
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi Neuromorphic Research
Processor / Viale, Alberto; Marchisio, Alberto; Martina, Maurizio; Masera, Guido; Shafique, Muhammad. -
ELETTRONICO. - (2021), pp. 1-10. ((Intervento presentato al convegno 2021 International Joint Conference on Neural
Networks (IJCNN) tenutosi a Shenzhen, China nel 18-22 luglio 2021 [10.1109/IJCNN52387.2021.9533738].

Original

CarSNN: An Efficient Spiking Neural Network for Event-Based Autonomous Cars on the Loihi
Neuromorphic Research Processor

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IJCNN52387.2021.9533738

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2930812 since: 2021-10-13T18:03:44Z

IEEE



To appear at the 2021 International Joint Conference on Neural Networks (IJCNN), Virtual Event, July 2021.

CarSNN: An Efficient Spiking Neural Network for
Event-Based Autonomous Cars on the Loihi

Neuromorphic Research Processor
Alberto Viale1,2,∗, Alberto Marchisio1,∗, Maurizio Martina2, Guido Masera2, Muhammad Shafique3

1Technische Universität Wien, Vienna, Austria 2Politecnico di Torino, Turin, Italy 3New York University, Abu Dhabi, UAE
Email: {alberto.viale, alberto.marchisio}@tuwien.ac.at, {maurizio.martina, guido.masera}@polito.it, muhammad.shafique@nyu.edu

Abstract—Autonomous Driving (AD) related features provide
new forms of mobility that are also beneficial for other
kind of intelligent and autonomous systems like robots, smart
transportation, and smart industries. For these applications, the
decisions need to be made fast and in real-time. Moreover, in the
quest for electric mobility, this task must follow low power policy,
without affecting much the autonomy of the mean of transport or
the robot. These two challenges can be tackled using the emerging
Spiking Neural Networks (SNNs). When deployed on a specialized
neuromorphic hardware, SNNs can achieve high performance with
low latency and low power consumption. In this paper, we use
an SNN connected to an event-based camera for facing one of
the key problems for AD, i.e., the classification between cars
and other objects. To consume less power than traditional frame-
based cameras, we use a Dynamic Vision Sensor (DVS) [1]. The
experiments are made following an offline supervised learning rule,
followed by mapping the learnt SNN model on the Intel Loihi
Neuromorphic Research Chip [2]. Our best experiment achieves
an accuracy on offline implementation of 86%, that drops to 83%
when it is ported onto the Loihi Chip. The Neuromorphic Hardware
implementation has maximum 0.72 ms of latency for every sample,
and consumes only 310 mW. To the best of our knowledge, this
work is the first implementation of an event-based car classifier on
a Neuromorphic Chip.

Index Terms—Autonomous Driving, AD, Spiking Neural
Networks, SNN, Spatio-Temporal Backpropagation, STBP, Intel
Loihi, Neuromorphic Computing, Dynamic Vision Sensor, DVS,
cars vs. background classification.

I. INTRODUCTION

The interest in Autonomous Driving (AD) has significantly
grown in recent years. Therefore, new algorithms and design
solutions have to address the challenges offered by this
rapidly expanding sector. This paper focuses on practical AD
systems by proposing a Spiking Neural Network that is directly
implementable on a Neuromorphic Chip using a DVS, which can
be easily introduced inside the car control system.

A. Target Research Problem and Research Challenges
If we study the various driving operations for a vehicle, we

can understand how large/complex the AD problem space is, and
how difficult it is to consider the problem in its entirety. For the
purposes of this research, we can separate the AD tasks in the
following three principal categories:
• the classification of the environment objects such as pedestrian

and cars [3];
• the prediction of the position of these objects [4];
• the prediction of the controls of the car such as the steering

angle and the status of the brake pedal and accelerator [5].
These can be viewed as regression and generalization problems,

because with some different inputs coming from the sensors, the

*These authors contributed equally to this work.

AD system has to predict a reaction that represents the solution
for the task. The main methods to make these decisions in fast
and accurate ways are represented by Deep Learning algorithms,
that are typically divided into the following types:
• Deep Neural Networks (DNNs), that are the oldest and can be

implemented on traditional hardware processors and specialized
architectures [6][7]. They are based on the transmission of
digital values, but exhibit high power consumption.

• Spiking Neural Networks (SNNs), that closely follow the
behavior of neurons and are based on the transmission of
spikes. They can be implemented on conventional hardware,
but to achieve very low power consumption they are more
amenable to the Neuromorphic Chips [8]. This aspect can
be also optimized by the implementation on energy-efficient
frameworks like SparkXD [9], FSpiNN [10], Q-SpiNN [11] or
SpikeDyn [12].
Since every task represents a real-time problem, we want that

the entire decision-making system has a good reactivity with
a very low latency, in order to minimize the chance to have
catastrophic car accidents due to late decisions. Another challenge
is related to the robustness of the system that must operate
in all conditions, in particular different types of illumination
and weather conditions. Moreover, the system design should be
optimized for low power consumption, which is an important
design criteria for automotive, especially in the battery-driven
electric mobility.

In our research, we focus on the “cars vs. background”
classification problem. To overcome the above-discussed
limitations, we identify three main research objectives:
1) the system should use the major robust vision engine, i.e., an

event-based camera;
2) the network should be a low-complexity event-based SNN for

energy-constrained systems;
3) the developed SNN should fulfill the system constraints to be

implemented onto a neuromorphic hardware chip.
Following these research targets, we design, optimize, and
implement the SNN on the Intel Loihi Neuromorphic Research
Chip [2], and evaluate it on the N-CARS dataset [3]. It is based
on Asynchronous Time-based Image Sensor (ATIS) [13], which
is an event-based camera.

B. Motivational Case Study
Since, to the best of our knowledge, there were no prior

existing works on AD applications implemented onto the
Loihi Neuromorphic Chip, to highlight the research problems,
we provide a motivational case study by analyzing another
application. A well established benchmark in the event-based
neuromorphic community is constituted by the IBM DVS128
gesture dataset [14], which is a database for gesture classification.
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For example, the work in [15] uses an SNN trained offline on
this dataset to recognize live operator gestures taken by a DVS
camera connected to the Intel Kapoho Bay Neuromorphic Chip. It
achieves about 91% accuracy, having also the possibility to learn
online new gestures with few shots, using the On-Chip Learning
engine. In the last case it achieves about 80% accuracy results
with only 20 shots.

