-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Distributed Implementation of SIGNAL: Scheduling &
Graph Clustering

Olivier Malffeis, Paul Le Guernic

» To cite this version:

Olivier Maffeis, Paul Le Guernic. Distributed Implementation of SIGNAL: Scheduling & Graph
Clustering. Third International Symposium Organized Jointly With The Working Group Provably
Correct Systems, Procos, Sep 1994, Liibeck, Germany. pp.547-566. hal-00544101

HAL Id: hal-00544101
https://hal.archives-ouvertes.fr /hal-00544101
Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50033444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00544101
https://hal.archives-ouvertes.fr

Distributed Implementation of SIGNAL:
Scheduling & Graph Clustering*

Olivier MaAFFETs! and Paul LE GUERNIC?

1 GMD 15 - SKS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
2 TRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper introduces the scheduling strategy and some key
tools which have been designed for the distributed implementation of
SIGNAL, a real-time synchronous dataflow language. First, we motivate a
scheduling strategy with respect to the reactivity and time-predictability
requirements bound to real-time computing. Then, several key tools to
implement this scheduling strategy are described. These tools are acting
on the concept of Synchronous-Flow Dependence Graph (SFD Graph)
which defines a generalization of Directed Acyclic Graph and constitutes
the abstract representation of SIGNAL programs. The tools presented in
this paper are: (a) the abstraction of SFD graphs which enables grain-size
tuning according to the target architecture, (b) the notion of scheduling
over SFD graphs and (c) qualitative clustering tools based on the notion
of Compositional Deadlock Consistency.

1 Introduction

Although distributed architectures are becoming increasingly popular, imple-
menting large-scale applications onto them still remains a very difficult chal-
lenge. The problem of implementing a program onto a distributed architecture
is often stated as: partitioning and scheduling the nodes of a Directed Acyclic
Graph (DAG) < N, I' > onto a set of potentially heterogeneous processors
{P;|i =1,...,p}. In the abstract representation < N, I" > of the application,
N is a set of nodes (tasks) which stand for indivisible® program computations,
and I" is a set of arcs which represent the precedence constraints (including the
data paths). If the scheduling goal is the minimization of the program comple-
tion time, the associated scheduling problem is NP-complete even if the number
of processors is unbounded [18]. Since the optimal solution of this scheduling
problem can only be computed by exponential complexity algorithms (unless
P=NP), the purpose is to define fast heuristic techniques which efficiently com-
pute optimal or near-optimal solutions for restricted scheduling problems; i.e.

* This work has been initiated at IRISA (Institut de Recherche en Informatique et
Systémes Aléatoires). It has been completed at RAL (Rutherford Appleton Labo-
ratory, England) and GMD where it has been supported by an ERCIM (European
Research Consortium for Informatics and Mathematics) fellowship.

® in the sense that no attempt is made to use intranode parallelism

fast heuristic techniques acting on a previously stated scheduling strategy.

In this paper, we present the scheduling strategy and some key tools we designed
for the distributed implementation of SIGNAL [13], a real-time synchronous data-
flow language. The scheduling strategy we chose is presented in section 2; it
takes into account responsiveness, robustness, efficiency and time-predictability
requirements that real-time implementations must satisfy.

The tools implementing this scheduling strategy are acting on a generaliza-
tion of the notion of Directed Acyclic Graphs called Synchronous-Flow Depen-
dence Graphs (SFD Graphs). These graphs, which have been initially designed to
represent abstractly SIGNAL programs, constitute now the graph format shared
by the languages ESTEREL [5], ARGOs [17], LUSTRE [8] and S1aNAL; SFD graphs
are presented in section 3.

The following three sections define three key tools over SFD graphs to im-
plement our scheduling strategy: (a) the abstraction of SFD graphs enabling
grain-size variations in section 4, (b) the notion of compile-time scheduling over
SFD graphs in section 5 and, (c) clustering tools based on a new qualitative
criterion, namely the compositional deadlock consistency, in section 6.

2 Scheduling Strategy

The possible scheduling strategies go from fully dynamic up to fully static. In
the fully dynamic scheduling strategy, the assignment of the tasks to the pro-
cessors and their firing time are determined at run-time. In contrast, the fully
static approach realizes these two actions at compile time. Static or dynamic
task assignment is the first criterion which motivates the choice of a scheduling
strategy. A dynamic assignment scheduling strategy induces efficient parallel pro-
gram executions if the target architecture has relatively low communication costs
compared with the processor performance; a fully dynamic scheduling strategy
performs well for shared-memory architectures with few processors but not for
large-scale distributed memory architectures. Due to the relatively weak scal-
ability of the dynamic assignment scheduling strategies, we chose a scheduling
strategy with a static assignment of the tasks.

2.1 Related Work

Many works on static assignment scheduling strategies have been achieved but
they often consider only particular target architectures (the processors are ho-
mogeneous, the network topology is a ring, etc.) or particular application graphs
(chains, trees, etc.) [3] for which polynomial optimal algorithms can be found.
One relevant approach for a general purpose multiprocessor scheduling strat-
egy has been proposed by Kim & Browne [9]. Their scheduling strategy decom-
poses the application graph into a set of linear clusters. A linear cluster is a set of
nodes in which, for every couple of nodes, one precedes the other. The clustering

algorithm merges iteratively the nodes on the critical path. After some clustering
refinements, each cluster is mapped to one processor of the target architecture.

n [18], Sarkar has proposed a similar scheduling strategy: a clustering phase
(called internalization prepass) followed by a mapping phase. His clustering al-
gorithm considers the arcs of the application graph in a descending order with
respect to their communication weight. It iteratively merges the extremity nodes
of the first arc in the list if this clustering does not increase the parallel comple-
tion time; this clustering algorithm performs non linear clustering. When the arc
list has been exhausted, the mapping phase is achieved using a list scheduling
algorithm.

