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Abstract 

 
Static Linked Faults are considered an interesting 

class of memory faults. Their capability of influencing the 
behavior of other faults causes the hiding of the fault 
effect and makes test algorithm design and validation a 
very complex task. This paper presents a Memory Fault 
Simulator architecture targeting the full set of linked 
faults.  
 
1. Introduction 
 

Memories are one of the most important components 
in digital systems, and semiconductor memories are 
nowadays one of the fastest growing technologies. 
System-On-a-Chip (SOC) technologies allow to embed in 
a single chip all the components and functions that 
historically were placed on a hardware board. Within 
SOCs, embedded memories are the densest components, 
accounting for up to 90% of chips area [1]. It is thus 
common finding, on a single chip, tens of memories of 
different types, sizes, access protocols and timing. 
Moreover they can recursively be embedded in embedded 
cores.  

The main issue in memory test is to define 
comprehensive fault models able to carefully represent 
the most common defects occurring in the production 
phase of the chips. On the other hand once a new fault 
models has been defined a memory test algorithm, able to 
detect it, must be developed [2] [3] [4] [5] and obviously 
validated. Memory fault simulation is therefore necessary 
to compute the Fault Coverage of a test sequence every 
time a new defect is discovered and the corresponding 
fault model defined. 

An important class of memory faults is the class of 
linked faults [6]. A linked fault is a memory fault 
composed of two or more simple faults. The remaining 

ones can influence the behaviour of each simple fault and 
in some cases the fault can be masked.  

Due to the complexity of both the fault models and the 
memory architecture, manual analysis [7] of the memory 
fault coverage is not anymore possible. In [8], a memory 
simulator (Memory Animation Package Plus, MAP+) has 
been proposed. This tool, developed at the Delft 
University of Technology, has been employed as a 
simulation tool for the evaluation of new and known test 
algorithms in presence of different faults (such as stuck-
at, transition, coupling, address decoder, neighborhood 
pattern sensitive, read disturb faults, etc.). Although very 
interesting especially from an academic point of view, 
this tool does not allow a very detailed fault simulation. 

[9] addresses only the fault coverage computation, 
without consider other characteristics such as power 
consumption  

In our previous work [10] an architecture for a new 
flexible memory fault simulator, designed to address all 
the most critical issues in memories test generation and 
validation has been presented, in order to support the test 
engineer in optimizing the test algorithm and in 
addressing power consumption constraints. The tool is in 
fact able to compute the power consumption generated by 
the test input sequence, and to suggest a modification of 
the test algorithm in case its application does not fulfill a 
user-defined power consumption constraint. 

To out best knowledge none of the previous works are 
able to deal with the complex class of linked faults. This 
paper presents a fault simulator architecture based on the 
architecture showed in [10] but extending it on the linked 
faults class. In particular we extend the fault model 
formalism and the simulator algorithm in order to be able 
to model the linked faults.  

The paper is organized as follows. Section 2 introduces 
the overall tool architecture; Sections 3, 4 and 5 describe 
the memory and fault model representation used by the 
simulator. The fault simulation algorithm is described in 
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Section 6, whereas Section 7 gives some experimental 
results. Conclusions are summarized in Section 8. 
 
2. The Fault Simulator Architecture 
 

OO Memory Simulator

Optimized Test SequencesOptimized Test SequencesTest ReportTest Report

Test 
Sequences

Memory 
Models

Fault
Models

Test Analysis

 
Figure 1.  Simulator architecture 

Figure 1 sketches the simulator overall architecture 
detailed in [10]. The Object Oriented Memory Simulator 
reads two main input files containing the memory 
functional and electrical models and the input test 
sequences, and simulates the execution of the input test 
sequence storing, for each memory cell, its logical and 
electrical temporal evolution. After the simulation, a Test 
Analysis module reads the target Fault Model files and 
computes their coverage w.r.t. the input test sequence. It 
generates two output files storing a detailed test report, 
and, whenever possible, an optimized input test sequence 
able to provide the same results of the original one. 

