
Open Research Online
The Open University’s repository of research publications
and other research outputs

A framework for defining and analysing access policies
in requirements models
Thesis

How to cite:

Crook, Robert P. (2007). A framework for defining and analysing access policies in requirements models.
PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2007 Robert P. Crook

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

A Framework for Defining and

Analysing Access Policies in

Requirements Models

Robert P. Crook BSc, MBA

Submitted for the degree of Doctor of Philosophy

The Open University

Department of Computing

Faculty of Mathematics and Computing

September 2007

fN .V -v .r- . f . ' •••■ A .* (X r n , s O °) A T ”

ProQuest Number: 13890035

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13890035

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

Enforcing access policies derived from management control principles is a way by

which organisations protect their information assets. The minimum privileges

principle is an example of a management control principle, which specifies that users

should only have access to resources they require to carry out their duties.

Requirements models use actors to specify their access policies. Actors normally

represent roles that users adopt, however a role can have different meanings, such as a

position in an organisation or the assignment of a task, and can therefore be

misleading. Current requirements modelling approaches do not provide a systematic

way of defining roles for incorporation into access policies, and therefore we can not

ensure that they satisfy management control principles. In this thesis we address the

need to provide precise role definitions by developing a framework that facilitates the

derivation of roles from the organisational context. The framework consists of a meta

model, which enables the organisational context to be represented and related to

actors; a set of heuristics for deriving the organisational context; and a set of language

constructs for formulating access policies, and verifying them using scenarios.

We use the meta-model and language constructs that we developed to extend an

existing requirements modelling language, the i* framework, and in particular a

formal version of it, formal Tropos, to define and verify access policies definitions

satisfying the minimum privileges principle. We also investigate the use of automated

tool checking by translating the formal Tropos definitions into the specification

language Alloy, which is supported by a tool that automatically checks assertions, to

ensure consistency of the access policy definitions. We carry out a detailed case study

taken from the literature to verify the extensions to the i* framework and the tool

supported analysis.

The framework presented in this thesis makes a novel contribution to the

modelling of access policies as requirements, enabling us to define access policies

using actors derived from the organisational context, that satisfy the minimum

privileges principle.

Acknowledgements

I would like to thank my supervisors, Bashar Nuseibeh and Darrel Ince, for their

tremendous support and advice. I thank members of the Computing Department at the

Open University, in particular Jonathan Moffett, who played an important

consultative role and reviewed several papers, also Marian Petre, Jon Hall and David

Bowers who have reviewed earlier versions of the thesis, and Charles Haley and

Luncheng Lin for interesting discussions. I’m also grateful to the examiners, Ali

Abdallah and Robin Laney, for their valuable advice on how to improve the technical

presentation of the thesis. Finally I would like to thank my father John Crook, my

mother Hilary Crook, and my sister Barbara Claessens for their insights into the

organisational structures and procedures in hospitals that were helpful in formulating

a case study.

Statement of Contribution

Much of the material in this thesis appears in the following papers and books.

• Crook, R., Nuseibeh, B., Lin, L., and Ince, D. "Security Requirements

Engineering: When Anti-Requirements Hit the Fan," IEEE International

Requirements Engineering Conference (RE'02), Essen, Germany, 11-13th

September, 2002, pp. 203-205.

• Crook, R., Ince, D., and Nuseibeh, B. "Towards an Analytical Role Modelling

Framework," 8th International Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ’02), Essen, Germany, 9-10th

September, 2002, pp. 123-136.

• Crook, R., Ince, D., and Nuseibeh, B. "Modelling Access Policies using Roles in

Requirements Engineering," Information and Software Technology (45:14),

November 2003, pp. 971-991.

• Crook, R., Ince, D., and Nuseibeh, B. "On Modelling Access Policies: Relating

Roles to the Organisational Context," IEEE International Requirements

Engineering Conference (RE’05), Paris, France, 29th August -1st September,

2005, pp. 157-166.

• Crook, R., Ince, D., and Nuseibeh, B. "Using i* to Model Access Policies:

Relating Roles to their Organisational Context," (to appear in) Social Modelling

fo r Requirements Engineering, Giorgini, P., Maiden, N., Mylopoulos, J., and Yu,

E. (ed.), MIT Press.

The thesis should be regarded as the definitive account of this work. All the work

in this thesis describes the original contributions of the author.

- 5 -

Table of Contents

Abstract..2

Acknowledgements... 4

Statement of Contribution...5

Figures and Tables... 9

Chapter 1 Introduction... 10

1.1 Background and Motivation.. 12
1.2 Problem Description and Research Objectives...15
1.3 Research Method..18
1.4 Thesis Contribution..19
1.5 Thesis Road M ap... 20

Chapter 2 Modelling of Security Requirements... 22

2.1 Modelling of Requirements...22
2.1.1 Early Approaches to Requirements Modelling...22
2.1.2 Goal-Based Approaches to Requirements Modelling.................................24
2.1.3 The Organisational Context in Modelling Requirements........................... 25
2.1.4 Scenario-Based Requirements Modelling... 27
2.1.5 Domain Analysis... 28
2.1.6 Summary of Modelling Approaches..30

2.2 Security Requirements... 33
2.2.1 The Source of Security Goals and Requirements..33
2.2.2 Deriving Security Requirements from Threats.. 35
2.2.3 Deriving Security Requirements from Management Control Principles ...38

2.3 Chapter Summary and Evaluation.. 46

Chapter 3 The Organisational Context and Access Policies.................................49

3.1 The Theory Underlying the Organisational Context... 50
3.1.1 Organisations and their Purpose... 50
3.1.2 Organisational Structures..51
3.1.3 Organisational Control Principles: A Perspective from the Organisational

Literature.. 53
3.2 Modelling Access Policies: A Security Perspective.. 54

3.2.1 Groups in the Definition of Access Policies.. 55
3.2.2 Roles in the Definition of Access Policies.. 56

3.3 Relating Actors to the Organisational Context in Requirements Models 60
3.4 Chapter Summary.. 62

Chapter 4 The i* Framework and Formal Tropos.. 64

4.1 Introduction to a Case Study: A Software Project... 65
4.2 The i* Framework.. 65

- 6 -

4.3 Formal Tropos................................. 69
4.4 Formal Analysis in Tropos.. 72
4.5 Chapter Summary...73

Chapter 5 A Framework for Modelling Access Policies...................... 74

5.1 Introduction to a Case Study in the Medical Domain.. 75
5.2 Framework Modelling Notation..75

5.2.1 Review of Formal Notations...75
5.2.2 Z Notation... 76

5.3 Rationale of the Framework.. 78
5.4 Framework Meta-Model...80

5.4.1 Metal-Model Overview... 80
5.4.2 Metal-Concepts...80
5.4.3 Inheritance and Aggregation Hierarchies... 82
5.4.4 Levels of Authority.. 84
5.4.5 Organisational Assets and Tasks...85
5.4.6 Policy Definitions...86
5.4.7 Policy Verification..86

5.5 Heuristics for Defining and Verifying Policies..90
5.5.1 Identifying Organisational Groups... 91
5.5.2 Identifying Levels of Authority...92
5.5.3 Defining Roles..93
5.5.4 Identifying Tasks and Assets...94
5.5.5 Defining Policies..94
5.5.6 Verifying Policies.. 95

5.6 Chapter Summary... 98

Chapter 6 Extending the i* Framework and Formal Tropos............................... 99

6.1 Extensions to Tropos..99
6.1.1 Representing Strategic Rational Diagrams in Formal Tropos...................100
6.1.2 Linking Actor Definitions to the Organisational Context.........................100
6.1.3 Tasks and Resource Definitions..103
6.1.4 Defining Access Policies... 104
6.1.5 Defining Scenarios.. 104

6.2 Representing the Organisational Context in i* ... 105
6.3 Mapping Formal Tropos Policies to Framework Definitions in Z107
6.4 Chapter Summary... 110

Chapter 7 Automated Analysis using Alloy..112

7.1 Verification Alternatives...112
7.2 Introduction to Alloy.. 113

7.2.1 Types and Relations.. 114
7.2.2 Operators and Quantifiers.. 115
7.2.3 Invariant and Function Definitions... 117
7.2.4 Recursive Relations... 117
7.2.5 Modules..118

7.3 Modelling Policies in Alloy..119
7.3.1 Modelling the Framework Meta-Concepts and Relations........................ 119
7.3.2 Policy Domain Definitions..121

7.3.3 Policy Framework Domain Instantiations...121
7.3.4 Policy Verification... 122
7.3.5 Model Consistency Checks...123
7.3.6 Mapping from Formal Tropos into Framework Definitions in Alloy 125
7.3.7 Structuring Modules...127

7.4 Alloy Evaluation...128
7.5 Chapter Summary...128

Chapter 8 Case Study: A Bank.. 130

8.1 Case Study Description.. 130
8.2 Deriving the Policy Model...132
8.3 Model Consistency Checks..140
8.4 Evaluation of Extended Formal Tropos.. 141
8.5 Chapter Summary...142

Chapter 9 Discussion and Conclusions...144

9.1 Thesis Summary...144
9.2 Analysis of Contributions.. 145
9.3 Critical Analysis and Future Work... 149
9.4 Conclusions... 150

Bibliography..152

- 8 -

Figures and Tables

Figure 2.1 Security Requirements Core Artefacts..35
Figure 2.2 Strategic Rationale Diagram for a Medical Application....................... 41
Figure 4.1 i* Framework Strategic Dependency Diagram......................................65
Figure 4.2 i* Framework Symbols in Strategic Dependency Diagrams.................66
Figure 4.3 i* Framework Actors..67
Figure 4.4 i* Framework Strategic Rationale Diagram... 68
Figure 5.1 Organisational Structure of a Hospital... 91
Figure 6.1 Extended i* Strategic Dependency Diagram.. 106
Figure 7.1 Framework Meta-Model in Alloy...120
Figure 7.2 Module Structure of the Framework in Alloy...................................... 127
Figure 8.1 Credit Application Process...131
Figure 8.2 Organisational Structure of a European Bank...................................... 132
Figure 8.3 Task Execution Scenario in Alloy of Approve Credit Application 139

Table 2.1 Overview of Requirements Modelling Approaches................................ 32
Table 2.2 Coverage of Management Control Principles by Requirements

Modelling Approaches.. 45
Table 2.3 Modelling of the Organisational Context in Requirements Modelling

Approaches..45
Table 6.1 Mapping Formal Tropos to Framework Definitions in Z109
Table 7.1 Framework Invariants in Alloy..125
Table 7.2 Mapping Framework Z Definitions to A lloy...127
Table 9.1 Coverage of Management Control Principles by Extended Tropos ... 148
Table 9.2 Modelling of the Organisational Context by Extended Tropos........... 148

Chapter 1

Introduction

Security incidents can be very costly for organisations; Nick Leeson’s

unauthorised trading resulted in losses of over £800 million, so causing the

bankruptcy of Barings Bank (Brown & Steenbeek, 2001); there are similarities with

the case of John Rusnak, who defrauded the Allied Irish Bank of a similar amount in

2002 (Massaci & Zannone, 2006). In both cases the culprits exploited weaknesses in

the computer systems designed to control their trading activities. These are prominent

examples of a problem highlighted by Anderson (2001) that computer fraud is often

caused by staff; i.e. authorised users, accidentally discovering features of a system,

and exploiting them. There is a need to keep outsiders from breaking in, but, it is also

equally important to prevent users with legitimate authorisation abusing their

privileges in the way that Leeson and Rusnak did. Organisations have access policies

based on the principles of management control to prevent these sorts of incidents

happening. Access policies are the rules, which regulate how users can access

resources (Moffett & Sloman, 1988). A problem was that the computer systems that

Rusnak and Leeson used, did not adequately enforce these policies.

The focus of our research is on the modelling of security requirements based on the

principles of management control. Nuseibeh & Easterbook (2000) provide an apt

description of what we mean by modelling as “the construction of abstract

descriptions that are amenable to interpretation”. In requirements models, users are

Chapter 1 Introduction

represented by actors, which usually describe a role they are undertaking such as

carrying out a task, or a position in an organisation. A weakness of current

requirements modelling approaches is that they do not allow us to model all aspects of

the organisational context and relate this to actors, which is a prerequisite for

formulating requirements to enforce policies based on the principles of management

control. In this thesis we differentiate between the micro- and macro-levels of the

organisation. This follows the convention in the organisational behaviour literature

when performing analysis, as exemplified by Rollinson (2005). The micro-level of the

organisation is concerned with individuals, groups, and interpersonal relationships,

whereas the macro-level of the organisation is concerned with the organisational

structure, organisational design, and culture. When referring to the organisational

context we therefore differentiate between the micro-organisational and the macro-

organisational contexts to reflect these different levels of analysis.

The research we present in this thesis is aimed at strengthening the link between

actors and the organisational context, to improve the process of defining access

policies in requirements models, through the development of a framework. The

framework consists of a meta-model, which enables the organisational context to be

represented and related to actors; a set of heuristics for deriving the organisational

context; and a set of language constructs for formulating access policies, and verifying

them using scenarios.

This chapter outlines the background and motivation behind the work, and defines

the objectives of the research. A road map of the thesis is also sketched.

Chapter 1 Introduction

1.1 Background and Motivation

The International Organisation for Standardisation code of practice for

information security management (ISO, 2005) states that “information is an asset that,

like other important business assets is essential to an organisation’s business and

consequently needs to be suitably protected”. Security goals, from which security

requirements are derived, are concerned with maintaining the confidentiality, integrity

and availability of assets, against the potential harmful actions of users (van

Lamsweerde et al., 2003). Goals and requirements can be derived from a threats

analysis, where the harmful intent of actors and their actions can be identified, and

suitable countermeasures defined. However an additional source of security goals is

the set of management control principles (Moffett et aL, 2004).

Management control principles are practices applicable to many large

organisations, to ensure that employees perform their duties commensurate with the

objectives of the organisation, and do not commit fraud. Fraud in commercial

organisations is frequently caused by users who abuse their legitimate privileges

(Anderson, 2001), a problem that existed before IT was introduced into organisations.

Management control principles, originating from legislation, accounting and

management practices, are implemented to prevent these sorts of incidents from

taking place. These organisational control principles need to be enforced by computer

systems used to manage valuable assets, and are translated into access policies

(Moffett & Sloman, 1988).

Security engineering researchers, in developing access control solutions, have

long since faced the problem of how to define access policies, and as a result there

exists an extensive body of literature on this subject. Examples of this include the

- 12-

Chapter 1 Introduction

definition of security clearances for military or governmental applications (Bell &

LaPadula, 1973), separation of duties in commercial applications (Clark & Wilson,

1987), delegation of duties (Moffett & Lupu, 1999; Barka & Sandhu, 2000), and

contextually based restrictions (Georgiadis et al., 2001). An access policy can be

based on a number of factors, such as membership of a group, the level of authority of

an individual, a delegated task, whether this individual can perform other related

tasks, temporal and other environmental constraints. Researchers in the security field

have found roles a useful way of capturing these factors, and hence to define policies

based on them. Access control that uses roles to define policies is Role-Based access

control (RBAC) (Sandhu et al., 1996), a role being essentially a collection of

permissions, but which map onto organisational roles.

There is an important parallel between, defining actors in a requirements model,

and the research into RBAC, in that both are concerned with defining roles.

Requirements models represent users as actors or agents that are assigned to actions.

This assignment can be used to represent access policies (Liu et al., 2003). An actor

represents a role. However a problem arises in that the use of the notion of a role can

vary, from the assignment of a task, as proposed by Yu (1997), to a position within an

organisational hierarchy (Sandhu et al., 1996). The fact that there is no clear

definition as to what a role means can lead to ambiguity; this problem is exemplified

by He et al. (2006), who found different terms were used to describe the same role.

Within the security research community there are key differences between the way

in which researchers propose how roles should be defined to represent the

organisation. For example Moffett & Lupu (1999) and Sandhu et al. (1996) differ in

their views as to how the organisational hierarchy can be modelled using roles. It is

not surprising that this is the case when we consider the view from the sociology

- 13-

Chapter 1 Introduction

literature that in the most general sense a role is a term that describes behaviour

(Biddle, 1979) as diverse as an angry parent to a government minister. There are

different types of roles, for example there are positional roles, functional roles, and

contextual roles (Biddle, 1979); to complicate this further, individuals adopt multiple

roles at the same time (Handy, 1985).

Defining a role is therefore difficult (He & Anton, 2003). A role however is a

means to an end, and in deriving roles they need to be defined in a way that enable us

to derive access policies that satisfy the principles of management control (Moffett &

Lupu, 1999), which entails relating them to the organisational context.

Most requirements modelling approaches, such as GBRAMS (Anton, 1996),

KAOS (Dardenne et al., 1993), Use Cases (Cockbum, 2001), and CREWS (Maiden,

1998) do not relate actors to the organisational context in that they do not show to

which part of the organisation they are assigned, and what level of seniority they

have.

However, there is a class of requirements modelling approaches that do derive

requirements from the organisational context: the i* framework (Yu, 1997), ORDIT

(Dobson et al., 1992), and an enterprise modelling approach proposed by

Loucopoulus & Kavakli (1995). Nevertheless these modelling approaches have

significant weaknesses with regard to their use in defining access policies. The i*

framework, a goal-based modelling framework for representing dependencies

between actors, tasks and resources, focuses mainly on individuals and their intentions

in a social setting; i.e. the micro-organisational context. However access policies

include the macro-organisational context; i.e. the way groups are structured, and the

power structures that determine how tasks are delegated. ORDIT (Dobson & Strens,

1994) and the approach proposed by Loucopoulos & Kavakli (1995) do include the

Chapter 1 Introduction

macro-organisational context. ORDIT focuses on the delegation of responsibilities but

neglects structural organisational relationships. In contrast the approach of

Loucopoulos & Kavakli focuses on deriving goals from the organisational activities,

but does not clarify the lines of authority and delegation.

Recently researchers in requirements engineering (RE) have turned their attention

to deriving access policies from requirements models, focusing on the assignment of

tasks and resources to actors, and how they can be refined into access policies.

Fontaine (2001) has explored the mapping of agent assignments in KAOS, a goal-

based modelling framework for modelling goal hierarchies, to authorisation policies

in Ponder - a language for specifying access control policies in distributed systems

(Damianou et al., 2000). He (2005) has proposed the Requirements-Based Access

Control Analysis and Policy Specification (ReCAPS) method, a set of heuristics, to

derive roles from task assignments in order to define RBAC policies, and Liu et al.

(2003) have proposed how dependencies between actors, resources and tasks in the i*

framework, can be used for defining RBAC policies.

However what this research has not demonstrated is how to relate actors to the

organisational context; thus we still do not have a satisfactory way of deriving precise

actor definitions, and although researchers have demonstrated a systematic approach

to defining policies, they have not demonstrated that these policies satisfy the

principles of management control.

1.2 Problem Description and Research Objectives

In order to define access policies satisfying the principles of management control,

a prerequisite is that we can relate actors to the organisational context. An example of

a management control principle is the minimum privileges principle. The principle of

- 15-

Chapter 1 Introduction

minimum privileges constrains users to access only those resources that they need in

order to be able to carry out their tasks (Anderson, 2001). Users can carry out similar

functions but in different organisational units; e.g., bank clerks carry out the same

function in local branches, but should only access accounts in the branch to which

they are assigned; thus the organisational unit, in this case the branch, is a constraint

in an access policy definition. This poses a challenge, especially as current

requirements modelling approaches do not give us an explicit link to the

organisational context. With respect to requirements modelling, van Lamsweerde

(2000b) raises some key questions that researchers have been tackling:

• What aspects to model?

• How to model such aspects?

• How to define the model precisely?

• How to the reason about the model?

In this thesis, we are, in effect, pursuing a subset of those broad questions that van

Lamsweerde (2000b) posed with respect to requirements in general, except that we

are focusing on the organisational context, and access policies derived from the

minimum privileges principle. We focus on the minimum privileges principle because

of its fundamental nature, and other principles build on it.

Therefore, the key objectives of the research in this thesis are to:

1. define the organisational context and to relate it to actors;

2. define policies that satisfy the principles of management control, and in

particular the minimum privileges principle;

3. verify scenarios are consistent with policies;

4. extend an existing requirements modelling approach, to relate actors to the

organisational context, and define policies.

- 16-

Chapter 1 Introduction

In this thesis we present a framework that comprises:

• a meta-model for defining the organisational context, and relating roles to the

organisational context;

• heuristics for defining the organisational context, and deriving roles that relate to

this organisational context;

• constructs for defining access policies satisfying the minimum privileges

principle;

• constructs for defining scenarios;

• rules for verifying scenarios are consistent with policies.

The framework is actually independent of any specific requirements modelling

approach, as it addresses the first three objectives, which are of a fundamental nature,

in that they address what we need to model, and how it can be done independently of

any given requirements modelling approach. The framework is defined formally in Z

(Spivey, 1992) and gives us a meta-model, from which models of the organisational

context for specific applications can be developed, and a set of constructs for

formulating access policies and scenarios to verify these policies.

The fourth objective is to relate this framework to existing requirements modelling

approaches. Rather than inventing a new language, it is sensible to extend an existing

language, so that access policies can be modelled using the same language as other

requirements. As described above there are a number of different approaches to

modelling requirements. Of these approaches, the i* framework makes an ideal choice

as it focuses on the social dependency of actors; organisations are in essence social

systems. The i* framework uses a graphical language and is semi-formal; i.e.

operationalised goals that refine into functions and constraints are defined in natural

language. Recently, however, a variant of the i* framework has been developed,

- 17 -

Chapter 1 Introduction

formal Tropos, which allows requirements to be formally defined. Although this

thesis focuses on extending the formal Tropos notation, we also propose how i*

diagrams can be extended.

1.3 Research Method

Our approach to this research is to identify the key concepts required for

modelling access policies drawing on the literature in requirements engineering,

security policies, and organisational behaviour. The RE literature gives us the basis

from which we can extend existing approaches; the security policy and organisational

behaviour literature enable us to identify new concepts that can be used to extend

existing approaches.

We validated the framework with regard to its value as an engineering approach

empirically. There are at least three empirical research methods for validating

research in RE (Sim et al., 2003). The first is through experiments, the second is

benchmarking, and the third is through case studies. Benchmarking and experiments

have the advantage of allowing a direct comparison with other approaches using

objective measures. However a case study approach is particularly appropriate in

exploratory research, where the problem is not well understood or defined, as was the

case of defining and analysing access policies in requirements models. Benchmarking

and experiments are more appropriate in verifying theories that have already been

well formulated. For this reason a case study approach was adopted. However, there is

a danger in adopting a case study approach in that if it is tied to a specific situation,

the findings can not be generalised. We have obviated this problem by selecting

several case studies in diverse domains. We selected three case studies for

exploration. The first case study, in the medical domain on the access policies for

- 18-

Chapter 1 Introduction

medical records, was based on interviews we conducted with individuals who had

experience of working in hospitals. The second case study, on access policies for

resources in a software project, was based on the literature, and the author’s

experience within a software development organisation. We took the third case study,

on access policies within a large European bank, from the literature. We used the third

case study to verify the practicality of using an extended requirements modelling

language, formal Tropos, for defining policies, and verifying them using a tool that

automates the analysis.

1.4 Thesis Contribution

In this thesis we identify the need to model the macro-organisational context as a

prerequisite for defining access policies, and furthermore that concepts already exist

in the organisational and security policy literature that can be used as a basis for this

(Crook et al., 2002b).

We elaborate a framework that supports the modelling of access policies as

requirements. The framework contains a meta-model that enables us to model key

aspects of the organisational context, and from this to derive roles; the framework

thus provides a link between roles and the organisational context. A set of heuristics

provides a systematic way of deriving roles (Crook et al., 2002a; Crook et al., 2003).

The framework meta-model contains a construct that relates roles to tasks, which

enables us to define access policies that satisfy the minimum privileges principle. In

order to verify policies, the framework meta-model contains a set of constructs that

enables us to define scenarios, and rules in the framework enable us to verify that the

scenarios are consistent with the policies defined (Crook et al., 2002a; Crook et al.,

2003).

- 19-

Chapter 1 Introduction

The thesis demonstrates how the language constructs can be used to extend the

requirements modelling language the i* framework and the formal equivalent of it,

formal Tropos (Crook et al., 2005), and how these constructs may be translated into

the Alloy language and analysed using the Alloy model checker.

1.5 Thesis Road Map

The thesis is structured as follows:

Chapter 2 describes the RE context of the work; we discuss alternative approaches

to modelling requirements. The complementary nature of the different paradigms is

highlighted. In particular we focus on security requirements, and identify two

principle sources, which are threats and the principles of management control. We

review approaches to modelling security requirements. We identify key weaknesses of

modelling requirements derived from the principles of management using existing

approaches, in particular the lack of a link to the organisational context.

In chapter 3 we review the security literature on the principles of management

control, and how access policies maybe defined to enforce them. We also review the

organisational literature to understand the organisational context, in particular the

rationale for organisational structures. We then revisit the problem of relating actors

to the organisational context in current requirements models to define access policies.

In chapter 4 we review the i* framework, a requirements modelling language, and

a formal version of it, formal Tropos, in depth. The i* framework models the social

context, representing the dependencies between actors, tasks and resources. Using a

case study we show how it can be used for defining access policies, and how the

weakness identified in the previous chapter, in relating actors to the organisational

context impacts on these access policy definitions.

- 20 -

Chapter 1 Introduction

Chapter 5 builds on the organisational characteristics elucidated in chapter 3; it

addresses the second and third research objectives, proposing a framework for

formally defining and refining access policies. The framework consists of a meta

model, which enables the organisational context to be represented and related to

actors in order to define access policies, and a set of heuristics for expressing policies

and scenarios. We define a set of rules for verifying scenarios from policies. The

model is presented in the formal language Z.

Chapter 6 addresses the research objective in relating this framework to existing

requirements modelling frameworks, and how it can be integrated. We demonstrate

how the organisational meta-model presented in the previous chapter can be applied

to extending formal Tropos, and i* framework diagrams. We then revisit the case

study we explored in chapter 4 to show how the extended formal Tropos language can

be applied to define access policies, and scenarios. We show how the access policies

defined in formal Tropos can be mapped on to the Z based meta-model presented in

the previous chapter.

Chapter 7 addresses the problem of how to verify policies using the framework.

We propose translating the Z constructs of the framework meta-model into a

specification language, Alloy, which is supported by a model checking tool. Using the

tool, we demonstrate how scenarios can be checked against policy definitions.