Another relevant approach has been defined by Gerasoulis & Yang in [7].
This approach, implemented in the PYRROS environment [20], uses a cluster-
ing algorithm which merges the extremity nodes of the highly weighted arc on
the Dominant Sequence path. The Dominant Sequence path is the longest (i.e.
critical) path in the estimated static scheduling®. Like in Sarkar’s approach, this
algorithm performs non-linear clustering.

2.2 The SIGNAL Approach

To implement SIGNAL programs on a distributed architecture with p processors,
we advocate a slightly different scheduling strategy:

. Gather the nodes of the application graph into u clusters (v > p).
. Merge the u clusters into p connected virtual processors.

. Partition each virtual processor ¢ in v; clusters.
. Compute a static schedule for each cluster; the resulting sequences
of code will be dynamically scheduled.

)
)
). Map the p virtual processors onto the p physical processors.
)
)

In contrast with the other scheduling strategies which are fully static, our strat-
egy envisages mixed static/dynamic scheduling at the processor level (step (e)).
This modification has been motivated by the kind of applications we have to
cope with: reactive instead of transformational systems [16]. In transformational
systems, the inputs are defined before the execution of the system. Therefore,
an implementation of this system may schedule the reading of its inputs at com-
pile time; a fully static scheduling strategy may induce efficient implementations
for transformational systems. As we consider real-time systems, a timely kind
of reactive systems, the inputs are supplied at run-time and we have to cope
with robustness, responsiveness and time-predictability. Therefore, a scheduling
strategy with some dynamic scheduling is more suitable for the implementation
of real-time systems since it enables some flexibility in task firing. The dynamic
scheduling is intended to provide the implementation with responsiveness and
robustness to the variations in time of the input occurrences. But, this dynamic
scheduling must be strictly confined to satisfy the time-predictable requirement.

* Note that Critical Path and Dominant Sequence path are equivalent notions in a
linear clustering algorithm.

Note that, in our scheduling strategy, we have extended the notion of cluster.
Usually, a cluster is defined as a set of tasks which are executed on the same
processor. In the expression of our scheduling strategy, we only consider a cluster
as a set of tasks which are treated as a whole in the next non-clustering steps. In
the distribution steps (steps (a), (b) and (¢)), this induces that all the tasks of a
cluster will be implemented on the same processor. In the implementation steps
(steps (d) and (e)), it signifies that dynamic scheduling will be only considered
between the clusters, a sequence of code being associated with each cluster v;.

In the sequel of this paper, we do not pretend to provide a complete set of tools
to implement our scheduling strategy, but only to present some key qualitative
tools:

— abstraction of SFD graphs in section 4. With this abstraction, SFD graphs
may constitute the only modeling along the inference of a parallel implemen-
tation;

— compile-time scheduling of SFD graphsin section 5. With this notion, a first
step towards the inference of parallel implementations over SFD graphs is
achieved.

— clustering tools based on new qualitative scheduling criterion: composi-
tional deadlock consistency in section 6. These clustering tools may be
used in the implementation of steps (a) and (d) of our scheduling strategy.

Before presenting all these tools, let us present shortly the notion of Synchronous-
Flow Dependence Graph (SFD Graph).

3 Synchronous-Flow Dependence Graphs

Let us illustrate the notion of Synchronous-Flow Dependence Graph (SFD Graph)
over a simple SIGNAL example, a counter with reset:

(| Zv:= V $1
| V:= (1 when RST)default(ZV+1)
D]

The $ operator is used to recall past values: the process ZV:= V $1 means
that ZV carries the previous value of V. The when operator filters data according
to a boolean condition and the default is a merge with priority:

V:= (1 when RST)default(ZV+1)
specifies that V is reset to 1 when RST holds true; otherwise it increments its
previous value. Sequences of values that RST, ZV and V may take are:

RST : t
zv -5 678912345
v -6 789123456

This behavior 1s abstractly represented in two connected structures: an equation
system which translates the relations among the occurrences of data, and a
dependence graph which represents the flows of data.

An Equational Control Modeling

The equation system is expressed over a set C' of characteristic functions called
clocks: for any signal V, its clock ¥ is equal to 1 if V is carrying a data at the
considered instant, it 1s equal to 0 if no data is present on V. The logical rela-
tions among the occurrences of data, which are implicit in SIGNAL processes,
are translated into equations over clocks. For instance, the counter example is
translated as:

ZV:= V $1 =10 ()
V:= (1 when RST)default(ZV+1) v =rstVzZv (4)

As expressed in equation (¢), each time V is holding a value, ZV is carrying a
value (in fact the previous value of V). Equation (i7) expresses that V carries
a value whenever a reset occurs or ZV holds a value. Formally, the equation
system X' which encodes the occurrence relations evolves in a boolean algebra
B =< C,V,A,0,1 > where:

C' 1s a set of clocks; B is called a clock algebra;

0 denotes the least element of B which stands for the never present clock;
it 1s used to denote something that never happens;

1 1is the greatest element of B, the always present clock.

