
 
 

1 
 

 

Abstract—Spike timing dependent plasticity (STDP) forms the basis of learning within neural networks. STDP allows for the 
modification of synaptic weights based upon the relative timing of pre- and post- synaptic spikes. A compact circuit is presented 
which can implement STDP, including the critical plasticity window, to determine synaptic modification. A physical model to 
predict the time window for plasticity to occur is formulated and the effects of process variations on the window is analysed. The 
STDP circuit is implemented using two dedicated circuit blocks, one for potentiation and one for depression where each block 
consists of 4 transistors and a polysilicon capacitor. SpectreS simulations of the back-annotated layout of the circuit and 
experimental results indicate that STDP with biologically plausible critical timing windows over the range 10µs to 100ms can be 
implemented. Also a floating gate weight storage capability, with drive circuits, is presented and a detailed analysis correlating 
weights changes with charging time is given. 
 

I. INTRODUCTION 

ignificant research over the last two decades has been undertaken on studying biological neural networks. Specifically 
this research has focused on how neural networks learn and adapt to their ever changing environment together with the 

translation of this into biologically inspired hardware neural networks [1-2]. A neural network (NN) consists of 
interconnecting neurons, with each neuron connecting to another via a synapse. Within the human brain there are in excess of 
1011 neurons, with each one having up to 103 synaptic connections [3]. 

In a NN, the effect that one neuron has upon another will vary depending upon input stimuli and synaptic weight. The 
synapse is responsible for adaption and learning within a NN [4], through long term potentiation (LTP) or long term 
depression (LTD), depending on the temporal ordering of the pre- and post-synaptic spikes. Additionally weight modification 
can also be a short term potentiation (STP) or a short term depression (STD).   

Hebb’s theory [5] describes how the synaptic weight is allowed to change based upon the inputs and outputs of each 
neuron within the NN. A further development of the Hebbian learning concept was the introduction of spike timing 
dependent plasticity (STDP) in 1983 [6]. STDP is concerned with increasing or decreasing the weight of a synapse based 
upon the relative timings of pre- and post-synaptic spikes. In biology two STDP functions are commonly reported and 
referred to as symmetric and asymmetric [4, 6-12]. In this paper we focus on asymmetric STDP as this type of plasticity is 
known to occur more frequently in biological NN, [4, 7, 11-12]. It is also worth noting that the exponential functions 
commonly depicted, are not a pre-requisite for STDP but rather a mathematical convenience.  What is important however is 
the relative timings between pre and postsynaptic spikes as this temporal ordering dictates whether potentiation or depression 
occurs [46, 47]. In asymmetric STDP, weight potentiation (a pre-post spiking event) occurs if a pre-synaptic spike precedes 
the post-synaptic spike and this leads to LTP; ∆ts is positive. Likewise, the weight is decreased if a post-synaptic spike occurs 
prior to a pre-synaptic spike, giving rise to LTD (a post-pre spiking event, ∆ts is negative). The critical timing window [7, 14-
18] typically occurs over the range 10-100msec and outside of this window, no potentiation or depression will occur [7, 14-
20]. The critical timing window is implemented in this work and is programmable. 

It has been shown that STDP can be implemented in hardware, and while the majority of these circuits are biologically 
plausible, their footprints are large [21-30] requiring up to and, in some cases, exceeding thirty MOSFETs. Other solutions 
require dedicated microprocessors. A key requirement of hardware neural networks (HNN) is that they are scalable and 
therefore the designs for neurons, synapses and synaptic modification circuits must be compact, low-powered, while at the 
same time maintain biological plausibility.  

It is proposed here that an STDP circuit with critical time window can be implemented using two dedicated circuit blocks 
each consisting of 4 MOS transistors, and a polysilicon capacitor. The paper is organized as follows; in section II an 
overview of theoretical operation of the compact STDP circuit is presented. Section III presents experimental and simulation 
results undertaken in AMS 0.35µm CMOS process and SpectreS in the Cadence environment respectively. All simulations 
are conducted on back-annotated layouts, thus incorporating all parasitic elements. A discussion of results relating to the 
circuit properties is presented in section IV and conclusions drawn in section V.  

