
HAL Id: hal-00544101
https://hal.archives-ouvertes.fr/hal-00544101

Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Implementation of SIGNAL: Scheduling &
Graph Clustering

Olivier Maffeis, Paul Le Guernic

To cite this version:
Olivier Maffeis, Paul Le Guernic. Distributed Implementation of SIGNAL: Scheduling & Graph
Clustering. Third International Symposium Organized Jointly With The Working Group Provably
Correct Systems, Procos, Sep 1994, Lübeck, Germany. pp.547-566. �hal-00544101�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50033444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00544101
https://hal.archives-ouvertes.fr

Distributed Implementation of SIGNAL:Scheduling & Graph Clustering?Olivier Maffe��s1 and Paul Le Guernic21 GMD I5 - SKS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany2 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FranceAbstract. This paper introduces the scheduling strategy and some keytools which have been designed for the distributed implementation ofSignal, a real-time synchronous dataow language. First, we motivate ascheduling strategy with respect to the reactivity and time-predictabilityrequirements bound to real-time computing. Then, several key tools toimplement this scheduling strategy are described. These tools are actingon the concept of Synchronous-Flow Dependence Graph (SFD Graph)which de�nes a generalization of Directed Acyclic Graph and constitutesthe abstract representation of Signal programs. The tools presented inthis paper are: (a) the abstraction of SFD graphs which enables grain-sizetuning according to the target architecture, (b) the notion of schedulingover SFD graphs and (c) qualitative clustering tools based on the notionof Compositional Deadlock Consistency.1 IntroductionAlthough distributed architectures are becoming increasingly popular, imple-menting large-scale applications onto them still remains a very di�cult chal-lenge. The problem of implementing a program onto a distributed architectureis often stated as: partitioning and scheduling the nodes of a Directed AcyclicGraph (DAG) < N;� > onto a set of potentially heterogeneous processorsfPi j i = 1; : : : ; pg. In the abstract representation < N;� > of the application,N is a set of nodes (tasks) which stand for indivisible3 program computations,and � is a set of arcs which represent the precedence constraints (including thedata paths). If the scheduling goal is the minimization of the program comple-tion time, the associated scheduling problem is NP-complete even if the numberof processors is unbounded [18]. Since the optimal solution of this schedulingproblem can only be computed by exponential complexity algorithms (unlessP=NP), the purpose is to de�ne fast heuristic techniques which e�ciently com-pute optimal or near-optimal solutions for restricted scheduling problems, i.e.? This work has been initiated at IRISA (Institut de Recherche en Informatique etSyst�emes Al�eatoires). It has been completed at RAL (Rutherford Appleton Labo-ratory, England) and GMD where it has been supported by an ERCIM (EuropeanResearch Consortium for Informatics and Mathematics) fellowship.3 in the sense that no attempt is made to use intranode parallelism

fast heuristic techniques acting on a previously stated scheduling strategy.In this paper, we present the scheduling strategy and some key tools we designedfor the distributed implementation of Signal [13], a real-time synchronous data-ow language. The scheduling strategy we chose is presented in section 2; ittakes into account responsiveness, robustness, e�ciency and time-predictabilityrequirements that real-time implementations must satisfy.The tools implementing this scheduling strategy are acting on a generaliza-tion of the notion of Directed Acyclic Graphs called Synchronous-Flow Depen-dence Graphs (SFD Graphs). These graphs, which have been initially designed torepresent abstractly Signal programs, constitute now the graph format sharedby the languages Esterel [5],Argos [17], Lustre [8] and Signal; SFD graphsare presented in section 3.The following three sections de�ne three key tools over SFD graphs to im-plement our scheduling strategy: (a) the abstraction of SFD graphs enablinggrain-size variations in section 4, (b) the notion of compile-time scheduling overSFD graphs in section 5 and, (c) clustering tools based on a new qualitativecriterion, namely the compositional deadlock consistency, in section 6.2 Scheduling StrategyThe possible scheduling strategies go from fully dynamic up to fully static. Inthe fully dynamic scheduling strategy, the assignment of the tasks to the pro-cessors and their �ring time are determined at run-time. In contrast, the fullystatic approach realizes these two actions at compile time. Static or dynamictask assignment is the �rst criterion which motivates the choice of a schedulingstrategy. A dynamic assignment scheduling strategy induces e�cient parallel pro-gram executions if the target architecture has relatively low communication costscompared with the processor performance; a fully dynamic scheduling strategyperforms well for shared-memory architectures with few processors but not forlarge-scale distributed memory architectures. Due to the relatively weak scal-ability of the dynamic assignment scheduling strategies, we chose a schedulingstrategy with a static assignment of the tasks.2.1 Related WorkMany works on static assignment scheduling strategies have been achieved butthey often consider only particular target architectures (the processors are ho-mogeneous, the network topology is a ring, etc.) or particular application graphs(chains, trees, etc.) [3] for which polynomial optimal algorithms can be found.One relevant approach for a general purpose multiprocessor scheduling strat-egy has been proposed by Kim & Browne [9]. Their scheduling strategy decom-poses the application graph into a set of linear clusters. A linear cluster is a set ofnodes in which, for every couple of nodes, one precedes the other. The clustering

