370 research outputs found

    Is Structure Necessary for Modeling Argument Expectations in Distributional Semantics?

    Full text link
    Despite the number of NLP studies dedicated to thematic fit estimation, little attention has been paid to the related task of composing and updating verb argument expectations. The few exceptions have mostly modeled this phenomenon with structured distributional models, implicitly assuming a similarly structured representation of events. Recent experimental evidence, however, suggests that human processing system could also exploit an unstructured "bag-of-arguments" type of event representation to predict upcoming input. In this paper, we re-implement a traditional structured model and adapt it to compare the different hypotheses concerning the degree of structure in our event knowledge, evaluating their relative performance in the task of the argument expectations update.Comment: conference paper, IWC

    Expectation-based Comprehension : Modeling the Interaction of World Knowledge and Linguistic Experience

    Get PDF
    The processing difficulty of each word we encounter in a sentence is affected by both our prior linguistic experience and our general knowledge about the world. Computational models of incremental language processing have, however, been limited in accounting for the influence of world knowledge. We develop an incremental model of language comprehension that constructs—on a word-by-word basis—rich, probabilistic situation model representations. To quantify linguistic processing effort, we adopt Surprisal Theory, which asserts that the processing difficulty incurred by a word is inversely proportional to its expectancy (Hale, 2001; Levy, 2008). In contrast with typical language model implementations of surprisal, the proposed model instantiates a novel comprehension-centric metric of surprisal that reflects the likelihood of the unfolding utterance meaning as established after processing each word. Simulations are presented that demonstrate that linguistic experience and world knowledge are integrated in the model at the level of interpretation and combine in determining online expectations

    Neurobehavioral Correlates of Surprisal in Language Comprehension : A Neurocomputational Model

    Get PDF
    Expectation-based theories of language comprehension, in particular Surprisal Theory, go a long way in accounting for the behavioral correlates of word-by-word processing difficulty, such as reading times. An open question, however, is in which component(s) of the Event-Related brain Potential (ERP) signal Surprisal is reflected, and how these electrophysiological correlates relate to behavioral processing indices. Here, we address this question by instantiating an explicit neurocomputational model of incremental, word-by-word language comprehension that produces estimates of the N400 and the P600—the two most salient ERP components for language processing—as well as estimates of “comprehension-centric” Surprisal for each word in a sentence. We derive model predictions for a recent experimental design that directly investigates “world-knowledge”-induced Surprisal. By relating these predictions to both empirical electrophysiological and behavioral results, we establish a close link between Surprisal, as indexed by reading times, and the P600 component of the ERP signal. The resultant model thus offers an integrated neurobehavioral account of processing difficulty in language comprehension

    A Neurocomputational Model of the N400 and the P600 in Language Processing

    Get PDF
    Ten years ago, researchers using event-related brain potentials (ERPs) to study language comprehension were puzzled by what looked like a Semantic Illusion: Semantically anomalous, but structurally well-formed sentences did not affect the N400 component—traditionally taken to reflect semantic integration—but instead produced a P600 effect, which is generally linked to syntactic processing. This finding led to a considerable amount of debate, and a number of complex processing models have been proposed as an explanation. What these models have in common is that they postulate two or more separate processing streams, in order to reconcile the Semantic Illusion and other semantically induced P600 effects with the traditional interpretations of the N400 and the P600. Recently, however, these multi-stream models have been called into question, and a simpler single-stream model has been proposed. According to this alternative model, the N400 component reflects the retrieval of word meaning from semantic memory, and the P600 component indexes the integration of this meaning into the unfolding utterance interpretation. In the present paper, we provide support for this “Retrieval–Integration (RI)” account by instantiating it as a neurocomputational model. This neurocomputational model is the first to successfully simulate the N400 and P600 amplitude in language comprehension, and simulations with this model provide a proof of concept of the single-stream RI account of semantically induced patterns of N400 and P600 modulations

    Can Peanuts Fall in Love with Distributional Semantics?