Chapter 8 demonstrates through the use of a case study how the extended formal

Tropos requirements modelling approach can be applied, and how a formal Tropos

model representing access policies can be translated into Alloy and analysed.

Chapter 9 summarises the conclusions and contributions of the thesis, and sets an

agenda for future work.

Chapter 2

Modelling of Security
Requirements

In this chapter we describe the Requirements Engineering (RE) context of the work

in this thesis. We examine existing alternative approaches to modelling requirements.

We then identify what security requirements are, and highlight the importance of an

organisational procedure as a special type of security requirement.

2.1 Modelling of Requirements

Nuseibeh & Easterbrook (2000) describe the core activities of RE as eliciting

requirements, modelling and analysing requirements, communicating requirements,

agreeing requirements, and evolving requirements. Within these activities, the

modelling of requirements is central, as it supports the other activities and provides a

basis for performing reasoned analysis, to validate requirements, to ensure

consistency, and identify conflicts. There is a plethora of ways to model requirements.

2.1.1 Early Approaches to Requirements Modelling

In the 1970’s and 1980’s the emphasis was on the how and what of requirements

(van Lamsweerde, 2000b); i.e. data modelling (the what) and data transformations

(the how). Initially, semi-formal approaches based on data-flow and entity

relationship diagrams were widely used. However such modelling techniques were

Chapter 2 Modelling of Security Requirements

found to be inadequate due to limited structuring capabilities, and vague formulation

using largely natural language (van Lamsweerde, 2000b). Subsequently formal

specification languages came to the fore in the 1980’s and early 1990’s with

languages such as VDM (Jones, 1990) and Z (Spivey, 1992); these mathematically

based languages offered much richer structuring facilities, such as aggregation and

instantiation, and allowed the expression of formal assertions. Formal languages are

precise, and lend themselves to automated reasoning for detecting inconsistencies;

they can also be used to validate specifications by animating them. A significant

problem with regard to modelling requirements using these languages is that they do

not separate the environment in which the system operates; i.e. the domain, and the

description of the intentions of the system; these tend to be mixed up in a single

specification (van Lamsweerde, 2000b). It is important to distinguish between the

given problem domain and requirements (Jackson & Zave, 1997). The problem

domain has “indicative” properties; i.e. properties of the environment that are given.

Requirements are “optative” properties; i.e. they describe the system as it should be.

This separation of concerns is necessary as the indicative properties of the problem

domain represent constraints on how the system interacts with the environment, which

can not be changed.

SCR is a specialised approach to requirements modelling, first proposed in the

1970’s (Alspaugh et al., 1992; Heitmeyer, 2002), it was the first to separate the

intentions from the problem domain. It is a formal approach to modelling, enabling

one to specify the behaviour of parallel finite state machines, and was developed for

modelling and verifying high assurance process control systems. There exists a tool

set for automating consistency verification (Heitmeyer, 1998). Although it is highly

- 23 -

Chapter 2 Modelling of Security Requirements

suitable in modelling and simulating process control applications, it has limited

capabilities in modelling the interaction with the environment (Zave, 1997).

In the 1990’s researchers began to address the question of what to model, which

lead to the inclusion of additional conceptual units such as agents, goals, and events in

requirements modelling approaches, in addition to entities and functions (van

Lamsweerde, 2000b).

2.1.2 Goal-Based Approaches to Requirements Modelling

Goal based reasoning has become an important thread in RE research, and forms

the basis of a number of modelling approaches. Goals are objectives that the system

needs to achieve, through the co-operation of agents in the system to be (van

Lamsweerde, 2000b). Understanding why requirements are needed helps stakeholders

and analysts to ensure that requirements are complete, and to evaluate the inevitable

trade-offs that occur as a result of conflicting system objectives (van Lamsweerde,

2000b).

Various approaches to modelling goals and translating them into functional

requirements have been proposed (Anton, 1996; Dardenne et al., 1993). Top level

objectives can be successively refined into lower level goals; at the lowest levels

system requirements can be articulated. One framework for modelling goals is KAOS

(Knowledge Acquisition in automated Specification) (Dardenne et al., 1993). The

framework comprises a language and a method for developing requirements models.

A KAOS requirements model consists of a goal hierarchy. Low level goals are

refinements of high level goals. At the lowest level are operationalised requirements,

which are actions and constraints on those actions that fulfil low level goals. It

- 24 -

Chapter 2 Modelling of Security Requirements

incorporates a first order temporal logic notation to express goals and operationalised

requirements. The formal notation lends itself to automated checking.

Another approach to deriving requirements using a goal hierarchy is proposed by

Anton (1996). Anton proposes a method, the Goal Based Requirements Analysis

Method (GBRAMS), for goal based analysis. The resulting model from this method is

a goal hierarchy. In this respect it is similar to a KAOS model. However it is

expressed in natural language rather than formally. Anton focuses more on the

heuristics for eliciting goals and refining them. Again as with KAOS, an identification

of potential agents and assignment to actions is part of the process.

There is a category of requirements, known as non-functional requirements

(NFR’s), (Chung, 1991), such as performance, reliability, and also security. A

different approach to defining and analysing non-functional requirements is necessary

because, as Chung points out, they are often global constraints. The NFR framework

(Mylopoulos et al., 1992) offers a way for analysts and designers to explore how

design decisions can contribute to or obstruct NFR goals.

2.1.3 The Organisational Context in Modelling Requirements

The goals of a system are often embedded in an organisational context; the

organisational structures and business rules form the basis of the rationale from which

goals are derived (Nuseibeh & Easterbrook, 2000). An approach which focuses on the

organisation is ORDIT (Organisational Requirements Definition for Information

Technology) (Dobson et al., 1992; Strens & Dobson, 1994; Dobson & Strens, 1994).

The basic premise behind this approach is that the organisational goals, policies,

structures, and roles are essential to understanding organisational requirements from

which a functional specification of the system can be derived. It includes a role

- 25 -

Chapter 2 Modelling of Security Requirements

model, which captures functional and structural relationships, and responsibilities.

The identification of responsibilities and how they are delegated are key because these

lead to the questions as to how a system will support a user in executing those

responsibilities.

Loucopoulos & Kavakli (1995) propose a similar approach. The essence here is to

combine the technical and social perspectives. The social perspective is represented as

a model of the organisational members, and how they interact. Central to this view is

an actor that can be an organisational unit or individual, and can be assigned roles

representing the responsibilities held by the actor. The technical perspective is

represented by a model of the activities, data, and information flow. These

perspectives are combined in an enterprise model, which also includes a goal

hierarchy.

The i* framework (Yu & Mylopoulus, 1994) also focuses on the organisational

context, modelling goals in the form of intentions of actors and dependencies between

those actors. This focuses more on individuals, their intentions and dependencies on

one another, than on how they relate to the organisational structure, and how

responsibility is delegated; i.e. the micro-organisational factors. More recently the i*

framework has become part of the Tropos methodology (Giorgini et al., 2004).

Tropos is a methodology for software development, supporting requirements analysis

and software design. The i* framework is a semi-structured approach using diagrams

and textual descriptions; recently a formal version of the i* framework, formal

Tropos, has been proposed Fuxman et al. (2001). With formal Tropos goals, actions

and constraints can be defined using the same first order predicate language with

temporal constraints as used in KAOS.

- 26 -

Chapter 2 Modelling of Security Requirements

2.1.4 Scenario-Based Requirements Modelling

Although the incorporation of goals into a requirements model is appropriate, they

may be difficult to elicit. Stakeholders may have difficulty defining abstract goals but

find it easier to describe operational scenarios. Cognitive studies on human problem

solving have borne this out (Benner et al., 1993), and in practice scenarios are widely

used (Weidenhaupt et al., 1998). A scenario is a temporal sequence of actions or

events, describing the way agents interact with the system. Scenarios are useful for

clarifying and validating abstract requirements models, such as a goal-based models

(Anton, 1997; van Lamsweerde et al., 1995). They also provide a suitable basis for

identifying test cases.

One can differentiate between abstract scenarios, such as use cases and instance-

based scenarios, which describe a specific situation (Maiden, 1998). Although there

are advantages to conducting a scenario analysis there are also significant weaknesses

(van Lamsweerde & Willemet, 1998). There is a problem in establishing whether a set

of scenarios covers all the goals of the systems; i.e. they are inherently partial. It is

difficult to identify conflicting goals; there is also a danger of explosion of scenarios

with many different combinations of events and actions; the scenarios may be

fragmentary without a clear link between them, even if one exists; and there is also

the danger of specifying more details than are necessary in the way users interact with

the system, imposing unnecessary constraints on the design (van Lamsweerde &

Willemet, 1998).

Researchers have focused on how to combine the advantages of an abstract goal-

based model and concrete scenarios to elicit, elaborate and validate requirements.

Potts (1995) for example proposes a method to elicit salient scenarios. Before the

scenario analysis is carried out, goals and obstacles to goals need to be identified. It is

- 27 -

Chapter 2 Modelling of Security Requirements

from these that salient scenarios are defined; what Potts means by salient scenarios is

that each one describes a unique combination of goals being achieved or obstructed;

he describes a set of heuristics to do this but does not propose how to represent them.

Van Lamsweerde & Willemet (1998) propose a formal method to derive goals from

scenarios. The method exploits the formal language of the KAOS framework, and is a

rigorous approach to deriving a set of goals from scenarios, as the consistency

between the goals and scenarios can be proven.

Use cases, which are a part of the of the Unified Modelling Language, have

become very popular in practice, and have been a significant driving factor in

organisations adopting scenario-based approaches (Weidenhaupt et al., 1998). Use

cases are basically abstract scenarios describing all possible actions between the user

and the machine and differ therefore from scenarios, which model specific sequences

of actions (Maiden, 1998). Use cases are semi-formal in that text is used to describe

the actions. In order to link goals with use cases, Cockbum (2001) recommends

modelling high level use cases as goals, so in effect producing a similar model to

those goal hierarchies we examined in the previous section. Formal approaches to

abstract scenario analysis have been proposed using statecharts (Glinz,1995; Ryser &

Glinz, 2001), message sequence charts (Uchitel et al., 2001), and trees (Hsia et al.,

1994). These approaches obviate some of the weaknesses of a use case analysis, in

that it is possible to link different scenarios, and their formal nature lends them to

automated analysis.

2.1.5 Domain Analysis

A parallel thread of research is on the domain and the specification (Jackson &

Zave, 1997). Jackson & Zave take the viewpoint that goals are not the appropriate

- 28 -

Chapter 2 Modelling of Security Requirements

starting point for a requirements analysis; this is because high level goals can become

divorced from the problem. They argue that the problem domain is the starting point;

i.e. to understand how the machine, representing the software to be designed,

interrelates with its environment. Based on this philosophy, Jackson (2001) proposes

an approach to modelling using problem frames. The premise of this approach is that

the problem; i.e. the way in which the machine interrelates with the environment, can

be broken down into sub-problems each of which is easier to solve. A problem frame

represents a template of a class of simple problems, for which a known solution

already exists. Jackson identifies several basic frames. During the analysis phase the

problem is decomposed into sub-problems according to their frame types. Each sub

problem is then analysed independently. Jackson argues that each type of problem

frame requires its own specific analytical technique, and isolating each sub-problem

in this way simplifies the analysis.

The idea that generic problem types exist and can be used as a basis for

requirements analysis has also been identified by Sutcliffe & Maiden (1998). Sutcliffe

& Maiden (1998), and subsequently Sutcliffe (2000) have built a library of

generalised models that are applicable to different applications. For example the

concept of object containment is applicable to both a library providing books, and a

warehouse providing spare parts. As with problem frame analysis a key to this is the

modelling of the problem domain. The advantage of this approach is the productivity

gain in producing requirements specifications from reusable specification building

blocks.

Although Zave & Jackson have suggested that goals are not an appropriate

starting point, that is not to say that goals are inappropriate and that a domain analysis

is better; as Sutcliffe & Maiden (1998) point out, a domain based requirements

- 29 -

Chapter 2 Modelling of Security Requirements

analysis is complementary to approaches such as those based on goals, in that in

addition to a domain analysis, goals and scenarios also need to be defined. Indeed,

goal or scenario based models contain domain characteristics; the i* framework, for

example, contains basic modelling elements for representing the organisational

domain, and the KAOS requirements modelling language is based on a meta-model,

which identifies fundamental elements applicable to any problem domain, such as

actions, events, entities, and agents.

2.1.6 Summary of Modelling Approaches

Although there is a plethora of ways to model requirements, many of these

approaches are complementary, an aspect on which researchers have often focused,

such as the integration of goals and scenarios. Goals are important to ensure the

completeness of requirements. Scenarios help elicit, elaborate, and validate

requirements. Modelling business processes and the organisational context provides

the rationale for goals. The modelling of the problem domain provides us with the

building blocks for formulating requirements without presuming a solution. The

formalisation of a model enables us to automate checking to verify consistency and

identify conflicts. Research in RE has focused mainly on functional requirements but

is applicable to security requirements, and it is within this context that we now

explore security requirements in more detail. Table 2.1 overleaf summarises the

approaches we’ve reviewed.

Chapter 2 Modelling of Security Requirements

Paradigm Modelling Approach Summary of Approach

Goal Orientation

KAOS
(Dardenne et al., 1993)

Goals successively
decomposed into
operationalised
requirements supported by
a formal notation.

GBRAMS
(Anton, 1996)

Method for eliciting and
elaborating requirements
from a goal hierarchy,
using natural language to
describe functions.

NFR Framework
(Chung, 1991)

Semi-formal approach to
elaborate non-functional
requirements from goals,
linking design decisions to
goals.

Organisational Context

i* Framework
(Yu & Mylopoulus, 1994)

Requirements derived from
the strategic intentions of
actors and their
dependencies. A structured
approach with diagrams
and textual descriptions.

Formal Tropos
(Fuxman et al., 2001)

Formal version of the i*
framework.

ORDIT
(Dobson etal., 1992)

Requirements derived from
the responsibilities of users,
semi-formal based on
diagrams and textual
descriptions.

Enterprise Modelling
(Loucopoulus & Kavakli,
1995)

This semi-formal approach
combines the social
perspective (actors, their
roles and goals) with the
technical perspective (flow
of information and business
processes) to derive
requirements.

- 31 -

Chapter 2 Modelling of Security Requirements

Use Cases Semi-formal approach to
describe scenarios.

Scenarios

Statecharts
(Glinz, 1995)

Formal approach to
describe scenarios using
statecharts.

Message Sequence Charts
(Uchitel et al., 2001)

Formal approach to
describe scenarios using
message sequence charts.

Trees
(Hsia et al., 1994)

Formal approach to
describe scenarios using
trees.

Schematic Scenario Analysis
(Potts, 1995)

Structured method to derive
goals from scenarios based
on textual descriptions.

CREWS
(Maiden, 1998)

Semi-formal approach to
explore alternative
scenarios generated from
an abstract model.

Inferring Declarative
Requirements from Scenarios
(van Lamsweerde and
Willemet, 1998)

Formal approach to identify
goals from scenarios.

Domain

Problem Frames
(Jackson, 2001)

Requirements derived by
decomposing problems
according to generic types
of problems.

Domain Matching
(Sutcliffe, 2000)

This approach identifies
and matches requirements
to generic types.

Finite State machine
Software Cost Reduction
(Heitmeyer, 1998)

Models the behaviour of a
system as a set of outputs
expressed as a
mathematical function of
the state and history of the
environment.

Table 2.1 Overview of Requirements Modelling Approaches

- 32 -

Chapter 2 Modelling of Security Requirements

2.2 Security Requirements

In this section we explore what security requirements are and highlight the

significance of security requirements derived from the principles of management

control.

2.2.1 The Source of Security Goals and Requirements

Security requirements are those requirements concerned with the protection of

valuable assets. They stem from the top level security objectives of maintaining

confidentiality, integrity and availability (ISO, 2005). These top level objectives give

us an orientation. Confidentiality is concerned with maintaining privacy and secrecy,

allowing read access to only those users who have been authorised. Integrity is about

ensuring the accuracy and completeness of information, and involves allowing only

authorised users to change or create data and applying controls to ensure the

correctness of the data. Availability is concerned with ensuring that access to

information systems is maintained when required. Closely related to security

requirements are privacy requirements. Privacy requirements differ from security

requirements in that they are associated with the protection of personal data, rather

than data belonging to an organisation.

These high level security and privacy objectives express what we want to protect

with regard to valuable assets, but need to be translated into security goals, and

subsequently security requirements. Moffett et al. (2004) provide a perspective on the

source of security goals and how they relate to security requirements. A goal is

something that a stakeholder wishes to achieve or avoid. A security requirement is a

constraint on a function required to achieve a security goal. Moffett et al. identify

three sources of security goals:

Chapter 2 Modelling of Security Requirements

1. Harm to assets

2. Management control principles

3. Business goals

Harm to assets can occur when the system is misused, and a security objective is

breached, such as the confidentiality or integrity of the asset, hence specific goals are

derived to obviate these threats. Constraints also stem from the principles of

management control that apply to all applications, and would otherwise be repeatedly

derived. The third source are the business goals for specific applications, which

determine what assets are at risk, and which principles of management control apply.

Figure 2.1 illustrates these sources. Moffett et al. (2004) discuss policies, but restrict

their discussion to access policies. Access policies are however derived from

organisational requirements, as pointed out by Thomas & Sandhu (1994); Moffett et

al. do not explain this derivation process.

Anton & Earp (2001) emphasise the need to align security and privacy

requirements with a security policy. They describe a security policy as a document

identifying security goals and assessing risks. Anton et al. (2001) use the term of

meta-requirement to describe a policy. By this they mean that a policy is a

requirement applicable to all systems within an organisation. Anton & Earp (2001),

and subsequently Anton et al. (2001) propose the use of GBRAMS to systematically

define security goals that constitute a security policy, and to ensure that security

requirements in a system are aligned with the security policy. Unlike Moffett et al.

they ignore the principles of management control.

- 34 -

Chapter 2 Modelling of Security Requirements

Harms

Elicited from Mandated byDerived from

Operationalises

Security Goals

Assets

Threats

Security
Requirements

Business Goals Management
Control Principles

>

Dependency

Figure 2.1 Security Requirements Core Artefacts

(adapted from Moffett et al., 2004)

Policies are expressed in natural language, and Breaux & Anton (2005) suggest

they are more open to interpretation than goals expressed in a requirements

specification. They have proposed a process to derive semantic models from goals

extracted from privacy policy documents, which enables policies and goals to be

compared more easily. This research builds on the approach proposed by Anton et al.

but focuses on privacy policies rather than security, and hence does not explore

policies derived from the principles of management control.

2.2.2 Deriving Security Requirements from Threats

Researchers have explored how some of the different modelling approaches that

we reviewed in section 2.1 can be adapted to analyse threats, and so derive security

requirements.

- 35 -

Chapter 2 Modelling of Security Requirements

Sindre & Opdahl (2000), and Sindre & Opdahl (2001) propose an approach to

modelling threats, based on use cases, which they call “misuse cases”. A conventional

use case diagram is extended by adding inverse cases, which model how malicious

actors may perform harmful actions; having identified these threats, countermeasures

can be defined. It is a systematic approach to modelling threats, though not formal,

and analysis is subjective. It does however make the analyst think about each use

case, and whether there is a scenario which could be harmful.

Alexander (2002) builds on this approach, but focuses more on the conflict

resolution of goals. Alternative use case goals may mitigate or aggravate the threats

posed by misuse cases, and Alexander proposes a notation to indicate this on use case

diagrams. Although the resulting model shows where goals conflict, what this

approach does not show is how goals aggravate or mitigate threats.

Van Lamsweerde et al. (2003) and van Lamsweerde (2004) propose KAOS to

model threats and countermeasures. They model threats as ”anti-goals”, representing

the malicious intent of agents as obstacles to security goals. Having discovered

threats, further goals can then be defined to counteract the threats. This is a formal

approach, which enables a more rigorous analysis to be carried out than with use

cases.

Yu & Liu (2000) and Liu et al. (2003) show how a threats analysis can be carried

out using the i* framework. The i* framework models the social intentions of actors.

The authors show how actors can be modelled in attacking roles, and how attacks,

modelled as goals, and their task dependencies, impact on the security goals of other

actors. As with the other approaches, having identified attacks, countermeasure goals

can then be added, in order to mitigate attacks. This is a very similar approach to the

one proposed by Alexander, though the i* framework allows the definition of a more

- 36 -

Chapter 2 Modelling of Security Requirements

detailed model, where individual actors can be assigned multiple roles, and soft goals,

tasks, resources, and their dependencies can also be modelled.

Lin et al. (2003) apply problem frames to bound the scope of a security problem.

Their approach is to first of all scope the problem, identifying sub-problems. The next

step is then to identify the security concerns of each sub-problem. Threats to the

security concerns, which the authors refer to as “anti-requirements”, are then captured

in the form of “abuse frames”. An abuse frame is a problem frame that models the

threat to the system context showing the phenomena by which malicious users interact

with the system. This analysis highlights vulnerabilities, which then can be used as a

basis for improving the design. One of the key advantages of problem frame analysis

is that recurring types of problems can be identified and described, however Lin et al.

do not show how this would be applied or how it is advantageous for the analysis of

abuse frames. They point out that some threats only become evident by recomposing

sub-problems.

Haley et al. (2004) have explored how trust assumptions can be considered during

an analysis. A trust assumption is a security property that a component, be it human or

technical, must posses if a security requirement is to be satisfied. They illustrate using

problem frames how trust assumptions can be assigned to components within the

problem domain. Structured argumentation can be applied to verify that trust

assumptions have been satisfied (Haley et al., 2005). It complements the research by

Lin et al. (2004), focusing more on the design constraints that need to be satisfied to

ensure that security requirements can be fulfilled.

All these approaches are systematic in their identification of possible attacks and

the definition of countermeasures. They all involve an iterative process of defining

security goals and identifying ways by which these goals can be obstructed or broken.

- 37 -

Chapter 2 Modelling of Security Requirements

However the process of identifying threats is still a creative process; it requires

experience of what has happened in the past to invent scenarios. Unlike functional

requirements, where stakeholders are on hand to express what they want from a

system, malicious users are not on hand to express how they intend to attack the

system. This is why it would be helpful to have a way of identifying recurring threats.

This approach has been alluded to by Lin et al. (2004), but is an avenue of research

that still needs to be pursued.

2.2.3 Deriving Security Requirements from Management Control Principles

In commercial organisations, there are established management control principles,

which are applied to protect assets and prevent fraud (Moffett & Sloman, 1988).

Accounting practices are a key source of these principles as Clark & Wilson (1987)

have identified. For example double entry book-keeping entails that any transaction

has two parts in two separate ledgers, where a transaction booked into one ledger is

matched by a transaction booked out of another ledger. If a transaction in one book is

not matched, as is checked during an audit, then this is either an error or fraud. The

segregation of duties provides a further mechanism in that if it is ensured that

matching transactions can not be entered by one individual, then fraud is less likely,

as to commit fraud, collusion is necessary.

In fact the cause of the fraud at Barings Bank that we described in chapter 1, was a

breakdown in the accounting procedures and segregation of duties. The perpetrator,

Nick Leeson, was in charge of two separate areas in the bank, settlement and trading,

which enabled him to hide unauthorised trades and so manipulate the books. It does

illustrate how important it is to maintain these principles.

- 38 -

Chapter 2 Modelling of Security Requirements

There are other key principles from which access policies are derived. The

minimum privileges principle requires users only have access to those resources that

they need in order to be able to carry out their tasks (Anderson, 2001). Moffett &

Lupu (1999) identify the delegation and revocation of authority, and supervision and

review as two further principles.

Thomas & Sandhu (1994) view an organisation as a system that is required to

preserve a certain level of integrity, and that there are organisational procedures and

internal controls required to maintain this state. This integrity has also to be

maintained in the organisation’s computer systems. They highlight that control

principles are organisational requirements that ultimately translate into access control

models to enforce these principles.

The way in which such controls can mitigate threats is illustrated by Anderson

(1996). In describing a policy for medical records he highlights the fact that there

would be much greater concern if several thousand GP receptionists could all access

the medical records of any patient in the UK, than if each one could only access the

records of patients in the practice in which they work. This is a good example of how

the minimum privileges principle can be applied to mitigate the threat to the

confidentiality of patient records.

The fact that management control principles are a key source of security goals and

requirements means that we need to be able formulate goals and requirements that do

satisfy these control principles. To a great extent they will be formulated as access

policies. Recently research has started to focus on how requirements modelling

approaches can be applied to defining them.

Fontaine (2001) has explored the mapping of agent assignment in KAOS to

access policies in Ponder, a language for specifying access control policies in

- 39 -

Chapter 2 Modelling of Security Requirements

distributed systems. A significant problem here is that Fontaine does not differentiate

between actual users or roles; i.e. that a physical individual can adopt several roles.

An example where this is a problem is if we wish to define the segregation of duties,

whereby we are interested in preventing a physical individual from performing two

separate tasks. Fontaine does highlight the agent, and the agent’s assignment to

actions as a key to the definition of access policies.

Bandara et al. (2004) have also explored deriving policies in Ponder from a

KAOS goal model, however they focus specifically on the enforcement of sequences

of operations to satisfy goals rather than agent assignments.

Liu et al. (2003) have explored how the minimum privileges principle can be

modelled in the i* framework, using a strategic rationale (SR) model, which models

the internal relationships within an actor with respect to the goals, tasks and resources;

the goals, resources and tasks are contained within an actor boundary. They show how

the actor boundary in the SR model can be used to define access restrictions, an

example of which is shown in figure 2.2 adapted from their case study. They also

demonstrate how the minimum privileges principle and segregation of duties policies

can be translated from i* into the specification language Alloy, which can then be

checked automatically using a tool.

The actor boundary in figure 2.2 shows the relationship between the family doctor

and the internal actor goal of providing a regular clinical service, which is dependent

on the task to open a new medical record, which in turn is dependent on the resource,

medical record. Liu et al. propose that the actor boundary defines restrictions ensuring

the principle of least privileges can be enforced. The family doctor is then restricted to

the tasks and resources defined within its boundary. However there is an important

aspect associated with the least privileges principle that can not easily be represented

- 40 -

Chapter 2 Modelling of Security Requirements

in i*; that is that the family doctor should only access medical records associated with

his patients, otherwise he could access records associated with patients not assigned to

him so violating the least privileges principle.