II. CIRCUIT OPERATION 

This section provides an overview of the operation of the proposed STDP weight potentiation and depression circuits. Also 
a model for the critical timing window is given together with its dependency on process variations.  
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II.A WP and WD Circuits 

The WP circuit is presented in Fig. 1(a)
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Fig.  1  (a) WP and (b) WD circuit 
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(a). The circuit will cause an increase of the synaptic weight by increasing the amount 
the floating gate (FG) of a non-volatile memory device. This

. The weight increase occurs during a pre-post spiking event. The WD circuit
the WP block except that the pre and post spike input terminals are swapped. The WD circuit 

ng a post-pre spiking event.  

ircuit block with FG device and driver buffer circuit. Voltages indicated are relative to ground.

consist of 3 NMOSTs, MPre, MPost and Mleak, a PMOST, M
Vwi and Vwd are pulled low in the absence of VPost and V

will not significantly affect Vwi or Vwd. The operation of the WP c
or post- synaptic spikes occur are that Vwi, Vpre and Vpost 

post spiking event where a pre-synaptic spike (VPre), increases VC to its maximum value (= 
When the pre-synaptic pulse ends, C starts to discharge via M
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to be increased. When the post-synaptic spike (VPost) occurs

is pulled up to VC -VTMpost(Vwi); VTMpost(Vwi) is the threshold voltage associated with M
, while Vwi is greater than the trigger voltage of the output buffer

The WP output buffer is constructed using two CMOS inverters with 3.3V and 10V VDD rails, as shown in F
MOSFETs are sized so as to produce the following operation; if Vwi is greater than the trigger voltage of the first CMOS 
inverter then the output from the second inverter, VCG, will be pulled up to 10V. If Vwi is below the trigger voltage of 

then the output from the second inverter is held at ground. The pulse-width, 
determines how much charge is injected and stored on the FG. As ∆ts →∆ts min, τcg → max τcg

pre spiking event no update of the synaptic weight occurs since V
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voltage, the output of the buffer is pulled down to -10V. If Vwd is less than the threshold voltage of the inverter, then the 
post spiking, the pre-synaptic spike causes VC and Vwd to be pulled low and there is 

It should be noted that if ∆ts = 0 (a pre- and post-synaptic spike occurring at the same time) 
w = 0 because both the WP and WD circuits will be ‘on’ during this event causing node 

biophysical experiments where it has been reported [50, 51] that synaptic communication between 
synaptic neurons is inherently delayed by axons or dendrite latencies and thus the actual strongest and weakest 

does not occur at the absolute temporal difference (∆ts = 0).  
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The circuit will cause an increase of the synaptic weight by increasing the amount 
his device is represented by its 

The WD circuit is identical to that of 
the WP block except that the pre and post spike input terminals are swapped. The WD circuit decreases the synaptic weight 

 
and driver buffer circuit. Voltages indicated are relative to ground. 

, a PMOST, Mreset and a MOS capacitor, C. 
and VPre respectively. When Vpost 

The operation of the WP circuit is now outlined. 
 are low, node VC is pulled low 

its maximum value (= 3.3V-VTMpre): 
to discharge via Mleak, and VC decreases at 
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rails, as shown in Fig. 1(a). The 
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is below the trigger voltage of the first 
width, τcg, and magnitude of VCG 

cg. Similarly as ∆ts →∆ts man, τcg 
since VC and Vwi are low, regardless 

pre spiking causing a decrease in synaptic 
10V supply rails, as shown in Fig. 

wd, is greater than the threshold 
is less than the threshold voltage of the inverter, then the 

to be pulled low and there is no 
synaptic spike occurring at the same time) 

w = 0 because both the WP and WD circuits will be ‘on’ during this event causing node VCG (Fig.1) to be set at 0V. 
51] that synaptic communication between 

synaptic neurons is inherently delayed by axons or dendrite latencies and thus the actual strongest and weakest 
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II.B Critical Timing Window 