    Full text link
    The context in which a sentence appears can drastically alter our expectations about upcoming words - for example, following a short story involving an anthropomorphic peanut, experimental participants are more likely to expect the sentence 'the peanut was in love' than 'the peanut was salted', as indexed by N400 amplitude (Nieuwland & van Berkum, 2006). This rapid and dynamic updating of comprehenders' expectations about the kind of events that a peanut may take part in based on context has been explained using the construct of Situation Models - updated mental representations of key elements of an event under discussion, in this case, the peanut protagonist. However, recent work showing that N400 amplitude can be predicted based on distributional information alone raises the question whether situation models are in fact necessary for the kinds of contextual effects observed in previous work. To investigate this question, we attempt to model the results of Nieuwland and van Berkum (2006) using six computational language models and three sets of word vectors, none of which have explicit situation models or semantic grounding. We find that the effect found by Nieuwland and van Berkum (2006) can be fully modeled by two language models and two sets of word vectors, with others showing a reduced effect. Thus, at least some processing effects normally explained through situation models may not in fact require explicit situation models

    Quantity and Quality: Not a Zero-Sum Game

    Get PDF
    Quantification of existing theories is a great challenge but also a great chance for the study of language in the brain. While quantification is necessary for the development of precise theories, it demands new methods and new perspectives. In light of this, four complementary methods were introduced to provide a quantitative and computational account of the extended Argument Dependency Model from Bornkessel-Schlesewsky and Schlesewsky. First, a computational model of human language comprehension was introduced on the basis of dependency parsing. This model provided an initial comparison of two potential mechanisms for human language processing, the traditional "subject" strategy, based on grammatical relations, and the "actor" strategy based on prominence and adopted from the eADM. Initial results showed an advantage for the traditional subject" model in a restricted context; however, the "actor" model demonstrated behavior in a test run that was more similar to human behavior than that of the "subject" model. Next, a computational-quantitative implementation of the "actor" strategy as weighted feature comparison between memory units was used to compare it to other memory-based models from the literature on the basis of EEG data. The "actor" strategy clearly provided the best model, showing a better global fit as well as better match in all details. Building upon the success modeling EEG data, the feasibility of estimating free parameters from empirical data was demonstrated. Both the procedure for doing so and the necessary software were introduced and applied at the level of individual participants. Using empirically estimated parameters, the models from the previous EEG experiment were calculated again and yielded similar results, thus reinforcing the previous work. In a final experiment, the feasibility of analyzing EEG data from a naturalistic auditory stimulus was demonstrated, which conventional wisdom says is not possible. The analysis suggested a new perspective on the nature of event-related potentials (ERPs), which does not contradict existing theory yet nonetheless goes against previous intuition. Using this new perspective as a basis, a preliminary attempt at a parsimonious neurocomputational theory of cognitive ERP components was developed

    Towards a Computational Model of Actor-Based Language Comprehension

    No full text
    Neurophysiological data from a range of typologically diverse languages provide evidence for a cross-linguistically valid, actor-based strategy of understanding sentence-level meaning. This strategy seeks to identify the participant primarily responsible for the state of affairs (the actor) as quickly and unambiguously as possible, thus resulting in competition for the actor role when there are multiple candidates. Due to its applicability across languages with vastly different characteristics, we have proposed that the actor strategy may derive from more basic cognitive or neurobiological organizational principles, though it is also shaped by distributional properties of the linguistic input (e.g. the morphosyntactic coding strategies for actors in a given language). Here, we describe an initial computational model of the actor strategy and how it interacts with language-specific properties. Specifically, we contrast two distance metrics derived from the output of the computational model (one weighted and one unweighted) as potential measures of the degree of competition for actorhood by testing how well they predict modulations of electrophysiological activity engendered by language processing. To this end, we present an EEG study on word order processing in German and use linear mixed-effects models to assess the effect of the various distance metrics. Our results show that a weighted metric, which takes into account the weighting of an actor-identifying feature in the language under consideration outperforms an unweighted distance measure. We conclude that actor competition effects cannot be reduced to feature overlap between multiple sentence participants and thereby to the notion of similarity-based interference, which is prominent in current memory-based models of language processing. Finally, we argue that, in addition to illuminating the underlying neurocognitive mechanisms of actor competition, the present model can form the basis for a more comprehensive, neurobiologically plausible computational model of constructing sentence-level meaning