Family
Doctor

Open a New
Medical Record

Medical
Record

Provide Regular
Clinical Service

Figure 2.2 Strategic Rationale Diagram for a Medical Application

(adapted from Liu et al., 2003)

Giorgini et al. (2005) demonstrate the modelling of delegation and trust in i*

diagrams. The authors propose extensions to i* dependency diagrams, within the

context of the Tropos methodology Giorgini et al. (2004), to represent trust between

agents and delegation relationships. Their focus is in relating trust and delegation; i.e.

identifying to what extent the delegator can trust the delegatee. Their definition of

delegation is more general than that derived from the principles of management

- 41 -

Chapter 2 Modelling of Security Requirements

control, including delegation between agents not in the same organisation, such as a

customer delegating to an organisation. Their approach however does not include

identifying authority relationships, within an organisational domain. The importance

of defining authority relationships is illustrated by the fraud at Barings Bank that we

have already touched on; Nick Leeson abused his authority by delegating fraudulent

tasks to his subordinates. Massaci & Zannone (2006) apply the approach proposed by

Giorgini et al. to analyse a case study on the fraud committed by John Rusnak at the

Allied Irish Bank. The key strength of this analysis is in detecting inconsistencies with

regard to trust. However although they show the organisational context, there are

certain key aspects that are not represented, for example the authority relationship

between John Rusnak and his superior, and what responsibility he had.

He (2005) has proposed the Requirements-Based Access Control Analysis and

Policy Specification (ReCAPS) method, which is a role engineering process for

deriving roles that can be mapped onto an access control system, whereby a role is

defined as a collection of permissions. It involves analysing tasks and the resources

that need to be accessed as a result of carrying out these tasks, and defining roles as

collections of permissions. A key strength of this approach is that it provides a

systematic way of defining roles, and it links these definitions back to security goals.

However, he does not explain how his approach relates to management control

principles and how these principles maybe satisfied. Nevertheless the fact that roles

are defined, which restrict access, gives us requirements satisfying the minimum

privileges principle, but as with the other approaches described above, this would not

be completely covered. He et al. (2006) present a case study using the ReCAPS

method, where they give a role definition of an analyst in a software project, who can

classify goals. But what they do not define is the scope; i.e. does an analyst classify

- 42 -

Chapter 2 Modelling of Security Requirements

goals for one project, or perhaps he can classify goals for all projects carried out by an

IT development department? As we saw above for the medical record policy proposed

by Anderson (1996), this domain oriented restriction is important.

Strens & Dobson (1993) propose how ORDIT can be applied to derive security

requirements. The ORDIT modelling approach allows authority relationships between

roles to be defined. As with the i* framework the authors make an explicit delineation

between human users and the roles that they can adopt. In particular they focus on

defining responsibilities; they differentiate between responsibilities and obligations.

They describe a responsibility as a state of affairs, whereas an obligation is what an

agent needs to do to discharge his responsibilities; i.e. the expectation of carrying out

activities. Whereas obligations can be delegated, responsibility remains with the

delegator, and hence there is a relationship between two agents, where one agent has a

responsibility to ensure that a task is carried out and the second agent, the subordinate,

executes the task. This modelling technique uses diagrams to describe roles, and their

relationships. Its strength is in the modelling of delegation; however, the approach

although structured is not underpinned by a formal model in the same way that KAOS

or the i* framework is, and hence the semantics are imprecise, and no details are

given as to how delegation can be reasoned about. Although the hierarchical

relationships can be modelled, there is no link to the organisational structure, and

hence definitions relating roles to organisational domains are missing.

Sutcliffe et al. (2006) apply domain matching and problem frame analysis to a

telemedicine application, which includes access control, but they only focus on the

access control mechanisms rather than the assignment of tasks to agents; i.e. how

users are checked against authorisation lists, rather than which users should be given

access.

- 43 -

Chapter 2 Modelling of Security Requirements

When we consider these contributions to modelling security requirements derived

from management control principles, then we see that most of these principles have

been explored, implicitly or explicitly, namely the principle of minimum privileges,

segregation of duties, delegation, and supervision and review. But there still remains a

problem, and that is the lack of a link to the organisational structure, organisational

domains, and organisational functions. For example a restriction that a doctor can

only access medical records of his patients, or a ward secretary register patients on a

ward relate to the way that these obligations are delegated within the organisation, and

these are not represented in the models that we reviewed above. As we have seen

these restriction definitions are therefore incomplete in that they don’t include

important aspects of the organisational context.

The principle of delegation and revocation of authority, as well as that of

supervision and review are further principles that require an analysis of the

organisational context as they depend on the hierarchical relationships within the

organisation (Moffett & Lupu, 1999). There are also accounting principles, such as

credit limits and double entry book keeping. Thomas & Sandhu (1994) illustrate how

procedures can be modelled in the form of workflows, where actions need to be

carried out in a predefined sequence, with certain actions requiring approval.

For the purposes of comparison of those approaches for which the definition of

access policies has been explored, table 2.2 summarises the extent to which

requirements have been derived from key management control principles. As we see

from table 2.2, two principles have been explored as to how they can be achieved

using existing approaches by defining access policies as the assignment of tasks and

resources to actors, but with only partial success. For modelling all these principles

the key is to link actors not only to tasks and resources, but also to the organisational

- 44 -

Chapter 2 Modelling of Security Requirements

context, and thereby lies the crux of the problem, that current modelling approaches

do not easily allow this.

Management
Control Principle

KAOS i* Framework ReCAPS ORDIT

Minimum Privileges
Principle

partially partially partially partially

Segregation of Duties No partially no no

Delegation and
Revocation of
Authority

No partially no partially

Supervision and
Review

No no no partially

Accounting Principles No no no no

Table 2.2 Coverage of Management Control Principles by Requirements

Modelling Approaches

Modelling of the
Organisational Context

KAOS i* Framework ReCAPS ORDIT

Agent Assignments to Tasks
and Resources

yes yes yes yes

Separation of Roles to
Agents

partially yes no yes

Organisational Domains no no no no

Organisational Functions no no no no

Authority Relationships no no no yes

Workflows no no no no

Table 2.3 Modelling of the Organisational Context in Requirements

Modelling Approaches

Chapter 2 Modelling of Security Requirements

Table 2.3 demonstrates key characteristics of the organisational context that are

important in modelling organisational principles. As we see in table 2.3, agent

assignments to tasks and resources already exist in current models, and it this aspect

that researchers have begun to explore to define the minimum privileges principle.

The separation of roles and agents is necessary to model and analyse the segregation

of duties. Organisational domains are required to ensure that we can define minimum

privileges, and also determine the boundary within which authority can be exercised.

The functions of the organisation determine which tasks need to be carried out.

Authority relationships need to be represented as a prerequisite for modelling the

principles of delegation, and supervision and review. Workflows are required to

ensure that procedures can be modelled involving review, approval or satisfying

accounting principles, such as only issuing cash orders for payment after the goods

have been received.

To develop a framework to model the organisational context is the prime objective

of this thesis, as this is a prerequisite for defining the security requirements that are

derived from management control principles. We have selected the minimum

privileges principle for investigation to demonstrate how our framework can improve

on existing requirements modelling approaches. We have decided to extend the i*

framework due to its focus on the social context. Organisations are social systems,

and the i* framework’s capabilities with respect to modelling the dependencies

between actors can be applied to this context.

2.3 Chapter Summary and Evaluation

In this chapter we began with a general review of requirements modelling;

although there is a plethora of ways to model requirements, there are some basic

- 46 -

Chapter 2 Modelling of Security Requirements

paradigms common to these different approaches. The key aspects around which these

paradigms are based include scenarios, goals, the organisational context, and the

problem domain. These paradigms are not so much alternatives as complementary

ways of viewing requirements, and indeed there has been research in to how to

combine the strengths of different approaches; notable are the links between the

organisational context and goals, as well as the complementary nature between

abstract models, in particular goal-based models, and instantiated scenarios.

The chapter highlighted the nature of security requirements as being concerned

with the protection of information assets. We identified three key sources of security

requirements: the first source is from the analysis of threats; the second is from the

business goals; the third being the principles of management control.

With respect to analysing threats to assets derived from business goals,

researchers have explored a variety of existing modelling approaches. Threats are

relatively straightforward to represent on models as obstacles to goals or anti

requirements; more difficult is the creative process of identifying how a system can be

compromised. A challenge that researchers are now facing is how to identify recurring

threats, which would help automate the process.

Management control principles are the third key source, and this chapter

highlighted that recent research into deriving security requirements from management

control principles has focused on defining access restrictions to satisfy the minimum

privileges principle.

This chapter has specifically motivated the need to define access policies that

satisfy the principles of management control during requirements modelling. Various

principles were identified including the minimum privileges principle, segregation of

duties, delegation and revocation of authority, supervision and review, and accounting

Chapter 2 Modelling of Security Requirements

principles. The principle of minimum privileges has been selected for investigation as

to how access policies can be defined to enforce them. The reason this principle has

been selected is that it is fundamental, and other principles largely build on it; e.g.,

financial controlling and accounting principles. Furthermore the focus of the research

is on, what the organisational literature refer to as, bureaucratic organisations, with

role cultures, as it is organisations of this type that rely on formally defined

procedures.

Chapter 3

The Organisational Context and
Access Policies

In the last chapter we identified from the literature that there are security goals,

and that they are derived from generic principles by which management control the

actions of their subordinates. These security goals are satisfied by access policies that

enforce these principles, for example, by ensuring that users only have access to

resources they require to carry out the tasks delegated to them. Hence an access policy

is a requirement that is derived from the principles of management control. In this

chapter we explore this further. Firstly we review the organisational literature, which

enables us to understand the principles by which organisations are structured, and how

work is assigned within the organisation. Then we turn our attention to the security

literature from which we gain insights into how access policies can be defined that

satisfy these principles. What is of particular interest is how roles can be used as a

basis for defining access policies, and how roles can be used to represent the

organisational context.

This is very relevant to requirements modelling. As we saw in the last chapter, an

access policy can be modelled from the assignment of an actor to tasks and resources,

and an actor is in effect a role. We need to establish for each function in each system,

who has access, and if we want to make sure that the policy is enforced, it entails an

understanding of the organisation, and how tasks are assigned. Similarly, in order to

- 49 -

Chapter 3 The Organisational Context and Access Policies

ensure that supervision and review are adequately enforced, we need to understand the

lines of authority within the organisation; i.e. who is in charge of who.

3.1 The Theory Underlying the Organisational Context

In order to gain a deeper understanding of the organisational context, it is useful to

explore the organisational literature to understand the rationale of organisations,

organisational structure, and the co-ordination mechanisms. It complements the

security literature as it delves deeper into the nature of organisations.

3.1.1 Organisations and their Purpose

Groups of people can achieve far more than individuals working alone.

Organisations can be considered as “social arrangements for the controlled

performance of collective goals” (Buchanan & Huczinsky, 1985). Organisations are

social systems with purposes as wide ranging from baby sitting circles to multi

national chemical manufacturers. They vary widely from informal organisations, such

as entrepreneurial start-ups to formal organisations, such as banks and government

services.

The dilemma that organisations face is that the goals of individuals in an

organisation can differ from the collective purpose of the organisation, such as when

an individual commits fraud at the expense of the organisation. It is therefore

necessary for organisations to exert control; this is the reason why organisations have

a deliberate and ordered allocation of functions, and control the activities and

interaction between organisational members. It is precisely these mechanisms that

organisations also use to mitigate the actions of malicious employees.

The organisational structure, which is the fundament of management control,

includes the allocation of formal responsibilities to interrelated groups and roles, it

- 50 -

Chapter 3 The Organisational Context and Access Policies

also includes linking mechanisms between roles and the co-ordinating structures of

the organisation. A formal hierarchy of command is usually represented by an

organisational chart.

3.1.2 Organisational Structures

In particular, large organisations are composed of organisational units that have

clearly defined spheres of competence, however there are different ways in which

spheres of competence can be allocated (Handy, 1985). Two principle ways in which

organisations are divided, are horizontally and vertically, referred to as horizontal and

vertical differentiation respectively.

Vertical differentiation refers to the division of work between management levels,

with respect to the administrative tasks such as planning, co-ordination and control

across different functional areas, whereas horizontal differentiation refers to the

division of work according to factors such as function, geography, or personal

qualification (Handy, 1985).

However considering horizontal differentiation, Mintzberg (1978) suggests that

although there are a number of factors that have been identified on which horizontal

differentiation can be based, they can be categorised into functional and market based

characteristics.

Functional characteristics: In addition to the division of work on the basis of

function, Mintzberg has identified qualification and work process as ways of dividing

work, which are essentially a special form of function oriented differentiation.

Market characteristics: The other way of fundamentally dividing work is on the

basis of market based characteristics. This can include organisational division based

on customers, service, product, location, or time. In this case the functions are

- 51 -

Chapter 3 The Organisational Context and Access Policies

replicated but the difference being the market that the organisational division or unit is

responsible for.

Often, particularly in large organisations, several of these characteristics are used.

The National Health Service in the UK is divided into regional health authorities that,

in turn, are composed of hospitals to serve the different population centres, so that the

health authorities and hospitals are organised on a geographical basis. A hospital,

however, is organised on a functional basis according to administration, the medical

specialities, and supporting services. Similarly, retail banks have autonomous

branches dispersed to serve local markets with a functional structure in each branch.

Another way in which an organisation can be structured according to multiple

factors is through a matrix structure. In this case, each member of the organisation

will belong to two groups. One group is responsible for the product or market, and the

other has a functional responsibility. An example of this is in an engineering company

undertaking projects. Each project consists of a multidisciplinary team of engineers,

and each member of the team reports to the project manager, but there are also

departments that carry responsibility for staff development, and maintaining standards

in the different engineering disciplines.

This insight by Mintzberg has significant implications in modelling the

requirements of access policies. We see this separation of functions and markets

incorporated into security policies and frameworks. For example the principle of

Chinese walls in financial institutions is based on preventing users from accessing

data from clients who compete. Consultants are assigned sets of clients that represent

markets, but carry out the same functions within their designated market segments.

For the least privileges principle we need to take into account not only the functions

that users can access, but also the market in which they operate. An example of this is

- 52 -

Chapter 3 The Organisational Context and Access Policies

given by Schaad (2003) whereby bank clerks in each branch of the bank would carry

out identical functions but only for customers served by the particular branch to which

they were assigned.

3.1.3 Organisational Control Principles: A Perspective from the Organisational

Literature

To what extent can we generalise about the way in which a company exercises

control? There is a stark difference between a small entrepreneurial company and a

multi-national bank. Within any organisation there is a common set of beliefs and

values with regard to the way in which authority is exercised; this is termed the

culture (Handy, 1985).

Roger Harrison’s view on cultures provides a framework for analysis (Handy,

1985). Many large organisations such as banks have a role culture, exemplified by

control through rules and procedures, where a role or position is more important than

the individual; in contrast small organisations usually have a power culture. The co

ordinating mechanisms in a power culture are informal, and the organisation is

flexible; there is little if anything in the way of formal procedures, and individuals are

more important than roles. Another type of culture, found in organisations that run

projects, is a task based culture. A matrix organisation is an example, where groups of

specialists are formed to perform a particular task. Influence here is based on expert

power rather than positional or personal power. Examples of this kind of culture can

be found in IT development and investment banks.

These cultures are not mutually exclusive, as often different parts of an

organisation will have different cultures. The strategic apex company may have a

power culture, whereas the operational core could have a role culture, and in addition

- 53 -

Chapter 3 The Organisational Context and Access Policies

there is a continuum between a power and a role culture. As companies grow there are

increasing pressures to formalise organisational structures, and introduce more rules

and procedures.

Mintzberg (1992) also classifies organisations in a similar way, making a key

distinction between simple informal structures common in small organisations and

larger formalised bureaucracies. He also identifies the key co-ordinating mechanisms

in the different types of organisations. In simple structures co-ordination is achieved

through what Mintzberg terms as “mutual adjustment”; i.e. informal communication;

as an organisation grows, it then begins to rely increasingly on supervision, and in

large organisations, rules and procedures become important.

Thus the principles of management control that we described in the previous

section apply much more to large organisations, with a role culture, than small

entrepreneurial organisations, however although there are classifications, it is not

clear cut with a continuum between these cultures.

The focus in this thesis is on large organisations; i.e. a role culture, and how

computer systems can support the enforcement of rules and procedures.

3.2 Modelling Access Policies: A Security Perspective

In chapter 1, we highlighted two key research questions pursued in requirements

engineering research (Lamsweerde, 2000b), which are what aspects to model, and

how to model them. With respect to access policies, it is something researchers in

security engineering have been exploring for many years. Their main focus has been

in the development of policy languages and access control models having more to do

with the implementation of security than the analysis of security requirements.

However these access control models contain more than technical mechanisms, such

Chapter 3 The Organisational Context and Access Policies

as encryption, policy enforcement, and secure protocols, which in a requirements

model only interest us as design decisions to satisfy a requirement. In developing

policy languages, security researchers have found ways to express rules to restrict

users, which ultimately need to be reflected in a requirements model. It is therefore

relevant to review these languages and models. There are many policy languages and

models, and it is not the objective of this thesis to provide a comprehensive review of

them all; we focus on only those research contributions that have explored the

organisational context, and show how they have successfully been able to model

aspects of the organisational context.

3.2.1 Groups in the Definition of Access Policies

A common way of defining access policies is through the use of groups. Users

have access to resources based on their membership of a group. Policy languages such

as Ponder (Damianou et al., 2000) and ASL (Jajodia et al., 1997) allow us to define

authorisations in this way; for example, the following is a language statement in

Ponder:

+auth expermental_drugs

subject /clinicians/consultants

action prescribe_experimental_drugs

targets /patients

It defines an action on a target domain on which the action can be carried out, and

a subject; i.e. the group of users that are authorised to carry out an action. It describes

a policy that states, consultant clinicians can only carry out the action to prescribe

experimental drugs to patients. The plus sign indicates that this is a positive

authorisation policy that allows access; in contrast, a negative policy denies access.

- 55 -

Chapter 3 The Organisational Context and Access Policies

This policy uses a subject domain. These subject domains are effectively instances

that can be used to represent organisational groups, in the form of a hierarchy. Lupu et

al. (2000) demonstrate this in a case study for a GSM mobile telecommunications

enterprise, where the different organisational groups are defined as subject domains.

In this geographically dispersed organisation, a subject domain is defined for each

region, and the branches are modelled as sub-domains of their respective region. This

reflects a division of work based on location, a form of division of work identified by

Mintzberg that we reviewed previously.

Subject domains or groups are useful for representing policies on instances, and

although it is appropriate to define instances of organisational groups in an

implemented distributed policy management system, it is not useful in a requirements

model. In a requirements model we do not really want to model hundreds of branches

of a large organisation. It would be much more efficient to define an abstraction of a

branch, which maps onto hundreds of branches.

3.2.2 Roles in the Definition of Access Policies

A way in which we can achieve this desired abstraction is through roles.

Researchers in security have turned their attention to roles. Role-Based access control

(RBAC) originally emerged from the software industry (Sandhu et al., 1996), as a

convenient way for administrators to define access constraints. A role is a collection

of permissions; it differs from a group, which is a collection of users. Although roles

can be defined to reflect membership of a group (Sandhu et al., 2000), where a group

is a set of instances of users, this focus on permissions rather than users gives us an

ability to abstract about users and their access rights.

- 56 -

Chapter 3 The Organisational Context and Access Policies

Thus, in the previous example the consultant immunologist could be defined as a

role instead of a subject, and then it is applicable throughout every hospital, as the role

can then be instantiated for a specific subject and target domain. This principle is used

in the Ponder policy language (Damianou et al., 2000). In Ponder a role is used to

represent a position in an organisation (Lupu et al., 2000). A role is not tied to a

specific group of users, it must be instantiated. A role definition such as this is

therefore useful in a requirements model, though we somehow need to specify how it

may be instantiated.

Roles give us a useful abstraction; but there is an interesting question as to what a

role actually represents, and how roles relate to one another. In this thesis we are

interested in representing roles in requirements models as a way of providing us with

abstract policy definitions, it is therefore useful to review the security and

organisational literature on roles, as it helps us to understand what we expect from a

role definition.

Sandhu et al. (1996) propose relating roles in an inheritance hierarchy, their

suggestion being that senior roles inherit permissions from junior roles; in this way an

inheritance hierarchy could represent the organisational hierarchy. However the use of

inheritance in this way will often be undesirable, as recognised by the authors

themselves. A project manager, for example, may not have sufficient expertise to

carry out specialised tasks that his subordinates have been assigned, hence it would

not be desirable for him to be assigned these permissions.

Moffett (1998) describes however how an inheritance hierarchy can be useful. It is

often possible to identify common responsibilities amongst members of an

organisation. These responsibilities can be bundled together to form a generalised

role. An example of this in a hospital, say, would be to define a generalised role of

- 57 -

Chapter 3 The Organisational Context and Access Policies

health care provider that provides permissions shared by both doctors and nurses. The

role doctor is itself a generalised role for a physician or a surgeon.

In addition to a hierarchy based on inheritance, Moffett proposes two further

hierarchies. The first is an activity hierarchy; in this hierarchy, permissions are

bundled together to form a collection of permissions that are needed to carry out

various tasks that logically belong together from an organisational standpoint. For

example, a sequence of tasks may be required to provide a specific customer service,

such as booking a flight. The second is a supervision hierarchy; this hierarchy is what

is normally considered to be the organisational hierarchy in that it represents the lines

of supervision showing the seniority of the members of staff. This is the hierarchy that

can also be used to differentiate permissions between junior and senior members of

staff.

This actually says something significant about the meaning of roles. In Moffett’s

hierarchies there are roles based on the function of the individual, task, and seniority,

each potentially part of a different hierarchy. In other words, different organisational

characteristics/parameters are being captured in the form of roles, and the

relationships between them.

Park et al. (2004) differentiate between organisational roles, system roles, and

enterprise roles. Organisational roles represent positions in an organisation allowed to

carry out the core activities; enterprise roles represent members of teams to perform a

temporary task such as a project; and system roles represent supportive roles such as

administrators. Each of these role types has its own hierarchy. These separate role

hierarchies identified by Park et al. are similar to the classifications of different parts

of the organisations as identified by Mintzberg (1978), who identifies the operational

core and management as the main hierarchy, with separate authority structures for the

- 58 -

Chapter 3 The Organisational Context and Access Policies

“technostructure”; i.e. specialists maintaining the organisation’s operations

infrastructure; and support functions.

Bacon et al. (2001) demonstrate how different types of roles based on function

and seniority can be combined. In order to be assigned certain roles, a user must have

been assigned other prerequisite roles, for example, a doctor can only be assigned the

role of senior haematologist if the roles senior doctor and haematologist have already

been assigned. Here the role senior haematologist is in effect a composition of the

functional role haematologist, and the positional role senior doctor. Similarly a major

European bank has defined positional and functional roles in its RBAC system

(Schaad et al., 2001), where positional roles represent positions of authority, and

functional roles the membership of functional groupings. Abdallah and Kayhat (2004)

propose parameterising roles, where parameters can be used to represent different

aspects of the organisational context, such as a level in the organisational hierarchy, or

a department.

Other work in this area has identified how roles can relate to context. Bertino et al.

(2000) describe how temporal constraints can be defined for roles, for example, when

a role is activated for a shift, and then subsequently deactivated. In addition, an

administrator can activate roles ad hoc. Covington et al. (2001) have explored

applications for the home, and suggest how environmental roles could be useful.

Access can be permitted based on environmental factors, such as location or time of

day. Georgiadis et al. (2001) combine contextual information with team based access

control. Team based roles identified by Thomas (1997) are useful for collaborative

working environments, where users are assigned to teams and get access to the team’s

resources. This can be combined with other contextual information, such as location

or time intervals. Yao et al. (2001) present an access control model (OASIS), whereby

- 59 -

Chapter 3 The Organisational Context and Access Policies

users can activate roles, provided they satisfy prerequisite conditions, such as having

an appropriate qualification, assigned function, task competence, or environmental

constraint.

Researchers have also explored techniques for deriving roles. Role Engineering,

as outlined by Coyne (1996), is a systematic process of identifying the activities of a

single user and defining this as a role. Fernandez and Hawkins (1997) propose

deriving roles from use case actor definitions, and Neumann and Strembeck (2002)

propose deriving roles from scenarios of the work-process. All these approaches focus

on deriving roles from tasks, and largely ignore the wider organisational context.

3.3 Relating Actors to the Organisational Context in Requirements

Models

In the last chapter we reviewed some key contributions with regard to modelling

access policies in requirements models. Having now additionally reviewed the

literature on organisations and security, it is now useful to revisit and explore in more

depth the problem we highlighted in chapter 2 with regard to access policy definitions

using actors.

The actor or agent is a key to the definition of access policies. Access policies are

restrictions on the user, and in requirements models agents or actors are used to

represent human users. Actors or agents are generally synonymous with roles. Only in

scenarios does it make sense to model a specific individual, in abstract models we use

roles. In a library system, an example used to demonstrate KAOS (Dardenne et al.,

1993), two actors defined are the librarian and the borrower. Herein however lies a

significant problem, and that is how do we define a role precisely? In the library

system it maybe obvious, but this is not always the case, as He et al. (2006) in their

- 60 -

Chapter 3 The Organisational Context and Access Policies

approach to role engineering highlighted in applying their approach in practice.

Certain assumptions maybe made about a role by a stakeholder that are not explicit in

the name. Taking the example of the family doctor presented by Liu et al. that we

reviewed in the previous chapter; maybe there are doctors of different seniority in the

practice, and in describing what a family doctor can do, the stakeholder may

implicitly be referring to a senior doctor, but unless this is raised by the analyst, this

will be missed out. Terminology may also be important; for example is family doctor

the only term we can use to describe this role? What about general practitioner, or just

plain doctor? Would these be wrong or right?

The problem becomes clearer when we consult the literature on role theory

(Biddle, 1979). A role is nothing more than expectation of some behaviour, and has as

much to do with perception as a formal definition. What is this behaviour, and where

do these expectations arise? The fact is that roles are social phenomena and as such do

not have precise formal definitions. The problem is compounded by the fact that users

will adopt multiple roles and vice-versa; furthermore individuals will interact with

each other depending on the roles that they are adopting (Handy, 1985).