Figure 1 compares the implementations of classifiers on
different hardware platforms, in terms of accuracy and latency.
The SLAYER implementation on Loihi [16] exhibits the shortest
latency (only 4.35 ms), with accuracy comparable with an
optimized GPU implementation [17]. Therefore, towards real-time
use cases, these results motivate us to conduct this research on
AD applications on the Loihi chip.
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Fig. 1. Accuracy (Acc.) and latency (T) comparison between different
implementations for DVSGesture recognition problem [16, 17, 18, 19, 20]. The
higher accuracy to latency ratio is achieved by the SLAYER implemented on
the Intel Loihi. It also has the lowest power consumption (0.54 mJ), compared
to over 19 mJ consumed by the IBM TrueNorth implementation.

C. Our Novel Contributions
In this paper we present CarSNN, a novel spiking

Convolutional Neural Network (CNN) based classifier method to
tackle the classification problem between cars and background
images collected by an event-based camera.

Using the attention window strategy, the focus is concentrated
only on a part of the original input. To find the best window size
and position, we analyze the statistics of input spikes, and focus
on the part with more information (Section III).

To maintain the temporal correlation between different events
we also adopt the accumulation in time of these information
(Section IV). We use three hierarchical stages for this strategy
implementation:

1) During a time window, called sample time, the spikes from
the event-based camera are collected following the rule for
which each channel can have a maximum of one spike per
pixel coordinate.

2) The resulting image is given to the input of the network and
remain stable for many time steps. We take the class with
highest output spikes as the prediction of this single image.

3) To increase the accuracy we can derive more than only one
image from the sample stream. To do that, we define a second
time window, called sample length, that is multiple of sample
time. Therefore, we have sample length / sample time different
input images from a single sample stream. Based on the
classification made for every single image, the most predicted
class represents the prediction for the entire sample stream.

Moreover, with the above-discussed steps, we obtain a
compression of the information, which is extremely important
for low power applications.

All the developed networks followed the constraints of
an existing Neuromorphic Chip, the Intel Loihi, to face the
cars classification problem with event-based camera streams
(Section V).

To give an overview of every technical part used to perform
the task, in Section II we:
• focus on what an event-based vision sensor is and what are the

advantages over frame-based cameras (Section II-A);
• present the Neuromorphic-cars (N-CARS) dataset, that can be

used to train an SNN for the current classification problem
(Section II-B);

• expose what a Spiking Neural Network is, its advantages and
how it can be modeled and trained (Section II-C);

• summarize the main features and advantages of the Spatio-
Temporal BackPropagation Supervised Learning rule used in
this paper (Section II-D);

• explain the behavior of the Intel Loihi Neuromorphic Chip used
to find the major network constraints (Section II-E).
For reproducible research, the source code for training and

deploying our CarSNN models has been released at https://github.
com/albertopolito/CarSNN.

II. BACKGROUND AND RELATED WORK

A. Event-Based Cameras
In recent years, the event-based cameras [1], which are bio-

inspired sensors for the acquisition of visual information, were
proposed and designed to overcome the performance of the classic
frame-based cameras. They recognize the same matrix of pixels,
but they collect the information in a different way.
• A frame-based camera records the video as set of images

and every image is collected with a constant delay from the
neighbor in time, without any compression.

• An event-based camera records the video as a set of events. If
and only if a pixel changes its brightness, the camera triggers
an event with these information:
– x, y: the coordinates of the pixel;
– t: the timestamp of when the event occurred;
– p: the polarity of the variation of the brightness, which is ON

or 1 if the pixel is brighter, and OFF or 0 if the brightness
is reduced.

For their structure, event-based cameras are extremely useful
when coupled with the SNNs, because the spikes generated by
the sensor can directly feed the SNNs’ inputs.
Event-based cameras have others advantages:
• High resolution in time: it can record two different events

delayed by few microseconds. Therefore, it does not suffer from
oversampling, undersampling, and motion blur.

• Adaptive data rate and less memory usage: there is no need to
store the redundant information, but only the changes, to obtain
an efficient storage of the information.

• High dynamic range (up to 120dB): it can record scenarios with
a great change of brightness without losing any information.
The major drawback of this camera is its lower resolution in

space than a frame-based camera.

B. N-CARS Dataset
The main event-based datasets derive from a simulation of an

event-based camera on frame-based recording images [21][22].
Hence, these benchmarks lose the great time bandwidth of event-
based cameras [1]. Introduced to overcome the limited numbers

2

https://github.com/albertopolito/CarSNN
https://github.com/albertopolito/CarSNN


of event-based data recorded by an event-based camera from the
real word, the N-CARS dataset [3] is a recording of 80 minutes
with an ATIS camera [13]. This sensor has a resolution in space
of 304×240 and it is mounted behind the windshield of a car.
For recognition purposes, the outcoming events are transformed
into grey-scale images. These are processed with a state-of-the-art
object detector [23][24], to automatically extract bounding boxes
around the two classes:
• cars: 12336 samples;
• background: 11693 samples.

The maximum bounding boxes size is of 120× 100 pixels.
The dataset is split into 7940 car and 7482 background training

samples; 4396 car and 4211 background testing samples. Each
example lasts 100 milliseconds. The dataset files are grouped
by class and are made as 1 channel stream with two possible
event values −1 and 1. An example of the accumulated grey-
scale images is shown in Figure 2.

Fig. 2. Example of grey-scale accumulated images of the N-CARS dataset [3].
The four pictures on the left represent car samples, while the images on the
right represent background samples.

C. Spiking Neural Networks (SNNs)
As previously discussed, the Spiking Neural Networks

(SNNs) introduce a revolution in the Artificial Intelligence and
Machine Learning field [25], since they are known as the third
generation of neural networks. An SNN is the result of the
research of what the neurons effectively do into the brain. It
is based on the most biological probable behavior, where the
information is encoded into spikes and spread through the neurons
by axons and synapses. The behavior of the brain can be simulated
with many kinds of models which can be more or less complex.
For example, a complex model exhibits great performance, but
on the other hand it is difficult to implement, due to high latency
and high power consumption.

