25 research outputs found

    Modeling Spiking Neural Networks on SpiNNaker

    Full text link

    A compact spike-timing-dependent-plasticity circuit for floating gate weight implementation

    Get PDF
    AbstractSpike timing dependent plasticity (STDP) forms the basis of learning within neural networks. STDP allows for the modification of synaptic weights based upon the relative timing of pre- and post-synaptic spikes. A compact circuit is presented which can implement STDP, including the critical plasticity window, to determine synaptic modification. A physical model to predict the time window for plasticity to occur is formulated and the effects of process variations on the window is analyzed. The STDP circuit is implemented using two dedicated circuit blocks, one for potentiation and one for depression where each block consists of 4 transistors and a polysilicon capacitor. SpectreS simulations of the back-annotated layout of the circuit and experimental results indicate that STDP with biologically plausible critical timing windows over the range from 10µs to 100ms can be implemented. Also a floating gate weight storage capability, with drive circuits, is presented and a detailed analysis correlating weights changes with charging time is given

    Dependability of Alternative Computing Paradigms for Machine Learning: hype or hope?

    Get PDF
    Today we observe amazing performance achieved by Machine Learning (ML); for specific tasks it even surpasses human capabilities. Unfortunately, nothing comes for free: the hidden cost behind ML performance stems from its high complexity in terms of operations to be computed and the involved amount of data. For this reasons, custom Artificial Intelligence hardware accelerators based on alternative computing paradigms are attracting large interest. Such dedicated devices support the energy-hungry data movement, speed of computation, and memory resources that MLs require to realize their full potential. However, when ML is deployed on safety-/mission-critical applications, dependability becomes a concern. This paper presents the state of the art of custom Artificial Intelligence hardware architectures for ML, here Spiking and Convolutional Neural Networks, and shows the best practices to evaluate their dependability

    Integration of Leaky-Integrate-and-Fire-Neurons in Deep Learning Architectures

    Full text link
    Up to now, modern Machine Learning is mainly based on fitting high dimensional functions to enormous data sets, taking advantage of huge hardware resources. We show that biologically inspired neuron models such as the Leaky-Integrate-and-Fire (LIF) neurons provide novel and efficient ways of information encoding. They can be integrated in Machine Learning models, and are a potential target to improve Machine Learning performance. Thus, we derived simple update-rules for the LIF units from the differential equations, which are easy to numerically integrate. We apply a novel approach to train the LIF units supervisedly via backpropagation, by assigning a constant value to the derivative of the neuron activation function exclusively for the backpropagation step. This simple mathematical trick helps to distribute the error between the neurons of the pre-connected layer. We apply our method to the IRIS blossoms image data set and show that the training technique can be used to train LIF neurons on image classification tasks. Furthermore, we show how to integrate our method in the KERAS (tensorflow) framework and efficiently run it on GPUs. To generate a deeper understanding of the mechanisms during training we developed interactive illustrations, which we provide online. With this study we want to contribute to the current efforts to enhance Machine Intelligence by integrating principles from biology

    Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System

    Get PDF
    Many sounds of ecological importance, such as communication calls, are characterized by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamo-cortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step toward the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems

    Low Cost Interconnected Architecture for the Hardware Spiking Neural Networks

    Get PDF
    A novel low cost interconnected architecture (LCIA) is proposed in this paper, which is an efficient solution for the neuron interconnections for the hardware spiking neural networks (SNNs). It is based on an all-to-all connection that takes each paired input and output nodes of multi-layer SNNs as the source and destination of connections. The aim is to maintain an efficient routing performance under low hardware overhead. A Networks-on-Chip (NoC) router is proposed as the fundamental component of the LCIA, where an effective scheduler is designed to address the traffic challenge due to irregular spikes. The router can find requests rapidly, make the arbitration decision promptly, and provide equal services to different network traffic requests. Experimental results show that the LCIA can manage the intercommunication of the multi-layer neural networks efficiently and have a low hardware overhead which can maintain the scalability of hardware SNNs

    CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi Neuromorphic Research Processor

    Get PDF
    Autonomous Driving (AD) related features provide new forms of mobility that are also beneficial for other kind of intelligent and autonomous systems like robots, smart transportation, and smart industries. For these applications, the decisions need to be made fast and in real-time. Moreover, in the quest for electric mobility, this task must follow low power policy, without affecting much the autonomy of the mean of transport or the robot. These two challenges can be tackled using the emerging Spiking Neural Networks (SNNs). When deployed on a specialized neuromorphic hardware, SNNs can achieve high performance with low latency and low power consumption. In this paper, we use an SNN connected to an event-based camera for facing one of the key problems for AD, i.e., the classification between cars and other objects. To consume less power than traditional frame-based cameras, we use a Dynamic Vision Sensor (DVS). The experiments are made following an offline supervised learning rule, followed by mapping the learnt SNN model on the Intel Loihi Neuromorphic Research Chip. Our best experiment achieves an accuracy on offline implementation of 86%, that drops to 83% when it is ported onto the Loihi Chip. The Neuromorphic Hardware implementation has maximum 0.72 ms of latency for every sample, and consumes only 310 mW. To the best of our knowledge, this work is the first implementation of an event-based car classifier on a Neuromorphic Chip.Comment: Accepted for publication at IJCNN 202

    Learning Visual-Motor Cell Assemblies for the iCub Robot using a Neuroanatomically Grounded Neural Network

    Get PDF
    In this work we describe how an existing neural model for learning Cell Assemblies (CAs) across multiple neuroanatomical brain areas has been integrated with a humanoid robot simulation to explore the learning of associations of visual and motor modalities. The results show that robust CAs are learned to enable pattern completion to select a correct motor response when only visual input is presented. We also show, with some parameter tuning and the pre-processing of more realistic patterns taken from images of real objects and robot poses the network can act as a controller for the robot in visuo-motor association tasks. This provides the basis for further neurorobotic experiments on grounded language learning
    corecore