algorithmmerges iteratively the nodes on the critical path. After some clusteringre�nements, each cluster is mapped to one processor of the target architecture.In [18], Sarkar has proposed a similar scheduling strategy: a clustering phase(called internalization prepass) followed by a mapping phase. His clustering al-gorithm considers the arcs of the application graph in a descending order withrespect to their communication weight. It iteratively merges the extremity nodesof the �rst arc in the list if this clustering does not increase the parallel comple-tion time; this clustering algorithm performs non linear clustering. When the arclist has been exhausted, the mapping phase is achieved using a list schedulingalgorithm.Another relevant approach has been de�ned by Gerasoulis & Yang in [7].This approach, implemented in the PYRROS environment [20], uses a cluster-ing algorithm which merges the extremity nodes of the highly weighted arc onthe Dominant Sequence path. The Dominant Sequence path is the longest (i.e.critical) path in the estimated static scheduling4. Like in Sarkar's approach, thisalgorithm performs non-linear clustering.2.2 The SIGNAL ApproachTo implement Signal programs on a distributed architecture with p processors,we advocate a slightly di�erent scheduling strategy:(a). Gather the nodes of the application graph into u clusters (u � p).(b). Merge the u clusters into p connected virtual processors.(c). Map the p virtual processors onto the p physical processors.(d). Partition each virtual processor i in vi clusters.(e). Compute a static schedule for each cluster; the resulting sequencesof code will be dynamically scheduled.In contrast with the other scheduling strategies which are fully static, our strat-egy envisages mixed static/dynamic scheduling at the processor level (step (e)).This modi�cation has been motivated by the kind of applications we have tocope with: reactive instead of transformational systems [16]. In transformationalsystems, the inputs are de�ned before the execution of the system. Therefore,an implementation of this system may schedule the reading of its inputs at com-pile time; a fully static scheduling strategy may induce e�cient implementationsfor transformational systems. As we consider real-time systems, a timely kindof reactive systems, the inputs are supplied at run-time and we have to copewith robustness, responsiveness and time-predictability. Therefore, a schedulingstrategy with some dynamic scheduling is more suitable for the implementationof real-time systems since it enables some exibility in task �ring. The dynamicscheduling is intended to provide the implementation with responsiveness androbustness to the variations in time of the input occurrences. But, this dynamicscheduling must be strictly con�ned to satisfy the time-predictable requirement.4 Note that Critical Path and Dominant Sequence path are equivalent notions in alinear clustering algorithm.

Note that, in our scheduling strategy, we have extended the notion of cluster.Usually, a cluster is de�ned as a set of tasks which are executed on the sameprocessor. In the expression of our scheduling strategy, we only consider a clusteras a set of tasks which are treated as a whole in the next non-clustering steps. Inthe distribution steps (steps (a), (b) and (c)), this induces that all the tasks of acluster will be implemented on the same processor. In the implementation steps(steps (d) and (e)), it signi�es that dynamic scheduling will be only consideredbetween the clusters, a sequence of code being associated with each cluster vi.In the sequel of this paper, we do not pretend to provide a complete set of toolsto implement our scheduling strategy, but only to present some key qualitativetools:{ abstraction of SFD graphs in section 4. With this abstraction, SFD graphsmay constitute the only modeling along the inference of a parallel implemen-tation;{ compile-time scheduling of SFD graphs in section 5. With this notion, a �rststep towards the inference of parallel implementations over SFD graphs isachieved.{ clustering tools based on new qualitative scheduling criterion: composi-tional deadlock consistency in section 6. These clustering tools may beused in the implementation of steps (a) and (d) of our scheduling strategy.Before presenting all these tools, let us present shortly the notion of Synchronous-Flow Dependence Graph (SFD Graph).3 Synchronous-Flow Dependence GraphsLet us illustrate the notion of Synchronous-Flow Dependence Graph (SFD Graph)over a simple Signal example, a counter with reset:(| ZV:= V $1| V:= (1 when RST)default(ZV+1)|)The $ operator is used to recall past values: the process ZV:= V $1 meansthat ZV carries the previous value of V. The when operator �lters data accordingto a boolean condition and the default is a merge with priority:V:= (1 when RST)default(ZV+1)speci�es that V is reset to 1 when RST holds true; otherwise it increments itsprevious value. Sequences of values that RST, ZV and V may take are:RST : � � � t � � �ZV : � � � 5 6 7 8 9 1 2 3 4 5 � � �V : � � � 6 7 8 9 1 2 3 4 5 6 � � �This behavior is abstractly represented in two connected structures: an equationsystem which translates the relations among the occurrences of data, and adependence graph which represents the ows of data.

An Equational Control ModelingThe equation system is expressed over a set C of characteristic functions calledclocks: for any signal V, its clock bv is equal to 1 if V is carrying a data at theconsidered instant, it is equal to 0 if no data is present on V. The logical rela-tions among the occurrences of data, which are implicit in Signal processes,are translated into equations over clocks. For instance, the counter example istranslated as:ZV:= V $1 czv = bv (i)V:= (1 when RST)default(ZV+1) bv = crst _czv (ii)As expressed in equation (i), each time V is holding a value, ZV is carrying avalue (in fact the previous value of V). Equation (ii) expresses that V carriesa value whenever a reset occurs or ZV holds a value. Formally, the equationsystem � which encodes the occurrence relations evolves in a boolean algebraB =< C;_;^;b0;b1 > where:C is a set of clocks; B is called a clock algebra;b0 denotes the least element of B which stands for the never present clock;it is used to denote something that never happens;b1 is the greatest element of B, the always present clock.As boolean algebras are lattices, an alternative representation of the clock alge-bra B is achieved through a partial order:< C; � > with bx � by () bx _ by = by (, bx ^ by = bx)Over the counter encoding, we can deduce that bv = crst _ bv or equivalentlycrst � bv. This result intuitively means that the activity of the counter includesthe reset operations.A Clock-Labeled Dependence GraphThe equation system describes algebraically the reachable control states of theprocess. Over the counter example, the relation crst � bv induces that thecontrol state where bv = 0; crst = 1 is unreachable. According to the reachablecontrol states, di�erent ows of data may occur; the di�erent ows of data whichmay occur in the counter are abstractly represented by the dependence graphsin Fig. 1-a, Fig. 1-b and Fig. 1-c, one for each reachable control state.In Fig. 1-a where RST occurs (crst = 1), ONE (a constant signal) is assigned toV, the value of ZV is not used. Otherwise, V is de�ned5 by the value of ZV asdepicted in Fig. 1-b. When bv = 0 (the counter is not counting), nothing happensas it is accurately presented in Fig. 1-c.5 For presentation reasons, we have substituted ZV+ 1 by ZV.