The critical timing window (CTW) is crucial in biology because it determines the time window over which synaptic 
modification can occur and is typically 20-25ms for potentiation and depression [7, 9]. However, in hardware the 
computational speed is greatly accelerated, with average spike train frequencies in the MHz range. We therefore implement 
an equivalent timing window of 20-25µs in this work although, as will be shown, the window can be programmed to 
accommodate a wide temporal range. We define here, the critical timing window, tcw, as the time it takes for VC to fall from 
90% to 10% of its initial value for both the WP and WD blocks. The rate at which the sub-threshold current reduces VC is set 
by Vleak and the aspect ratio of Mleak, SMleak. The sub-threshold current, Ileak is constant for VDS = VC > 3kT/q; 

 

����� = ����	
  ������� − 1� ���
� �� ��� �������� �!�

"�� �                 (1) 

  
where Vt  is the threshold voltage of Mleak, q is the charge of an electron, k is  the Boltzmann constant and T is absolute 
temperature. The sub-threshold slope parameter,  m = 1 + Cd /Co with Cd being the depletion layer capacitance, Co is the 
capacitance of the oxide per unit area and µeff is the effective channel mobility. The dynamic operation of the capacitor 

charging is governed by d# = − $
%���� &', with Ileak  given by Eqn.(1). Performing the integration with voltage limits, 0.9VM 

and 0.1VM gives equation (2) which can be used to determine the critical timing window, tcw: VM (= 3.3V-VTMpos) is the 
maximum value of VC. The window can be adjusted using Vleak according to: 

 #() = 0.8 $�-%����                    (2) 

 
Substituting equation (1) into (2) and rearranging allows a value for Vleak to be calculated for the required tcw. In this study, 
tcw is chosen to be 20µs, giving Vleak =410mV.  
 
The important effects of process variation upon the critical timing window are now considered. Process variation can affect 
most parameters of the MOSFET and these can conveniently be represented by the transconductance factor (β) and threshold 
voltage, Vt [31-43]. Subthreshold MOSFETs are particularly sensitive to process variation because of the exponential 
relationship between drain current and gate voltage (equation 1). The threshold voltage is also strongly related to several 
device parameters which are prone to variation during the fabrication process.  

 
For Mleak operating in subthreshold, only Vt is considered, [35, 38, 43-44] as this incorporates variations in both off-current 

and subthreshold slope, as shown in equation (3), for an n-channel device, where Na is the acceptor doping concentration, tox 
the oxide thickness, ./ the Fermi potential, Φ1 the work function difference, Qt the trapped oxide charge density, Co the 
oxide capacitance and ε0, εs, εox are the permittivity of free space, relative permittivity of silicon and silicon dioxide 
respectively. 

 

 '23 =  #
4 56578 9��:���;<�
5=56 + 2./ + Φ1 + @!$7              (3)  

 
The variation in '2 = '23 ± ∆'2where Vt0 is the nominal threshold voltage for the AMS process, Vt0 = 0.48, and ±∆V t is 

the change in Vt due to process variations. For the AMS process ∆Vt = ±17.5mV. A simple  model for the effect of process 
variation on tcw, can therefore be written as: 
 ∆#() = 3.C�-$

%=�4D� EF�G������ H�!=±∆�!I��                 (4)  

 
Monte Carlo analysis was undertaken in Cadence to assess the effects of inter-die/die-to-die process variation on the 

critical timing window and results are presented in Fig. 4. The results of Fig. 4, compare the Monte-Carlo simulations with 
equation (4), and good agreement is apparent with ∆Vt = ±17.5mV. The results also show a considerable change in the 
critical timing window, tcw, from the ideal value of 20µs, due to process variation for Vleak = 410mV. For ∆V t = +17.5mV, tcw 
= 30.86µs, and for ∆Vt = -17.5mV, tcw = 12.21µs. 
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Fig.  2  tcw variation (max, min and ideal) for Vleak = 400mV.  

 
The effects of process variation on tcw is presented later where it will be shown (Fig. 19) that this variation can be offset by 

adjusting the learning duration.  
 

III.  RESULTS AND DISCUSSION 

Simulation and experimental results for the WP block under post-pre spiking conditions are presented in section III.A. 
Simulated results for the WD block under post-pre spiking conditions are presented in section III.B In both sections III.A and 
III.B, V leak is set to 410mV, C is 100fF (4.7µm x 4.7µm) and SMleak = 1 giving tcw = 20µs from equation (5). Additional 
parameters for the circuit are; WMpre = LMpre = 0.5µm, WMreset = LMreset = 0.5µm, WMpost = 0.4µm LMpost = 0.35µm. 

