28,398 research outputs found

    Test Generation Based on CLP

    Get PDF
    Functional ATPGs based on simulation are fast, but generally, they are unable to cover corner cases, and they cannot prove untestability. On the contrary, functional ATPGs exploiting formal methods, being exhaustive, cover corner cases, but they tend to suffer of the state explosion problem when adopted for verifying large designs. In this context, we have defined a functional ATPG that relies on the joint use of pseudo-deterministic simulation and Constraint Logic Programming (CLP), to generate high-quality test sequences for solving complex problems. Thus, the advantages of both simulation-based and static-based verification techniques are preserved, while their respective drawbacks are limited. In particular, CLP, a form of constraint programming in which logic programming is extended to include concepts from constraint satisfaction, is well-suited to be jointly used with simulation. In fact, information learned during design exploration by simulation can be effectively exploited for guiding the search of a CLP solver towards DUV areas not covered yet. The test generation procedure relies on constraint logic programming (CLP) techniques in different phases of the test generation procedure. The ATPG framework is composed of three functional ATPG engines working on three different models of the same DUV: the hardware description language (HDL) model of the DUV, a set of concurrent EFSMs extracted from the HDL description, and a set of logic constraints modeling the EFSMs. The EFSM paradigm has been selected since it allows a compact representation of the DUV state space that limits the state explosion problem typical of more traditional FSMs. The first engine is randombased, the second is transition-oriented, while the last is fault-oriented. The test generation is guided by means of transition coverage and fault coverage. In particular, 100% transition coverage is desired as a necessary condition for fault detection, while the bit coverage functional fault model is used to evaluate the effectiveness of the generated test patterns by measuring the related fault coverage. A random engine is first used to explore the DUV state space by performing a simulation-based random walk. This allows us to quickly fire easy-to-traverse (ETT) transitions and, consequently, to quickly cover easy-to-detect (ETD) faults. However, the majority of hard-to-traverse (HTT) transitions remain, generally, uncovered. Thus, a transition-oriented engine is applied to cover the remaining HTT transitions by exploiting a learning/backjumping-based strategy. The ATPG works on a special kind of EFSM, called SSEFSM, whose transitions present the most uniformly distributed probability of being activated and can be effectively integrated to CLP, since it allows the ATPG to invoke the constraint solver when moving between EFSM states. A constraint logic programming-based (CLP) strategy is adopted to deterministically generate test vectors that satisfy the guard of the EFSM transitions selected to be traversed. Given a transition of the SSEFSM, the solver is required to generate opportune values for PIs that enable the SSEFSM to move across such a transition. Moreover, backjumping, also known as nonchronological backtracking, is a special kind of backtracking strategy which rollbacks from an unsuccessful situation directly to the cause of the failure. Thus, the transition-oriented engine deterministically backjumps to the source of failure when a transition, whose guard depends on previously set registers, cannot be traversed. Next it modifies the EFSM configuration to satisfy the condition on registers and successfully comes back to the target state to activate the transition. The transition-oriented engine generally allows us to achieve 100% transition coverage. However, 100% transition coverage does not guarantee to explore all DUV corner cases, thus some hard-to-detect (HTD) faults can escape detection preventing the achievement of 100% fault coverage. Therefore, the CLP-based fault-oriented engine is finally applied to focus on the remaining HTD faults. The CLP solver is used to deterministically search for sequences that propagate the HTD faults observed, but not detected, by the random and the transition-oriented engine. The fault-oriented engine needs a CLP-based representation of the DUV, and some searching functions to generate test sequences. The CLP-based representation is automatically derived from the S2EFSM models according to the defined rules, which follow the syntax of the ECLiPSe CLP solver. This is not a trivial task, since modeling the evolution in time of an EFSM by using logic constraints is really different with respect to model the same behavior by means of a traditional HW description language. At first, the concept of time steps is introduced, required to model the SSEFSM evolution through the time via CLP. Then, this study deals with modeling of logical variables and constraints to represent enabling functions and update functions of the SSEFSM. Formal tools that exhaustively search for a solution frequently run out of resources when the state space to be analyzed is too large. The same happens for the CLP solver, when it is asked to find a propagation sequence on large sequential designs. Therefore we have defined a set of strategies that allow to prune the search space and to manage the complexity problem for the solver

    The Art of Fault Injection

    Get PDF
    Classical greek philosopher considered the foremost virtues to be temperance, justice, courage, and prudence. In this paper we relate these cardinal virtues to the correct methodological approaches that researchers should follow when setting up a fault injection experiment. With this work we try to understand where the "straightforward pathway" lies, in order to highlight those common methodological errors that deeply influence the coherency and the meaningfulness of fault injection experiments. Fault injection is like an art, where the success of the experiments depends on a very delicate balance between modeling, creativity, statistics, and patience

    Memory Fault Simulator for Static-Linked Faults

    Get PDF
    Static linked faults are considered an interesting class of memory faults. Their capability of influencing the behavior of other faults causes the hiding of the fault effect and makes test algorithm design and validation a very complex task. This paper presents a memory fault simulator architecture targeting the full set of linked fault

    A hierarchical test generation methodology for digital circuits

    Full text link
    A new hierarchical modeling and test generation technique for digital circuits is presented. First, a high-level circuit model and a bus fault model are introduced—these generalize the classical gate-level circuit model and the single-stuck-line (SSL) fault model. Faults are represented by vectors allowing many faults to be implicitly tested in parallel. This is illustrated in detail for the special case of array circuits using a new high-level representation, called the modified pseudo-sequential model, which allows simultaneous test generation for faults on individual lines of a multiline bus. A test generation algorithm called VPODEM is then developed to generate tests for bus faults in high-level models of arbitrary combinational circuits. VPODEM reduces to standard PODEM if gate-level circuit and fault models are used. This method can be used to generate tests for general circuits in a hierarchical fashion, with both high- and low-level fault types, yielding 100 percent SSL fault coverage with significantly fewer test patterns and less test generation effort than conventional one-level approaches. Experimental results are presented for representative circuits to compare VPODEM to standard PODEM and to random test generation techniques, demonstrating the advantages of the proposed hierarchical approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43007/1/10836_2004_Article_BF00137388.pd

    Variation aware analysis of bridging fault testing

    No full text
    This paper investigates the impact of process variation on test quality with regard to resistive bridging faults. The input logic threshold voltage and gate drive strength parameters are analyzed regarding their process variation induced influence on test quality. The impact of process variation on test quality is studied in terms of test escapes and measured by a robustness metric. It is shown that some bridges are sensitive to process variation in terms of logic behavior, but such variation does not necessarily compromise test quality if the test has high robustness. Experimental results of Monte-Carlo simulation based on recent process variation statistics are presented for ISCAS85 and -89 benchmark circuits, using a 45nm gate library and realistic bridges. The results show that tests generated without consideration of process variation are inadequate in terms of test quality, particularly for small test sets. On the other hand, larger test sets detect more of the logic faults introduced by process variation and have higher test quality

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    Using ER Models for Microprocessor Functional Test Coverage Evaluation

    Get PDF
    Test coverage evaluation is one of the most critical issues in microprocessor software-based testing. Whenever the test is developed in the absence of a structural model of the microprocessor, the evaluation of the final test coverage may become a major issue. In this paper, we present a microprocessor modeling technique based on entity-relationship diagrams allowing the definition and the computation of custom coverage functions. The proposed model is very flexible and particularly effective when a structural model of the microprocessor is not availabl

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling
    • …
    corecore