v zvone v zv(a) bv = 1;crst = 1 (b) bv = 1;crst = 0 (c) bv = 0;crst = 0Fig. 1. The Data-Dependencies According to the Control StatesThe abstract representation of the ows of data using Synchronous-Flow De-pendence Graphs (SFD Graphs) is de�ned by superimposing all the possibledata-dependence graphs. Superimposing all the data-dependence graphs drawnin Fig. 1 induces the SFD graph depicted in Fig. 2.one v zvcrst crst fN (v) = fN(zv) = bvfN (one) = crstwith bzv = bv; crst � bzvcrst = bv ^ (b1� crst)Fig. 2. A Synchronous-Flow Dependence GraphThe paths taken by the data according to the control states are described overSFD graphs by means of two mappings fN and f� . These two mappings respec-tively label its nodes and its vertices:{ fN (one) = crst means that ONE is only present when RST occurs6;{ f� (zv; v) = crst means that V is de�ned from ZV when RST does not occur.The new clock-label crst denotes the control state (b) in Fig. 1: crst = 1 whenbv = 1 and crst = 0. The de�nition of crst is7: crst = bv ^ (b1� crst) .Formally, a SFD graph is de�ned by:< G;C;�; fN ; f� > is a Synchronous-Flow Dependence Graph (SFD graph) i�:{ G =< N;�; I;O > is a dependence graph < N;� > with communicationnodes: the inputs I and the outputs O are such that I � N;O � N andI \O = ;.{ < C;� > is an equational control representation where � is a set of con-straints over a set C of characteristic functions called clocks;{ fN : N �! C is a mapping labeling each node with a clock; it speci�es theexistence condition of the nodes.{ f� : � �! C is a mapping labeling each edge with a clock; it speci�es theexistence condition of the edges.6 Note that the clock of a constant signal is de�ned in a demand-driven way.7 crst is not equivalent to crst which is the complementary of crst: crst = b1� crst

Directed Acyclic Graphs (DAGs) are a very common abstract program represen-tation [1] of the ows of data which may occur in a program. A SFD graph isnothing but a set of directed graphs packed together, the way these graphs arepacked being described by a boolean labeling of the elements of this graph. Forthis reason, we say that SFD graphs are a generalization of DAGs. In contrastwith DAGs, the clock labeling provides SFD graphs with a dynamical feature.To express precedence constraints, this clock labeling imposes two constraintswhich are implicit for DAGs:{ an edge cannot exist if one of its extremity nodes does not exist.This property translated into the clock algebra, the image set of the map-pings, is: 8(x; y) 2 � f� (x; y) � fN (x) ^ fN (y){ a cycle of dependencies stands for a deadlock.This property is veri�ed over DAGs by de�nition. Over SFD graphs, it isexpressed as:A SFD graph < G;C;�; fN ; f� > is deadlock free i�,for every cycle x1; : : : ; xn; x1 in G,f� (x1; x2) ^ f� (x2; x3) ^ : : :^ f� (xn; x1) = b0Intuitively, this equation translates the property that a deadlock does notexist if all the dependencies of a cycle in a SFD graph cannot be present atthe same time.As Signal is a dataow language, SFD graphs de�ne naturally a �ne-grainparallel representation of programs. Implementing Signal programs onto a par-allel architecture needs to tune the grain of the abstract program representationaccording to the target parallel architecture. For this purpose, we present inthe next section the notion of abstraction over SFD graphs. This notion of ab-straction frees SFD graphs from the �ne-grain representation they were initiallybound.4 Abstraction of Synchronous-Flow Dependence GraphsA key concept in software engineering is the concept of abstraction [10] whichsupplies the su�cient information to compose processes leaving aside any inter-nal feature: it is the key concept for modularity. In programming languages, anabstracted process if often con�ned to an identi�er and a set of input/outputnodes. In some high-level languages, process abstraction may include (a) formalparameter to introduce some program genericity or (b) some high-order inputslike the procedure entry level in ADA [19].More generally, the concept of abstraction is designed for the veri�cation ofglobal properties by the composition of synthesized representations. If R1 and R2