 

III.A WP Results 

Fig. 3(a) presents simulation and measured results of a post-pre spiking event, where the pre-synaptic spike occurs 5µs 
after the end of the post-synaptic spike, ∆ts = 5µs. In this case no weight update occurs. This is because C is initially 
discharged with VC = 0V due to the occurrence of the post spike before the pre spike. Results are now presented in Fig. 3(b), 
Fig. 4 and Table 1, for a series of pre-post spiking events where the time difference, ∆ts, between pre- and post- synaptic 
spike is increased from 1µs to 15µs. Fig. 3(b) indicates that Vpre causes C to be charged to voltage VC =VM, and then 
discharges to give tcw = 20µs. Voltage Vwi tracks VC after Vpost occurs, triggering a weight update. It should be noted that Vwi 
is only pulled down to about Vt. For ∆ts =1µs, the maximum weight update occurs, ∆w = ∆wmax. This occurs as Vwi is above 
the trigger voltage of the output buffer, while Vpost is still high. Thus VCG is at its maximum pulse width, τcg = 10.91µs 
(simulation) and has a measured value of τcg = 10.75µs. In both cases VCG has a magnitude of 10V. Fig. 5(b) shows that the 
measured value for VC shows good agreement with the simulation results. 

 



 
 

 

Fig. 3 – (a) 

 
 

Fig.  4 (a) Pre

 

(a) Post-Pre Spiking Event - ∆ts = -5µs (b) Pre-Post Spiking Event - ∆t

Pre-Post Spiking Event - ∆ts = 7µs (b) Pre-Post Spiking Event - ∆ts = 11µs
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In Fig. 4(a), ∆ts is increased to 7µs, again VCG is pulled high to 10V. However τcg is reduced compared to ∆ts =1µs, τcg is 
now 4.92µs (simulated) and 4.60µs (measured). The reduction in τcg occurs because Vpost coincides with the linearly 
decreasing VC. Voltage Vwi now tracks the decreasing VC, until, eventually Vwi is pulled below the trigger voltage of the first 
CMOS inverter, while Vpost is still high, Fig. 4(a). Finally in Fig. 4(b) ∆ts = 11µs further reduces τcg to 0.91µs and 0.65µs for 
simulation and measured respectively. The magnitude of VCG is slightly reduced to 9.6V. This corresponds to the minimum 
weight update ∆w = ∆wmin. 

Table 1 presents the results of increasing ∆ts on τcg for both simulation and experimental results. Table 1 indicates that 
once ∆ts ≥ 12µs then no update in the synaptic weight takes place as VCG ≈ 0 due to Vwi being less the threshold voltage of 
the first CMOS inverter when Vpost is high. The results presented in Table 1 represented the upper left hand quadrant of the 
STDP curve presented later in Fig. 6. 

 
 

∆ts (µs) τcg (µs) (Simulation) τcg (µs) (Experimental) VCG (V) 
1 10.91 10.75 10 
2 9.91 9.60 10 
3 8.91 8.62 10 
4 7.90 7.62 10 
5 6.90 6.61 10 
6 5.90 5.59 10 
7 4.92 4.60 10 
8 3.91 3.60 10 
9 2.90 2.61 10 
10 1.89 1.60 10 
11 0.91 0.65 9.6 
12 0 0 0 

 
Table 1 Effect of positive ∆ts on τcg and VCG  

 

III.B WD Results 

As the WD circuit block is identical to the WP circuit with the exception of the application of Vpre and Vpost its operation is 
also identical. Fig. 5(a) presents simulation and measured results of a pre-post spiking event, where the post-synaptic spike 
occurs 5µs after the end of the pre-synaptic spike, ∆ts = 5µs. In this case no weight update occurs. Table 2 present the 
simulation results for a series of post-pre spiking events upon the WD circuit. |∆ts| is once again increased from 1µs to 15µs. 
Referring to Fig. 5(b), ∆ts = -7µs; as Vpost is pulled high C is charged to voltage VM = 2.43V.  As Vpre goes low, C discharges 
(initially) linearly via Mleak. When Vpre goes high, nodes VC and Vwi are connected such that Vwi ≈ 1.70V. A weight decrease 
is triggered as VCG is pulled down to -10V. Vpre goes low, both Vwi and VCG are pulled back to 0V, ending the synaptic 
weight update. This is consistent with the theoretical operation outlined previously.  