The SNNs offered many advantages w.r.t. the older (non-
spiking) DNNs [26]:
• low power consumption, due to the adaptation of the

consumption with the intensity of the inputs;
• straightforward interface of event based sensors, for example

with DVS cameras as inputs to the system;
• low computation latency, due to the asynchronous computation

of the spikes and the speed of their spread.
The most simple spiking neuron model is the Integrate and

Fire (IF) model [27]. It is based on the idea that every neuron
can be represented by a resistance-conductance (RC) equivalent
circuit.

A little more complicated, but also more biological plausible
model is represented by a modified version of the IF model, which
is called Leaky-Integrate and Fire (LIF) model [27].

Figure 3 illustrates the model behavior of the interaction
between two Neurons, called Pre-synaptic and Post-synaptic

neurons. The pre-synaptic meuron connects its axon to the
dentrites (soma in the figure) of the post-synaptic neuron through
a synapse. The synapse is represented by a low-pass filter, while
the dentrite or soma is represented as a reservoir of charge, i.e.,
a capacitance. When the reservoir state, called Post-synaptic
Membrane Potential (PSP) overcomes the threshold (θ) the
neuron fires a spike through its axons, and the reservoir state
(PSP) resets to a value that is always less than the threshold θ (it
can be 0 or a positive value). After that time, if there are others
input spikes, the potential can increase again. This behavior can
be modeled by the following differential Equation 1:

I(t) =
u(t)

R
+ C

dv

dt
(1)

The Membrane Time Constant τm is derived with Equation 2:

τm
du

dt
= −u(t) +RI(t), (2)

where u(t) is the neuronal membrane potential at time t and
I(t) denotes the pre-synaptic input, which is determined by the
weighted pre-neuronal activities.

ϑ 
Cm 

R 

Soma Synapse 

I 

I(t) 
δ(t-tj) 

δ(t-ti) 
Axon 

Synapse 

Soma 

Fig. 3. Circuital representation of the LIF model for Post-synaptic Neuron that
receives a spike sent by the Pre-synaptic Neuron [27].

Here, in case of no incoming spikes from the synapses of
the neuron, the PSP decreases over time by a fraction called
voltage decay. This model also introduces the concept of
refractory period, that is a short time, after the input of a spike
from the synapses, in which the neuron is unable to consider
others spikes at the input, which are then discarded. Every synapse
of the neuron has a weight that multiplies the incoming spikes
before it can affect the PSP [28]. This is the key feature of the
generalization and regression mechanisms of the SNNs.

To realize a given task accurately, the SNNs’ weights need to
be properly adjusted through a Learning Process. During this
step, the SNN is fed by the train inputs of the dataset. With some
method (Learning Method), that can be different according to
the desired application, the weights are adjusted, in order to hit
the target.
The SNN learning methods today are grouped in three main
classes [28]:
1) Direct supervised: the SNN is stimulated with different

patterns of spike trains and the synaptic weights are adjusted
to achieve the desired output spike trains. The most common
algorithms are based on back-propagation mechanism [29, 30].

2) Indirect supervised: a DNN is trained and then converted into
an equivalent SNN [31, 32].

3) Unsupervised: the SNN is stimulated with a pattern of spike
trains, but no human-produced labels are given. The SNN by
itself searches the correlation properties between every sample.
Unsupervised SNN learning can involve tasks such as cluster
analysis [33] and anomaly detection [34].

Focusing on the direct supervised method and in particular on
the SNN back-propagation, there are two main problems:
• Spike as activation function: since the SNN is based on

spikes, i.e., impulses, the derivative of an impulse does not
exist. The possible solution can be its approximation (e.g.,

3



a surrogate gradient) [35], but its implementation detaches
from the biological model. However, with this solution many
different learning rules can be applied and the SNN can also
achieves high performance [29, 30].

• Weight transport problem [28]: the SNN needs to have two
paths, one for forward and one for backward. In this situation,
the weights for these paths are correlated, being one the
transposition of the other. This coherence is hard to maintain.
One solution is to have random weights on the backward path,
but this can be used only for simple problems [36].

D. Spatio-Temporal Back-Propagation Learning Method
The most common SNN learning method based on

Back-propagation is the Spatio-Temporal Back-Propagation
(STBP) [29]. The most used supervised learning rules control the
interaction between neurons (Spatial Domain or SD) in order to
find new weights. On the other hand, the unsupervised methods
monitor the trend over time of the neurons’ PSP (Time Domain
or TD), to do their tasks. The STBP uses both information
to train the SNNs, thus using the back-propagation on both
dimensions. The STBP algorithm starts from the LIF neuron
model (Equation 2) and resolves this TD differential problem to
obtain Equation 3:

u(t) = u(ti−1)e
ti−1−t

τ +RI(t) (3)
In this way, both the TD and the SD components are present

in the STBP method. I(t) represents the spatial accumulation
and u(ti−1) represents the leaky temporal memory. Then, since
the back-propagation algorithm takes many advantages from the
iterative representation of the gradient descent, the authors of [29]
developed iterative LIF-based SNNs, in which the iterations occur
in both the SD and TD as follows (Equation 4):

xt+1,n
i =

l(n−1)∑
j=1

wnijo
t+1,n−1
j

ut+1,n
i = ut,ni f

(
ot,ni

)
+ xt+1,n

i + bni

ot+1,n
i = g

(
ut+1,n
i

)
,

(4)

where:

f
(
ot,ni

)
≈
{

τ, ot,ni = 0

0, ot,ni = 1
for little τ (5)

g(x) =

{
1, x ≥ Vth
0, x < Vth

(6)

The notations of the above formulas (Equations 4, 5 and 6) are
the following:

• the index t represents the current time step;
• n and l(n) denote the nth layer and its number of neurons,

respectively;
• wij is the synaptic weight between the jth pre-synaptic neuron

and the ith post-synaptic neuron;
• oj is the neuronal output of the jth neuron;
• xi is the pre-synaptic input of the ith neuron;
• bi is the bias of the ith neuron.

