
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322388067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

24

Test Generation based on CLP

Giuseppe Di Guglielmo, Franco Fummi,
Cristina Marconcini and Graziano Pravadelli

University of Verona
Italy

1. Introduction

The complexity of designs continues to rise, driven by technology advances, while time-to-

market imposes always shorter time. Moreover, the increasing of design complexity implies

that design verification becomes one of the most cost-dominating phase in design

production.

Functional Automatic Test Pattern Generators (ATPGs) based on simulation (Corno et al.,

2001; Fin & Fummi, 2003a) are fast, but generally, they are unable to cover corner cases, and

they cannot prove untestability. On the contrary, functional ATPGs exploiting formal

methods (Ghosh & Fujita, 2001; Zhang et al., 2003; Xin et al., 2005a), are exhaustive and

cover corner cases, but they tend to suffer of the state explosion problem when adopted for

verifying large designs. In this context, a functional ATPG is presented, that relies on the

joint use of pseudo-deterministic simulation and constraint logic programming (CLP) (Jaffar

& Maher, 1994), to generate high-quality test sequences for solving complex problems. Thus,

the advantages of both simulation-based and static-based verification techniques are

preserved, while their respective drawbacks are limited. In particular, CLP, a form of

constraint programming in which logic programming is extended to include concepts from

constraint satisfaction, is well-suited to be jointly used with simulation. In fact, information

learned during design exploration by simulation can be effectively exploited for guiding the

search of a CLP solver towards design under verification (DUV) areas not covered yet.

Therefore, this work is focused on the use of CLP for addressing corner cases during
functional test pattern generation. In particular, a CLP-based fault-oriented ATPG engine is
proposed to be adopted, after simulation, learning and random-walk/backjumping, as the
last step of the incremental test generation flow showed in Figure 1.
According to such a flow, the ATPG framework is composed of three functional ATPG

engines working on three different models of the same DUV: the hardware description

language (HDL) model of the DUV, the set of concurrent EFSMs extracted from the HDL

description, and the set of logic constraints modelling the EFSMs. The EFSM paradigm has

been selected since it allows a compact representation of the DUV state space (Lee &

Yannakakis, 1992) that limits the state explosion problem typical of more traditional FSMs.

In the proposed framework, the first engine is random-based, the second is transition-
oriented, while the last is fault-oriented. This approach quickly covers the greater part of
DUV faults, typically easy-to-detect faults. Then, the transition-oriented engine and fault-

Source: Micro Electronic and Mechanical Systems, Book edited by: Kenichi Takahata,
 ISBN 978-953-307-027-8, pp. 572, December 2009, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Micro Electronic and Mechanical Systems

432

Random

Engine

Transition-

oriented

Engine

CLP-based

Fault-oriented

Engine

HDL

Description

Test

Patterns

1) For easy-to-traverse transitions and

easy-to-detect faults

Learning, Random Walk

T
E

S
T

 S
E

Q
U

E
N

C
E

 G
E

N
E

R
A

T
IO

N

P
R

O
P

A
G

A
T

IO
N

 S
E

Q
U

E
N

C
E

 G
E

N
E

R
A

T
IO

N

EFSM

STGs

EFSM

Logic

Constraints

DUV

MODELS
ATPG

2) For hard-to-traverse transitions

Learning, Backjumping

3) For hard-to-detect faults

CLP-based propagation

Fig. 1. The incremental test generation flow.

oriented engine permit to deterministically generate test patterns for the remaining
uncovered hard-to-detect faults. Therefore, the test generation is guided by means of
transition coverage (Li & Wong, 2002) and fault coverage (Abramovici, 1993). In particular,
100% transition coverage is desired as a necessary condition for fault detection, while the bit
coverage (Ferrandi et al., 1998a) functional fault model is used to evaluate the effectiveness
of the generated test patterns by measuring the related fault coverage.
This Chapter is organized as follow. Section 2 reports the state of art of CLP techniques
applied for test generation. Section 3 describes the EFSM as the adopted computational and
the strategies defined for generating a particular type of EFSM suited for test generation.
Section 4 presents the functional ATPG engine that relies on learning, random-
walk/backjumping and constraint logic programming to deterministically generate test
vectors for traversing all transition of the EFSM and activate the fault injected into the DUV.
Section 5 describes the fault-oriented ATPG engine that exploits CLP techniques to
propagate hard-to-detect faults activated but not observed to the outputs. Experimental
results are presented in Section 6, and conclusions are drawn in Section 7.

2. Background

Constraint programming (Wallace, 1997) is a paradigm that is tailored to search problems.
The main application areas are those of planning, scheduling, timetabling, routing,
placement, investment, configuration, design and insurance. Constraint programming
incorporates techniques from mathematics, artificial intelligence and operations research,
and it offers significant advantages in these areas since it supports fast program
development, economic program maintenance, and efficient runtime performance.

www.intechopen.com

Test Generation based on CLP

433

Constraint logic programming (CLP) combines logic, which is used to specify a set of
possibilities explored via a very simple in-built search method, with constraints, which are
used to minimize the search by eliminating impossible alternatives in advance.
The programmer can state the factors which must be taken into account in any solution (the
constraints), state the possibilities (the logic program), and use the system to combine
reasoning and search. The constraints are used to restrict and guide search. The whole field
of software research and development has aims to optimize the task of specifying, writing
and maintaining correct functioning programs.
CLP-based ATPGs have been already proposed in the literature (Vemuri & Kalyanaraman,
1995; Pauli et al., 2000; Xin and Harris, 2002; Ferrandi et al., 2002b), however, existent
approaches differ in several aspects from the ones presented in this work. In (Pauli et al.,
2000), CLP is used to generate test sequences according to a path coverage-based criterion.
However, this approach is oriented only to the control part of circuits. Control flow paths
are also the target of the approach presented in (Vemuri & Kalyanaraman, 1995; Ferrandi et
al., 2002b). In (Vemuri and Kalyanaraman, 1995), constraints are derived from a
preprocessing of a VHDL description to enumerate all the target paths. On the contrary, in
(Ferrandi et al., 2002b), constraints are generated by enumerating paths of concurrent FSMs
describing the DUV. However, path enumeration is a very hard and time-consuming task,
since paths of sequential circuits are generally infinite. In (Xin and Harris, 2002), the authors
propose to use CLP for generating test sequences targeting synchronization/timing faults in
hardware/software models described as a network of co-design FSMs. This work identifies
sequences to trigger synchronization faults but the observability of the fault effect is not
considered.
Finally, the previous approaches propose neither strategies for completely modelling a
design by means of CLP (just some paths are modelled), nor approaches for avoiding the
risk of state explosion when a CLP solver is asked to generate a test sequence to activate the
target path.
The CLP solver adopted and integrated into the proposed ATPG is ECLiPSe (ECLiPSe
Common Logic Programming System) (Wallace & Veron, 1994; Apt & Wallace, 2007).
ECLiPSe is a Prolog based system whose aim is to serve as a platform for integrating various
Logic Programming extensions, in particular Constraint Logic Programming. The kernel of
ECLiPSe is an efficient implementation of standard (Edinburgh-like) Prolog as described in
basic Prolog texts. It is built around an incremental compiler which compiles the ECLiPSe
source into WAM-like code, and an emulator of this abstract code. ECLiPSe is now an open-
source project, with the support of Cisco Systems.

3. EFSM manipulation to exploit CLP based techniques

The EFSM model is a generalization of the classical FSM model that provides a compact
representation of local data variables and preserve properties of the traditional state
machine models.
In the current work, a digital system is represented as a set of concurrent EFSMs, one for
each process of the DUV. In this way, according to the following Definition 1, the main
characteristics of state-oriented, activity-oriented and structure-oriented models are
captured (Gajski et al., 1997). In fact, the EFSM is composed of states and transitions, thus it
is state-oriented, but each transition is extended with hardware description language (HDL)
instructions that act on the DUV registers. In this sense, each transition represents a set of

www.intechopen.com

 Micro Electronic and Mechanical Systems

434

activities on data, thus, the EFSM is a data-oriented model too. Finally, concurrency is
intended as the possibility that each EFSM of the same DUV changes its state concurrently
to the other EFSMs to reflect the concurrent execution of the corresponding processes. Data
communication between concurrent EFSMs is guaranteed by the presence of common
signals. In this way, structured models can be represented.

in1!=0 and
reset=0

reg:=in1;
out1<=1;
out2<=1;

A

B

t
0

t
3

t
4

t
1

t
2

reset=1
out1<=0;
out2<=0;

t
5

in1=0 and
reset=0

out1<=0;
out2<=0;

reset=0 and reg!=1
out1<=reg;
out2<=reg*2;

reset=0 and reg=1
out1<=in1*2;
out2<=in1;

reset=1
out1<=0;
out2<=0;

Fig. 2. State transition graph of an EFSM.