For ∆ts=-1µs, the maximum value of the weight decrease occurs, ∆w = ∆wmax. VCG is at its maximum pulse width; τcg = -
11.31µs and magnitude, VCG = -10V. Table 2 shows that by further increasing ∆ts, to ∆ts = -5µs, ∆ts = -7µs, ∆ts = -8µs. 
causes τcg to be reduced to 8.14µs, 6.16µs and 5.15µs respectively. For ∆ts = -13µs τcg ≈ 0.53µs, and the magnitude of VCG is 
slightly reduced to -9.6V. This corresponds to the minimum weight update ∆w = ∆wmin. Table 2 indicates that once ∆ts ≥ 
14µs then no update in the synaptic weight takes place as VCG ≈ 0 due to Vwd being less the threshold voltage of the CMOS 
inverter when Vpre is high. The results presented in Table 1 represented the lower right hand quadrant of the STDP curve 
presented later in Fig. 6. 

 
 



 
 

 

Fig. 5 – (a) 

 
 

 

 
Fig. 6 is a plot of τcg against ∆ts which

from 1µs to 15µs, τcg decreases from 11.31µs to 
decreased from -1µs to -15µs τcg decreases from 11.31µs to 
function since τcg ∝ ∆w, where Qinj α ∆w.

 

(a) Pre-Post Spiking Event - ∆ts = 5µs (b) Post-Pre Spiking Event ∆ts = 

∆ts (µs) τcg (µs) (Simulation) VCG (V) 
-1 11.31 -10 
-2 10.92 -10 
-3 10.18 -10 
-4 9.19 -10 
-5 8.14 -10 
-6 7.15 -10 
-7 6.16 -10 
-8 5.15 -10 
-9 4.14 -10 
-10 3.12 -10 
-11 2.06 -10 
-12 0.96 -9.6 
-13 0.53 -9.6 
-14 0 0 

 
Table 2  Effect of negative ∆ts on τcg and VCG  

which represents the full STDP curve, shown as the insert. 
decreases from 11.31µs to ≈1µs (simulation), from 10.75µs to ≈0.65µs (measured). 

decreases from 11.31µs to ≈0.5µs (simulation). This behaviour is characteristic of the STDP 
w. Note -τcg indicates a reduction in the synaptic weight.
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= -7µs 

represents the full STDP curve, shown as the insert. Note that as ∆ts is increased 
≈0.65µs (measured). Similarly as ∆ts is 

0.5µs (simulation). This behaviour is characteristic of the STDP 
indicates a reduction in the synaptic weight. 



 
 

 

Fig. 6 STDP curve from simulation and experimental results. Insert 

 
 

IV. PHYSICAL

The STDP circuit is to be used with FG devices, therefore we next consider the sensitivity of the weight charge injection to 
the FG, in relation to the STDP curve presented in Fig. 
the change in the associated weight; Qinj 

 

where K = 1.54�10 N "7
"78

O
;P  K/'�,  R

effective mass of an electron in the insulator and 
be noted that the constants A, B are strictly for tunneling from a metal contact but are similar to the case of injection from a 
semiconductor [49] and serve our purpose for illustrating the model and method. 

Fig. 7 presents the cross-section of a FG device constructed using a poly
onto the FG, Qinj, can be found from consideration of the current in the thin tunneling oxide, t
derive a model to allow the determination of  

 

Fig. 7 Equivalent capacitor diagram of  FG device, C
of the tunneling oxide. VCG and VFG are the voltages applied to the control gate and coupled onto the FG respectively.

constructed using polysilicon and MOS capacitors. Q

 

STDP curve from simulation and experimental results. Insert Asymmetric STDP Curve

PHYSICAL MODELLING OF WEIGHT STORAGE 

The STDP circuit is to be used with FG devices, therefore we next consider the sensitivity of the weight charge injection to 
relation to the STDP curve presented in Fig. 6 and charging time. The charge injected onto the FG 

 α ∆w. The charge is injected by the Fowler-Nordheim mechanism [48]. 