As boolean algebras are lattices, an alternative representation of the clock alge-
bra B is achieved through a partial order:

<, <> with r<y <= TVy=y (& TAy=1)

Over the counter encoding, we can deduce that v = rst Vi or equivalently
rst < v. This result intuitively means that the activity of the counter includes
the reset operations.

A Clock-Labeled Dependence Graph

The equation system describes algebraically the reachable control states of the
process. Over the counter example, the relation rst < v induces that the
control state where v = 0, rst = 1 is unreachable. According to the reachable
control states, different flows of data may occur; the different flows of data which
may occur in the counter are abstractly represented by the dependence graphs
in Fig. 1-a, Fig. 1-b and Fig. 1-c, one for each reachable control state.

In Fig. 1-a where RST occurs (7“/55 = 1), ONE (a constant signal) is assigned to
V, the value of ZV is not used. Otherwise, V is defined® by the value of ZV as
depicted in Fig. 1-b. When v = 0 (the counter is not counting), nothing happens
as 1t 1s accurately presented in Fig. 1-c.

® For presentation reasons, we have substituted ZV41 by ZV.

(a) v=1,rst =1 (b)v=1,rst =0 (c)v=0,rst =0
Fig. 1. The Data-Dependencies According to the Control States

The abstract representation of the flows of data using Synchronous-Flow De-
pendence Graphs (SFD Graphs) is defined by superimposing all the possible
data-dependence graphs. Superimposing all the data-dependence graphs drawn
in Fig. 1 induces the SFD graph depicted in Fig. 2.

@ @ gk

fn(one) = rst
= ﬁ: _
° with Zv =7, rst< v

Fig. 2. A Synchronous-Flow Dependence Graph

The paths taken by the data according to the control states are described over
SFD graphs by means of two mappings fy and fr. These two mappings respec-
tively label its nodes and its vertices:

— fn(one) = rit\means that ONE is only present when RST occurs®;

— fr(zv,v) = rst means that V is defined from ZV when RST does not occur.

The new clock-label 7“/\? denotes the control state (b) in Fig. 1: @ = 1 when
% =1 and rst = 0. The definition of 7st is”: st = T A (T— 7“/55) .
Formally, a SFD graph is defined by:

< G,C X fn, fr > is a Synchronous-Flow Dependence Graph (SFD graph) iff:

— G =< N, I''I,O > is a dependence graph < N,I' > with communicalion
nodes: the inputs I and the outputs O are such that I C N,O C N and
INO=0.

— < C, XY > 1s an equational control representation where X 1s a set of con-
straints over a set C of characteristic functions called clocks;

— fv : N — C s a mapping labeling each node with a clock; it specifies the
existence condition of the nodes.

— fr: I' — C s a mapping labeling each edge with a clock; it specifies the
existence condition of the edges.

6 Note that the clock of a constant signal is defined in a demand-driven way.

o~

7 Tst is not equivalent to rst which is the complementary of rst: rst =1 — rst

Directed Acyclic Graphs (DAGs) are a very common abstract program represen-
tation [1] of the flows of data which may occur in a program. A SFD graph is
nothing but a set of directed graphs packed together, the way these graphs are
packed being described by a boolean labeling of the elements of this graph. For
this reason, we say that SFD graphs are a generalization of DAGs. In contrast
with DAGs, the clock labeling provides SFD graphs with a dynamical feature.
To express precedence constraints, this clock labeling imposes two constraints
which are implicit for DAGs:

— an edge cannot exist if one of its extremity nodes does not exist.
This property translated into the clock algebra, the image set of the map-
pings, is:

Y(x,y) el Jrix,y) < fn(x)A fn(y)

— a cycle of dependencies stands for a deadlock.
This property is verified over DAGs by definition. Over SFD graphs, it is
expressed as:

A SFD graph < G,C, X, fn, fr > is deadlock free iff,
for every cycle x1,... xn, x1 in G,

fr(x1,x2) A fr(x2,x3) A ... A fr(xn,x1) =0

Intuitively, this equation translates the property that a deadlock does not
exist 1f all the dependencies of a cycle in a SFD graph cannot be present at
the same time.

As SIGNAL is a dataflow language, SFD graphs define naturally a fine-grain
parallel representation of programs. Implementing SIGNAL programs onto a par-
allel architecture needs to tune the grain of the abstract program representation
according to the target parallel architecture. For this purpose, we present in
the next section the notion of abstraction over SFD graphs. This notion of ab-
straction frees SFD graphs from the fine-grain representation they were initially

bound.

4 Abstraction of Synchronous-Flow Dependence Graphs

A key concept in software engineering is the concept of abstraction [10] which
supplies the sufficient information to compose processes leaving aside any inter-
nal feature: it 1s the key concept for modularity. In programming languages, an
abstracted process if often confined to an identifier and a set of input/output
nodes. In some high-level languages, process abstraction may include (a) formal
parameter to introduce some program genericity or (b) some high-order inputs
like the procedure entry level in ADA [19].

More generally, the concept of abstraction is designed for the verification of
global properties by the composition of synthesized representations. If Ry and R»

are two representations with some semantics and | is a composition operator, the
Abs synthesizing mechanism for the compositional verification of the property
P must verify the following relation:

P(Rl) A P(Rz) A P(AbS(R1)|AbS(R2)) e P(R1|R2)

According to their mixed nature, abstraction of SFD graphs involves two syn-
thesizing mechanisms to verify deadlock freedom and to perform control consis-
tency [15] by composition:

— A synthesis of the internal dependencies
This synthesis, required to verify deadlock by composition, is achieved through
the transitive closure of the dependence graph and its projection (sub-graph)
upon the input and output nodes. The transitive closure of SFD graphs is
simply computed with the two following rules.