Definition 1 An EFSM is defined as a 5-tuple M=<S,I,O,D,T> where: S is a set of states, I is a set
of input symbols, O is a set of output symbols, D is a n-dimensional linear space D1×…×Dn, T is a
transition relation such that T:S×D×I→S×D×O. A generic point in D is described by a n-tuple

x=(x1,...,xn) and models the values of the registers of the DUV. A pair <s,x>∈S×D is called
configuration of M.
An operation on M is defined in this way: if M is in a configuration <s,x> and it receives an

input i∈I, it moves to the configuration <t,y> iff ((s,x,i),(t,y,o))∈T for o∈O.
The EFSM differs from the classical FSM, since each transition does not present only a label
in the classical form (i)⁄(o), but it takes care of the register values too. Transitions are labelled
with an enabling function e and an update function u defined as follows.

Definition 2 Given an EFSM M=<S,I,O,D,T>, s∈S, t∈T, i∈I, o∈O and the sets

X={x|((s,x,i),(t,y,o)) ∈ T for y∈D} and Y = {y|((s,x,i),(t,y,o)) ∈ T for x∈X}, the enabling and
update functions are defined respectively as:

1 ;

 (,)
0 .

if x X
e x i

otherwise

∈⎧
= ⎨
⎩

 (1)

⎩
⎨
⎧ ∈=

=
otherwise.undef.

T;)),i),(t,y,o and ((s,xe(x,i)(y,o)
u(x,i)

1

www.intechopen.com

Test Generation based on CLP

435

An update function u(x,i) can be applied to a configuration <s1,x> if there is a transition
t:s1→ s2, labelled e⁄u, such that e(x,i)=1. In this case we say that t can be traversed by applying
the input i. Figure 2 shows the state transition graph of a simple EFSM.
Many EFSMs can be generated starting from the same HDL description of a DUV. However,
despite from their functional equivalence, they can be more or less easy to be traversed.
Easiness of traversal is a mandatory feature for a computational model used in CLP-based
test pattern generation, and it is a desirable condition to activate and propagate faults.
Stabilization of EFSMs improves the easiness of traversal (Lee & Yannakakis, 1992), but it
can lead to the state space explosion. Thus, in (Di Guglielmo et al., 2006a), a set of
theoretically-based automatic transformations has been proposed to generate a particular
kind of semi-stabilized EFSM (S2EFSM). This particular kind of EFSM allows the ATPG to
easily explore the state space of the corresponding DUV reducing the risk of state explosion.
The S2EFSM presents the following characteristics:

• It is functionally and timing equivalent to the HDL description from which it is
extracted, i.e., given an input sequence, the HDL description and the corresponding
S2EFSM provide the same result at the same time.

• The update functions contain only assignment statements. This implies that all the
control information, needed by a CLP-based ATPG to traverse the DUV state space,
resides in the enabling functions of the S2EFSM.

• The S2EFSM is partially stabilized to reduce the state explosion problem that may arise
when stabilization is performed to remove inconsistent transitions. Only transitions not
leading to state explosion are stabilized.

The S2EFSM is referred simply as EFSM in the following.

4. CLP-based technique for generating test sequences

The ATPG engine proposed in this Section relies on random and pseudo-deterministic
simulation and CLP techniques to generate test sequences for traversing the system
represented as a collection of EFSM. A two step approach, implementing respectively the
random engine and the transition-oriented engine, is depicted in Figure 1.
First the DUV state space is explored by performing a simulation-based random-walk
(Section 4.3). This allows to quickly fire easy-to-traverse (ETT) transitions and, consequently,
to quickly cover easy-to-detect (ETD) faults. However, the majority of hard-to-traverse
(HTT) transitions remain, generally, uncovered.
Thus, the backjumping-based strategy is applied to cover the remaining HTT transitions by
mean of transition-oriented ATPG (Section 4.4). Backjumping, also known as non-
chronological backtracking, is a special kind of backtracking strategy which rollbacks from
an unsuccessful situation directly to the cause of the failure. Thus, the engine
deterministically backjumps to the source of failure when a transition, whose guard
depends on previously set registers, cannot be traversed. Next it modifies the EFSM
configuration to satisfy the condition on registers and successfully comes back to the target
state to activate the transition.
The transition-oriented engine generally allows achieving 100% transition coverage.
However, 100% transition coverage does not guarantee to explore all DUV corner cases,
thus some hard-to-detect (HTD) faults can escape detection preventing the achievement of
100% fault coverage. Therefore, the CLP-based fault-oriented engine, as described in Section
5, is finally applied to focus on the remaining HTD faults.

www.intechopen.com

 Micro Electronic and Mechanical Systems

436

4.1 ATPG architecture

The EFSM model is specially suited to be used with CLP-based ATPGs that generate test
sequences by deterministically activating the enabling functions of the transitions.
According to this observation, in this section the functional ATPG framework depicted in
Figure 3 is described. The framework is composed of two main modules: the DUV-
dependent component generator (DCG) and the run-time engine (RTE).
Given an HDL functional description of the DUV, the DCG modules generates the state-
transition-graph (STG) representations of the corresponding EFSMs (EFSM STG Generator),
the faulty description of the DUV and the related fault list (Fault Injector), and the file
containing the constraints involved in the EFSM enabling and updating functions
(Constraint Generator). The constraint generation for transition-oriented CLP-based ATPG
is described in Section 4.2
The RTE module is composed of the EFSM navigator, the CLP Interface, and the Simulation
Engine. The RTE navigates the STG representation of the EFSM to generate test sequences.
An external CLP solver (ECLiPSe) is used to generate values for primary inputs of the DUV
which allow firing the enabling functions of transitions that the EFSM navigator wants to
traverse. Then, the generated test sequences are provided to the Simulation Engine, and the
behaviour of the fault-free and faulty DUVs is compared. Test sequences that highlight
discrepancies between the primary outputs of the fault-free and faulty DUVs constitute the
final test patterns.

4.2 Constraint generation for transition-oriented CLP-based ATPG

Starting from the in-memory representation of the DUV, the Constraint Generator
automatically creates the CLP-constraint file to allow the RTE module to evaluate the
enabling functions when the EFSM is navigated. For example, Figure 4 shows the constraint
representation for ECLiPSe solver related to transitions of the EFSM of Figure 2.

RTE

DUV

DCG

EFSM
STGs

Simulation
Engine

CLP
Interface

CLP
ECLiPSe

Test
Patterns

Fault
injector

EFSM
STG

Generator

Constraint
Generator

Faulty
DUV

Constraints

ATPG Framework
(Random-based and Transition-oriented Engine)

EFSM
Navigator

Random
Engine

Transition-
oriented
Engine

Fig. 3. The ATPG framework.

www.intechopen.com

Test Generation based on CLP

437

During the test pattern generation such constraints are exploited. In particular, each test
vector is randomly initialized. Then, it is modified accordingly with the values provided by
the CLP solver. In particular, if the enabling functions of the currently evaluated transition
are satisfied, the part of the test vector related to the primary inputs involved in the enabling
function is modified accordingly to the values returned by the CLP solver.
Moreover, the EFSM Navigator accesses to structures pointing to DUV internal registers.
The actual values of the registers are used to instantiate the constraints in the current system
status.

t0 :- reset::0..1,
 (reset#=1),
 indomain(reset,random).
t1 :- lb is -(2^32), rb is (2^32)-1,
 in1::lb..rb, reset::0..1,
 (in1#\=0)and(reset#=0),
 indomain(in1,random), indomain(reset,random).
t2 :- reset::0..1,
 (reset#=1),
 indomain(reset,random).
t3 :- lb is -(2^32), rb is (2^32)-1,
 reg::lb..rb, reset::0..1,
 (reg#\=1)and(reset#=0),
 indomain(in1,random), indomain(reset,random).
t4 :- lb is -(2^32), rb is (2^32)-1,
 reg::lb..rb, reset::0..1,
 (reg#=1)and(reset#=0),
 indomain(in1,random), indomain(reset,random).
t5 :- lb is -(2^32), rb is (2^32)-1,
 in1::lb..rb, reset::0..1,
 (in1#=0)and(reset#=0),
 indomain(in1, random), indomain(reset,random).