S/: � KT
4���� U  V
W78X    

R � 6.83�10[9"78
"7 .V\/� '/]�,   mo is the mass of an electron at rest, m

effective mass of an electron in the insulator and .V is the barrier height for injection from semiconductor to oxide. It should 
B are strictly for tunneling from a metal contact but are similar to the case of injection from a 

semiconductor [49] and serve our purpose for illustrating the model and method.  
section of a FG device constructed using a poly-silicon and MOS

, can be found from consideration of the current in the thin tunneling oxide, t
ation of  Qinj (∆w) and the associated potential of charge stored on the FG, V

Equivalent capacitor diagram of  FG device, CFG; CFG = (Cpoly
-1+Cox

-1)-1 where Cpoly is the capacitance of the interpoly oxide, C
are the voltages applied to the control gate and coupled onto the FG respectively.

constructed using polysilicon and MOS capacitors. Qinj represents the charge stored on the FG and Qrem represents the charge removed from the FG, both due 
to FN tunneling.  
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Asymmetric STDP Curve 

The STDP circuit is to be used with FG devices, therefore we next consider the sensitivity of the weight charge injection to 
and charging time. The charge injected onto the FG Qinj represents 

Nordheim mechanism [48].  

            (5)  

is the mass of an electron at rest, mox is the 

semiconductor to oxide. It should 
B are strictly for tunneling from a metal contact but are similar to the case of injection from a 

and MOS capacitor. The charge injected 
, can be found from consideration of the current in the thin tunneling oxide, tox over a time step, ∆t. We now 

w) and the associated potential of charge stored on the FG, V∆w.  

 
is the capacitance of the interpoly oxide, Cox is the capacitance 

are the voltages applied to the control gate and coupled onto the FG respectively. Cross section of FG device, 
represents the charge removed from the FG, both due 



 
 

 

The capacitively coupled voltage, VFG

capacitive coupling coefficient, defined as 

it is assumed that there is no parasitic charge in the oxide or initially stored on the FG. 
is the surface potential at the oxide-semiconductor interface. The field at 
equation (6) (see appendix for derivation).

 

The associated change in potential is calculated by finding the difference between successive steps of field: 
 

The charge per unit area injected onto the FG for the duration of the pulse width 
Fig. 8 presents plots of (a) Qinj against 

tunneling area. The increment of charge injected decreases for increasing 
electric field.. Similarly as ∆ts is decreased below 
 

 
The results indicate that Qinj (and V∆w

Increasing the device tunneling area causes a shift in the STDP curve. Specifically this is a shift in the magnitude of the 
charge injected/removed for the same ∆t value. 

The effect of process variation (PV) on the STDP curves is now cons

FG which falls across tox is shown in Fig. 7, and given by 

capacitive coupling coefficient, defined as ^ = $_7�`$78a$_7�`.  The electric field in the oxide, Eox is given 

it is assumed that there is no parasitic charge in the oxide or initially stored on the FG. VFG is the potential of the FG and 
semiconductor interface. The field at successive time steps, 

(see appendix for derivation). 

T
4�baO� = R cde fg# hV
278$= + ��� U V

W78�b�Xij O
   

The associated change in potential is calculated by finding the difference between successive steps of field: 

'∆) � #
4�T
4�k� � T
4�k > 1��     

The charge per unit area injected onto the FG for the duration of the pulse width ∆t is then found as
against ∆ts and (b) V∆w against ∆ts. Fig. 8 (a) presents the STDP curve for increasing 

tunneling area. The increment of charge injected decreases for increasing ∆t because the stored charge serves to reduce the 
is decreased below -1µs, the amount of charge removed is also decreased. 

 
Fig. 8 STDP Curve – (a) Qinj (∆w) (b) V∆w 

∆w) tracks τcg due to the similar shape of the Qinj (V∆w) 
Increasing the device tunneling area causes a shift in the STDP curve. Specifically this is a shift in the magnitude of the 

∆t value.  
The effect of process variation (PV) on the STDP curves is now considered. Fig. 9 shows the effect of PV upon the output 
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, and given by '/l � ^'$l, where α is the 

is given as T
4 � �<m ;6
278 , where 

is the potential of the FG and .n 
time steps, ∆t, can be found from 

            (6) 

 
The associated change in potential is calculated by finding the difference between successive steps of field:  

            (7) 
 

then found as ∆o ∝ pbqr � 	3'∆) . 
(a) presents the STDP curve for increasing 

t because the stored charge serves to reduce the 
is also decreased.  