are two representations with some semantics and j is a composition operator, theAbs synthesizing mechanism for the compositional veri�cation of the propertyP must verify the following relation:P (R1) ^ P (R2) ^ P (Abs(R1)jAbs(R2)) =) P (R1jR2)According to their mixed nature, abstraction of SFD graphs involves two syn-thesizing mechanisms to verify deadlock freedom and to perform control consis-tency [15] by composition:{ A synthesis of the internal dependenciesThis synthesis, required to verify deadlock by composition, is achieved throughthe transitive closure of the dependence graph and its projection (sub-graph)upon the input and output nodes. The transitive closure of SFD graphs issimply computed with the two following rules.rule of series x �!bc y �!bd z) x ����!bc ^ bd zrule of parallel x �!bc yx �!bd y)) x ����!bc _ bd y{ A clock equation projection.This control projection synthesizes the relations (equivalence, inclusion, ex-clusion) among the clocks which label (a) the edges of the synthesized graphto enable compositional deadlock detection and (b) the input-output nodesto perform control consistency [15] by composition.The counter example is too small to illustrate the abstraction of SFD graphs.The reader interested in such an example is referred to [15, 14].In contrast with a lot of common abstract representations of programs, theabstraction over SFD graphs provides them not with black box abstractions butrather with grey box abstractions since it even synthesizes the control. Moreover,as abstractions of SFD graphs are SFD graphs, all the tools previously de�ned forSFD graphs are reusable modularly: modularity may be introduced in the wholecompilation process. With this notion of abstraction, steps (a) and (d) of ourscheduling strategy can be achieved without giving up the SFD graph modeling.This modeling homogeneity warrants a greater reliability (every modeling changeconstitutes a possible source of error) which is a critical requirement for real-time systems. In the next section, we go one step further towards the inferenceof time-predictable parallel implementations by means of the notion of compile-time scheduling over abstractions of SFD graphs.5 Compile-Time SchedulingCompile-time scheduling, that is programming at compile-time the execution oftasks, can be considered at two levels: at the logical level, compile-time schedul-ing is to set the precedence constraints veri�ed at run-time among the tasks; at

the physical level, compile-time scheduling is to de�ne the exact �ring time ofthe tasks. In this section, we only consider compile-time scheduling at the logicallevel since we do not want to introduce quantitative data as required for physicalcompile-time scheduling.When an application is abstractly represented as a directed acyclic graph <N;� >, scheduling at compile-time a set N of tasks is speci�ed by adding prece-dence constraints to � while making sure that no deadlock is introduced. If wecall reinforcement the addition of precedence constraints, and deadlock consis-tency the action of \making sure that no deadlock is introduced", a scheduling of< N;� > is de�ned as a deadlock-consistent a reinforcement it. Let us transposethis de�nition from DAGS to SFD graphs:{ reinforcement: < N;� 0 > is a reinforcement of< N;� > i� � � � 0Transposing the reinforcement de�nition to SFD graphs implies:x �!bk y is a reinforcement of x �!bh y i� bh � bkNote that the absence of dependency between two nodes can be equivalentlyrepresented over SFD graphs by a dependence labeled with the null clock b0.As for DAGs, reinforcement provides a set of SFD graphs based on the samenode set with an order relation.{ deadlock consistency: < N;� 0 > is deadlock-consistent for < N;� > i�< N;� > deadlock free =)< N;� 0 > deadlock freeTransposing the notion of deadlock consistency to SFD graphs implies:x �!bk y is deadlock-consistent for x �!bh y i�8z1; : : : ; zn 2 N such that y ��!bl0 z1 ��!bl1 z2 : : : zn ��!bln x :n̂0 bli ^ bh = b0 =) n̂0 bli ^ bk = b0Over a transitive closure or an abstraction of a SFD graph, the above con-dition of deadlock consistency is rewritten in a simpler form:x �!bk y is deadlock-consistent for x �!bh y i�bh ^ bl = b0 =) bk ^ bl = b0 with y �!bl xAs for DAGs, deadlock consistency provides a set of deadlock-free SFDgraphs based on the same node set with an order relation.A compile-time scheduling of a graph is de�ned as a deadlock-consistent rein-forcement of it. Let us focus on what precisely means the combination of thesetwo properties over the SFD graph abstraction depicted in Fig. 3. In this �gure,x and y stand for any two nodes, they may be internal, input or output nodes.

S(x; y) yx f+f�Fig. 3. A Basic SFD Graph AbstractionThe clock which labels the dependency from x to y is denoted f+, its converseis denoted f�. S(x; y) stands for a logical Scheduling of x before y.As a scheduling is a deadlock-consistent reinforcement, S(x; y) must ensure thatthe cycle x �����!S(x; y) y ��!f� x does not represent a deadlock. Therefore, it mustsatisfy the condition (1). S(x; y) ^ f� = b0 (1)By combining reinforcement with deadlock consistency, we demonstrate thatS(x; y) de�nes a compile-time scheduling i� the condition (2) holds.f+ � S(x; y) � bx ^ by ^ (b1� f�) (2)Proof : the lowerbound of scheduling is the straightforward expression of the rein-forcement property which is attached to the notion of compile-time scheduling. Theupperbound of scheduling is induced from the conjunction of the deadlock consistencycondition with the inclusion condition. The inclusion condition bound to SFD graphimposes that an arc cannot exist if one of its extremity node does not. Over the nota-tions of Fig. 3, this inclusion condition is translated as: S(x; y) � bx ^ by.By means of elementary clock calculus, the deadlock consistency property is rewrittenas an inequation: S(x; y) ^ f� = b0 , S(x; y) ^ (b1� f�) = S(x; y), S(x; y) � (b1� f�)The intuitive meaning of this formally proven upperbound of scheduling is:x may be schedule before y at most whenbx ^ by x and y are present,^(b1� f�) and y does not precede xBy means of clock expressions, di�erent kinds of scheduling may be expressedat compile-time. If S(x; y) is equal to bx ^ by, it expresses that x is scheduledbefore y as soon as x and y are de�ned: the underlying scheduling is static. Theexistence of cycle such that S(x; y)^S(y; x) = b0 denotes a scheduling dependingon boolean conditions evaluated at run-time, it induces pre-constrained dynamicscheduling. The lack of dependency between x and y, which occurs when S(x; y)and S(y; x) are both equal to b0, induces a dynamic scheduling.Since scheduling is de�ned as the conjunction of reinforcement with deadlockconsistency, it provides a set of deadlock free SFD graphs based on the same