The learning rule defines a Loss Function (Equation 7) and
a Gradient Descendent Optimization Method that consists of
minimizing the loss function under a given time window T , using
its derivative.

L =
1

2S

S∑
s=1

∥∥∥∥∥ys − 1

T

T∑
t=1

ot,Ns

∥∥∥∥∥
2

2

(7)

where ys is the label and os is the output of the network for
the sth sample.

Then, four different cases to perform the calculation of
Equation 8 are distinguished:

δt,ni =
∂L

∂ot,ni
(8)

1) t = T and n = N (output layer):
∂L

∂uT,Ni

= δT,Ni

∂oT,Ni

∂uT,Ni

(9)

2) t = T and n < N (inner layer):
∂L

∂uT,ni

= δT,ni

∂g

∂uT,ni

(10)

3) t < T and N = n (output layer):
∂L

∂ut,Ni

= δt+1,N
i

∂g

∂ut+1,N
i

f
(
ot,ni

)
(11)

4) t < T and N < n (inner layer):
∂L

∂ut,ni
= δt,ni

∂g

∂ut,ni
+ δt+1,n

i

∂g

∂ut+1,n
i

f
(
ot,ni

)
(12)

Afterwards, these differential equations (Equations 13 and 14)
can be defined:

∂L

∂bn
=

T∑
t=1

∂L

∂ut,n
∂ut,n

∂Lbn
=

T∑
t=1

∂L

∂ut,n
(13)

∂L

∂Wn =

T∑
t=1

∂L

∂ut,n
∂ut,n

∂xt,n
∂xt,n

∂Wn
=

T∑
t=1

∂L

∂ut,n
ot,n−1 (14)

such that they can be used to perform the Gradient Descendent
Optimization Algorithm to achieve high performance.

Another key point of this rule is the approximation of the
derivative of Dirac functions. The process for which each
occurrence of the derivative of the spiking nonlinearity is replaced
by the derivative of a smooth function is called Surrogate
Gradient [35].

E. The Loihi Neuromorphic Research Chip
Towards high energy-efficiency, it is convenient to implement

SNNs on a specialized hardware, called Neuromorphic Chip, to
guarantee high efficiency both in terms of working time and power
consumption of the application. More specifically, neuromorphic
hardware platforms simulate the processes that happens in the
brain with one neural model, for example the LIF, using an
asynchronous mechanism, as shown in Figure 4, in which every
part represents one neuron attribute, for example Axon, Synapse
and Dendrite. In some cases, on the Chip there is also a Learning
part that can be used for Online Learning or Continual Lifelong
Learning [37].

There exist several neuromorphic chips developed by
premier industries and academia, like IBM Truenorth [38],
SpiNNaker [39], Intel Loihi [2]. The Loihi chip, which is used
in this work, adopts the CUrrent BAsed (CUBA) LIF to model
the neurons’ behavior. I.e., all the neurons are a reservoir of charge
(Dendrite), and when this overcomes the voltage threshold, there
is a current spike on the output axons. This mechanism is very
similar to the behavior that happens on the LIF model and it can
be visualized with the help of the following Equation 15.
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Fig. 4. Simplified Neurocore abstraction mechanism on the Loihi Neuromorphic
chip [2].

v̇i(t) = −
1

τv
vi(t) + ui(t)− θiσi(t), (15)

where:
• τv is the leakage contribution;
• ui is the input current from the synapses;
• vi is the dendrite potential;
• θi is the voltage threshold;
• σi represents the generation of an output spike on axons.

The Loihi chip is composed of neurocores that represent groups
of neurons, whose behavior is simulated by the compartments.
Every neurocore exchanges information (spikes) to the others
by an asynchronous Network-on-Chip (NoC) in the form of
packetized messages. To spread the spikes in an asynchronous
way, a mesh operation is used for each time step, which can be
summarized in four points:
1) each neurocore independently iterates its compartments and,

if a compartment is in spike firing state, this information is
send with a message onto the NoC;

2) the messages are sent to all destination neurocores;
3) when a neurocore ends its internal distribution, it sends a

barrier signal to the neighbors;
4) when all the neurocores receive such signal, the time step is

incremented.
Every chip can contain 128 neurocores, but to implement wider

and deeper SNNs, many chips can work together without any
increase in the latency of message exchange. The programmer
has to follow some constraints in the implementation:
• every neurocore can have a maximum of 1024 compartments;
• the max fan-in of every neurocore is 4096 pre-synapses;
• the max fan-out of every neurocore is 4096 post-synapses;
• the total synaptic fan-in state mapped to any neurocore must

not exceed 128 KB.
The On-chip Learning engine can operate to implement

Online Learning strategies or unsupervised learning with local
information. On the other hand, for the back-propagation methods,
the given SNN can be trained offline and then transported to
the Loihi with the NxSDK API commands. Its API gives
many facilitation to the programmer. For example, the main SNN
temporal parameters (synaptic, axon and refractory delay) can
be configured and adapted to have a polysynchronous dynamic.
Moreover, a noise injector can be activated to limit overfitting
when the learning engine is used.

III. PROBLEM ANALYSIS AND GENERAL DESIGN DECISIONS

In the classification problem that we face, we can use a
supervised learning method and train the network based on the

desired behavior. Every sample is represented by a stream of
events, where a stream represents the same object to classify.
In the same sample, the present spikes are correlated in time
and space with the past and future spikes [3]. To achieve
good performance, we have to take into account this temporal
correlation and use a learning method capable to exploit this
property. As claimed in [29], the STBP is one of the best offline
learning methods, and achieves very high classification accuracy
in tasks that involve event-based camera streams. It also uses
both TD and SD to calculate the gradients and train the SNN.
Therefore, we employ this learning method in our experiments.

This is also a real-time problem, as the system should be very
reactive and perform the correct prediction in few milliseconds.
Since we want a very reactive prediction, we can use only a subset
of input information, and therefore implement the Attention
Window strategy. To find the area which focuses the attention
on input data, we analyze and evaluate the event occurrences,
both in train and test sets of the N-CARS dataset [3]. Due to the
relatively large dimension of this dataset, this study resembles
with a good approximation the real problem and does not affect
the generalization property of our system.