. B a Tad
rule of series X >y —2Z=>X "2
Py -
—
rule of parallel ~ SN PAN y
X —Yy

— A clock equation projection.
This control projection synthesizes the relations (equivalence, inclusion, ex-
clusion) among the clocks which label (a) the edges of the synthesized graph
to enable compositional deadlock detection and (b) the input-output nodes
to perform control consistency [15] by composition.

The counter example i1s too small to illustrate the abstraction of SFD graphs.
The reader interested in such an example is referred to [15, 14].

In contrast with a lot of common abstract representations of programs, the
abstraction over SFD graphs provides them not with black box abstractions but
rather with grey box abstractions since it even synthesizes the control. Moreover,
as abstractions of SFD graphs are SFD graphs, all the tools previously defined for
SFD graphs are reusable modularly: modularity may be introduced in the whole
compilation process. With this notion of abstraction, steps (a) and (d) of our
scheduling strategy can be achieved without giving up the SFD graph modeling.
This modeling homogeneity warrants a greater reliability (every modeling change
constitutes a possible source of error) which is a critical requirement for real-
time systems. In the next section, we go one step further towards the inference
of time-predictable parallel implementations by means of the notion of compile-
time scheduling over abstractions of SFD graphs.

5 Compile-Time Scheduling

Compile-time scheduling, that is programming at compile-time the execution of
tasks, can be considered at two levels: at the logical level, compile-time schedul-
ing is to set the precedence constraints verified at run-time among the tasks; at

the physical level, compile-time scheduling is to define the exact firing time of
the tasks. In this section, we only consider compile-time scheduling at the logical
level since we do not want to introduce quantitative data as required for physical
compile-time scheduling.

When an application is abstractly represented as a directed acyclic graph <
N, I' >, scheduling at compile-time a set N of tasks is specified by adding prece-
dence constraints to I while making sure that no deadlock is introduced. If we
call reinforcement the addition of precedence constraints, and deadlock consis-
tency the action of “making sure that no deadlock is introduced”; a scheduling of
< N, I' > is defined as a deadlock-consistent a reinforcement it. Let us transpose
this definition from DAGS to SFD graphs:

— reinforcement: < N, I" >is areinforcement of < N, I" > 1ff rcr
Transposing the reinforcement definition to SFD graphs implies:

~ ~

X Ly 1s a reinforcement of x Ly iff h < k

Note that the absence of dependency between two nodes can be equivalently
represented over SFD graphs by a dependence labeled with the null clock 0.
As for DAGs, reinforcement provides a set of SFD graphs based on the same
node set with an order relation.
— deadlock consistency: < N, I’ > is deadlock-consistent for < N, I" > iff
< N,I' > deadlock free —>< N, I > deadlock free

Transposing the notion of deadlock consistency to SFD graphs implies:

X Ly 15 deadlock-consistent for x LN y iff

Vz1,...,zn € N such thaty Lzt Bz . ozn Mk

Ainh=0 = Alrk=0
0 0

Over a transitive closure or an abstraction of a SFD graph, the above con-
dition of deadlock consistency is rewritten in a simpler form:

~ ~

X Ly 15 deadlock-consistent for x LN y iff

~

hAl=0 = kAl=0 with y—l>x
As for DAGs, deadlock consistency provides a set of deadlock-free SFD
graphs based on the same node set with an order relation.

A compile-time scheduling of a graph is defined as a deadlock-consistent rein-
forcement of it. Let us focus on what precisely means the combination of these
two properties over the SFD graph abstraction depicted in Fig. 3. In this figure,
x and y stand for any two nodes, they may be internal, input or output nodes.

Fig.3. A Basic SFD Graph Abstraction

The clock which labels the dependency from x to y is denoted f1, its converse
is denoted f~. S(x,y) stands for a logical Scheduling of x before y.
As a scheduling is a deadlock-consistent reinforcement, S(x, y) must ensure that

the cycle x Sy, v I~ x does not represent a deadlock. Therefore, it must

satisfy the condition (1).
Sxy)AfT=0 (1)

By combining reinforcement with deadlock consistency, we demonstrate that
S(x,y) defines a compile-time scheduling iff the condition (2) holds.

FE<Sxy) <Eagand-fo) (2)

Proof: the lowerbound of scheduling is the straightforward expression of the rein-
forcement property which is attached to the notion of compile-time scheduling. The
upperbound of scheduling is induced from the conjunction of the deadlock consistency
condition with the inclusion condition. The inclusion condition bound to SFD graph
imposes that an arc cannot exist if one of its extremity node does not. Over the nota-
tions of Fig. 3, this inclusion condition is translated as: S(x,y) < T A Y.
By means of elementary clock calculus, the deadlock consistency property is rewritten
as an inequation:

SxYAST =0 & Sy a(i-
S(xy) <(1-

)= S(xy)
)

The intuitive meaning of this formally proven upperbound of scheduling is:

< I
< I

x may be schedule before y at most when

TAY x and y are present,
Al =f7) and y does not precede x

By means of clock expressions, different kinds of scheduling may be expressed
at compile-time. If S(x,y) is equal to Z A ¥, it expresses that x is scheduled
before y as soon as x and y are defined: the underlying scheduling is static. The
existence of cycle such that S(x,y) AS(y,x) = 0 denotes a scheduling depending
on boolean conditions evaluated at run-time, it induces pre-constrained dynamic
scheduling. The lack of dependency between x and y, which occurs when S(x,y)
and S(y, x) are both equal to 6, induces a dynamic scheduling.