    A predictive coding model of the N400

    Get PDF
    The N400 event-related component has been widely used to investigate the neural mechanisms underlying real-time language comprehension. However, despite decades of research, there is still no unifying theory that can explain both its temporal dynamics and functional properties. In this work, we show that predictive coding – a biologically plausible algorithm for approximating Bayesian inference – offers a promising framework for characterizing the N400. Using an implemented predictive coding computational model, we demonstrate how the N400 can be formalized as the lexico-semantic prediction error produced as the brain infers meaning from the linguistic form of incoming words. We show that the magnitude of lexico-semantic prediction error mirrors the functional sensitivity of the N400 to various lexical variables, priming, contextual effects, as well as their higher-order interactions. We further show that the dynamics of the predictive coding algorithm provides a natural explanation for the temporal dynamics of the N400, and a biologically plausible link to neural activity. Together, these findings directly situate the N400 within the broader context of predictive coding research. More generally, they raise the possibility that the brain may use the same computational mechanism for inference across linguistic and non-linguistic domains.</p

    Dissociable electrophysiological measures of natural language processing reveal differences in speech comprehension strategy in healthy ageing

    Get PDF
    Healthy ageing leads to changes in the brain that impact upon sensory and cognitive processing. It is not fully clear how these changes affect the processing of everyday spoken language. Prediction is thought to play an important role in language comprehension, where information about upcoming words is pre-activated across multiple representational levels. However, evidence from electrophysiology suggests differences in how older and younger adults use context-based predictions, particularly at the level of semantic representation. We investigate these differences during natural speech comprehension by presenting older and younger subjects with continuous, narrative speech while recording their electroencephalogram. We use time-lagged linear regression to test how distinct computational measures of (1) semantic dissimilarity and (2) lexical surprisal are processed in the brains of both groups. Our results reveal dissociable neural correlates of these two measures that suggest differences in how younger and older adults successfully comprehend speech. Specifically, our results suggest that, while younger and older subjects both employ context-based lexical predictions, older subjects are significantly less likely to pre-activate the semantic features relating to upcoming words. Furthermore, across our group of older adults, we show that the weaker the neural signature of this semantic pre-activation mechanism, the lower a subject's semantic verbal fluency score. We interpret these findings as prediction playing a generally reduced role at a semantic level in the brains of older listeners during speech comprehension and that these changes may be part of an overall strategy to successfully comprehend speech with reduced cognitive resources

    Relating lexical and syntactic processes in language: Bridging research in humans and machines

    Get PDF
    Potential to bridge research on language in humans and machines is substantial - as linguists and cognitive scientists apply scientific theory and methods to understand how language is processed and represented by humans, computer scientists apply computational methods to determine how to process and represent language in machines. The present work integrates approaches from each of these domains in order to tackle an issue of relevance for both: the nature of the relationship between low-level lexical processes and syntactically-driven interpretation processes. In the first part of the dissertation, this distinction between lexical and syntactic processes focuses on understanding asyntactic lexical effects in online sentence comprehension in humans, and the relationship of those effects to syntactically-driven interpretation processes. I draw on computational methods for simulating these lexical effects and their relationship to interpretation processes. In the latter part of the dissertation, the lexical/syntactic distinction is focused on the application of semantic composition to complex lexical content, for derivation of sentence meaning. For this work I draw on methodology from cognitive neuroscience and linguistics to analyze the capacity of natural language processing systems to do vector-based sentence composition, in order to improve the capacities of models to compose and represent sentence meaning
    • …
    corecore