The evaluation of the event occurrences in different attention
windows is shown in Figure 5. Most of the information is
contained in the area of size 50×50 in the bottom-left corner, both
in train and test set. Hence, as reported in Table I, we can use this
as the first attention window. The second attention window
has a doubled size (i.e., 100×100) and also starts from the bottom-
left corner.
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Fig. 5. Event occurrences on (a) test and (b) train sets of the N-CARS dataset.

TABLE I
DELIMITED POINTS FOR ATTENTION WINDOWS.

Attention window P. 0 (x,y) P. 1 (x,y) P. 2 (x,y) P. 3 (x,y)
First attention window (0,0) (0,50) (50,50) (50,0)

Second attention window (0,0) (0,100) (100,100) (100,0)

Considering its practical implementation on an existing
Neuromorphic Hardware, the Intel Loihi Research Chip, the
network is designed following all the constraints of this chip,
summarized in Table II.

TABLE II
MAIN CONSTRAINTS FOR DEVELOPING THE SNN IMPLEMENTED ON THE

INTEL LOIHI NEUROMORPHIC RESEARCH CHIP.

Property Constrain
Maximum Compartments per Core 1024 Compartments

Maximum fan-in of a Core 4096 Pre-Synapses
Maximum fan-out of a Core 4096 Post-Synapses

Synaptic fan-in state size 128 KB

A summary of the general decisions taken after analyzing the
problem is shown in Table III.
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TABLE III
GENERAL DECISIONS TAKEN AFTER ANALYZING THE PROBLEM.

Properties of the problem Decision
Knowledge of the correct output Use supervised learning rule

Time and space correlation Take into account TD and SD
Real-time Use simplest SNN

High performance of vision sensor Use event-based camera
Good profiling of real problem Use N-CARS dataset

Many information in limited area Use attention windows
Low power consumption Use Neuromorphic Chip

IV. CARSNN: OUR PROPOSED SNN FOR EVENT-BASED CARS
VS. BACKGROUND CLASSIFICATION

Our methodology to design the SNN model for the “cars vs.
background” classification, which we call CarSNN, is composed
as a three-step process, as shown in Figure 6. After the definition
of the SNN model architectures considering different attention
windows in Section IV-A, the methods for finding the parameters
for SNN training and feeding input data are discussed in
Sections IV-B and IV-C, respectively.

NETWORKS DEFINITION

Receive Input in 2 
distinct polarity channels 

Have 2 output channels  

Inspired by DVS Gesture 
SNN   

Use three different 
attention windows   

TRAIN PARAMETERS

Use STBP as learning rule 

• MSE loss 
function

• Adam 
optimizer

• LR=10−5

or 10−4

LEARNING RULE NEURON MODEL

• Vth = 0.3 to 0.8
• Τa1

2 = Vth
• τ = 0.2 ms

• Vth = 0.4
• Τa1

2 = 0.4
• τ = 0.2 ms

INPUT PARAMETERS

Use accumulation in time 

• Ts = 0.5 ms to 2.0 ms
• Tl = 2.0 ms to 10.0 ms
• Batch size = 40 to 80 

• Ts = 1.0 ms
• Tl = 10.0 ms
• Batch size = 40

Fig. 6. Three-step process followed to design our CarSNN with the training
and feeding input parameters.

A. CarSNN Model Design
To achieve good classification results, our CarSNN receives the

input events in two distinct polarity channels, one for positive
and one for negative events. Towards the generalization of
the problem, we consider this as a multi-classification problem
(i.e., not as a simple binary classification problem). Therefore,
the output layer of the CarSNN consists of two neurons that
correspond to the two possible classes, one for cars and the other
for background objects.

Since the architecture proposed in [15] achieved high
classification accuracy and low latency on the IBM DVS128
gesture dataset [14], we modify this model to correctly function
for the N-CARS dataset. Compared to the model of [15], our
CarSNN has different output channels, kernel size and padding
on the first convolutional layer, and different sizes of the last two
dense layer.

Based on the attention window analysis, we develop three
different SNNs for the three different sizes of input images:
1) Size 128 × 128 (Table IV): the model is very similar to the

SNN proposed in [15]. Since this size overcomes the N-CARS
dataset image size, which is 120 × 100, the exceeded pixels
do not produce spikes and are padding by zeros (no event).

This image size is equal to the resolution of one of the most
used DVS camera [13]. Therefore, this network can be easily
implemented with it.

2) Size 50× 50 (Table V): this uses the first attention window as
described in Section III.

3) Size 100 × 100 (Table VI): this uses the second attention
window as described in Section III.

TABLE IV
SNN MODEL FOR FULL-SIZE IMAGES (INPUT SIZE 128× 128).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 2048 1024 − − −
Dense 1024 2 − − −

TABLE V
SNN MODEL FOR FIRST ATTENTION WINDOW (INPUT SIZE 50× 50).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 512 144 − − −
Dense 144 2 − − −

TABLE VI
SNN MODEL FOR SECOND ATTENTION WINDOW (INPUT SIZE 100× 100).

Layer type In ch. Out ch. Kernel size Padding Stride
Av. pooling 2 2 4 − −
Convolution 2 32 3 1 1
Av. pooling 32 32 2 − −
Convolution 32 32 3 1 1
Av. pooling 32 32 2 − −

Dense 1568 512 − − −
Dense 512 2 − − −

B. Parameters for Training
Using a supervised learning rule based on backpropagation,

like the STBP, it is possible to tune several hyper-parameters.
We focus our attention on:

• loss function: we adopt the Mean Squared Error (MSE) loss
criterion, since it achieves the highest performance in [29];

• optimizer: we use Adam [40], because it seems the best for
the STBP;

• learning rate (lr): after some preliminary tests, we find the best
value is around 1e−5 and 1e−4, where with the latter value the
training is faster and the SNN achieves good accuracy results
in fewer epochs.

