70 research outputs found

    Modeling Support for Role-Based Delegation in Process-Aware Information Systems

    Get PDF
    In the paper, an integrated approach for the modeling and enforcement of delegation policies in process-aware information systems is presented. In particular, a delegation extension for process-related role-based access control (RBAC) models is specified. The extension is generic in the sense that it can be used to extend process-aware information systems or process modeling languages with support for processrelated RBAC delegationmodels.Moreover, the detection of delegation-related conflicts is discussed and a set of pre-defined resolution strategies for each potential conflict is provided. Thereby, the design-time and runtime consistency of corresponding RBAC delegation models can be ensured. Based on a formal metamodel, UML2 modeling support for the delegation of roles, tasks, and duties is provided. A corresponding case study evaluates the practical applicability of the approach with real-world business processes. Moreover, the approach is implemented as an extension to the BusinessActivity library and runtime engine

    Task Delegation Based Access Control Models for Workflow Systems

    Get PDF
    International audiencee-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model

    A Dynamic Access Control Model Using Authorising Workfow and Task Role-based Access Control

    Get PDF
    Access control is fundamental and prerequisite to govern and safeguard information assets within an organisation. Organisations generally use Web enabled remote access coupled with applications access distributed across various networks. These networks face various challenges including increase operational burden and monitoring issues due to the dynamic and complex nature of security policies for access control. The increasingly dynamic nature of collaborations means that in one context a user should have access to sensitive information, whilst not being allowed access in other contexts. The current access control models are static and lack Dynamic Segregation of Duties (SoD), Task instance level of Segregation, and decision making in real time. This thesis addresses these limitations describes tools to support access management in borderless network environments with dynamic SoD capability and real time access control decision making and policy enforcement. This thesis makes three contributions: i) Defining an Authorising Workflow Task Role Based Access Control (AW-TRBAC) using existing task and workflow concepts. This new workflow integrates dynamic SoD, whilst considering task instance restriction to ensure overall access governance and accountability. It enhances existing access control models such as Role Based Access Control (RBAC) by dynamically granting users access rights and providing access governance. ii) Extension of the OASIS standard of XACML policy language to support dynamic access control requirements and enforce access control rules for real time decision making. This mitigates risks relating to access control, such as escalation of privilege in broken access control, and insucient logging and monitoring. iii) The AW-TRBAC model is implemented by extending the open source XACML (Balana) policy engine to demonstrate its applicability to a real industrial use case from a financial institution. The results show that AW-TRBAC is scalable, can process relatively large numbers of complex requests, and meets the requirements of real time access control decision making, governance and mitigating broken access control risk

    An Access Control Model to Facilitate Healthcare Information Access in Context of Team Collaboration

    Get PDF
    The delivery of healthcare relies on the sharing of patients information among a group of healthcare professionals (so-called multidisciplinary teams (MDTs)). At present, electronic health records (EHRs) are widely utilized system to create, manage and share patient healthcare information among MDTs. While it is necessary to provide healthcare professionals with privileges to access patient health information, providing too many privileges may backfire when healthcare professionals accidentally or intentionally abuse their privileges. Hence, finding a middle ground, where the necessary privileges are provided and malicious usage are avoided, is necessary. This thesis highlights the access control matters in collaborative healthcare domain. Focus is mainly on the collaborative activities that are best accomplished by organized MDTs within or among healthcare organizations with an objective of accomplishing a specific task (patient treatment). Initially, we investigate the importance and challenges of effective MDTs treatment, the sharing of patient healthcare records in healthcare delivery, patient data confidentiality and the need for flexible access of the MDTs corresponding to the requirements to fulfill their duties. Also, we discuss access control requirements in the collaborative environment with respect to EHRs and usage scenario of MDTs collaboration. Additionally, we provide summary of existing access control models along with their pros and cons pertaining to collaborative health systems. Second, we present a detailed description of the proposed access control model. In this model, the MDTs is classified based on Belbin’s team role theory to ensure that privileges are provided to the actual needs of healthcare professionals and to guarantee confidentiality as well as protect the privacy of sensitive patient information. Finally, evaluation indicates that our access control model has a number of advantages including flexibility in terms of permission management, since roles and team roles can be updated without updating privilege for every user. Moreover, the level of fine-grained control of access to patient EHRs that can be authorized to healthcare providers is managed and controlled based on the job required to meet the minimum necessary standard and need-to-know principle. Additionally, the model does not add significant administrative and performance overhead.publishedVersio