Fig. 4. Enabling function representations for ECLiPSe solver.

4.3 Random-walk
During the random-walk phase, the ATPG randomly walks across the transitions of the
EFSMs representing the DUV. Thus, ETT transitions are very likely traversed.
Starting from a reset condition, the ATPG randomly selects a transition from each EFSM

according to a scheduling policy. The EFSM-scheduling policy aims at maximizing the

ATPG capability of exploring the whole state space. Then, it tries to satisfy the enabling

function of each selected transition by exploiting the CLP solver invoked by providing it

with the corresponding constraints. When it succeeds, the values for the primary inputs,

provided by the solver, are used to generate a test vector. Finally, a simulation cycle is

performed, by using the generated test vector, to update the internal registers of the DUV

and to move to the destination state. Then, another transition is selected, and the cycle

repeats.
Each time a test vector is generated, the traversed transition is labelled with the test
sequence number and the test vector number. A list of pairs of parametric length is saved

www.intechopen.com

 Micro Electronic and Mechanical Systems

438

for each transition. In this way, the backjumping mode can exploits such lists to quickly
recover the prefix of a test sequence which allows the ATPG to move from the reset state to
an already visited target state.

4.4 Backjumping

The ATPG automatically changes to the backjumping mode when the computation time

assigned to the random-walk expires, or no coverage improvement is provided for long

time. Thus, the transition-oriented ATPG works as represented in Figure 5. Let us assume t

is a not fired transition, out-going from state St already visited during the random-walk

phase. Let us also assume that the unsatisfiability of the enabling function of t depends on

clauses involving a single register reg. If the unsatisfiability of t depends on more than one

register, the backjumping procedure is repeated for each of them. Then extract an already

visited transition tu from the set of transitions Tureg whose update function updates reg. Load

the test sequence, previously generated during random-walk mode, to move from the reset

state to Stu (source state of tu). Thus, the ATPG backjumps from St to Stu. Use the Dijkstra’s

shortest path search algorithm to provide a path π from Stu to St starting with tu. Satisfy the

enabling function of tu according to the constraints derived from the enabling function of t

as follows. Let us suppose that etu is the enabling function of tu and et|regtu is the part of the

enabling function of t which involves the clauses depending on reg, where each occurrence

of reg has been substituted with the right-side expression of the assignment that updates reg

in the update function of tu. Invoking the CLP solver to satisfy the constraint etu∧et|regtu

allows us to obtain a test vector which satisfies etu and sets the value of reg in such a way

that when simulation reaches transition t, following π, its enabling function will be correctly

fired. The last observation may be false if there is a transition t’u≠tu≠t in π, such that t’u

updates reg after tu did. In this case, the ATPG moves the problem from tu to t’u requiring a

solution for et’u∧et| regt’u. Finally satisfy the enabling function of transitions included in π by

iteratively applying the constraint solver to generate the corresponding test vectors. The test

sequence obtained by joining s, to move from the reset state to Stu, and the test vectors

generated to traverse π allows to fire t.

Stu
St

t

in1>0
reg := in1*2;

t
u

Stu+1

Reset
State

A single transition

A path composed of one or more transitions

π

The ATPG uses the
saved sequence s
to move from the
reset state to Stu

The ATPG solves the
following constraint to
fire tu fixing the value
of reg required by t:

(in1 > 0) AND

(in1*2 > 100)

The ATPG
backjumps to
Stu

to fire t

12 3

reg > 100 and in2=0
…

Fig. 5. The backjumping strategy.

www.intechopen.com

Test Generation based on CLP

439

5. CLP-based technique for generating propagation sequences

In this section the CLP solver is used to deterministically search for sequences that
propagate the faults observed, but not detected by means of the previously presented
random and transition-oriented engines. In particular, Section 5.1 presents the technique
defined to model the EFSM in CLP, Section 5.2 describes the implemented CLP-based fault-
oriented ATPG engine, and Section 5.3 presents some optimization strategies defined to deal
with the complexity typical of static techniques like CLP.

5.1 EFSM modelling by CLP

At first, the concept of time steps is introduced, required to model the EFSM evolution
through time via CLP. Then, techniques are presented to model logical variables and
constraints describing the enabling functions and update functions of the EFSM.
Hardware description languages easily allow modelling the DUV time evolution by means

of processes, implicit or explicit wait statements, sensitivity lists and events. On the

contrary, CLP does not provide an explicit mechanism to model the time. To overcome this

limitation, a logical variable N is introduced to represents the total number of time frames

on which the EFSM can evolve. The domain of N is [1,Max], where Max is defined according

to the sequential depth of the DUV. Then, the CLP variables, used to model the EFSM

behaviour, are defined as arrays of size N. Thus, for example, let us consider a variable V

defined in the HDL description of the DUV. When CLP is adopted, an array V[] is used to

model the evolution in time of variable V. In this context, a CLP constraint of the form

V[T]#=0 indicates that at time T the variable V of the DUV has value 0.

Three kinds of arrays of logical variables must be defined to describe, respectively, states,
transitions, and registers of an EFSM.

• Each state of the EFSM is modelled by an array of boolean variables of size N. When the
EFSM is in the state S at time T, the Tth element of the array S[], corresponding to the
state S, is assigned to true. For example, two arrays, A[] and B[], are required to model
states A and B of the EFSM of Figure 2. At every time step T, either A[T] or B[T] is true,
thus indicating the current state of the EFSM.

• Each transition of the EFSM is associated to an array of boolean variables of size N. If a
transition is fired at time T, the Tth element of the array corresponding to the transition
is assigned to true.

• Registers are modelled as array of size N respecting their original data type.
The CLP code of Figure 6 exemplifies the constraints required to model logical variables for

states, transitions, and registers of the EFSM of Figure 2. Moreover, in Figure 6, the predicate

bool(X,N) defines the boolean data type used to model states and transitions. It means that

the logical variable X is an array of size N (for modelling of time), whose elements can

assume the values included in the list Xlist, i.e., 0 or 1. In a similar way, the predicate

int32(X,N) defines an arrays of N 32-bit integers used as data type to deal with primary

inputs, primary outputs, and registers.

The functional behaviour of the EFSM is represented by means of enabling functions and
update functions labelling the transitions between states. Thus finally, a way for modelling
such functions and their relation with states and transitions is proposed. In particular, two
kinds of constraints have been defined to model the current state of the EFSM, and the
relation between the enabling function and the corresponding update function.

www.intechopen.com

 Micro Electronic and Mechanical Systems

440

% data types
bool(X,N) :- dim(X,[N]),term_variables(X, Xlist), Xlist::[0,1].
int32(X,N) :- dim(X,[N]), X[1..N]:: -2147483648..2147483647.
% states
bool(A,N), bool(B,N),
% transition
bool(T0,N), bool(T1,N), bool(T2,N), bool(T3,N), bool(T4,N),bool(T5,N),
% primary inputs, primary outputs, and registers
int32(IN1,N), int32(REG,N), int32(OUT1,N), int32(OUT2,N).

Fig. 6. Constraints for modelling state, transition and register variables.