 

) v ∆ts and τcg v ∆t STDP plots. 
Increasing the device tunneling area causes a shift in the STDP curve. Specifically this is a shift in the magnitude of the 

shows the effect of PV upon the output 
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characteristics of the STDP circuit, τcg against ∆ts. The plot concurs with the earlier statement that PV can either increase or 
decrease tcw. The effect of this is to cause a shift in the ideal τcg against ∆ts curve. If PV causes tcw < tcwideal (20µs) the curve is 
shifted to the left. Conversely if tcw > 20µs the curve is shifted to the right. 

 

 
Fig. 9 τcg v ∆ts STDP curves showing effect of process variation (max, min and ideal) 

 
 
The effect of PV is to vary the amount of charge (hence potential of charge) injected/removed from the FG. For tcw < 20µs 

∆w (V∆w) curve is shifted to the left. Conversely if tcw > 20µs ∆w (V∆w) curve is shifted to the right. Specifically there is no 
overall change in the magnitude of ∆w, Qinj. Rather there is a shift in the magnitude of the charge injected/removed for the 
same ∆ts value. This does not affect the overall operation of the STDP circuit in that it still follows the STDP rule. However, 
the amount of charge injected can be compensated for by altering the learning duration. 

 

V. CONCLUSION 

Compact STDP circuit blocks have been proposed, which can control weight increase and decrease within a hardware 
neural network. Simulation and experimental results of the WP circuit are presented which indicate that for a post-pre spiking 
event, no update of the synaptic weight occurs. A pre-post spiking event will however cause the synaptic weight, which is 
represented as charge on the FG of the synapse, to be increased. The amount, by which the synaptic weight is changed, ∆w, is 
determined by the duration that Vwi is greater than 1.2V and by the magnitude of VCG. The maximum weight, ∆wmax is 
obtained when VCG has a pulse width of ≈11µs and a constant magnitude of 10V. The minimum weight, ∆wmin, prior to Vwi 
being less than 1.2V is achieved when VCG has a pulse width of 0.9µs and magnitude of 9.6V. 

Furthermore, the critical timing window within which synaptic modification takes place can also be controlled with 
voltage, Vleak. The key issue of the significant influence of process variations for devices operating in subthreshold has been 
modeled.  We show that process variations do not adversely affect the learning dynamics because the weight changes depend 
on the temporal difference within the STDP window. Also changes in charging/discharging duration can be compensated for 
within the learning algorithm. Additionally a model correlating charge alterations within the FG as a function of the 
charging/discharging duration was presented and this relationship was extended to show the dependency of the weight 
changes on the temporal difference between pre and post synaptic spikes.  
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APPENDIX 

Equation 6 is derived as follows. 
 
We start with the FN Equation: 
 

S/: = 	3 s�78s2 = KT
4���� U  V
W78X                 (A.1)   

 
Define the time derivative of electric field as: 
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 sW78s2 = O
s2=8

s�78s2                     (A.2)  

hence S/:�T
4� = 	3#
4 sW78s2                    (A.3) 

 
Separate variables: 

 

S/:�T
4�&# = 	3#
4&T
4 = KT
4 ���� U  V
W78X &#              (A.4)   

  	3#
4 O
hW78t�4DU uPv78X &T
4 = &#                 (A.5)   

 $=278h w �T
4 ���� U V
W78X� &T
4W78�xyz�W78�b� = w &#2�baO�2�b�               (A.6)  

 
Where t(i+1) – t(i) = ∆t, the time step. Integrating, putting in limits and re-arranging gives 

 

de �g# hV
$=278 + ��� U V

W78�b�X� = { V
W78�xyz�|               (A.7)   

 
And finally,  
 

T
4�k + 1� = R }de ~g# KR#
4	3 + ��� { RT
4�k�|��
 O

 

           (A.8)  
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