Since scheduling is defined as the conjunction of reinforcement with deadlock
consistency, it provides a set of deadlock free SFD graphs based on the same

node set with an order relation. Therefore, an execution schema can be designed
progressively by successive reinforcement of a graph. Moreover, this design can
be performed at any level of abstraction since this scheduling is applicable over
SFD graph abstractions.

Besides the proper definition of the notion of compile-time scheduling over
SFD graphs, the purpose of this section was to illustrate the way to express
by clock expressions the control of the execution of processes. The same tech-
nique 1s used in the next section to define the notion of compositional deadlock
consistency on which our clustering algorithms are based.

6 Compositional Deadlock Consistency

The general problem of partitioning/mapping an application graph onto a set of
processors while minimizing the maximal completion time is NP-complete [18].
Bypassing this complexity can be achieved through clustering heuristics which
detect properties of sub-graphs that are considered as atomic unit for the map-
ping process. A clustering phase i1s intended to increase the granularity of the
graph thereby reducing the size of the mapping problem without compromis-
ing the implementation efficiency. Then, on this size-reduced application graph,
mapping algorithms with higher complexities can be reasonably used.

With respect to subtle variations of the scheduling goals, several cluster-
ing heuristics have been defined in the literature —see [6] for a survey of these
heuristics. The clustering sub-goals that are used can be split in two classes: the
quantitative goals (called performance goals in [6]) and the qualitative ones. Two
different quantitative data are usually added to the application graph < N, I" >
for quantitative scheduling: the execution time e;;, of the task n; (n; € N) on the
processor P, and the communication cost ¢;; between the tasks n; and n; when
they are mapped on two directly connected processors (null communication time
is assumed if n; and n; are mapped on the same processor). According to these
two kinds of quantitative data, the two extreme sub-goals are: the maximization
of the execution efficiency and the minimization of the communication volume.
In contrast with the quantitative goals which are architecture dependent, the
qualitative goals focus on the shape of the clusters. The qualitative goals which
have been used for clustering include:

— linearity [9]. A linear cluster is a set of nodes in which, for every couple of
nodes, one precedes the other; the nodes of a linear cluster belong to a single
path in the dependence graph. As linear clustering merges only sequentially
executable nodes, it preserves the parallelism embedded in the graphs;

— convezily [18]. Sarkar defines the convexity as the property that ensures that
a macro-actor can run to completion once all its input are available. In other
words, its execution can be split into three periods sequentially performed:
waiting for all the inputs; computing; emitting all the outputs. Therefore,
we say that the execution of convex macro-actors is function-like at the 1/0
level. A graph-theoretic approach to convexity has been studied in [12].

In this section, we define a new qualitative criterion, namely Compositional Dead-
lock Consistency, which allows one to encompass linear as well as convex clus-
tering in a single framework. This extension has been motivated by the reactive
feature of real-time systems which imposes to consider the environment of the
real-time systems at all their design stages.

6.1 Example

Let us consider the graph in Fig. 4 which depicts the abstraction of a process
with two input signals I1 and I2, and two outputs 01 and 02. In this graph,
the solid arrows (i1 — o1, i1 — 02 and i2 — o1) represent the dependencies
induces from the abstraction of the specification of the process.

J A ___ Specification
read(il); ... Implementation
N el U kel B B Environment
read(i2);
e
emit(02); read(o2);
emit (ol) emit(il)
(a) Implementation (b) Composition graph (¢) Environment

Fig.4. A Deadlock between a Process Implementation and its Environment

A topological sort of these nodes may induce the static scheduling in Fig. 4-
a. Transposing this static scheduling over the graph in Fig. 4-b introduces the
dashed arrows. If we compose the implementation in Fig. 4-a with an environ-
ment implementing the scheme in Fig. 4-¢, a deadlock is created. At the graph
level, this deadlock is denoted by the cycle i2--->02 - > 12 . This deadlock
is present at the implementation level but not at the specification level since it
includes a dashed arrow. As the scheduling i2 ---> 02 may create a deadlock
with an environment which is correct with respect to the process specification,
this scheduling is said not compositionally deadlock-consistent.

In contrast, the scheduling 02 ---> o1 is compositionally deadlock-consistent
since 1t does not create a deadlock with the environment in Fig.4-¢, and this
environment is the only one which can read outputs and emit inputs of the
process without creating a deadlock with it at the specification level.

6.2 Definition

Let us focus on what precisely means the notion of compositional deadlock con-
sistency over the generic SFD graph abstraction depicted in Fig. 5.

Fig.5. A Generic SFD Graph Abstraction

In this figure, il---ip represent the input nodes, ol ---og the output ones and,
x and y stand for any two nodes which may be internal nodes as well interface
nodes®. Translated over the notations in Fig. 5, the notion of compositional
deadlock consistency imposes that S(x,y) must verify:

Yik, ol ex ASX, YA fyi A Feny =0 (3)
In this equivalence, Fl.,, denotes a dependency from ol to ik outcoming from
the composition with an environment. This environment is acceptable if it 1s not
deadlocked with the specification of the process. Thus, the following condition
must be verified:

VikaOI Fenv/\fkl:A

As for the proof of the upperbound of scheduling (formula (2) in section 5), the
above condition can be equivalently rewritten in the inequation F,, < (T—fkl) .
Consequently, the condition of compositional deadlock consistency (formula (3))
is rewritten in:

Vik, ol S, ¥) A fix Ayt AT = frr) =0
This quantified equation can be rewritten in inequation (4).
S(x,y) S/\(T_ka/\le/\(T_fkl)) (4)
k)
Proof: The equation S(x YA frx A fyz A (1 — fu) = 0 can be rewritten in:
S(x,y) A (1—ka/\fyz/\(1—sz)) (y) Vikel,ole O
< S(x,y) < (1—ka/\fyz/\(1—sz)) Vikel,ole O

& S(x,y) < /\k,z l—ka/\sz/\(l—sz))
n

8 If x is the input node ik, it is equivalent to consider for the sequel of this paper that
frx is equal to T. A symmetric remark can be expressed if y is the output node ol.