5.1.1 Current state modelling

Two constraints must be defined for each array of state variables to specify the current state

of the EFSM. The first constraint specifies that, at each time step T, the T th element of an

array S[], modelling a state S of the DUV, is true, if and only the Tth element of one of the

transition arrays corresponding to the transitions in-going in S is true. The second constraint

specifies the dual situation, i.e., if the Tth element of the transition array is true at time T,

then the Tth element of the array associated to the destination state of the corresponding

transition must be true at time step T+1 (NEXT_T). For example, let us consider the EFSM of

Figure 2. The constraints in Figure 7 must be defined for specifying that the current state of

the EFSM at time step T+1 is A , if and only if one of the transitions in-going in A has been

fired at time T.

A[NEXT_T] #= T0[T] xor T2[T] xor T3[T] xor T4[T],
T0[T] xor T2[T] xor T3[T] xor T4[T] => A[NEXT_T].

Fig. 7. Constraints for modelling next-state relation.

Finally, a further constraint is introduced to explicitly force the system to be in a single state

and transition at each time step. Thus, the Tth element of arrays corresponding to states of

the EFSM are put in xor each other as shown in Figure 8.

A[T] xor B[T],
T0[T] xor T1[T] xor T2[T] xor T3[T] xor T4[T] xor T5[T].

Fig. 8. Constraint for modelling transition and state mutual exclusion.

In fact, at a particular time step, only one transition of the EFSM can be traversed and,

obviously, the EFSM can have only one state active. Designers implicitly include such a

constraint, when they model the DUV by means of an HDL. However, the explicit presence

of such a constraint, when the EFSM is provided to the CLP solver, allows the solver to

immediately prune the solution space by ignoring configurations where more than one state

variable is concurrently true, thus drastically reducing the number of backtracking steps.

www.intechopen.com

Test Generation based on CLP

441

5.1.2 Enabling and update function modelling

Firing a transition at time T implies that its enabling function is satisfied at time T, its update

function is executed at time T, and the state of the EFSM at time T is the source of the

transition. Thus, for example, if Ti is a transition out-going from state S, whose enabling

function and update function are modelled, respectively, by the predicates EF and UF

(described later), the constraints in Figure 9 are used to model Ti.

EF[T] and S[T] => Ti[T],
Ti[T] => EF[T] and S[T],
Ti[T] and (EF[T] and S[T]) => UF[T].

Fig. 9. Constraint for correlating the enabling and update functions to transitions.

The first two constraints represent a double implication for imposing that the transition

variable Ti[T] is true (i.e., the transition Ti is fired at time T) if and only if the predicate of the

corresponding enabling function EF[T] and the variable S[T], associated to the state from

which Ti is out-going, are true. On the contrary, the predicate of the update function UF[T]

does not require a double implication, because it is possible that UF[T] is true even if EF[T] is

false. However, in this case the transition is not fired and the update function is not executed.

The predicate EF[T] is directly derived from the condition involved in the corresponding

enabling function. Its modelling requires only a syntactical conversion from the syntax of

the HDL used to model the DUV towards the syntax accepted by the CLP solver.

On the contrary, modelling the predicate UF[T] associated to an update function requires

more attention. In particular, an update function involves assignments to registers and

primary outputs. Let us use an example to show how to model such a kind of statement.

Consider, for example, the statement SIG := SIG + IN, where SIG is an internal signal and IN

is a primary input. The corresponding CLP constraint is SIG[Next_T]#=SIG[T]+IN[T].

However, registers and primary outputs, that do not require to be updated, are not assigned

in the update function when a design is modelled by using an HDL. Indeed, they implicitly

preserve their previous value. Unfortunately, the CLP solver assigns random values to

variables that are not explicitly assigned. Thus, when an update function is modelled by

means of constraints, it has to ensured that a constraint is explicitly added to preserve the

value of signals, registers and primary outputs that do not require to be updated.

According to the previous rules, for example, the transition t4 in Figure 2 is modelled as

depicted in Figure 10.

% Enabling function
((REG[T] #=1) and B[T]) => T4[T],
T4[T] => ((REG[T] #= 1) and B[T]),
% Update function
(T4[T] and ((REG[T] #= 1) and B[T]) =>((REG[Next_T] #= REG[T]) and
(OUT1[Next_T] #= IN1[T]*2) and (OUT2[Next_T] #= IN1[T])).

Fig. 10. Constraint for representing transition t4 of the EFMS in Figure 2.

www.intechopen.com

 Micro Electronic and Mechanical Systems

442

5.2 Fault-oriented CLP-based engine

The transition-oriented engine described in Section 4 pseudo-deterministically generates
sequences for firing HTT transitions on EFSMs. In this way, the majority of faults are
detected as a consequence of transition traversal, but some HTD faults can remain
uncovered. On the contrary, the CLP-based fault-oriented engine exhaustively searches for
test sequences targeting specific faults. It exploits the CLP-solver to explore the CLP-based
representation of the DUV extracted from the EFSM model. The exhaustiveness, guaranteed
by CLP, is paid in terms of execution time, but such an engine is applied to a small number
of faults: those not detected neither by the random-based engine nor by the transition-
oriented one.
Let us consider a fault f that has not been detected yet by these engines. This may depends
on two different reasons:
1. the ATPG has been unable to find an activation sequence, i.e., in the case of the bit

coverage fault model, a sequence that causes the bit (or the condition) affected by f to be
set with the opposite value with respect to the one induced by f ;

2. the ATPG activated f, but it has been unable to find a propagation sequence, i.e., a
sequence that propagates the effect of f to the primary outputs of the DUV.

Detected
faults

undetected
faults

TBP faults +
activation sequence +
configurations

Propag.
sequence
found?

Y

NGeneration of new
faulty and fault-free

configurations

Simulation of
activation +
propagation
sequence

Fault
tested?

Y N

Random
Engine

Transition-
oriented
Engine

CLP-based
Fault-oriented

Engine

detected faults

detected faults

Fig. 11. The role of the CLP-based fault-oriented engine.

To distinguish between the previous alternatives, the ATPG observes the effect of each fault

on both primary outputs and internal registers, during the simulation of test sequences

generated by the random-based and transition-based engines. From this observation, the

following well-known definitions derive.

Definition 3 A fault f is said to be observable on primary outputs, i.e., detectable, if there exists a
test sequence s such that, by concurrently applying s to the faulty and the fault-free DUVs, the value

www.intechopen.com

Test Generation based on CLP

443

of at least one primary output in the fault-free DUV differs from the value of the corresponding
primary output in the faulty DUV, at least once in time.
Definition 4 A fault f is said to be observable on a register if there exists a test sequence s such that,
by concurrently applying s to the faulty and the fault-free DUVs, the value of at least one register in
the fault-free DUV differs from the value of the corresponding register in the faulty DUV, at least
once in time.
According to the previous definitions, if the fault is observed on primary outputs, it is
marked as detected and the corresponding test sequence is saved. Otherwise, if the fault is
observed only on registers, the fault is marked as to be propagated (TBP). Finally, if the fault
is observable neither on primary outputs nor on registers, this is due to the difficulty of
finding an activation sequence. Thus, the fault is marked as to be activated (TBA).
The current work addresses TBP faults (see Figure 11); future works will address the
problem of TBA faults. In the following, Section 5.2.1 describes how submit TBP problem to
the CLP-solver, Section 5.2.2 introduces searching functions to generate test sequences and
finally Section 5.2.3 proposes how to managing problem complexity.

CLP
Solver

EFSMs
as logic

constraints

Faulty
config.
(C2)

EFSMs
as logic

constraints

Propag.
sequence

Search for a
sequence s.t.
POs of EFSM

istances
initialized with C1

and C2 differ

Fault-free
config.
(C1)

Fig. 12. Use of the CLP solver for finding propagation sequences.

5.2.1 Propagation sequence generation

The propagation sequence for a TBP fault is generated by providing the ATPG engine with
two instances of the CLP-based representation of the DUV. This representation consists of
the CLP model of the generated EFSM. The instances are initialized with the EFSM
configurations (the faulty and the fault-free ones) that allow the random or the transition-
based engine to observe the fault on at least one register.
Note that the two DUV instances, provided to the CLP solver, are exactly equal, but their

registers are initialized with different values (the faulty and the fault-free ones). This is the

only reason such instances should behave in different ways. In the following, the terms

faulty and fault-free are used to distinguish the DUV instances initialized, respectively, with

the faulty and the fault-free configuration. Such configurations consist of the values of

registers (included the value of the state register) in the faulty and fault-free DUVs at the

moment the fault has been observed. As an example, consider the constraints in Figure 13.

