8,382 research outputs found

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Distributed Implementation of SIGNAL: Scheduling & Graph Clustering

    Get PDF
    International audienceThis paper introduces the scheduling strategy and some key tools which have been designed for the distributed implementation of Signal, a real-time synchronous dataflow language. First, we motivate a scheduling strategy with respect to the reactivity and time-predictability requirements bound to real-time computing. Then, several key tools to implement this scheduling strategy are described. These tools are acting on the concept of Synchronous-Flow Dependence Graph (SFD Graph) which defines a generalization of Directed Acyclic Graph and constitutes the abstract representation of Signal programs. The tools presented in this paper are: (a) the abstraction of SFD graphs which enables grain-size tuning according to the target architecture, (b) the notion of scheduling over SFD graphs and (c) qualitative clustering tools based on the notion of Compositional Deadlock Consistency

    Steps Towards a Method for the Formal Modeling of Dynamic Objects

    Get PDF
    Fragments of a method to formally specify object-oriented models of a universe of discourse are presented. The task of finding such models is divided into three subtasks, object classification, event specification, and the specification of the life cycle of an object. Each of these subtasks is further subdivided, and for each of the subtasks heuristics are given that can aid the analyst in deciding how to represent a particular aspect of the real world. The main sources of inspiration are Jackson System Development, algebraic specification of data- and object types, and algebraic specification of processes

    Modeling and Mapping of Optimized Schedules for Embedded Signal Processing Systems

    Get PDF
    The demand for Digital Signal Processing (DSP) in embedded systems has been increasing rapidly due to the proliferation of multimedia- and communication-intensive devices such as pervasive tablets and smart phones. Efficient implementation of embedded DSP systems requires integration of diverse hardware and software components, as well as dynamic workload distribution across heterogeneous computational resources. The former implies increased complexity of application modeling and analysis, but also brings enhanced potential for achieving improved energy consumption, cost or performance. The latter results from the increased use of dynamic behavior in embedded DSP applications. Furthermore, parallel programming is highly relevant in many embedded DSP areas due to the development and use of Multiprocessor System-On-Chip (MPSoC) technology. The need for efficient cooperation among different devices supporting diverse parallel embedded computations motivates high-level modeling that expresses dynamic signal processing behaviors and supports efficient task scheduling and hardware mapping. Starting with dynamic modeling, this thesis develops a systematic design methodology that supports functional simulation and hardware mapping of dynamic reconfiguration based on Parameterized Synchronous Dataflow (PSDF) graphs. By building on the DIF (Dataflow Interchange Format), which is a design language and associated software package for developing and experimenting with dataflow-based design techniques for signal processing systems, we have developed a novel tool for functional simulation of PSDF specifications. This simulation tool allows designers to model applications in PSDF and simulate their functionality, including use of the dynamic parameter reconfiguration capabilities offered by PSDF. With the help of this simulation tool, our design methodology helps to map PSDF specifications into efficient implementations on field programmable gate arrays (FPGAs). Furthermore, valid schedules can be derived from the PSDF models at runtime to adapt hardware configurations based on changing data characteristics or operational requirements. Under certain conditions, efficient quasi-static schedules can be applied to reduce overhead and enhance predictability in the scheduling process. Motivated by the fact that scheduling is critical to performance and to efficient use of dynamic reconfiguration, we have focused on a methodology for schedule design, which complements the emphasis on automated schedule construction in the existing literature on dataflow-based design and implementation. In particular, we have proposed a dataflow-based schedule design framework called the dataflow schedule graph (DSG), which provides a graphical framework for schedule construction based on dataflow semantics, and can also be used as an intermediate representation target for automated schedule generation. Our approach to applying the DSG in this thesis emphasizes schedule construction as a design process rather than an outcome of the synthesis process. Our approach employs dataflow graphs for representing both application models and schedules that are derived from them. By providing a dataflow-integrated framework for unambiguously representing, analyzing, manipulating, and interchanging schedules, the DSG facilitates effective codesign of dataflow-based application models and schedules for execution of these models. As multicore processors are deployed in an increasing variety of embedded image processing systems, effective utilization of resources such as multiprocessor systemon-chip (MPSoC) devices, and effective handling of implementation concerns such as memory management and I/O become critical to developing efficient embedded implementations. However, the diversity and complexity of applications and architectures in embedded image processing systems make the mapping of applications onto MPSoCs difficult. We help to address this challenge through a structured design methodology that is built upon the DSG modeling framework. We refer to this methodology as the DEIPS methodology (DSG-based design and implementation of Embedded Image Processing Systems). The DEIPS methodology provides a unified framework for joint consideration of DSG structures and the application graphs from which they are derived, which allows designers to integrate considerations of parallelization and resource constraints together with the application modeling process. We demonstrate the DEIPS methodology through cases studies on practical embedded image processing systems

    The Paths to Choreography Extraction

    Full text link
    Choreographies are global descriptions of interactions among concurrent components, most notably used in the settings of verification (e.g., Multiparty Session Types) and synthesis of correct-by-construction software (Choreographic Programming). They require a top-down approach: programmers first write choreographies, and then use them to verify or synthesize their programs. However, most existing software does not come with choreographies yet, which prevents their application. To attack this problem, we propose a novel methodology (called choreography extraction) that, given a set of programs or protocol specifications, automatically constructs a choreography that describes their behavior. The key to our extraction is identifying a set of paths in a graph that represents the symbolic execution of the programs of interest. Our method improves on previous work in several directions: we can now deal with programs that are equipped with a state and internal computation capabilities; time complexity is dramatically better; we capture programs that are correct but not necessarily synchronizable, i.e., they work because they exploit asynchronous communication

    Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications

    Get PDF
    In real-time systems, the application's behavior has to be predictable at compile-time to guarantee timing constraints. However, modern streaming applications which exhibit adaptive behavior due to mode switching at run-time, may degrade system predictability due to unknown behavior of the application during mode transitions. Therefore, proper temporal analysis during mode transitions is imperative to preserve system predictability. To this end, in this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new predictable Model of Computation (MoC) to efficiently capture the behavior of adaptive streaming applications. Then, as an important part of the operational semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our novel protocol for mode transitions. The main advantage of this transition protocol is that, in contrast to self-timed transition protocols, it avoids timing interference between modes upon mode transitions. As a result, any mode transition can be analyzed independently from the mode transitions that occurred in the past. Based on this transition protocol, we propose a hard real-time analysis as well to guarantee timing constraints by avoiding processor overloading during mode transitions. Therefore, using this protocol, we can derive a lower bound and an upper bound on the earliest starting time of the tasks in the new mode during mode transitions in such a way that hard real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    An algebra of discrete event processes

    Get PDF
    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper
    • …
    corecore