6.3 Fully Deadlock Consistent Compile-Time Scheduling

By combining the compile-time scheduling characterization (formula (2)) with
inequality (4), we define the criterion of fully deadlock consistent compile-time
scheduling (fdc scheduling) which is formally characterized by:

S(x,y) is defines a fully deadlock consistent compile-time scheduling of

x before y off T <S8(x,y) <8T(x,y) with:
ST(X,Y):f/\gA(T—f_)A/\(T—ka/\leA(T—fkl)) (5)
kL

The proof of this inequality i1s straighforward. The complex clock expression
which specifies the upperbound of scheduling may be intuitively read as:

x may be scheduled before y iff

x does not precede y and c O TAYA (T — A

if a scheduling path ik, x,y, ol is created (T — fix A fyiA
Bl

then ik precedes ol by specification (1 = fr1))

The two main promising properties of this scheduling criterion are: (a) it may
induce architecture independent clustering since it is a qualitative scheduling
criterion; (b) as it is based on the abstraction of SFD graphs, it may be applied to
any subset of nodes: it defines an any level scheduling criterion. Exploiting these
properties to perform clustering needs to use this criterion accurately to avoid
the NP-complete problems that its general use will encounter. The practical uses
of this new scheduling criterion for clustering are presented in the next section.

7 Clustering

By applying the fdc scheduling criterion to a set of nodes, the associated process
may constitute a cluster by:

— Linear Clustering if all the nodes may belong to a single path of fdc schedul-
ing. Note that, as a fdc scheduling is a reinforcement of a graph, any linear
clustering over a graph (as performed in [9]) is a linear clustering over a fdc
scheduling of this graph. But, in contrast with Kim & Browne’s linear clus-
tering, linear clustering over fdc scheduled graphs may reduce the parallelism
embedded in the initial graph;

— Convex Clustering if all the nodes may belong to a single path of fdc
scheduling where inputs and outputs are not alternating. Therefore, any
convex cluster is a linear cluster.

The practical use of the fdc scheduling criterion to do linear and convex clustering
will encounter NP-problems at two levels:

— complex calculiin a boolean algebra lead to NP-complete problems. This first
obstacle has been overcome with the heuristic algorithm that implements
the clock calculus [2]. Despite the breakthrough achieved by this heuristic
algorithm, the boolean calculi submitted to it must be as simple as possible.

— optimal partitioning/clustering of general graphs with respect to non trivial
criteria is a NP-complete problem. To cope with this obstacle, we can use
optimal algorithms with exponential complexity on very small (sub-)graphs,
polynomial but often sub-optimal algorithms on large graphs, or a combina-
tion of both.

The first optimization achieved by both the convex and the linear clustering
algorithms is to do clustering in two steps. Firstly, only a size-reducted problem
is considered by restricting the scope of fdc scheduling from any pair of nodes to
pairs of interface nodes. Secondly, the properties detected at the interface level
are propagated to the internal nodes to perform convex and linear clustering.

7.1 Convex Clustering

A naive algorithm for convex clustering at the interface level would be to enumer-
ate the possible elementary paths of the maximal fdc schedulings of an interface
abstraction, the maximal fdc schedulings of a graph being computed by recur-
sively substituting each arc by its upperbound of fdc scheduling. If one of these
paths does not alternate inputs and outputs, the associated process may define
a convex cluster.

The major drawback of this naive algorithm is its complexity: it requires
two phases (computation of the maximal fdc scheduling and path enumeration)
which have an exponential complexity in the general case. Consequently, we
have investigated the other possibility which goes through the upperbound of
fde scheduling of an interface graph. The upperbound of fdc of a graph is com-
puted by substituting in parallel each arc by its upperbound of fdc scheduling.
This upperbound is the superimposition of all the maximal fdc schedulings. For
instance, let us consider the interface abstraction depicted in Fig. 6-a. In this
abstraction, we assume that fy(i1) = fn(i2) = fy(ol) = fy(02) = k and
h < k . The upperbound of fde scheduling of this abstraction is the SFD graph
in Fig. 6-b.

In the general case, the upperbound of fdc scheduling does not define a
scheduling as it may include cycles representing deadlocks. The upperbound of
scheduling depicted in Fig. 6-b includes two of these cycles, one between i1 and
i2 and the other between o1 and o02. The conjunction h Ak of the clocks
labeling the dependencies of these cycles is equal to h since h < k: the cycles
exist at h. In contrast with these two first cycles, the third elementary cycle which
occurs between i2 and o2 does not stand for a deadlock since hA(k—h) = 0.
This remark is in fact a general property as proved in [14]:

no deadlock cycle including inputs and outputs may occur
at the upperbound of fdc scheduling.