However languages specifically developed for specifying access policies, such as

Ponder, can map the division of work in terms of subject and target domains, and the

organisational hierarchy can be modelled as management structures. Thus in Ponder,

for example, we can define policies that satisfy the principles of minimum privileges,

as well as delegation and revocation of authority, whereas in requirements models,

such as i* framework and KAOS, we can not. Researchers in security have also

explored the problem of what roles are, Moffett and Lupu’s separation of concerns

reduce the ambiguities that can occur in RBAC policy definitions.

- 61 -

Chapter 3 The Organisational Context and Access Policies

3.4 Chapter Summary

In this chapter we began with a review of the organisational literature.

Organisations vary but we can generalise about organisational structure; in particular

organisational groupings are based around functional and marketing characteristics.

An important way in which organisations vary is through culture, ranging from

informal structures to larger more formal structures where work is governed by

procedures. These principles provide a reference point for identifying modelling

concepts.

We reviewed access control frameworks, and in particular the concepts used in

policy languages. Groups are a key way in which policies are formulated, and which

map onto the groups of an organisation; however groups themselves are inadequate

for defining requirements, as they are based on instances, and hence entail defining

policies for every group in the organisation. Roles can provide a useful abstraction,

and the research in security has demonstrated how they can be used to relate users to

the organisational context, separating the concerns of authority and function.

We then revisited the problem of using actor definitions in current requirements

models as a basis for defining access policies. We observed that an actor is in effect a

role, but in contrast to policy frameworks, requirements modelling frameworks do not

have an adequate link to the organisational context. A role is a social phenomenon

open to interpretation, and requirements modelling approaches do not offer us a way

of ensuring that the actor’s role definition is precise. In policy frameworks such as

Ponder, roles and subjects are directly derived from the organisational context, and

thus it is possible to define policies that are based on management control principles

such as the minimum privileges principle and delegation.

- 62 -

Chapter 3 The Organisational Context and Access Policies

There is a need to define the organisational context, to which we need to link to

actor definitions, and to identify concepts with which we can model this

organisational context. It is the organisational context, which potentially provides a

framework of reference to clearly identify the obligations assigned to a specific user,

and the authority that he can exercise.

Chapter 4

The i* Framework and Formal
Tropos

One of our research objectives is to extend an existing requirements modelling

approach. In this chapter we review in more detail the i* framework, a requirements

modelling approach that we extend in chapter 6. In chapter 2 we reviewed different

approaches to modelling. We identified different paradigms; including goal based

approaches, approaches around the organisational context, and scenarios. In particular

we identified a class of requirements modelling approaches, which are based on the

organisational context. Of these approaches we selected the i* framework for

extension as it has advantages over other approaches; it is supported by a formal

model and tools for representing and analysing models.

Originally devised as an early approach to requirements analysis to explore

alternatives in the early phases of requirements analysis, as we mentioned in chapter

2, it has recently become incorporated into the Tropos methodology. The Tropos

methodology covers early and late requirements analysis, as well as architectural and

detailed design. However we are really only interested in the early requirements phase

and the i* framework, as we are focusing on the specification of requirements of

access policies. The i* framework is a semi-formal approach to requirements analysis

based on the use of diagrams to model requirements; recently, however, the i*

framework has been formalised in the Tropos methodology and is known as formal

- 64 -

Chapter 4 The i* Framework and Formal Tropos

Tropos. The formalisation of the i* framework is particularly interesting as we can

reason about it.

In this chapter we first of all review the i* modelling language in more detail, and

then the formal version of the i* framework, formal Tropos.

4.1 Introduction to a Case Study: A Software Project

To illustrate the i* framework and formal Tropos we use a case study. This case

study is based on an example in the literature (Sandhu et al., 1996) and the author’s

own experience. It concerns a software project, and access to the project resources,

relating the roles of project manager, programmer, and test engineer.

4.2 The i* Framework

The i* framework, which we reviewed in chapters 2 enables us to model

dependencies, which is done at two levels.

Project
Plan

Communicate
Problems

Project
Manager

Programmer

Deliver
Software

Implement Software
Requirement

Figure 4.1 i* Framework Strategic Dependency Diagram

- 65 -

Chapter 4 The i* Framework and Formal Tropos

Resource Dependency

Soft Goal Dependency

■o— Goal Dependency

■ o - Task Dependency

Actor

Agent

Role

Position

Figure 4.2 i* Framework Symbols in Strategic Dependency Diagrams

The first level is modelled as a Strategic Dependency (SD) diagram, as shown in

figure 4.1. The meanings of the symbols are shown below in figure 4.2. The SD

diagram models how actors depend on one another, to carry out tasks, provide

resources or fulfil goals.

- 66 -

Chapter 4 The i* Framework and Formal Tropos

An actor can actually be an agent, role or position, where an agent is a physical

entity such as a human, a role is defined as an abstract actor that can be adopted by a

physical agent, such as conducting a task, and a position represents a set of roles that

can be assigned to an agent. So for example we could define Jim Smith as an agent,

who is as an instance of the agent Qualified Software Engineer representing a person

with the capability to program, and who occupies the position of Programmer, and a

couple of roles associated with the position of Programmer, such as Implement

Requirement, and Write Code. This is represented in figure 4.3.

Occupies
Programmer

INS Qualified
Software
Engineer

Jim Smith

Write
Code

CoversPart
Implement
Requirement

Figure 4.3 i* Framework Actors

At another level is a Strategic Rationale (SR) diagram, which explores a single

actor, modelling the internal relationships within an actor, an example of which is

shown in figure 4.4. This diagram shows an actor’s boundary, and a goal internal to

the actor Programmer to achieve the goal of providing Software, which is dependent

on carrying out the task of Writing Code. This task depends on the resource Program

Module. In chapter 2 we described how the actor boundary as proposed by Liu et al.

(2003) can be used to define a policy, where the actor has the right to perform tasks

and access resources defined within the boundary.

- 67 -

Chapter 4 The i* Framework and Formal Tropos

Programmer

Develop
Softwarez

Write Code

Program
Module

The symbols have the following meaning:

Actor boundary

Task Decomposition Link

Means-End Link

Resource

Goal

Task

Figure 4.4 i* Framework Strategic Rationale Diagram

In representing an access policy this diagram exhibits a similar weakness to the

diagram we reviewed in chapter 2 of the access policy for a family doctor. This policy

describes the access to the resource of a Program Module, to perform the task Write

- 68 -

Chapter 4 The i* Framework and Formal Tropos

Code, but this restriction is only complete when it includes the organisational context

of Project, which is not represented on this diagram. A programmer should not be able

to access program modules of any project.

4.3 Formal Tropos

The use of formal Tropos in order to extend the i* modelling language has been

proposed by Fuxman et al. (2001). The key motivation for the extensions to the i*

framework is to utilise the advantage of formal methods in order to perform reasoning

on requirements models, and hence verify the properties of a model and identify

inconsistencies.

Formal Tropos describes the relevant objects of the modelled domain and has two

layers. The outer layer models the objects as classes, whereby a class can be an actor,

dependency or entity. Entities do not exist in the i* framework and are used to

represent elements that do not appear in the model as they are not directly related to

the actors’ strategic goals. Attributes in the class definitions represent relationships

between classes. The intentional relationships between actors are represented as

dependencies, which can be goals, soft-goals, tasks or resources. The inner layer of

the formal Tropos language is identical to the inner layer used in the KAOS

framework, which is a first order predicate language with temporal constraints. The

following standard first order predicate and logical operators are used:

V for all, 3 there exists, => implies, a and, v or, <=> equivalent, -> not

Examples of the temporal operators are as follows:

0 at some time in the future ♦ at some point in the past

o in the next state • in the previous state

□ always in the future ■ always in the past

- 69 -

Chapter 4 The i* Framework and Formal Tropos

0 <d sometime in the future within deadline d

□ <d always in the future up to deadline d

The inner layer of Tropos is used to define constraints on the class definitions.

First order logic quantifiers V and 3 can be used to range over all instances of a class;

in addition each instance of a class may express properties about itself using the

operator self.

In addition to class definitions, Tropos provides formulae that describe properties

of the system as a whole. There are system invariants that hold in all states of the

system, there are system assertions that hold on all executions, and there are system

possibilities that hold on some possible behaviours of the system.

To demonstrate formal Tropos we have translated a part of the i* dependency and

strategic rational diagrams above as follows:

Entity Software Requirement
Attribute approved: Boolean
Attribute submitted: Boolean
Attribute constant pm: Program Module

Entity Program Module
Attribute completed: Boolean

Actor Programmer
Goal Develop Software

Mode Achieve
Fulfilment definition:

Visr: Implement Software Requirement,
isr.depender = self => 0 isr.sr.pm.completed

Actor Project Manager
Goal Manage Project

Mode Achieve
Fulfilment definition:

Visr: Implement Software Requirement,
isr.dependee = self => 0 isr.sr.pm.completed

- 70 -

Chapter 4 The i* Framework and Formal Tropos

Dependency Implement Software Requirement
Type Goal
Mode Achieve
Depender Programmer
Dependee Project Manager
Attribute sr: Software Requirement
Creation

trigger sr.submitted
condition sr.approved

Fulfilment
condition for depender sr.pm.completed

In order to define the formal specification we have defined Software Requirement

and Program Module entities. The entity Software Requirement has boolean

attributes, approved and submitted to represent the states. The third attribute pm

relates a Software Requirement to a Program Module. The keyword constant means

that an association between a Software Requirement and a Program Module can not

be changed.

We have defined the goal dependency Implement Software Requirement between

the dependee, Project Manager, and the depender, Programmer. This has a modality

of achieve. That means this goal needs to be satisfied once. The other modalities are

avoid, which is a goal to prevent a specified condition from occurring, maintain is a

goal that continuously has to be satisfied, and maintain and achieve, which is a goal

that has fulfilment conditions that continuously need to be satisfied.

The goal dependency in the example above has a creation condition, which is a

constraint imposed when a dependency is created. In this example the software

requirement must have been approved. There is also a creation trigger, which

represents the condition that will cause the dependency to be generated. In this case

this occurs when a sofware requirement is submitted. Fulfilment definitions are

constraints that define conditions for the satisfaction of a dependency. In this example

Chapter 4 The i* Framework and Formal Tropos

this is achieved when the depender, the programmer, has completed the the program

module associated with the implementation of the software requirement.

In the example we have also defined a goal, Manage Project, associated with the

project manager. This goal has a fulfilment condition that states, for all dependencies

of type Implement Software Requirement for which the project manager is the

dependee, the program module associated with the software requirement must be

completed at some time in the future. A second goal, Develop Software, has been

associated to the programmer; this is almost identical to the previous goal defined for

the project manager, except that the programmer is the dependor.

It should be noted that there are number of features in the i* framework which

have not been incorporated into formal Tropos. The differentiation between the

different types of actors, (position, role and agent), have not been included. Formal

Tropos does not currently support the modelling of SR diagrams; i.e. means-end

relationships and task decomposition links that exist between tasks and the other

elements of the framework. This means that currently access policies, as proposed by

Liu et al. (2003), can not be defined using formal Tropos.

4.4 Formal Analysis in Tropos

A tool has been developed for analysing specifications in Tropos. The tool can

analyse all possible executions of the system. It checks that assertions and possibility

formulae are enforced, it does this by looking for counter examples. If a counter

example is found it is reported.

For example in the model above we can define an assertion, that a progam module

should not be completed if the software requirement has not been approved, which

would be specified as follows:

- 72 -

Chapter 4 The i* Framework and Formal Tropos

Dependency Implement Software Requirement
Fulfilment

assertion condition for dependee
sr.pm.completed => sr.approved

This assertion is satisfied due to the constraint in the creation condition.

4.5 Chapter Summary

In this chapter we have reviewed the i* framework and formal Tropos,

highlighting the weakness of defining access policies in an i* model through a case

study. We first gave an overview of the two types of dependency diagrams that exist

in the i* framework: SD diagrams and SR diagrams. We then reviewed formal

Tropos, a formal specification language to represent i* models. We highlighted the

fact that formal Tropos does not currently allow us to represent SR models. We then

reviewed how analysis in formal Tropos is supported by a tool.

- 73 -

Chapter 5

A Framework for Modelling
Access Policies

This chapter describes our framework for modelling access policies. This

framework consists of a meta-model that describes domain independent abstractions,

and how they relate to one another. These abstractions allow us to represent the

organisational context, and to model how users relate to the organisation. It includes a

set of constructs for modelling policies and defining scenarios. In particular, we

present policy constructs that enable us to define restrictions that satisfy the principle

of minimum privileges. Invariants allow us to check the correctness of domain

definitions, and to check that scenarios are consistent with policy definitions.

We first introduce a case study. In section 5.2 we justify and introduce the Z

notation we have used to develop the framework. In section 5.3 we then describe the

rationale of the framework; i.e. the principles for defining the organisational context

with an explanation of the organisational domain abstractions, and how we relate

them to users and define policies. In section 5.4 we present the meta-model,

comprising meta-concepts and relations between the meta-concepts, and the

constructs that enable us to define policies and scenarios. In section 5.5 we present the

heuristics for defining and verifying policies. We present these heuristics as a set of

steps that could be used as a basis for a method, using the case study as an example.

We conclude with a chapter summary.

- 74 -

Chapter 5 A Framework for Modelling Access Policies

5.1 Introduction to a Case Study in the Medical Domain

The presentation of the framework in this chapter is illustrated through a case

study in the medical domain, concerning the minimum privileges policy for access to

medical and nursing records. It is based on discussions with medical and nursing staff

who have worked in hospitals. The hospital and members of staff that we use in this

example are hypothetical.

5.2 Framework Modelling Notation

5.2.1 Review of Formal Notations

In developing the meta-model for the framework, a language is required to express

and reason about it. An important selection criterion is the degree of formality of the

language. Requirements can be expressed using formal specification languages, semi-

formal approaches, or informal representations (Jarke et al., 1993). The purpose of

our framework is to define what meta-concepts we require to represent policies, and

how the constructs can be formulated. Formal notations provide us with the key

advantage of precise and unambiguous representation. Another objective of our

research is to reason about our models. In particular we want to be able to verify the

consistency of scenarios with policies. Formal notation enables us to do this more

easily.

There are however many different formal notations to choose from (Clarke &

Wing, 1996; van Lamsweerde, 2000a). In this research we are primarily concerned

with defining restrictions to maintain a secure state. There are a number of languages

that are based on the paradigm of defining admissible states; these include Z, VDM

and B (van Lamsweerde, 2000a), and their variants (Buchi, 1998). They enable us to

- 75 -

Chapter 5 A Framework for Modelling Access Policies

define invariants constraining the system at any point in time. The languages are very

similar; for example, B was derived from Z (Carnot et al., 1992). Z however does

differ from VDM and B in that invariants can be defined that apply to an entire

schema, which means that preconditions in Z are implicit. In contrast, in VDM (Jones,

1990) and B (Carnot et al., 1992), the preconditions need to be explicitly defined for

functions. This is one of several aspects why VDM and B are more akin to

conventional programming languages, and hence why refinement into code is easier

with these languages. Indeed one of the motivations for B was improved refinement

into code, and hence programming constructs were added to the mathematical

notation. We, however, are interested in defining the properties of a framework, and

the nature of Z as a pure specification language (Buchi, 1998), with a purer

mathematical notation, is therefore more appropriate.

5.2.2 Z Notation

We only use a subset of the Z languauge, which we now introduce. A

comprehensive description of the Z notation is given by Spivey (1992).

[A] basic type definition; A is a basic type.

a: A variable definition; this introduces the variable a of type A.

C = [a: A; b: B] definition of a composite type; C is composed of two
components, a and b of types A and B respectively.

c.a selection operator for a composite type; given a variable c of
type C, c.a selects the component a.

A a B conjunction operator; this expression is true if both A and B are
true.

A v B disjunction operator; this expression is true if either A or B is
true.

A => B implies; if A is true then B is also true.

- 76 -

Chapter 5 A Framework for Modelling Access Policies

A = B

A* B

Va: A . B

3a: A . B

3a: A • B

{a, b, c}

a g A

A c B

0

A ~ B

A ^ B

A- » B

a b

dom R

ran R

R+

equality; A equals B.

negation of equality; A is not equal to B.

universal quantifier; for all a in A, B is true.

existential quantifier; for some a in A, B is true.

negation of the existential quantifier; for no a in A, is B true.

set declaration; this declares a set containing the members, a, b,
and c.

set membership; a is a member of A.

subset; A is a subset of B or equivalent.

empty set symbol; this represents a set that contains no
elements.

binary relation; this represents a set of relations between a set of
type A, the domain, and a set of type B, the range.

function; this represents a set of relations between a set of type
A, and a set of type B. Each member of A relates to one member
in B.

partial function; this represents a set of relations between a set
of type A and a set of type B. Each member of A relates at most
to one member in B; i.e there may be members of A that do not
relate to members of B.

maplet; this represents an element in a relation, denoting that a
relates to b.

domain of a relation; this denotes the set of all the elements in
the domain of a relation. If the set R relates X to Y, the domain
is X.

range of a relation; this denotes the set of all the elements in the
range of a relation. If the set R relates X to Y, the range is Y.

transitive closure of a relation; if R is a relation that relates
elements of the same type, and contains x y and y »-» z, then
R+ contains R and all indirect relations; i.e. x z.

- 77 -

Chapter 5 A Framework for Modelling Access Policies

R* reflexive transitive closure of a relation; if R is a relation that
relates elements of the same type, then R* contains R+ and in
addition relates all members of X to themselves i.e.; x ^ x.

R (A) relational image; this represents a subset of the range of the
relation R. This subset contains those members of the range of
R, which are mapped to members of the domain in R contained
in the set A; i.e. A is a restriction on the domain of R.

5.3 Rationale of the Framework

Before formally defining our framework, we first explain its rationale; i.e. what is

it that the framework is to achieve, and the reason for the choice of meta-concepts.

Our framework has been developed to focus on policies that ensure compliance with

the principle of minimum privileges. The selection of the minimum privileges

principle as a focus of the research was justified in chapter 2.

The meta-model of our framework allows us to define organisational policies,

whereby a policy in this meta-model is an assignment of a task to a role. This

assignment of a task to a role reflects the assignment of an obligation to a member of

the organisation by its management to carry out an activity. As we reviewed in

chapter 3, large organisations have formal structures, activities are assigned to roles

rather than specific individuals. Which ever individual adopts the role will then

assume the obligation to execute duties associated with that role, and therefore will

need access to resources associated with those duties. The principle of minimum

privileges states that individuals must only have access to resources they require to

execute their duties. Hence a set of policies satisfying this principle will define

precisely which tasks on which assets will be executed by which roles.

Whereas tasks and assets are unambiguous, and as we reviewed in chapter 2, their

definition is subject to analysis techniques that are well established, the definition of

- 78 -

Chapter 5 A Framework for Modelling Access Policies

roles is problematic due to the fact that roles are subjective social phenomena. In

order to solve this problem the framework relates roles to the organisational context.

In chapter 3 we identified two key dimensions by which organisations are

structured, along the lines of authority, and according to the division of work, and the

fact that the division of work is based on a mixture of functional and market

characteristics. The organisation is composed of groups each assigned a function and

market with a hierarchical structure. The key therefore to defining a role precisely is

to link a role definition to the function, an organisational domain for the market, and

the level of authority. We can illustrate this with an example of a hospital.

Within a hospital two key functions are medicine, the function performed by

doctors, and nursing, performed by nurses. These represent two key functional groups

within the hospital. Nurses are assigned to wards, which effectively represent a

division of work based on markets, where the patients in a ward represent the market

being served by the nurses, and would be represented as an organisational domain in

our framework. Doctors are formed into groups led by consultants, and each

consultant carries responsibility for patients referred to him. Thus patients referred to

the consultant represent the market served by the consultant, and his subordinates

within the organisational domain of the consultants group. Within these groups are

seniority levels, such as the consultant, who manages registrars, and within the

nursing function a ward sister is in charge of staff nurses on the ward. So in this

example we can define the role of consultant medical specialist, which has a function

of medicine, an organisational domain of consultant group, and authority level of

consultant, and a further role of senior ward nurse that has a function of nurse, an

organisational domain of ward, and authority level of sister.

- 79 -

Chapter 5 A Framework for Modelling Access Policies

Using these roles we can then define policies, as we described above, by assigning

them to tasks. So we can define the task, read medical record, which has an asset

dependency of medical record, and the policy is then defined as an assignment of the

role consultant medical specialist to the task, read medical record. The policy allows a

consultant to read medical records of patients referred to him; i.e. those medical

records of his referred patients are assigned to the same organisational domain.

5.4 Framework Meta-Model

5.4.1 Metal-Model Overview

The framework consists of a meta-model that describes domain independent

abstractions, which we refer to as meta-concepts, and how they relate to one another.

Policies are defined using domain concepts by instantiating the meta-concepts.

Examples of meta-concepts include role, and organisational function. An example of a

domain concept is a consultant medical specialist, which is an instantiation of the

meta-concept role. A policy is verified by instantiating domain concepts, and

checking whether the policy is consistent with that instantiation. For example,

Greenfield Hospital is an instantiation of the organisational domain, hospital.

5.4.2 Metal-Concepts

We now introduce the formal definitions of the meta-concepts. Since policies

define restrictions on access to valuable information assets, and such access is

required to carry out tasks, we need the meta-concepts of asset and task:

[Asset] An asset represents a resource that we wish to protect.

[Task] A task represents the activity that an organisational unit or individual carries

out.

- 80 -

Chapter 5 A Framework for Modelling Access Policies

In order to describe restrictions with respect to individuals, we also need the meta

concepts of agent and role:

[Agent] An agent represents a physical person.

[Role] A role represents an assignment of an obligation, of performing some function,

which is a composite element representing the organisational function, organisational

domain, and authority.

As we need to link a role to the macro-organisational context, we also need some

additional meta-concepts:

[Org_Function] An organisational function represents a functional grouping within an

organisation. Members of a functional grouping will be expected to carry out tasks

that will be assigned to this group.

[Org_Domain] An organisational domain represents a market based grouping; i.e. a

grouping that is assigned a market to serve, such as a set of clients in a specific

geographic location. An example of this would be a hospital, which serves patients in

its locality.

[Authority] A level of authority represents the seniority of a role.

The meta-concept role as described above is a composite of authority,

organisational function, and organisational domain, and is defined formally as

follows:

Role = [authority: Authority; org_function: Org_Function; org_domain: Org_Domain]

A key decision in defining this meta-model was to define a role as a composite

element representing the organisational function, organisational domain, and

authority. As we reviewed in chapter 3, a role can have many meanings, it is indeed

anything that conveys behaviour, which can lead to ambiguous definitions. Defining a

role as a composition of organisational elements removes this ambiguity. It provides a

- 81 -

Chapter 5 A Framework for Modelling Access Policies

precise link to the organisational context. These organisational elements are defined,

so that they can be derived from the organisational structure.

Organisational functions are derived from groupings based on function;

organisational domains are derived from groupings based on marketing

characteristics, and authority based on the hierarchical relationships within these

groups. Referring to the example introduced earlier, in a hospital, the two key

organisational functions are nursing and medicine. The organisational domain

represents the grouping based on market characteristics, in this case the hospital that

serves a local community, which itself is part of a regional health authority. The

hospital is divided into wards, which are organisational domains to which nurses are

assigned.

5.4.3 Inheritance and Aggregation Hierarchies

We have also introduced inheritance hierarchies for organisational functions, and

aggregation hierarchies for organisational domains and tasks. The inheritance

hierarchy for organisational functions was introduced to model the characteristic that

groups are often structured according to an increasing level of specialisation. Thus the

medical specialists of a hospital are divided into physicians and surgeons, which are

in turn divided into groups with a further level of specialisation, such as cardiologists

or haematologists. The inheritance property allows us to model common

characteristics of medical specialists. This is useful when we define policies. For

example all medical specialists keep medical records, so we can define a policy for

medical staff, without the necessity to define a policy that is repeated for each

speciality. Since policies are defined on roles, the inheritance relationship also exists

between roles, where if a role inherits from another a role it has the same

- 82 -

Chapter 5 A Framework for Modelling Access Policies

organisational domain, and authority, but different organisational functions that are

themselves related through inheritance.

The inheritance between organisational functions is formally defined as follows:

inhf: Org_Function Org_Function

The inheritance of roles is represented by the following function:

inhr: Role - » Role

The domain role inherits from the range role, and likewise for organisational

functions.

Formally, to determine whether a role inherits from another, we need a relational

image on a transitive closure. So, to specify the condition that a role, role2, is

inherited by rolel we can write:

role2 e inhr+({rolel})

If a role has an organisational function that is inherited from an organisational

function of another role, and these two roles have an identical organisational domain

and level of authority, then there exists likewise an inheritance relationship between

the two roles.

The aggregation hierarchy for organisational domains allows us to model an

organisational structure based on marketing characteristics. This enables us to capture

the division of work based on markets (Mintzberg, 1992). As we described above,

hospitals have wards each representing an organisational domain, and the hospital is

itself an organisational domain. Thus if we define a policy for a hospital manager to

access staff records, then this allows him to access records within each ward. This

aggregation hierarchy allows us to define this property. Formally this is expressed as:

aggd: Org_domain Org_Domain

- 83 -

Chapter 5 A Framework for Modelling Access Policies

This function has the aggregated organisational domain as the range.

There are a number of constraints related to these relationships that are useful, to

ensure consistency. Organisational functions and roles can not inherit themselves,

similarly an organisational domain can not be an aggregation of itself. These three

constraints are defined respectively as follows:

Vof: org_function • of e inhf ({of}) defines an organisational function can not inherit

itself.

Vr: role . r g inhr+ ({r}) defines a role can not inherit itself.

Vod: org_domain • od e aggd+ ({od}) defines an organisational domain can not be an

aggregation of itself.

The following invariant states that a role, role2, that is inherited by rolel must

have an organisational function that is inherited by the organisational function

assigned to rolel, and must have an identical level of authority and organisational

domain.

Vrolel; role2: role • role2 e inhr+({rolel}) => role2.org_function e
inhf ({rolel.org_function}) a role2.org_domain = rolel.org_domain a

role2.authority = rolel.authority

5.4.4 Levels of Authority

The meta-concept Authority, as part of a role, represents the seniority of that role.