The memory model is split in two parts: 
• a functional model, represented as an Finite State 

Machine (see Section 4); 
• an electrical and physical model, storing all the 

operating, technological, and topological 
characteristics of the memory; 

 
The Fault Model files, formalized as collections of 

Fault Primitives (see Section 3), describe all the faulty 
behavior that the input test sequence is designed to detect. 
The Test Sequence files describe the sequence of 
operations applied to test the memory array. Using a 
proprietary language, it is possible to describe complex 
test algorithms as well as simple sequences of input 
patterns. 

The Test Report file contains detailed information 
about: 

• The Fault Coverage of each fault model and, when 
necessary, diagnostic information about the cells 
where the fault is not covered; 

• The total power consumption caused by the 
application of the test sequences; 

 
Finally, the Test Analysis module outputs an optimized 

test sequence, where redundant elementary operations not 
affecting the final fault coverage are removed. In the 
following sections we will detail the functional model that 
we modify in order to deal with linked faults, focusing in 
particular on the memory and fault models. 

 
3. Fault Modeling 
 

A Functional Fault Model (FFM) is a deviation of the 
memory behavior from the expected one under a set of 
performed operations. A FFM involves one or more 
Faulty Memory Cells (f-cells) classified in two categories: 
Aggressor cells (a-cells), i.e., the memory cells that 
sensitize a given FFM and Victim cells (v-cells), i.e., the 
memory cells that show the effect of a FFM. Each faulty 
behavior is sensitized by a sequence of stimuli applied on 
the f-cells. When dealing with RAMs, the applied stimuli 
are the memory operations. First of all we have to specify 
the initial conditions of the cell, i.e. the value (state) of 
the memory cell, where we are going to apply the 
operations. Hereinafter we resort to n as the size of the 
memory (i.e., the number of memory cells) 

 
Definition 1: C is the set of the memory states 

(values), formalized as  
 

C = {0[i], 1[i], -[i] | 0 ≤ i ≤ n-1}   (1) 
 
where the apex identifies the address of the cell. If the 

address is omitted, it means that the state can be applied 
on every memory cell indifferently. The ‘-’ denotes a 
don’t care condition.  

 
Definition 2: X is the set of the memory operations, 

formalized as  
  

X = {r[i]
[d], w[i]

d | 0 ≤ i ≤ n-1; d ∈ (0,1)} ∪ {t}   (2) 
 
where:  
• wi

d is a write operation of the value  d performed in 
the cell i;  

• ri
d is a read operation performed in the cell i. The 

value d is not strictly needed in case of a read 
operation. If used, it means the expected value that 
should be read from the i-th memory cell;  

• t is a wait operation for a defined period of time. 
This additional element is needed to deal with Data 
Retention Faults [4]. 

 
If the address is omitted, it means that the operation 

can be applied on every memory cell indifferently. Each 
FFM can be described by a set of Fault Primitives (FPs) 
[14].   
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Definition 3: A Fault Primitive FP represents the 

difference between an expected (fault-free) and the 
observed (faulty) memory behavior denoted by: 

 
 < Sa ; Sv / F / R >   (3)  

                                                  
Where Sa and Sv are the Sequence of Sensitizing 

Operations and/or Conditions respectively applied to a-
cell and v-cell, needed to sensitize the given fault. The j-th 
condition/operation is represented as c[x], where c ∈ C 
(1), and x ∈ X (2). R = { (r)n | r ∈ C }  is the sequence of 
values read on the aggressor cell when applying S.  

As an example FP = < 0w1 ; 0 / 1 / - > means that the 
operation ‘w1’ performed on the a-cell, when the initial 
state is 0 for both a and v cells, causes the v-cell to flip. 
No addresses are specified; therefore this fault can affect 
each couple of memory cell. Several FPs classification 
rules can be adopted, based on the number of memory 
operations (m) needed to sensitize the FP (static when m = 
1 or dynamic fault elsewhere); and based on the number 
of memory cells (#FC) involved by the FP (single-cell 
where #FC = 1 or n-cells elsewhere fault) [14]. Since the 
FP notation not necessarily explicates the address of both 
aggressor and victim memory cells, we extend the FP 
model by introducing the Addressed Fault Primitive 
concept. 