node set with an order relation. Therefore, an execution schema can be designedprogressively by successive reinforcement of a graph. Moreover, this design canbe performed at any level of abstraction since this scheduling is applicable overSFD graph abstractions.Besides the proper de�nition of the notion of compile-time scheduling overSFD graphs, the purpose of this section was to illustrate the way to expressby clock expressions the control of the execution of processes. The same tech-nique is used in the next section to de�ne the notion of compositional deadlockconsistency on which our clustering algorithms are based.6 Compositional Deadlock ConsistencyThe general problem of partitioning/mapping an application graph onto a set ofprocessors while minimizing the maximal completion time is NP-complete [18].Bypassing this complexity can be achieved through clustering heuristics whichdetect properties of sub-graphs that are considered as atomic unit for the map-ping process. A clustering phase is intended to increase the granularity of thegraph thereby reducing the size of the mapping problem without compromis-ing the implementation e�ciency. Then, on this size-reduced application graph,mapping algorithms with higher complexities can be reasonably used.With respect to subtle variations of the scheduling goals, several cluster-ing heuristics have been de�ned in the literature |see [6] for a survey of theseheuristics. The clustering sub-goals that are used can be split in two classes: thequantitative goals (called performance goals in [6]) and the qualitative ones. Twodi�erent quantitative data are usually added to the application graph < N;� >for quantitative scheduling: the execution time eik of the task ni (ni 2 N) on theprocessor Pk, and the communication cost cij between the tasks ni and nj whenthey are mapped on two directly connected processors (null communication timeis assumed if ni and nj are mapped on the same processor). According to thesetwo kinds of quantitative data, the two extreme sub-goals are: the maximizationof the execution e�ciency and the minimization of the communication volume.In contrast with the quantitative goals which are architecture dependent, thequalitative goals focus on the shape of the clusters. The qualitative goals whichhave been used for clustering include:{ linearity [9]. A linear cluster is a set of nodes in which, for every couple ofnodes, one precedes the other; the nodes of a linear cluster belong to a singlepath in the dependence graph. As linear clustering merges only sequentiallyexecutable nodes, it preserves the parallelism embedded in the graphs;{ convexity [18]. Sarkar de�nes the convexity as the property that ensures thata macro-actor can run to completion once all its input are available. In otherwords, its execution can be split into three periods sequentially performed:waiting for all the inputs; computing; emitting all the outputs. Therefore,we say that the execution of convex macro-actors is function-like at the I/Olevel. A graph-theoretic approach to convexity has been studied in [12].

In this section, we de�ne a new qualitative criterion, namelyCompositional Dead-lock Consistency, which allows one to encompass linear as well as convex clus-tering in a single framework. This extension has been motivated by the reactivefeature of real-time systems which imposes to consider the environment of thereal-time systems at all their design stages.6.1 ExampleLet us consider the graph in Fig. 4 which depicts the abstraction of a processwith two input signals I1 and I2, and two outputs O1 and O2. In this graph,the solid arrows (i1 ! o1, i1 ! o2 and i2 ! o1) represent the dependenciesinduces from the abstraction of the speci�cation of the process.read(i1);...;read(i2);...;emit(o2);...;emit(o1) i2i1 o2o1 ImplementationEnvironmentSpeci�cation read(o2);...;emit(i1)(a) Implementation (b) Composition graph (c) EnvironmentFig. 4. A Deadlock between a Process Implementation and its EnvironmentA topological sort of these nodes may induce the static scheduling in Fig. 4-a. Transposing this static scheduling over the graph in Fig. 4-b introduces thedashed arrows. If we compose the implementation in Fig. 4-a with an environ-ment implementing the scheme in Fig. 4-c, a deadlock is created. At the graphlevel, this deadlock is denoted by the cycle i2 o2 i2 . This deadlockis present at the implementation level but not at the speci�cation level since itincludes a dashed arrow. As the scheduling i2 o2 may create a deadlockwith an environment which is correct with respect to the process speci�cation,this scheduling is said not compositionally deadlock-consistent.In contrast, the scheduling o2 o1 is compositionally deadlock-consistentsince it does not create a deadlock with the environment in Fig.4-c, and thisenvironment is the only one which can read outputs and emit inputs of theprocess without creating a deadlock with it at the speci�cation level.6.2 De�nitionLet us focus on what precisely means the notion of compositional deadlock con-sistency over the generic SFD graph abstraction depicted in Fig. 5.

S(x; y) f+fkXf� fkli1 ik ol fY l yx oqo1 Fenvip
Fig. 5. A Generic SFD Graph AbstractionIn this �gure, i1 � � �ip represent the input nodes, o1 � � �oq the output ones and,x and y stand for any two nodes which may be internal nodes as well interfacenodes8. Translated over the notations in Fig. 5, the notion of compositionaldeadlock consistency imposes that S(x; y) must verify:8ik; ol fkX ^ S(x; y) ^ fY l ^ Fenv = b0 (3)In this equivalence, Fenv denotes a dependency from ol to ik outcoming fromthe composition with an environment. This environment is acceptable if it is notdeadlocked with the speci�cation of the process. Thus, the following conditionmust be veri�ed: 8ik; ol Fenv ^ fkl = b0As for the proof of the upperbound of scheduling (formula (2) in section 5), theabove condition can be equivalently rewritten in the inequation Fenv � (b1�fkl) .Consequently, the condition of compositional deadlock consistency (formula (3))is rewritten in: 8ik; ol S(x; y) ^ fkX ^ fY l ^ (b1� fkl) = b0This quanti�ed equation can be rewritten in inequation (4).S(x; y) � k̂;l(b1� fkX ^ fY l ^ (b1 � fkl)) (4)Proof : The equation S(x; y) ^ fkX ^ fY l ^ (b1� fkl) = b0 can be rewritten in:S(x; y) ^ (b1� fkX ^ fY l ^ (b1� fkl)) = S(x; y) 8ik 2 I; ol 2 O, S(x; y) � (b1� fkX ^ fY l ^ (b1� fkl)) 8ik 2 I; ol 2 O, S(x; y) � Vk;l(b1� fkX ^ fY l ^ (b1� fkl))8 If x is the input node ik, it is equivalent to consider for the sequel of this paper thatfkX is equal to bx. A symmetric remark can be expressed if y is the output node ol.