They state that, at time T=1, REG has the same value (i.e., 5941) in both the faulty and fault-

free DUV instances, but the two EFSMs are in different states (i.e., the fault-free DUV is in

state A, while the faulty DUV is in state B).

www.intechopen.com

 Micro Electronic and Mechanical Systems

444

% Fault free
REG[1] #= 5941, A[1] #= 1, B[1] #= 0,
% Faulty
REG_F[1] #= 5941, A_F[1] #= 0, B_F[1] #= 1.

Fig. 13. How to specify faulty and fault-free configuration for EFSM models.

After the set-up of the faulty and fault-free configurations, the CLP-solver is asked to find a
sequence that, starting from such configurations, propagates the effect of the fault towards
the primary outputs (see Figure 12). Therefore, a constraint is defined that forces the arrays
of primary outputs to be different at least in a position as shown in Figure 14.

˜((OUT1 = OUT1_F) and (OUT2 = OUT2_F)).

Fig. 14. Asking for a propagation sequence.

If the solver finds a solution, it consists of a propagation sequence that can be appended to
the activation sequence, previously generated by the random-based or transition-based
engine to observe the target fault on the internal registers. The so obtained sequence is very
likely a test sequence for the target fault, but this must be definitely proved via simulation
(see Figure 11). In fact, the propagation sequence is generated by initializing a fault-free
instance of the DUV with a faulty configuration, which is not the same as using a real faulty
DUV instance directly affected by the fault. However, experimental results showed that in
very few cases the propagation sequence generated by the CLP solver according to the
proposed strategy, fails to propagate the corresponding fault when it is simulated on the
faulty DUV.

5.2.2 Definition of search procedures

Constraints described in the previous subsection are used to set up the problem of finding a
propagation sequence as a CLP problem. Then, some search procedures, that exploit search
strategies and heuristics, must be defined to force the solver to provide the solution (i.e., the
set of values to be assigned to the logic variables for satisfying all the problem’s constraints),
when it exists. Therefore, a predicate that exploits the search/6 function of the ECLiPSe’s IC
library have been defined (Figure 15).

search_func(A), search_func(B), search_func(IN1),..
search_func(L):- search(L,0,input_order,indomain,complete,[]).

Fig. 15. A search procedure is defined for each variable of the DUV.

Such a function, whose signature is search(Vars, Arg, Select, Choice, Method, Options), is a
generic search routine which implements different partial search methods. It instantiates the
variables Vars by performing a search based on the parameters provided by the user. In our
case the search method performs a complete search routine which explores all alternative
choices for each variable. The choice method indomain tries to find a solution by analyzing

www.intechopen.com

Test Generation based on CLP

445

the variable values in increasing order, from the lower value in the variable range to the
upper value. The predicate search_func is called on each variable of the DUV. In this way, if a
solution exists, the solver provides a value for each variable for each time step, thus
generating the required propagation sequence.

5.2.3 Managing the CLP complexity
Tools that exhaustively search for a solution of NP-hard problems frequently run out of
resources when the state space to be analyzed is too large. The same happens for the CLP
solver, when it is asked to find a propagation sequence on large sequential designs. To limit
such a problem, heuristics is generally used for pruning the state space. However, this may
prevent the solver from finding a solution (even if it exists), if the pruning is too restrictive.
Thus, choosing a good heuristics is a very challenging task.
In this context, three strategies for managing the complexity of the CLP solver exploited by
the fault-oriented engine have been defined. Two of them have been already presented in
previous sections; however, for convenience of the reader, we summarize them here:

• The Tth element of arrays corresponding to states (and transitions) of the DUV are put in
xor each other, to avoid that the solver wastes time to analyze configurations where
more than one state variable is concurrently true. This drastically decreases the number
of backtracking steps, especially for designs with many states and many registers.

• A constraint on DUV registers is defined to assure that at least one register of the faulty
DUV differs from the corresponding register of the fault-free DUV at each time step
T>1. On the contrary, the search is immediately stopped, and no solution is reported.
Such a constraint avoids situations where the solver spends uselessly efforts, as it
cannot lead to the observability on primary outputs if starting from different
configurations, the faulty and fault-free DUVs evolve in the same configuration.

A further strategy for managing the complexity of the CLP solver, that can be jointly used
with the previous ones, consists of asking the solver to find a solution (i.e., a propagation
sequence) starting with a small state space, that is incrementally enlarged until a solution is
found (or execution time expires). Thus, the state space to be analyzed by the solver is
restricted by limiting the range of the DUV PIs, similarly to what has been proposed for
limiting the size of binary decision diagrams in the test generation strategy proposed in
(Ferrandi et al., 2002a). At the beginning, the ATPG statically fixes the values of all bits, but
two, for each PI. In this way, only two bits can be changed by the CLP solver during the
search, independently from the PIs range declared on the HDL description of the DUV.
Then, the solver is asked to find a solution. If it fails, the ATPG opportunely increases the
number of free bits of PIs. In particular, the ATPG engine searches for the constraints that
induce the failure, and it frees the bits of the PIs involved in such constraints. Then, a new
search session is launched. Such a process is iterated until a solution is found or execution
time expires.

5.3 Optimizations exploiting EFSM model features
This section describes some heuristics to reduce the complexity problem for the solver. Two
different approaches have been defined to improve the CLP-based ATPG engine by
reducing the problem complexity.
The first approach is based on the EFSM manipulation as described in Section 5.3.1. A new
EFSM is generated for the solver that has to deal with a reduced version. This technique
exploits two phases. In the first phase, all the transitions that delete the observability

www.intechopen.com

 Micro Electronic and Mechanical Systems

446

property of the given configuration are removed. Then, all that parts of the EFSM that
cannot be traversed are eliminated. This strategy removes all that constraints that are useless
and could also avoid the propagation of observability on the primary outputs. In fact the
new generated EFSMs are pruned by all that transitions are not needed to model any
possible behaviour that can lead to fault observability. Note that the complexity of the
proposed algorithm is linear with the number of transitions and that, above all, the number
of transition is limited and is not affected by the state explosion problem with the EFSM
model.

in1!=0 and
reset=0

reg:=in1;
out1<=1;
out2<=1;

in2!=0 and
reset=0

reg := reg+in2;
out1<=1;
out2<=1;

in1=0 and
reset=0

reg := in2;
out1<=0;
out2<=0;

A

B C

t
3

t
4

t
5

t
6

t
7

t
9

reset=0 and reg=1
and reg*in1=1

out1<=0;
reg:=reg*in1;
out2<=0;

t
8

reset=0 and reg!=1
and reg*in1!=1

out1<=reg;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg=1
and reg*in1!=1

out1<=0;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg!=1
and reg*in1=1

out1<=reg;
reg:=reg*in1;
out2<=0;

t
10

in2=0 and in1=0
and reset=0

out1<=reg;
out2<=reg/2;

in2=0 and in1!=0
and reset=0

out1<=1;
reg<=in1;

Fig. 16. Non-optimized EFSM example.