 
Definition 4: An Addressed Fault Primitive (AFP) is 

an instantiation of a FP which explicit the involved 
addresses, and both the faulty and fault-free final memory 
state, reached by the memory, after applying the AFP. It 
can be formalized as: 

 
AFP = (I , Es ,Fv , Gv)       (4) 

where: 
• I = { (s) #IC | s ∈ C } is the initial state, i.e., the value 

stored in the #IC involved cells, before applying the 
AFP. The first value correspond to the less 
significative bit (i.e. the memory cell with the lowest 
address); 

• Es = { (op)m │op ∈ X } is the sequence of operations, 
performed on the aggressor cells, needed to sensitize 
the fault; each operation belong to the alphabet X, the 
set of all the possible memory operations. m is the 
number of operations needed to sensitize the fault; 

• Fv = { (f) #IC | f ∈ C } is the logical value stored in the 
memory cells after applying Es (faulty state) 

• Gv = { (g) #IC | g ∈ C } is the logical value stored in 
the memory cells after applying Es on the fault-free 
memory (expected state). 

 
The FP of the above example < 0w1 ; 0 / 1 / - > can be 

translated into AFP1 = (00, w0
1, 11, 10) and  AFP2 = (00, 

w1
1, 11, 01), with a memory having n = 2  (i.e., two cells). 

 
4. Linked Fault: Concept & Modeling 

 
In some cases it is possible that the effect of a FFM 

influences another functional fault. If these faults share 
the same aggressor and/or victim cells, the FFMs are 
called Linked, otherwise they are called simple or un-
linked and each fault is independent from the others. To 
understand the concept of linked faults we can consider, 
as an example, the Disturb Coupling Faults [14] described 
by the following two FPs: 

 
FP1 = < 0w1 ; 0 / 1 / - >,  FP2 = < 0w1 ; 1 / 0 / - >(5) 

 
A general case is represented in Figure 2, in which a n 

cells memory is affected by two FPs (FP1 and FP2) 
having different a-cells (a1, a2) and the same v-cell (v). 
The vertical arrow shows the address order of the memory 
(from the lowest memory address to the highest) in which 
i, j and k represent the address of a1, a2 and v, 
respectively. By first performing “0w1” (FP1) on cell i, 
the v-cell k flips from 0 to 1; than performing “0w1” (FP2) 
on cell j, the v-cell k changes its value again, from 1 to 0. 
The global result is that the fault effect is masked by the 
application of FP2, since FP2 has a fault effect (F) 
opposite to FP1. Looking at the example of Figure 2, we 
can derive a rigorous definition of a Linked Fault (LF): 

 
Definition 5: Two FPs, FP1 = <S1/F1/R1> and FP2 = 

<S2/F2/R2>, are said to be Linked, and denoted by     
“FP1 → FP2”, if both of the following conditions are 
satisfied: 

• FP2 masks FP1, i.e., F2 = not (F1);  
• The Sensitizing operation (S2) of FP2 is applied 

after S1, on either the a-cell or v-cell of FP1. 
 
To detect linked faults (LFs), one must detect in 

isolation (i.e., without allowing the other FP to mask the 
fault) at least one of the FPs that compose the fault [6]. 
We extend the concept and the notation described in 
Definition 6 resorting to AFP (4) formalism. 

 
Definition 6: Two AFPs, AFP1 = (I1, Es1, Fv1, Gv1) and 

AFP2= (I2, Es2, Fv2, Gv2) are said to be Linked, and 
denoted by     “AFP1 → AFP2” if:  

• I2  = Fv1 : the state reached by AFP1 is equal to initial 
state of AFP2;  

• AFP2 masks AFP1 : V(Fv2)  = NOT [V(Fv1)]  where 
V(s) function extracts the victim cell from the 
memory  state s 
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Figure 2.  Example of Linked Fault 

 
As an example the Linked Fault represented in (5), 

includes two AFPS obtained by FP1 and FP2: 
 

• AFP1 = (000, w0
1, 101, 100)                   (6) 

• AFP2 = (101, w1
1, 110, 111) 

 
If we set the size of memory cell n = 3 (0,1,2), the a-

cell is cell 0 in AFP1 and cell 1 in AFP2. Both AFP have 
v-cell equal 2. These two AFP satisfy the constraint of 
Definition 7: 

 
• I2  = 101 = Fv1 
• V(Fv2)  = 0 = NOT [V(Fv1) = 1] 
 

Two AFP according to Definition 7 can model each 
Linked faults. 
 