If we want to represent the organisational hierarchy as proposed by Moffett & Lupu,

(1999), then we need to identify the hierarchical relationships between roles that

represent the lines of authority. In fact for the purposes of modelling minimum

privileges we do not need to represent the hierarchy; however, we do need to

represent it if we are to extend our framework to model other principles, such as

Chapter 5 A Framework for Modelling Access Policies

delegation. So, in order to capture the lines of authority, we introduce the function

senior, which models the seniority as follows:

senior: Authority Authority

The function senior maps junior levels of authority to senior levels; i.e. a junior

level can at most map to one senior level in a single organisational domain. In matrix

or project based organisations an individual can be assigned to more than one group

(Handy, 1985), and hence report to more than one superior. This can potentially be

represented in this framework by assigning an agent multiple roles in different

organisational domains.

There is one constraint that we have defined with respect to seniority

relationships, and that is that a level of authority can not be senior to itself. This is

defined as follows:

Va: Authority • a g senior+ ({a})

5.4.5 Organisational Assets and Tasks

Tasks can often be subdivided. It is important to model this, because if a task is

assigned to an individual, then this will entail carrying out all its constituent subtasks.

This subdivision can be represented as an aggregation hierarchy for tasks, which

enables us to define a policy for a composite task. Formally the task aggregation is

defined as follows:

aggt: Task <-» Task

Sub-tasks are defined as the range.

Tasks can be divided down to the lowest level of granularity, to the point at which

they represent a single action, where the action can be assigned to an asset or group of

assets. Tasks at the lowest level in the aggregation hierarchy can be mapped onto

- 85 -

Chapter 5 A Framework for Modelling Access Policies

actions or tasks in existing requirements models. The relationship between tasks and

assets is represented by a task asset dependency relationship:

task_asset_dependency: Task «-> Asset

Assets belong to organisational domains. This reflects the subdivision of work

based on marketing characteristics. We represent this as:

asset_domain: Asset —> Org_Domain

There is a constraint that we have defined with respect to task aggregation and that

is that a task can not be aggregated by itself:

Vt: Task • t e aggt+ ({t})

5.4.6 Policy Definitions

We define policies using the following composite type:

Authorisation_Policy = [role: Role; task: Task]

Within this policy, there are two implicit assumptions: firstly, the policy applies to

any subtasks of the task in the policy; and secondly, the organisational domain in the

role of the policy applies to all assets associated with the task through the relation:

task_asset_dependency: Task <-» Asset

5.4.7 Policy Verification

We now explain how our meta-model can be used to verify that an instantiation is

consistent with a policy specification.

First, we create an instantiation, which in effect is a simple scenario of an agent

executing a task. In creating this scenario, not all domain concepts can be instantiated.

The level of authority and the organisational function are constants. For example, if

we define an organisational function of nursing, then this organisational function will

- 86 -

Chapter 5 A Framework for Modelling Access Policies

not change for the instantiation. Instantiations are required of organisational domains,

roles, tasks, assets, and agents. We decided to use instantiation relationships between

elements of the same type, which is an approach adopted in current requirements

modelling frameworks such as the i* framework and KAOS. We initially explored

using separate types for instantiated elements, and found that this added unnecessary

complexity; in any case we need instantiation relationships, and this alone allows us

to differentiate between domain definitions and instantiated elements.

An organisational domain instantiation will represent a specific organisational

unit. For example, a hospital has wards, a ward is a domain description of an

organisational unit, but ward A is an instantiation. Since an organisational domain is a

composite part of a role, roles also need to be instantiated. So, if we define a nurse as

an abstract role, then an instantiation of this would be a nurse in ward A.

The instantiation of organisational domains is defined formally as follows:

insd: Org_Domain Org_Domain

Where the domain Org_Domain is instantiated from the range.

The instantiation for roles, tasks and assets are defined likewise, respectively as

follows:

insr: Role Role

inst: Task Task

insa: Asset Asset

To ensure consistency we have defined the following constraints on these three

relationships, which define that an instantiated organisational domain, role, task or

asset can not be instantiated from an organisational domain, role, task, or asset

respectively, that itself is an instantiation.

- 87 -

Chapter 5 A Framework for Modelling Access Policies

Vod1; od2: Org_Domain . od2 e insd ({od1}) => insd ({od2}) = 0

Vr1; r2: Role . r2 e insr ({r1}) => insr ({r2}) = 0

Vt1; t2: Task • t2 e inst ({t1}) => inst ({t2}) = 0

Va1; a2: Asset • a2 e insa ({a1}) => insa ({a2}) = 0

A further constraint is that an abstract role not be associated with an instantiated

organisational domain, and also that an instantiated role not be associated with an

abstract organisational domain. We recognise an abstract role if the role is not mapped

to any other role through the relation insr; i.e. it is not instantiated from any role.

Similarly we can identify an abstract organisational domain if it is not mapped to any

other organisational domain through the relation insd. This constraint is defined as

follows:

2 role: Role • (insr ({role}) = 0 a insd ({role.org_domain}) * 0) v (insr ({role}) *
0 a insd ({role.org_domain}) = 0)

The following constraint is to ensure that organisational domain aggregation

relationships do not relate instantiated organisational domains with abstract

organisational domains. This constraint is defined as follows:

Vod1; od2: Org_Domain • od1 e aggd ({od2}) => (insd ({od1}) * 0 a

insd ({od2}) * 0) v (insd ({od1}) = 0 a insd ({od2}) = 0)

To prevent instantiated roles being used in policy definitions we have the

following constraint:

2policy: Authorisation_Policy • insr ({policy.role}) * 0

This basically states there is no policy for which the condition is satisfied that the role

defined for the policy has been instantiated.

Instantiated roles are assigned to agents as follows:

role_assignment: Agent <-> Role

Chapter 5 A Framework for Modelling Access Policies

We also need to model the carrying out of a task by an agent. This we represent

via a relation performs, which defines an agent performing a task:

performs: Agent <-> Task

The task in this relation must be instantiated. This is given by the following

constraint:

Vp: performs • Vtask: ran performs • inst ({task}) * 0

The assets to which agent has access are given in the task asset dependency, and must

be instantiated; furthermore they must be instantiated from assets defined in the task

asset dependency of the corresponding task from which the task was instantiated. This

is given by the following constraint:

Vp: performs • Vtask: ran performs •
Vins_asset: task_asset_dependency ({task}) •
Basset: task_asset_dependency (inst ({task})) . asset e insa ({ins_asset})

The definitions above allow us to verify that a specific instantiation is consistent

with a policy, through an invariant:

Vuser: Agent; user_task: T ask . user_task e performs ({user}) =»
Brole: role_assignment ({user}) •
Bpolicy: Authorisation_Policy • policy.role e inhr* (insr ({role})) a

inst ({user_task}) c aggt* ({policy.task}) a

Vasset: task_asset_dependency ({user_task}) •
role.org_domain e asset_domain ({asset})

This invariant is defined in the form: P => Q. P is the assertion that an agent has

executed a task (though P can be a set of mappings between agents and tasks), and Q

is the logical condition that there is a policy (or set of policies) that permits P. In order

for Q to be satisfied a policy must exist for which three conditions must be satisfied.

First, there is some role assigned to the user that is compatible with a policy. The user

role is an instantiation of an abstract role, and if this role is equivalent to or inherited

from a role defined in a policy, then the role is compatible with the policy. Second,

- 89 -

Chapter 5 A Framework for Modelling Access Policies

the task in the performs relation is instantiated from the task in the policy or one of its

sub-tasks. Third, the assets being accessed through the task_asset_dependency must

be in the same organisational domain as the user.

The invariant is therefore a check on the performs relation, which contains all

mappings between agents in the system and instantiated tasks; i.e. tasks they can

execute. If we define a mapping between an agent and a task in the performs relation,

the invariant tells us whether it is permissible. If the invariant is true, then the task

could be performed by that agent.

5.5 Heuristics for Defining and Verifying Policies

We now present some heuristics, illustrating how the framework can be used for

defining and verifying policies, elaborating the example that we introduced with

regard to policies for medical records earlier in this chapter. We present these

heuristics as a set of steps that can form the basis of a method. The steps are as

follows:

• Identify Organisational Groups

• Define Roles

• Identify Tasks and Assets

• Define Policies

• Verify Policies

In this section we now describe these steps in more detail.

- 90 -

Chapter 5 A Framework for Modelling Access Policies

5.5.1 Identifying Organisational Groups

The first step is to identify the organisational groups and how they relate to one

another, in order to derive organisational domain and functional grouping definitions.

The diagram in figure 5.1 shows the organisational structure of a hospital.

Organisational
Domain

Ward A Ward B

Theatre
Nursing

Ward Nursing Surgery Radiology

1st Surgical
Consultants Group

2nd Surgical
Consultants Group

Nursing Medical Specialities Administration

Wandsworth Hospital

Organisational
Functions

Organisational
Functions

Organisational
Domains

Figure 5.1 Organisational Structure of a Hospital

The hospital serves a local community and is effectively a grouping based on

market characteristics, with each hospital having an identical functional structure. We

therefore define hospital as an organisational domain, having the organisational

functions of nursing, medical specialities, and administration. These functions are

further specialised, so for example the nursing function is specialised into ward

nursing and theatre nursing, and the function medical specialities into specialities

- 91 -

Chapter 5 A Framework for Modelling Access Policies

such as radiology and surgery. The ward nursing function is organised into wards,

serving the patients stationed there, hence ward is an organisational domain; each

medical speciality is divided into groups headed by a consultant serving sets of

patients.

We can therefore derive the following organisational definitions. First of all we

define the following organisational functions:

nursing, medical_specialities, ward_nursing, th ea tre jw sin g , surgery, radiology:
Org_Function

We can translate these into a specialisation hierarchy using the principle of

inheritance as follows:

{ward_nursing h-» nursing, th ea tre jw s in g nursing,
surgery *-*■ medical_specialities, radiology ^ medical_specialities } e inhf

We can also identify the following organisational domains:

hospital, ward, consulting_group: Org_Domain

These relate to one another in an aggregation hierarchy as follows:

{ward i-> hospital, consulting_group ■-> hospital} s aggd

5.5.2 Identifying Levels of Authority

Within each grouping there is a hierarchical structure, which will determine how

the delegation of activities is carried out. Each consultant carries responsibility in the

form of accountability for patients in his care and can delegate treatment to registrars

within the group.

Levels of authority need to be assigned to groups. In the hospital we have the

following authority levels for doctors and nurses:

consultant, registrar, s ta f f jw se , sister: Authority

- 92 -

Chapter 5 A Framework for Modelling Access Policies

Amongst medical practitioners a registrar is junior to a consultant, and in the wards a

sister is senior to a staff nurse:

{ registrar ■-» consultant, staff_nurse •-> sister} e senior

5.5.3 Defining Roles

Having defined the above organisational context, we are now in a position to

define roles, which are composite definitions. For example in the medical specialities

we can identify two roles:

consultant_medical_specialist: Role
consultant_medical_specialist.authority = consultant
consultant_medical_specialist.org_function = medical_specialities
consultant_medical_specialist.org_domain = consultant group

registrar_medical_specialist: Role
registrar_medical_specialist.authority = registrar
registrar_medical_specialist.org_function = medical_specialities
registrar_medical_specialist.org_domain = consultant group

We note here that we have defined the role with the function of

medical_specialities rather than surgery or radiology, since the organisational function

medical_specialities is a generalisation of the other two functions, then the role is in

itself a generalisation of surgery or radiology roles. This is a convenience if we want

to use this role to specify the restriction of the access to medical records as the type of

speciality is irrelevant. We also have included the rather abstract domain definition of

consultant_group. Again this is convenience, rather than defining a role for each

consultants group in the hospital, we just simply define it using the meta-domain of

consultant_group. The relationship between a meta-domain and domain is through the

instantiation relation.

Similarly for nursing we can identify the following two roles:

staff_nurse_ward, sister_ward: Role

For the role staff nurse ward the definition is as follows:

Chapter 5 A Framework for Modelling Access Policies

staff_nurse_ward. authority = staff_nurse
staff_nurse_ward.org_function = w a rd jw sin g
staff_nurse_ward.org_domain = ward

5.5.4 Identifying Tasks and Assets

We now need to identify the tasks and their associated assets in the organisation.

For example we can identify the tasks:

nurse_patient, treat_patient: Task

The tasks nurse_patient and treat_patient entail accessing nursing records and

medical records respectively through the following sub-tasks, defined as follows:

read_nursing_record, create_nursing_record, read_medical_record,

create_medical_record: Task

The aggregation of these tasks can be modelled as follows:

{ nurse_patient ■-» read_nursing_record, nurse_patient *-> create_nursing_record ,
treat_patient ^ read_medical_record, treat_patient *-> create_medical_record } e
aggt

For the tasks read_nursing_record and create_nursing_record we can identify the

asset, nursing_record to which this task requires access, and likewise the tasks

read_medical_record and create_medical_record require access to the asset

medical_record. We then define these assets and task dependencies:

nursing_record, medical_record: Asset

{ read_nursing_record ■-> nursing_record, create_nursing_record ■-» nursing_record,
read_medical_record medical_record, create_medical_record >-» medical_record }
g task_asset_dependency

5.5.5 Defining Policies

Having defined the organisational context, roles and tasks, we now define

policies. For example, in order to restrict the access of nursing records on the hospital

wards we can define the following authorisation policy:

- 94 -

Chapter 5 A Framework for Modelling Access Policies

staff_nurse_ward_policy: Authorisation_Policy

We then set the role of the policy to a staff nurse:

staff_nurse_ward_policy.role = staff_nurse

We can then assign the task and organisational domain to this policy:

staff_nurse_ward_policy.task = nurse_patient
staff_nurse_ward_policy.org_domain = ward

5.5.6 Verifying Policies

The final step is to verify policies through scenarios. In order to illustrate this we

can define a scenario. We assume there is a nurse Judy_Smith, a staff nurse in

ward_A. We therefore define these instances as follows:

Judy_Smith: Agent
ward_A: Org_Domain

The organisational domain instantiation relationship is defined as follows:

{ward_A ^ ward } e insd

We then define an instantiated role to represent a staff nurse on ward_A:

staff_nurse_ward_A: Role
staff_nurse_ward_A.org_function = w ard jw sin g
staff_nurse_ward_A.org_domain = ward_A
staff_nurse_ward_A.authority = s ta f f jw s e

We can now assign the role to Judy Smith:

{ Judy_Smith <-> staff_nurse_ward_A} e role_assignment

We define an instantiation of an asset nursing_record_1:

nursing_record_1: Asset
{ nursing_record_1 ■-» nursing_record } e insa

The asset domain of the nursing_record_1 is assigned to the ward as follows:

{ nursing_record_1 ■-» ward_A} e asset_domain

We then define the following instantiated task, that represents the action of reading

the nursing record nursing_record_1:

- 95 -

Chapter 5 A Framework for Modelling Access Policies

read_nursing_record_1: Task
{ read_nursing_record_1 ■-» read_nursing_record } e inst

This task relates to the asset nursing_record_1 in task_asset_dependency as follows:

{ nursing_record_1 ■-> nursing_record } e task_asset_dependency

The scenario of Judy_Smith reading the nursing record nursing_record_1 can be

defined as the following mapping between the user Judy_Smith and the corresponding

instantiated task:

{Judy_Smith ■-> read_nursing_record_1 } e performs

If this is a valid performs definition, the following invariant that was introduced in

section 5.4.7 must be maintained:

Vuser: Agent; user_task: Task • user_task e perfoms ({user}) =>
Brole: role_assignment ({user}) •
Bpolicy: Authorisation_Policy • policy.role e inhr* (insr ({role})) a

inst ({user_task}) c aggt* ({policy.task}) a

Vasset: task_asset_dependency ({user_task}) •
role.org_domain e asset_domain ({asset})

In order to prove this we apply proof rules (Woodcock & Davies, 1992). We need to

check the invariant is satisfied for the agent Judy_Smith and the above defined

user_task.

Applying the V elimination rule twice, substituting Judy_Smith for user and

read_nursing_record_1 for user_task, the expression user_task e perfoms ({user}) is

true because the following holds:

read_nursing_record_1 e performs ({Judy_Smith)})

Applying the => elimination rule and the substitutions we applied above then the

following expression must be true:

- 96 -

Chapter 5 A Framework for Modelling Access Policies

3role: role_assignment ({Judy_Smith}) •
3policy: Authorisation_Policy • policy.role e inhr* (insr ({role})) a

inst ({read_nursing_record_1}) c aggt* ({policy.task}) a
Vasset: task_asset_dependency ({read_nursing_record_1}) •
role.org_domain e asset_domain ({asset})

After applying the 3 elimination rule twice, substituting staff_nurse_ward_A for

role, and staff_nurse_ward_policy for policy, we obtain the following expression that

we need to prove is true:

staff_nurse_ward e inhr* (insr ({staff_nurse_ward_A})) a

inst ({read_nursing_record_1}) c aggt* ({nurse_patient}) a

Vasset: task_asset_dependency ({read_nursing_record_1}) •
ward_A e asset_domain ({asset})

The expression staff_nurse_ward e inhr* (insr ({staff_nurse_ward_A})) expands to

staff_nurse_ward e {staff_nurse_ward}, and therefore it is true. The expression

inst ({read_nursing_record_1}) c aggt* ({nurse_patient})

expands to {read_nursing_record} c {nurse_patient, read_nursing_record,

create_nursing_record}; this is true, so we can also eliminate it.

The expression task_asset_dependency ({read_nursing_record_1}) expands to

{nursing_record_1}. After applying the V elimination rule, and substituting

nursing_record_1 for asset we obtain:

ward_A e asset_domain ({nursing_record_1})

Finally by expanding the function mapping asset_domain ({nursing_record_1})

we get ward_A, so the expression is true. Thus the scenario is consistent with the

policy definition.

- 97 -

Chapter 5 A Framework for Modelling Access Policies

5.6 Chapter Summary

In this chapter we have presented a framework for formally defining the

organisational context. It comprises a meta-model and a set of heuristics. The meta

model is based on the principles by which organisations are differentiated on the basis

of authority, functions and markets, enabling us to relate roles to the organisational

context, and define access policies. A role is defined as a level of authority and

organisational function within an organisational domain. We defined a set of

heuristics for deriving definitions for the organisational context. We then explored

how access policies can be defined to enforce the least minimum privileges principle.

Finally we showed how we can verify that scenarios are consistent with policies.

- 98 -

Chapter 6

Extending the i* Framework and
Formal Tropos

In the last chapter we presented a framework for developing access policies. What

is unique about it compared to other approaches is that it allows us to define policies

based on the characteristics by which an organisation divides work and assigns

authority.

In this chapter we address the problem of extending current requirements

modelling approaches and in particular how to integrate the conceptual framework

that we presented in the previous chapter into an existing requirements modelling

approach. There are two reasons for this: firstly, to be able to define access policies,

independent of a specific system; and secondly to be able to define the constraints on

functional requirements.

We demonstrate how formal Tropos and i* diagrams can be extended to

incorporate the principles of the framework that we presented in the last chapter. In

order to illustrate the extensions, we use the case study that we introduced in

chapter 4.

6.1 Extensions to Tropos

In this section we describe the extensions to Tropos. We have already presented

the definition of a role, which we associated with the organisational contextual

- 99 -

Chapter 6 Extending the i* Framework and Formal Tropos

elements of authority, organisational function, and organisational domain. We now

demonstrate how formal Tropos can be extended to include the meta-concepts of the

framework, how domain modelling can be carried out, and how instantiation can be

achieved in order to verify policies.

6.1.1 Representing Strategic Rational Diagrams in Formal Tropos

Fuxman et al. (2001) do not explain how a Strategic Rationale (SR) model in i*

can be represented in formal Tropos. As we described in chapter 4, an SR model is

essential to the definition of a policy in that the actor boundary is used to define an

access policy to the tasks and resources within the boundary, and hence we extend

formal Tropos accordingly.

Our representation of an SR diagram is illustrated below, using an indentation to

represent the means-end to a goal, and the resource dependency relationship to the

actor. We have added a type attribute to actor to enable us to differentiate between

agents, positions, and roles.

Actor Programmer
Type Position
Goal Develop Software

Mode Achieve
Task Write Code

Resource Program Module

We have also added inheritance, aggregation, and instantiation between domain

elements using the keywords IsA, Part, and INS respectively, as used in i*.

6.1.2 Linking Actor Definitions to the Organisational Context

Next we consider the modelling of roles and associated organisational

characteristics. Referring back to the example of Liu et al. in chapter 2, family doctor

was defined as an agent and Dr. Anthony as an instantiation of that agent. We follow

- 100 -

Chapter 6 Extending the i* Framework and Formal Tropos

the convention of i* in that an actor of type Agent maps onto an agent in our

framework, since this represents a physical agent. For representing abstract and

instantiated roles we have decided to use actor of type role in the i* framework.

The organisational context definitions, authority, organisational function, and

organisational domain can be defined as classes. In the last chapter we defined a role

as being associated with these three organisational contextual characteristics.

Although the i* framework differentiates actor definitions further into agents, roles

and positions, formal Tropos only includes actor definitions. We have added a type

definition to the actor definition to differentiate between roles, positions, and agents.

The following are definitions of the software project organisation we introduced in

chapter 4, to illustrate how to link actor definitions to the organisational context. First

of all we define two levels of authority, Project Manager and Engineer. A Project

Manager is senior to an Engineer.

Authority Project Manager

Authority Engineer
Senior Project Manager

We then define some organisational functions. In the organisational functions

below, IT Testing is a specialisation of IT Development.

Organisational Function IT Development

Organisational Function IT Testing
IsA IT Development

There are two organisational domains of Project and Sub-Project.

Organisational Domain Project

Organisational Domain Sub-Project
Part Project

With these organisational contextual definitions, we can now define the following

actors:

- 101 -

Chapter 6 Extending the i* Framework and Formal Tropos

Actor IT Project Manager
Type Role
Authority Project Manager
Organisational Function IT Development
Organisational Domain Project

Actor Test Engineer
Type Role
Authority Engineer
Organisational Function IT Test
Organisational Domain Project

The properties we described in the last chapter of inheritance and aggregation can

modelled through a Part and IsA characteristics respectively, these correspond to the

inheritance and aggregation mappings, which we introduced in the previous chapter,

as follows:

The relation inhf representing the inheritance between organisational functions is

mapped on to the IsA attribute of an organisational function definition, where the

organisational function that has the attribute, is inheriting from the organisational

function that is the attribute.

The aggregation between domains aggd is represented by the Part attribute of

organisational domain, where the organisational domain that has the attribute, is a

sub-domain of the organisational domain that is defined as the attribute. So for

example the organisational domain Sub-Project is a sub-domain of Project, which is

related in the form of a Part attribute for Sub-Project domain. The IsA characteristic

can be used to define the inheritance between the organisational functions of IT

Development and IT Testing.

In the last chapter we described an invariant which relates the inheritance between

roles and those between organisational functions and organisational domains. This

invariant also holds here, whereby, for an actor, whether a position or role, which has

an organisational function, which is inherited from an organisational function of

- 102-

Chapter 6 Extending the i* Framework and Formal Tropos

another actor with the same organisational domain means an inheritance exists

between those two actors.

6.1.3 Tasks and Resource Definitions

The task and asset definitions in the framework meta-model presented in chapter 5

correspond to task and resource definitions in Tropos. The task aggregation aggt is

mapped into the i* framework as a task decomposition link, which is not currently

defined in formal Tropos. The link between tasks and assets in the relation,

task_asset_dependency, also corresponds to a decomposition link between tasks and

resources in the i* framework. This is simply represented through defining the

resources associated with a task underneath a task definition but indented. Task

decomposition is represented in an identical way.

The following task Test Software can be divided into three sub-tasks of Prepare

Test Plan, Read Test Plan, and Update Test Result, and these subtasks in themselves

depend on the resources Test Plan and Test Result:

Task Test Software
Task Prepare Test Plan, Read Test Plan, Update Test Result

Task Prepare Test Plan
Resource Test Plan

Task Read Test Plan
Resource Test Plan

Task Update Test Result
Resource Test Result

The following task Approve Software Release depends on the resources Test Result

and Release Note:

Task Approve Software Release
Resource Test Result
Resource Release Note

- 103 -

Chapter 6 Extending the i* Framework and Formal Tropos

6.1.4 Defining Access Policies

Access policies as we defined in the last section are effectively mapped to actors

and their boundaries. In the i* framework these are represented by the tasks and

associated resources within the actor boundary.

Effectively an access policy is defined through the actor boundary. So for example

we may want to restrict the task Approve Software Release to the IT Project Manager.

The above policy definition is simply represented as an actor boundary.

We can therefore define the following actor:

Actor IT Project Manager
Type Role
Authority Project Manager
Organisational Function IT Development
Organisational Domain Project
Task Approve Software Release

6.1.5 Defining Scenarios

An agent in the framework meta-model presented in chapter 5 corresponds to an

instantiated agent in Tropos, and the role corresponds to a Tropos role definition. An

instantiated role in extended Tropos is associated with an instantiated organisational

domain. Continuing our example of a software project organisation, and focusing on

the policy to approve a software release, we can define an organisational domain as

follows:

Organisational Domain Library Administration System Project INS Project

Since this policy involves access to the assets, Release Note and Test Result, through

the task Approve Software Release, we also need an instantiation for the

corresponding task and resources:

Resource Release Note Version 1 INS Release Note

Resource Test Result Version 1 INS Test Result

- 104 -

Chapter 6 Extending the i* Framework and Formal Tropos

Task Approve Software Release Version 1 INS Approve Software Release
Resource Release Note Version 1
Resource Test Result Version 1

Having defined these instantiations we can then define the instantiation of the

role:

Actor IT Project Manager Library Admin. Project INS IT Project Manager
Type Role
Organisational Domain Library Administration System Project

The definition of an individual executing a task is as follows, assigning an agent to

an instantiated role through the relation OCCUPIES, and relating it to a task:

Actor John Smith OCCUPIES IT Project Manager Library Admin. Project
Type Agent
Task Approve Software Release Version 1

This instantiation represents a combination of the agent role assignment

(role_assignment), and agent task mapping (performs) in the framework presented in

chapter 5.

6.2 Representing the Organisational Context in i*

In this section, we propose how the formal Tropos extensions we introduced in the

previous section could be represented in i* framework diagrams.

As explained earlier in this chapter, there are two types of i* framework diagrams:

Strategic Dependency (SD) diagrams that show the dependency between actors, and

Strategic Rationale (SR) diagrams that focus on a single actor and his goals.