// let E be an EFSM and let ob_reg be the observed register
reduce_efsm (register ob_reg, efsm E) {
 //retrieve the sets of transitions and states of E
 T = transitions_set(E);
 S = states_set(E);
 for each transition t in T {
 // delete a transition if the conditions that preclude
 // observability are matched
 if (write_on_register(t, ob_reg) and not(read_register(t, ob_reg)))
 delete_transition(t);
 }
}
delete_transition(transition t) {
 // retrieve the in-going state for transition t
 state s= in_going_state(t);
 // to delete a state, it must be different from the state
 // of the current configuration and there are no other
 // transitions, except the current one t, going into it
 if (not(is_configuration_state(s)) and (number_of_ingoing_transitions(s) == 1)
 delete_state(s);
 // remove transition t from E
 t.remove();
}

Fig. 17. Algorithm for removal of EFSM transition precluding observability.

www.intechopen.com

Test Generation based on CLP

447

Then, another method is proposed in Section 5.3.2 to reduce the complexity problem for the

solver. The idea is that part of the work performed by the solver to find a sequence could be

done earlier, and then invoke the solver on the reduced constraints set. In this case, no

constraints are actually removed, but a part of the solution is provided to the solver. In such

way, different constraints are already satisfied at beginning, and this is equivalent to reduce

the number of constraints.

in2!=0 and
reset=0

reg := reg+in2;
out1<=1;
out2<=1;

A

B

C

t
4

t
5

t
6

t
7

t
9

reset=0 and reg=1
and reg*in1=1

out1<=0;
reg:=reg*in1;
out2<=0;

t
8

reset=0 and reg!=1
and reg*in1!=1

out1<=reg;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg=1
and reg*in1!=1

out1<=0;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg!=1
and reg*in1=1

out1<=reg;
reg:=reg*in1;
out2<=0;

in2=0 and in1=0
and reset=0

out1<=reg;
out2<=reg/2;

Fig. 18. Reduced EFSM.

5.3.1 Removal of useless transitions and of isolated states

Once a fault is observed on the registers, the ATPG saves a configuration. A configuration is

composed by the state register and all the other registers of the design. Then, faulty and

fault free configurations can be distinguished on the current state or on some registers value.

Consider, for example, the EFSM represented in Figure 16 and that a particular fault f is
observed on register reg. In faulty configuration reg is 0 and the EFSM in state A, and in the
fault free configuration reg is 2 and state is always A. Then, if transition t3 is traversed, a new
value would be assigned to the register reg, losing the possibility of propagate the faulty
configuration to the primary outputs. In fact, if the update function of transition t3 is
executed, then the faulty and fault free configuration would be equivalent.
Therefore, an algorithm has been defined to automatically prune this kind of transition from

the EFSM model that is given in input to solver to generate a sequence. The algorithm is

presented in Figure 17.

The algorithm uses the information collected during the learning phase to identify the
transitions that cannot propagate a difference in the configuration and eliminates them.
Once the EFSM has been pruned from all the transitions that prevent the observability of
registers configuration on primary outputs, some parts of the EFSM can remain isolated.
Given the configuration state s, it is possible to be in a self-pointing state. This mean that
there is no transitions outgoing from that state, but at most only transition in-going in s.
Thus, the states of the EFSM that cannot be reached from the initial configuration are

www.intechopen.com

 Micro Electronic and Mechanical Systems

448

// let E be a reduced EFSM
// let config_state be the configuration state
optimize (state config_state, efsm E) {
 state_set reached_states;
 // build the state set reached from the configuration state
 reached_states.insert(config_state);
 states_reached_from_state(config_state, reached_states);
 // remove all states that are not reached from the configuration
 for each state s in S {
 if (not(reached_states.contains(s))) {
 s.remove();
 // remove all transitions moving out from state s
 transition tl = out_going_from_state(s);
 while (not(tl.current_item() == NULL)) {
 tl.current_item().remove();
 }
 }
 }
}

// return the set of states reachable form sate s
states_reached_from_state(state s, state_set reached_states) {
 transition_list tl = out_going_from_state(s);
 while (not(tl.current_item() == NULL)) {
 state in_state = in_going_state(t);
 // check whether current transition does not return to
 // current state and it does not reach a state which
 // has already been traversed in the visit
 if (not(in_state == s) and not(reached_states.contains(in_state))) {
 reached_states.insert(in_state);
 // continue exploring out-going paths
 // from state in_state
 states_reached_from_state(in_state, reached_states)
 }
 tl.move_to_next();
 }
}

Fig. 19. Algorithm for EFSM optimisation.

removed as they represent only constraints that cannot be satisfied. Figure 19 describes the
algorithm that has been defined, to remove all the parts of the EFSM that are not reachable
from the current configuration state. Let’s consider the example in Figure 18 and say that
configuration state is B. Then, starting form B, it is not possible to generate a sequence to
reach state C. Therefore state C and all its out-going transition can be removed. The EFSM
after the application of the optimization algorithm is depicted in Figure 20(a). Then, the
Figure 20(b) presents the EFSM generated after optimization starting from state C.

www.intechopen.com

Test Generation based on CLP

449

A

B

t
6

t
7

t
9

reset=0 and reg=1
and reg*in1=1

out1<=0;
reg:=reg*in1;
out2<=0;

t
8

reset=0 and reg!=1
and reg*in1!=1

out1<=reg;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg=1
and reg*in1!=1

out1<=0;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg!=1
and reg*in1=1

out1<=reg;
reg:=reg*in1;
out2<=0;

in2!=0 and
reset=0

reg := reg+in2;
out1<=1;
out2<=1;

A

C

t
4

t
5

in2=0 and in1=0
and reset=0

out1<=reg;
out2<=reg/2;

(a) (b)

Fig. 20. Optimized from configuration’s state B and C.

5.3.2 Pruning based on paths
The CLP solver tries to find a propagation sequence starting from the configuration that
activates the fault. Such effort can be reduced if the solver is provided with a hint about the
paths that are more profitable to be traversed. In this case, no constraints are actually
removed from the CLP-based representation of the EFSM, but we provide the solver with
part of the solution, thus reducing the number of satisfiable constraints.
Before invoking the solver to generate the propagation sequence, the ATPG applies an
algorithm that searches for paths connecting the fault-free EFSM configuration with a state
where at least one of update functions of its out-going transitions writes on the primary
outputs. In fact, if a path allows updating the primary outputs, it is probable that the register
value of the faulty configuration would be propagated on such outputs too. Then, all
constraints related to the transition that are not involved in the generated paths are
removed. These paths are generated such that they include transitions which allow the
propagation of the values of registers involved in the faulty configuration towards the
primary outputs. These transitions are identified and marked by learning phases performed
during the EFSM generation and the subsequent removal of useless transitions. In
particular, for every transition t marked as useful, a path is generated from the current
configuration state to the out-going state of transition t.
The solver would try to check if the constraints are satisfiable and it would find a solution. If
either it is not able to find a propagation sequence within a given timeout, or it returns that
the problem is non satisfiable, a different path is generated and passed to the solver as initial
configuration. Future works are related to associate a weight to each transition to generate
paths maximizing the total weight of the involved transitions. Possible ideas for weighting
transitions are: preferring transitions leading to a state, whose out-going transitions update
the primary outputs, or transitions whose update functions use a large number of faulty
registers, or transitions whose enabling functions consist of small conditions.

6. Experimental results

The CLP-based techniques for generating test sequences and propagation sequences has
been applied to the benchmarks described in Table 1, where columns report the number of

www.intechopen.com

 Micro Electronic and Mechanical Systems

450

primary inputs (PIs), primary outputs (POs), flip-flops (FFs) and gates (Gates). Column
Trns. shows the number of transitions of the EFSM modelling the DUV and GT (sec.) the
time required to automatically generate the EFSM. Then, column BC reports the number of
bit-coverage faults injected into the designs to check the fault coverage.

DUV PIs POs FFs Gates Trns. GT (sec.) BC

b00 66 64 99 1692 7 0.1 1182

b04 13 8 66 650 20 0.3 408

b10 13 6 17 264 35 0.3 216

b11m 9 6 31 715 20 0.2 725

b00z 66 64 99 11874 9 0.2 1439

fr 34 32 100 1475 10 0.2 1041

Table 1. Benchmarks properties.

Such benchmarks have been selected because they present different characteristics which
allow analyzing and confirming the effectiveness of the proposed approach. b04, b10 have
been selected from the well known ITC-99 benchmarks suite (ITC, 1999). b11m is a modified
version of b11, included in the same suite, created by introducing a delay on some paths to
make it harder to be traversed. The HDL descriptions of b04, b10 and b11m contain a high
number of nested conditions on signals and registers of different size. b00, b00z and fr
contain conditional statements where one branch has probability 1-(1/(2-32)) of being
satisfied, while the other has probability 1/(2-32). Thus, they are very hard to be tested by a
random ATPG. In particular, b00 and b00z are internal benchmarks, while fr is a real
industrial case, i.e., it is a module of a face recognition system.