5. Fault Graph And Memory Model 
 

The proposed memory fault simulator algorithm uses a 
memory model based on Finite State Machine (FSM). An 
n one-bit cells memory can be represented as a 
deterministic Mealy Automata, formally defined as: 

 
M = (Q, X, Y, δ, λ)  (7) 

where: 
• Q = { (0| 1| -)n }  is the set of possible memory 

states;  
• X is the input alphabet defined in (2); 
• Y  = {0,1,-}  is the output alphabet, composed of the 

possible values read as a result of a read operation; 
‘−’ denotes the value obtained when a write 
operation is performed; 

• δ = Q × X → Q is the state transition function; 
• λ = Q × X → Y is the output function. 
 
The memory model defined in (7) can be represented 

as a labeled direct graph 
 

  G = {V, E}   (8) 
where: 

• V is the set of vertices, each vertex representing one 
of the possible states of the memory; |V| = 2n, 

• E is the set of edges, each edge representing one of 
the possible memory operations that cause the 
transition from a vertex u to a vertex v; the kth label 
associated with the kth edge has the following 
representation: 

  Labelk = x / d               (9) 
     where: 

− x ∈ X  is a memory operation  
− d = λ(v,x), d ∈ Y is the output value obtained 

when performing the operation x when the 
memory is in the state v. 

 
As an example, Figure 3 shows the model of a 2 bit 

memory, conventionally named G0 in the sequel. In G0, 
the letters i and j are used to identify the first and the 
second cell, respectively. Hereinafter, we shall assume i < 
j.  According to Definition 7 each Linked Fault is covered 
by a sequence of two Address Fault Primitives AFP1 and 
AFP2, each AFP can be modeled on G0 by a single 
additional edge (faulty edge) [2] The couple of Linked 
AFPs is represented on the graph by adding two extra 
faulty edges as shown in Figure 4. In the graph 
representation, the memory state reached by AFP1 (Fv1) is 
equal to I2 (initial state of AF2) in order to satisfy 
Definition 7.  

The graph including the faulty edges is named Pattern 
Graph (PG) and is defined as: 

 
PG = {Vp, Ep ∪ Fp}  (10) 

 
    where each vertex v ∈ Vp is associated to a memory 
state, Ep is the set of edges modeling the fault free 
memory, and Fp is the set of faulty edges. If n is the 
number of cells composing the target memory the number 
of nodes composing the pattern graph is |Vp| = 2n.  The 
cardinality of PG vertices is 2max(#f-cells

i
) with 0 ≤ i ≤ #FP, 

where #FP represents the number of FPs in the target fault 
list [2]. Moreover, the user can specify the size (i.e. the 
number of cell) of the memory by the Memory Model file 
(see Section 2), it is therefore possible model a real 
memory. 

 
Definition 7: given fl , fk ∈ Fp , fi masks fk if and only if  

V(Fvk)  = V(Il),  where fl is incident from vertex Il is the 
and fk is incident in vertex Fvk . V(s) is defined in 
Definition 6. 
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Figure 3. Fault Free Memory Model G0 
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Figure 4. Linked Test Pattern Representation 

 
As an example Disturb Coupling Fault linked to 

Disturb Coupling Fault [14] is modeled as two FPs:  
 

< 0w1 ; 0 / 1 / - > → < 1w0 ; 1 / 0 / - >  (11) 
 
Expressing the FPs in terms of AFPs we obtain: 
 

(00, wi
1, 11, 10)  → (11, w1

0, 00, 01) (12) 
 
The PG (named PGCF in the sequel) modeling LF (12) 

is shown in Figure 5 where the bold edges represent the 
additional faulty edges of (14). 

