23,655 research outputs found

    Short and long-term wind turbine power output prediction

    Get PDF
    In the wind energy industry, it is of great importance to develop models that accurately forecast the power output of a wind turbine, as such predictions are used for wind farm location assessment or power pricing and bidding, monitoring, and preventive maintenance. As a first step, and following the guidelines of the existing literature, we use the supervisory control and data acquisition (SCADA) data to model the wind turbine power curve (WTPC). We explore various parametric and non-parametric approaches for the modeling of the WTPC, such as parametric logistic functions, and non-parametric piecewise linear, polynomial, or cubic spline interpolation functions. We demonstrate that all aforementioned classes of models are rich enough (with respect to their relative complexity) to accurately model the WTPC, as their mean squared error (MSE) is close to the MSE lower bound calculated from the historical data. We further enhance the accuracy of our proposed model, by incorporating additional environmental factors that affect the power output, such as the ambient temperature, and the wind direction. However, all aforementioned models, when it comes to forecasting, seem to have an intrinsic limitation, due to their inability to capture the inherent auto-correlation of the data. To avoid this conundrum, we show that adding a properly scaled ARMA modeling layer increases short-term prediction performance, while keeping the long-term prediction capability of the model

    A dynamic nonstationary spatio-temporal model for short term prediction of precipitation

    Full text link
    Precipitation is a complex physical process that varies in space and time. Predictions and interpolations at unobserved times and/or locations help to solve important problems in many areas. In this paper, we present a hierarchical Bayesian model for spatio-temporal data and apply it to obtain short term predictions of rainfall. The model incorporates physical knowledge about the underlying processes that determine rainfall, such as advection, diffusion and convection. It is based on a temporal autoregressive convolution with spatially colored and temporally white innovations. By linking the advection parameter of the convolution kernel to an external wind vector, the model is temporally nonstationary. Further, it allows for nonseparable and anisotropic covariance structures. With the help of the Voronoi tessellation, we construct a natural parametrization, that is, space as well as time resolution consistent, for data lying on irregular grid points. In the application, the statistical model combines forecasts of three other meteorological variables obtained from a numerical weather prediction model with past precipitation observations. The model is then used to predict three-hourly precipitation over 24 hours. It performs better than a separable, stationary and isotropic version, and it performs comparably to a deterministic numerical weather prediction model for precipitation and has the advantage that it quantifies prediction uncertainty.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS564 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    Full text link
    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. Compared to other hybrid particle-in-cell approaches for the PDF equations, the current methodology is consistent without the need for consistency conditions. The algorithm is tested by computing the dispersion of passive scalars released from concentrated sources in two different turbulent flows: the fully developed turbulent channel flow and a street canyon (or cavity) flow. Algorithmic details on estimating conditional and unconditional statistics, particle tracking and particle-number control are presented in detail. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200
    corecore