6.1 Test sequence generation

The effectiveness of the CLP-based transition oriented ATPG has been evaluated by
comparing to a genetic algorithm-based high-level ATPG (Fin & Fummi, 2003a), which
outperforms pure random-based ATPGs but it is not aware about the EFSM structure, and
with a pseudo-deterministic ATPG, which uses only the random-walk mode to traverse the
DUV state space. Stopping criterion is defined in term of the number and length of the
generated test sequences. Table 2 reports the transition coverage (TC%), the statement
coverage (SC%), the fault coverage (FC%), and the test generation time (T (sec.)), by using
respectively the genetic algorithm-based ATPG (GA-ATPG), the pseudo-deterministic
ATPG (RW-ATPG), and the proposed ATPG (RW+BJ-ATPG). It can be observed that
RW+BJ-ATPG outperforms both the GA-ATPG and the RW-ATPG. The very low transition
coverage achieved by the GA-ATPG for some benchmarks is due to the presence of
transitions out-going from the initial states, whose enabling functions have an infinitesimal
probability of being traversed by randomly fixing the values of primary inputs. Such a
problem is partially solved by the RW-ATPG which is aware about the enabling functions of
the EFSM, and definitely solved by the backjumping-based RW+BJ-ATPG that reaches 100%
transition and statement coverage for all benchmarks. Then, also the achieved fault coverage
for all benchmarks is sensibly increased.

6.2 Propagation sequence generation
The efficiency of the CLP-based fault oriented ATPG for propagation sequence generation
has been evaluated by applying the testing flow of Figure 1.

www.intechopen.com

Test Generation based on CLP

451

 GA-ATPG RW-ATPG RW+BJ-ATPG

DUV TC% SC% FC% T (s.) TC% SC% FC% T (s.) TC% SC% FC% T (s.)

b00 28.6 26.7 1.1 3.0 85.7 87.0 48.7 2.6 100.0 100.0 52.5 2.9

b04 80.0 90.2 94.9 23.2 85.0 95.0 99.0 8.7 100.0 100.0 99.0 9.1

b10 37.1 66.7 87.0 5.7 40.0 69.7 93.0 5.7 100.0 100.0 94.0 6.8

b11m 90.0 80.0 37.0 5.7 95.0 82.2 39.0 5.1 100.0 100.0 54.6 16.3

b00z 22.2 31.0 13.7 4.1 66.6 75.9 44.3 5.0 100.0 100.0 51.8 12

fr 20.0 13.3 0.86 10.3 80.0 86.7 70.4 4.9 100.0 100.0 84.0 5.2

Table 2. Comparison between a GA-based ATPG, a pseudo-deterministic ATPG and
proposed CLP-based approach.

 RW+BJ-ATPG CLP CLP pure
RW+BJ-

ATPG+CLP

DUV FC% TBP TBA SL T (s.) Prop T (s.) Prop T (s.) FC% SL T (s.)

b00 52.5 64 498 3 2.9 84 2.5 0 aborted 59.6 7 5.9

b04 99.0 4 1 6 9.1 4 3.6 0 aborted 99.8 10 13.4

b10 94.0 13 0 11 6.8 12 3.3 0 aborted 99.5 18 10.1

b11m 54.6 117 124 59 16.3 313 36.7 0 aborted 66.8 71 56.7

b00z 13.8 131 497 6 12 613 9.1 0 aborted 56.4 30 18.5

fr 84.0 63 82 42 5.2 22 6.0 0 aborted 86.1 80 11.2

Table 3. Experimental results of fault-oriented ATPG.

Columns RW+BJ-ATPG of Table 3 report results achieved by applying transition-oriented
ATPG of the incremental test generation flow of Figure 1. In particular, these columns show
the achieved fault coverage (FC%), the number of faults observed but not detected (TBP),
the number of faults not activated (TBA), the average length of the generated test sequences
(SL) and the test generation time (T (sec.)).
Then, the CLP-based fault-oriented engine has been applied to find propagation sequences
for TBP faults. Columns Prop. and T (sec.), below CLP, reports, respectively, the number of
TBP faults for which the CLP-based engine was able to generate a propagation sequence,
and the corresponding execution time.
The column CLP pure reports the results achieved by using the CLP-based engine without
applying the strategies described in Section 5.2.3 for managing the CLP complexity. In this
case, all TBP faults were aborted, since the CLP solver always run out of resources. This
highlights the effectiveness of the strategies proposed for managing the CLP complexity.
Finally, the last three columns of the table report, respectively, the total fault coverage
(FC%), the average length of test sequences (SL) and the total generation time T (sec.)
obtained by adopting all steps of the incremental testing flow shown in Figure 1.
Results show that the fault-oriented engine increased the fault coverage for all benchmarks
without requiring long computation time. No fault has been aborted (i.e., the engine never
run out of resources), even if some TBP faults remained untested, because no propagation
sequence was found. The analysis of TBP faults not propagated highlighted the fact that
many configurations allow TBP faults to be observed on internal registers (i.e., there exist
many activation sequences), but very few of them allow TBP faults to be propagated.
Moreover, such few configurations are difficult to be generated by using the transition-
oriented ATPG, since they are not fault-oriented. To solve such a problem, in the future, the

www.intechopen.com

 Micro Electronic and Mechanical Systems

452

CLP-based fault-oriented engine will be extended for the generation of activation sequences
too.
The effectiveness of the optimization strategies, proposed in Section 5.3, are summarized in
Table 4. This methodology has been applied also to another benchmark, Prawn, that is a
RISC processor with the instruction set having been enhanced to include interrupt handling
and conditional branches.
Columns St. and T. report, respectively, the number of states and transitions of the
corresponding EFSMs. Column TBP shows the number of faults to be propagated which
have been activated by using the RW+BJ-ATPG. Column TOut s. shows the timeout
provided to the CLP solver for finding a propagation sequence. Columns PSEQ, Abort and
Time s. under No optimization shows, respectively, the number of propagation sequences
generated by the CLP solver, the number of faults aborted (i.e., the number of faults for
which the solver was unable to provide a response, either positive or negative), and the total
time required for generating the CLP constraints to model the EFSM and running the search.
The same parameters have been computed after applying the optimization techniques
presented in Section 5.3 (Optimized column). Experimental results show that the proposed
optimization techniques sensibly improve the effectiveness of the solver in searching for
propagation sequences. The improvement is particularly evident in the case of Prawn, whose
EFSM is very large. Without optimizations the solver always aborted, while after
optimizations were applied, it succeeded in generating propagation sequences for all the
TBP faults. Moreover, it can be observed that the sequence generation time was sensibly
decreased, for all benchmarks, but b04. In the case of b04, optimizations did not provide
benefits, since its EFSM is composed of very few states that cannot be further reduced by
applying the proposed optimizations.

 No Optimization Optimized

DUV St. T. TBP TOut s. PSEQ Abort Time s. PSEQ Abort Time s.

b04 3 20 4 10 4 0 16.23 4 0 18.51

b10 11 35 13 10 13 0 26.08 13 0 7.43

b11m 9 20 117 10 117 0 63.17 117 0 16.68

prawn 61 160 66 14 0 66 998.12 66 0 105.89

Table 4. Experimental results of fault-oriented ATPG with optimization.

7. Conclusions

This work defines a functional ATPG framework that exploits a particular kind of EFSM
which has been theoretically showed to allow a more uniform traversing of the DUV state
space. Determinism is obtained by interfacing with CLP solver that adopts formal methods
to solve the conditions of the enabling functions.
The effectiveness of the proposed ATPG compared with a genetic-based ATPG is evident. It
greatly benefits from the fact that, by using the EFSM model, all conditional statements
included in the DUV are under its control. The adoption of the EFSM model joint to the
learning/random-walk/backjumping-based mechanisms allows to accurately addressing
hard-to-traverse transitions. Then the fault-oriented engine has been proposed together
with. This is the first work addressing the problems of entirely modelling an EFSM by
means of CLP, and generating functional test patterns by combining the use of EFSM and

www.intechopen.com

Test Generation based on CLP

453

CLP. Moreover, some strategies have been implemented to manage the CLP complexity,
and experimental results showed that, in this way, the proposed engine is able to generate
propagation sequences and increase the fault coverage without running out of resources.

