT>4.06 

and 
TC<=3.249 

and 
TC>3.876 

and 
TC>4.053 

and 
CT>4.167 Then LU        

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT>4.249 

and 
HB<=3.363 Then UN            

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT>4.249 

and 
HB>3.363 

and 
HB<=3.491 Then LU           

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT>4.249 

and 
HB>3.363 

and 
HB>3.491 

and 
TC<=4.192 

and 
TC<=4.145 Then UN          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT>4.249 

and 
HB>3.363 

and 
HB>3.491 

and 
TC<=4.192 

and 
TC>4.145 Then LU          

IF CT 
<=4.429 

and 
CT>3.798 

and 
CT>4.249 

and 
HB>3.363 

and 
HB>3.491 

and 
TC>4.192 Then UN           

IF 
TC>4.429 

and 
HB<=2.029 Then UN              

IF 
TC>4.429 

and 
HB>2.029 

and 
TC<=3.542 

and 
TC<=2.757 Then LU            

IF 
TC>4.429 

and 
HB>2.029 

and 
TC<=3.542 

and 
TC<=2.757 

and 
HB<=3.724 Then LU           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC<=3.542 

and 
TC<=2.757 

and 
HB>3.724 Then UN           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC>3.542 

and 
TC<=2.757 

and 
HB<=2.536 

and 
CT<=4.809 Then UN           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC>3.542 

and 
TC<=2.757 

and 
HB<=2.536 

and 
CT>4.809 Then LU           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC>3.542 

and 
TC<=2.757 

and 
HB>2.536 Then LU           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC>3.542 

and 
TC<=2.757 

and 
TC<=4.902 Then UN           

IF 
TC>4.429 

and 
HB>2.029 

and 
TC>3.542 

and 
TC<=2.757 

and 
TC>4.902 Then LU           

HB: Human Beliefs, CT: Cognitive Thinking, TC: Technology Characteristics, UN: Unusable Technology, LU: 
Likely Usable Technology, U: Usable Technology 
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Figure 9.1 Decision Tree of Three Inputs and Usability Output 
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Figure 9.2 Ethical Approval for Conducting the Interviews (Page 1) 
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Figure 9.3 Ethical Approval for Conducting the Interviews (Page 2) 

 