6.3 Fully Deadlock Consistent Compile-Time SchedulingBy combining the compile-time scheduling characterization (formula (2)) withinequality (4), we de�ne the criterion of fully deadlock consistent compile-timescheduling (fdc scheduling) which is formally characterized by:S(x; y) is de�nes a fully deadlock consistent compile-time scheduling ofx before y i� f+ � S(x; y) � S>(x; y) with:S>(x; y) = bx ^ by ^ (b1� f�) ^ k̂;l(b1� fkX ^ fY l ^ (b1 � fkl)) (5)The proof of this inequality is straighforward. The complex clock expressionwhich speci�es the upperbound of scheduling may be intuitively read as:x may be scheduled before y i�x does not precede y and : bx ^ by ^ (b1� f�)^if a scheduling path ik; x; y; ol is created : k̂;l(b1� fkX ^ fY l^then ik precedes ol by speci�cation (b1 � fkl))The two main promising properties of this scheduling criterion are: (a) it mayinduce architecture independent clustering since it is a qualitative schedulingcriterion; (b) as it is based on the abstraction of SFD graphs, it may be applied toany subset of nodes: it de�nes an any level scheduling criterion. Exploiting theseproperties to perform clustering needs to use this criterion accurately to avoidthe NP-complete problems that its general use will encounter. The practical usesof this new scheduling criterion for clustering are presented in the next section.7 ClusteringBy applying the fdc scheduling criterion to a set of nodes, the associated processmay constitute a cluster by:{ Linear Clustering if all the nodes may belong to a single path of fdc schedul-ing. Note that, as a fdc scheduling is a reinforcement of a graph, any linearclustering over a graph (as performed in [9]) is a linear clustering over a fdcscheduling of this graph. But, in contrast with Kim & Browne's linear clus-tering, linear clustering over fdc scheduled graphs may reduce the parallelismembedded in the initial graph;{ Convex Clustering if all the nodes may belong to a single path of fdcscheduling where inputs and outputs are not alternating. Therefore, anyconvex cluster is a linear cluster.The practical use of the fdc scheduling criterion to do linear and convex clusteringwill encounter NP-problems at two levels:

{ complex calculi in a boolean algebra lead to NP-complete problems. This �rstobstacle has been overcome with the heuristic algorithm that implementsthe clock calculus [2]. Despite the breakthrough achieved by this heuristicalgorithm, the boolean calculi submitted to it must be as simple as possible.{ optimal partitioning/clustering of general graphs with respect to non trivialcriteria is a NP-complete problem. To cope with this obstacle, we can useoptimal algorithms with exponential complexity on very small (sub-)graphs,polynomial but often sub-optimal algorithms on large graphs, or a combina-tion of both.The �rst optimization achieved by both the convex and the linear clusteringalgorithms is to do clustering in two steps. Firstly, only a size-reducted problemis considered by restricting the scope of fdc scheduling from any pair of nodes topairs of interface nodes. Secondly, the properties detected at the interface levelare propagated to the internal nodes to perform convex and linear clustering.7.1 Convex ClusteringA naive algorithm for convex clustering at the interface level would be to enumer-ate the possible elementary paths of the maximal fdc schedulings of an interfaceabstraction, the maximal fdc schedulings of a graph being computed by recur-sively substituting each arc by its upperbound of fdc scheduling. If one of thesepaths does not alternate inputs and outputs, the associated process may de�nea convex cluster.The major drawback of this naive algorithm is its complexity: it requirestwo phases (computation of the maximal fdc scheduling and path enumeration)which have an exponential complexity in the general case. Consequently, wehave investigated the other possibility which goes through the upperbound offdc scheduling of an interface graph. The upperbound of fdc of a graph is com-puted by substituting in parallel each arc by its upperbound of fdc scheduling.This upperbound is the superimposition of all the maximal fdc schedulings. Forinstance, let us consider the interface abstraction depicted in Fig. 6-a. In thisabstraction, we assume that fN (i1) = fN (i2) = fN (o1) = fN (o2) = bk andbh � bk . The upperbound of fdc scheduling of this abstraction is the SFD graphin Fig. 6-b.In the general case, the upperbound of fdc scheduling does not de�ne ascheduling as it may include cycles representing deadlocks. The upperbound ofscheduling depicted in Fig. 6-b includes two of these cycles, one between i1 andi2 and the other between o1 and o2. The conjunction bh ^ bk of the clockslabeling the dependencies of these cycles is equal to bh since bh � bk: the cyclesexist at bh. In contrast with these two �rst cycles, the third elementary cycle whichoccurs between i2 and o2 does not stand for a deadlock since bh^ (bk�bh) = b0 .This remark is in fact a general property as proved in [14]:no deadlock cycle including inputs and outputs may occurat the upperbound of fdc scheduling.