=)
IN
)

Fig.6. A Graph and its Upperbound of Fdc Scheduling

As no cycle may alternate inputs and outputs, a cycle among inputs induces that
these inputs can be scheduled in a sequence without outputs; a similar discussion
may occur for cycles among outputs. This property of the cycles occurring at the
upperbound of fdc scheduling motivates the following algorithm which performs
convex clustering:

1. compute the upperbound of fdc scheduling among the inputs;
2. for each set of inputs belonging to a cycle at h: cluster to this set of inputs
the internal and outputs nodes which depend exclusively on these inputs.

Note that a symmetric convex clustering algorithm may start from the outputs
instead of the inputs. This variation of the clustering algorithm may be useful if
there is less outputs than inputs to deal with a smaller problem. Applied to the
interface graph in Fig. 6-a, this algorithm detects that the associated process
defines a convex cluster at h.

7.2 Linear Clustering

By convex clustering may result a partition into processes which can run to
completion once all their inputs are available; in these processes, all the inputs
may precede all the outputs at the implementation level. Looking for a parti-
tion into linear clusters which are not convex clusters leads to search for fdc
scheduling paths which alternate inputs and outputs. Therefore, one way to re-
duce the search space of the algorithm which does this search is to start from
a fdc scheduling dependency connecting an output to an input. Starting from
such a scheduling dependency, the algorithm may proceed by looking backward
and then forward to get the longest path of fdc scheduling. Previously to this
algorithm, a transitive reduction algorithm may be applied to reduce even more
the search space.

Applied to the graph in Fig. 6-a, the algorithm starts from the fdc scheduling
dependency 02--->i2 at k—h. Then, by going backward, the node i1 is added
as the starting point of this scheduling path. By going forward, the node o1 is
appended to the path. Finally, this algorithm detects that the associated process
defines a linear cluster but not a convex one at &k — h. By combining this

result with the convex clustering detected on the same set of nodes, linear and
possibly convex cluster are detected. By this combination, the process abstractly
represented in Fig. 6-a defines a linear cluster at:

~ ~ ~

hv (k—h)=k
After this definition of the convex and linear clustering algorithms, let us con-
clude this paper by presenting the way we intend to implement the five-steps

scheduling strategy we advocated, and how the fdc scheduling criterion is used
in this framework.

7.3 Scheduling Strategy Implementation

In the beginning of this paper, we advocate a five-steps scheduling strategy.

=

g}
e e e S S

Gather the nodes of the application graph into u clusters (u > p).
Merge the u clusters into p connected virtual processors.

~ e~
o

Map the p virtual processors onto the p physical processors.
Partition each virtual processor i in v; clusters.

TN N
o

Compute a static schedule for each cluster; the resulting sequences
of code will be dynamically scheduled.

The two clustering steps (a) and (d) will be based on the convex and linear clus-
tering algorithms previously presented. Steps (b) and (¢) will be implemented by
means of the coupling of the SIGNAL software design environment with the SYN-
DEX system. SYNDEX, which stands for SyNchronous Distributed Executive, is a
system which enables the inference of implementations over various distributed
architectures. It performs this inference by mapping SFD graphs over a graph
representation of the architecture?. This inference is performed in three steps:
(a) the user may constrain some mapping of processes onto processors; (b) SYN-
DEX completes the mapping and produces scheduled distributed code for the
target architecture and (¢) SYNDEX provides the user with static analyses of
the performance of the inferred implementation. An iteration among these three
steps 1is required to infer for complex applications an efficient implementation on
a distributed, eventually heterogeneous, architecture.

Implementing step (¢) may take once again benefit of the fdc scheduling
criterion but in a slighly different way than it has been achieved for clustering.
Defining an implementation requires an order relation. From the upperbound of
fde scheduling of an interface graph, two ways exist to get an order relation: break
the cycles or merge the nodes belonging to a cycle. Using these two methods over
the upperbound in Fig. 6-b, we infer the two graphs in Fig. 7 which respectively
define:

® In fact, the graph representation of the architecture may be an hypergraph since the
target architecture may include buses.

— an inierface execution scheme in Fig. 7-a.
The first step in the inference of this high-level execution scheme in Fig. 7-a
is to break the cycles representing deadlocks by removing the edges between
inputs and between outputs at the clock at which convex clustering was per-
formed. This leads to suppress in Fig 6-b the arcs i2---> i1 and o1---> 02.
The second step 1s the unfolding of the acyclic graph according to the dif-
ferent control states referred in the remaining cycles. The remaining cycle
between 12 and o2, which does not denote a deadlock (h A(k—h)=10), im-
poses a conditional scheduling denoted by the labeled fork-join in the graph
in Fig. 7-a. Note that static (i.e. non conditional) scheduling is achieved at
the two extreme cases: h = k and h = 0.
— a communicalion scheme in Fig.7-b. R

The cycle between the input nodes expresses that, when A occurs, i1 may
be scheduled before or after i2 without creating a deadlock. For this reason,
the values on i1 and i2 can be received gathered without the creation of
a deadlock. In other words, the communications of the values of i1 and i2
may be vectorized at hif they come from the same processor. To express the
design of such a communication scheme at the graph level, 1t is sufficient to
partition the nodes according to the cycles. Applied to the upperbound graph
in Fig. 6-b, we may deduce the input communication interface presented
in Fig. 7-b. In this implementation, the values carried by i1 and i2 are
communicated gathered at A through the new node ci12: fy(cil2) = h.A
symmetric result may be achieved over the outputs.