Since the adopted learning rule is directly implemented on
the SNNs with LIF neurons, other specific parameters can be
adjusted. The kernel of the LIF neuron model can be described
by Equation 4 (discussed in section II-D). We focus on the
formalization of the membrane potential update (ut+1,n

i ) and
highlight the membrane potential decay factor τ (Equation 16).

ut+1,n
i = ut,ni τ(1− ot,ni ) +

l(n−1)∑
j=1

wnijo
t+1,n−1
j + bni (16)

Another fundamental parameter of a LIF neuron is its
threshold (Vth). If the membrane potential overcomes this value
an output spike is generated and the potential is reset to a specific
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value. For each experiment, all the neurons have the same Vth
and 0 as reset value.

The third parameter that needs to be set (a12 ) is related to the
approximation of the derivative of spiking nonlinearity. We use
the rectangular pulse function defined in Equation 17:

h1(u) =
1

a1
sign

(
|u− Vth| <

a1
2

)
(17)

In the following, we perform some experiments to set the
previously-discussed parameters, with a particular focus on Vth.
We made these decisions:
• Vth: we change this value from 0.3 to 0.8 and evaluate which

curve achieves the best accuracy;
• a1

2 : it assumes the same value of the threshold, as this
assumption is made in [29];

• τ : this value must be small to have good approximation of the
neuron model and in particular of f(ot,ni ) (see Equation 5). We
set it to be equal to 0.2 ms.
To speed up this process and have good performance, we

introduce an accumulation mechanism. We accumulate the spikes
at a constant time-rate called sample time (Tsample); for these
first experiments this value is set to 10 ms. Every Tsample time
we construct a new input image that feeds the SNN. The events
that compose the image are summed by the following simple rule,
based on which each pixel can have a maximum of one spike per
channel. Each derived image is maintained stable to the input of
the proposed SNN by a time window of 15 time steps. Therefore,
this accumulation mode can compress the input information. The
accuracy that we evaluate is referred to every single sample (i.e.,
accumulated image) on a training of 300 epochs. Table VII and
Figure 7 report the results of these experiments, where we use
the SNN with the full size image (Table IV).

TABLE VII
EXPERIMENTS TO FIND THE BEST VALUE OF Vth .

input size Vth
a1
2

τ Tsample batch size lr accuracy
ms ms %

128× 128 0.3 0.3 0.2 10 20 1e−5 83.0
128× 128 0.4 0.4 0.2 10 20 1e−5 84.0
128× 128 0.5 0.5 0.2 10 20 1e−5 82.4
128× 128 0.6 0.6 0.2 10 20 1e−5 81.9
128× 128 0.8 0.8 0.2 10 20 1e−5 82.6
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Fig. 7. Percentage of accuracy for the experiment made to evaluate the best
value for Vth.

From Table VII, we notice that the best accuracy is achieved
when Vth is equal to 0.4. Moreover from Figure 7, we can notice
that, while a Vth equal to 0.3 leads to a relatively high accuracy
after a few epochs (see pointer 1 in Figure 7), the training curve
with Vth equal to 0.4 have less instability than for the other
experiments (see pointer 2 ). These two reasons lead us to choose
0.4 for the Vth parameter.

C. Parameters for Feeding the Input Data
As discussed in the previous section, the input spikes are

given to the SNN with an accumulation strategy, to speedup
the training. From the experiments conducted in Table VII,
despite this limitation, we notice that the accuracy is quite high.
Therefore, we keep this property that gives us some advantages:
• decrease power consumption;
• increase the reactivity of the system, because input data are

compressed.
Moreover, We also give an upper bound to the latency of the

system of 10 ms. Hence, for the train, we take only 10 ms from
the dataset sample stream with a random initial point. This is
defined as the maximum acceptable sample length (Tl). With this
constraint, two different approaches can be adopted:

1) accumulate the spikes every Tl time (Tsample = Tl) and do
the prediction on a unique input image for the entire input
stream, as we did in the previous experiments;

2) accumulate the spikes in order to have more than one input
image for every input stream (Tsample < Tl), then see what
is the class with majority prediction.

We conduct some analyses to find the best sample time and
the variation of the accuracy with two different batch sizes (BS
on Table VIII). In these experiments we use the second approach
for the image accumulation and we set the parameters as follows:
Vth = 0.4, a12 = 0.4, τ = 0.2 ms.

The training lasts for 200 epochs and to speed up this process,
as discussed in section IV-B, we use a learning rate equal to 1e−4

and a minimum batch size of 40. We also use three different
metrics to evaluate the accuracy:
• one shot accuracy on test data (acc.s): it is the accuracy found

on all the samples taken at Ts of the test dataset;
• accuracy on test data (acc.test): it is the accuracy for all the

sample stream of the test dataset, computed based on the
majority prediction of the part of the stream with sample length
equal to Tl;

• accuracy on train data (acc.train): it is the counterpart of the
accuracy on test data, but calculated on train streams of the
dataset.

TABLE VIII
EXPERIMENTS TO FIND THE BEST VALUE FOR Ts , Tl AND BATCH SIZE.

Input size Ts Tl BS lr acc.s acc.test acc.train
ms ms % % %

128× 128 1.0 2.0 80 1e−4 80 79 83
128× 128 1.0 4.0 80 1e−4 80 80 86
128× 128 1.0 6.0 80 1e−4 51 51 51
128× 128 1.0 8.0 80 1e−4 80 79 89
128× 128 1.0 2.0 40 1e−4 80 77 86
128× 128 1.0 4.0 40 1e−4 80 83 88
128× 128 1.0 6.0 40 1e−4 72 70 90
128× 128 1.0 8.0 40 1e−4 81 86 91
128× 128 1.0 10.0 40 1e−4 80 86 94
128× 128 2.0 10.0 40 1e−4 51 51 51
100× 100 0.5 10.0 40 1e−4 75 80 84
100× 100 1.0 10.0 40 1e−4 81 85 92
100× 100 2.0 10.0 40 1e−4 51 51 51
50× 50 0.5 10.0 40 1e−4 67 71 79
50× 50 1.0 10.0 40 1e−4 71 75 81
50× 50 2.0 10.0 40 1e−4 74 77 83

The results in Table VIII provide us the necessary feedback for
setting the value of Ts. If it is small (i.e., 0.5 ms) there are more
points for the same stream sample. However, it is very difficult
to train the SNNs, because the accumulation has not effect and
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the temporal correlation is lost. On the other hand, the accuracy
is low when we use high Ts (i.e., 2 ms). The best trade-off is
obtained when Ts is equal to 1 ms.