An example of an SD diagram is shown in figure 6.1. In order to represent the

organisational context on SD diagrams we have introduced a new symbol to represent

organisational domains, a dashed circle with a label containing the name.

- 105 -

Chapter 6 Extending the i* Framework and Formal Tropos

Sub-Project

ProjectPART
IT Project
ManagerIT Development

Engineer

SENIOR
ISA

Test Engineer

INS

INSINS

Library Admin.
Project

IT Project Manager
Library Admin. Project

OCCUPIES

Test Engineer
Library Admin.
Project

John
Smith

Organisational Domain✓

PART INS
 ^ Organisational Domain Aggregation Instantiation

OCCUPIES ISA
 ^ Occupies Relationship ^ ISA Relationship

SENIOR

______ ^ Senior Relationship

Figure 6.1 Extended i* Strategic Dependency Diagram

- 106 -

Chapter 6 Extending the i* Framework and Formal Tropos

The seniority relation is simply represented by an arrow with the keyword SENIOR

between actors. This shows that the actor in this relationship, to which the arrow is

pointing, has a level of authority more senior to the other actor for the same function

and within the same organisational domain. The other relations and symbols already

exist in the i* framework and have been reused.

We have only represented those aspects that are relevant to relating actors to the

organisational context. Other aspects of an SD diagram would be modelled as before.

The organisational function and level of authority could be represented on the SR

diagram as labels.

Diagrams of the organisational structure could be represented independently of

actors, to show how organisational domains, organisational functions, and levels of

authority relate to one another. We do not explore this however in this thesis.

6.3 Mapping Formal Tropos Policies to Framework Definitions in Z

The extensions to formal Tropos that we have introduced in this chapter are

derived from the framework meta-model that we introduced in chapter 5. In order to

apply the approach to analysis that we presented in the previous chapter, we need to

be able to translate the formal Tropos model into the equivalent constructs in Z. Table

6.1 summarises translation rules to be able to do this.

Formal Tropos Framework Definitions in Z

Meta-Concept Translation Rules

Task T T: Task

Resource R R: Asset

Authority A A: Authority

- 107 -

Chapter 6 Extending the i* Framework and Formal Tropos

Organisational Domain OD OD: Org_Domain

Organisational Function OF OF: Org_Function

Actor AC
Type Role
Authority AU
Organisational Function OF
Organisational Domain OD

AC: Role
AC.authority = AU
AC.org_function = OF
AC.org_domain = OD

Authority, Inheritance and Aggregation Hierarchies Translation Rules

Organisational Function OF1
IsA OF2

OF1:Org Function
{ OF1 >-> OF2 } e inhf

Organisational Domain OD1
Part OD2

OD1: Org_Domain
{OD1 i-> OD2} e aggd

Task T1
TaskT2
Task T3

T1: Task
{T1 ^ T2, T1 *-> T3, ...T1 ^ TN } e aggt

Task TN

Task T
Resource R1
Resource R2

T: Task
{ T ^ R 1 ,T ^ R 2 , ... T >-> RN } g
task_asset_dependency

Resource RN

Actor AC1 ISA AC2 AC1: Role
{AC1 AC2 } g inhr

Policy Definition Translation Rule

Actor A
Type Role
Task T

ATP: Authorisation_Policy
ATP.role = A
ATP.task = T

Instantiation Translation Rules

Resource A1 INSA2
Organisation Domain OD1

A1: Asset
{A1 i-> A2 } e insa
{A1 i-» OD1 } g asset_domain

Task T1 INS T2
Resource R1
Resource R2

Resource RN

T1: Task
{T1 •-> T2 } g inst
{T1 *->R1,T1 R2,... T1 i-> RN } g

task_asset_dependency

- 108 -

Chapter 6 Extending the i* Framework and Formal Tropos

Organisational Domain OD1 INS OD2 OD1:Org Domain
{ OD1 -> OD2 } e insd

Actor ACOD1 INS AC
Type Role
Organisation Domain OD1

ACOD1: Role
{ACOD1 i-> A C} g insr
ACOD1.org_domain = OD1

Actor AG OCCUPIES ACOD1
Type Agent
Task T

AG: Agent
{AG i-> ACOD1 } e role_assignment
{AG i-» T } g performs

Table 6.1 Mapping Formal Tropos to Framework Definitions in Z

We can illustrate the mapping rules with some examples. The definition for the

level of authority of Project Manager maps using the corresponding meta-concept

translation mapping rule as follows:

Authority Project Manager

Project Manager: Authority

The definition for the level of authority Engineer, which has a seniority

relationship with Project Manager, is mapped using the authority hierarchy mapping

rule. This rule is an extension of the meta-concept translation rule used above. The

mapping is as follows:

Authority Engineer
Senior Project Manager

Engineer: Authority
{ Engineer ^ Project M anager} e senior

The actor definition IT Project Manager is mapped as follows:

Actor IT Project Manager
Type Role
Authority Project Manager
Organisational Function IT Development
Organisational Domain Project

- 109 -

Chapter 6 Extending the i* Framework and Formal Tropos

IT Project Manager: Role
IT Project Manager.authority = Project Manager
IT Project Manager.org_function = IT Development
IT Project Manager.org_domain = Project

The definition for the agent John Smith maps as follows:

Actor John Smith OCCUPIES IT Project Manager Library Admin. Project
Type Agent
Task Approve Software Release Version 1

John Smith: Agent
{ John Smith >-» IT Project Manager Library Admin. Project} e role_assignment
{ John Smith >-» Approve Software Release Version 1 } e performs

The prerequisite for this rule is that the definitions for the role IT Project Manager

Library Admin. Project, the instantatiated task Approve Software Release Version 1,

and associated resources, Release Note Version 1 and Test Results Version 1, have

been defined.

6.4 Chapter Summary

In this chapter we have extended the requirements modelling language of formal

Tropos, and demonstrated how these extensions could be represented on i* SD

diagrams. We selected the i* framework for extension because of its focus on the

social context and how actors relate to one another, which is the basis for the

organisational context.

We demonstrated how the framework we presented in chapter 5 can be used as a

basis for extending the i* framework. It addresses the problems that we identified in

chapter 3 with regard to the actor definitions. In chapter 3 we highlighted the need to

have precise actor definitions as a prerequisite for defining policies, and in this

chapter we demonstrated how actor definitions in formal Tropos, an extension of i*,

can be extended to link them to the organisational context.

- 110 -

Chapter 6 Extending the i* Framework and Formal Tropos

We also showed how formal Tropos definitions can be mapped to the Z model

presented in chapter 5, and hence be used as a basis for formal reasoning.

- I l l -

Chapter 7

Automated Analysis using Alloy

In chapter 5 we presented a framework for defining policies and scenarios in Z,

and reasoning about them in order to verify that the scenarios are consistent with the

policies defined.

In this chapter we propose an automated approach using the modelling and

analysis tool, Alloy. We first justify the use of Alloy for this purpose, and introduce

the Alloy modelling language. We then illustrate how we can translate the framework

meta-model introduced in chapter 5 into the Alloy modelling language. Finally,

having translated the meta-model and access policy constructs from our meta-model

into Alloy, we demonstrate how the verification of policies can be carried out.

7.1 Verification Alternatives

Two alternatives for automating the analysis were considered.

One alternative would be to use a theorem prover. There are tools which would

enable us to perform proofs in the Z language, examples of which include Z-Eves or

CadiZ. However, theorem provers are difficult to use as expert knowledge in logic

and set theory is required to be able to define a proof strategy.

A more promising alternative to formal proofs is the use of lightweight formal

checking tools, so called because they check formal models without proving

theorems, and hence requiring less expertise in logic and set theoretics than is

- 112 -

Chapter 7 Automated Analysis using Alloy

necessary for theorem provers. They can be used for validating the model as they are

supported by tools. There are essentially those tools that enable a specification to be

animated, such as IFAD (Fitzgerald & Larsen, 1998), and those that perform

exhaustive checks to determine whether assertions are adhered to, such as Alloy

(Jackson, 2004) or NuSMV (Cimatti et al., 2002). The checker tools are much more

rigorous than animation tools, as through an animation only limited scenarios can be

tested, whereas in the case of an exhaustive checker many more scenarios will be

tested. The NuSMV checking tool has been applied in the case of formal Tropos

(Fuxman et al., 2001). An advantage that Alloy has over NuSMV for this research

project, is that it is based on the Z language, employing the same logical and set

theoretic notions as Z, and hence is much easier to translate to than an NuSMV model

would be. An advantage that NuSMV has, is that it can evaluate some temporal

constraints, though not all. For the purposes of using NuSMV for evaluating formal

Tropos, Fuxman et al. (2001) extended the tool to handle additional forms of temporal

constraints, and also to be able to generate instances automatically. Since the security

constraints that we are exploring are always to be maintained, the temporal constraints

are not interesting and were therefore not a decisive factor in selecting a tool for

validation. Due to the similarities of Z to Alloy and the ease of translation, Alloy was

chosen. We used Alloy version 3.0 (Jackson, 2004).

7.2 Introduction to Alloy

The Alloy language is supported by an Alloy analyser. As we mentioned above

the Alloy language can be viewed as a subset of Z, Alloy is a declarative language

which enables the structural properties and functions of a system to be modelled.

Assertions can be defined representing properties of the system that must be adhered

- 113 -

Chapter 7 Automated Analysis using Alloy

to. The tool enables one to execute functions and so animate a model and also check

assertions hold by searching for counter examples.

7.2.1 Types and Relations

Fundamentally Alloy models are constructed from relations and atoms. Atoms are

entities, and relations are mappings between different types of atoms. In Alloy all

expressions pertain to relations and sets do not exist; they are in effect represented by

unary relations.

Basic types in Z can be translated into signatures in Alloy using the keyword sig.

A signature in Alloy represents a type of atom. So for example sig Org_Domain {}

defines the basic type of an organisational domain. An instantiation of this type would

result in an atom. The instantiation of atoms is carried out in Alloy when a model

assertion or function is executed.

Relations between atoms can be defined within the signatures; for example if we

wish to define a type asset, which is related to organisational domain, this can be

defined as a field within the signature of type asset as follows:

sig Asset {
asset_domain: Org_Domain}

This can be used as a correspondence to the following definition in Z.

asset_domain: Asset —» Org_Domain

A field can also be defined as a relation. We could therefore define the above asset

domain relation as follows:

sig Asset_Domain {
asset_domain: Asset->Org_Domain}

However defining it in this way would result in additional definitions of type

Asset_Domain, which are unnecessary.

- 114 -

Chapter 7 Automated Analysis using Alloy

Alloy enables us to define sub-signatures, which effectively represent subsets of a

specific signature, this is achieved using an extends declaration as follows:

medical_record extends Asset {}

This is useful for defining derived types such as in this case where a medical record is

a type of asset. Sub-signatures automatically inherit the properties of the signature that

they extend. A signature can be defined as one, which means that the signature

contains only a single atom. This is useful for modelling instantiations of signature

types. For example we can define some specific agents as follows:

one sig John, James, Fred, Jonathan extends Agent {}

In Z this could be equivalently defined as follows:

John, James, Fred, Jonathan: Agent

There are three special set operators iden, univ and none, which represent the

identity relation, which includes relations of each element to itself, the universal

relation, which includes all elements, and the empty relation, which contains no

element.

7.2.2 Operators and Quantifiers

Types as described in the last section represent sets of atoms; the following set

operators are available:

+ union

& intersection

- difference

For comparison there are the operators:

= equivalence

in membership

- 115 -

Chapter 7 Automated Analysis using Alloy

So for example if nurses and doctors are sets of agents and hospital_staff is a union of

nurses and doctors then the following apply:

hospital_staff = nurses + doctors

nurses = hospital_staff - doctors

In addition there are logical operators:

! negation operator, whereby !A is not A.

&& conjunction operator, whereby A && B is A and B.

|| disjunction operator, whereby A || B is A or B.

=> the implies operator, whereby A => B means if A is true then B is also
true.

<=> the bi-implies operator, whereby A <=> B means A implies B and vice-
versa.

The quantifiers are:

all A: B | C is the universal quantifier, for all A in B, C is true.

some A: B | C is the existential quantifier, for some A in B, C is true.

sole A: B | C represents that no more than one A in B exists for which C
is true.

no A: B | C represents that no A in B exist for which C is true.

one A: B | C represents that exactly one A exists in B for which C is true.

Relational operators are:

is a join between two relations. For the join p.q, it is the relation arising
by taking every combination of each tuple in p and q, and including
their join. If p is a set and q is a binary relation, then this produces the
relational image of p under q.

is the transpose operator, which reverses all the tuples in the relation.

A is the transitive closure operator. If a signature A { f: set A } contains a
relation to elements of the same type then a transitive closure of an
element x of type A contains all x.f + x.f.f + x.f.f.f...

- 116 -

Chapter 7 Automated Analysis using Alloy

* is the reflexive closure operator, which contains the transitive closure
plus the relationship of an element to itself. If a signature A { f: set A }
contains a relation to elements of the same type then a reflexive closure
of an element x of type A contains all x + x.f + x.f.f + x.f.f.f...

-> is the product of two relations. The product p->q is the relation given
by taking every combination of each tuple in p and q, and
concatenating them.

7.2.3 Invariant and Function Definitions

Invariants in the model can be defined as facts. For example the following

definition of a role has a relation insr, which relates an instantiated role to an abstract

role.

sig Role {
insr: set R ole}

fact {
all rolel, role2: Role | rolel.insr = role2 => role2.insr = none}

This fact restricts the definitions of roles such that a role can not be instantiated from

a role that is itself an instantiated role.

Predicates can be defined which describe how state changes can be enacted.

Predicate definitions include parameters, and describe how the state of these

parameters are changed. For example the following predicate describes how an

organisational domain can be added to the aggregation of another organisational

domain.

pred add_agg_domain (od1, od1\ od2: Org_Domain) {
od1 ’.aggd = od1 .aggd + od2 }

7.2.4 Recursive Relations

As we mentioned above, a relation in Alloy can be defined as a field of a

signature. If it is of the same type then we can define a recursive relation, which is

useful for representing hierarchies. Thus the following is how we define an

organisational domain and the aggregation hierarchy as a relation:

- 117 -

Chapter 7 Automated Analysis using Alloy

sig Org_Domain {
aggd: set Org_Domain}

This is equivalent to the following definitions in Z:

[Org_Domain]
aggd: Org_Domain -+> Org_Domain

In defining invariants or assertions we sometimes need to define the transitive or

transitive-reflexive closure of a relation. An example of this is the following

constraint that we defined for an organisational domain, that an organisational domain

can not be an aggregation of itself:

Vod: Org_Domain . od e aggd+ ({od})

This constraint can be defined in Alloy as follows:

fact { all od: Org_Domain | od !in od.Aaggd }

The expression aggd+ ({od}) is translated into Alloy as od.Aaggd. The join operator

acts as a relational image of od under the transitive closure of the relation aggd,

restricting the domain to od.

Although aggd is a field of Org_Domain, it can be referenced without being on the

left hand side of a join operator; the expression od.aggd gives us a set of type

Org_Domain, but aggd is the binary relation of type Org_Domain ->Org_Domain. For

example the above constraint could be defined as follows:

fact { all od: Org_Domain | od->od !in Aag g d }

7.2.5 Modules

Models can be divided into modules. Models or parts of models can therefore be

reused by defining them within a module that can then be included by other models.

There are two keywords open and use to include modules, the only difference being

that when use is used to include modules definitions, then they have to be qualified,

- 118 -

Chapter 7 Automated Analysis using Alloy

whereas with open they do not. Thus in the following example the signature

Org_Domain we defined above could be included in the module Organisation:

Module Organisation
sig Org_Domain {
■ }

This can then be included in a module that defines the predicate add_agg_domain

as follows:

Module Organisation_Functions
open Organisation
pred add_agg_domain (od1, o d f , od2: Org_Domain) {
odT.aggd = od1 .aggd + o d 2 }

7.3 Modelling Policies in Alloy

We now demonstrate how the policy framework meta-model presented in chapter

5 can be represented in the Alloy language, and how analysis can be performed.

7.3.1 Modelling the Framework Meta-Concepts and Relations

As we explained in chapter 5, the policy framework consists of a meta-model with

meta-concepts and their relations. It is these meta-concepts and relations that form the

basis of the extensions to formal Tropos. We can now demonstrate how these meta

concepts and relations translate from our Z definitions into Alloy. A diagram of the

meta-model in Alloy is shown in figure 7.1.

Meta-concepts can be represented as signatures in Alloy so for example, the meta

concept [Org_Domain] translates simply into the following signature:

sig Org_Domain {}

A similar translation applies to the other meta concepts of [Asset], [Task], [Authority],

and [Org_Function].

Inheritance and aggregation hierarchies in our Z model that are modelled as

relations, are also represented as relations in Alloy; but as described above, relations

- 119 -

Chapter 7 Automated Analysis using Alloy

must be defined within signatures; thus for example, in order to represent the relation

aggd: Org_domain -+> Org_domain the Org_Domain signature is extended as follows:

sig Org_Domain {
aggd: set Org_Domain}

Tole_assignm ent performs J role task

in s r) inhr in s tj aggt

org_function \ authority isk_asset_dependency

org_domain insa

seniorinhf sset domain

in sd ja g g d

TaskRole

Asset

Agent

Authority

Org_Domain

Org_Function

A.uthorisation_Policy

Figure 7.1 Framework Meta-Model in Alloy

Roles and policies are composite meta-concepts, and include other meta-concepts

as members. So, for example the role is defined as follows:

sig Role {
authority: Authority,
org_function: Org_Function,
org_domain: Org_Domain,
inhr: set R ole}

As we see here there are three members of type Authority, Org_Funotion and

Org_Domain, and in addition there is the role inheritance hierarchy, defined using the

relation inhr.

- 120 -

Chapter 7 Automated Analysis using Alloy

7.3.2 Policy Domain Definitions

In order to define the model for an application domain, specific definitions need to

be made. These are achieved by creating unique atoms as subsets of the meta

concepts. So for example if we wish to define ward as an organisational domain, with

hospital as an aggregation, we would define it as follows:

one sig ward extends Org_Domain {}
fact {ward.aggd = hospital}

All other domain specific definitions are made using this form of construct. If a

relation such as aggd does not relate to a set, then the range is defined as none, as in

the following example:

one sig hospital extends Org_Domain {}
fact { hospital.aggd = none}

This is necessary otherwise the Alloy tool may set the range to an arbitrary value.

7.3.3 Policy Framework Domain Instantiations

In order to instantiate domain concepts we need use the instantiation relations that

we translate from our framework meta-model in Z. So for example the Org_Domain

signature includes an instantiation relation for this purpose as follows:

sig Org_Domain {
insd: set Org_Domain}

This represents the relation:

insd: Org_domain Org_domain.

This form of instantiation also follows for tasks, assets and roles. Agents are

themselves instantiations but are assigned to instantiated roles. The following shows

an example of an agent definition that has been assigned the instantiated role of a

General Practitioner.

- 121 -

Chapter 7 Automated Analysis using Alloy

one sig Dr_Smith extends Agent {}
fact { Dr_Smith.role_assignment = General_Practitioner_Dr_Jones_Practice }

Thus if we define an instantiation of a General Practice, then as above with the

policy domain definitions we create unique atoms as subsets of the meta-concepts, but

relate them to the domain concepts, through the instantiation relations, defined as a

fact. So if Dr Jones Practice is an instantiation of General Practice, this is defined as

follows:

one sig Dr_Jones_Practice extends Org_Domain {}
fact { Dr_Jones_Practice.insd = General_Practice}

As with policy domain definitions, for empty relations we set the range to none.

7.3.4 Policy Verification

In order to verify policies in our framework as we explained in chapter 5, we use

an instantiated task that represents the carrying out of a task on specific instances of

assets, related through the task asset dependency. In Alloy we represent this via a

performs relation, which defines an agent performing a task, and is defined as a

relation on an agent through the agent signature as follows:

sig Agent {

performs: set T ask }

The policy framework invariant that we described in chapter 5 that needs to be

satisfied in order for instantiations of performs relations to satisfy policies, is as

follows:

fact {
all user: Agent, task: Task | user_task in user.performs =>
some user_role: user.role_assignment | some policy: Authorisation_Policy |
policy.role in user_role.insr.*inhr
&& task.inst in policy.task.*aggt
&& all asset: user_task.task_asset_dependency |
user_role.org_domain in asset.asset_dom ain}

- 122 -

Chapter 7 Automated Analysis using Alloy

As described above consistency checks can be made through the use of assertions.

In order to check a particular scenario an assertion can be defined. The tool will then

search for a solution that breaks the assertion; if no solution can be found, then with a

high degree of certainty we can assume that the assertion is correct.

7.3.5 Model Consistency Checks

In chapter 5 we described a number invariants that ensure the model is consistent

with principles of the framework. These include invariants such as ensuring that roles

do not inherit themselves or that instantiated elements are not used in policy

definitions. There are two alternatives as to how this can be checked in Alloy: the first

is to define them as facts; the second is to define them as assertions. The first

alternative is suitable when Alloy generates all the instantiations, as it will ensure that

the invariants are enforced. Our method of instantiation, however, is to generate them

explicitly to create specific scenarios. If a mistake is made in any of the domain and

scenario definitions, then running a check in a policy verification may give no

solution, because the invariants have not been satisfied, and not because the policy has

been correctly verified. Checking assertions that the invariants have been satisfied

will give us much greater confidence that the definitions have been made as intended.

For example to ensure that roles do not inherit themselves we can run the following

assertion:

assert check_role_inheritance {
all r: Role | r !in r.Ainhr}

In chapter 5 we introduced invariants that need to be maintained if policy and

scenario definitions are consistent. These are summarised in table 7.1.

- 123 -

Chapter 7 Automated Analysis using Alloy

Alloy Invariant Description

all r: Role | r !in r.Ainhr Defines a role can not inherit itself.

all of: Org_Function | of !in of Ainhf Defines an organisational function
can not inherit itself.

all od: Org_Domain | od !in od Aaggd Defines an organisational domain can
not be an aggregation of itself.

all rolel, role2: Role | role2 in rolel Ainhr =>
role2.org_function in rolel.org_function Ainhf
&& rolel.org_domain = role2.org_domain &&
rolel.authority = role2.authority

Defines that a role, role2, that is
inherited by rolel must have an
organisational function that is
inherited by the organisational
function assigned to rolel and must
have an identical level of authority
and organisational domain.

no role: Role | role.insr = none &&
role.org_domain.insd != none || role.insr !=
none && role.org_domain.insd = none

This defines that an abstract role (i.e.
non-instantiated) is not associated
with an instantiated organisational
domain, and that an instantiated role
is not associated with an abstract
domain.

all au: Authority | au !in au.Asenior Defines that a level of authority can
not be senior to itself.

all t: Task 11 !in t.Aaggt Defines that a task can not be an
aggregation of itself.

all a: Agent | all task: agent.performs |
task.inst != none

Defines that all tasks performed by an
agent are instantiated.

all a: Agent | all task: agent.performs | all
ins_asset: task.task_asset_dependency |
some asset: task.inst.task_asset_dependency
| asset in ins.asset.insa

Defines that all assets in the task asset
dependency of a task performed by an
agent are instantiated from assets in
the task asset dependency of the
corresponding task from which the
task was instantiated.

all rolel, role2: Role | rolel.insr = role2 =>
role2.insr = none

Defines that a role can not be
instantiated from a role that itself is
an instantiation.

- 124 -

Chapter 7 Automated Analysis using Alloy

all od1, od2: Org_Domain | odl.insd = od2 =>
od2.insd = none

Defines that an organisational domain
can not be instantiated from an
organisational domain that itself is an
instantiation.

all od1, od2: Org_Domain | odl.aggd = od2
=> odl.insd = none && od2.insd = none ||
odl.insd != none && od2.insd != none

Defines that both organisational
domains in an aggregation relation
should be both either instantiated or
non-instantiated.

all a1 , a2: Asset | a1 .insa = a2 =>
a2.insa = none

Defines that an asset can not be
instantiated from an asset that itself is
an instantiation.

no policy: Authorisation_Policy |
policy.role.insr != none

Defines there is no policy associated
with an instantiated role.

Table 7.1 Framework Invariants in Alloy

7.3.6 Mapping from Formal Tropos into Framework Definitions in Alloy

In the previous chapter we presented a mapping from formal Tropos into the

framework definitions in Z. In order to translate policies defined using formal Tropos

into Alloy to carry out an analysis, we need to adapt these mapping rules. These are

summarised in the table 7.2.

Formal Tropos Meta-Model Definitions in Alloy

Meta-Concept Translation Rules

Task T one sig T extends Task {}

Resource R one sig R extends Asset {}

Authority A one sig A extends Authority {}

Organisational Domain 0 one sig 0 extends Org_Domain {}

Organisational Function OF one sig OF extends Org_Function {}

- 125 -

Chapter 7 Automated Analysis using Alloy

Actor AC
Type Role
Authority AU
Organisational Function OF
Organisational Domain OD

one sig AC extends Role {}
fact {AC.authority = AU }
fact {AC.org_function = O F }
fact {AC.org_domain = OD }

Authority, Inheritance and Aggregation Hierarchies Translation Rules

Authority AU1
Senior AU2

one sig AU1 extends Authority {}
fact {AU1 .senior = AU2 }

Organisational Function OF1
IsA OF2

one sig OF1 extends Org Function {}
fact { OF1 .inhr = O F2}

Organisational Domain OD1
Part OD2

one sig OD1 extends Org_Domain {}
fact { OD1 .aggd = OD2 }

Task T1
Task T2

one sig T1 extends Task {}
fact { T1 .aggt = T2 ...+TN }

Task TN

Task T
Resource R1

Resource RN

one sig T extends Task {}
fact{T.task asset dependency = R1...+
RN}

Actor AC1 ISA AC2 one sig AC1 extends Role {}
fact {AC1 .inhr = AC2}

Policy Definition Translation Rule

Actor A
Type Role
Task T

one sig AP extends Authorisation_Policy {}
fact {AP.role = A }
fact {AP.task = T }

Instantiation Translation Rules

Resource R1 INS R2
Organisation Domain OD1

one sig R1 extends Asset {}
fact { R l.insa = R 2 }
fact { R1 .asset_domain = OD1 }

Task T1 INS T2
Resource R1

one sig T1 extends Task {}
fact { Tl.inst = T 2 }
fact {T1 .asset_dependency = R1 }

Organisational Domain OD1 INS OD2 one sig OD1 extends Org_Domain {}
fact { OD1 .insd = OD2 }

- 126 -

Chapter 7 Automated Analysis using Alloy

Actor ACOD1 INS AC
Organisation Domain OD1

one sig ACOD1 extends Role {}
fact {ACOD1 .insd = AC }
fact {ACOD1 .org_domain = OD1 }

Actor AG OCCUPIES ACOD1
Task T1

one sig AG extends Agent {}
fact {AG.role_assignment = ACOD1}
fact {AG. performs = T1 }

Table 7.2 Mapping Framework Z Definitions to Alloy

7.3.7 Structuring Modules

As we described above, Alloy enables the model to be divided up; this helps in

scaling the model for large applications as the model can be broken down into

manageable chunks. Figure 7.2 shows how the framework definitions represented in

an Alloy model can be divided into modules.

module scenario 1 module scenario n

module policy 1 module policy n

module framework

module organisation 1 module organisation 2 module organisation n

Figure 7.2 Module Structure of the Framework in Alloy

- 127 -

Chapter 7 Automated Analysis using Alloy

At the highest level is the module framework that includes all the meta-definitions.