Fig. 7. Execution and Communication Schemes

8 Conclusion

The paper has motivated a scheduling strategy for the distributed implementa-
tion of SIGNAL programs. This scheduling strategy differs from the usual one by

the dynamical scheduling it includes. This variation has been motivated by the
reactive requirements that SIGNAL, as a real-time language, must fulfill.

For the implementation of this scheduling strategy, we have defined sev-
eral tools, all of them acting on Synchronous-Flow Dependence Graphs (SFD
Graphs). These graphs, which constitute the abstract representation of SIGNAL
programs, define a generalization of the notion of Directed Acyclic Graph. Three
tools are defined in this paper to implement this scheduling strategy:

— Abstraction.
This first tool is intended to free SFD graphs from the fine-grain parallel
abstract representation they were initially bound. By means of this abstrac-
tion, we are able to tune the grain-size of the representation according to
the one of the target architecture without giving up with the SFD graph
modeling;

— Compile-time Scheduling.
This definition of the notion of scheduling constitutes the first step towards
the inference of implementations. The purpose of this definition was also to
illustrate the method to express over SFD graphs the scheduling of processes
with a complex control,;

— Clustering.
A new qualitative criterion, namely compositional deadlock consistency, is
defined and used at several steps in the scheduling strategy. In particular, this
new criterion is used to implement the two clustering steps of our scheduling
strategy. This new criterion enable to embraces in a single framework two
usual qualitative clustering criteria, linearity and convexity.

The abstraction tool is currently integrated into the SIGNAL software design en-
vironment; the programming of the clustering tools is underway. The SIGNAL
software design environment intends to encompass all the stages of the design of
real-time systems. This environment includes (a) a graphic specification inter-
face to specify real-time systems, (b) several formal verification tools to prove
properties thereby to enhance the safety of the implementations and (c¢) tools to
infer implementations over sequential architectures as well as distributed ones.

The inference of distributed implementations for SIGNAL programs is only
partially implemented in the SIGNAL compiler; the architecture-dependent trans-
formations are performed by the SYNDEX system [11]. The coupling between the
SIGNAL compiler and the SYNDEX system is achieved by means of a textual de-
compilation of SFD graphs [4]; an extended version of this decompilation defines
the common graph format shared by ESTEREL [5], ARGOs [17], LUSTRE [8] and
SIGNAL.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wiley, 1986.

2. T. Amagbegnon, L. Besnard, and P. .. Guernic. Aborescent canonical form of
boolean expressions. Research Report 826, IRISA, June 1994.

3. S. H. Bokhari. Partitioning problems in parallel, pipelined, and distributed com-
puting. IEEE Trans. on Computers, 37(1):48-57, January 1988.

4. P. Bournai, C. Lavarenne, P. Le Guernic, O. Maffeis, and Y. Sorel. Interface
SIGNAL-SynDEx. Research report 2206, INRIA France, Rennes, march 1994.

5. F. Boussinot and R. De Simone. The ESTEREL language. Proceedings of the IEFE,
79(9):1293-1304, Sept. 1991.

6. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for clustering
dags on multiprocessors. Journal of Parallel and Distributed Computing, Special
Issues on Scheduling and Load Balancing, 16(4):276-291, Dec. 1992.

7. A. Gerasoulis and T. Yang. A static-dataflow scheduling tool for scalable parallel
architectures. In Summer School on Scheduling Theory and its applications, pages
382-417. Chateau de Bonas(Gers), INRIA, Sept. 1992.

8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proc. of the IEFE, 79(9):1305-1321, Sept. 1991.

9. S. J. Kim and J. C. Browne. A general approach to mapping of parallel compu-
tation upon multiprocessor architectures. In Int. Conf. on Parallel Processing,
volume I1I, pages 1-8, 1988.

10. C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131-183, June
1992.

11. C. Lavarenne, O. Segrouchni, Y. Sorel, and M. Sorine. The SYNDEX software envi-
ronment for real-time distributed systems design and implementation. In Furopean
Control Conference, volume 2, pages 1684-1689, June 1991.

12. B. Le Goff, P. Le Guernic, and J. Ardoz Durand. Semi-granules and schielding
for off-line scheduling. Research Report 1228, INRIA France, Rocquencourt, May
1990.

13. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-
time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321-1336, Sept.
1991.

14. O. Maffeis. Ordonnancements de graphes de flots synchrones; Application a SIG-
NAL. PhD thesis, Université de Rennes 1, France, Jan. 1993.

15. O. Maffeis and P. Le Guernic. Combining dependability with architectural adapt-
ability by means of the SIGNAL language. In 3rd Int. Workshop on Static Analysis,
pages 99-110. LNCS no 724, Springer-Verlag, Sept. 1993.

16. 7Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

17. F. Maraninchi. The ARGOS language: Graphical representation of automata and
description of reactive systems. In IFEE Workshop on Visual Languages, Oct.
1991.

18. V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Re-
search Monographs in Parallel and Distributed Computing. MIT Press, Cambridge,
Massachusetts, and Pitman Publishing, London, U.K., 1989.

19. USDD. Reference Manual for the ADA Programming Language. United States,
Department of Defense, 1983. ANSI:MIL-STD-1815A-1983.

20. T. Yang and A. Gerasoulis. Pyrros: Static task scheduling and code generation for
message-passing multiprocessors. In Proc. of the 6th ACM Int. Conf. on Super-
computing, pages 428-437, 1992.

This article was processed using the INTpX macro package with LLNCS style