    Hierarchical Group and Attribute-Based Access Control: Incorporating Hierarchical Groups and Delegation into Attribute-Based Access Control

    Get PDF
    Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Access control (RBAC)) that has drawn attention in both recent academic literature and industry application. However, formalization of a foundational model of ABAC and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still leaves a number of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations, etc. have been largely ignored or left to future work. This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps. The core contribution of this work is the Hierarchical Group and Attribute-Based Access Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of representing the traditional models of access control (MAC, DAC and RBAC) using this group hierarchy and that in many cases it’s use simplifies both attribute and policy administration. HGABAC serves as the basis upon which extensions are built to incorporate delegation into ABAC. Several potential strategies for introducing delegation into ABAC are proposed, categorized into families and the trade-offs of each are examined. One such strategy is formalized into a new User-to-User Attribute Delegation model, built as an extension to the HGABAC model. Attribute Delegation enables users to delegate a subset of their attributes to other users in an off-line manner (not requiring connecting to a third party). Finally, a supporting architecture for HGABAC is detailed including descriptions of services, high-level communication protocols and a new low-level attribute certificate format for exchanging user and connection attributes between independent services. Particular emphasis is placed on ensuring support for federated and distributed systems. Critical components of the architecture are implemented and evaluated with promising preliminary results. It is hoped that the contributions in this research will further the acceptance of ABAC in both academia and industry by solving the problem of delegation as well as simplifying administration and policy authoring through the introduction of hierarchical user groups

    A Catalog of Reusable Design Decisions for Developing UML/MOF-based Domain-specific Modeling Languages

    Get PDF
    In model-driven development (MDD), domain-specific modeling languages (DSMLs) act as a communication vehicle for aligning the requirements of domain experts with the needs of software engineers. With the rise of the UML as a de facto standard, UML/MOF-based DSMLs are now widely used for MDD. This paper documents design decisions collected from 90 UML/MOF-based DSML projects. These recurring design decisions were gained, on the one hand, by performing a systematic literature review (SLR) on the development of UML/MOF-based DSMLs. Via the SLR, we retrieved 80 related DSML projects for review. On the other hand, we collected decisions from developing ten DSML projects by ourselves. The design decisions are presented in the form of reusable decision records, with each decision record corresponding to a decision point in DSML development processes. Furthermore, we also report on frequently observed (combinations of) decision options as well as on associations between options which may occur within a single decision point or between two decision points. This collection of decision-record documents targets decision makers in DSML development (e.g., DSML engineers, software architects, domain experts).Series: Technical Reports / Institute for Information Systems and New Medi

    Protocol for a Systematic Literature Review on Design Decisions for UML-based DSMLs

    Get PDF
    Series: Technical Reports / Institute for Information Systems and New Medi

    Ontology-based Access Control in Open Scenarios: Applications to Social Networks and the Cloud