Moreover, the batch size influences the training process. Indeed,
to have high accuracy, the value of BS should be limited to 40.

In the first experiments of Table VIII, we consider only the
variation of Tl and BS. With constant BS and same value of
acc.s, the acc.test, as expected, increases or remains stable with
the increasing of Tl. This behavior is due to having more sub-
predictions to compute the final result when Tl is large. The
changes in the acc.s are justified by the non-deterministic training
process.

V. EVALUATION OF OUR CARSNN IMPLEMENTED ONTO THE
LOIHI NEUROMORPHIC CHIP

The STBP learning method is based on the backpropagation,
without using the local information. Moreover, the gradients are
computed with Equations 13 and 14, which are not directly
implementable into the on-chip learning section of the Intel
Loihi Neuromorphic hardware. For these reasons, our CarSNN
is trained offline and then the resulting parameters are mapped
onto the neuromorphic chip. An overview of the tool-flow for
conducting the experiments is shown in Figure 8.

SNN 
Training 
Methods 

Datasets SNN Training 
on Nvidia RTX 
2080-Ti GPUs 

SNN Training 
Accuracy 

Trained SNN 
Model & Weights 

Loihi 

DVS Camera 

Prediction 
Car Background 

Learning 
parameters 

Sample 
(Tsample) 

Sample 
(Tsample) 

SNN Model 
parameters 

Fig. 8. Setup and tool-flow for conducting our experiments.

A. Experimental Setup and Accuracy Results for CarSNN Offline
Training

Coherently with the analysis due in previous sections, in order
to train and validate the prediction system we use the N-CARS
dataset. We take into account this dataset also for the two
fundamental reasons that it collects event-based camera streams
and it is the largest labeled event-based dataset acquired in real-
world conditions [3].

We describe the SNNs using the PyTorch library [41]. In
these codes, we model the SNNs’ functional behavior with the
implementation of the Equation 16 that contains the mechanism
to update the membrane potential.

We run the experiments on a workstation having CentOS Linux
release 7.9.2009 as operating system and equipped with an Intel
Core i9-9900X CPU and Nvidia RTX 2080-Ti GPUs.

The setting of the hyper-parameters follows the analyses made
in sections III and IV, and are summarized in Table IX.

TABLE IX
PARAMETERS OF THE EXPERIMENTS.

Epochs Ts Tl BS lr Vth
a1
2

τ
ms ms ms

200 1.0 10.0 40 1e−3 to 1e−6 0.4 0.4 0.2

The dataset streams are randomly shuffled and the sample of Tl
is taken starting from a random initial point. We set the BS to 40,

that gives best accuracy in the previous experiments (according to
Table VIII), and maintains a reasonable the training time duration.
We set the same values of Ts = 1 ms and Tl = 10 ms for
the three experiments, to have a fair comparison between them.
These two values leverage the trade-off found from the results in
Table VIII. The parameters for the SNN model are the same used
in Section IV-C. The learning rate (lr) decreases by 0.5 every
20 epochs, starting for the value 1e−3. With this approach, the
accuracy slightly increases, compared to having a fixed lr.

To ease the model mapping onto the Loihi Neuromorphic Chip,
only the weights are updated during training, while the bias is
forced to 0. The train lasts for 200 epochs and every sample taken
at Ts time is evaluated for 20 time steps. With these hardware
and software settings, the training for one single epoch on all the
dataset samples is measured to be about 300 seconds. For the
inference, the mean latency for all samples, given at the time Ts,
is about 0.8 ms. Table X shows the results in terms of the same
accuracy policies as defined in Section IV-C.

TABLE X
RESULTS OF THE OFFLINE TRAINING EXPERIMENTS.

Input size acc.s acc.test acc.train
% % %

128× 128 80.1 85.7 93.6
100× 100 80.5 86.3 95.0
50× 50 72.6 78.7 85.3

The accuracy values for the attention window of size 100 ×
100 are comparable to the results for the full image size (128 ×
128), and indeed exhibit slightly higher acc.test and acc.train. It
can be explained because the cropped part of the sample is not
important for the correct classification and might lead to an SNN
misfunctioning. On the other hand, the input values consisting of
a small part of the original image (50× 50) lead to a significant
accuracy decrease.

Moreover, from the results in Table X, we can notice an
overfitting, due to the gap between acc.test and acc.train, which
can be considered to be the upper bound of the accuracy for our
developed CarSNN models.

B. CarSNN Implemented on Loihi
To implement our network on the Intel Loihi Neuromorphic

Chip we have to exploit some similarity between its model
and our offline model used for the previous experiments.
Equation 18 reports how the Compartment Voltage (CompV ),
which represents the membrane voltage of a neuron, is evaluated
by the neuromorphic hardware [2].

CompVt+1 = CompVt
212 − δv

212
+ CompIt+1 + bias (18)

The Compartment Current (CompI) is formulated by
Equation 19, where the sum expression represents the
accumulation of the weighted incoming spikes from jth pre-
synaptic neuron.
CompIt+1 = CompIt

212−δi
212

+ 26+wgtExp
∑
j wjsjt+1

(19)
In Equations 18 and 19, we can set the following parameters:

• δi: Compartment Current Decay;
• δv: Compartment Voltage Decay;
• bias: bias component on CompV ;
• wgtExp: value used to implement very different weights

between different SNN layers.
Comparing the formulation of our offline model (i.e.,

Equation 16) and the Equation 18, we notice its similarity to
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Equations from 20 to 23.
CompVt = ut (20)

CompIt =
∑
j

wjojt+1
if δi = 212 (21)

212 − δv
212

= τ (22)

bias = b (23)
We implement only the CarSNN described in Table IV, which

achieves good offline accuracy results (as indicated in Table X)
and it represents the most complex developed network, based on
latency, power consumption and number of neurons.

The Loihi Neuromorphic Hardware uses only 8 bits for the
storage of weights. The maximum range of our weights is (−7, 6).
Since these values are very different between layers and the
wgtExp is limited we:
1) multiply weights and Vth by 25 (this value do not consider

the default multiplication for 26 of weights and Vth made on
the Loihi);

2) use all the 8 bits to store our values.
According to Equations 20-23, the other neuromorphic

hardware parameters can be adjusted.
All the setup parameters are summarized in Table XI.