bk bhbk bki1 i2o1 o2 bhbkbk bk�bhbhbkbki1o1 o2i2bkbh bh � bk(a) (b)Fig. 6. A Graph and its Upperbound of Fdc SchedulingAs no cycle may alternate inputs and outputs, a cycle among inputs induces thatthese inputs can be scheduled in a sequence without outputs; a similar discussionmay occur for cycles among outputs. This property of the cycles occurring at theupperbound of fdc scheduling motivates the following algorithm which performsconvex clustering:1. compute the upperbound of fdc scheduling among the inputs;2. for each set of inputs belonging to a cycle at bh: cluster to this set of inputsthe internal and outputs nodes which depend exclusively on these inputs.Note that a symmetric convex clustering algorithm may start from the outputsinstead of the inputs. This variation of the clustering algorithm may be useful ifthere is less outputs than inputs to deal with a smaller problem. Applied to theinterface graph in Fig. 6-a, this algorithm detects that the associated processde�nes a convex cluster at bh.7.2 Linear ClusteringBy convex clustering may result a partition into processes which can run tocompletion once all their inputs are available; in these processes, all the inputsmay precede all the outputs at the implementation level. Looking for a parti-tion into linear clusters which are not convex clusters leads to search for fdcscheduling paths which alternate inputs and outputs. Therefore, one way to re-duce the search space of the algorithm which does this search is to start froma fdc scheduling dependency connecting an output to an input. Starting fromsuch a scheduling dependency, the algorithm may proceed by looking backwardand then forward to get the longest path of fdc scheduling. Previously to thisalgorithm, a transitive reduction algorithm may be applied to reduce even morethe search space.Applied to the graph in Fig. 6-a, the algorithm starts from the fdc schedulingdependency o2 i2 at bk�bh. Then, by going backward, the node i1 is addedas the starting point of this scheduling path. By going forward, the node o1 isappended to the path. Finally, this algorithm detects that the associated processde�nes a linear cluster but not a convex one at bk � bh. By combining this

result with the convex clustering detected on the same set of nodes, linear andpossibly convex cluster are detected. By this combination, the process abstractlyrepresented in Fig. 6-a de�nes a linear cluster at:bh _ (bk � bh) = bkAfter this de�nition of the convex and linear clustering algorithms, let us con-clude this paper by presenting the way we intend to implement the �ve-stepsscheduling strategy we advocated, and how the fdc scheduling criterion is usedin this framework.7.3 Scheduling Strategy ImplementationIn the beginning of this paper, we advocate a �ve-steps scheduling strategy.(a). Gather the nodes of the application graph into u clusters (u � p).(b). Merge the u clusters into p connected virtual processors.(c). Map the p virtual processors onto the p physical processors.(d). Partition each virtual processor i in vi clusters.(e). Compute a static schedule for each cluster; the resulting sequencesof code will be dynamically scheduled.The two clustering steps (a) and (d) will be based on the convex and linear clus-tering algorithms previously presented. Steps (b) and (c) will be implemented bymeans of the coupling of the Signal software design environment with the Syn-dex system. Syndex, which stands for Synchronous Distributed Executive, is asystem which enables the inference of implementations over various distributedarchitectures. It performs this inference by mapping SFD graphs over a graphrepresentation of the architecture9 . This inference is performed in three steps:(a) the user may constrain some mapping of processes onto processors; (b) Syn-dex completes the mapping and produces scheduled distributed code for thetarget architecture and (c) Syndex provides the user with static analyses ofthe performance of the inferred implementation. An iteration among these threesteps is required to infer for complex applications an e�cient implementation ona distributed, eventually heterogeneous, architecture.Implementing step (e) may take once again bene�t of the fdc schedulingcriterion but in a slighly di�erent way than it has been achieved for clustering.De�ning an implementation requires an order relation. From the upperbound offdc scheduling of an interface graph, two ways exist to get an order relation: breakthe cycles or merge the nodes belonging to a cycle. Using these two methods overthe upperbound in Fig. 6-b, we infer the two graphs in Fig. 7 which respectivelyde�ne:9 In fact, the graph representation of the architecture may be an hypergraph since thetarget architecture may include buses.

{ an interface execution scheme in Fig. 7-a.The �rst step in the inference of this high-level execution scheme in Fig. 7-ais to break the cycles representing deadlocks by removing the edges betweeninputs and between outputs at the clock at which convex clustering was per-formed. This leads to suppress in Fig 6-b the arcs i2 i1 and o1 o2.The second step is the unfolding of the acyclic graph according to the dif-ferent control states referred in the remaining cycles. The remaining cyclebetween i2 and o2, which does not denote a deadlock (bh ^ (bk�bh) = b0), im-poses a conditional scheduling denoted by the labeled fork-join in the graphin Fig. 7-a. Note that static (i.e. non conditional) scheduling is achieved atthe two extreme cases: bh = bk and bh = b0.{ a communication scheme in Fig.7-b.The cycle between the input nodes expresses that, when bh occurs, i1 maybe scheduled before or after i2 without creating a deadlock. For this reason,the values on i1 and i2 can be received gathered without the creation ofa deadlock. In other words, the communications of the values of i1 and i2may be vectorized at bh if they come from the same processor. To express thedesign of such a communication scheme at the graph level, it is su�cient topartition the nodes according to the cycles. Applied to the upperbound graphin Fig. 6-b, we may deduce the input communication interface presentedin Fig. 7-b. In this implementation, the values carried by i1 and i2 arecommunicated gathered at bh through the new node ci12: fN (ci12) = bh . Asymmetric result may be achieved over the outputs.bk�bhbk�bhbk�bhi1i2o2 i2o2o1bhbh bh ci12 bh bk�bhbk�bh bhci1 i2i1 ci2(a) (b)Fig. 7. Execution and Communication Schemes8 ConclusionThe paper has motivated a scheduling strategy for the distributed implementa-tion of Signal programs. This scheduling strategy di�ers from the usual one by