    Get PDF
    La integració d'Internet a la societat actual ha fet possible compartir fàcilment grans quantitats d'informació electrònica i recursos informàtics (que inclouen maquinari, serveis informàtics, etc.) en entorns distribuïts oberts. Aquests entorns serveixen de plataforma comuna per a usuaris heterogenis (per exemple, empreses, individus, etc.) on es proporciona allotjament d'aplicacions i sistemes d'usuari personalitzades; i on s'ofereix un accés als recursos compartits des de qualsevol lloc i amb menys esforços administratius. El resultat és un entorn que permet a individus i empreses augmentar significativament la seva productivitat. Com ja s'ha dit, l'intercanvi de recursos en entorns oberts proporciona importants avantatges per als diferents usuaris, però, també augmenta significativament les amenaces a la seva privacitat. Les dades electròniques compartides poden ser explotades per tercers (per exemple, entitats conegudes com "Data Brokers"). Més concretament, aquestes organitzacions poden agregar la informació compartida i inferir certes característiques personals sensibles dels usuaris, la qual cosa pot afectar la seva privacitat. Una manera de del.liar aquest problema consisteix a controlar l'accés dels usuaris als recursos potencialment sensibles. En concret, la gestió de control d'accés regula l'accés als recursos compartits d'acord amb les credencials dels usuaris, el tipus de recurs i les preferències de privacitat dels propietaris dels recursos/dades. La gestió eficient de control d'accés és crucial en entorns grans i dinàmics. D'altra banda, per tal de proposar una solució viable i escalable, cal eliminar la gestió manual de regles i restriccions (en la qual, la majoria de les solucions disponibles depenen), atès que aquesta constitueix una pesada càrrega per a usuaris i administradors . Finalment, la gestió del control d'accés ha de ser intuïtiu per als usuaris finals, que en general no tenen grans coneixements tècnics.La integración de Internet en la sociedad actual ha hecho posible compartir fácilmente grandes cantidades de información electrónica y recursos informáticos (que incluyen hardware, servicios informáticos, etc.) en entornos distribuidos abiertos. Estos entornos sirven de plataforma común para usuarios heterogéneos (por ejemplo, empresas, individuos, etc.) donde se proporciona alojamiento de aplicaciones y sistemas de usuario personalizadas; y donde se ofrece un acceso ubicuo y con menos esfuerzos administrativos a los recursos compartidos. El resultado es un entorno que permite a individuos y empresas aumentar significativamente su productividad. Como ya se ha dicho, el intercambio de recursos en entornos abiertos proporciona importantes ventajas para los distintos usuarios, no obstante, también aumenta significativamente las amenazas a su privacidad. Los datos electrónicos compartidos pueden ser explotados por terceros (por ejemplo, entidades conocidas como “Data Brokers”). Más concretamente, estas organizaciones pueden agregar la información compartida e inferir ciertas características personales sensibles de los usuarios, lo cual puede afectar a su privacidad. Una manera de paliar este problema consiste en controlar el acceso de los usuarios a los recursos potencialmente sensibles. En concreto, la gestión de control de acceso regula el acceso a los recursos compartidos de acuerdo con las credenciales de los usuarios, el tipo de recurso y las preferencias de privacidad de los propietarios de los recursos/datos. La gestión eficiente de control de acceso es crucial en entornos grandes y dinámicos. Por otra parte, con el fin de proponer una solución viable y escalable, es necesario eliminar la gestión manual de reglas y restricciones (en la cual, la mayoría de las soluciones disponibles dependen), dado que ésta constituye una pesada carga para usuarios y administradores. Por último, la gestión del control de acceso debe ser intuitivo para los usuarios finales, que por lo general carecen de grandes conocimientos técnicos.Thanks to the advent of the Internet, it is now possible to easily share vast amounts of electronic information and computer resources (which include hardware, computer services, etc.) in open distributed environments. These environments serve as a common platform for heterogeneous users (e.g., corporate, individuals etc.) by hosting customized user applications and systems, providing ubiquitous access to the shared resources and requiring less administrative efforts; as a result, they enable users and companies to increase their productivity. Unfortunately, sharing of resources in open environments has significantly increased the privacy threats to the users. Indeed, shared electronic data may be exploited by third parties, such as Data Brokers, which may aggregate, infer and redistribute (sensitive) personal features, thus potentially impairing the privacy of the individuals. A way to palliate this problem consists on controlling the access of users over the potentially sensitive resources. Specifically, access control management regulates the access to the shared resources according to the credentials of the users, the type of resource and the privacy preferences of the resource/data owners. The efficient management of access control is crucial in large and dynamic environments such as the ones described above. Moreover, in order to propose a feasible and scalable solution, we need to get rid of manual management of rules/constraints (in which most available solutions rely) that constitutes a serious burden for the users and the administrators. Finally, access control management should be intuitive for the end users, who usually lack technical expertise, and they may find access control mechanism more difficult to understand and rigid to apply due to its complex configuration settings
    corecore