An organisation can be divided up, so it is possible to split the organisational

contextual and role definitions into separate modules for parts of the organisation. So,

for example, the organisational contextual and role definitions for the IT development

department of a bank could be separately defined from those in the bank branches.

These definitions are then included in modules organisation 1 to n for n organisational

units. Then for each of these organisational units, each policy can be defined in its

own policy module. Finally for each of these policies, several scenarios can be

defined, each in its own module.

7.4 Alloy Evaluation

The key advantage of Alloy is the automated checking that the tool performs.

However it does not do this by proving the assertion as we demonstrated using Z in

chapter 5, but through a search for counter examples. If a counter example is not

found, this does not necessarily mean that the model is consistent or correct, it can

also produce this result if the model is inconsistent. It is a problem that the tool does

not display the reasoning. However by negating assertions it is possible to produce

counter examples, as we demonstrated. Examining counter examples, which the tool

displays, gives us greater confidence that a model we create is correct. Executing

assertions to check the invariants that we presented in table 7.1, are also very useful in

identifying inconsistencies.

7.5 Chapter Summary

In this chapter we have demonstrated how automated analysis can be carried out

using the tool Alloy. We began by outlining the reasons for using Alloy, firstly due to

- 128 -

Chapter 7 Automated Analysis using Alloy

the ease by which assertions can be checked, and secondly because of the similarity

between the Alloy Language and Z. We then introduced the main features of Alloy.

We demonstrated how our framework can be represented in Alloy. We showed how

assertions can be defined and used to check the consistency of scenarios to policy

definitions. Finally, we demonstrated how Alloy models can be divided into modules.

This breakdown into modules aids scalability by reducing the size of the model

required for each scenario that is to be analysed.

- 129 -

Chapter 8

Case Study: A Bank

We have already used two case studies in this thesis, the first one to introduce the

policy framework in chapter 5, and the second one in chapters 4 and 6 to illustrate

how formal Tropos could be extended. The case study presented in this chapter

demonstrates how a formal Tropos policy model can be constructed, translated into

Alloy, and analysed using the Alloy tool. The selected case study from the literature

(Schaad, 2003) explores several principles of management control, including the

minimum privileges principle, delegation, and the separation of duties, making it

particularly well suited to exploring access policies. Here we continue to focus on the

minimum privileges principle.

8.1 Case Study Description

The case study is based on an access control system of a European bank. The bank

has 50,000 employees, over a thousand branches, and provides banking services for

local communities. Schaad (2003) reviews the bank’s access control system, and how

it satisfies organisational control principles. Although the focus is on the access

control system, many of the requirements can be inferred from it. We consider the

requirements of a system for a branch, and consider a few requirements identified by

Schaad.

- 130 -

Chapter 8 Case Study: A Bank

One of the key services is that of providing credit, for example, extending an

overdraft, providing a mortgage, or offering a sum of money. Each of these involves

different actors, and different information assets. The controls to be applied to these

services also differ. We focus on the requirements of one of these services: the

provision of a sum of money. The flow diagram in figure 8.1 shows some of the steps

involved.

Evaluate
Credit

Approve
Credit

Provide Initial
Consultation

Figure 8.1 Credit Application Process

This service is carried out by the group, customer advisory services. The provision

of an initial consultation and the evaluation of credit are carried out by the customer

advisory clerks. The approval of credit is done by the advisor’s manager. The function

customer advisory services is carried out within a branch; within each branch are

several hierarchies of authority, for each of the different specialised functions. The

head of a branch is responsible for general banking services, and has a personnel

function, dealing with disciplinary matters for example, but the management of

specialised functions, such as customer advisory services, is achieved through its own

hierarchy; thus a customer advisor clerk would take instructions from a manager in

the same function to whom he is assigned rather than from the branch manager.

Another function within a branch is share trading; there is a strict separation of duties

between the functions customer advisory services and share trading within a branch.

- 131-

Chapter 8 Case Study: A Bank

Market Based

Function
Based

Function
based

Market
Based

Market
Based

Marketing Bank Operations

Regional Customer
Advisory Services

Share Trading

Regional Share
Trading

Branch Customer
Advisory Services

Customer
Advisory Services

Branch Share
Trading

Eurpopean Bank
Private Banking

Figure 8.2 Organisational Structure of a European Bank

8.2 Deriving the Policy Model

In deriving actor definitions for our policies, the first step is to define the

groupings within the organisation. The groupings form a composite structure. For the

bank this is represented in figure 8.2.

We can then identify whether a grouping represents a domain in that it exists to

serve a specific market or whether it is purely functional. From these groupings we

can then derive the organisational functions and domains that are as follows:

Organisational Function Customer Advisory Services

Organisational Function Share Trading

Organisational Domain Region

- 132 -

Chapter 8 Case Study: A Bank

Organisational Domain Branch
Part Region

Within each grouping there is a hierarchical structure. Focusing on the function,

customer advisory services, in a branch, there exist the following levels of authority.

In decreasing order of authority they are:

Authority Head of Branch

Authority Manager
Senior Head of Branch

Authority Clerk.
Senior Manager

The definition of seniority levels is necessary to distinguish roles within the same

domain and organisational function. For defining the minimum privileges it is not

necessary to know which role is senior, nevertheless, if we were to define delegation

policies, then it becomes useful.

We can now define positions within these groups, where an actor definition is

created for each level of authority. For example, the following definition shows the

Customer Advisory Services Manager position associated with the organisational

function Customer Advisory Services:

Actor Customer Advisory Services Manager
Type Role
Organisational Function Customer Advisory Services
Organisational Domain Branch
Authority Manager

A similar definition can be given for a Clerk. We can now define the tasks and the

resources associated with these tasks:

Task Initial Consultation
Resource Credit Application

Task Evaluate Credit
Resource Credit Application
Resource Credit History

- 133 -

Chapter 8 Case Study: A Bank

Task Approve Credit
Resource Credit Application

This enables us to extend our actor definitions with task assignments and hence create

policies. The minimum privileges policies associated with the Customer Advisory

Services Manager and Clerk are:

Actor Customer Advisory Services Manager
Type Role
Organisational Function Customer Advisory Services
Organisational Domain Branch
Authority Manager
Task Approve Credit

Actor Customer Advisory Services Clerk
Type Role
Organisational Function Customer Advisory Services
Organisational Domain Branch
Authority Clerk
Task Initial Consultation
Task Evaluate Credit

The authority levels of Manager and Clerk are applicable to different functional

groupings. For example, there are clerks assigned to Customer Advisory Services,

other clerks assigned to Share Trading, and so on. A manager is distinguished from a

clerk in that he has the authority to delegate tasks to clerks. In order for a clerk or

manager to be able to execute a function, they need to be assigned to a functional

grouping in a specific branch. Hence the actor definition is a composition of the level

of authority, organisational function, and organisational domain.

We can now demonstrate how the formal Tropos definitions map onto Alloy using

the rules that we defined in the previous chapter. The authority level of Manager

translates into the following Alloy construct using the corresponding meta-concept

translation rule for authority levels:

one sig manager extends Authority {}

- 134 -

Chapter 8 Case Study: A Bank

The translation of the authority level of Clerk and the seniority relationship to a

Manager maps to Alloy using the authority hierarchy translation rule as follows:

one sig clerk extends Authority {}
fact { clerk.senior = m anager}

Similarly, mappings are carried out for organisational functions, organisational

domains, tasks, and resources, which we will not repeat here. The following role

definition is mapped from the actor definition of a Customer Advisory Services

Manager using the corresponding meta-concept translation rule for an actor:

one sig customer_advisory_services_manager extends Role {}
fact { customer_advisory_services_manager.org_domain = branch }
fact { customer_advisory_services_manager.authority = m anager}
fact { customer_advisory_services_manager.org_function =
customer_advisory_services}

The extended actor definition for the Customer Advisory Services Manager,

which includes the task assignment Approve Credit represents a restriction that

translates into Alloy using the policy definition translation rule as follows:

one sig approve_credit_policy extends Authorisation_Policy {}
fact { approve_credit_policy.task = approve_credit}
fact { approve_credit_policy.role = customer_advisory_services_manager}

The prerequisite for this definition is that the role and task definitions already exist.

Similarly. For the other tasks such as Initial Consultation and Evaluate Credit, we can

also define corresponding policies.

The next step is to define an instantiation to verify the policy. In the following

instantiation, we check that a Customer Advisory Services Manager can approve the

credit of a customer of the branch to which he is assigned. First, we define two

domain instantiations for the Frankfort and Dortmund branches:

Organisational Domain Frankfurt Branch INS Branch

Organisational Domain Dortmund Branch INS Branch

- 135 -

Chapter 8 Case Study: A Bank

Then, we can define an instantiation of a Customer Advisory Services Manager in the

Frankfurt Branch:

Actor Customer Advisory Services Manager Frankfurt INS Customer Advisory
Services Manager

Type Role
Organisational Domain Frankfurt Branch

These two Tropos definitions are mapped into Alloy using the instantiation

translation rules. The following is a definition of the Frankfurt Branch that instantiates

Branch; i.e. it is a branch:

one sig frankfurt_branch extends Org_Domain {}
fact {frankfurt_branch.insd = branch }

The following definition represents the instantiated role for a Customer Advisory

Services Manager in the Frankfurt Branch:

one sig customer_advisory_services_manager_frankfurt
fact { customer_advisory_services_manager_frankfurt.insr =
customer_advisory_services_manager}
fact { customer_advisory_services_manager_frankfurt.org_domain = frankfurt}

We also need to define the instantiations of assets and tasks. We first define the

assets Credit Application and Credit History of the customer Philip Stokes. We assign

these assets to the Frankfurt Branch:

Resource Credit Application of Philip Stokes INS Credit Application
Organisational Domain Frankfurt Branch

Resource Credit History of Philip Stokes INS Credit History
Organisational Domain Frankfurt Branch

We then define instantiations of the tasks Approve Credit Application and Initial

Consultation for the credit application of the customer Philip Stokes:

Task Approve Credit Application of Philip Stokes INS Approve Credit Application
Resource Credit Application of Philip Stokes

Task Initial Consultation for Philip Stokes INS Initial Consultation
Resource Credit Application of Philip Stokes
Resource Credit History of Philip Stokes

- 136 -

Chapter 8 Case Study: A Bank

The definitions for the task Approve Credit Application of Philip Stoke and the

resource Credit Application of Philip Stokes translate into our policy framework as

follows

one sig philip_stokes_credit_application extends Asset {}
fact { philip_stokes_credit_application.insa = credit_application }
fact { philip_stokes_credit_application.asset_domain = frankfurt_branch}

one sig approve_credit_application_of_philip_stokes extends Task {}
fact { approve_credit_application_of_philip_stokes.inst = approve_credit_application }
fact { approve_credit_application_of_philip_stokes.task_asset_dependency =
credit_application_of_philip_stokes}

The translation of the resource Credit History of Philip Stokes and the task Initial

Consultation for Philip Stokes is similar.

Finally we define the scenario of Jim Smith occupying the role of the Customer

Advisory Services Manager Frankfurt executing the task Approve Credit Application

of Philip Stokes:

Actor Jim Smith OCCUPIES Customer Advisory Services Manager Frankfurt
Type Agent
Task Approve Credit Application of Philip Stokes

This agent definition is mapped into Alloy as follows:

one sig jim_smith extends Agent {}
fact {jim_smith.role_assignment = customer_advisory_services_manager_frankfurt}
fact {jim_smith. performs = approve_credit_application_of_philip_stokes}

We can now check the model by defining assertions. When a check command is

executed, Alloy searches for a counter example which breaks the assertion, and then

will display the state by which the solution is arrived at, otherwise the tool simply

states that no solution was found. For the purposes of demonstrating an Alloy check, a

false assertion is therefore more informative. We can demonstrate this with the

following assertion that Jim Smith who is a manager can not approve a credit

application.

- 137-

Chapter 8 Case Study: A Bank

assert execute_approve_creditJim_smith {
all task: approve_credit_application_of_philip_stokes, ag: jim_smith |
task lin ag.performs}

This can be checked by using the following check statement:

check execute_approve_credit_jim_smith for 4 but 2 Org_Function, 5 Task,
3 Authority, 3 Authorisation_Policy, 1 Agent

This check statement includes the number of instances that Alloy should generate

for each signature type. For example we have defined the two instances,

share_trading and customer_advisory_services, of the signature Org_Function; we

therefore limit Alloy to generating these two organisational functions. If we were to

define more than two, Alloy would generate additional instances itself; if we were to

define less, then Alloy would produce an error. A default of four is given, so that

Alloy will generate four instances of any signature type for which an explicit number

of instances has not been given.

This assertion is a negation of what is required, and therefore we expect Alloy to

find a solution. This is shown in figure 8.3.

We can now a similar assertion this time though to test whether Jim Smith can

carry out an initial consultation on the credit application. In formal Tropos this

scenario is as follows:

Actor Jim Smith OCCUPIES Customer Advisory Services Manager Frankfurt
Type Agent
Task Initial Consultation for Philip Stokes

In Alloy we define this as follows:

one sig jim_smith extends Agent {}
fact {jim_smith.role_assignment = customer_advisory_services_manager_frankfurt}
fact {jim_smith.performs = initial_consu!ation_for_philip_stokes }

- 138-

Chapter 8 Case Study: A Bank

jim_smithO
rove_creditJim_smith

role_assignment (a p p ro ve_c re d it_p o I i cy Iperforms

i rove_c re d it_of_p h i I i p_stoKi
£prove_creditJim_smith ti task ct]|tomer_advisory_services_manager_fran^tlO jrole

isk_asset_dependenoy) inst authority insr

iilip_stokes_credit_applicationp (a p p ro ve_c re d it □ ci@omer_advisory_services_manage)iO

insa ask_asset_dependency org_domain clerkO authority

org_functionasset_domain (credit_applicationO senior

asset domain managerO org_domain

Trankfurt branchO,

insd jJstomer_advisory_servicesl

branchO

Figure 8.3 Task Execution Scenario in Alloy of Approve Credit Application

The assertion and check definitions in Alloy are as follows:

assert execute_initial_consultationJim_smith {
all task: initial_consultation_for_philip_stokes, ag: jim_smith | Itask in ag.perform s}

check execute_initial_consultationJim_smith for 4 but 2 Org_Function, 5 Task,
3 Authority, 3 Authorisation_Policy, 1 Agent

This time the tool does not find an example, demonstrating that Jim Smith can not

actually carry out an initial consultation. This is consistent with the policy defined

above, that only allows clerks can perform initial consultations.

- 139 -

Chapter 8 Case Study: A Bank

8.3 Model Consistency Checks

The framework that we introduced in chapter 5 includes invariants that need to be

maintained to ensure consistency. In chapter 7 we then translated these invariants into

Alloy. For example an authority level can not be senior to itself, similarly constraints

exist to prevent circular definitions in other hierarchies, and there are constraints to

prevent instantiations being included in policy domain definitions. In this section we

demonstrate, using the case study, a couple of examples of how definitions that

violate these constraints can be identified using Alloy assertions.

The first example concerns invalid authority definitions and is as follows:

Authority Clerk
Senior Manager

Authority Manager
Senior Clerk

Here we have defined the authority level of Clerk and Manager that are both senior to

one another. These definitions violate the framework constraint that a level of

authority can not be senior to itself. This can be checked by including the constraint in

an assertion and running a check, as follows:

assert authority_level_consistent {
all au: Authority | au !in au.Asenior}

check authority_level_consistent for 4 but 2 Org_Function, 5 Task, 3 Authority,
3 Authorisation_Policy, 1 Agent

In this case Alloy finds a solution indicating that the constraint for authority levels has

been violated.

The second example concerns an invalid role instantiation definition and is as

follows:

- 140 -

Chapter 8 Case Study: A Bank

Actor Customer Advisory Services Manager Dortmund INS Customer Advisory
Services Manager Frankfurt

Type Role
Organisational Domain Dortmund Branch

Here we have defined a role that is instantiated from a role that is itself an instantiated

role. This violates a framework meta-model constraint. This can be checked using the

following assertion and running a check:

assert instantiated_role_consistent {
all rolel, role2: Role | role1.insr= role2 =>
role2.insr = n o n e}

check instantiated_role_consistentfor4 but 2 Org_Function, 5 Task, 5 Role,
3 Authority, 3 Authorisation_Policy, 1 Agent

In this case Alloy finds a solution indicating that the constraint for role instantiation

has been violated.

8.4 Evaluation of Extended Formal Tropos

For this case study it is worth reflecting on how this extended formal Tropos

improves on existing approaches.

First of all the heuristics that we proposed enabled us to derive the actor

definitions systematically, by deriving them from the organisational structure. The

approach that we have adopted begins by defining organisational functions, domains

and authority levels within these domains and hence to construct actor definitions

from these, as we have demonstrated. In this way we derived two abstract actor

definitions, customer advisory services clerk, and customer advisory services

manager, from which we could instantiate into the respective actors in a specific

branch. The current Tropos approach does not include such a set of heuristics. One

approach that does have a set of heuristics, the ReCAPS role engineering approach

proposed by He (2005) that we reviewed in chapter 2, derives role definitions from

collections of tasks. However, although they can define the functional characteristics,

- 141 -

Chapter 8 Case Study: A Bank

the seniority and organisational domains are missing. In this particular case study the

organisational domain, the branch, is vital in order to define policies based on the

minimum privileges principle. The task, approve credit, that we have modelled is

actually a step required to satisfy the principle of supervision and review, and the

seniority relationship that we have defined is necessary to differentiate between

different levels in the organisation; i.e. that the manager is supervising the clerk. The

model that we have defined also makes clear that this supervisory relationship applies

only within a branch and within the organisational function, customer advisory

services. These characteristics can not be modelled in Tropos as it currently is.

We reviewed two approaches which do include the organisational context in

chapter 2. ORDIT (Dobson et al., 1992) does have a role model which captures the

hierarchical relationships between roles; as we described in chapter 2 in ORDIT

power relationships between roles can be modelled and so enabling us to some extent

to model the delegation of obligations. However a key element is missing is the

organisational domain which means that relating a role to a branch would be not be a

part of the model. Our model has also been defined formally allowing us reason about

it and in particular verify that scenarios, such as we defined in the case study, are

consistent with the policies defined.

8.5 Chapter Summary

In this chapter we presented a case study of how the framework in extended formal

Tropos we presented in chapter 6, can be applied. The case study was taken from the

literature of a the access policies of a large European bank. We first created a model

of the organisational context, from which we then derived role definitions. We

identified a few tasks carried out by the customer advisory services in a branch and

- 142 -

Chapter 8 Case Study: A Bank

assets which require access. We then defined policies to satisfy the minimum

privileges principle with respect to these tasks and scenarios to verify the policies. We

demonstrated how the formal Tropos model can be translated into the Alloy language

and how one of the policies could be verified using an assertion. Finally we outlined

the key advantages of this approach compared to existing alternatives, in that the

inclusion of the organisation context, can enable us to define more precise policies

based on the principle of minimum privileges principle and also enables us to define

hierarchical relationships that provide a basis for the definition of principles based on

delegation, and supervision and review.

- 143 -

Chapter 9

Discussion and Conclusions

In this chapter we first present a summary of the thesis, then an analysis of the

contributions, and finally a discussion and critical evaluation of the research presented

in the thesis, which gives an account of future work.

9.1 Thesis Summary

In this thesis we have addressed the problem of modelling access policies to

ensure that security goals can be achieved, and that operational requirements are

consistent with access policies.

We first identified the importance of an organisational analysis before making

actor or role definitions in the context of modelling access policies. We highlighted

the lack of this in current modelling approaches, thus making it difficult to express

access policies precisely, and also to refine them into operational constraints.

We proposed a framework that comprises a meta-model for formally modelling

the organisational context, and deriving organisational role definitions. It also

includes a set of heuristics as to how to identify groupings, the levels of authority and

management domains, from which roles can be defined. We defined the meta-model

in Z so enabling us to reason about it, and we demonstrated how automated checking

could be carried out through translation into the specification language Alloy.

- 144-

Chapter 9 Discussion and Conclusions

We showed how this framework could be integrated into Tropos, an extended

version of the i* framework, illustrating the complementary nature of the new

framework to at least one existing requirements modelling approach.

9.2 Analysis of Contributions

The thesis makes a contribution to the modelling of access policies as

requirements. In chapter 2 we identified a key weakness with respect to modelling

policies that are derived from the principles of management control, in that actors are

not linked to the organisational context. This makes it difficult to define policies to

satisfy the minimum privileges principle. In chapter 3 we saw that policy languages

such as Ponder can define these policies, because they are based on mapping groups

and roles onto the organisational context, exemplified in Ponder by mapping groups

onto organisational domains, and defining authority as management structures.

The framework we presented addresses the need to define and verify access

policies in requirements models, rather than only being able to do this effectively at

the implementation level. In effect it describes an enriched ontology based on

concepts that we identified in the organisational literature. It is derived from the two

key dimensions on which organisations are structured that we identified in chapter 3:

the division of work, and the lines of authority. The framework meta-model includes

meta-concepts that enable us to model these characteristics. We also outlined a set of

heuristics, which give us a systematic approach to deriving these organisational

characteristics; determined from the organisational structure on the basis by which

groups are structured, either on a functional or market basis. This process ensures that

roles are linked to the organisational context, with the advantage of enabling a more

precise definition of what a role is.

- 145 -

Chapter 9 Discussion and Conclusions

We hypothesised in chapter 2, that linking the role to the organisational context is

a prerequisite for defining policies that satisfy the key principles of management

control. In this thesis we focused on the minimum privileges principle, and the

framework includes a construct for defining access policies based on this principle

that assign tasks to roles, with tasks being related to the assets that are required to

perform the task. The addition of organisational domains into the role definition, and

the relationship between the role and the organisational domain to which assets are

assigned, allows us to define policies that fully satisfy the minimum privileges

principle. The contrast between policy constructs in our framework and policy

frameworks used for access control, is that in our framework the policies are abstract,

whereas policies defined for access control systems are based on instances.

We also addressed the need to be able to verify policies. As we identified in

chapter 2, scenarios are an effective way of verifying requirements. The framework

includes meta-concepts and constructs that enable us to define instantiations of

organisational groupings, roles and agents that are assigned to role instantiations. This

enables us to generate scenarios and then verify that the policies satisfy the minimum

privileges principle. The fact that we defined the framework formally in Z gives a

basis for reasoning about the consistency between policies and scenarios. As we

outlined in chapter 7, performing proofs in Z, even with the support of tool, is an

arduous process; that is the reason why we used the modelling tool Alloy for this

purpose. We demonstrated how the Z constructs can be translated into the Alloy

language, and how automated analysis can be carried out using the tool. The fact that

a large model can be divided into modules, means that we can scale the approach to

analysing systems with a large number of roles by separating the modules to map on

to different parts of the organisation, and to separate policies and scenarios. The point

- 146 -

Chapter 9 Discussion and Conclusions

of this demonstration is that we showed how a tool could be constructed based on the

framework for defining policies and verifying scenarios.

A key objective, we outlined in this thesis, was to relate the framework to an

existing requirements modelling language. For investigation we selected the i*

framework and formal Tropos. We demonstrated how the organisational meta-model

presented in chapter 5 can be applied to extend formal Tropos. We then examined

how the extended formal Tropos language can be applied to define access policies,

and scenarios. We showed how the access policies defined in formal Tropos can be

translated into Alloy.

We used a case study from the literature to demonstrate how an extended version

of formal Tropos could be used to define access policies. The case study concerned a

large European bank, and we showed how policies satisfying the minimum privileges

principle could be defined, based on a derivation of the organisational context using

the heuristics we presented in chapter 5. We also demonstrated how policies and

scenarios can be translated into the Alloy language and analysed using the tool.

In chapter 2 we summarised the capabilities of requirements modelling

approaches with respect to management control principles. In table 2.2 we highlighted

that none of the principles of management control could be adequately defined. Table

9.1 overleaf highlights the key contribution of our work, namely that the extended

Tropos presented in this thesis enables us to define the minimum privileges principle.

In chapter 2 we also presented, in table 2.3, the capabilities of requirements

modelling approaches with respect to modelling the organisational context. In table

9.2, we highlight that extended Tropos now allows us to model organisational

domains, organisational functions, and authority relationships. It is these definitions

that are required to define policies that satisfy the minimum privileges principle.

- 147 -

Chapter 9 Discussion and Conclusions

However we also have a basis for defining other principles including delegation, and

supervision and review.

Management Control Principle Extended Tropos

Minimum Privileges Principle yes

Segregation of Duties partially

Delegation and
Revocation of Authority

partially

Supervision and Review no

Accounting Principles no

Table 9.1 Coverage of Management Control Principles by Extended Tropos

Modelling of the Organisational
Context

Extended Tropos

Agent Assignments to Tasks
and Resources

yes

Separation of Roles to
Agents

yes

Organisational Domains yes

Organisational Functions yes

Authority Relationships yes

Workflow no

Table 9.2 Modelling of the Organisational Context by Extended Tropos

- 148 -

Chapter 9 Discussion and Conclusions

9.3 Critical Analysis and Future Work

In chapter 2 we identified several commonly used management control principles.