00

01

10

11
w0

i,ri
j

w1
i,r0

j

 
Figure 5. Linked CF Pattern Graph (PGCF) 

 
6. Simulator Engine 
 

The simulator algorithm is based on a functional 
model, represented as a Finite State Machine (see Section 
5) where each Functional Faults is represented as en edge.  

After generation of the memory model from the fault 
model and Memory model file, we inject one fault a time 
in the memory model (in case of linked faults we inject 
two faults a time) then the algorithm reads from the Test 
Sequence file the operation to be applied on the memory 

The user can specify the data-background (DB), 
defined as the pattern of ones and zeros as seen in an 
array of memory cells. The most common types of data-
backgrounds are: Solid (s), Checkerboard (c), Column 
Stripe (cs), and Row Stripe (rs) (Figure 6 shows an 
example of DB in case of 3x3 memory cells array). 

The algorithm starts from a vertex depending on the 
DB selected by the user (i.e. in case of solid-0 DB and 
two cell memory model, the initial state will be ‘00’). 
Then if the memory operation to be applied traverses one 
Faulty Edge it means that the related fault has been 
sensitized. A fault is detected if a memory read operation 
returns a different value from the expedect one. 

 
The simulation algorithm complexity depends from 

three factors: 
• Number of memory cell: n  
• Number of fault: #F 
• Complexity of the test algorithm expressed in 

terms of memory operation: #MO 
 
From these three factors we can calculate the complexity 
as equal to O(#F x n x #MO) 
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Figure 6. Data Background 

7. Experimental Results 
 

This section reports some experimental results 
obtained by applying the proposed simulation algorithm 
to different fault lists and different test algorithm. The 
algorithm has been implemented in about 10000 lines of 
C++ code, compiled with gcc compiler. All the 
experiments are performed on an ASUS, AMD 1500Mhz 
based Laptop with 512 MB of RAM.  

We simulate and compare several March test on the 
same fault list and memory model. The fault lists include 
the set of realistic linked faults presented in [6] for a total 
of 552 fault primitives:  
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The adopted memory model consider the minimum 
number of required memory cell, since we are dealing 
with linked faults no more than three cells are required (n 
= 3). Eventually we consider the well known march test 
targeting the linked faults space (A, B, LR, LA, [3], 
March SL, March MSL, March AB, March RAW).  

Table 1 summarizes the simulation results; each row 
represents a March test ordered by complexity (column 
4). 
Then we show the percentage of coverage in the different 
fault lists and eventually (last column) the fault coverage 
in the full set if linked faults. The underlined cells in table 
1, point up the March tests that reach the 100% of 
coverage w.r.t. the considered Fault List. Experimental 
results show that March RAW [11] originally designed for 
covering dynamic un-linked faults only also covers the set 
of realistic static linked faults. The CPU time is negligible 
in fact it takes in the worst case 2.34 second.  
 
8. Conclusions 
 

This paper proposed a memory fault simulator 
targeting the entire set of linked memory faults. The 
proposed tool addresses the problem of the efficient and 
fast validating of memory test algorithm w.r.t. complex 
fault models or new memory structures  

We also provide a rigorous description in terms of 
fault model and memory representation in order to better 
understand the simulation algorithm and the concept of 
linked faults in random access memory. Moreover we 
give the detailed percentage of linked fault coverage for 
each known march test. 
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Table 1. Simulation results for both single and two/three -cells LF 
(Two/Three)-cells 

MT Rif 
CPU 
time 
(s) 

O(n) Single 
Cell LF2aa LF2av LF2va 

All 

LR [12] 0.3 14n 75% 82% 75% 80% 80% 
A [7] 0.2 15n 66% 75% 60% 73% 69% 
B [7] 0.43 17n 75% 70% 64% 73% 70% 

LA [13] 1.02 22n 83% 87% 83% 86% 86% 
AB [15] 0.97 22n 100% 100% 100% 100% 100% 

MSL [16] 0.99 23n 100% 100% 100% 100% 100% 
RAW [11] 1.12 26n 100% 100% 100% 100% 100% 

ABL [5] 1.34 37n 100% 100% 100% 100% 100% 
SL [6] 2.01 41n 100% 100% 100% 100% 100% 
- [3] 2.34 43n 83% 84% 83% 86% 84% 
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