507 research outputs found

    Application of artificial neural networks and colored petri nets on earthquake resilient water distribution systems

    Get PDF
    Water distribution systems are important lifelines and a critical and complex infrastructure of a country. The performance of this system during unexpected rare events is important as it is one of the lifelines that people directly depend on and other factors indirectly impact the economy of a nation. In this thesis a couple of methods that can be used to predict damage and simulate the restoration process of a water distribution system are presented. Contributing to the effort of applying computational tools to infrastructure systems, Artificial Neural Network (ANN) is used to predict the rate of damage in the pipe network during seismic events. Prediction done in this thesis is based on earthquake intensity, peak ground velocity, and pipe size and material type. Further, restoration process of water distribution network in a seismic event is modeled and restoration curves are simulated using colored Petri nets. This dynamic simulation will aid decision makers to adopt the best strategies during disaster management. Prediction of damages, modeling and simulation in conjunction with other disaster reduction methodologies and strategies is expected to be helpful to be more resilient and better prepared for disasters --Abstract, page iv

    Considerations for modelling critical infrastructure systems

    Full text link
    The paper commences by reviewing and examining the structure of critical infrastructure systems from a holistic viewpoint, before venturing towards determining what are the necessary considerations required for modelling a specific system within the layered structural context of the larger holistic system.<br /

    Computer-aided HAZOP of batch processes

    Get PDF
    The modern batch chemical processing plants have a tendency of increasing technological complexity and flexibility which make it difficult to control the occurrence of accidents. Social and legal pressures have increased the demands for verifying the safety of chemical plants during their design and operation. Complete identification and accurate assessment of the hazard potential in the early design stages is therefore very important so that preventative or protective measures can be integrated into future design without adversely affecting processing and control complexity or capital and operational costs. Hazard and Operability Study (HAZOP) is a method of systematically identifying every conceivable process deviation, its abnormal causes and adverse hazardous consequences in the chemical plants. [Continues.

    Case-Based Decision Support for Disaster Management

    Get PDF
    Disasters are characterized by severe disruptions of the society’s functionality and adverse impacts on humans, the environment, and economy that cannot be coped with by society using its own resources. This work presents a decision support method that identifies appropriate measures for protecting the public in the course of a nuclear accident. The method particularly considers the issue of uncertainty in decision-making as well as the structured integration of experience and expert knowledge

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    Appraising critical infrastructure systems with visualisation

    Get PDF
    This paper explores the use of system modelling as an approach for appraising critical infrastructure systems. It reports on focus group findings with relation to the system modelling aspects of a critical infrastructure security analysis and modelling framework. Specifically, this discussion focuses on the interpretations of a focus group in terms of the likely benefits or otherwise of system visualisation. With the group focusing on its perceived value as an educational tool in terms of providing an abstract visualisation representation of a critical infrastructure system incident.<br /

    Contribution to the evaluation and optimization of passengers' screening at airports

    Get PDF
    Security threats have emerged in the past decades as a more and more critical issue for Air Transportation which has been one of the main ressource for globalization of economy. Reinforced control measures based on pluridisciplinary research and new technologies have been implemented at airports as a reaction to different terrorist attacks. From the scientific perspective, the efficient screening of passengers at airports remain a challenge and the main objective of this thesis is to open new lines of research in this field by developing advanced approaches using the resources of Computer Science. First this thesis introduces the main concepts and definitions of airport security and gives an overview of the passenger terminal control systems and more specifically the screening inspection positions are identified and described. A logical model of the departure control system for passengers at an airport is proposed. This model is transcribed into a graphical view (Controlled Satisfiability Graph-CSG) which allows to test the screening system with different attack scenarios. Then a probabilistic approach for the evaluation of the control system of passenger flows at departure is developped leading to the introduction of Bayesian Colored Petri nets (BCPN). Finally an optimization approach is adopted to organize the flow of passengers at departure as best as possible given the probabilistic performance of the elements composing the control system. After the establishment of a global evaluation model based on an undifferentiated serial processing of passengers, is analyzed a two-stage control structure which highlights the interest of pre-filtering and organizing the passengers into separate groups. The conclusion of this study points out for the continuation of this theme

    Towards a decision-aware declarative process modeling language for knowledge-intensive processes

    Get PDF
    Modeling loosely framed and knowledge-intensive business processes with the currently available process modeling languages is very challenging. Some lack the flexibility to model this type of processes, while others are missing one or more-perspectives needed to add the necessary level of detail to the models. In this paper we have composed a list of requirements that a modeling language should fulfil in order to adequately support the modeling of this type of processes. Based on these requirements, a metamodel for a new modeling language was developed that satisfies them all. The new language, called DeciClare, incorporates parts of several existing modeling languages, integrating them with new solutions to requirements that had not yet been met, Deciclare is a declarative modeling language at its core, and therefore, can inherently deal with the flexibility required to model loosely framed processes. The complementary resource and data perspectives add the capability to reason about, respectively, resources and data values. The latter makes it possible to encapsulate the knowledge that governs the process flow by offering support for decision modeling. The abstract syntax of DeciClare has been implemented in the form of an Ecore model. Based on this implementation, the language-domain appropriateness of the language was validated by domain experts using the arm fracture case as application scenario. (C) 2017 Elsevier Ltd. All rights reserved
    • …
    corecore