In this thesis we have only explored the minimum privileges principle. Other

principles remain to be explored. Although the framework includes authority

relationships, we have not demonstrated how we can define policies that satisfy the

delegation and revocation of authority, or supervision and review. An opportunity for

further research would be to extend the approach proposed by Giorgini et al. (2005)

for modelling delegation using the i* framework. In particular, accounting principles,

can lead to complex procedures, whereby workflows need to be modelled and

financial constraints such as credit ratings need to be included in policies.

In defining the organisational context the examples we explored were role

cultures, typical of large organisations. In fact the identification of roles and the link

to the organisational is likely to be much easier in a large organisation such as a bank

or hospital. Although these types of organisations figure prominently in the security

literature many organisations particularly small organisations are much less formal in

their structures. A research question therefore is to what extent this framework is valid

for other organisational cultures and could it be adapted or extended? Furthermore,

the organisational modelling approach that we have proposed we applied to single

organisations, however systems can be integrated across organisational boundaries, a

further question is therefore is to what extent would the framework enable us to model

this type of organisational context?

We have demonstrated how to extend formal Tropos to define policies, but there

are other approaches to modelling. Defining use cases is a widely used approach to

modelling requirements; it would therefore be useful to explore how use cases could

- 149 -

Chapter 9 Discussion and Conclusions

be extended, using the framework. Our demonstration of how actor definitions can be

extended in formal Tropos could be used as a basis for this. Indeed the principle of

how to define actors or agents and link them to the organisational context ought to be

able to be applied to any modelling approach, by extending the syntax.

Although we have demonstrated that it is possible to analyse policies in the Alloy

tool, if this were to become an industrial approach, then a tool would be desirable that

would enable policy definitions to be defined in a requirements modelling language

rather than Alloy, for example formal Tropos, or perhaps use cases. The formal

Tropos approach uses NuSMV, which enables temporal constraints to be modelled,

which could potentially be useful for modelling policies based on accounting

principles. Thus a potential avenue for research would be to investigate how to

translate extended formal Tropos definitions into NuSMV. Use cases are not generally

formally defined, and hence if the automated checking were to be carried out a

formalisation of use cases would be required.

The validation of our approach was based on a limited set of hypothetical case

studies. In order to determine the extent to which this approach would work in

practice, it is necessary to actually carry out projects. It is only by practical experience

that an approach can be improved and refined.

9.4 Conclusions

The main objective of this thesis was to address the problem of defining access

policies and refining them into constraints. We identified the nature of access policies,

and also the principles by which organisations are structured and controlled. These

principles are fundamental to the understanding of the requirements of access policies.

The framework we have proposed includes the macro-organisational context, which

- 150 -

Chapter 9 Discussion and Conclusions

makes it much easier to derive precise role definitions. This is one significant

weakness of existing modelling approaches.

We have focused on the principle of minimum privileges, however in doing this

we have created a foundation for other principles. For example the framework relates

authority levels, which give us a basis for defining delegation. The definitions of

organisational domain and function provide a basis for defining the segregation of

duties.

The formal notation that we adopted in developing the framework enables us to

reason about it. We demonstrated this using the Alloy tool, which enables assertions

to be checked automatically.

The motivation for the research, was that in current modelling approaches there is

a weak link between actors defined in a requirements model and the organisational

context. In this thesis we have demonstrated that the framework we presented

strengthens that link. It is complementary to other modelling approaches, in that it

only focuses on the link to the organisational context, but does not prescribe how

other aspects of a requirements model such as goals, functions, tasks and resources,

should be defined. The framework can thus be used to further develop other

requirements modelling approaches as we demonstrated with the i* framework.

- 151 -

Bibliography

Abdallah, A., and Khayat, E. J. "A Formal Model for Parameterized Role-Based

Access Control," Formal Aspects in Security and Trust: 2nd IFIP TCI WG1.7

Workshop on Formal Aspects in Security and Trust (FAST), Toulouse,

France, 22-27th August, 2004, pp. 233-246.

Alspaugh, T. A., Faulk, S. R., Britton, K. H., Parker, R. A., Pamas, D. L., and Shore,

J. E. "Software Requirements for the A-7E Aircraft," NRL Memorandum

Report 3876, Naval Research Lab., Washington, DC, USA, 1992.

Alexander, I. "Modelling the Interplay of Conflicting Goals with Use and Misuse

Cases," 8th International Workshop on Requirements Engineering: Foundation

for Software Quality (REFSQ’02), Essen, Germany, 9-10th September, 2002,

pp. 145-152.

Anderson, R. "A Security Policy Model for Clinical Information Systems," IEEE

Symposium on Security and Privacy, Oakland, California, USA, 6-8th May,

1996, pp. 30-45.

Anderson, R. Security Engineering - A Guide to building dependable distributed

Systems, John Wiley & Sons Inc, 2001.

Anton, A.I. "Goal-Based Requirements Analysis," 2nd IEEE International Conference

on Requirements Engineering (ICRE’96), Colorado Springs, Colorado, USA,

15-18th April, 1996, pp. 136-144.

Anton, A.I. "Goal Identification and Refinement in the Specification of Software-

Based Information Systems," PhD Thesis, Georgia Institute of Technology,

Atlanta, Georgia, USA, 1997.

- 152 -

Bibliography

Anton, A.I., and Earp, J.B. “Strategies for Developing Policies and Requirements for

Secure Electronic Commerce Systems,” Recent Advances in E-Commerce

Security and Privacy, Gosh, A.K. (ed.), Kluwer Academic Publishers, 2001,

pp. 29-46.

Anton, A.I., Earp, J.B., Potts, C., and Alspaugh, T.A. "The Role of Policy and

Stakeholder Privacy Values in Requirements Engineering," IEEE 5th

International Symposium on Requirements Engineering (RE'01), Toronto,

Canada, 27-31st August, 2001, pp. 138-145.

Bacon, J., Lloyd, M., and Moody, K. "Translating Role-Based Access Control within

Context," 2nd IEEE International Workshop on Policies for Distributed

Systems and Networks (Policy 2001), Bristol, UK, 29-31st January, 2001,

pp. 107-119.

Bandara, A.K., Lupu, E.C., Moffett, J., and Russo, A. "A Goal-based Approach to

Policy Refinement," 5th IEEE International Workshop on Policies for

Distributed Systems and Networks (Policy 2004), New York, USA, 7-9th

June, 2004, pp. 229-239.

Barka, E., and Sandhu, R. "A Framework for Role Based Delegation Models," 16th

Annual Computer Security Applications Conference (ASAC’00), New

Orleans, Louisiana, USA, 1 l-15th December, 2000, pp. 168-176.

Bell, D., and LaPadula, L.J. "Secure Computer Systems: A Mathematical Model,"

MITRE Technical Report 2547 (2), 1973.

Benner, K.M., Feather, M.S., Johnson, W.L., and Zorman, L.A. "Utilizing Scenarios

in the Software Development Process," Information System Development

Process, 1993, pp. 117-134.

- 153 -

Bibliography

Bertino, E., Bonatti, P.A., and Ferrari, E. "TRBAC: Temporal Role-Based Access

Control Model," 5th ACM Workshop on Role-Based Access Control, Berlin,

Germany, 26-27th July, 2000, pp. 21-30.

Biddle, B.J. Role Theory: Expectations, Identities and Behaviours, Academic Press,

1979.

Breaux, T.D., and Anton, A.I "Analyzing Goal Semantics for Rights Permissions and

Obligations," IEEE International Requirements Engineering Conference

(RE05), Paris, France, 29th August -1st September, 2005, pp. 177-186.

Brown, S.J., and Steenbeek, O.W. "Doubling: Nick Leeson’s Strategy," Pacific Basin

Journal (9:2), April 2001, pp. 83-99.

Biichi, M. "The B Bank: A Complete Case Study," 2nd International Conference on

Formal Engineering Methods (ICFEM’98), Brisbane, Australia, 9-11th

December, 1998, pp. 190-199.

Buchanan, D.A., and Huczynski, A.A. Organizational Behaviour: An Introductory

Text, Prentice Hall International, 1985.

Carnot, M., DaSilva, C., Dehbonei, B., and Mejia, F. "Error-free Software

Development for Critical Systems using the B-Methodology," 3rd

International Symposium on Software Reliability Engineering, Research

Triangle Park, North Carolina, USA, 7-10th October, 1992, pp. 274 - 281.

Chung, L. "Representation and Utilization of Non-Functional Requirements for

Information System Design," Advanced Information Systems Engineering 3rd

International Conference (CaiSE’91), Trondheim, Norway, 13-15th May,

1991, pp. 5-30.

- 154 -

Bibliography

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., and Tacchella, A. "NUSMV 2 An Open Source Tool for Model

Checking," Computer Aided Verification Conference, number 2404 in Lecture

Notes in Computer Science, Springer, Copenhagen, Denmark, 27-31st July,

2002, pp. 241-268.

Clark, D.D., and Wilson, D.R. "A Comparison of Commercial and Military Computer

Security Policies," IEEE Symposium on Security and Privacy, 1987,

pp. 184-194.

Clarke, E., and Wing, J. "Formal Methods: State of the Art and Future Directions,"

ACM Computing Surveys (28:4), 1996, pp. 626-643.

Cockbum, A. Writing Effective Use Cases, Addison Wesley, 2001.

Covington, M.J., Long, W., Srinivasan, S., Dey, A.K., Ahamad, M., and Abowd, G.D.

"Securing Context-Aware Applications Using Environment Roles," 6th ACM

Symposium on Access Control Models and Technologies, Chantilly, Virginia,

USA, 3-4th May, 2001, pp. 10-20.

Coyne, E.J. "Role Engineering," 1st ACM Workshop on Role-Based Access Control,

Gaithersburg, Maryland, USA, 30th November -1st December, 1995,

pp. 115-116.

Crook, R., Ince, D., and Nuseibeh, B. "Towards an Analytical Role Modelling

Framework," 8th International Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ’02), Essen, Germany, 9-10th

September, 2002a, pp. 123-136.

Crook, R , Ince, D., and Nuseibeh, B. "Modelling Access Policies using Roles in

Requirements Engineering," Information and Software Technology (45:14),

November 2003, pp. 971-991.

- 155 -

Bibliography

Crook, R., Ince, D., and Nuseibeh, B. "On Modelling Access Policies: Relating Roles

to the Organisational Context," IEEE International Requirements Engineering

Conference (RE’05), Paris, France, 29th August -1st September, 2005,

p p .157-166.

Crook, R., Nuseibeh, B., Lin, L., and Ince, D. "Security Requirements Engineering:

When Anti-Requirements Hit the Fan," IEEE International Requirements

Engineering Conference (RE'02), Essen, Germany, ll-13th September, 2002b,

pp. 203-205.

Damianou, N., Dulay, N., Lupu, E., and Sloman, M. "Ponder: A Language for

Specifying Management and Security Policies for Distributed Systems,"

Research Report, Imperial College, London, UK, 2000.

Dardenne, A., van Lamsweerde, A., and Fickas, S. "Goal-Directed Requirements

Acquisition," Science o f Computer Programming (20:1-2), 1993, pp. 3-50.

Dobson, J.E., Blyth, A.J.C., Chudge, J., and Strens, M.R. "The ORDIT Approach to

Requirements Identification," 16th Annual International Computer Software

and Applications Conference (COMPSAC '92), Chicago, Illinois, USA, 21-

25th September, 1992, pp. 356 -361.

Dobson, J.E., and Strens, M.R. "Organisational Requirements Definition for

Information Technology Systems," 1st IEEE International Conference on

Requirements Engineering (ICRE'94), Colorado Springs, Colorado, USA, 18-

22nd April, 1994, pp. 158-165.

Fernandez, E.B., and Hawkins, J.C. "Determining Role Rights from Use Cases," 2nd

ACM Workshop on Role-Based Access Control, Fairfax, Virginia, USA, 6-7th

November 1997, pp. 121-125.

- 156 -

Bibliography

Fitzgerald, J., and Larsen, G.L., Modelling Systems: Practical Tools and Techniques

in Software Development, Cambridge University Press, 1998.

Fontaine, J.P. "Goal Oriented Elaboration of Security Requirements," Masters

Dissertation, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium,

2001.

Fuxman, A., Pistore, M., Mylopoulos, J., and Traverso, P. "Model Checking Early

Requirements Specifications in Tropos," 5th IEEE International Symposium

on Requirements Engineering, Toronto, Canada, 27-31st August, 2001,

pp. 174-181.

Georgiadis, C.K., Mavridis, I., Pangalos, G., and Thomas, R.K. "Flexible Team-Based

Access Control Using Contexts," 6th ACM Symposium on Access Control

Models and Technologies, Chantilly, Virginia, USA, 2001, pp. 21-27.

Giorgini, P., Kolp, M.,Mylopoulos, J., and Pistore, M. "The Tropos Methodology: an

Overview," Methodologies and Software Engineering fo r Agent Systems,

Bergenti, F.,Gleizes, M.-P., and Zambonelli, F (ed.), Kluwer Academic

Publishing, 2004.

Giorgini, P., Massacci, F., Mylopolous, J. and Zannone, N. "Modeling Security

Requirements Through Ownership Permission and Delegation," 13th IEEE

International Requirements Engineering Conference (RE’05), Paris, France,

29th August -1st September, 2005, pp. 167 -176.

Glinz, M. "An Integrated Formal Model of Scenarios Based on Statecharts," 5th

European Software Engineering Conference (ESEC’95), Sitges, Spain, 25-

28th September, 1995, pp. 254-271.

- 157 -

Bibliography

Haley, C.B., Laney, R., Moffett, J.D., and Nuseibeh, B. "The Effect of Trust

Assumptions on the Elaboration of Security Requirements," 12th International

Requirements Engineering Conference (RE!04), Kyoto, Japan, 6-10th

September, 2004, pp. 102-111.

Haley, C.B., Moffett, J.D., Laney, R., and Nuseibeh, B. "Arguing Security: Validating

Security Requirements Using Structured Argumentation," 3rd Symposium on

Requirements Engineering for Information Security (SREIS'05), Paris, France,

29th August, 2005.

Handy, C. Understanding Organisations, Penguin, 1985.

He, Q., and Anton, A. "A Framework for Modeling Privacy Requirements in Role

Engineering," 9th International Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ'03), Klagenfurt/Velden, Austria, 16-

17th June, 2003, pp. 117-124.

He, Q. "Requirements-Based Access Control Analysis and Policy Specification," PhD

Thesis, North Carolina State University, Raleigh, North Carolina, USA, 2005.

He, Q., Otto, P., Anton, A., and Jones, L. "Ensuring Compliance between Policies,

Requirements and Software Design: A Case Study," 4th IEEE International

Workshop on Information Assurance (IWIA'06), Raleigh, North Carolina,

USA, 13-14th April, 2006, pp. 79-92.

Heitmeyer, C.L. "Using the SCR Toolset to Specify Software Requirements," 2nd

IEEE Workshop on Industrial Strength Formal Specification Techniques

(WIFT'98), Boca Raton, Florida, USA, 19th October, 1998, pp. 12-14.

Heitmeyer, C.L. "Software Cost Reduction," Encyclopedia o f Software Engineering,

Marciniak, J.J. (ed.), John Wiley and Sons, 2002, pp. 1374-1380.

- 158 -

Bibliography

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., and Chen, C. "Formal

Approach to Scenario Analysis," IEEE Software (11:2), March 1994,

pp. 33-41.

ISO "ISO/IEC 17799:2005 Information Technology - Security Techniques - Code of

Practice for Information Security Management," International Organization for

Standardization, 2005.

Jackson, D. "Micromodels of Software: Lightweight Modelling and Analysis with

Alloy Software, Design Group. MIT Lab. for Computer Science," 2004

Jackson, M. Problem Frames Analyzing and Structuring Software Development

Problems, Addison-Wesley, 2001.

Jackson, M., and Zave, P. "Four Dark Comers of Requirements Engineering," ACM

Transactions on Software Engineering and Methodology (6:1), 1997, pp. 1-30.

Jajodia, S., Samarati, P., and Sabrahmanian, V.S. "A Logical Language for

Expressing Authorisations," IEEE Symposium on Security and Privacy,

Oakland, California, USA, 4-7th May, 1997, pp. 31-42.

Jarke, M., Bubenko, J., Rolland, C., Sutcliffe, A.G., and Vassilou, Y. "Theories

Underlying Requirements Engineering: An Overview of NATURE at

Genesis," 1st IEEE Symposium on Requirements Engineering, San Diego,

California, USA, 4-6th January, 1993, pp. 19-31.

Jones, C.B. Systematic Software Development Using VDM, (2nd Edition), Prentice

Hall, 1990.

Lin, L., Nuseibeh, B., Ince, D., Jackson, M., and Moffett, J. "Introducing Abuse

Frames for Analysing Security Requirements," 11th IEEE International

Requirements Engineering Conference (RE'03), Monterey, California, USA,

8-12th September, 2003, pp. 371-372.

- 159-

Bibliography

Lin, L., Nuseibeh, B., and Ince, D. "Using Abuse Frames to Bound the Scope of

Security Problems," 3rd International Workshop on Requirements for High

Assurance Systems (RHAS’04), Kyoto, Japan, 6th September, 2004,

pp. 29-34.

Liu, L., Yu, E., and Mylopolous, J. "Security and Privacy Requirements Analysis

within a Social Setting," IEEE international Conference on Requirements

Engineering (RE’03), Monterey, California, USA, 8-12th September, 2003,

pp. 151-161.

Loucopoulos, P., and Kavakli, E. "Enterprise Modelling and the Teological Approach

to Requirements Engineering," International Journal o f Cooperative

Information Systems (4:1), 1995, pp. 45-79.

Lupu, E., Sloman, M., Dulay, N., and Damianou, N. "Ponder: Realising Enterprise

Viewpoint Concepts," 4th International Conference on Distributed Object

Computing, Mukahari, Japan, 2000, pp. 66-75.

Maiden, N.A.M. "CREWS-SAVRE Scenarios for Acquiring and Validating

Requirements," Journal o f Automated Software Engineering (5), 1998,

pp. 419-446.

Massaci F., and Zannone, N. "Detecting Conflicts between Functional and Security

Requirements with Secure Tropos: John Rusnak and the Allied Irish Bank,"

Technical Report DIT-06-002, Department of Information and Computing

Technology, Trento University, Trento, Italy, 2006.

Mintzberg, H. Structuring o f Organizations, Prentice Hall, 1978.

Mintzberg, H. Structure in Fives: Designing Effective Organisations, Prentice Hall,

1992.

- 160 -

Bibliography

Moffett, J.D. "Control Principles and Role Hierarchies," 3rd ACM Workshop on

Role-Based Access Control, Fairfax, Virginia, USA, November, 1998,

pp. 63-69.

Moffett, J.D., Haley, C.B., and Nuseibeh, B. "Core Security Requirements Artefacts,"

Technical Report 2004/23, Department of Computing, The Open University,

Milton Keynes, UK, 2004.

Moffett, J.D., and Lupu, E.C. "The Uses of Role Hierarchies in Access Control," 4th

ACM workshop on Role-Based Access Control, Fairfax, Virginia, USA, 28-

29th October, 1999, pp. 153-160.

Moffett, J.D., and Sloman, M.S. "The Source of Authority for Commercial Access

Control," IEEE Computer (21:2), February 1988, pp. 56-69.

Mylopoulos, J., Chung, L., and Nixon, B. "Representing and Using Non-Functional

Requirements: a Process-Oriented Approach," IEEE Transactions on Software

Engineering (18:6), June, 1992, pp. 483-497.

Nuseibeh, B., and Easterbrook, S. "Requirements Engineering: A Roadmap," The

Future of Software Engineering, Limerick, Ireland, 4-11th June, 2000,

pp. 35-46.

Neumann, G., and Strembeck, M. "Scenario Driven Role Engineering Process for

Functional RBAC Models," 7th ACM symposium on Access Control Models

and Technologies (SACMAT’02), Monterey, California, USA, 3-4th June,

2002, pp. 33-42.

Park, J.S., Costello, K.P., Neven, T.M., and Disomito, J.A. "A Composite RBAC

Approach for Large Organisations," 9th ACM Symposium on Access Control

Models and Technologies (SACMAT’04), Yorktown Heights, New York,

USA, 2-4th June, 2004, pp. 163-172.

- 161 -

Bibliography

Potts, C. "Using Schematic Scenarios to Understand User Needs," Designing

Interactive Systems: Processes, Practices, Methods, & Techniques (DIS’95),

Ann Arbor, Michigan, USA, 23-25th August, 1995, pp. 247-256.

Rollinson, D. Organizational Behaviour & Analysis: An Integrated Approach,

Pearson Education Ltd, 2005.

Ryser, J., and Glinz, M. "Dependency Charts as a Means to Model Inter-Scenario

Dependencies," Gl-Workshop, Bad Lippspringe, Germany, 28-30th March,

2001, pp. 71-80.

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and Youman, C.E. "Role Based Access

Control Models," IEEE Computer (29:2), February 1996, pp. 38-47.

Sandhu, R , Ferraiolo, D., and Kuhn, R. "The NIST model for Role-Based Access

Control: Towards a Unified Standard," 5th ACM Workshop on Role-Based

Access Control, Berlin, Germany, 26-28th July, 2000, pp. 47-63.

Schaad, A. "A Framework for Organisational Control Principles," PhD Thesis,

Department o f Computer Science, The University of York, York, UK, 2003.

Schaad, A., Moffett, J., and Jacob, J. "The Role-Based Access Control System of a

European Bank: A Case Study and Discussion," 6th ACM Symposium on

Access Control Models and Technologies (SACMAT’01), Chantilly, Virginia,

USA, 3-4th May, 2001, pp. 3-9.

Sim, S.E., Easterbrook, S., and Holt, R.C. "Using Benchmarking to Advance

Research: A Challenge to Software Engineering," 25th International

Conference on Software Engineering, Portland, Oregon, USA, 3-10th May,

2003, pp. 74-83.

- 162-

Bibliography

Sindre G., and Opdahl, A.L. "Eliciting Security Requirements by Misuse Cases,"

TOOLS Pacific 2000, Sydney, Australia, 20-23rd November, 2000,

pp. 120-131.

Sindre, G., and Opdahl, A.L. "Templates for Misuse Case Description," 7th

Workshop on Requirements Engineering, Foundation for Software Quality

(REFSQ‘01), Interlaken, Switzerland, 4-5th June, 2001.

Spivey, J. Z-Notation - A Reference Manual, (2nd Edition), Prentice Hall, 1992.

Strens, M.R., and Dobson, J.E. "Responsibility Modelling as a Technique for

Requirements Definition," IEE Intelligent Systems Engineering (3:1), 1994,

pp. 20-26.

Sutcliffe, A.G., and Maiden, N.A.M. "The Domain Theory for Requirements

Engineering," IEEE Transactions on Software Engineering (24:3), 1998,

pp. 174-196.

Sutcliffe, A.G. "Domain Analysis for Software Reuse," Journal o f Systems and

Software (50:3), 2000, pp. 175-199.

Sutcliffe, A.G., Paparmargaritis, G., and Zhao, L. "Comparing Requirement Analysis

Methods for Developing Reusable Component Libraries," Journal o f Systems

and Software (79:2), 2006, pp. 273-289.

Thomas, R.K. "Team-Based Access Control A Primitive for Applying Role Based

Access Controls in Collaborative Environments," 2nd ACM Workshop on

Role-Based Access Control, Fairfax, Virginia, USA, 6-7th November, 1997,

pp. 13-19.

Thomas, R.K., and Sandhu, R.S. "Conceptual Foundations for a Model of Task-Based

Authorizations," Computer Security Foundations Workshop VII (CSFW 7),

Franconia, New Hampshire, USA, 14-16th June, 1994, pp. 66-79.

- 163 -

Bibliography

Uchitel, S., Kramer, J., and Magee, J. "Detecting Implied Scenarios in Message

Sequence Chart Specifications," ACM SIGSOFT Software Engineering Notes

(26:5), 2001, pp. 74-82.

van Lamsweerde, A. "Formal Specification: A Roadmap," The Future of Software

Engineering, Limerick, Ireland, 4-11th June, 2000a, pp. 147-159.

van Lamsweerde, A. "Requirements Engineering in the Year 00: A Research

Perspective," International Conference on Software Engineering (ICSE’2000),

Limerick, Ireland, 4-11th June, 2000b, pp. 5-19.

van Lamsweerde, A. "Elaborating Security Requirements by Construction of

Intentional Anti-Models," 26th International Conference on Software

Engineering (ICSE’04), Edinburgh, UK, 23-28th May, 2004, pp. 148-157.

van Lamsweerde, A., Brohez, S., Landtsheer, R., and Janssens, D. "From System

Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security

Requirements Engineering," 2nd International Workshop on Requirements for

High Assurance Systems (RHAS 2003), Monterey, California, USA., 9th

September, 2003, pp. 49-56.

van Lamsweerde, A., Darimont, R , and Massonet, P. "Goal-Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt.," 2nd

International Conference on Requirements Engineering (RE’95), York, UK,

27-29th March, 1995, pp. 194-203.

van Lamsweerde, A., and Willemet, L. "Inferring Declarative Requirements

Specifications from Operational Scenarios," IEEE Transactions on Software

Engineering (24:12), December 1998, pp. 1089-1114.

- 164 -

Bibliography

Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P. "Scenario Usage in System

Development: A Report on Current Practice," IEEE Software (15:2), 1998,

pp. 34-45.

Woodcock, J.,Davies J. Using Z: Specification Refinement and Proof Prentice Hall,

1996.

Yao, W., Moody, K., and Bacon, J. "Model of OASIS Role-Based Access Control and

its Support for Active Security," 6th Symposium on Access Control Models

and Technologies, Chantilly, Virginia, USA, 3-4th May, 2001, pp. 171-181.

Yu, E. "Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering," 3rd IEEE International Symposium on Requirements

Engineering (RE'97), Annapolis, Maryland, USA, 6-10th January, 1997,

pp. 226-235.

Yu, E., and Liu, L. "Modelling Trust in the i* Strategic Actors Framework," 3rd

Workshop on Deception, Fraud and Trust in Agent Societies, Barcelona,

Spain, 4th June, 2000.

Yu, E., and Mylopoulus, J. "Understanding ‘Why’ in Software Process Modelling,

Analysis and Design," 16th International Conference on Software Engineering

(ICSE’94), Sorrento, Italy, 16-21stMay, 1994, pp. 159-168.

Zave, P. "Classification of Research Efforts in Requirements Engineering," ACM

Computing Surveys (29:4), 1997, pp. 315-321.

- 165-