the dynamical scheduling it includes. This variation has been motivated by thereactive requirements that Signal, as a real-time language, must ful�ll.For the implementation of this scheduling strategy, we have de�ned sev-eral tools, all of them acting on Synchronous-Flow Dependence Graphs (SFDGraphs). These graphs, which constitute the abstract representation of Signalprograms, de�ne a generalization of the notion of Directed Acyclic Graph. Threetools are de�ned in this paper to implement this scheduling strategy:{ Abstraction.This �rst tool is intended to free SFD graphs from the �ne-grain parallelabstract representation they were initially bound. By means of this abstrac-tion, we are able to tune the grain-size of the representation according tothe one of the target architecture without giving up with the SFD graphmodeling;{ Compile-time Scheduling.This de�nition of the notion of scheduling constitutes the �rst step towardsthe inference of implementations. The purpose of this de�nition was also toillustrate the method to express over SFD graphs the scheduling of processeswith a complex control;{ Clustering.A new qualitative criterion, namely compositional deadlock consistency, isde�ned and used at several steps in the scheduling strategy. In particular, thisnew criterion is used to implement the two clustering steps of our schedulingstrategy. This new criterion enable to embraces in a single framework twousual qualitative clustering criteria, linearity and convexity.The abstraction tool is currently integrated into the Signal software design en-vironment; the programming of the clustering tools is underway. The Signalsoftware design environment intends to encompass all the stages of the design ofreal-time systems. This environment includes (a) a graphic speci�cation inter-face to specify real-time systems, (b) several formal veri�cation tools to proveproperties thereby to enhance the safety of the implementations and (c) tools toinfer implementations over sequential architectures as well as distributed ones.The inference of distributed implementations for Signal programs is onlypartially implemented in the Signal compiler; the architecture-dependent trans-formations are performed by the Syndex system [11]. The coupling between theSignal compiler and the Syndex system is achieved by means of a textual de-compilation of SFD graphs [4]; an extended version of this decompilation de�nesthe common graph format shared by Esterel [5], Argos [17], Lustre [8] andSignal.References1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, andTools. Addison-Wiley, 1986.

2. T. Amagbegnon, L. Besnard, and P. L. Guernic. Aborescent canonical form ofboolean expressions. Research Report 826, IRISA, June 1994.3. S. H. Bokhari. Partitioning problems in parallel, pipelined, and distributed com-puting. IEEE Trans. on Computers, 37(1):48{57, January 1988.4. P. Bournai, C. Lavarenne, P. Le Guernic, O. Ma�e��s, and Y. Sorel. InterfaceSIGNAL-SynDEx. Research report 2206, INRIA France, Rennes, march 1994.5. F. Boussinot and R. De Simone. The Esterel language. Proceedings of the IEEE,79(9):1293{1304, Sept. 1991.6. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for clusteringdags on multiprocessors. Journal of Parallel and Distributed Computing, SpecialIssues on Scheduling and Load Balancing, 16(4):276{291, Dec. 1992.7. A. Gerasoulis and T. Yang. A static-dataow scheduling tool for scalable parallelarchitectures. In Summer School on Scheduling Theory and its applications, pages382{417. Chateau de Bonas(Gers), INRIA, Sept. 1992.8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data owprogramming language Lustre. Proc. of the IEEE, 79(9):1305{1321, Sept. 1991.9. S. J. Kim and J. C. Browne. A general approach to mapping of parallel compu-tation upon multiprocessor architectures. In Int. Conf. on Parallel Processing,volume III, pages 1{8, 1988.10. C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131{183, June1992.11. C. Lavarenne, O. Segrouchni, Y. Sorel, and M. Sorine. The Syndex software envi-ronment for real-time distributed systems design and implementation. In EuropeanControl Conference, volume 2, pages 1684{1689, June 1991.12. B. Le Go�, P. Le Guernic, and J. Ar�aoz Durand. Semi-granules and schieldingfor o�-line scheduling. Research Report 1228, INRIA France, Rocquencourt, May1990.13. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time applications with Signal. Proceedings of the IEEE, 79(9):1321{1336, Sept.1991.14. O. Ma�e��s. Ordonnancements de graphes de ots synchrones; Application �a Sig-nal. PhD thesis, Universit�e de Rennes 1, France, Jan. 1993.15. O. Ma�e��s and P. Le Guernic. Combining dependability with architectural adapt-ability by means of the Signal language. In 3rd Int. Workshop on Static Analysis,pages 99{110. LNCS no 724, Springer-Verlag, Sept. 1993.16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer-Verlag, 1991.17. F. Maraninchi. The Argos language: Graphical representation of automata anddescription of reactive systems. In IEEE Workshop on Visual Languages, Oct.1991.18. V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Re-search Monographs in Parallel and Distributed Computing. MIT Press, Cambridge,Massachusetts, and Pitman Publishing, London, U.K., 1989.19. USDD. Reference Manual for the Ada Programming Language. United States,Department of Defense, 1983. ANSI:MIL-STD-1815A-1983.20. T. Yang and A. Gerasoulis. Pyrros: Static task scheduling and code generation formessage-passing multiprocessors. In Proc. of the 6th ACM Int. Conf. on Super-computing, pages 428{437, 1992.This article was processed using the LaTEX macro package with LLNCS style