8. References

Abramovici, M. (1993). Dos and don’ts in computing fault coverage. In Proc. of IEEE ITC.
Apt, K. R. & Wallace, M. G. (2007). Constraint Logic Programming using Eclipse. Cambridge

Univeristy Press.
Cheng, K. & Krishnakumar, A. (1996). Automatic generation of functional vectors using the

extended finite state machine model. ACM Transactions on Design Automation of
Electronic Systems, 1(1):57–59.

Corno, F., Cumani, G., Reorda, M. S. & Squillero, G. (2001). Effective techniques for high-
level atpg. In Proc. of IEEE ATS, pages 225–230.

Di Guglielmo, G., Fummi, F., Marconcini, C. & Pravadelli, G. (2006a). EFSM Manipulation to
Increase High-Level ATPG Efficiency. In Proc. of IEEE ISQED, pages 57–62.

Di Guglielmo, G., Fummi, F., Marconcini, C. & Pravadelli, G. (2006b). Fate: a functional atpg
to traverse unstabilized efsms. In Proc. of IEEE ETS.

Di Guglielmo, G., Fummi, F., Marconcini, C. & Pravadelli, G. (2006c). Improving Gate-Level
ATPG by Traversing Concurrent EFSMs. In Proc. of IEEE VTS.

Di Guglielmo, G., Fummi, F., Marconcini, C. & Pravadelli, G. (2007). Improving high-level
and gate-level testing with FATE: a functional ATPG traversing unstabilized
EFSMs. IEE Computers and Digital Techniques, 1(3):187–196.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

Ferrandi, F., Fummi, F. & Sciuto, D. (1998a). Implicit test generation for behavioral vhdl
models. In Proc. of IEEE ITC, pages 587–596.

Ferrandi, F., Fummi, F. & Sciuto, D. (1998b). Implicit test generation for behavioral vhdl
models. In Proceedings of IEEE International Test Conference (ITC), pages 436–441.

Ferrandi, F., Fummi, F. & Sciuto, D. (2002a). Test generation and testability alternatives
exploration of critical algorithms for embedded applications. IEEE Transactions on
Computers, C-51(2):200–215.

Ferrandi, F., Rendine, M. & Sciuto, D. (2002b). Functional verification for systemc
descriptions using constraint solving. In Proceedings of IEEE Design Automation and
Test in Europe (DATE), pages 744–751.

Fin, A. & Fummi, F. (2003a). Genetic algorithms: the philosophers stone or an effective
solution for high-level TPG? In Proc. of IEEE HLDVT, pages 163–168.

Fin, A. & Fummi, F. (2003b). Genetic Algorithms: the Philosopher’s Stone or an Effective
Solution for High-Level TPG? In Proc. of IEEE HLDVT, pages 163–168.

Fummi, F., Harris, I. G., Marconcini, C., and Pravadelli, G. (2007). A CLPbased Functional
ATPG for Extended FSMs. In Proc. of IEEE MTV.

Gajski, D., Zhu, J. & Domer, R. (1997). Essential issue in codesign. Thecnical report ICS-97-
26, University of California, Irvine.

Ghosh, I. & Fujita, M. (2001). Automatic test pattern generation for functional register-
transfer level circuits using assignment decision diagrams. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 20(3):402–415.

www.intechopen.com

 Micro Electronic and Mechanical Systems

454

Guarnieri, V., Fummi, F., Marconcini, C. & Pravadelli, G. (2008). An Optimized CLP-based
Technique for Generating Propagation Sequences. In Proc. of IEEE EWDTS, pages
25–28.

Ier, M., Parthasarathy, G. & Cheng, K.-T. (2005). Efficient conflict-based learning in an RTL
circuit constraint solver. In Proc. of IEEE DATE, pages 666–671.

ITC (1999). High time for high-level test generation. Panel at IEEE ITC.
Jaffar, J. & Maher, M. J. (1994). Constraint logic programming: A survey. Journal of Logic

Programming, 19/20:503–581.
Kowalski, R. (1979). Algorithm = logic + control. In Communications of the ACM, pages 424–

436.
Lee, D. & Yannakakis, M. (1992). Online minimization of transition systems. In Proc. of ACM

STOC, pages 264–267.
Li, J. & Wong, W. (2002). Automatic test generation from communicating extended finite

state machine (cefsm)-based models. In Proc. of IEEE ISORC, pages 181–185.
Lin, X., Pomeranz, I. & Reddy, S. M. (1999). Techniques for improving the efficiency of

sequential circuit test generation. In Proc. of ACM/IEEE ICCAD, pages 147–151.
Lingappan, L., Ravi, S. & Jha, N. (2003). Test generation for non-separable RTL controller-

datapath circuits using a satisfiability based approach. In Proc. of IEEE ICCD, pages
187–193.

Marconcini, C. (2008). A Functional ATPG as a bridge between Functional Verification and
Testing. In Ph.D. Thesis.

Myers, G. (1979). The Art of Software Testing. Wiley - Interscience, New York.
Myers, G. (1999). The Art of Software Testing. Wiley - Interscience.
Padmanabhuni, S. (1999). Extended analysis of intelligent backtracking algorithms for the

maximal constraint satisfaction problem. In Proc. of IEEE CCECE, pages 1710–1715.
Pauli, C., Nivet, M. L. & Santucci, J. F. (2000). Use of constraint solving in order to generate

test vectors for behavioral validation. In Proc. of IEEE HLDVT, pages 15–20.
Russel, S. & Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall.
Vemuri, R. & Kalyanaraman, R. (1995). Generation of design verification tests from

behavioral vhdl programs using path enumeration and constraint programming.
IEEE Trans. Very Large Scale Integr. Syst., 3(2):201–214.

Wallace, M. & Veron, A. (1994). Two problems-two solutions: one system-ECLIPSE. In IEE
Colloquium on Advanced Software Technologies for Scheduling, pages 1–3.

Wallace, M. G. (1997). Constraint programming. In The Handbook of Applied Expert Systems.
CRC Press.

Wu, Q. & Hsiao, M. (2004). Efficient ATPG for design validation based on partitioned state
exploration histories. In Proc. of IEEE VTS, pages 389–394.

Xin, F., Ciesielski, M. & Harris, I. (2005a). Design validation of behavioral vhdl descriptions
for arbitrary fault models. In Proc. of IEEE ETS, pages 156–161.

Xin, F., Ciesielski, M. & Harris, I. (2005b). Design validation of behavioral VHDL
descriptions for arbitrary fault models. In Proc. of IEEE ETS, pages 156–161.

Xin, F. & Harris, I. G. (2002). Test generation for hardware-software covalidation using non-
linear programming. In Proc. of IEEE HLDVT, pages 175–180.

Zhang, L., Ghosh, I. & Hsiao, M. (2003). Efficient Sequential ATPG for Functional RTL
Circuits. In Proc. of IEEE ITC, pages 290–298.

www.intechopen.com

Micro Electronic and Mechanical Systems

Edited by Kenichi Takahata

ISBN 978-953-307-027-8

Hard cover, 386 pages

Publisher InTech

Published online 01, December, 2009

Published in print edition December, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book discusses key aspects of MEMS technology areas, organized in twenty-seven chapters that present

the latest research developments in micro electronic and mechanical systems. The book addresses a wide

range of fundamental and practical issues related to MEMS, advanced metal-oxide-semiconductor (MOS) and

complementary MOS (CMOS) devices, SoC technology, integrated circuit testing and verification, and other

important topics in the field. Several chapters cover state-of-the-art microfabrication techniques and materials

as enabling technologies for the microsystems. Reliability issues concerning both electronic and mechanical

aspects of these devices and systems are also addressed in various chapters.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini and and Graziano Pravadelli (2009). Test

Generation Based on CLP, Micro Electronic and Mechanical Systems, Kenichi Takahata (Ed.), ISBN: 978-953-

307-027-8, InTech, Available from: http://www.intechopen.com/books/micro-electronic-and-mechanical-

systems/test-generation-based-on-clp

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