TABLE XI
TRANSLATION OF PARAMETERS TO THE LOIHI CHIP.

Offline implementation Loihi implementation
Parameter Value Precision Parameter Value Precision
Vth 0.4 Floating point 64 bits Vth mant 10 Fixed point 12 bits

weight ×1 Floating point 64 bits weight ×25 Fixed point 8 bits
τ 0.2 Floating point 64 bits δv 3276 Fixed point 12 bits
b 0 Floating point 64 bits bias 0 Fixed point 8 bits
− − Floating point 64 bits δi 0 Fixed point 12 bits

We define our CarSNN using the Intel Nx SDK API version
0.9.5 and run it on the Nahuku32 partition, in particular we
use the NxTF Layers, such as NxConv2D, NxAveragePooling2D
and NxDense utilities. This kind of implementation is useful to
automatically improve the performance of the SNN in a simple
manner. The CarSNN is tested on the N-CARS dataset. Every
sample at Ts is replicated for 10 timestep and between samples
we insert a blank time of 7 timestep. The number of timesteps per
inference is 17. This decision is necessary to follow the real-time
constraint of a maximum inference latency of 1 ms.

In the results reported in Table XII, the mean latency, referred
to the time used to evaluate every sample at Ts, is calculated
through the multiplication between the mean total execution time
(in timesteps) and the number of timesteps per inference.

On the other hand, the maximum latency is referred to the
maximum “spiking time” for every timestep, considering the time
in which the Loihi Chip is used and makes the classification
decision. This value can be used to evaluate whether the latency
constraint is met. It does not include the time overhead used to
exchange results between the chip and the host system, that can
be suppressed by directly using output ports.

TABLE XII
RESULTS OF THE CarSNN IMPLEMENTED ONTO THE LOIHI CHIP.

acc.s acc.test Neurons Synapses Neurocores Mean latency Max latency
% % number number number µs µs

72.16 82.99 54,274 5,122,048 151 899.6 ≈ 700

From Table XII and the Figure 9, the following observations
can be made:
• The acc.test for the implementation onto the Loihi chip is 2.6%

lower than the offline application.

Fig. 9. Execution time for every timestep. The green line represents the limit
for the spiking time and it is set to 1 ms (Ts).

• The maximum latency does not exceed Ts (1 ms).
Table XIII describes the power and energy consumption of the

application implemented on the Neuromprphic Chip. In particular:
• LakeMounts Power: it is the consumption of the embedded

processors [2] used to menage neurons and exchange messages
with the host system.

• Neuro-cores Power: it represents the consumption for the
neurons.

• System Power: it is the consumption of the entire system, where
a large part of it is represented by the static power used for the
inactive chip of the used partition. It uses only 2 chips out of
32.

• Energy per inference: it is the mean energy consumed to
classify one sample.

TABLE XIII
POWER AND ENERGY CONSUMPTION OF THE CarSNN IMPLEMENTED ONTO

THE LOIHI CHIP.
LakeMounts Power Neuro-cores Power System Power Energy per Inference

mW mW mW µJ
40.8 314.5 1375.4 319.7

Hence, Table XIII reports the power and energy consumption
of the application implemented onto the Loihi Chip, that is several
orders of magnitude lower than the same measured on GPUs.

C. Comparison with the State-of-the-Art
To the best of our knowledge, CarSNN is the the first Spiking

Convolutional Neural Network (CNN) designed to perform event-
based “cars vs. background” classification on neuromorphic
hardware. This is also the first method that uses statistic analysis
of events occurrences to indicate different attention windows on
it. In this paper, we use a simple yet efficient mechanism for event
accumulation in time, to maintain the time correlation between
spikes. In the related works, to achieve good performance, the
time correlation is maintained with different methods:
• Histograms of Averaged Time Surfaces (HATS) [3]: it uses

local memory to compute the average of Time Surfaces, which
represents the recent temporal activity within a local spatial
neighborhood.

• Hierarchy Of Time Surfaces (HOTS) [42]: it uses the
computation of Time Surfaces in a hierarchical way between
the layers.

• Gabor-filter [43]: it considers the spatial correlation between
different events and assigns them to the channels based on this
information.
In HATS [3], all approaches are evaluated by a simple linear

Support Vector Machine (SVM) classifier on the N-CARS dataset.
The results of this simple classifier method are compared with our
CarSNN in Table XIV. The Gabor-filter method adopts a two-
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layer SNN before the SVM. As discussed in Section IV-B, since
the upper bound of Tl is 10 ms for the real-time constraint, the
comparison is made taking into account this limitation.

TABLE XIV
COMPARISON OF RESULTS FOR Tl = 10ms.

Classifier (Accumulation approach) acc.test
Linear SVM (HOTS) ≈ 0.54

Linear SVM (Gabor-SNN) ≈ 0.66
Linear SVM (HATS) ≈ 0.81

CarSNN (128× 128 attention window) 0.86
CarSNN (100× 100 attention window) 0.86

CarSNN (50× 50 attention window) 0.79

As highlighted in Table XIV, our CarSNN achieves better
accuracy with a limited Tl than the Linear SVMs implemented
after the use of different and more complicated accumulation
approaches.

VI. CONCLUSION

In this work, we present CarSNN, a novel SNN model
for the “cars vs. background” classification of event-based
streams implemented on neuromorphic hardware. With a three-
step process, the network model, training parameters, and input
parameters are defined. An attention window mechanism is
proposed to accumulate the events focusing the attention on the
region in which the majority of the events occur. Two versions
of our CarSNN with different attention windows achieve 86%
accuracy (drops to 83% when implemented onto the Loihi Chip),
with only 0.72 ms latency, in the worst case, which is 5%
higher than the previous state-of-the-art approaches with an upper
bound of 10 ms latency. Moreover, considering also the power
consumption of only 315 mW for its implementation on the Loihi
Neuromorphic Chip, our CarSNN establishes as a prominent
method for embedded real-time classification, and opens new
avenues toward resource-constraint efficient AD applications on
neuromorphic hardware.
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